Operadores de Hecke y Teoría de Hecke

Jerson Caro

April 14, 2020

Operadores diamante

Para $d \in (\mathbb{Z}/N\mathbb{Z})^*$ elegimos cualquier

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$$

y el operador es

$$\langle d \rangle \colon X_1(N) \to X_1(N), \quad [z] \mapsto [\gamma \cdot z]$$

$$\langle d \rangle \colon S_2(\Gamma_1(N)) \to S_2(\Gamma_1(N)), \quad f(z) \mapsto (cz+d)^{-2} f(\gamma z)$$

Este morfismo también puede ser visto sobre Y_{Γ} que envia la curva elíptica con Γ -estructura (E,P) a (E,dP).

Operadores de Hecke

Para un número primo p que no divide a N, definimos el operado de Hecke T_p sobre $S_2(\Gamma)$ por la fórmula

$$T_p(f) = \frac{1}{p} \sum_{i=0}^{p-1} f\left(\frac{\tau+i}{p}\right) + p\langle p \rangle f(p\tau).$$

En el caso $\Gamma = \Gamma_1(N)$, podemos dar una descripción geometrica de T_p

$$\omega_{T_p(f)} = \sum \phi_i^*(\omega_f),$$

donde las ϕ_i son las funciones que envían τ a las correspondientes p-isogeneas. (es decir, $\phi(\tau) = \frac{\tau+i}{p}$ y $\phi_{\infty}(\tau) = p\langle p \rangle(\tau)$).

Recordamos las diferentes p-isoneas a $\mathbb{C}/\langle au, 1 \rangle$

$$\left(\mathbb{C}/\left\langle \frac{\tau+i}{p},1\right\rangle,\frac{1}{N}\right)\quad (i=0,\ldots,p-1),\quad \left(\mathbb{C}/\left\langle p\tau,1\right\rangle,\frac{p}{N}\right)$$

Podemos entonces definir T_p sobre $S_2(N,\chi)$ en terminos de la expansión de Fourier $f=\sum a_nq^n$

$$T_p(f) = \sum_{p|n} a_n q^{n/p} + p\chi(p) \sum a_n q^{pn}$$

Así mismo definimos el operador de Hecke U_p , para $p\mid N$, teniendo en cuenta que $(\mathbb{C}/\langle p\tau,1\rangle,\frac{p}{N})$ no tiene $\Gamma_1(N)$ -estructura

$$U_p(f) = \frac{1}{p} \sum_{i=0}^{p-1} f\left(\frac{\tau+i}{p}\right) = \sum_{p|n} a_n q^{n/p}$$

Observación

Note que $a_1(T_p(f)) = a_p(f)$, del mismo modo que $a_1(U_q(f)) = a_q(f)$, cuando estas tengan sentido.

Para n > 1 definimos T_{p^n} , como sigue: si $p \nmid N$

$$T_{p^{n+1}} = T_p T_{p^n} - \langle p \rangle p T_{p^{n-1}}$$

y por $T_{p^n} = U_p^n$ si $p \mid N$. En general si $n = \prod p_i^{e_i}$ definimos T_n por $\prod_i T_{p_i^{e_i}}$. Estas relaciones las podemos ver en la siguiente fórmula para la función generatriz de las T_n :

$$\sum T_n n^{-s} = \prod (1 - T_p p^{-s} + \langle p \rangle p^{1-2s})^{-1} \prod (1 - U_p p^{-s})^{-1}$$

Proposición

Sean $e, f \in (\mathbb{Z}/N\mathbb{Z})^*$ y sean p y q primos:

(a)
$$\langle d \rangle T_p = T_p \langle d \rangle$$
, (b) $\langle d \rangle \langle e \rangle = \langle e \rangle \langle d \rangle = \langle de \rangle$, (c) $T_p T_q = T_q T_p$.

Prueba

- (a),(b) Ejercicios.
- (c) Es suficiente hacerlo para $f \in S_2(N, \chi)$, tenemos entonces:

$$a_{n}(T_{p}(T_{q}f)) = a_{np}(T_{q}f) + \chi(p)pa_{n/p}(T_{q}f)$$

$$= a_{npq}(f) + \chi(q)qa_{np/q}(f)$$

$$+ \chi(p)p(a_{nq/p}(f) + \chi(q)qa_{n/pq}(f))$$

$$= a_{npq}(f) + \chi(q)qa_{np/q}(f) + \chi(p)pa_{nq/p}(f)$$

$$+ \chi(pq)pqa_{n/pq}(f),$$

Y la última e«cuación es simétrica en p y q

Definimos \mathbb{T} el subanillo de $End_{\mathbb{C}}(S_2(\Gamma))$ generado sobre \mathbb{C} por los elementos T_p para $p \nmid N$, U_q para $q \mid N$ y $\langle d \rangle$ actuando sobre $S_2(\Gamma)$.

Definición

Una forma modular f es una eigenforma si esta es simultaneamente un eigenvector para todos los operadores en \mathbb{T} , i.e., si existe un homomorfismo de \mathbb{C} -álgebras $\lambda:\mathbb{T}\to\mathbb{C}$ tal que $Tf=\lambda(T)f$, para todo $T\in\mathbb{T}$

Gracias a la observación 1, tenemos que $a_n(f) = \lambda(T_n)a_1(f)$.

Proposición

Dado un homomorfismo de álgebras no cero $\lambda: \mathbb{T} \to \mathbb{C}$ existe exactamente una eigenforma f salvo escalares, lo cuál satisface $Tf = \lambda(T)f$, para todo $T \in \mathbb{T}$.

Teoría de Atkin-Lehner

Uno quisiera que $S_2(\Gamma)$ se pudiera descomponer en en una base de eigenformas normalizadas. El siguiente ejemplo muestra que esto no es posible en general.

Ejemplo

Supongamos que $p^3 \mid\mid N$. Sea \mathbb{T}' el álgebra de operadores de Hecke (actuando sobre $S_2(N/p^3)$). Sea f una eigenforma de nivel N/p^3 en $S_2(N/p^3)$. Definimos el espacio S_f generado por las formas $f(\tau)$, $f(p\tau)$, $f(p^2\tau)$ y $f(p^3\tau)$.

Primero notamos que $S_f \subset S_2(N)$ y que este espacio es estable por la acción de los operadores de Hecke T_q con $q \nmid N$ y U_q con $q \mid N$. S_f no tiene una base de eigenformas simultaneas para los operadores de $\mathbb T$ de nivel N. Así que la acción de $\mathbb T$ sobre S_f no es semi-simple.

 \mathbb{T}^0 denotará la subálgebra de \mathbb{T} generada por los *buenos* operadores de Hecke: T_q con $q \nmid N$ y $\langle d \rangle$.

Proposición

Si $q \nmid N$, el operador adjunto a T_q con respecto al producto escalar de Petersson es $\langle q \rangle^{-1} T_q$ y la adjunta de $\langle q \rangle$ es $\langle q \rangle^{-1}$. En particular, los operadores de Hecke conmutan con sus adjuntas.

Esta proposición junto con el teorema espectral para operadores que conmutan con sus adjuntas, tenemos:

Proposición

El álgebra \mathbb{T}^0 es semisimple (es isomorfo a un producto de copias de \mathbb{C}), y existe una base de $S_2(\Gamma)$ consistiendo de eigenvectores simultaneos para los operadores T_q .

La teoría de Atkin-Lehner muestra una descomposición en espacios propios. El ejemplo anterior nos muestra que el problema (que la acción de $\mathbb T$ no sea semi-simple) viene de formas que vienen de nivel N/p^3 . Para ello damos la siguiente definición:

Definición

Definimos el subespacio *viejo* de $S_2(\Gamma)$ al espacio generado por la funciones de la forma g(az), donde $g \in S_2(\Gamma_1(M))$ para $aM \mid N$. Definimos el subespacio *nuevo* de $S_2(\Gamma)$ al complemento ortogonal del subespacio viejo vía el producto escalar de Petersson.

El siguiente resultado de la teoría de Atkin-Lehner, el cual nos muestra la estructura del álgebra \mathbb{T} actuando sobre $S_2(\Gamma)$.

Teorema

Si f pertenece al subespacio de $S_2(\Gamma)$ de las nuevas formas y es un eigenvector para todos los operadores en \mathbb{T}^0 , entonces esta es también una eigenforma para \mathbb{T} , y de aquí que es única salvo escalar. Mas generalmente, si f es una nueva forma de nivel $N_f \mid N$, entonces el espacio S_f definido por

$$S_f = \{g \in S_2(\Gamma) \text{ tal que } Tg = \lambda_f(T)g, \text{ para todo } T \in \mathbb{T}^0\}$$

es estable bajo la acción de todos los operadores de Hecke en \mathbb{T} . Este es generado por las formas linealmente independientes f(az) donde a recorre los divisores de N/N_f . Además, tenemos

$$S_2(\Gamma) = \bigoplus_f S_f$$

donde la suma es tomada sobre todas las formas nuevas f de algún nivel N_f dividiendo N.

Ejemplo

Cuando $\Gamma = \Gamma_0(22)$, Usando la fórmula de Riemann-Hurwitz podemos mostrar que el género de esta curva es 2, en particular $\dim(S_2(22)) = 2$. Si definimos

$$\eta(\tau) = q_{24} \prod_{n=1}^{\infty} (1 - q^n),$$

la función $f(\tau)=(\eta(\tau)\eta(11\tau))^2$ es una nueva forma de nivel 11, por lo que en particular $S_f=S_2(22)$. Consecuentemente, no hay formas nuevas de nivel 22. (Se tiene que $\mathbb{T}\equiv\mathbb{C}\times\mathbb{C}$, mientras que $\mathbb{T}^0\equiv\mathbb{C}$).

Gracias.