Deformaciones de representaciones de Galois

Jerson Caro

June 19, 2020

Clase anterior

Teorema

Existe un levantamiento $\rho_{\mathcal{D}}^{univ}: G \to GL_d(R_D)$ de ρ . Tal que si $\rho: G \to GL_d(R)$ es un levantamiento de ρ de tipo D, entonces existe un único morfimos de \mathcal{O} -álgebras $\phi: R_D \to R$ tal que ρ es conjugado a $\phi \circ \rho_D^{univ}$.

Lema

Sea K'/K una extensión finita con anillo de enteros \mathcal{O}' y campo residual k'. Sea \mathcal{D}' la subcategoria full de $\mathcal{O}'[G]$ -módulos tal que sus objetos vistos como $\mathcal{O}[G]$ -módulo pertenece a D. Sea $D'=(\mathcal{O}',\chi,\mathcal{D}')$. Entonces $R_{D'}=R_D\otimes_{\mathcal{O}}\mathcal{O}'$ y $\rho_{D'}^{univ}=\rho_D^{univ}\otimes 1$.

Clase anterior

Lema

Existe un isomorfismo de k-espacios vectoriales

$$\operatorname{\mathsf{Hom}}_k(\mathfrak{m}_{R_D}/(\lambda,\mathfrak{m}_{R_D}^2),k) \cong H^1_D(G,\operatorname{\mathsf{ad}}^0\overline{\rho}).$$

En particular, R_D generado topologicamente como \mathcal{O} -álgebra por $\dim_k H^1_D(G, ad^0\overline{\rho})$

Lema

Si $\theta: R_D \to \mathcal{O}$ es un homomorfismo de \mathcal{O} -álgebras, y sea $\rho: G \to GL_d(\mathcal{O})$ donde $\rho = \theta \circ \rho_D^{univ}$ y si $\wp = \ker \theta$. Entonces $\text{Hom}_{\mathcal{O}}(\wp/\wp^2, K/\mathcal{O}) \cong H^1_D(G, ad^0 \rho \otimes \mathcal{O}_p)$

Sea $\overline{\rho}:G_{\mathbb Q}\to GL_2(k)$ una representación continua absolutamente irreducble. Suponga además que det $\overline{\rho}=\epsilon$ y que $\overline{\rho}$ es semiestrable en el sentido que:

- $\rho \upharpoonright_{G_{\ell}}$ es semiestable,
- y si $p \neq \ell$ entonces $\#\overline{\rho}(I_p) \mid \ell$.

Sea Σ un conjunto finito de primos. Si R es un objeto de $\mathcal{C}_{\mathcal{O}}$ entonces decimos que un levantamiento continuo $\rho: G_{\mathbb{Q}} \to GL_2(R)$ de $\overline{\rho}$ es de tipo Σ si lo siguiente se cumple

- $\det \rho = \epsilon$,
- $\rho \upharpoonright_{G_{\ell}}$ is semiestable.
- Si $\ell \notin \Sigma$ y $\overline{\rho} \upharpoonright_{G_{\ell}}$ es buena.
- Si $p \notin \Sigma \cup \{\ell\}$ y $\overline{\rho}$ es no ramificada en p entonces ρ es no ramificada en p.
- Si $p \notin \Sigma \cup \{\ell\}$ entonces $\rho \upharpoonright_{I_p} \sim \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}$

Suponga que $\rho: G_{\mathbb{Q}} \to GL_2(\mathcal{O}_n)$ es un levantamiento de $\overline{\rho}$ tipo Σ . Escribiremos $H^1_{\Sigma}(\mathbb{Q}, ad^0\rho)$ para $H^1_{L_{\Sigma}}(\mathbb{Q}, ad^0\rho)$, donde

- $L_{\Sigma,p} = H^1(G_p/I_p, (ad^0\rho)^{I_p})$ si $p \notin \Sigma \cup \{\ell\}$;
- $L_{\Sigma,p} = H^1(G_p, (ad^0 \rho))$ si $p \in \Sigma$ y $p \neq \ell$;
- $L_{\Sigma,\ell} = H^1_f(G_\ell,(ad^0\rho))$ si $\ell \notin \Sigma$;
- $L_{\Sigma,\ell} = H^1_{ss}(G_\ell,(ad^0\rho))$ si $\ell \in \Sigma$.

Note que el pairing $ad^0\rho \times ad^0\rho \to \mathcal{O}_n$ dada por $(a,b)\to \operatorname{tr}(ab)$ es perfecto y respeta la acción de $G_{\mathbb Q}$ pues

$$\operatorname{tr}((ad^0\rho)(g)a,(ad^0\rho)(g)b)=\operatorname{tr}(ab) \qquad \forall g\in G_{\mathbb{Q}},$$

de lo anterior tenemos el isomorfismo de $\mathcal{O}[G_{\mathbb{Q}}]$ -módulos.

$$\mathsf{ad}^0\rho(1)\cong \mathsf{Hom}_O(\mathsf{ad}^0\rho,\mathcal{O}_n)(1)\cong \mathsf{Hom}(\mathsf{ad}^0\rho,\mathbb{Q}_\ell\,/\,\mathbb{Z}_\ell)(1)=(\mathsf{ad}^0\rho)^*.$$

Aquí el twist (1) significa $\otimes \mathcal{T}_{\ell}(\mathbb{G}_m)$. Denotaremos por $H^1_{\Sigma}(\mathbb{Q}, ad^0\rho(1))$ la imagen de $H^1_{L^*_{\tau}}(\mathbb{Q}, (ad^0\rho)^*)$ en $H^1(\mathbb{Q}, ad^0\rho(1))$ vía el anterior isomorfismo.

Para ver las condiciones locales de $H^1_\Sigma(\mathbb{Q},ad^0\rho(1))$ usamos el pairing

$$H^1(\mathit{G}_{\mathsf{v}}, \mathit{ad}^0
ho) imes H^1(\mathit{G}_{\mathsf{v}}, \mathit{ad}^0
ho(1)) o \mathbb{Q}_\ell \, / \, \mathbb{Z}_\ell$$

definido por el anterior isomorfismo. Así que las condiciones locales son $\{L_{\Sigma,\nu}^{\perp}\}$. Notamos que si $p \neq \ell$ tenemos que

- $L_{\Sigma,p}^{\perp}=H^1(G_p/I_p,(ad^0\rho)(1)^{I_p})$ si $p\notin\Sigma$ (Teorema 2.17(e));
- $L_{\Sigma,p}^{\perp} = (0)$ si $p \in \Sigma$.

Notación

Si $\rho: G_{\mathbb{Q}} \to GL_2(\mathcal{O})$ es un levantamiento de $\overline{\rho}$ de tipo Σ , escribiremos $H^1_{\Sigma}(\mathbb{Q}, ad^0\rho \otimes K/\mathcal{O})$ para $\varinjlim H^1_{\Sigma}(\mathbb{Q}, ad^0\rho \otimes \lambda^{-n}/\mathcal{O})$, y $H^1_{\Sigma}(\mathbb{Q}, ad^0\rho(1) \otimes K/\mathcal{O})$ para $\varinjlim H^1_{\Sigma}(\mathbb{Q}, ad^0\rho(1) \otimes \lambda^{-n}/\mathcal{O})$.

Teorema 1

Existe un levantamiento universal $ho^{univ}_{\Sigma}: G_{\mathbb Q} o GL_2(R_{\Sigma})$ de $\overline{\rho}$ de tipo Σ , i.e. ho^{univ}_{Σ} es un levantamiento de tipo Σ y si $ho: G_{\mathbb Q} o GL_2(R)$ es cualquier levantamiento de tipo Σ entonces existe un único homomorfismo de $\mathcal O$ -álgebras $\phi: R_{\Sigma} o R$ tal que $\rho \sim \phi \circ \rho^{univ}_{\Sigma}$. Más aun tenemos lo siguiente

- (a) Si K'/K es una extensión finita y R'_{Σ} es la deformación correspondiente, entonces $R'_{\Sigma} = R_{\Sigma} \otimes_{\mathcal{O}} \mathcal{O}'$ y $(\rho_{\Sigma}^{univ})' = \rho_{\Sigma}^{univ} \otimes 1$.
- (b) R_{Σ} puede ser topologicamente generado como un \mathcal{O} -álgebra por $\dim_k H^1_{\Sigma}(\mathbb{Q}, ad^0\overline{\rho})$ elementos.
- (c) Si $\phi: R_{\Sigma} \to \mathcal{O}$ es un homomorfismo de \mathcal{O} -álgebras, si $\rho = \phi \circ \rho_{\Sigma}$ y si $\wp = \ker \phi$ entonces $\mathsf{Hom}(\wp/\wp^2, K/\mathcal{O}) \cong H^1_{\Sigma}(\mathbb{Q}, ad^0\overline{\rho} \otimes K/\mathcal{O}).$

Prueba

Sea L_0 el campo fijo por $\overline{\rho}$. Sea L_n la máxima ℓ -extensión abeliana elemental de L_{n-1} no ramificada fuera de Σ , $\{\ell\}$ y los primos donde $\overline{\rho}$ ramifica. $L_\infty = \bigcup_n L_n$ y sea $G = \operatorname{Gal}(L_\infty/\mathbb{Q})$. Notamos que cualquier levantamiento ρ del tipo Σ factorizan a través de G (pues queremos que ρ sea no ramificado fuera de Σ , $\{\ell\}$ y los primos donde $\overline{\rho}$ ramifica). Notamos que $\operatorname{Gal}(L_\infty/L_0)$ es un pro- ℓ -grupo y su cociente abeliano maximal elemental $\operatorname{Gal}(L_1/L_0)$ (el cuál es finito por Hermite-Minkowski) y por el siguiente lema $\operatorname{Gal}(L_\infty/L_0)$ y G son finitamente generados.

Lema

Sean H un pro- ℓ -group y \overline{H} its maximal abelian quotient elemental. Suponga $h_1, \ldots, h_r \in H$ son un conjunto generador de \overline{H} (vía el cociente), entonces h_1, \ldots, h_r generan a H topologicamente.

Denotemos por $\mathcal D$ la categoria de $\mathcal O[G]$ -módulos profinitos M para los cuáles

- M es semiestable como un $\mathcal{O}[G_\ell]$ -módulo,
- si $\ell \notin \Sigma$ y si $\overline{\rho}$ es buena entonces M es buena como $\mathcal{O}[G_\ell]$ -módulo,
- si $p \in \Sigma \cup \{\ell\}$ y si $\overline{\rho}$ es ramificada en p entonces existe una sucesión exacta de $\mathcal{O}[I_p]$ -módulos

$$(0)\longrightarrow M^{(-1)}\longrightarrow M\longrightarrow M^{(0)}\longrightarrow (0),$$

tal que I_p actúa trivialmente sobre $M^{(-1)}$ y $M^{(0)}$.

Entonces vemos que un levantamiento $\rho:G_{\mathbb Q}\to GL_2(R)$ de $\overline{\rho}$ es del tipo Σ si y sólo si

- ρ factoriza a través de G,
- det $\rho = \epsilon$,
- M_o es un objeto de \mathcal{D} .

La existencia del levantamiento universal viene del Teorema 2.41 y la parte (a) viene de Teorema 2.36.

Si $\rho: G_{\mathbb{Q}} \to GL_2(\mathcal{O}_n)$ es un levantamiento de tipo Σ y si $p \notin \Sigma \cup \{\ell\}$ es un primo donde $\overline{\rho}$ ramifica entonces

$$\ker(H^1(G_p, ad^0\rho) \to H^1(I_p, ad^0\rho/(ad^0\rho)^{I_p})) = H^1(G_p/I_p, (ad^0\rho)^{I_p}).$$

Lo anterior sigue del hecho que el morfismo natural $H^1(I_p,ad^0\rho) \to H^1(I_p,ad^0\rho/(ad^0\rho)^{I_p})$ es inyectivo (de hecho un isomorfismo). Esto no es mas que el morfismo $(ad^0\rho)_{I_p} \to (ad^0\rho/(ad^0\rho)^{I_p})_{I_p}$.

Corolario

Suponga que $\ell=3$ entonces $\overline{\rho}\upharpoonright_{G_{\mathbb{Q}(\sqrt{-3})}}$ es absolutamente irreducible. Entonces R_{Σ} puede ser topologicamente generado como \mathcal{O} -álgebra por

$$\dim_k H^1_{\Sigma}(\mathbb{Q}_\ell, \mathit{ad}^0\overline{\rho}(1)) + \mathit{d}_\ell + \sum_{\mathit{p} \in \Sigma - \{\ell\}} \dim_k H^0(\mathbb{Q}_\ell, \mathit{ad}^0\overline{\rho}(1))$$

elementos, donde $d_{\ell} := \dim_k H^1_{ss}(\mathbb{Q}_{\ell}, ad^0\overline{\rho}) - \dim_k H^1_f(\mathbb{Q}_{\ell}, ad^0\overline{\rho})$ si $\ell \in \Sigma$, mientras $d_{\ell} = 0$ si $\ell \notin \Sigma$.

Prueba

Gracias a Teorema 1.b, necesitamos una cota superior para $\dim_k H^1_{\Sigma}(\mathbb{Q}, ad^0\overline{\rho})$, para ello usaremos que

$$\frac{\#H^1_L(\mathbb{Q},M)}{\#H^1_{L^*}(\mathbb{Q},M^*)} = \frac{\#H^0(G_{\mathbb{Q}},M)}{\#H^0(G_{\mathbb{Q}},M^*)} \prod_{v} \frac{\#L_v}{\#H^0(G_v,M)}.$$

Note que $H^0(\mathbb{Q}, ad^0\overline{\rho}(1))=0$ a menos que $\ell=3$ y $\overline{\rho}\upharpoonright_{G_{\mathbb{Q}(\sqrt{-3})}}$ no es absolutamente irreducible. Para ver esto notenemos

$$M_{ad^0(\rho)(1)} = M_{2\times 2}(k)^{tr=0} \otimes_{\mathcal{O}} \mathcal{T}_{\ell}(\mathbb{G}_m) \cong M_{2\times 2}(k)^{tr=0} \otimes_{\mathcal{O}} \mu_{\ell}$$

con acción por izquierda conjugar por $\overline{\rho}(\sigma)$ y la acción en la derecha es la natural de $G_{\mathbb Q}$ en μ_ℓ (ciclotómico en exponente). Veamos que todos los tensores en $M_{2\times 2}(k)^{tr=0}\otimes_{\mathcal O}\mu_\ell$ son puros, pues tomando $\zeta\in\mu_\ell$ raíz primitiva, todo se escribe $\gamma\otimes\zeta$. Así sea $\gamma\otimes\zeta$ un elemento invariantes, es decir en $H^0(G_{\mathbb Q},M_{2\times 2}(k)^{tr=0}\otimes\mu_\ell)\cong H^0(G_{\mathbb Q},ad^0(\overline{\rho})(1))=:H$. Así que para todo $\sigma\in G_{\mathbb Q}$ tenemos $\gamma\otimes\zeta=\overline{\rho}(\sigma)\gamma\overline{\rho}(\sigma)^{-1}\otimes\zeta^\sigma$. En nuestro caso tenemos:

$$\gamma \otimes \zeta = \overline{\rho}(\sigma)\gamma\overline{\rho}(\sigma)^{-1} \otimes \zeta$$

Entonces γ conmuta con todo elemento de $\overline{\rho}(G_{\mathbb{Q}(\sqrt{-3})})$. Como $\overline{\rho} \upharpoonright_{G_{\mathbb{Q}(\sqrt{-3})}}$ es abs. irr. esto implica que $\gamma = \alpha \cdot Id$ para cierto α . Pero tr = 0 así que $\alpha = 0$.

Entonces tenemos que $\dim_k H^1_{\Sigma}(\mathbb{Q}, M)$ es:

$$\dim_k H^1_{\Sigma}(\mathbb{Q}, ad^0\overline{\rho}(1)) + \sum_p \dim_k L_{\Sigma,p} - \dim_k H^0(G_p, M). \tag{1}$$

Consideramos lo siguiente hechos:

- (a) Si $p \notin \Sigma \cup \{\ell, \infty\}$ se tiene que $\dim_k L_{\Sigma,p} \dim_k H^0(G_p, ad^0\overline{p}) = 0$;
- (b) $H^1(\mathbb{R}, ad^0\overline{\rho}) = 0$ esto se debe a que $H^1(G, T) = 0$ siempre que #G = 2 y #T es impar (The proof of Fermat's last theorem pág.94);
- (c) $\dim_k H^1_f(\mathbb{Q}_\ell, ad^0\overline{\rho}) \dim_k H^0(\mathbb{Q}_\ell, ad^0\overline{\rho}) \dim_k H^0(\mathbb{R}, ad^0\overline{\rho}) \le 0$ (*) por proposición 2.27.
- (d) De (b) y (c) tenemos $d_{\ell} \geq \sum_{p \in {\ell,\infty}} \dim_k L_{\Sigma,p} \dim_k H^0(G_p, ad^0\overline{\rho}).$
- (e) Por la fórmula de la característica de Euler local (teorema 2.17), para cada $p \in \Sigma \{\ell\}$,

$$\dim_k H^1(\mathbb{Q}_p, ad^0\overline{\rho}) - \dim_k H^0(\mathbb{Q}_p, ad^0\overline{\rho}) = \dim_k H^0(\mathbb{Q}_p, ad^0\overline{\rho}(1)),$$

Poniendo todo junto obtenemos que

$$\begin{split} &(1) = H^{1}_{\Sigma}(\mathbb{Q}, ad^{0}\overline{\rho}(1)) + \sum_{p \in \Sigma \cup \{\ell, \infty\}} \dim_{k} L_{\Sigma,p} - \dim_{k} H^{0}(G_{p}, M) \\ &\leq H^{1}_{\Sigma}(\mathbb{Q}, ad^{0}\overline{\rho}(1)) + d_{\ell} + \sum_{p \in \Sigma - \{\ell\}} \dim_{k} L_{\Sigma,p} - \dim_{k} H^{0}(G_{p}, M) \\ &\leq H^{1}_{\Sigma}(\mathbb{Q}, ad^{0}\overline{\rho}(1)) + d_{\ell} + \sum_{p \in \Sigma - \{\ell\}} \dim_{k} H^{0}(\mathbb{Q}_{p}, ad^{0}\overline{\rho}(1)). \end{split}$$

Gracias.