Anillos de deformación de representaciones para primos de Taylor-Wiles

Matías Alvarado

Junio 2020

Estudiaremos R_{Σ} para ciertos conjuntos especiales. Los elementos de Σ tienen las propiedades

- $q \equiv 1 \pmod{\ell}$
- $\overline{\rho}$ es no ramificado en q y $\overline{\rho}(\operatorname{Frob}_q)$ tiene dos valores propios distintos en k

Para estos casos especiales usaremos Q en lugar de Σ Para $q \in Q$, denotaremos por α_q y β_q los valores propios de $\overline{\rho}(\operatorname{Frob}_q)$

Definición

 Δ_q es el cuociente maximal de $(\mathbb{Z}/q\mathbb{Z})^ imes$ de orden potencia de ℓ

Observación

 Δ_q es un cociente de $G_{\mathbb{Q}}$ y G_q

$$\chi_q \colon \mathcal{G}_\mathbb{Q} \longrightarrow \mathsf{Gal}(\mathbb{Q}(\zeta_q)/\mathbb{Q}) \simeq (\mathbb{Z}/q\mathbb{Z})^{ imes} \longrightarrow \Delta_q$$
 $\chi_q \colon \mathcal{G}_q \longrightarrow \mathsf{Gal}(\mathbb{Q}_q(\zeta_q)/\mathbb{Q}_q) \simeq (\mathbb{Z}/q\mathbb{Z})^{ imes} \longrightarrow \Delta_q$

$$\Delta_Q = \prod \Delta_q \text{ y } \chi_Q = \prod \chi_q \colon \mathcal{G}_\mathbb{Q} \to \Delta_Q$$

Definición (Ideal de augmentation)

El ideal de augmentation en R[G] se define como el núcleo del morfismos $R[G] \to R$ dado por $\sum r_i g_i \mapsto \sum r_i$

Si #Q = r, definimos un morfismo de \mathcal{O} -álgebras

$$\mathcal{O}[[S_1,...,S_r]] \to \mathcal{O}[\Delta_Q]$$

tal que $S_i \mapsto \delta_{q_i} - 1$ (donde δ_{q_i} es generador de Δ_{q_i}), el cual induce un isomorfismo

$$\mathcal{O}[[S_1,...,S_r]]/((1+S_i)^{\#\Delta_{q_i}},q\in Q) o \mathcal{O}[\Delta_Q]$$

en donde el idel de augmentation se corresponde con $(S_q: q \in Q)$

Matías Alvarado Seminario de modularidad Junio 2020 3 / 16

Lema

Sea $q \in Q$, entonces $ho_Q^{\mathsf{uinv}}|_{G_q}$ es conjugado a $\begin{pmatrix} \xi & 0 \\ 0 & \epsilon \mathcal{E}^{-1} \end{pmatrix}$ para algún caracter ξ con $\xi(Frob_a) = \alpha_a$

Demostración: Sea f un levantamiento de Frob_a a G_a . Por lema de Hensel, $\rho_{O}^{univ}(f)$ tiene valores propios en R_{O} , que llamaremos $\widetilde{\alpha}_{a}$ y $\widetilde{\beta}_{a}$. Cambiando de base si fuera necesario, la imagen de f tiene la forma

 $\rho_Q^{univ}(f) = \begin{pmatrix} \widetilde{\alpha}_q & 0 \\ 0 & \widetilde{\beta}_q \end{pmatrix}$. Veamos ahora que para $\sigma \in I_q$, $\rho_Q^{univ}(\sigma)$ es diagonal en esta base.

$$ho_Q^{univ}(\sigma) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, con $a,b,c,d \in \mathfrak{m}_{R_Q}$. Como ho_Q^{univ} es

moderadamente ramificada, tenemos que

$$\rho_Q^{\mathit{univ}}(f)\rho_Q^{\mathit{univ}}(\sigma)\rho_Q^{\mathit{univ}}(f)^{-1}=\rho_Q^{\mathit{univ}}(\sigma)^q \text{(ver anexo) por lo tanto tenemos}$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} a & b \frac{\widetilde{\alpha}_q}{\widetilde{\beta}_q} \\ c \frac{\widetilde{\beta}_q}{\widetilde{\alpha}_q} & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} a & b \\ c & d \end{pmatrix} \bmod \mathfrak{m}_{R_Q}^2$$
 Por lo tanto
$$\begin{pmatrix} \widetilde{\alpha}_q \\ \widetilde{\beta}_q \end{pmatrix} = 1 b, \begin{pmatrix} \widetilde{\beta}_q \\ \widetilde{\alpha}_q \end{pmatrix} + 1 c \in \mathfrak{m}_{R_Q}(b,c).$$
 De este modo tenemos que $(b,c)\mathfrak{m}_{R_Q} = \mathfrak{m}_{R_Q}$, con lo que concluimos que $b=c=0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Matías Alvarado Seminario de modularidad Junio 2020 5 / 16

Consideremos ξ_q el caracter del lema.

- $\#\xi_q(I_q)|(q-1)$, pues $\rho(x) = \rho(x)^q$.
- ullet $\xi_q|_{I_q}$ factoriza a traves de Δ_q
- Sea $\xi_Q\colon G_\mathbb{Q} \to R_Q^ imes$ el caracter no ramificado fuera de primos de Q y $\xi|_{G_q}=\xi_q,$
- $\xi_Q|_{I_q}$ factoriza a traves de Δ_Q
- ullet De este modo tenemos un morfismo $\Delta_Q o R_Q^{ imes}$
- ullet R_Q tiene estructura de $\mathcal{O}[\Delta_Q]$ -módulo

Matías Alvarado Seminario de modularidad Junio 2020 6 / 16

Proposición

Existe un isomorfismo de \mathcal{O} -álgebras $R_Q/\mathfrak{a}_QR_Q\to R_\emptyset$, donde \mathfrak{a}_Q es el ideal de augmentation

Demostración: Si existe una deformación sobre R de tipo \emptyset , en particular es de tipo Q, luego existe un único morfismo de \mathcal{O} -álgebras $R_Q \to R$. Este morfismo factoriza a traves de R_Q/\mathfrak{a}_QR_Q , pues R es no ramificado en los primo de Q

Lema

- (a) Si $q \in Q$, entonces $H^0(\mathbb{F}_q, ad^0\overline{\rho}) = H^0(\mathbb{F}_q, ad^0\overline{\rho}(1)) = k$ y $H^1(\mathbb{F}_q, ad^0\overline{\rho}) = H^1(\mathbb{F}_q, ad^0\overline{\rho}(1)) = k$.
- (b) R_Q puede ser generado topologicamente como \mathcal{O} -álgebra por

$$\#Q + \dim_k H^1_Q(\mathbb{Q}, ad^0\overline{\rho}(1))$$

elementos

(c) Si

$$H^1_\emptyset(\mathbb{Q},\mathsf{ad}^0\overline{
ho}(1))\simeq igoplus_{q\in Q} H^1(\mathbb{F}_q,\mathsf{ad}^0\overline{
ho}(1))$$

entonces $\#Q = \dim_k H^1_{\emptyset}(\mathbb{Q}, ad^0\overline{\rho}(1))$ y R_Q puede ser generado topologicamente como \mathcal{O} -álgebra por #Q elementos.

4□ > 4□ > 4 = > 4 = > = 90

(a) Si $q \in Q$, entonces $H^0(\mathbb{F}_q, ad^0\overline{\rho}) = H^0(\mathbb{F}_q, ad^0\overline{\rho}(1)) = k$ y $H^1(\mathbb{F}_q, ad^0\overline{\rho}) = H^1(\mathbb{F}_q, ad^0\overline{\rho}(1)) = k$.

Demostración: Frob $_q$ actua por conjugación sobre $ad^0\overline{\rho}$. Si $M\in ad^0\overline{\rho}$ es la forma $\begin{pmatrix} a & b \\ c & -a \end{pmatrix}$, entonces

$$(\operatorname{Frob}_p).M = \begin{pmatrix} a & b\alpha_q/\beta_q \\ c\beta_q/\alpha_q & -a \end{pmatrix}$$

Por lo tanto el espacio invariante es 1 dimensional. Para $H^1(\mathbb{F}_q,ad^0\overline{\rho})$ debemos estudiar el cociente $ad^0\overline{\rho}/(\mathrm{Frob}_q-1)ad^0\overline{\rho}$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Matías Alvarado Seminario de modularidad Junio 2020 9 / 16

(b) R_Q puede ser generado topologicamente como \mathcal{O} -álgebra por

$$\#Q + \dim_k H^1_Q(\mathbb{Q}, ad^0\overline{\rho}(1))$$

elementos

Demostración: El corolario 2.43 tenemos que el anillo R_{Σ} puede ser generado por

$$\dim_k H^1_{\Sigma}(\mathbb{Q}, ad^0\overline{\rho}(1)) + d_\ell + \sum_{p \in \Sigma - \{\ell\}} \dim_k H^0(\mathbb{Q}_p, ad^0\overline{\rho}(1))$$

 $d_\ell=0$ y $\sum \dim_k H^0(\mathbb{Q}_p,ad^0\overline{\rho}(1))=\#Q$, por lo tanto R_Q puede ser generado por

$$\#Q+\dim_k H^1_Q(\mathbb{Q},ad^0\overline{
ho}(1))$$

4□ > 4□ > 4 = > 4 = > = 90

10 / 16

Matías Alvarado Seminario de modularidad Junio 2020

(c) Si

$$H^1_\emptyset(\mathbb{Q}, \mathsf{ad}^0\overline{
ho}(1)) \simeq igoplus_{q \in \mathcal{Q}} H^1(\mathbb{F}_q, \mathsf{ad}^0\overline{
ho}(1))$$

entonces $\#Q = \dim_k H^1_{\emptyset}(\mathbb{Q}, ad^0\overline{\rho}(1))$ y R_Q puede ser generado topologicamente como \mathcal{O} -álgebra por #Q elementos.

Demostración: Por la parte anterior R_\emptyset puede ser generado por $\#\emptyset+\dim_k H^1_\emptyset(\mathbb{Q},ad^0\overline{\rho}(1))=\#Q$ elementos. De este modo R_Q/\mathfrak{a}_QR_Q puede ser generado por Q elementos, por lo tanto lo mismo ocurre con R_Q

Matías Alvarado Seminario de modularidad Junio 2020 11/16

Teorema

- (a) Sea H subgrupo finito de $PGL_2(\mathbb{C})$, entonces H es isomorfo a uno de los siguientes grupos: Un grupo cíclico, un grupo dihedral, A_4 , S_4 o A_5
- (b) Sea H un subgrupo finito de $PGL_2(\overline{\mathbb{F}}_\ell)$ entonces se tiene una de las siguientes afirmaciones
 - H es conjugado a un subgrupo matrices triangulares superiores
 - ightharpoonup H es conjugado a $PSL(F_{\ell^r})$ o $PGL_2(\mathbb{F}_{\ell^r})$ para algún r.
 - ▶ H es isomorfo a A₄, S₄, A₅ o un grupo dihedral

Demostración:

- Suponemos que H está en algún $PGL_2(\mathbb{F}_{\ell^r})$
- Suponemos primero que $\ell | \# H$
- En este caso H es conjugado a un subgrupo de las triangulares superiores o contiene a $PSL_2(\mathbb{F}_{\ell^r})$
- Si $\ell \nmid \#H$, hay que estudiar la acción de H en $\mathbb{P}^1(\overline{\mathbb{F}}_\ell)$.
- Se toma el conjunto $X=\{(x,g)\in \mathbb{P}^1(\overline{\mathbb{F}}_\ell)\times H\setminus \{1\}: g(x)=x\}$

4 B ト 4 분 ト 4 분 ト 9 은 연

- P la proyección en la primera coordenada de X.
- H actua en P y este se separa en orbitas $P = O_1 \cup \cdots \cup O_k$
- $\#O_i = \#H/e_i$, donde e_i es el cardinal de los grupos estabilizadores de elementos de O;
- Contando los elementos de X llegamos a

$$2(\#H-1) = \sum_{x \in P} (\#G_x - 1)$$

$$\sum_{i=0}^{k} 1/e_i = k - 2 + \frac{2}{\#H}$$

- Las soluciones de esta ecuación son
- Para k = 2, $(e_1, e_2, \#H) = (\#H, \#H, \#H)$
- Para k = 3. $(e_1, e_2, e_3; \#H) \in \{(2, 2, n, 2n), (2, 3, 3, 12), (2, 3, 4, 24), (2, 3, 4, 60)\}$

Matías Alvarado

Lema

Sea $\mathbb F$ un campo finito de caracteristica ℓ impar. Si $\#\mathbb F
eq 5$, entonces

$$H^1(SL_2(\mathbb{F}), End^0(\mathbb{F}^2)) = 0$$

Demostración:

- Tomamos subgrupos $U \subseteq B \subseteq SL_2(\mathbb{F})$
- $H^1(G, End^0(\mathbb{F}^2)) o H^1(B, End^0(\mathbb{F}^2))$ es inyectiva
- $H^1(B, End^0(\mathbb{F}^2)) o H^1(U, End^0(\mathbb{F}^2))^{B/U}$ es inyectiva
- Si $\#\mathbb{F} = 3$, entonces podemos calcular directamente que $H^1(U, End^0(\mathbb{F}^2)) = 0$ usando el isomorfismo $H^1(U, End^0(\mathbb{F}^2)) \simeq \ker N/(\sigma 1)End^0(\mathbb{F}^2)$
- En general se toman los siguientes submodulos

→□▶→□▶→□▶→□▶
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□

- M_1 = matrices triangulares superiores con ceros en la diagonal
- M_2 = matrices triangulares superiores
- $M_3 = End^0(\mathbb{F}^2)$
- Tomando sucesiones largas de cohomologia se ve que $H^1(U, M_3/M_2) \hookrightarrow H^1(U, M_3)$

Matías Alvarado Seminario de modularidad Junio 2020 15 / 16

Anexo

Sea $\sigma \in Gal(\mathbb{Q}_q^{mr}/\mathbb{Q}_q^{nr})$ y $f \in Gal(\mathbb{Q}_q^{mr}/\mathbb{Q}_q)$ un levantamiento del Frobenius. Como la extensión $\mathbb{Q}_q^{mr}/\mathbb{Q}_q^{nr}$ es generada por los elementos $\sqrt[n]{q}$ para $q \nmid n$, nos basta probar que $f \circ f^{-1}(\sqrt[n]{q}) = \sigma^q(\sqrt[n]{q})$. Vemos a σ como un elemento de $Gal(\mathbb{Q}_q^{nr}(\sqrt[n]{q})/\mathbb{Q}_q^{nr})$. Por teoria de Kummer

$$\operatorname{Gal}(\mathbb{Q}_q^{nr}(\sqrt[n]{q})/\mathbb{Q}_q^{nr}) \to \mu_n$$
$$\eta \mapsto \frac{\eta(\sqrt[n]{q})}{\sqrt[n]{q}}$$

$$f\sigma f^{-1}(\sqrt[n]{q}) = f\sigma(\zeta_n\sqrt[n]{q}) = f(\zeta_n\sigma(\sqrt[n]{q})) = f\left(\zeta_n\sqrt[n]{q} \cdot \frac{\sigma(\sqrt[n]{q})}{\sqrt[n]{q}}\right)$$
$$= \sqrt[n]{q}\frac{\sigma^q(\sqrt[n]{q})}{\sqrt[n]{q}} = \sigma^q(\sqrt[n]{q})$$