Formas Modulares Seminario de Teoría de Números

Sebastián Muñoz Thon (PUC)

1 de Junio de 2018

Un poco de historia

• Jacobi y Eisenstein (siglo XIX).

Un poco de historia

- Jacobi y Eisenstein (siglo XIX).
- Ramanujan mock functions. (≤ 1920).

Un poco de historia

- Jacobi y Eisenstein (siglo XIX).
- Ramanujan mock functions. (≤ 1920).
- Hecke (1920-1930).

Motivación

• Sea $\omega = f(z)(dz)^k$ una k-forma meromorfa en \mathbb{H} . ¿Bajo qué condiciones de f, ω es invariante bajo $\mathbb{SL}_2(\mathbb{Z})$?.

Motivación

- Sea $\omega = f(z)(dz)^k$ una k-forma meromorfa en \mathbb{H} . ¿Bajo qué condiciones de f, ω es invariante bajo $\mathbb{SL}_2(\mathbb{Z})$?.
- Hemos visto que todo número entero no negativo puede escribirse como la suma de cuatro cuadrados (Teorema de Lagrange). Ahora bien, ¿podemos contar de cuántas formas podemos hacer esto?

Definición

Definimos el semiplano superior por $\mathbb{H}:=\{z\in\mathbb{C}|\ \mathrm{Im}(z)>0\}$

Definición

Definimos

$$\mathbb{SL}_2(\mathbb{R}) := \left\{ egin{pmatrix} a & b \ c & d \end{pmatrix} ; a,b,c,d \in \mathbb{R} \; y \; ad-bc = 1
ight\}.$$

Definición

Definimos el semiplano superior por $\mathbb{H}:=\{z\in\mathbb{C}|\ \mathrm{Im}(z)>0\}$

Definición

Definimos

$$\mathbb{SL}_2(\mathbb{R}) := \left\{ egin{pmatrix} a & b \ c & d \end{pmatrix} ; a,b,c,d \in \mathbb{R} \; y \; ad-bc = 1
ight\}.$$

Podemos hacer actuar este grupo en \mathbb{H} : dado $z \in \mathbb{H}$, definimos

$$gz = \frac{az + b}{cz + d},$$

$$\text{donde } g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{SL}_2(\mathbb{Z}).$$

Observación

$$-1=egin{pmatrix} -1 & 0 \ 0 & -1 \end{pmatrix}$$
 actúa de forma trivial en $\mathbb H$

Observación

$$-1=egin{pmatrix} -1 & 0 \ 0 & -1 \end{pmatrix}$$
 actúa de forma trivial en $\mathbb H$

Definición

Definimos

$$\mathbb{PSL}_2(\mathbb{R}) := \mathbb{SL}_2(\mathbb{R})/\{\pm 1\}.$$

Observación

$$-1=egin{pmatrix} -1 & 0 \ 0 & -1 \end{pmatrix}$$
 actúa de forma trivial en $\mathbb H$

Definición

Definimos

$$\mathbb{PSL}_2(\mathbb{R}) := \mathbb{SL}_2(\mathbb{R})/\{\pm 1\}.$$

Teorema 1

 $\mathbb{PSL}_2(\mathbb{R})$ actúa efectivamente en \mathbb{H} (i.e., no existe $g \in \mathbb{PSL}_2(\mathbb{R})$ con $gz = z \ \forall z \in \mathbb{H}$). Más aún, $\mathrm{Aut}(\mathbb{H}) = \mathbb{PSL}_2(\mathbb{R})$.

Acción de $\mathbb{PSL}_2(\mathbb{R})$ en \mathbb{H}

Observación

 $\mathbb{SL}_2(\mathbb{Z}) < \mathbb{SL}_2(\mathbb{R})$ es discreto.

Acción de $\mathbb{PSL}_2(\mathbb{R})$ en \mathbb{H}

Observación

 $\mathbb{SL}_2(\mathbb{Z}) < \mathbb{SL}_2(\mathbb{R})$ es discreto.

Definición

El grupo $G = \mathbb{SL}_2(\mathbb{Z})/\{\pm 1\}$ es llamado grupo modular.

Acción de $\mathbb{PSL}_2(\mathbb{R})$ en \mathbb{H}

Observación

 $\mathbb{SL}_2(\mathbb{Z}) < \mathbb{SL}_2(\mathbb{R})$ es discreto.

Definición

El grupo $G = \mathbb{SL}_2(\mathbb{Z})/\{\pm 1\}$ es llamado grupo modular.

Definición

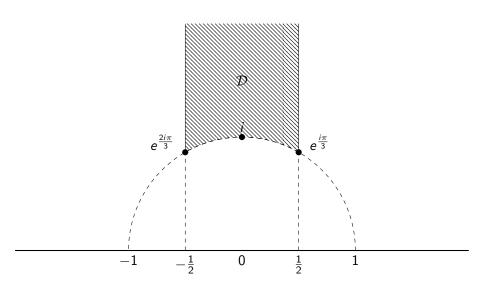
Decimos que $\mathcal{D} \subset \mathbb{H}$ es dominio (o región) fundamental para un grupo discreto $\Gamma \leq \mathbb{PSL}_2(\mathbb{R})$ si \overline{D} es cerrado, conexo y cumple

- $\bullet \bigcup_{T \in \Gamma} T(\mathcal{D}) = \mathbb{H},$
- $\mathring{\mathcal{D}} \cap T(\mathring{\mathcal{D}}) = \emptyset \ \forall \ T \in \Gamma.$

Acción de $\mathbb{SL}_2(\mathbb{Z})$ en \mathbb{H}

Teorema 2

- $\mathcal{D}:=\{z\in\mathbb{H}||z|\geq 1\ y\ |\mathrm{Re}(z)|\leq \frac{1}{2}\}$ es dominio fundamental para el grupo modular G.
- ② G es generado por $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ y por $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Esto también se cumple para $\mathbb{SL}_2(\mathbb{Z})$.



Formas diferenciales invariantes

Definición

Sea $\omega = f(z)(dz)^k$ una k-forma diferencial en \mathbb{H} . Si $\gamma = \gamma(z)$ definimos

$$\gamma^*\omega = f(\gamma(z))(d\gamma(z))^k = f(\gamma(z))(\gamma'(z))^k (dz)^k.$$

Sea
$$\gamma(z)=\frac{az+b}{cz+d}$$
, donde $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{SL}_2(\mathbb{Z})$. Se tiene que $\gamma'(z)=\frac{1}{(cz+d)^2}$.

Luego, si $\omega = f(z)(dz)^k$, tenemos que

$$\gamma^*\omega = (cz+d)^{-2k}f\left(\frac{az+b}{cz+d}\right)(dz)^k.$$

Formas diferenciales invariantes

Definición

Sea $\omega = f(z)(dz)^k$ una k-forma diferencial en \mathbb{H} . Si $\gamma = \gamma(z)$ definimos

$$\gamma^*\omega = f(\gamma(z))(d\gamma(z))^k = f(\gamma(z))(\gamma'(z))^k (dz)^k.$$

Sea
$$\gamma(z) = \frac{az+b}{cz+d}$$
, donde $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{SL}_2(\mathbb{Z})$. Se tiene que $\gamma'(z) = \frac{1}{(cz+d)^2}$.

Luego, si $\omega = f(z)(dz)^k$, tenemos que

$$\gamma^*\omega = (cz+d)^{-2k}f\left(\frac{az+b}{cz+d}\right)(dz)^k.$$

Por lo tanto, ω es invariante bajo γ si y solo si

$$f(z) = (cz + d)^{-2k} f\left(\frac{az + b}{cz + d}\right).$$

Funciones Débilmente Modulares

Definición

Sea $k \in \mathbb{Z}$. Decimos que $f: \mathbb{H} \to \mathbb{C}$ es <u>débilmente modular de peso 2k si</u> f es meromorfa y

$$f(z) = (cz + d)^{-2k} f\left(\frac{az + b}{cz + d}\right),$$

$$\forall \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{SL}_2(\mathbb{Z}).$$

Funciones Débilmente Modulares

Definición

Sea $k \in \mathbb{Z}$. Decimos que $f: \mathbb{H} \to \mathbb{C}$ es <u>débilmente modular de peso 2k si</u> f es meromorfa y

$$f(z) = (cz + d)^{-2k} f\left(\frac{az + b}{cz + d}\right),$$

$$\forall \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{SL}_2(\mathbb{Z}).$$

Proposición 1

Sea $f:\mathbb{H}\to\mathbb{C}$ meromorfa. Entonces f es una función débilmente modular de peso 2k si y solo si

$$f(z+1)=f(z)$$
 y $f\left(-\frac{1}{z}\right)=z^{2k}f(z).$

Si tenemos que f es débilmente modular de peso 2k, tenemos que,

$$f(z) = (cz + d)^{-2k} f\left(\frac{az + b}{cz + d}\right).$$

 $orall egin{aligned} & \left(egin{array}{ccc} a & b \\ c & d \end{array}
ight) \in \mathbb{SL}_2(\mathbb{Z}). \end{aligned}$ En particular, si consideramos las matrices $T = egin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ y $S = egin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ tenemos que

$$f(z) = 1^{-2k} f(z+1), \quad z^{-2k} f\left(-\frac{1}{z}\right) = f(z).$$

La recíproca se obtiene usando las relaciones anteriores y el hecho de que S y T generan $\mathbb{SL}_2(\mathbb{Z})$.

Dada f función débilmente modular, podemos expresarla como una función \tilde{f} en la variable $q=e^{2\pi iz}$. Tenemos que

- \tilde{f} es meromorfa en 0 < |q| < 1.
- Si \tilde{f} se puede extender a una función meromorfa en el origen, decimos que f es meromorfa en el infinito.

Dada f función débilmente modular, podemos expresarla como una función \tilde{f} en la variable $q=e^{2\pi iz}$. Tenemos que

- \tilde{f} es meromorfa en 0 < |q| < 1.
- Si \tilde{f} se puede extender a una función meromorfa en el origen, decimos que f es meromorfa en el infinito.

Si pasa esto último, podemos escribir

$$\tilde{f}(q) = \sum_{n=k}^{\infty} a_n q^n,$$

 $k \leq 0$.

Formas Modulares

Definición

Una función débilmente modular es llamada <u>modular</u> si es meromorfa en infinito. Si f es holomorfa en infinito, anotamos $f(\infty) = \tilde{f}(0)$.

Formas Modulares

Definición

Una función débilmente modular es llamada modular si es meromorfa en infinito. Si f es holomorfa en infinito, anotamos $f(\infty) = \tilde{f}(0)$.

Definición

Una función modular que es holomorfa en \mathbb{H} y en el infinito es llamada forma modular. Si tal función es cero en infinito, es llamada forma cuspidal.

Así, una forma modular es dada por una serie

$$f(z) = \sum_{n=0}^{\infty} a_n q^n = \sum_{n=0}^{\infty} a_n e^{2\pi i z},$$

la cual converge para |q|<1. Vemos que la forma es cuspidal si $a_0=0$.

Ejemplo: Serie de Eisenstein

Para un entero $k \ge 2$, y $z \in \mathbb{H}$ definimos la <u>serie de Eisenstein</u> por

$$G_k(z) = \sum_{m,n} {}' \frac{1}{(mz+n)^{2k}}.$$

Se puede ver que converge absolutamente y que es holomorfa en \mathbb{H} . Además, $G_k(\infty)=2\zeta(2k)$. Finalmente

$$G_k(z+1) = \sum_{m,n} {}' \frac{1}{(mz+m+n)^{2k}} = \sum_{\ell,r} {}' \frac{1}{(\ell z+r)^{2k}} = G_k(z),$$

у

$$G_k\left(-\frac{1}{z}\right) = z^{2k} \sum_{m,n} ' \frac{1}{(nz-m)^{2k}} = z^{2k} G_k(z).$$

Ejemplo: Serie de Eisenstein Normalizadas

Para $z \in \mathbb{H}$, y para $k \ge 2$ entero definimos

$$E_k(z) = 1 - \frac{4k}{B_{2k}} \sum_{n=1}^{\infty} \sigma_{2k-1}(n) q^n,$$

donde B_k es el k-ésimo número de Bernoulli.

Ejemplo: Serie de Eisenstein Normalizadas

Para $z \in \mathbb{H}$, y para $k \ge 2$ entero definimos

$$E_k(z) = 1 - \frac{4k}{B_{2k}} \sum_{n=1}^{\infty} \sigma_{2k-1}(n) q^n,$$

donde B_k es el k-ésimo número de Bernoulli.

Se puede probar que $G_k(z) = 2\zeta(2k)E_k(z)$. Por lo tanto, E_k es una forma modular de peso 2k.

Observación

Como ya hemos visto, $G_k(\infty) = 2\zeta(2k)$. Así, $E_k(\infty) = 1$.

Ejemplo: Función Cuspidal de Ramanujan (o Discriminante)

Sean $g_2=60\,G_2$ y $g_3=140\,G_3$. Como $G_k(\infty)=2\zeta(2k)$, y $\zeta(4)=\frac{\pi^4}{90}$ y $\zeta(6)=\frac{\pi^6}{945}$, tenemos que

$$g_2(\infty) = \frac{4}{3}\pi^4$$
 y $g_3(\infty) = \frac{8}{27}\pi^6$.

Si ahora anotamos $\Delta=g_2^3-27g_3^2$, tenemos que $\Delta(\infty)=0$. Más aún,

Ejemplo: Función Cuspidal de Ramanujan (o Discriminante)

Sean $g_2=60\,G_2$ y $g_3=140\,G_3$. Como $G_k(\infty)=2\zeta(2k)$, y $\zeta(4)=\frac{\pi^4}{90}$ y $\zeta(6)=\frac{\pi^6}{945}$, tenemos que

$$g_2(\infty) = \frac{4}{3}\pi^4$$
 y $g_3(\infty) = \frac{8}{27}\pi^6$.

Si ahora anotamos $\Delta=g_2^3-27g_3^2$, tenemos que $\Delta(\infty)=0$. Más aún,

Teorema 3

Δ es una forma cuspidal no trivial de peso 12. Además,

$$\Delta(z) = \frac{E_4^3(z) - E_6^2(z)}{1728}.$$

Función au de Ramanujan

Definición

Definimos la función $\tau:\mathbb{N}\to\mathbb{Z}$ como los coeficientes de la expansión en series de potencias de

$$q\prod_{n=1}^{\infty}(1-q^n)^{24}=\sum_{n=1}^{\infty}\tau(n)q^n.$$

Conjetura

- Si gcd(m, n) = 1, entonces $\tau(mn) = \tau(m)\tau(n)$.
- ② Si p es primo, entonces $\tau(p^{\alpha+1}) = \tau(p)\tau(p^{\alpha}) p^{11}\tau(p^{\alpha-1})$ para $\alpha \geq 1$.
- **3** Si p es primo, entonces $|\tau(p)| \leq 2p^{\frac{11}{2}}$.

• 1917: Mordell prueba las primeras dos partes de la conjetura.

- 1917: Mordell prueba las primeras dos partes de la conjetura.
- 1974: Deligne prueba la tercera.

- 1917: Mordell prueba las primeras dos partes de la conjetura.
- 1974: Deligne prueba la tercera.

Teorema 4

$$\Delta = q \prod_{n=1}^{\infty} (1 - q^n)^{24}.$$

Relación con Curvas Elípticas

Definición

Dado un lattice L en \mathbb{C} , definimos su función de Weierstrass por

$$\wp(z) = \frac{1}{z^2} + \sum_{\ell \in L} ' \left(\frac{1}{(z - \ell^2)} - \frac{1}{\ell^2} \right).$$

Relación con Curvas Elípticas

Definici<u>ó</u>n

Dado un lattice L en \mathbb{C} , definimos su función de Weierstrass por

$$\wp(z) = \frac{1}{z^2} + \sum_{\ell \in L} ' \left(\frac{1}{(z - \ell^2)} - \frac{1}{\ell^2} \right).$$

Observación

Podemos definir las series de Eisenstein para un lattice L por

$$G_k(L) := \sum_{\ell \in L} {}' \frac{1}{\ell^{2k}}.$$

Observación

Tal como en la observación anterior, podemos definir para un lattice L,

$$g_2(L) = 60G_2(L), \quad g_3(L) = 140G_3(L)$$

Es posible probar que

$$(\wp')^2 = 4\wp^3 - g_2\wp - g_3.$$

Haciendo $x = \wp$ e $y = \wp'$, obtenemos

$$y^2 = 4x^3 - g_2x - g_3.$$

Por lo tanto, el discriminante del polinomio del lado derecho viene dado por

$$16(g_2^3-27g_3^2).$$

Grupos de Hecke

Definición

Definimos los grupos de Hecke por

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{SL}_2(\mathbb{Z}) : \ c \equiv 0 (\bmod N) \right\}.$$

Una forma modular para $\Gamma_0(N)$ se dice que tiene <u>nivel N</u>.

Grupos de Hecke

Definición

Definimos los grupos de Hecke por

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{SL}_2(\mathbb{Z}) : \ c \equiv 0 (\bmod \ N) \right\}.$$

Una forma modular para $\Gamma_0(N)$ se dice que tiene <u>nivel N</u>.

Observación

$$\Gamma_0(1) = \mathbb{SL}_2(\mathbb{Z}).$$

Sea $k \in \mathbb{Q}$.

- El conjunto de las formas modulares de nivel N y peso k es denotado por $M_k(\Gamma_0(N))$.
- El conjunto de las formas cuspidales de nivel N y peso k es denotado por $S_k(\Gamma_0(N))$.

Observación

 $M_k(\Gamma_0(N))$ y $S_k(\Gamma_0(N))$ son espacios vectoriales complejos

Ejemplo: Función Theta

Definimos la función $\theta: \mathbb{H} \to \mathbb{C}$ por

$$\theta(z) = \sum_{n=-\infty}^{\infty} e^{2\pi i n^2 z}.$$

Proposición 2

Se tiene que

- **1** θ es holomorfa en \mathbb{H} .
- $\theta(z+1)=\theta(z).$
- Sea $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{SL}_2(\mathbb{Z})$ tal que $c \equiv 0 \pmod{4}$. Entonces $\theta(gz) = w\sqrt{cz + d}\theta(z)$, donde $w \in \{\pm 1, \pm i\}$.

Teorema 5

Sea k un entero par.

- $M_0(\mathbb{SL}_2(\mathbb{Z})) = \mathbb{C}$.
- $M_k(\mathbb{SL}_2(\mathbb{Z})) = 0$ si k es negativo o k = 2.
- Para k = 4, 6, 8, 10 y 14, $M_k(\mathbb{SL}_2(\mathbb{Z}))$ es generado por E_k .
- Si k < 12 o k = 14, $S_k(\mathbb{SL}_2(\mathbb{Z})) = 0$. Si k = 12, $S_k(\mathbb{SL}_2(\mathbb{Z}))$ es generado por Δ . Si k > 14, $S_k(\mathbb{SL}_2(\mathbb{Z})) = \Delta M_{k-12}(\mathbb{SL}_2(\mathbb{Z}))$.
- Si k > 2, entonces $M_k(\mathbb{SL}_2(\mathbb{Z})) = S_k(\mathbb{SL}_2(\mathbb{Z})) \oplus E_k\mathbb{C}$.

Un poco más general...

Teorema 6

 $\dim M_k(\Gamma_0(N)) < \infty$. Mas aún, si k < 0, $M_k(\Gamma_0(N)) = 0$, y si $k \ge 0$, entonces

$$\dim M_k(\Gamma_0(N)) \leq 1 + \frac{kN}{12} \prod_{p \mid N} \left(1 - \frac{1}{p}\right).$$

Un poco más general...

Teorema 6

 $\dim M_k(\Gamma_0(N)) < \infty$. Mas aún, si k < 0, $M_k(\Gamma_0(N)) = 0$, y si $k \ge 0$, entonces

$$\dim M_k(\Gamma_0(N)) \leq 1 + rac{kN}{12} \prod_{p \mid N} \left(1 - rac{1}{p}
ight).$$

Corolario

 $\dim M_2(\Gamma_0(4)) \leq 2.$

Algunas observaciones

Definición

Sea
$$r(m) = |\{(n_1, \dots, n_4) \in \mathbb{Z}^4 | m = n_1^2 + \dots n_4^2\}|.$$

Notemos que

$$\left(\sum_{n\in\mathbb{Z}}q^{n^2}\right)^4 = \sum_{n_1,\dots,n_4}q^{n_1^2+\dots+n_4^2} = \sum_{m=0}^{\infty}\sum_{n_1^2+\dots+n_4^2=m}q^m = \sum_{m=0}^{\infty}r(m)q^m.$$

Es decir,
$$\theta^4 = R := r(0) + r(1)q + r(2)q^2 + \cdots$$
.

Algunas observaciones

Definición

Sea
$$r(m) = |\{(n_1, \dots, n_4) \in \mathbb{Z}^4 | m = n_1^2 + \dots n_4^2\}|.$$

Notemos que

$$\left(\sum_{n\in\mathbb{Z}}q^{n^2}\right)^4=\sum_{n_1,\dots,n_4}q^{n_1^2+\dots+n_4^2}=\sum_{m=0}^{\infty}\sum_{n_1^2+\dots+n_4^2=m}q^m=\sum_{m=0}^{\infty}r(m)q^m.$$

Es decir,
$$\theta^4 = R := r(0) + r(1)q + r(2)q^2 + \cdots$$
.

Proposición 3

$$R \in M_2(\Gamma_0(4))$$
.

Definición

$$G_1(z) := 2\zeta(2) + \frac{2(2\pi i)^2}{(2-1)!} \sum_{n=1}^{\infty} \sigma_{2-1}(n) e^{2\pi i n z} = \frac{\pi^2}{3} - 8\pi^2 \sum_{n=1}^{\infty} \sigma_1(n) q^n,$$

donde
$$\sigma_s(n) = \sum_{d|n} d^s$$
.

Definición

$$G_1(z) := 2\zeta(2) + \frac{2(2\pi i)^2}{(2-1)!} \sum_{n=1}^{\infty} \sigma_{2-1}(n) e^{2\pi i n z} = \frac{\pi^2}{3} - 8\pi^2 \sum_{n=1}^{\infty} \sigma_1(n) q^n,$$

donde $\sigma_s(n) = \sum_{d|n} d^s$.

Observación

Como $M_2(\mathbb{SL}_2(\mathbb{Z}))=0$, G_1 no es una forma modular de peso 2 para $\mathbb{SL}_2(\mathbb{Z})$

Definición

$$G_1(z) := 2\zeta(2) + \frac{2(2\pi i)^2}{(2-1)!} \sum_{n=1}^{\infty} \sigma_{2-1}(n) e^{2\pi i n z} = \frac{\pi^2}{3} - 8\pi^2 \sum_{n=1}^{\infty} \sigma_1(n) q^n,$$

donde $\sigma_s(n) = \sum_{d|n} d^s$.

Observación

Como $M_2(\mathbb{SL}_2(\mathbb{Z}))=0$, G_1 no es una forma modular de peso 2 para $\mathbb{SL}_2(\mathbb{Z})$

Proposición 4

Se tiene que $G_1(z+1) = G_1(z)$ y $G_1(-\frac{1}{z}) = z^2G_1(z) - 2\pi iz$.

•
$$E_1(z) := \frac{3}{\pi^2} G_1(z) = 1 - 24 \sum_{n=1}^{\infty} \sigma_1(n) q^n$$
.

- $E_{1,1}(z) = E_1(z) 2E_1(2z)$.
- $E_{1,2}(z) = E_1(z) 4E_1(4z)$.

- $E_1(z) := \frac{3}{\pi^2}G_1(z) = 1 24\sum_{n=1}^{\infty} \sigma_1(n)q^n$.
- $E_{1,1}(z) = E_1(z) 2E_1(2z)$.
- $E_{1,2}(z) = E_1(z) 4E_1(4z)$.

Proposición 5

 $E_{1,1}, E_{1,2} \in M_2(\Gamma_0(4)).$

- $E_1(z) := \frac{3}{\pi^2} G_1(z) = 1 24 \sum_{n=1}^{\infty} \sigma_1(n) q^n$.
- $E_{1,1}(z) = E_1(z) 2E_1(2z)$.
- $E_{1,2}(z) = E_1(z) 4E_1(4z)$.

Proposición 5

 $E_{1,1}, E_{1,2} \in M_2(\Gamma_0(4)).$

Proposición 6

 $E_{1,1}$ y $E_{1,2}$ son linealmente independientes y por lo tanto, $\{E_{1,1}, E_{1,2}\}$ es base de $M_2(\Gamma_0(4))$.

Tenemos que

•
$$R = 1 + 8q + \cdots$$
.

•
$$E_{1,1} = 1 - 24q + \cdots$$
.

•
$$E_{1,2} = -3 - 24q + \cdots$$
.

Así,

$$1 + 8q + \dots = R = \alpha E_{1,1} + \beta E_{1,2} = (-\alpha - 3\beta) + (-24\alpha - 24\beta)q + \dots,$$

$$\Rightarrow \alpha = 0, \ \beta = -\frac{1}{2}.$$

Lo anterior implica que

$$R(z) = -\frac{1}{3}E_{1,2}(z) = -\frac{1}{3}\left(1 - 24\sum_{n=1}^{\infty} \sigma_1(n)q^n\right) + \frac{4}{3}\left(1 - 24\sum_{n=1}^{\infty} \sigma_1(n)q^n\right)$$
$$= 1 + 8\sum_{n=1}^{\infty} \left(\sigma_1 - 4\sigma_1\left(\frac{n}{4}\right)\right)q^n,$$

donde $\sigma_1\left(\frac{n}{4}\right)=0$ ni $\frac{n}{4}\notin\mathbb{Z}$. Por lo tanto,

Lo anterior implica que

$$R(z) = -\frac{1}{3}E_{1,2}(z) = -\frac{1}{3}\left(1 - 24\sum_{n=1}^{\infty} \sigma_1(n)q^n\right) + \frac{4}{3}\left(1 - 24\sum_{n=1}^{\infty} \sigma_1(n)q^n\right)$$
$$= 1 + 8\sum_{n=1}^{\infty} \left(\sigma_1 - 4\sigma_1\left(\frac{n}{4}\right)\right)q^n,$$

donde $\sigma_1\left(\frac{n}{4}\right)=0$ ni $\frac{n}{4}\notin\mathbb{Z}$. Por lo tanto,

Teorema 7

- r(0) = 1.
- Si 4 \nmid n, entonces $r(n) = 8\sigma_1(n)$.
- Si 4|n, entonces $r(n) = 8 \left(\sigma_1 4\sigma_1 \left(\frac{n}{4}\right)\right)$.

Referencias

Dewar, Graves, & Murty.

Problems in theory of modular forms.

Koblitz.

Introduction to Elliptic Curves and Modular Forms.

Milne

Modular Functions and Modular Forms.

Pasten.

Un paseo por la modularidad.

Serre.

A course in arithmetic.

Stein & Shakarchi.

Complex Analysis.