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Chapter 1

Abstract

“Begin at the beginning” the King

said, very gravely, “and go on till

you come to the end: then stop.”

— Lewis Carroll, “Alice in

Wonderland”.

The theory of “Random Walk in Random Environment” (henceforward, abbrevi-

ated as RWRE) has played a role as a new mathematical model (which started being

studied in the 70, see [11]). This theory describes several phenomena in physics and

biology, quoting [4],

“Random walk in random environment is a simple but powerful model for a variety
of phenomena including homogenization in disordered materials [7], DNA chain

replication [1], crystal growth [10] and turbulent behavior in fluids [8]”.

Briefly speaking, a RWRE is a stochastic process, which describes a path that is

made up of a sequence of random steps on some space endowed with randomness as

well. Hence, the randomness is not only on the walk itself, but on the medium where

the random process moves through. Nonetheless, there are several open question

for seemingly naive problems, even Sznitman, Zeitouni and Zerner have said that

some of them are embarrassing, see [9] and [11]. This thesis tries to give a partial

1



2 CHAPTER 1. ABSTRACT

answer to one of the mentioned embarrassing problems.

Sznitman & Zerner demonstrated Kalikow’s theorem (see [9], page 1854). Rougly

speaking, this theorem says that given a line L in Zd with d ≥ 2, a random walk in

an i.i.d. environment moves in a rough sense along the line L with probability 0 or

1. Therefore, it seems natural to ask if the same conclusion holds if we have a ray

starting at zero rather than a line. This was proposed as an open question in [9] and

answered two years later by Zerner & Merkl in [13], assuming d = 2. Furthermore,

that answer was improved by Zerner in [14]. The response was “it depends.” If we

assume that the environments are planar and i.i.d., then the response is affirmative,

which we call the zero-one law. However, if we assume that the environments are

planar, stationary and totally ergodic, the response is negative. This was a major

step toward a complete answer of an unsolved problem. Regardless of the previous

fact, the problem remains unsolved for arbitrary dimension or for other kind of en-

vironments. Indeed, for dimension equal to 2 there are a jungle of types of environ-

ments between the i.i.d. environments and totally and ergodic environments, where

the former proposed problem is unsolved, which leads to this thesis. In this the-

sis, we prove that even after introducing certain dependence in the environments,

the zero-one law still holds, although we still assume that the dimension equal to 2.1

This thesis aims to be self-contained. Therefore, the thesis is organized as fol-

lows: Firstly, chapter 2 contains the essential concepts to understand the proof of

Theorem 4. Secondly, chapter 3 contains, just like the name suggests, all the results

obtained in order to prove the main result of this thesis, which is a generalization

of the zero-one law for planar random walks in finite rank and uniformly elliptic

environments.

1The problem remains unsolved for dimension greater than or equal to 3. In fact, during the proof
of Theorem 4, we point out where the hyphotesis d = 2 is used.



Chapter 2

Introduction

No volvió a pensar en ella, ni en

ninguna otra, después de que entró

al taller con la taza humeante, y

encendió la luz para contar los

pescaditos de oro que guardaba en

un tarro de lata. Había diecisiete.

Desde que decidió no venderlos,

seguía fabricando dos pescaditos al

día, y cuando completaba veinticinco

volvía a fundirlos en el crisol para

empezar a hacerlos de nuevo.

— Gabriel García Marquez, “Cien

años de soledad”.

In this chapter we expose the general framework to be used in this thesis. Namely,

the present chapter is designed to be a summary of the essential aspects of the

RWRE theory. Hence, the basic definitions are presented and some results of the

theory are set without proving them. Having said this, it is important to stress the

fact that this chapter is based strongly on [2]. For further information about the

3



4 CHAPTER 2. INTRODUCTION

theory of RWRE, see [11].

This thesis aims to be self-contained, however in order to understand this chap-

ter, the reader must have an elementary knowledge of probability theory, two good

books about the subject are [3] and [6].

2.1 Basic notions

Our workspace is Zd for d ∈ Z+, which is endowed with the norm ‖·‖1. This space

provides the medium where the random walk moves through. Having said this, we

start defining the concept of environment, which is an important ingredient so as to

model the movement of a particle through a random medium.

Definition 1 (Environment and environment space). Let P be the set of all the

2d−random vectors, i.e.,

P := {p = (p(e))e∈U : U := {±êk}d
k=1, p ∈ [0,1]U ,‖p‖1 = 1},1

where {êk}d
k=1 is the canonical basis in Zd. The environment space is said to be the

space Ω := P Zd
. For obvious reasons, a d-dimensional environment is defined as

any element in the former space. Namely , an environment ω= (ω(x))x∈Zd is a vector,

in which each one of its coordinates is a vector in P . By an abuse of notation, if

we are interested on some coordinate of the vector ω(x), say the e-th coordinate, we

denote that number as ω(x, e).

This definition allows us to define a random walk moving in a given environment

ω.

Definition 2 (Random walk in an environmentω). Given d ∈Z+. Letω be a d−dimensional
1This set provides the admissible transition probabilities for a particle moving from one point to

one of the nearest neighbors.
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environment, i.e., ω ∈Ω := P Zd
and let G be the σ−algebra on (Zd)N defined by the

cylinder functions. Given a point x ∈Zd, the random walk in the environment ω

is defined as the Markov chain {Xn}n∈N on Zd whose law Px,ω on (Zd,G ) is determined

by the following relations

Px,ω [X0 = x]= 1

Px,ω [Xn+1 = y+ e|Xn = y]=


ω(y, e), if e ∈U and Px,ω[Xn = y]> 0.

0, otherwise.

Besides, Px,ω is called the quenched law or probability of the random walk in the

random environment {Xn}.

So far we have defined the random walk in a given environment ω with its in-

trinsic law, the quenched probability. Now we introduce another probability mea-

sure defined not on (Zd,G ), but on the environment space Ω. Ω is endowed with

the product topology, which enables us to construct the measurable space (Ω,B(Ω)),

where B(Ω) is the Borel σ−algebra of Ω.

Definition 3 (Law of the environment). Let P be a probability measure defined on

(Ω,B(Ω)). P is called the law of the environment.

Having already defined two different probabilities, we proceed to mix them up to

form a new probability, which we will call annealed law or probability . But, before

stating this concept, we need to observe that for each x ∈Zd,

G ∈G 7−→ Px,ω[G]

is a function B(Ω)−measurable, which follows by Dynkin’s theorem. Now we are

able to define the new law.

Definition 4 (Annealed or averaged probability). We consider the measurable space

(Ω× (Zd)N,B(Ω)⊗G ) and given x ∈ Zd, we can define on the previous measurable
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space the semi-direct product Px,P of P and Px,ω, which is characterized by the for-

mula

Px,P[F ×G]=
∫

F
Px,ω[G]P(dω), F ∈B(Ω), G ∈G .

The annealed or averaged probability of the random walk in the random envi-

ronment Px is the marginal law of Px,P on ((Zd)N,G ).

2.2 Background of this thesis

Now we focus on the necessary background for understanding the main result proved

in this thesis, which is a generalization of the zero-one law.

2.2.1 Different kind of environment spaces

We define a complete list of all the necessary environments for comprehending this

thesis.

Definition 5 (Ellipticity and uniform ellipticity). The environment space Ω is said

to be

• elliptic if

P

[
min
e∈U

ω(x, e)> 0
]
= 1, ∀x ∈Zd.

• uniformly elliptic (abbreviated as u.e.) if there exists a constant κ > 0 such

that

P

[
min
e∈U

ω(x, e)≥ κ
]
= 1, ∀x ∈Zd.

It should be stressed that throughout chapter 3 we assume that the environment

space is uniformly elliptic.

Definition 6 (IID). We say that the environment spaceΩ is independent and iden-

tically distributed, abbreviated as iid, if the coordinate maps on the product space

Ω are independent and identically distributed under P.



2.2. BACKGROUND OF THIS THESIS 7

Definition 7 (Translation defined on the environment space). Given y ∈ Zd, ty is

said to be a translation on Ω if

tyω(x, e)=ω(x+ y, e), ∀x ∈Zd ∀e ∈U .

Definition 8 (Stationary). The environment space Ω is said to be stationary if

P[A]=P[tx A], ∀A ∈B(Ω)∀x ∈Zd

Now, we are able to define the quality of being totally ergodic.

Definition 9 (Totally ergodic). We say that the environment space Ω is totally

ergodic if the family of transformations {tx}x∈Zd is an ergodic family acting on

(Ω,B(Ω),P).

The last kind of environment and one of our assumptions throughout chapter 3

(together with the hypothesis of being uniformly elliptic) is the quality of being finite

rank.

Definition 10 (Finite rank). The environment space Ω is said to be finite rank

if there exists a constant R ∈ N such that {ω(x)}x∈A and {ω(x)}x∈B are independent

whenever A,B ⊆Z2 and d(A,B)> R. Furthermore, the constant R is called the rank

of the environment space.

2.2.2 Results

Now we are able to discuss some results proved by Zerner & Merkl in [13] as well

as Sznitman & Zerner in [9]. In addition, we can state the main result provided by

this thesis and we can see how our result is related to Zerner & Merkl’s work and

Sznitman & Zerner’s work.
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In 1999, Sznitman & Zerner (see [9]) demonstrated the Kalikow’s zero-one law

for iid and uniformly elliptic environments. Moreover, the theorem was improved by

Zerner & Merkl in [13] for elliptic environments. This theorem can be stated as

Theorem 1 (Kalikow’s zero-one law). Assume d ≥ 2. Suppose the environment space

{ω(x, e)}x∈Zd ,e∈U is elliptic and iid. Then

P0

[{
lim

n→∞〈Xn, l〉 =∞
}
∪

{
lim

n→∞〈Xn,−l〉 =∞
}]

∈ {0,1}. (2.1)

Roughly speaking, Theorem 1 says that given a line L in Zd with d ≥ 2, a ran-

dom walk moving in a suitable environment moves in a rough sense along the line

L with an annealed probability 0 or 1. Hence, one natural question which arises

from Kalikow’s zero-one law is the following:

Question 1. Instead of considering a line L , let us consider a ray R starting at zero.

Is it true that the same result holds?

If we assume that the dimension is 2, the answer is yes and is Theorem 2, but

before establishing so, we proceed to translate and formalize this question into a

mathematical setting. We follow the formalization given in [14].

Given d ∈Z+ and l ∈Sd−1, we define the event Al as

Al :=
{

lim
n→∞〈Xn, l〉 =∞

}
.

The previous event is what we denominate the event that “the walk tends in a

rough sense towards the direction l”.

Now we are able to state the original zero-one law, which can be found in [14].

Theorem 2 (Zero-one law). Assume d = 2. Let l ∈S1 and let {ω(x, e)}x∈Zd ,e∈U be i.i.d.

and elliptic under P. Then

P0 [Al] ∈ {0,1}.
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Whereas, the above result is false if we assume another kind of environment. In

[14], Zerner showed a counterexample of the result in theorem 2 for stationary and

totally ergodic environments.

Theorem 3. Assume d = 2. There exists a stationary and totally ergodic environment

{ω(x, e)}x∈Zd ,e∈U such that

P0

[
lim

n→∞
〈Xn, ê1〉

n
≥ 1

2

]
> 0, P0

[
lim

n→∞
〈Xn,−ê1〉

n
≥ 1

2

]
> 0.

In particular,

0<P0
[
A ê1

]< 1.

Keeping in mind the above results, we show in this thesis a version of the zero-

one law for finite rank environment, which is a weaker condition than being inde-

pendent. Nevertheless, we were unable to keep the the ellipticity condition and we

use uniformly elliptic environments.

Theorem 4 (Maturana, R. (2018)). Assume d = 2. Let l ∈S1 and let {ω(x, e)}x∈Zd ,e∈U

be finite rank R and uniformly elliptic under P. Then

P0[Al] ∈ {0,1}.
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Chapter 3

A generalization of the zero-one

law

Each new discovery furnishes a step

which leads on the complete truth.

— Arthur Conan Doyle, “The

Adventure of the engineer’s thumb”.

This chapter is devoted to prove a generalization of the zero-one law for planar

random walks in finite rank and uniformly elliptic environments, which gives the

title to this thesis. So as to accomplish this task, we need to demonstrate two pre-

vious theorems. Since it is an arduous task and we want to expose the thesis as

clearly as possible, this chapter is divided into two sections. Section 3.1 is focused

on proving a generalization of a theorem presented in [5]. This theorem is the cor-

nerstone for the generalization of Kalikow’s zero-one law, which was proved in [9]

for iid environments. The main feature of the first section is the fact that it is devel-

oped for an arbitrary dimension greater than or equal to two. Afterwards, in section

3.2, we focus on demonstrating the generalization of the zero-one law, the proof of

this theorem relies strongly on Kalikow’s zero-one law.

11
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3.1 A generalization of the Kalikow’s zero-one law

As already stressed above, in this chapter we present two theorems for arbitrary

dimension greater than or equal to two. The first theorem has interest in its own

right. Roughly speaking, the following theorem says that given any line L , the

event that the random walk hits the previous line i.o. has annealed probability zero

or one. Additionally, another important feature of the mentioned theorem is the

fact that it is the main ingredient in the proof of Theorem 6. Besides, a version

of this theorem can be found in [5] for iid environments with a “certain” ellipticity

condition; namely,

P0 [min{ω(·, ·− e),ω(·, ·+ e)}> 0]= 1,

which clearly holds for u.e. environments.

Theorem 5 (Maturana, R. (2018)). Assume d ≥ 2. Suppose the environment {ω(x, e)}x∈Zd ,e∈U

is uniformly elliptic and has finite rank R. Then, the annealed probability that the

process hits the hyperplane H = {a ∈Zd : 〈a, l〉 = 0} i.o. is zero or one for any l ∈Sd−1.

But before giving a proof to Theorem 5, we need to prove the following lemma,

which is going to be quite useful.

Lemma 1. Assume d ≥ 2. Suppose the environment {ω(x, e)}x∈Zd ,e∈U is uniformly

elliptic and has finite rank R. Let l ∈Sd−1 and assume

P0 [∃N ∈N such that 〈Xn, l〉 > 0∀n > N]> 0.

Hence

P0
[
{〈Xn, l〉 > 0∀n ∈Z+}

]> 0

Proof of Lemma 1. Set

D := {〈Xn, l〉 > 0∀n ∈Z+}.
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Assume, for the sake of contradiction, P0(D) = 0. Hence P0,ω(D) = 0 P−a.s. Given

v ∈Zd, let Dv := {〈Xn, l〉 > 〈v, l〉∀n ∈Z+}. Using the invariance under translations of

the annealed probability, we have Pv(Dv)=P0(D)= 0. Therefore, Pv,ω(Dv)= 0 P−a.s.

Let

Ω′ := {ω ∈Ω : Pv,ω(Dv)= 0∀v ∈Zd}

= ⋂
v∈Zd

{ω ∈Ω : Pv,ω(Dv)= 0}.

It follows easily that P(Ω′)= 1.

Given ω ∈Ω′, by the Markov property, we have that

P0,ω[〈Xn, l〉 > 〈v, l〉∀n > N|XN = v]= 0, N ∈N.

As a consequence,

P0,ω[〈Xn, l〉 ≤ 〈XN , l〉 for some n > N]= 1, N ∈N.

It follows that

P0,ω[〈Xn, l〉 ≤ 0 i.o.]= 1.

From the former equation and the datum thatΩ′ has probability 1, it follows at once

P0[〈Xn, l〉 ≤ 0 i.o.]= E[P0,ω[〈Xn, l〉 ≤ 0 i.o.]]= 1.

This fact contradicts our assumption that

P0 [∃N ∈N such that 〈Xn, l〉 > 0∀n > N]> 0.

In consequence, P0(D)> 0, which is the desired result.
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Proof of Theorem 5. Define A, B and C as the following events:

A := {Xn hits the hyperplane H i.o.}

B := {∃N ∈N such that 〈Xn, l〉 > 0∀n > N}

C := {∃N ∈N such that 〈Xn, l〉 < 0∀n > N}

Firstly, assume that P0(B)=P0(C)= 0, hence P0(A)= 1, which is what we claim.

Secondly, assume that either P0(B) > 0 or P0(C) > 0. Suppose without loss of gener-

ality, P0(B)> 0. We claim that P0(A)= 0.

For N ∈Z+ and v ∈Zd with ‖v‖1 ≤ N. We define the following events

G :=
{

lim
n→∞〈Xn, l〉 =∞

}
& GN,v = {〈Xn, l〉 > 〈XN , l〉∀n > N, XN = v} (3.1)

We proceed to compute the conditional probability of GN,v given XN = v, XN−1, . . . ,

X1.

P0[〈Xn, l〉 > 〈v, l〉 :∀n > N|X1, X2, . . . , XN = v]

= E[P0,ω[〈Xn, l〉 > 〈v, l〉 :∀n > N, XN = v, . . . , X2, X1]
P0[X1, X2, . . . , XN = v]

.

We have just used both the definition of conditional probability and the definition of

annealed probability.

Set A =P0[X1, X2, . . . , XN = v]−1. Let L be the least natural number u such that


‖(v+uê1)‖1 > R+N, ∀ j ∈ {1,2, · · · , N} : if l 6= ±e2,

‖(v+uê2)‖1 > R+N, ∀ j ∈ {1,2, · · · , N} : otherwise

Observe that the constant R is the rank of the environments and since the random

walk moves from one point to the nearest neighbor at each step of time, then the

walk moves inside the square [−N, N]2. So the following set {a ∈Zd : 〈a, l〉 ≥ 〈v+Lê1〉}
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is independent of the former square. The same happens with {a ∈ Zd : 〈a, l〉 ≥ 〈v+
Lê2〉}.
Suppose l 6= ê2. From the previous computation, it follows that

P0[〈Xn, l〉 > 〈v, l〉 :∀n > N|X1, X2, . . . , XN = v]

≥ AE[P0,ω[〈Xn, l〉 > 〈v+Lê1, l〉 :∀n > N +L, XN+L = v+Lê1, XL−1 = v+ (L−1)ê1

, . . . , XN+1 = v+ ê1, XN = v, . . . , X2, X1]

= AE[P0,ω[XN = v, . . . , X2, X1]P0,ω[XN+1 = v+ ê1|XN = v, . . . , X2, X1]·
. . . ·P0,ω[XN+L−1 = v+ (L−1)ê1|XN+L−2 = v+ (L−2)ê1,

. . . , XN+1 = v+ ê1, XN = v, . . . , X2, X1]·
P0,ω[XN+L = v+Lê1|XN+L−1 = v+ (L−1)ê1,

. . . , XN = v, . . . , X2, X1]·
P0,ω[〈Xn, l〉 > 〈v+Lê1, l〉 :∀n > N +L|XN+L = v+Lê1,

XN+L−1 = v+ (L−1)ê1, . . . , XN = v, . . . , X2, X1]]

Now we use the fact that the random walk in the environment ω is a Markov chain

and the fact that the environment is u.e. to obtain

P0[〈Xn, l〉 > 〈v, l〉 :∀n > N|X1, X2, . . . , XN = v]≥
AE[P0,ω[XN = v, . . . , X2, X1]·
P0,ω[XN+1 = v+ ê1|XN = v]·

. . . ·P0,ω[XN+L−1 = v+ (L−1)ê1|XN+L−2 = v+ (L−2)ê1]·
P0,ω[XN+L = v+Lê1|XN+L−1 = v+ (L−1)ê1]·

P0,ω[〈Xn, l〉 > 〈v+Lê1, l〉 :∀n > N +L|XN+L = v+Lê1]

≥ AκLE[P0,ω[XN = v, . . . , X2, X1]·
P0,ω[〈Xn, l〉 > 〈v+Lê1, l〉 :∀n > N +L|XN+L = v+Lê1]]
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Note that {XN = v, . . . , X2, X1} is independent of the set Y := {z ∈ Zd : 〈z, l〉 > 〈v+
Lê1, l〉} by the choice of L. Then,

P[〈Xn, l〉 > 〈v, l〉 :∀n > N|X1, X2, . . . , XN = v]≥ κLPv+Lê1(Dv+Lê1)= κLP0[D]> 0,

(3.2)

where in the last step we use the Lemma (1).

The same result is true if we suppose l =±ê2. We just need to change ê1 by ê2 in the

former computation.

Using inequality (3.2), we infer that on G there are infinitely many N for which

P0[〈Xn, l〉 > 〈XN , l〉∀n > N|X1, . . . , XN]≥ κLP0[D]

and 〈XN , l〉 > 0. Let Ac the complement of A. Hence, on G, we infer that

lim
n→∞P0[Ac|X1, · · · , XN]≥ κLP0[D]> 0.

On the other hand, by the martingale convergence theorem,

lim
n→∞P0[Ac|X1, · · · , XN]= 0

on A a.a. In consequence,

P0[A∩G]= 0. (3.3)

Besides, we claim that

P0[A∩Gc]= 0. (3.4)

Because, if l 6= ±ê2, then P0[πx(Xn+N)−πx(XN) = n|X1, X2, . . . , XN] ≥ κn. Otherwise,

P0[πy(Xn+N)−πy(Xn) = n|X1, X2, . . . , XN] ≥ κn. From this argument follows either

πx(Xn)≥ R or πy(Xn)≥ R for infinitely many n on almost all of A for all R ∈Z+.
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Using equations (3.3) and (3.4), we assert that

P0[A]= 0,

which was the desired result.

Having proved the previous theorem we are able to generalize Kalikow’s zero-

one law for finite rank and uniformly elliptic environments. The proof follows the

same lines as in [9]. However, so as to keep the fact that this thesis is self-contained,

we paraphrase the proof in the previously mentioned paper.

Theorem 6 (Kalikow’s zero-one law for finite rank and uniformly elliptic environ-

ments). Assume d ≥ 2. Suppose the environment {ω(x, e)}x∈Zd ,e∈U is uniformly elliptic

and has finite rank R. Then

P0 [Al ∪ A−l] ∈ {0,1}. (3.5)

Proof of Theorem 6. We start defining the events Bl and Cl as

Bl := Al ∪ A−l

Cl := {〈Xn, l〉 remains of constant sign for large n}= Ac

(see the definition of A given at the beginning of the proof of theorem 5). From the

above definition, there are two immediate consequences. The first one is

Bl ⊆ Cl . (3.6)

The second one is

P0[Cl] ∈ {0,1}, (3.7)

this follows at once from theorem 5.
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Using (3.6) and the result (3.7), we deduce that

P0[Cl]= 0⇒P0[Bl]= 0.

Therefore, the only case that remains is when P0[Cl]= 1. Henceforward, we assume

this condition.

We proceed to demonstrate the following lemma, which is going to help us to prove

the result (3.5).

Lemma 2. For M > 0,

{〈Xn, l〉 ∈ [0, M] i.o.}⊆ {〈Xn, l〉 < 0 i.o.} P0-a.s. (3.8)

Grosso modo, for d = 2, Lemma 2 asserts that the event that the walk reaches

i.o. the slab {a ∈Zd : 0≤ 〈a, l〉 ≤ M}. Then a.s. in average the walker reaches i.o. the

half-plane {a ∈Zd : 〈a, l〉 < 0}.

Proof of Lemma 2. Using the condition of u.e. of the environment, we are able to

choose N large enough and c > 0 such that

Px,ω

[
H{a∈Zd :〈a,l〉<0} ≤ N

]
≥ c, for ω ∈Ω and x ∈ {a ∈Zd : 0≤ 〈a, l〉 ≤ M} (3.9)

In other words, roughly speaking, for a large enough period of time N, the walker

starting at the point x in the environment ω reaches the set {a ∈Zd : 〈a, l〉 < 0} in at

most N steps with a positive (quenched) probability.

Hence, we construct recursively the successive return times to the set {a ∈ Zd : 0 ≤
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〈a, l〉 ≤ M}.

V0 := 0

V1 := H{a∈Zd :0≤〈a,l〉≤M} ≤∞
Vk+1 :=V1 ◦θVk+N +Vk +N ≤∞ for k ∈Z+

Given k ∈Z+, we define the events Gk and Hk such that

1Gk :=1{Vk<∞} 1Hk :=


1{H{a∈Z2:〈a,l〉<0}} ◦θVk , if Vk <∞

0, otherwise.

From the definition, it is quite clear that Gk ∈FVk and Hk ∈FVk+1 .

Using inequality (3.9), the strong Markov property and P−integration, we infer that

P0[Hk|FVk ]= E[P0,ω[Hk|FVk ]]= E[PXVk ,ω[H{a∈Z2:〈a,l〉<0} ≤ N|FVk ]]≥ c1Gk , k ≥ 1.

(3.10)

We proceed to quote the following version of the Borel-Cantelli’s lemma. This lemma

can be found in [3].

Lemma 3 (Second Borel-Cantelli lemma). Let {Fn}n≥0 be a filtration with F0 =
{∅,Ω} and {An}n≥1 a sequence of events with An ∈Fn. Then

{An i.o.}=
{ ∑

n≥1
P[An|Fn−1]=∞

}
(3.11)

We proceed to verify that the hypotheses are hold to apply the second Borel-

Cantelli’s lemma to our problem.

Firstly, {FVn}n≥0 is a filtration and FV0 is trivial, since V0 = 0 (i.e., a deterministic

variable). Secondly, setting An = Hn, it holds that An belongs to FVn . Then we have
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equation (3.11), which is

{Hn i.o.}=
{ ∑

n≥1
P[Hn|FVn−1]=∞

}
(3.12)

in our context.

Using equation (3.12) and inequation (3.10) we can deduce that

∑
k≥1

1Hk =∞ on

{∑
k≥1

1Gk =∞
}

P0 −a.s.

From the above result, it is straightforward that (3.8) is true.

Making use of Lemma 2, we have the following computation for M > 0

P0[{∃N ∈N : 〈Xn, l〉 > 0∀n > N}∩ {〈Xn, l〉 ∈ [−M, M] i.o.}]

≤P0[{∃N ∈N : 〈Xn, l〉 > 0∀n > N}∩ {∃Ñ ∈N : 〈Xn, l〉 < 0∀n > Ñ}]= 0.

Replacing l by −l in the Lemma (2) we have that

{〈Xn, l〉 ∈ [−M,0] i.o.}⊆ {〈Xn, l〉 > 0 i.o.} P0-a.s..

Then,

P0[{∃N ∈N : 〈Xn, l〉 < 0∀n > N}∩ {〈Xn, l〉 ∈ [−M, M] i.o.}]

≤P0[{∃N ∈N : 〈Xn, l〉 < 0∀n > N}∩ {∃Ñ ∈N : 〈Xn, l〉 > 0∀n > Ñ}]= 0.

Hence,

P0[Cl ∩ {〈Xn, l〉 ∈ [−M, M] i.o.}]= 0,

since we have supposed that P0[Cl] = 1 and M is arbitrary. The previous result

claims that the RWRE is not bounded P0 −a.s., which means P0[Bl]= 1.

Remark 1. C.f. ([12], page 258). In the previous paper there is a theorem proved
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by Zeitouni, which can be applied to the case of finite rank and uniformly elliptic

environments. This theorem could replace theorem 6.

3.2 A generalization of the zero-one law

We have reached the necessary amount of information to prove the main result of

this thesis. Besides, we have to say that this proof is based strongly on the proof

given by Zerner in [14], therefore there are some arguments from the mentioned

paper adapted to our context.

Theorem (Maturana, R. (2018)). Assume d = 2. Let l ∈ S1 and let {ω(x, e)}x∈Zd ,e∈U

be finite rank R and uniformly elliptic under P. Then

P0[Al] ∈ {0,1}. (3.13)

Proof of the main theorem. By Theorem 6

P0[Bl]=P0[Al ∪ A−l] ∈ {0,1}.

From the previous argument, it is straightforward that if P0[Bl]= 0, then P0[Al]= 0,

which is a desired result.

Henceforth, we assume that P0[Bl]= 1.

Given u ∈R and ¦ ∈ {<,≤,>,≥} we define the following stopping times

T¦ := inf{n ∈N : 〈Xn, l〉¦u}.

We claim the following useful lemma.

Lemma 4. Assuming all the previous hypotheses.

0=P0 [T<0 =∞]P0 [T>0 =∞] . (3.14)
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⇓

P0[Al] ∈ {0,1}.

Proof of Lemma 4. Suppose equation (3.14) holds, then either P0 [T<0 =∞] = 0 or

P0 [T>0 =∞]= 0 if and only if P0−a.s. T<0 <∞ or P0−a.s. T>0 <∞.

Without loss of generality, by analogous arguments, we can assume that P0−a.s.

T<0 < ∞ holds. Using the translation invariance of the annealed probability, we

have that given x ∈Z2

1=Px
[
T<〈x,l〉 <∞]= E[

Px,ω
[
T<〈x,l〉 <∞]]

for each x ∈Z2.

Then, Px,ω
[
T<〈x,l〉 <∞]= 1 P−a.s.

Given x ∈ Z2, Ωx := {
ω ∈Ω : T<〈x,l〉 <∞}

. Therefore, the event Ω′ := ⋂
x∈Z2Ωx has

probability 1 under P. Since is a countable intersection of events with probability 1.

Ergo,

Px,ω[T<〈x,l〉 <∞]= 1 P−a.s.

Using the strong Markov property, we can infer that P0[Al]= 0. Similarly, if P0−a.s.

T>0 < ∞ holds, then P0[A−l] = 0, which implies that P0[Al] = 1. This follows from

the hypothesis that P0[Bl]= 1 and the fact that Al and A−l are disjoint sets.

So, all our proof depends on proving equation (3.14) is true. In order to accom-

plish that, we note that the restriction that the walker moves from one point to the

nearest neighbors implies

T≥L ≥ L T≤−L ≥ L, L ∈N. (3.15)

Hence, proving equation (3.14) is equivalent to proving the following equation

lim
L→∞

P0[T≥L < T<0]P0[T≤−L < T>0]= 0. (3.16)
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Now, for L ∈N we pick a zL ∈Z2 such that it fulfills the next three conditions

xL := 〈zL, l〉 ≥ 2(L+R), (3.17)

zL has a nearest neighbor wL ∈Z2 with 〈wL, l〉 ≤ 2(L+R) (3.18)

yL := 〈zL, l⊥〉 and P0
[〈XT≥2(L+R), l⊥〉¦ yL|T≥2(L+R) < T<0

]≤ 1
2

¦ ∈ {<,>}, (3.19)

where l⊥ is a fixed vector such that l⊥ ∈S1 and 〈l, l⊥〉 = 0.

Given L ∈ N, we begin changing the starting point in the second factor of equation

(3.16) from 0 to zL. Hence, after using the translation invariance, we are able to

rewrite equation (3.16) as

lim
L→∞

P0[T≥L < T<0]PzL [T≤L+2R < T>xL ]= 0. (3.20)

In order to write the product of probabilities in equation (3.20) as a single probabil-

ity, we create two independent random walks moving in the same environment ω.

One of them is starting at 0, the other one is starting at zL.

Given ω ∈ Ω and L ∈ N, let P0,zL,ω be a probability measure on (Z2)N× (Z2)N such

that the two canonical processes of projections (X1
n)n and (X2

n)n on this space are

independent of each other and have distributions P0,ω and Pzl ,ω, respectively, and

denote by P0,zL the corresponding annealed measure. Stopping times referring to

the walks (X j
n)n are going to be marked with an upper index j ∈ {1,2}. Therefore, by

independence, we have the following identity

lim
L→∞

P0,zL

[
T1
≥L < T1

<0,T2
≤L+2R < T2

>xL

]= lim
L→∞

P0[T≥L < T<0]PzL [T≤L+2R < T>xL ].

(3.21)

Consider the walk (X1
n)n, after crossing the line {a ∈ Z2 : 〈a, l〉 = L}, the walk must

cross the line {a ∈ Z2 : 〈a, l〉 = 2(L+R)} or {a ∈ Z2 : 〈a, l〉 = 0} a.s., due to Theorem

6. Similarly, the walk (X2
n)n, after crossing the line {a ∈ Z2 : 〈a, l〉 = L + R}, the
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walk must cross the line {a ∈ Z2 : 〈a, l〉 = 0} or {a ∈ Z2 : 〈a, l〉 = 2(L+R)} a.s. As a

consequence, we have the following inequality,

lim
L→∞

P0,zL

[
T1
≥L < T1

<0,T2
≤L+2R < T2

>xL

]
(3.22)

≤ lim
L→∞

P0 [T≥L < T<0 <∞] (3.23)

+PzL

[
T≤L+2R < T>xL <∞]

(3.24)

+P0,zL

[
T1
≥2(L+R) < T1

<0,T2
≤0 < T2

>xL

]
. (3.25)

We claim that the inferior limit of (3.23) and (3.24) is zero. This follows easily from

the following computation

P0 [T≥L < T<0 <∞]≤P0 [∃n ≥ L : |〈Xn, l〉| ≤ 1] .

On the other hand, due to Theorem 6, we infer that

lim
L→∞

P0 [∃n ≥ L : |〈Xn, l〉| ≤ 1]= 0.

Consequently,

lim
L→∞

P0 [T≥L < T<0 <∞]= 0. (3.26)

Similarly,

lim
L→∞

PzL

[
T≤L+2R < T>xL <∞]= 0. (3.27)

Because,

PzL

[
T≤L+2R < T>xL <∞]=P0 [T≤−L < T>0 <∞] ,

by the translation invariance.

By equations (3.21), (3.26) and (3.27), the discussed inequality becomes

P0 [T<0 =∞]P0 [T>0 =∞]≤ lim
L→∞

P0,zL

[
T1
≥2(L+R) < T1

<0,T2
≤0 < T2

>xL

]
. (3.28)
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Consider the event of the right hand side of inequality (3.28). Any random walk

starting at zero and crossing the line {a ∈Z2 : 〈a, l〉 = 2(L+R)} has a tubular neigh-

borhood of width 2R restricted to slab {z ∈ Z2 : 0 ≤ 〈z, l〉 ≤ 2(L+R)}. This tubular

neighborhood is the following set:

TN1 :=
{

z ∈Z2 : 0≤ 〈z, l〉 ≤ 2(L+R), min
0≤n≤T1

≥2(L+R)

∥∥z− X1
n
∥∥≤ R

}
.

Therefore, for any random walk starting at zL and crossing the line {a ∈Z2 : 〈a, l〉 =
0}, we have two mutually exclusive options:

1. The second random walk does not enter TN1 at each step of time up to T2
≤0.

2. The second random walk enters TN1 for some step of time less than or equal

to T2
≤0 .

Consequently, {
T1
≥2L+R < T1

<0,T2
≤0 < T2

>xL

}
= NL tCL,

where

NL :=
{
T1
≥2(L+R) < T1

<0,T2
≤0 < T2

>xL
,min

{∥∥∥X1
j − X2

k

∥∥∥
1

: j ≤ T1
≥2(L+R),k ≤ T2

≤0

}
> R

}

and

CL := {∃x ∈Z2 : H1(x)≤ T1
≥2(L+R) < T1

<0,H2(x+mê j)≤ T2
≤0 < T2

>xL

for some j ∈ {1,2} and m ∈ {−R, . . . ,R}}

Therefore, inequality (3.28) becomes

P0 [T<0 =∞]P0 [T>0 =∞]≤ lim
L→∞

P0,zL [NL]+ lim
L→∞

P0,zL [CL]. (3.29)
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So far we have not used the hypothesis that the dimension is 2, since if we change

the dimension from d = 2 to d ≥ 2 arbitrary, the results up to this point would be

the same. Nevertheless, the following argument relies strongly on the fact that the

random walk is planar. So as to compute P0,zL [NL], we note that the endpoints of

the trajectory of the random walks confined to the slab {a ∈Z2 : 0 ≤ 〈a, l〉 ≤ 2(L+R)}

have a common property, which is yL−〈X1
T1
≥2L

, l⊥〉 and 〈X2
T2
≤0

, l⊥〉 share the same sign.

Consequently,

P0,zL [NL]=∑
s=±1

P0,zL [T1
≥2(L+R) < T1

<0,T2
≤0 < T2

>xL
,min

{∥∥∥X1
j − X2

k

∥∥∥
1

: j ≤ T1
≥2(L+R),k ≤ T2

≤0

}
> R

, s = sign(yL −〈X1
T1
≥2(L+R)

, l⊥〉)= sign(〈X2
T2
≤0

, l⊥〉)]

Denoting ΠL,s, (s ∈ {±1}), the set of all the finite nearest-neighbor paths that star at

zL and leave the slab {a ∈ Z2 : 0 ≤ 〈a, l〉 ≤ 2(L+R)} on the opposite side through a

vertex x with sign 〈x, l⊥〉 = s. Hence,

P0,zL [NL]=∑
s=±1

∑
π∈ΠL,s

P0,zL [T1
≥2(L+R) < T1

<0,min
{∥∥∥X1

j −a
∥∥∥

1
: j ≤ T1

≥2(L+R),a ∈π
}
> R,

(X2
n)n follows π, s = sign(yL −〈X1

T1
≥2(L+R)

, l⊥〉)= sign(〈X2
T2
≤0

, l⊥〉)]
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Using the fact that the environments are finite rank, we infer that

P0,zL [NL]≤∑
s=±1

∑
π∈ΠL,s

P0[T≥2(L+R) < T<0,min{
∥∥∥X1

j −a
∥∥∥

1

: j ≤ T≥2(L+R),a ∈π}> R, s = sign(yL −〈XT≥2(L+R) , l
⊥〉)]

·PzL [(Xn)n follows π]

≤ ∑
s=±1

∑
π∈ΠL,s

P0[T≥2(L+R) < T<0

, s = sign(yL −〈XT≥2(L+R) , l
⊥〉)] ·PzL [(Xn)n follows π]

= ∑
s=±1

P0
[
T≥2(L+R) < T<0, s = sign(yL −〈XT≥2(L+R) , l

⊥〉)]
·PzL

[
T≤0 < T>xL , s = sign(〈XT≤0 , l⊥〉)]

Using the condition (3.19) and the above argument, we deduce that

P0,zL [NL]≤ 1
2
P0

[
T≥2(L+R) < T<0

]
· ∑

s=±1
PzL

[
T≤0 < T>xL , s = sign(〈XT≤0 , l⊥〉)]

≤ 1
2
P0

[
T≥2(L+R) < T<0

]
PzL

[
T≤0 < T>xL

]
= 1

2
P0

[
T≥2(L+R) < T<0

]
P0

[
T≤−2(L+R) < T>0

]
≤ 1

2
P0 [2(L+R)< T<0]P0 [2(L+R)< T>0]

−→L→∞
1
2
P0 [T<0 =∞]P0 [T>0 =∞]

Using the previous result, inequality (3.29) gets

1
2
P0 [T<0 =∞]P0 [T>0 =∞]≤ lim

L→∞
P0,zL [CL]. (3.30)
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Considering the event CL, we have two options:

1. The first time that the random walk starting at zL enters TN1 is within slab

{a ∈Z2 : 0≤ 〈a, l〉 ≤ (L+R)}.

2. The first time that the random walk starting at zL enters TN1 is within slab

{a ∈Z2 : (L+R)≤ 〈a, l〉 ≤ 2(L+R)}.

After reading the above argument, it seems natural to define the following event

Cb
a := {∃x ∈Z2 : a ≤ 〈x, l〉 ≤ b,H1(x)≤ T1

≥2(L+R) < T1
<0,

H2(x+mê j)≤ T2
≤0 < T2

>xL
for some j ∈ {1,2} and m ∈ {−R, . . . ,R}},

where a,b ∈R are fixed. Therefore,

P0,zL [CL]≤ P0,zL

[
CL+R

0

]
+P0,zL

[
C2(L+R)

L+R

]
.

Due to symmetry and translation invariance, it is sufficient to show for the proof of

(3.30) that

lim
L→∞

P0,zL

[
CL+R

0

]
= 0, (3.31)

which is what we are going to demonstrate. Let ε′ > 0 and 0< ε< ε′
κR and set r(x,ω) :=

Px,ω[Al]. Therefore,

P0,zL

[
CL+R

0

]
≤P0

[
CL+R

0,1

]
+PzL

[
CL+R

0,2

]
+P0,zL

[
CL+R

0,3

]
, (3.32)
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where

CL+R
0,1 := {∃x ∈Z2 : 0≤ 〈x, l〉 ≤ L+R,H(x)≤ T≥(L+R) <∞, r(x,ω)≤ ε} ,

CL+R
0,2 := {∃y ∈Z2 : 0≤ 〈y, l〉 ≤ L,H(y)<∞, r(y,ω)≥ ε′} ,

CL+R
0,3 := {∃x ∈Z2 : 0≤ 〈x, l〉 ≤ L+R,H1(x)≤ T1

≥(L+R) <∞,

H2(x+mê j)≤ T2
≤0 <∞ for some j ∈ {1,2} and m ∈ {−R, . . . ,R}, r(x,ω)≥ ε,

r(x+mê j,ω)≤ ε′}.

So as to prove that CL+R → 0, we are going to prove that each summand on the

right-hand side of inequality (3.32) are arbitrarily small as L →∞. Having said this,

let us begin this task. In the first place, in order to bound P0

[
CL+R

0,1

]
, we consider

σ := inf{n ∈N : r(Xn,ω) ≤ ε}. It is clear that σ is a stopping time with respect to the

filtration {Fn}n, where Fn is the σ−algebra generated by X0, X1, . . . , Xn and the

environment ω. Therefore,

P0

[
CL+R

0,1

]
=P0 [σ≤ T≥L+R <∞]= E0

[
PXσ,ω [T≥L+R <∞] ,σ≤ T≥L+R ,σ<∞]

,

the last equality is justified by the strong Markov property. Now, by Theorem 6, for

all x ∈Z2 and for almost all ω, we have

Px,ω[T≥L+R <∞] ↓ Al , as L →∞.

After using the dominated convergence theorem, the above facts and the definition

of σ, we infer that

lim
L→∞

P0

[
CL+R

0,1

]
= E0

[
PXσ,ω [Al] ,σ<∞]≤ ε, (3.33)

giving a desired bound for the first summand. In the second place, we focus on the

second summand, which is PzL

[
CL+R

0,1

]
. Using the translation invariance it follows
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at once that

PzL

[
CL+R

0,1

]
=P0

[∃y ∈Z2 : 〈y, l〉 ≤−(L+2R), r(y,ω)≥ ε′,H(y)<∞]
.

Now we use the above equation and the assumption that P0 [Al ∪ A−l] = 1, which

yield the following inequality

PzL

[
CL+R

0,1

]
≤P0

[
T−(L+2R) <∞, Al

]+P0
[∃n ∈N : n ≥ (L+2R), r(Xn,ω)≥ ε′, A−l

]
.

One readily verifies that the first summand in the right-hand side of the above in-

equality tends to zero as L →∞. The same assertion holds for the second summand,

because we claim that

Lemma 5.

lim
n→∞ r (Xn,ω)=1Al P0 −a.s. (3.34)

Proof of Lemma 5. Given ω, by the Markov property property, we have that

r(Xn,ω)= P0,ω [Al |Fn] P0,ω−a.s.

Therefore, {r(Xn,ω)}n≥0 is a bounded martingale under the quenched probability

P0,ω. Now it is easy to see that the event Al belongs to F∞ := ∪n≥0Fn. Hence, by

the martingale convergence theorem, we infer that

lim
n→∞ r (Xn,ω)=1Al P0,ω−a.s.,

since ω was arbitrary, the above argument readily implies equation (3.34).

We have just proved that the second summand is zero as L → ∞. Finally, the

third summand is the unique term that remains. So, by the Markov property, we
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have the following inequalities

ε′ ≥ r(x+mê j,ω)= Px+mê j ,ω(Al)

= ∑
e∈U

ω(x+mê j, e)Px+mê j+e,ω(Al)

≥ κPx,(m−1)ê j (Al)
... (inductively)

≥ κmPx,ω(Al)

Therefore, using the previous inequalities and remembering that 0 < κ < 1, we de-

duce that r(x,ω)= Px,ω(Al)≤ ε′
κR . This results leads to the following inequality

P0,zL

[
CL+R

0,3

]
≤P0

[
∃x ∈Z2 : 0≤ 〈x, l〉 ≤ L+R,H(x)≤ T≥(L+R) <∞, r(x,ω)≤ ε′

κR

]
,

now we apply inequality (3.33) to infer that P0,zL

[
CL+R

0,3

]
≤ ε′

κR .

Since we were able to bound the right-hand side of the inequality (3.32) as L →∞
we have that

lim
L→∞

CL+R
0 ≤ ε+ ε′

κR ≤
(
1+ 1

κR

)
ε′.

Letting ε′ ↓ 0, we conclude

lim
L→∞

CL+R
0 = 0,

which was the desired result. Since equation (3.31) is true, this finishes the proof of

Theorem 4.
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