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Abstract

The aim of this thesis is two-folding. In the first instance, we make a significant progress

in the problem of density of hyperbolic components in the context of fibred quadratic

polynomial dynamics by proving the existence of robust non-hyperbolic fibred quadratic

polynomials. Secondly, we exhibit a more complex class of invariant set distinct than

the invariant curves for fibred polynomial dynamics, called multi-curves. Moreover, a

construction for multi-curves in the lowest interesting dynamics is shown, obtaining not

only invariant multi-curves, but also with the property of being attracting.

The thesis is organized as follows. In Chapter 2, the fundamentals of fibred dynamics is

stated, first in the general context , and then in the particular case for fibred polynomial

dynamics with base an irrational rotation over the unit circle, where the main results

are stated. The theory in this chapter are classical known results, except for Section 2.4,

where the local linearization theory for invariant curves is generalized to the case when

the invariant curve intersects the critical set (only possible for finitely many points).

In Chapter 3, a series of results are proved in the direction of the main theorem. The

Hausdorff continuity of the fibred Julia sets is proved and a new mechanism for non-

hyperbolicity is given depending on the existence of at least two invariant curves and

a critical path intersecting both. These provide a criterion for the non-hyperbolicity of

certain fibred polynomials, and the main theorem can be proved.

Finally in Chapter 4, multi-curves are defined and the classification theory is extended

for this new class of invariant sets and the local linearization theory can be applied to

them. Specific examples of invariant 2-curves with jumping integer equal 0 and 1 are

given, also an attracting one is exhibited, see Appendix B for images.
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Como mujer que comienza su carrera en matemáticas, fue tremendamente importante
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Chapter 1

Introduction

Structural stability and hyperbolicity as one of its most classic mechanisms, has been

one of the most important questions in dynamical systems since the beginning of the 20th

century. The possibility that most dynamical systems are stable under some kind of per-

turbation (and in some relevant sense) has guided much of the research in the area ever

since. Complex dynamics, with well-defined formulas for the map in question, had a sus-

tained boom in the early 1900s with the works of Fatou and Julia, and thanks, by the

way, to the possibility or perspective of understanding them from the apparent simplicity

of the formulas involved. We quickly realized that this hope was illusory. Already in the

apparently elementary case of quadratic polynomial dynamics, the situation becomes com-

plicated, and questions quickly emerge that keep us with fascinating uncertainties to this

day. One of the first questions of this type is the one known today as the Fatou Conjecture

in 1920, which establishes that among the dynamics of polynomial maps of degree two, the

notion of hyperbolicity is dense. Therefore, the property of structural stability should also

be dense in this case. In this work, we do not seek to answer this question but are inspired

by it, to study the density (or not) of a notion of hyperbolicity for a family of dynamical

systems that, a priori, are close to complex quadratic dynamics.

We will revisit the notion of hyperbolicity for complex skew-product polynomials, which

was introduced by Sester in the late 90’s [Se1]. In general, a fibred polynomial over φ is a
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CHAPTER 1. INTRODUCTION

map of the form

P : T × C −→ T × C,

(t, z) 7−→ (φ(t), pt(z)),

where φ : T → T is a continuous dynamics defined over a compact metric space T (the

base map) and pt : C → C is a complex polynomial, that depends continuously on t ∈ T

(see precise definitions in Section 2.1).

The foundational elements of the theory were established mainly in [Jo1, Se1, Se2].

Maps in the form above are also studied in a more general setting with the denomination

of fibred holomorphic dynamics (see [Po1, Po2]). The particular structure of the dynamics

(that is, an independent base map dynamics in the first coordinate followed by a dynamics

in a second space, but this time dependent on the first coordinate) gives this type of dy-

namical system the general name of skew-product dynamics. This skew-product structure

is used to model physical phenomena whose law varies depending on an external variable

(forced systems) and dynamical systems whose iterations are subject, at each time, to small

random perturbations (random dynamics), among others (see [St, Jä]). Skew-product dy-

namics have been the subject of an accelerated study in recent years (see [FaJoJoTa]). In

[Vi], Viana proposes the study of fibred quadratic polynomials over an expansive transfor-

mation, opening the way to a huge development in the understanding of multidimensional

non hyperbolic attractors. In the particular case of fibred polynomials, they can be consid-

ered as an intermediate step between the one-dimensional complex polynomial dynamics

and higher-dimensional complex dynamics.

In the classic situation (non-fibred setting), it is well known that the quadratic poly-

nomial family exhibits really interesting events. The uniqueness of the critical point is

crucial. As a simple but deep consequence, any quadratic polynomial has at most one

finite attracting cycle and both cases may occur, that is, there are quadratic polynomials

with one finite attracting cycle and quadratic polynomials without finite attracting cycles

8



CHAPTER 1. INTRODUCTION

(recall that the point at infinity is always a super-attracting fixed point for any polyno-

mial). As a counterpart in the fibred situation, M. Ponce in [Po3], proved that there exists

a one-parameter family of fibred quadratic polynomials over an irrational rotation of the

circle with at least two attracting invariant curves.

Although fibred polynomials may have no fixed points nor periodic points (due to the

lack of them in the base map), the existence of invariant curves allows a local study of these

dynamical systems, in the same spirit of the classic local study of the dynamics around a

fixed point. This local study is based on the average behavior around the invariant curve,

which is defined by the multiplier of the curve (Lyapunov exponent). This number also

classifies the curve as attracting, repelling or indifferent. In the case when the base map

is an irrational rotation of the circle, in [Po1] Ponce describes a local linearization for at-

tracting (respectively repelling) invariant curves.

Going back to the classic case of the iterations of a complex quadratic polynomial, if the

unique critical point is attracted by an attracting cycle, then the polynomial is hyperbolic

(uniform expansion over the Julia set, see Section 2.2 for a formal definition). This feature

defines the connected components (also called hyperbolic components) of the interior of the

well-known Mandelbrot set. Since the mid-1980s, a new impetus has appeared in the study

of complex dynamics. The density of the hyperbolic components of the Mandelbrot set has

been stated as a famous conjecture. This conjecture is closely related to the topological

MLC-conjecture (Is the Mandelbrot set Locally Connected?). Even though, at the time of

writing this work, it is still an open conjecture, there had been at least two breakthroughs:

first, all non-infinitely renormalizable parameters represent locally-connected parameters

for the Mandelbrot set as showed by Yoccoz [Hu], and second, for the real quadratic fam-

ily, Lyubich, and Graczyk and Swiatek independently showed that hyperbolicity is a dense

property [Ly, GrSw]. For (large degree) polynomials in C2, remarkable results have been

obtained. In [Bu], Buzzard shows that structurally stable maps are not dense in the space

of large-degree polynomial automorphisms in C2. In [BuJe], the authors proved the struc-

tural stability of hyperbolic polynomial automorphisms in C2. Recently, Biebler [Bi] has
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CHAPTER 1. INTRODUCTION

introduced a notion of complex blender to show the persistence of the Newhouse phe-

nomenon, which gives rise to new robust families of polynomials in C3 presenting notions

of non-stability.

In recent years, the question has resurfaced with interesting and novel results, mainly

due to Dujardin [Duj1, Duj2] and Taflin [Taf]. In these works the authors show robust non-

stability mechanisms for holomorphic endomorphisms in dimension k ≥ 2 with sufficiently

chaotic dynamics at each entry. Regarding polynomial skew-products in C2, the works by

Astorg and Bianchi [AsBi1, AsBi2] provide a complete description of the hyperbolic com-

ponents and of the bifurcation locus (including situations with non-empty interior). All

these results require either the existence of Cantor Julia sets or blenders. Neither of these

mechanisms is available in our context, for which the dynamics of the basis is a rotation

of the circle.

For further reference in the density conjecture and MLC-conjecture of hyperbolic

quadratic polynomials, we refer to the remarkable survey [Be], where the author exposes,

in a well-detailed way, how this conjecture is related to other different subjects in complex

dynamics, such as topological and quasi-conformal rigidity, No Invariant Line Fields con-

jecture, etc.

The principal objective of this work is to contribute to a better understanding of the

notion of hyperbolicity and the possibility of density for quadratic families in the fibred

polynomial context. In particular, we will concentrate on fibred quadratic polynomials over

an irrational rotation. Our key result creates a very simple mechanism (critical connection,

see Definition 10 at Section 3.1.2) that detects the non-hyperbolicity of a fibred polynomial.

Indeed, a fibred polynomial over an irrational rotation that admits two attracting invariant

curves whose basins of attraction are connected by the curve of critical points cannot be

hyperbolic (see Theorem 5 at Section 3.1.2). To have a critical connection is a robust

property, in the sense that for any fixed irrational α and fixed degree d ≥ 2, the property

of having a critical connection is open on the space of fibred polynomials of degree d over
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CHAPTER 1. INTRODUCTION

the circle rotation Rα (see Proposition 10 at Section 3.1.3). Since every element of the

above-mentioned Ponce’s family of fibred quadratic polynomials has a critical connection,

as a corollary, we obtain that for any fixed irrational α, the hyperbolic fibred quadratic

polynomials over the circle rotation Rα are not dense in the (parameter) space of fibred

quadratic polynomials over Rα (see Theorem 6 at Section 3.1.3).

As a secondary objective, we exhibit the existence of simple invariant objects, located

at an intermediate point between periodic or invariant curves and the invariant (chaotic)

Julia set. In Holomorphic dynamics, the complexity and chaotic nature of the correspond-

ing Julia set make it concentrate the most significant part of the dynamics. Even though

this is a complicated invariant set, we can recover it from a much simpler class of invariant

set, the repelling periodic orbits. It is a classic result that this set is dense in the Julia set

for holomorphic dynamics.

It is a classical fact that invariant sets are part of a central key for understanding many

features in dynamical systems. Focusing on the (simple) invariant curves, its multiplier

(Lyapunov exponent) allows us to determine the local behavior of the fibred dynamics

around the invariant curves. more precisely, we know that there exists an open invariant

set containing the invariant curve that is attracted to it when the multiplier is less than 1.

When the base map of a fibred dynamics is an irrational rotation over the unit circle,

there are no fixed nor periodic cycles. This way, invariant (periodic curves) curves are the

natural extension of fixed (periodic) points in the setting of fibred dynamics, since consti-

tute the most simple invariant objects herein. The existence of more complex invariant

sets (other than the Julia set) arises as a natural question.

A good, and very interesting, candidate for this new kind of invariant objects is what

we called multi-curves (see Section 4.1 for precise definition), that is simple closed curves

that turn many times in the base space direction (T1). The aim of the last part of this

work is to prove the existence of such invariant objects in the low degree setting, that

11



CHAPTER 1. INTRODUCTION

is, on quadratic fibred polynomials. Moreover, it would be possible to obtain examples of

multi-curves that have a dynamical nature of being attracting.

The main tool to prove the main results is a fine study of the continuity of the fibers of

the filled-in Julia set in the particular case of irrational rotation in the base map. We obtain

the following result, which presents an interest in itself and that in some way represents an

important advance to Sester’s initial work on the fibred (filled-in) Julia set structure. We

show that for a hyperbolic fibred polynomial over an irrational rotation of the circle, the

fibers of the filled-in Julia set vary continuously in the Hausdorff topology. In particular,

the Julia set equals the boundary of the filled-in Julia set (see Proposition 9 and Corollary

5 at Section 3.1). It is worth mentioning that in [Se1], Example 4.1, the author presents an

example of a hyperbolic fibred polynomial with a discontinuous filled-in Julia set. Hence,

the additional hypothesis on the base map is necessary in order to obtain the equality

between the boundary of the filled-in Julia set and the Julia set.

In order to exhibit the multi-curve for fibred quadratic polynomials, we construct these

invariant objects as small perturbations of invariant objects for a ’static’ fibred dynamics,

i.e. a particular parametric family of (classic) quadratic polynomials. The perturbations

will consist of small closed curve, ‘around’ special points in the Mandelbrot set.

12



Chapter 2

Rewriting the Theory

This chapter contains the fundamentals and known results of the fibred dynamics the-

ory. First, we will be presented in a general context, extending the basic notions of non-

fibred or classical polynomial dynamics. The particular case that we are interested in

studying is when the base mapping is an irrational rotation. At the end of the chapter,

the local dynamical theory developed by Ponce is extended, through original new results,

to the case of invariant curves intersecting critical points.

2.1 Preliminaries

In this section, we review some of the standard definitions and notations (see [Po2, Se0]

for further details). Consider a compact metric space T and φ : T → T a continuous map.

For d ≥ 2, we denote by C(T,C∗ × Cd) the set of continuous functions from T to C∗ × Cd

endowed with the uniform convergence topology.

Given c ∈ C(T,C∗ × Cd), that is, c(t) = (cd(t), ..., c0(t)) with ci ∈ C(T,C) for each

0 ⩽ i ⩽ d and cd(t) ̸= 0 for all t ∈ T , we associate to each t ∈ T a complex polynomial pt,

of degree d,

pt(z) = cd(t)z
d + cd−1(t)z

d−1 + · · ·+ c1(t)z + c0(t). (2.1)

We are going to use the notation above to define our object of study, the fibred systems.

13



CHAPTER 2. REWRITING THE THEORY

Definition 1. Given c ∈ C(T,C∗ × Cd), we call a fibred polynomial dynamics over φ to

the map

P : T × C → T × C,

(t, z) 7→ (φ(t), pt(z)).

where pt(z) is the polynomial associated to c defined in equation (2.1).

We are interested in studying the dynamics of iterating these objects, that is Pn. We

will denote by Pn = P ◦ · · · ◦ P the composition of P , n-times, and by pnt the second

coordinate of Pn, that is to say,

pnt = pφn−1(t) ◦ pφn−2(t) ◦ · · · ◦ pφ(t) ◦ pt.

With this we have Pn(t, z) = (φn(t), pnt (z)). Note that the first coordinate of Pn is the

actual orbit by φ.

We notice that, by iterating P , the coefficients of the polynomial pt “vary” on the

fiber according to the base mapping φ, which is why we can consider these systems in the

context of skew products.

The topological and metric structure of the space C(T,C∗ × Cd) endows the structure

of space to the set of fibred polynomials.

Definition 2. The space of fibred polynomials of degree d over φ is denoted by Fd,φ. The

uniform convergence topology on C(T,C∗ × Cd) endows Fd,φ with a natural topology.

Although the coefficients of the polynomial vary, the dynamics near infinity are still

attracted to the point at infinity, so the following definitions have a natural extension to

the fibred case.

Definition 3. Let P (t, z) = (φ(t), pt(z)) be a fibred polynomial dynamics in Fd,φ. We

define the filled-in Julia set of P, as:

14



CHAPTER 2. REWRITING THE THEORY

K = {(t, z) ∈ T × C : sup
n∈N

|pnt (z)| < +∞},

and its fiber on t ∈ T by

Kt = {z ∈ C : (t, z) ∈ K}.

For each t ∈ T , let Jt = ∂Kt denotes the topological boundary of the fiber on t of the

filled-in Julia set. Finally, we call

J =
⋃
t∈T

{t} × Jt,

the Julia set of the fibred polynomial P .

Some basic properties of these sets, extended from the non-fibred case, are mentioned

in the following result.

Proposition 1 (see Sester [Se1]). Let φ : T → T continuous, c ∈ C(T,C∗ × Cd) and

P : T × C → T × C the associated polynomial. Then:

1. There exists R = R(P ) > 0 such that, for all t ∈ T , Kt is contained in the disc with

center 0 and radius R(P ).

2. K is compact and Kt is a “full set” for all t ∈ T .

3. If φ : T → T is surjective, then K is completely invariant.

In the non-fibred polynomial case (the classical case), it is well known that there is

a strong relation between the Julia set and the filled-in Julia set. In fact, in that case,

the Julia set coincides with the boundary of the filled-in Julia set. As mentioned in the

introduction, this is not necessarily the case in the fibred setting, not even in the hyperbolic

case (see [Se1, Example 4.1]). Even so, by definition, we have the inclusion

J ⊆ ∂K. (2.2)

The question about equality in the above inclusion arises. In this work, we will obtain
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CHAPTER 2. REWRITING THE THEORY

equality in the case of hyperbolic fibred polynomials over an irrational rotation on the

circle, see Corollary 5 in the next chapter.

A final topological property of the fiber-filled Julia sets, which follows from the dynam-

ics of the polynomial P , is directly related to the set of critical points, which is defined

as:

Ω = {(t, z) ∈ T × C : P ′
t(z) = 0}

and the corresponding part of the fiber:

Ωt = {z : (t, z) ∈ Ω}

Proposition 2 ([Se1], Corollary 2.6). Let us fix c ∈ Cd(T ), then Kt is connected for all

t ∈ T if and only if Ω ⊂ K.

It is worth mentioning that this property follows from the construction of Green’s

function of fibred polynomial P , which will not be of interest to us, but you can consult

its definition and properties in Chapter 1 of [Se0].

The above result is the generalization, in the fibred setting, of a result of Fatou and

Julia which gives the equivalence between the connectivity of the filled Julia set and the

fact that no critical point escapes.

2.1.1 Semi-continuity of Kt and Jt

Part of the results of this work is to study, under what conditions equality is obtained

in equation (2.2). A necessary condition for this equality is the Hausdorff continuity of the

Kt fibers.

This section deals with the properties of semi-continuity by analyzing these properties

with respect to the base point t of the sets Kt and Jt. We will designate by Comp∗(C)

the set of non-empty compact subsets of C provided with the Hausdorff distance. The

proposition below is a characterization of upper semi-continuity for a family of compacts

of C. A proof of this criterion could be found in [Se0, Proposition 1.43].
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CHAPTER 2. REWRITING THE THEORY

Proposition 3.

1. The map t 7→ Kt of T in Comp∗(C) is upper semi-continuous.

2. The map t 7→ Jt of T in Comp∗(C) is lower semi-continuous.

2.2 Fatou set by chains

Unlike the classical case, fibred polynomials can have attracting cycles, in fact, if the

base mapping φ has no cycles, the fibred polynomial has no cycles at all. From this, it

follows that a description of the normality set is not as straightforward as in the classic

case. In the works of Sester and Jonson, we can find a characterization of the complement

of the Julia set by fibers, Jt, in terms of normality, the equivalent of the Fatou set of the

polynomial over the fiber t.

Attracting cycles, or cycles in general, are important objects from the dynamical point

of view, which will allow us to give a first description of what the Fatou set by fibers should

be. It is possible to find a good counterpart in the fibred setting in the stable set by chains.

To define the stable set by chains of a fibred polynomial P , it is necessary to review the

concept of pseudo-orbit.

Definition 4. Let ϵ > 0 and (t, z) ∈ T × C. We call an ϵ-pseudo-orbit of (t, z) to any

sequence {sn}n∈N = {(φn(t), zn)}n∈N ⊂ T × C such that:

• z0 = z

• |zn+1 − pφn(t)(zn)| < ϵ for all n ∈ N.

Note that the first coordinate of a pseudo-orbit consists of an actual orbit of the base map,

which is consistent with the definition of the iterates of the polynomial itself.

In this way, we define the stable sets by chains. For ϵ > 0, we define the set U(ϵ) as

the pairs (t, z) ∈ T × C such that every ϵ-pseudo-orbit of (t, z) is bounded. Analogously,

we define the set U∞(ϵ) as the pairs (t, z) ∈ T × C for which every ϵ-pseudo-orbit of (t, z)

is contained in the complement of K, which is equivalent that they tend to infinity.
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Now, consider the following sets:

Ut(ϵ) = {z ∈ C : (t, z) ∈ U(ϵ)},

U∞
t (ϵ) = {z ∈ C : (t, z) ∈ U∞(ϵ)},

U =
⋃
ϵ>0

U(ϵ) and Ut =
⋃
ϵ>0

Ut(ϵ).

Observation. Ut(ε) ⊂ Ut(ε
′) if ε′ > ε.

The following result summarizes the basic properties of the set of ϵ-pseudo-orbits.

Proposition 4 (see Sester [Se1], Section 3).

1. Ut is an open set contained in int(Kt).

2. U is invariant by P .

3. If z and z′ belongs to the same component of Ut, then |pnt (z) − pnt (z
′)| → 0, when

n → ∞.

4. The connected components of Ut are connected components of int(Kt).

We will now focus on the description of the connected components of Ut. Let V be

one of them and set V n = Pn
t (V ). Recall that Ωt is the set of critical points of Pt. In

the same way as the immediate basins of attracting periodic orbits always contain critical

points (the well-known Fatou Lemma), Sester showed a proposition where Pn
t (V ) mach

Ωφn(t) for an infinity of integers n. It is worth mentioning that properties 4 and 5 of the

proposition above are a consequence of this result. Furthermore, this relationship will be

piece key in the study of hyperbolicity.

We further denote

Λ(V ) = {n ≥ 0 | Ωφn(t) ∩ V n ̸= ∅}

Proposition 5 (see [Se1], Proposition 3.2). The set Λ(V ) is infinite and if

Λ(V ) = {n0 < n1 < · · · < nk < nk+1 < . . . },

then there exists an integer N(V ) such that nk+1 − nk ≤ N(V ).

18
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Hyperbolicity and the Critical Set

One of the main results in [Se1] is the generalization to the fibred setting of the distinct

characterizations of the hyperbolic parameters in terms of the critical set, as we have

defined in the previous section:

Ω = {(t, z) ∈ T × C : p′t(z) = 0},

and the post-critical set,

PΩ =
⋃
n≥0

Pn(Ω).

We denote by Ωt the fibre of Ω in t ∈ T.

A fibred polynomial is called hyperbolic if it is uniformly expansive on its Julia set

J , i.e., there exist A > 0 and λ > 1 such that |(pnt )′(z)| ⩾ Aλn for all (t, z) ∈ J . This

definition is independent of the nature of the polynomial. Some properties of a hyperbolic

polynomial in the non-fibred setting have their generalization in the following results.

In the context of general fibred dynamics, that is, for an arbitrary compact metric

space T , φ : T → T any continuous map, hyperbolicity brings interesting properties to

basic sets, for the family of Julia sets by fibers we have:

Proposition 6 (see Sester [Se1], Proposition 4.1). If P is hyperbolic, then the mapping

t 7→ Jt is continuous for the Hausdorff distance of compact sets of C.

On the other hand, analogous to the non-fibered case, it is possible to determine a

characterization of the fibered systems depending on the dynamics of their critical set, see

[Se1].

Theorem 1 (see Sester [Se1], Theorem 4.2).

The following statements are equivalent:

1. P is hyperbolic;

2. there exists ϵ0 > 0 such that Ω ⊂ U(ϵ0) ∪ U∞(ϵ0);
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3. there exists a family of open sets {Vt}t∈T and ϵ0 such that

Jt ⊂ C\Vt, Ωt ⊂ Vt

Pt(Vt) ⊂ Vφ(t) and d(Pt(Vt), ∂Vφ(t)) ⩾ ϵ0;

4. PΩ ∩ J = ∅.

Finally, as was announced at the beginning of the section, hyperbolicity allows us to

give a description of the Fatou set, the normality/stable set by fibers, through the concept

of pseudo orbit.

Corollary 1 (see Sester [Se1], Corollary 4.3). If P is hyperbolic, then for all t ∈ T ,

int(Kt) = Ut and Jt has zero Lebesgue measure.

We close the general setting by considering the following. Analogous to the classical

case, we can consider the Moduli space of degree d fibred polynomials, Fd,φ, that is, the

parameter space reduced under conformal conjugation with fibred linear applications. The

following result is a summary of Propositions 1.1.1, 1.1.2, and 1.1.3 of [Se0].

We denote Cd(T ) = C(T, S1 × Cd−1) with the conventions that if c ∈ Cd(T ) then

c(t) = (cd(t), cd−2(t), . . . , c0(t)), and |cd(t)| = 1.

Also, if u ∈ C(T,T1) we denote by [u] its homotopy class and H = [T : T1] the group

of homotopy classes. The map φ defines a homomorphism φ∗ from H in H by

φ∗([u]) = [u ◦ φ].

Proposition 7. If c ∈ C(T,C∗ ×Cd) then there exists u ∈ C(T,R∗
+) and v ∈ C(T,C) such

that the map (t, z) 7→ (t, u(t)z+v(t)) conjugates Pc to Pc′ with c′ ∈ Cd(T ). Moreover, if c ∈

Cd(T ) satisfies the homotopic hypothesis that there exists u0 such that [c′d]φ
∗([u0])[u

2
0]
−1 =

1, then Pc′ will be conformally conjugated to a fiber polynomial Pc′′ of the form

Pc′′,t(z) = zd + c′′d−2(t)z
d−2 + · · ·+ c′′1(t)z + c′′0(t).

20



CHAPTER 2. REWRITING THE THEORY

Due to the nature of Chapter 4 (multi-curves in quadratic polynomials), in such chapter,

we will give a proof/construction of this proposition for the quadratic case (d = 2), and

the homotopic hypothesis will be satisfied trivially.

2.3 Fibred polynomials over irrational rotations

From this point on, we will concentrate on the case of fibred polynomials over an

irrational rotation of the circle. That is, we take T = T1 := R/2πZ, and for θ ∈ T1, φ(θ) =

Rα(θ) := θ + α mod 2π with α ∈ R\Q.

From here on, we want to restrict ourselves to this case. Let’s start by saying that

we are interested in the study of the case in which T = T1 := R/2πZ. And let’s give an

explanation of why we restrict ourselves to irrational rotations.

We could consider fibred holomorphic dynamics, where the transformation on the basis

is a minimal homeomorphism of the circle preserving the orientation (a C∞ (analytic)

diffeomorphism in the C∞ (analytic) case). But this greater generality is only apparent

because a conjugation on the basis (under the appropriate arithmetic hypothesis in the

C∞ or analytical case) brings us back to the case considered above. Indeed, let r be a

diffeomorphism of the circle preserving the orientation, and let h be the linearization given

by the Theorems of Herman or Yoccoz depending on the case (C∞, Cw, see [Her1], [Yoc1],

[Yoc2]). The change in coordinates given by H(θ, z) = (h(θ), z) therefore brings us back

to the case r(θ) = θ+α. This way, by considering the irrational rotations, we are covering

(up to conjugation) every C∞ (analytic) case.

2.4 Invariant curves

In a given dynamical system, it is possible to find many types of invariant objects,

such as fixed and periodic points, a minimal complicated attractor, and the support of

an invariant measure, among others. Through these objects, we can understand many

features of the system.

The Fatou and Julia sets, form a dichotomy in the Riemann sphere for global complex

dynamics. Moreover, it is known that the Julia set concentrates the most significant part
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of the (chaotic) dynamics. Although in general, this is a complicated invariant set, in

non-fibred holomorphic dynamics we can focus on a simpler invariant set, the repelling

periodic orbits. It is a classical result, from Fatou and Julia, that those objects are dense

in the Julia set.

Since irrational rotations of the circle are minimal, it follows that these fibred polyno-

mials do not contain fixed nor periodic points. Arises the natural question of the existence

of minimal invariant objects, distinct from the Julia set, for fibred polynomial dynamics.

Given the nature of the base space of fibred polynomial dynamics, it is well expected that

a minimal invariant object possesses the same topological structure of the base space: a

closed curve.

As part of his doctoral thesis [Po2], M. Ponce proved that a natural extension for fixed

and periodic points are invariant curves, that is, continuous functions u : T1 → C satisfying

the equation

P (θ, u(θ)) = (θ + α, u(θ + α)). (2.3)

Remark 1. It is important to note that, unlike the non-fibred case, the existence of in-

variant curves for fibred dynamics is a cohomological problem instead of an algebraic one.

2.4.1 Invariant curves with critical points

Part of the novelties presented in this work is the extension of local dynamical theory

developed by Ponce for invariant curves over which the polynomial is injective, to invariant

curves with possible finite intersections with the critical set.

Analogous to the classical case, there is a complex conformal invariant number with a

considerable amount of information from the local dynamics of an invariant curve.

Let us remember that in classical dynamics, once the fixed or periodic points are

located, the value of their derivative provides us with local dynamic information about

the system. In the fibered case, the panorama is not very different, although the definition

of a multiplier is not so direct. Here, the invariant object is a non-countable set of points,

a curve. One way to extend this conformal invariant is through the appropriate average of

the derivatives of the function. More precisely, let us consider the following definition:
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Definition 5. Let u : T1 → C be an invariant curve for a fibred polynomial P over an

irrational rotation. Provided that θ → log |p′θ(u(θ))| is a L1(T1) function, we call multiplier

of the curve to the positive number

κ(u) = exp
(∫

T1

log |p′θ(u(θ))|dθ
)
.

When the multiplier κ(u) < 1 we say that the curve is attracting. If κ(u) > 1 we call

it repulsor, and in the case κ(u) = 1 the curve is called indifferent.

Remark 2. Linearization results by Ponce in [Po1] follow once we notice that, the compac-

ity of T1, together with the injectivity of the polynomial over the invariant curve (p′θ(u(θ)) ̸=

0), imply that the map θ → log |p′θ(u(θ))| is L1.

When the invariant curve is also a critical curve, it is possible to extend the definition

by making κ(u) = 0, note that this is the case for the constant curve z ≡ ∞. The

integrability condition of the invariant curve allows non-empty intersections, between the

invariant curves and the critical set, only on finite sets.

As mentioned above, the complex multiplier, under certain conditions, provides us with

information about the local dynamics, in fact, in the attracting case for example, we can

find an entire neighborhood around the attracting cycle that is “attracted” to such cycle.

This property can be extended for invariant attracting curves in the fibred case. Even

more, if P is injective on the invariant curve, it is possible to obtain a linearization around

the curve (see [Po1], Proposition 3.1). In the next paragraphs, we perform an analogous

result when log |p′θ(u(θ))| is just a L1(T1) function (in order to allow critical points on the

invariant curve).

We start by considering a conformal normalization for fibred quadratic polynomials in

such a way that the invariant curve is a simple section in the space T1 ×C. This could be

considered as a first step to the moduli space.

Lemma 1. Let P be a fibred polynomial over an irrational rotation, and u an attracting

invariant curve. Then there exists a continuous change of coordinates H(θ, z) = (θ, a(θ)z+
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b(θ)) such that H−1 ◦ P ◦H has the form

(θ, z) 7−→ (θ + α, ρ1(θ)z + z2qθ(z)),

where qθ(z) is a polynomial on z that depends continuously on θ. Moreover, there exists

c < 1 so that we can choose ρ1 in such a way that supθ∈T1 |ρ1(θ)| < c.

Proof. A first conjugacy in the form H(θ, z) = (θ, z + u(θ)) allows to assume that P has

the form

(θ, z) 7−→ (θ + α, ρ1(θ)z + z2qθ(z)).

We look for a conjugacy in the form H(θ, z) = (θ, ev(θ)z) with a continuous v : T1 →

R in order to obtain the uniform upper bound on ρ1. For an integer N we define the

continuous function γN (θ) = max{log |ρ1(θ)|,−N}. Since log |ρ1(θ)| is L1(T1), we have∫
T1 log |ρ1(θ)|dθ = limN→∞

∫
T1 γN (θ)dθ. We can find an integer N > 0 and a trigonometric

polynomial l : T1 → R such that

1.
∫
T1 γN (θ)dθ < 0,

2.
∫
T1 l(θ)dθ =

∫
T1 γN (θ)dθ,

3. eγN−l < e−
∫
γN .

Since l is a trigonometric polynomial and α is irrational, we choose v as a (continuous)

solution to the cohomological equation

v(θ + α)− v(θ) = l(θ)−
∫
T1

γN (θ)dθ.

By performing the conjugacy of P by H we obtain the linear term ev(θ)

ev(θ+α) ρ1(θ), and we

can estimate:

ev(θ)

ev(θ+α)
elog |ρ1(θ)| =

ev(θ)

evθ+α
el(θ)

elog |ρ1(θ)|

el(θ)
,

= e
∫
γN elog |ρ1(θ)|−γN (θ)eγN (θ)−l(θ),

< 1.
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From the proof of the above result, it follows that with suitable modifications, we have

an analogous result for a repulsor invariant curve.

Lemma 2. Let P be a fibred polynomial over an irrational rotation, and u a repulsor

invariant curve. Then there exists a continuous change of coordinates H(θ, z) = (θ, a(θ)z+

b(θ)) such that H−1 ◦ P ◦H has the form

(θ, z) 7−→ (θ + α, ρ1(θ)z + z2qθ(z)),

where qθ(z) is a polynomial on z that depends continuously on θ. Moreover, there exists

c > 1 so that we can choose ρ1 in such a way that supθ∈T1 |ρ1(θ)| > c.

Lemma 1 allows us to find a neighborhood around an invariant attracting curve that

is invariant by the polynomial P and that is “attracted” under the dynamics towards the

invariant curve, as described by the following result:

Lemma 3. Let P be a fibred polynomial over an irrational rotation, and u an attracting

invariant curve. Then there exists an open set T ⊂ T1 × C containing the curve, that is,

(θ, u(θ)) ∈ T for every θ ∈ T1, and such that for every (θ, z) ∈ T we have |pnθ (z) − u(θ +

nα)| → 0 as n → ∞. In particular u ⊂ int(K) and u(θ) ∈ int(Kθ) for every θ ∈ T1.

Proof. We assume that P has the form as in the previous lemma. Hence

pθ(z) = z(ρ1(θ) + z(qθ(z))).

Let M = supθ∈T1,|z|<1 |qθ(z)|. Hence for |z| < M−1 (1−c)
2 one knows that

|pθ(z)| <
1 + c

2
|z|, (2.4)

where c < 1 is the constant given by Lemma 1.

We obtain T as H
(
T1 ×B(0,M−1 (1−c)

2 )
)
, where H is given in Lemma 1.
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Condition (2.4) in the proof of the above lemma tells us, roughly speaking, that the

local dynamics around the invariant curve is contracting. Contracting/stability theory

around invariant curves, was developed by Ponce in [Po2, Chapter 2]. We recover here the

fundamentals that will be key in the proof of (in)stability results.

Definition 6. We say that a fibred polynomial P over an irrational rotation has an in-

variant open tube if there is an open set T ⊂ T1 × C satisfying:

i) P (T ) ⊂ T .

ii) The fiber Tθ over the point θ ∈ T1 is a topological disc for all θ ∈ T1.

We also say that the invariant curve u : T1 → C is a stable curve if there is an open

invariant tube that contains it, that is, u(θ) ∈ Tθ for all θ ∈ T1.

This way, we can re-formulate the above result.

Corollary 2. Let P be a fibred polynomial over an irrational rotation, and u an attracting

invariant curve. Then u is a stable curve.

The open invariant tube constructed in the proof above is a generalization of the im-

mediate basin of attraction for the non-fibred case. In this way, we extend the definition

of a basin of attraction in the fibred case as follows:

Definition 7. Let P be a fibred polynomial over an irrational rotation, and u an attracting

invariant curve. We define the attracting basin of the curve u, and denote it by A(u), the

set of points (θ, z) ∈ T1 × C for which

lim
n→∞

|pnθ (z)− u(θ + nα)| = 0. (2.5)

In the case when u is normalized so that u = {z ≡ 0} (which is always possible by

Lemma 1), the condition (2.5) can be rewritten as

lim
n→∞

|pnθ (z)| = 0. (2.6)

26



CHAPTER 2. REWRITING THE THEORY

Note that if u is an invariant attracting curve, and T is its corresponding invariant

tube, then

A(u) =
⋃
n≥0

P−n(T ).

This way, as a straightforward corollary of Lemma 3 we obtain the following.

Corollary 3. If u : T1 → C is an attracting invariant curve, then the attracting basin

A(u) ⊂ T1 × C is an open set.

The following is a trivial example. Consider the escape set of a fibred polynomial

I(P ) = Kc = {(θ, z) ∈ T1 × C : |(Pn
θ (z)| → ∞}.

In this case, we write A(∞) = I(P ). By the compacity of K, it follows that A(∞) is

an (unbounded) open set. It is not difficult to see that the invariant curve {z ≡ ∞} is

(super)-attracting.

Next, for completeness in the invariant curves’ theory, we present a reciprocal result to

Corollary 2, that is, if T is an invariant tube for a fibred dynamics P , then T contains an

invariant stable curve for P .

Let P (θ, z) = (Rα(θ), fθ(z)) be a fibred holomorphic dynamics defined in a neighbor-

hood of T1 × D satisfying:

(i) P (T1 × D) ⊂ T1 × D;

(ii) there exists a point θ̃ ∈ T1 such that fθ̃(D) ⊂ D.

It follows that the former hypothesis is equivalent to the fact that fθ̃ : D → D is a

contraction in the Poincaré metric of the unit disk D. We say that P verifies strong

contraction hypothesis in a point. Note that if P (T1 × D) ⊂ T1 × D, as in Lemma 3, then

P is a global (strong) contraction.

Lemma 4 (Lemma 2.10, [Po2]). Let F (θ, z) = (Rα(θ), fθ(z)) be a fhd defined in a neigh-

borhood of T1 × D which satisfies the strong contraction hypothesis at a point, then for all

θ ∈ T1 the diameter (measured in the Poincaré metric) of the set Kn
θ = fn

θ−nα(D) tends
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to zero uniformly in θ as n tends to infinity. More precisely, there are constants C,c > 0

such that

diamD(K
n
θ ) ⩽ Ccn

for all n > 0.

We will need the following fibred analogous to the Schwarz-Pick Lemma. Let V ⊂ C be

a simply connected region containing the origin, and let h : D → V be a biholomorphism

with h(0) = 0 and h′(0) > 0, this further conditions make the biholomorphism h unique.

Then h′(0) is called the conformal radius of V . The following result is a general version of

the Schwartz-Pick Lemma (see [K] for reference).

Lemma 5. Let W > 1 be a constant and D a topological disk whose conformal radius

verifies

W−1 < R(D) < W.

Then there exists a constant C = C(W ) such that

C−1|z| < dD(z, 0) < C|z|,

for dD(z, 0) < 1. Let D, d′ be topological disks. If g : D → D′ is a holomorphic function,

then

(i) g is a contraction in the strong sense in the induced metrics dD, dD′, i.e., for all

z1, z2 ∈ D we have

g∗(dD′) ≤ dD,

distD′(g(z1), g(z2)) ≤ distD(z1, z2),

where distD, and distD′ are the distances induced by the hyperbolic metrics dD and

dD′, respectively.

(ii) If f maps D compactly to D′, that is if we have the inclusion g(D) ⊂ D′, then g

is a strict contraction in the induced metrics, in other words, there exists a positive

constant c < 1, such that for all z1, z2 ∈ D we have that g is a c-contraction.
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The following is a detailed complete proof of a result from Ponce’s PhD. Thesis [Po2]:

Proposition 8 (Proposition 2.11, [Po2]). If F (θ, z) = (Rα(θ), fθ(z)) is a fhd defined in

a neighborhood of T1 ×D which satisfies the strong contraction hypothesis in a point, then

there exists a continuous and invariant curve u : T1 → D. In addition, this invariant curve

is attracting and attracts the whole set T1 × D in the future.

Proof. Let θ̃ ∈ T be the point where F satisfies the strong contraction hypothesis. From

the proof of Lemma 4, we know there exists an open interval I from θ̃ such that fθ is a

c̃-contraction, with c̃ ∈ (0, 1), for all θ ∈ I.

Given the definition of Kn
θ = fn

θ−nα(D), it follows that

Kn+1
θ ⊂ Kn

θ

So we have a nested compact intersection of non-empty compact sets. Then

⋂
n⩾0

Kn
θ = {pθ}

for some point pθ in the θ fiber.

With the above, we defined the curve u : T1 → D given by u(θ) := pθ the intersection point

of the family {Kn
θ }n⩾0.

As 0 ∈ K0
θ = D for all θ, we can see that u is in fact the uniform limit of the sequence of

continuous curves defined by the iterates of the preimages of the zero section {z ≡ 0}θ∈T:

un(θ) = fn
θ−nα(0).

Then u is continuous.

Moreover, from the definition of Kn
θ , we have:

fθ(K
n
θ ) = Kn+1

θ+α

taking the limit on both sides, we have
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fθ(u(θ)) = u(θ + α)

so that u is, in fact, invariant.

Let’s show that u is an attracting curve. For each θ ∈ T1, let Aθ be a neighborhood of

zθ = u(θ), from the invariance of u, we have that

fθ : Aθ → fθ(Aθ) ⊂ Aθ+α

is holomorphic. If hθ : Aθ → D is a conformal Riemann map, we get the following

commutative diagram:

D D

Aθ Aθ+α

gθ

h−1
θ

h−1
θ+α

fθ

With gθ : D → D given by g := hθ+α ◦ fθ ◦ h−1
θ . From the Schwarz-Pick Lemma 5 we

observe that:

distD(gθ(hθ(ϵ1)), gθ(hθ(ϵ2)) ⩽ distD(hθ(ϵ1), hθ(ϵ2))) = distAθ
(ϵ1, ϵ2)

But

distD(gθ(hθ(ϵ1)), gθ(hθ(ϵ2)) = distD(hθ+α(fθ(ϵ1)), hθ+α(fθ(ϵ2))

= distAθ+α
(fθ(ϵ1), fθ(ϵ2))

So that

distAθ+α
(fθ(ϵ1), fθ(ϵ2)) ⩽ distAθ

(ϵ1, ϵ2)

i.e. fθ : Aθ → Aθ+α it is a semi-contraction. But if θ ∈ I, we know that fθ is a strong

contraction.
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Given that I = (θ̃− ϵ1, θ̃+ ϵ2) for ϵ1, ϵ2 > 0 by the minimal ergodicity of Rα(θ) = θ+α

there exists n∗ > 0, such that Rn∗
α (I) = T1.

For all θ ∈ T1, we have:

|fn
θ−nα(z1)− fn

θ−nα(z2)|θ = |fθ−nα(f
n−1
θ−(n−1)α(z1))− fθ−nα(f

n−1
θ−(n−1)α(z2))|θ

Hence, if θ − n0α ∈ I, for some n0 ∈ N, then

|fn0
θ−n0α

(z1)− fn0
θ−n0α

(z2)| ⩽ c̃|fn0−1
θ−(n0−1)α(z1)− fn0−1

θ−(n0−1)α(z2)|θ−α

⩽ c̃|z1 − z2|θ−n0α

this way

diamfn0
θ−n0α

(Aθ−n0α) ⩽ c̃ diamAθ−n0α, c̃ ∈ (0, 1)

For every θ ∈ T1, let {nk}k⩾0 the sub-sequence given by θ − nkα ∈ I, from the semi-

contraction of fθ we have

diamfn
θ−nα(Aθ−nα) ⩽ diam(fnk

θ−nkα
(Aθ−nkα)) ⩽ c̃kdiam(Aθ−nkα)

we can choose I in such a way that diam(Aθ) ⩽ 1 for all θ ∈ I, we conclude that

|∂zfnk
θ (pθ)| ⩽ c̃k

|∂fn
θ (u(θ))| ⩽ |∂zfnk

θ (u(θ))| ⩽ c̃k → 0, c̃ ∈ (0, 1)

Now, we consider the Birkhoff sums:

lim
n

1

n
log |∂zfn

θ (u(θ))| ⩽ lim
k

1

k
log |∂zfnk

θ (u(θ))| < 0
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it follows that

κ(u) =

∫
T1

log |∂zfθu(θ)|dθ < 0

i.e. u(θ) is an attracting invariant curve.
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Chapter 3

Hyperbolic Polynomials over

irrational rotations

Hyperbolicity is a strong property for dynamical systems in general. Broadly speaking,

in a hyperbolic dynamical system “almost every orbit” has a well-defined asymptotic be-

havior: either tends to an attracting invariant object or “escape” uniformly to the border

of the space where the system is defined.

As was mentioned in the previous chapter, we are especially interested in fibred holo-

morphic dynamics with base an irrational rotation over the unitary circle. In this chapter,

we will study some nice properties these systems hold in the hyperbolic case. What will

lead us, under contradiction, to the non-density of these types of systems.

3.1 The map θ 7→ Kθ is continuous

As was mentioned earlier, [Se1, Example 4.1] shows that, although hyperbolicity of a

polynomial is enough condition for the Hausdorff continuous of the Julia set by fiber, Jθ,

it is not enough to have Hausdorff continuity of the filled-in Julia sets, by fiber Kθ. Recall

that Jθ = ∂Kθ.

Let’s analyze in detail the example provided by Sester.

Example. Consider the compact subset T = {0} ∪ { 1
n}n∈N∗ ∪ {2} ⊂ R and let φ : T → T
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be the continuous map given by

φ(t) =


0 t = 0,
1

n− 1
t =

1

n
, n > 1,

2 t ∈ {1, 2}.

Now, for each t ∈ T\{2}, we set c(t) = 0 and c(2) = −3. We define the fibred

polynomial P : T × C → T × C by the formula

P (t, z) = (φ, pt(z) = z2 + c(t)).

We note first that, 0 and 2 are fixed points for the map φ, hence the orbits starting at

the fibers t = 0 and t = 2 stay in their respective fiber.

On one hand, φ(0) = 0 implies that p0(z) = z2 and then K0 = B(0, 1), hence J0 =

S1 = ∂B(0, 1) = ∂K0.

On the other hand, φ(2) = −3 implies that p2(z) = z2 − 3, this way, K2 = J2 is a

Cantor set, and this implies that int(K2) = ∅.

For t ∈ T\{0, 2}, the orbits of φ goes away from t = 0, until they land in the fiber

t = 2. The same happens with the dynamics of P fiber by fiber. It is not difficult to notice

that K1 = J1 = p−1
0 (J2), and for n > 1,

K1/n = J1/n = p−1
0 (J 1

n−1
).

It follows that

∂K\J = {0} ×B(0, 1).

This means that there is no continuity of the mapping t 7→ Kt at t = 0. Discreteness

elsewhere makes the map trivially continuous.

Remark 3. The value c(2) = −3 is totally arbitrary, in fact, any value c /∈ M2 outside

the Mandelbrot set will work for this example. So, this is a robust family for which the

map t 7→ Kt is not continuous.
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Two important aspects of this example are highlighted: the base space T is not a

continuum and for every t ∈ T with t ̸= 0, int(Kt) = ∅.

The first issue is well covered when T = T1 is the unit circle. The former will be

necessary to be covered since, as often happens when dealing with Hausdorff convergence

of compact sets, it is easier to deal with their complements, which are open sets. That is

why this condition will be assumed in our results.

Analogous to the Hausdorff convergence for compact sets, it is possible to define a

convergence for open sets in the Riemann sphere (see [MT, p. 222] for further references).

Definition 8. Let O and On, n ∈ N, be open sets in the Riemann sphere Ĉ. We say that

On converge to O in the sense of Carathèodory if the following conditions hold:

(1) For each compact subset I ⊂ O, there is N > 0 such that I ⊂ On for every n ≥ N .

(2) If an open connected set V is contained in Om for infinitely many m ∈ N, then

V ⊂ O.

The following result allows us to analyze the continuity of the set, indistinctly as col-

lections of compact sets (Hausdorff), or as collections of open sets (Carathèodory) through

their complements.

Lemma 6. The closed sets Kn converge to K in the Hausdorff metric if and only if the

complements Kc
n of Kn, converge to the complement Kc of K in the sense of Carathèodory.

Now, we are in a position to prove the first property of a hyperbolic fibred dynamics

with base an irrational rotation over the unit circle. Recall that the unit circle T1 is a

continuum.

Lemma 7. Let P be a hyperbolic fibred polynomial over an irrational rotation, such that

for every θ ∈ T1, int(Kθ) ̸= ∅. Then the map θ 7→ int(Kθ) is continuous in the sense of

Carathèodory.

Proof. Since P is hyperbolic, recall that, from Corollary 1, int(Kθ) = Uθ. Suppose that

θ 7→ Uθ is discontinuous at some θ0 ∈ T1. Then, one of the two conditions in the definition

of convergence in the sense of Carathèodory does not hold, that is: or (1) There exists a
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compact set I ⊂ Uθ0 such that for every δ > 0 there exists θ′ ∈ T1 with |θ′ − θ0| < δ and

I ̸⊂ Uθ′ . Or (2), there exists an open set V such that for every δ > 0, there exists θ′ ∈ T1

with |θ′ − θ0| < δ such that V ⊂ Uθ′ but V ̸⊂ Uθ0 .

From point (1) we have the following: we know that P is uniformly continuous over the

compact set T1 ×B(0, Rd2), where R = R(P ) is the escape rate of the polynomial P . Let

ε > 0, set δ′ = δ′(ε) > 0 such that |Pθ(z) − Pθ0(z)| < ε/2 if (θ, z) ∈ T1 × B(0, Rd2), and

|θ − θ0| < δ′. For such a δ′ let θ′ ∈ T1 such that I ∩ Uc
θ′ ̸= ∅ and |θ′ − θ0| < δ′ and take

z0 in such intersection. Note that z0 ∈ Uθ0 since I ⊂ Uθ0 , so z ∈ Uθ0(ε
′) for some ε′ > 0.

From the definition of Uθ(ε), we can take ε′ > ε.

Since z0 ∈ Uc
θ′ , there exists an ε/2−pseudo orbit {(Rn

α(θ
′), xn)} of (θ′, z0) that is un-

bounded. Let N > 0 be the minimal n such that R < |xn| < Rd2 . Now, we construct

an ε′−pseudo orbit {(Rn
α(θ0), zn)} of (θ0, z0) as follows: for 1 ≤ n ≤ N , zn = xn, and

for n > N , zn = Pn−N
RN

α (θ0)
(zN ) the actual orbit of the point (RN

α (θ0), zN ). We claim that

{(Rn
α(θ0), zn)} is an ε−pseudo orbit of (θ0, z0): note that we only have to check the con-

dition for 1 ≤ n ≤ N since {zn} is an orbit for n ≥ N . So, for 1 ≤ n ≤ N − 1 we

have

|zn+1 − PRn
α(θ0)

(zn)| = |zn+1 − PRn
α(θ

′)(zn) + PRn
α(θ

′)(zn)− PRn
α(θ0)

(zn)|

≤ |zn+1 − PRn
α(θ

′)(zn)|+ |PRn
α(θ

′)(zn)− PRn
α(θ0)

(zn)|

< ε/2 + ε/2 = ε < ε′.

The first ε/2 comes from the fact that zn = xn is part of an ε/2−pseudo orbit of (θ′, z0), and

the second one is obtained from the uniform continuity with |Rn
α(θ

′)−Rn
α(θ0)| = |θ′ − θ0|.

Then {(Rn
α(θ0), zn)} is an ε′−pseudo orbit of (θ0, z0), but |zn| → ∞ since zN /∈ K(P )

which contradicts that z0 ∈ Uθ0(ϵ).

For (2) we make an analogous construction of an unbounded ε−pseudo orbit of a point

(θ′, z0) with V ⊂ Uθ′ , z0 ∈ V ∩ Uc
θ0

̸= ∅ and z0 ∈ Uθ′(ϵ).
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We have then the first important result of fibred hyperbolic polynomials P : T1 ×C →

T1 × C over the unit circle. This result marks a difference with respect to the counter-

example given by Sester (example above).

Proposition 9. Let P be a hyperbolic fibred polynomial over an irrational rotation, such

that int(Kθ) ̸= ∅ for every θ ∈ T1. Then the map θ 7→ Kθ is Hausdorff continuous.

Proof. By the hyperbolicity of P we have that θ 7→ Jθ is Hausdorff continuous, by Lemma

6, θ 7→ J C
θ is continuous in the sense of Carathèodory, but

J C
θ = int(Kθ) ⊔ Aθ(∞),

since θ 7→ int(Kθ) is continuous, the above equation implies that θ 7→ Aθ(∞) is also

continuous in the sense of Carathèodory, again, by Lemma 6 the map θ 7→ Aθ(∞)C is

Hausdorff continuous, but Aθ(∞)C = Kθ.

We close this section with the following consequences of the above result. These corol-

laries give us a picture of the above results by showing that if a hyperbolic polynomial is

fibred over T1 by an irrational rotation, then the boundary of the filled-in Julia set, it is a

nice boundary fiber by fiber.

Corollary 4. Let P be a hyperbolic fibred polynomial over an irrational rotation, such that

int(Kθ) ̸= ∅ for every θ ∈ T1. If (θ, z) ∈ K is such that z ∈ int(Kθ), then (θ, z) ∈ int(K).

Proof. Let z ∈ int(Kθ). From condition (1) of continuity in the sense of Carathèodory,

there exists δ > 0 such that if |θ − θ′| < δ then z ∈ int(Kθ′). For |θ − θ′| ≤ δ/2, let

r = r(θ′) > 0 be such that Br(z) ⊂ int(Kθ′), from the compacity of C = {|θ − θ′| ≤ δ/2},

it follows that

r′ = inf
θ′∈C

r(θ′) > 0,

thus

Br′((θ, z)) ⊂
⋃
θ′∈C

{θ′} × Kθ′ .
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Hence, d((θ, z),KC) > 0 and (θ, z) ∈ int(K).

Corollary 5. Let P be a hyperbolic fibred polynomial over an irrational rotation, such that

int(Kθ) ̸= ∅ for every θ ∈ T1. We have

∂K = J and int(K) =
⋃
θ∈T1

{θ} × int(Kθ).

Proof. In general, we have the inclusion J ⊂ ∂K. Suppose that ∂K \ J ≠ ∅ and take

(θ, z) ∈ ∂K \ J . Since P is hyperbolic we know that J =
⋃

θ∈T1{θ} × Jθ. Hence,

z /∈ Jθ = ∂Kθ and z ∈ int(Kθ). By Corollary 4 it follows that (θ, z) ∈ int(K) which

contradicts that (θ, z) ∈ ∂K.

3.1.1 Recent result on (in)stability

Fibred dynamical systems can be considered as being in an intermediate dimension.

They are not complex, but they mix both real dynamics and complex dynamics, the space

where they live is a 3-real dimensional space. Given the importance of hyperbolicity among

general dynamical systems, the question of their density always appeared. Recently, this

question has been studied for higher dimensional complex polynomial dynamics. In this

section, we extend a comment on these results and how the techniques used do not apply

directly to our context.

In (complex) higher dimension, stability/bifurcation theory is based on the so-called

“small Julia set” J ∗, which by definition is the support of the measure of maximal entropy.

Thanks to the work of Bianchi, Berteloot, and Dupont [BeBiDu], we now know that the

J ∗-stability is the correct generalization of the Mañé-Sad-Sullivan-Lyubich theory in higher

dimension, and they leave the existence of persistent bifurcations as an open problem.

From a classical work of Newhouse [New1] persistent bifurcations can be obtained

for invertible dynamics in dimension 2. On the other hand, in sufficiently high degree

polynomial automorphism of C2, persistent homoclinic tangencies exist. There is not,

however, a direct relation between these former results and the J ∗-(in)stability.

Simultaneously and independently, Dujardin [Duj2], Bianchi and Taflin [BT1], and later

Taflin [Taf] by itself, address the open problem of density.
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Let Hd(Pk) denote the space of holomorphic mappings of Pk of degree d.

Theorem 2 (Dujardin, [Duj2]). The bifurcation locus has a non-empty interior in the

space Hd(Pk) for every k ≥ 2 and d ≥ 2.

Dujardin developed two mechanisms to prove this theorem: one topological and one

geometric fractal. In the first mechanism, a topological manifold contained in J ∗ is con-

structed in such a way that it intersects the post-critical set, the intersection is proved to

be non-empty by homological reasons. For the second mechanism, a Canton-type fractal

set is constructed and perturbed, achieving bifurcation persistency. Such Cantor sets are

called blenders.

Bianchi and Taflin, on the other hand, took advantage of the dynamical richness of the

elementary Desboves family of an endomorphism of PK . One of their main properties is

that the small and large Julia sets coincide.

Theorem 3 (Bianchi and Taflin [BT1]). The family of endomorphisms of Pk given by

fλ = [−x(x3 + 2z3) : y(z3 − x2 + λ(x3 + y3 + z3)) : z(2x3 + z3)]

with λ ∈ C∗ satisfies the following properties:

(1) the Julia set of fλ depends continuously on λ, for the Hausdorff topology;

(2) the bifurcation locus coincides with C∗.

The idea to prove point (2) is the show that Misiurewicz parameters are dense in the

parameter space.

Definition 9. A parameter λ0 ∈ C∗ is called a Misiurewicz parameter if there exist a

neighborhood Nλ0 ⊂ C∗ of λ0 and a holomorphic map σ : Nλ0 → P2 such that

(1) for every λ ∈ Nλ0, σ(λ) is a repelling periodic point;

(2) σ(λ0) is in the Julia set of Fλ0;

(3) there exists an n0 such that (λ0, σ(λ0)) ∈ fn0(Cf );
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(4) σ(Nλ0) ⊈ fn0(Cf ).

Here Cf denotes the critical set of f .

Finally, using the concept of blenders, Taflin reduces the construction of Dujardin,

obtaining similar results. Let Pd denote the space of degree d polynomials on C, and

Bif(Pd) its bifurcation locus.

Theorem 4 (Taflin [Taf]). Let d ≥ 2. If p and q are two elements of Pd such that

p ∈ Bif(Pd) then the map (p, q) ∈ Hd(P2) can be approximated both by polynomial skew

products of the form (z, w) 7→ (p̃(z, w), q(w)) having an iterate with a blender of repelling

type and by others having an iterate with a blender of saddle type.

Corollary 6. The bifurcation locus of the family Pd × Pd is contained in the closure of

the interior of the bifurcation locus in Hd(P2).

The first thing that we must highlight about these results is that the Bianchi and Taflin

example is of degree greater than 2 and is not a polynomial dynamics, but rational. For

the other two results, the difference with fibred dynamics is very significant.

Firstly, both constructions are based on skew products or mapping products of C2. So,

what would be the fibred part of the system is, in fact, holomorphic not only continuous.

Moreover, the base polynomial is already chaotic enough: the Julia set is a Cantor

set. Each coefficient of the polynomials are complex constant values, while in the fibred

case are continuous curves. Hence, via the analyticity of the global parameter space, it is

possible to generate Holomorphic Motions which proves the bifurcation persistency.

These notable differences make this novel work within the area.

3.1.2 Critical connections prevent hyperbolicity

In this section, we present and prove the main result of this work. As has been men-

tioned before, hyperbolicity is a significant property among dynamical systems, and on

some occasions it turns out that this property is dense in the respective space. On this

occasion, we give a negative answer to the natural question: are the fibred hyperbolic

systems dense? We will see that when the system is given by a fibred polynomial with
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base an irrational rotation, non-hyperbolic polynomials are “fat” enough to avoid density

of hyperbolicity.

Unlike the mechanisms described in the above section, the mechanism we will use to

prove that the bifurcation locus of fibred polynomials is open, is a simple mechanism.

The next definition is inspired by the example provided by Ponce [Po3], where a (real)

family of fibred quadratic polynomials admitting two invariant attracting curves is pre-

sented (see Section 3.1.3 below for details). Given that the polynomials are fibred over the

unit circle via an irrational rotation, the critical set consists of continuous curves.

In that example, the curve of critical points intersects both invariant attracting curves.

Instead, in the next definition, we will only require that the set of critical points “connects”

the basins of attraction of the curves. Recall that P : T1×C → T1×C is a fibred polynomial

with base an irrational rotation over the unit circle T1, and if u : T1 → C is an invariant

curve for P , then A(u) denotes the basin of attraction of the curve u, that is,

A(u) = {(θ, z) ∈ T1 × C : lim
n→∞

|pnθ (z)− u(Rn
α(θ))| = 0}.

Definition 10. We say that a fibred polynomial P has a critical connection when P admits

two distinct invariant attracting curves u1, u2 : T1 → C and there exists a connected

component Ω0 ⊂ Ω of the critical set of P such that A(u1) ∩ Ω0 ̸= ∅ and A(u2) ∩ Ω0 ̸= ∅.

In classical holomorphic dynamics, Fatou proved that there exists a direct relation

between the set of critical points (which is always a discrete set) and the different stable

components of the system. As part of his doctoral work [Se0], O. Sester established a

similar relation for the fibred case in the general context. Recall that, in the fibred case,

the stable set (by chains) is defined in terms of ε-pseudo orbit.

We rewrite the definitions of such sets for a better understanding of the proofs of the

results below.

For ε > 0, we denote by U(ε) the set of points in T1 × C whose ε-pseudo orbits are

bounded, and then consider the following sets

Uθ(ε) = {z ∈ C : (θ, z) ∈ U(ε)},
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U =
⋃
ε>0

U(ε), and
⋃
ε>0

Uθ(ε).

The first thing we want to do is to find a sufficient condition to avoid hyperbolicity.

The next result says that critical connection is the right candidate.

Theorem 5. Let P : T1 × C → T1 × C be a fibred polynomial over an irrational rotation.

If P has a critical connection then P is non-hyperbolic.

Proof. Suppose that P is hyperbolic. We know that invariant-attracting curves are con-

tained in open invariant tubes. Also, the basins of attraction of each invariant attracting

curve are open subsets of T1 × C.

First of all, from the fact that Ω intersect both attracting invariant curves and that

J = ∂K since P is hyperbolic, it follows that Ω ⊂ int(K), because if Ω ∩ A(∞) ̸= ∅ then

Ω ∩ ∂K ̸= ∅.

Without loss of generality, we assume that Ω is a simple close curve in T1 ×C. We use

the following notation. For z ∈ Uθ, we denote by Vθ,z ⊂ Uθ the connected component of

Uθ containing point z. After a suitable change of coordinates, we may assume that one of

the invariant curves is u1 = {z ≡ 0}θ∈T1 and Ω0 ∩ A0(0) ̸= ∅. We have that (θ, z) ∈ A(0),

the basin of attraction of u1, if and only if |Pn
θ (z)| → 0, as n → ∞.

Let wθ,0 = w0 ∈ Ω0∩A0(0), i.e., (0, w0) ∈ A(0). We know that Ω is a continuous curve,

A(0) is open, and Ω ∩A(u2) ̸= ∅, thus there exists θ0 > 0 such that Ωθ0 ∩Aθ0(0) = ∅, but

Ωθ ∩Aθ(0) ̸= ∅ for 0 ≤ θ < θ0. We denote by wθ ∈ Ωθ the critical point that is in the same

segment of Ω than w0, 0 ≤ θ ≤ θ0.

We claim that (θ0, wθ0) /∈ A(u2)∪A(∞) since both sets are open in T1 ×C. Recall we

are assuming P is hyperbolic. From (4) of Theorem 1 we have PΩ ∩ J = ∅. Given that

(J )θ = Jθ, there exists ε > 0 and k > 0 such that, for nk ∈ Λ(Vθ0,wθ0
),

d(Pnk
θ0

(wθ0),Jθk) ≥ ϵ > 0.
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Now, (θ0, wθ0) /∈ A(0), implies Pnk
θ0

(wθ0) /∈ Aθnk
(0). Let Wk := Aθk(0), then

d(Pnk
θ0

(wθ0),Wk) ≥ ε > 0,

since ∂Aθ(0) ⊂ Jθ for every θ by hyperbolicity.

For r > 0 and a compact subset B ⊂ C, we denote by

∆r(B) = {z ∈ C : d(z,B) < r},

an r-neighborhood of the compact set B. From the Hausdorff continuity of the map θ 7→ Jθ,

there exists δ1 > 0 such that if |θ − θnk
| < δ1, then

Jθ ⊂ ∆ε/4(Jθnk
).

It is clear that PN is a continuous function for every N ≥ 1. Let δ2 > 0 be such that

|(θ, z)− (θ0, wθ0)| < δ2, implies

|Pnk
θ (z)− Pnk

θ0
(wθ0(wθ0))| < ε/2.

Take δ = min(δ1, δ2). If 0 < θ0 − θ < δ, then

|(θ, wθ)− (θ0, wθ0)| < δ ⇒ |Pnk
θ (wθ)− Pnk

θ0
(wθ0)| < ε/4,

and

d(Pnk
θ0

(wθ0),Wk) ≥ ε > 0.

Therefore,

d(Pnk
θ (wθ),Wk) > 0,

which is a contradiction since (θ, wθ) ∈ Aθ(0). Hence, we conclude that P cannot be

hyperbolic and the proof of the Theorem 5 is complete.
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3.1.3 Hyperbolic fibred quadratic polynomials are not dense

Critical connections are robust

Once we have a model for non-hyperbolicity, the critical connection, we need to know

how fat this condition is among the space of fibred polynomials. Let α be a fixed irrational

and d ≥ 2. We consider the space Fd,Rα of fibred polynomials of degree d over the irrational

rotation Rα.

Definition 11. We say that a property H is robust whenever the set of fibred polynomials

in Fd,Rα that verify the property H is open in Fd,Rα.

The following lemmas relate continuity condition to the critical connection.

Lemma 8. Let P be a fibred polynomial in Fd,Rα and u be an attracting invariant curve

for P . Then there exists an open neighborhood V ⊂ Fd,Rα of P such that for every Q ∈ V

there exists an attracting invariant curve v of Q. Moreover, the map Q 7→ v is continuous

at P, u.

Proof. The inequality (2.4) at the proof of Lemma 3 and Corollary 2, allows claiming that

there exists an open invariant tube T , i.e., such that every fiber Tθ is a disc B(u(θ), r),

for some r > 0 and such that P (θ, Tθ) ⊂ B(u(θ + α), λr) for some λ < 1. As is pointed

out in Section 2.4, from the stability theory for invariant curves in Chapter 2, page 20 of

[Po2], we deduce that T is an open tube that is (strongly) contracted by P . But, from its

definition, this is an open property in Fd,Rα , that is, for Q close enough to P , the map qθ

is a strong contraction in the hyperbolic metric at every fiber Tθ. Following the ideas in

the proof of Proposition 8, we can deduce that for every θ ∈ T1 the set

⋂
n∈N

qnθ−nα(Tθ−nα) (3.1)

consists in exactly one point v(θ), and hence it produces an invariant curve θ 7→ v(θ).

Since the convergence is uniform, the curve is continuous and attracts exponentially every

point of T . From this, similar to the conclusion in Proposition 8, we deduce that κ(v) < 1

and that v depends continuously on Q.

44



CHAPTER 3. HYPERBOLIC POLYNOMIALS OVER IRRATIONAL ROTATIONS

Lemma 9. Let P be a fibred polynomial in Fd,Rα and Ω0 be a connected component of the

critical set Ω of P . Then there exists an open neighborhood V ⊂ Fd,Rα of P such that for

every Q ∈ V there exists a connected component ΩQ
0 of the critical set ΩQ of Q such that

Q 7→ ΩQ
0 is continuous in the Hausdorff topology at P,Ω0.

Proof. The fibers of the critical set of any element of Fd,Rα are algebraic roots of a d− 1

degree polynomial, which varies continuously with respect to the fiber polynomial.

Proposition 10. The property of admitting a critical connection is robust.

Proof. Let P ∈ Fd,Rα having a critical connection. Since basins of attraction of attracting

invariant curves are open, together with the fact the immediate basin of attraction of

invariant curves contains a set whose size is uniform in a neighborhood of P , Lemma 8 and

Lemma 9 allows us to conclude.

Ponce’s examples are (robustly) non-hyperbolic

In the quadratic non-fibred case, to have a finite attracting cycle implies hyperbolicity.

In [Po3] the author proposes that, for every irrational α, for each 0 < ϵ < 1, the fibred

quadratic polynomial

P (θ, z) = (θ + α, z(1 + a(θ)(z − 1))) , (3.2)

possesses two attracting invariant curves, where a(θ) = cos θ+ i(1−ϵ) sin θ. Note that a(θ)

parametrizes an ellipse having mayor axis equals to the segment [−1, 1] ⊂ R, and minor

axis equals to i [−(1− ϵ), (1− ϵ)] ⊂ iR.

By a direct verification, we can see that u− = {z ≡ 0}θ∈T1 and u+ = {z ≡ 1}θ∈T1 are

invariant curves of the fibred quadratic polynomial P , with multipliers

κ(u±) = exp
(∫

T1

log |1± a(θ)|dθ
)
< 1, (3.3)

that is, u− and u+ are attracting invariant curves. Moreover, the critical set of P is

given by
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Ω(P ) =
{(

θ,
a(θ)− 1

2a(θ)

)}
θ∈T1

,

which is a simple closed curve. Since (0, 0), (π, 1) ∈ Ω, P has a critical connection, and

thus, it is non-hyperbolic. This fact, together with Proposition 10 allows obtaining the

next result.

Theorem 6. For any irrational α, the set of hyperbolic polynomials is non-dense in the

space F2,Rα of fibred quadratic polynomials over the circle rotation Rα.
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Chapter 4

Invariant Multi-curves

As was shown in the works by Ponce (see [Po2, Po1]), the primer objects that describe

the local behavior of a fibred dynamics, are curves, invariant curves. It is natural to wonder

if there exist more complex invariant objects, containing dynamical information from the

system.

In this chapter, we describe a more general class of objects that can be found in fibred

polynomial dynamics with base an irrational rotation. Moreover, the strategy in this

chapter is to construct invariant multi-curves

4.1 Multi-curves

Let n ∈ N, and γ̃ : [0, n] → C be a continuous function holding the following conditions:

• γ̃(t) ̸= γ̃(t+ p), for t ∈ (0, n) and p ∈ {1, 2, ..., n− 1}; and

• γ̃(n) = γ̃(0).

The function γ̃ induces a simple, closed, continuous curve in the fibred space T1 ×C given

by

γ : [0, n] → T1 × C

θ 7→ (⟨θ⟩, γ̃),

where ⟨·⟩ denotes the fractional part of θ. In other words, γ is a simple and closed curve

in T1 × C turning n-times in the direction of the base space T1. We call a n-curve, a
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curve γ : [0, n] → T1 × C induced in this way. In general, a subset Γ ⊂ T1 × C is called a

(p, n)− curve or multi-curve if Γ consists of p components, each of which is a n-curve.

Recalling that T1 := R/2πZ ∼= [0, 1), a n-curve γ : [0, n] → T1 × C, viewed as a

continuous function γ : [0, n] → [0, 1]× C (with the corresponding identification), may be

viewed as a concatenated list of n curves γ0, γ1, ..., γn−1 : [0, 1] → [0, 1] × C that satisfy

γi(1) = γi+1(0) for i = 0, 1, ..., n− 1 and γn = γ0. Each curve may be defined as

γi(θ) = γ̃(i+ θ), i = 0, 1, ..., n− 1. (4.1)

Figure 4.1: Displaying a 4-curve in T1 × C

Now, if we ‘extend’ the γ̃ : [0, n] → C over the fibred space [0, n]×C in the most natural

way,

γ̃ : [0, n] → [0, n]× C

θ 7→ (θ, γ̃),

we recover a simple closed curve by identifying [0, n) ∼= R/(2πnZ), since γ̃(n) = γ̃(0).

Figure 4.2: “Unfolding” process for the 4-curve

This new extended curve may be thought as an ‘unfolding’ of the n-curve γ. We can
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reparametrize the curve γ̃ to be defined in the unit interval, and hence the unit circle.

Definition 12. Let γ = (γ0 γ1 ... γn−1) be a n-curve induced by a closed continuous

function γ̃ : [0, n] → C, the curve γ̂ : [0, 1] → [0, 1]× C given by

γ̂(θ) = γ⌊nθ⌋(nθ − ⌊nθ⌋) = γ⌊nθ⌋(⟨nθ⟩), (4.2)

is called the unfolding curve of γ. Here ⌊·⌋ denotes the floor function.

From the properties of a n-curve, we have.

Proposition 11. Let γ = (γ0 γ1 ... γn−1) be a n-curve and γ̂ be its unfolding curve as

described above. Then, the function

Γ̂ : T1 → T1 × C

θ 7→ (θ, γ̂(θ))
(4.3)

is a well-defined, closed, continuous curve.

Take k ∈ {1, 2, ..., n−1} and define γ̂k : [0, n] → C as a k-shift of the n-components of γ̂,

that is, γ̂k = (γk γ1+k ... γn−1+k). It follows that γ̂0, γ̂1, ..., γ̂n−1 are pairwise disjoint curves

in the fibred space [0, n] × C, that induce the same n-curve γ (as a topological object in

T1×C). In other words, each n-curve possesses n unfolding curves (as topological objects)

by reparametrization.

Figure 4.3: 4 unfoldings for a 4-curve

Remark 4. When we talk of a n-curve as a dynamical object, it will be clear why we

consider only integer translation for reparametrization.
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4.1.1 Invariant multi-curves

Consider the fibred holomorphic dynamics F : T1×C → T1×C and let γ = (γ0 γ1 ... γn−1)

be a n-curve in T1 × C such that F (θ, γ(θ)) ∈ γ, i.e. the restriction of F to the n-curve

γ is (at least) an endomorphism. For each θ ∈ T1, the fiber of γ over θ consists of n

distinct points, and then Equation (2.3) makes no sense as an invariant notion. Although

γ = (γ0 γ1 ... γn−1) is invariant under F as a subset of T1 × C, γ may be ‘dynamically

jumping’ along the set of curves (γ0 γ1 ... γn−1)

For n ≥ 1, τ ∈ {0, 1, 2, ..., n− 1}, and the fibred dynamics F : T1 ×C → T1 ×C, define

the following fibred mappings

F̂τ : T1 × C → T1 × C

(θ, z) 7→
(
θ +

α+ τ

n
, f⟨nθ⟩(z)

)
and

Π : T1 × C → T1 × C

(θ, z) 7→ (nθ, z)

A direct calculation gives

Π ◦ F̂τ (θ, z) = Π

(
θ +

α+ τ

n
, f⟨nθ⟩(z)

)
= (nθ + α+ τ, f⟨nθ⟩(z))

= (nθ + α, f⟨nθ⟩(z)),

and

F ◦Π = F (nθ, z)

= (nθ + α, f⟨nθ⟩(z)),
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obtaining the following commutative diagram.

T1 × C

Π
��

F̂τ // T1 × C

Π
��

T1 × C
F
// T1 × C.

(4.4)

Notice that if we divide the interval [0, 1] into n sub-intervals of length 1/n, the integer τ

in the fibred dynamics F̂τ , represents a jump among these intervals. We then consider the

following definition.

Definition 13. A n-curve (or multi-curve) γ = (γ0 γ1 ... γn−1) is called a dynamically

invariant curve (or invariant multi-curve) for the fibred dynamics F : T1 × C →

T1 × C if for each unfolding Γ̂ : T1 → T1 × C as defined in (4.2), there exists an integer

τ ∈ {0, 1, ..., n − 1} such that Γ̂ is an invariant curve for the (lifted) fibred dynamics

F̂τ : T1 × C → T1 × C.

The above commutative diagram makes this definition well-defined. More over, it is

clear that F̂τ

∣∣
Γ̂
is a homeomorphism if and only if F

∣∣
γ
is a homeomorphism. Finally, τ

determine how F
∣∣
γ
dynamically jumps among the curves γ = (γ0 γ1 ... γn−1), this way, τ

is called the jumping integer for γ = (γ0 γ1 ... γn−1).

4.1.2 Dynamically invariant multi-curves exist.

In this short subsection, we exhibit a couple of examples of multi-curves for fibred

dynamics. The examples are extreme opposite in the sense that the former is a trivial

construction of several multi-curves for a fibred dynamics in the unit circle (with rotation

as base map), while the further is a forced construction of a fibred polynomial dynamics

based on a given topological multi-curve.

Example 1. Let n ∈ N, α ∈ T1, and F : T1 ×T1 → T1 ×T1 be a fibred dynamics on the

unit circle over a rotation by α in the unit circle itself, F (x, y) = (x+α, y+
α

n
). Then the

curve γ : [0, n] → T1 defined by

t 7→ γ(t) =
t

n
,
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induce an invariant n-curve for F . In fact, the phase space T1 ×T1 is foliated by invariant

copies of this invariant n-curve.

Example 2. As is mentioned in Appendix A, the Interpolation Lagrange polynomial

is a useful tool to construct invariant multi-curves. Let γ = (γ0 γ1 ... γn−1) be a n-

curve, α ∈ R, and τ ∈ {0, 1, ..., n − 1}. For every θ ∈ T1, let pθ be the n − 1 degree

Lagrange interpolation polynomial taking the points {γ0(θ), γ1(θ), ..., γn−1(θ)} to the points

{γ0+τ (θ+ α), γ1+τ (θ+ α), ..., γn−1+τ (θ+ α)} sending point γi(θ) to the point γi+τ (θ+ α),

where i+ τ is taken ( mod n). Then, the fibred polynomial

P : T1 × C → T1 × C

(θ, z) 7→ (θ + α, pθ(z))

is continuous and leaves γ (dynamically) invariant with jumping integer equal to τ . A

similar construction can be made to get a fibred higher degree polynomial dynamics ((n+

p− 1) degree) leaving invariant a prescribed (p, n)-curve.

4.1.3 Dynamical nature of multi-curves

One wonders if it is possible to determine a (locally) dynamical nature of an invariant

multi-curves as for simple invariant curves. This will be possible since the invariance of

the multi-curve is defined through an (unfolding) invariant curve.

The fibred multiplier can then be extended for invariant multi-curves in the following

way.

Definition 14. Suppose that γ is a (dynamically) invariant n-curve for the fibred polyno-

mial P (θ, z) = (θ + α, pθ(θ)), if θ 7→ log |∂z p̂θ(γ̂(θ))| ∈ L1(T1) then the fibred multiplier of

γ is defined as

κf (γ) := κ(γ̂) = exp

(∫
T1

log |∂z p̂θ(γ̂(θ))|dθ
)
, (4.5)

where P̂ (θ, z) =

(
θ +

τ + α

n
, p̂θ(z)

)
and γ̂ are the lifted fpd and its (unfolding) invariant

curve associated.
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Remark 5. Note that the multiplier of an invariant multi-curve is simply the multiplier of

its corresponding unfolding invariant curve, this way, we can extend the dynamical nature

of the unfolding invariant curve to the invariant multi-curve. So it makes sense to talk

of an attracting, repulsor or indifferent invariant multi-curve if κf (γ) is minor,

greater or equal to 1, respectively.

Remark 6. In Example 2, by increasing the degree of pθ, we can impose extra mild con-

ditions on the complex derivative ∂zP at points of the multi-curve γ, so that γ yields into

an attracting invariant n-curve.

Remark 5 allows extending the local theory for multi-curves from Section 2.4. The fol-

lowing results follow directly from results in Section 2.4 through the commutative diagram

(4.4).

Lemma 10 (The attracting case). Let P be a fibred polynomial dynamics over an irrational

rotation, and γ be an attracting invariant multi-curve. Then there exists a continuous

change of coordinates H(θ, z) = (θ, a(θ)z+ b(θ)) such that γ is still an attracting invariant

multi-curve for the conjugated fibred polynomial dynamics Q = H−1 ◦ P ◦H. Moreover, if

Q(θ, z) = (θ + α, qθ(z)), then there exists c < 1 such that

sup
θ∈T1

|∂zqθ(γ(θ))| < c.

Lemma 11 (The repulsor case). Let P be a fibred polynomial dynamics over an irrational

rotation, and γ be a repulsor invariant multi-curve. Then there exists a continuous change

of coordinates H(θ, z) = (θ, a(θ)z + b(θ)) such that γ is still a repulsor invariant multi-

curve for the conjugated fibred polynomial dynamics Q = H−1 ◦ P ◦ H. Moreover, if

Q(θ, z) = (θ + α, qθ(z)), then there exists c > 1 such that

sup
θ∈T1

|∂zqθ(γ(θ))| > c.

Also, the basin of attraction is well-defined in the attracting case.

Lemma 12. Let P be a fibred polynomial dynamics over an irrational rotation, and let γ

be an attracting invariant n-curve. Then there exists an open set T ⊂ T1 × C containing
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the multi-curve γ, and such that every point in T is attracted to γ, i.e., zθ ∈ γθ then

dist(Pn(θ, zθ), γ) → 0, as n → ∞.

Moreover, for every θ ∈ T1, the fiber Tθ consists of n-components each of which contains

a point of γθ.

The open set T defined in the above lemma, may be thought as a (neighborhood)

multi-tube around the multi-curve γ. This allows us to formally define its basin of

attraction.

Definition 15. Let P be a fibred polynomial dynamics over an irrational rotation, and let

γ be an attracting invariant multi-curve. If O+(θ, z) defines the forward orbit under P of

a point (θ, z), then

A(γ) = {(θ, z) : dist(O+(θ, z), γ) → 0, n → ∞}

is called the basin of attraction of the multi-curve γ.

Analogous to the simply invariant case, we have that

A(γ) =
⋃
n≥0

P−n(T ),

where T is the invariant multi-tube defined in Lemma 12.

Corollary 7. If γ is an attracting invariant multi-curve, then the basing of attraction of

γ, A(γ), is an open subset of T1 × C.

4.2 Invariant multi-curves in the quadratic case

4.2.1 Quadratic polynomials

The final aim of this section is to exhibit multi-curves in the lowest grade for polynomials

where interesting dynamics appear: the quadratic case (we recall trivial Example 1 is of

degree one). Consider the family Fα of canonical fibred quadratic polynomials
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Pα
C : T1 × C → T1 × C

(θ, z) 7→ (θ + α, z2 + C(θ)),
(4.6)

where α ∈ T1 is the irrational rotation angle and C : T1 → C is a continuous function

that may be thought as a parameter. A wider family of quadratic polynomial dynamics

has been widely studied by Sester in [Se1], here the author defines the corresponding

principal cardioid of the fibred Mandelbrot set. We will be only focusing on those quadratic

polynomials with a good normalization as stated in Proposition 7.

We will find invariant n-curves by choosing a parameter C : T1 → C that wanders

through some special places around the classical Mandelbrot set.

Analogous to the non-fibred case, under a mild condition on the quadratic coefficient,

every quadratic polynomial can be normalized to the form in (4.6). To make the construc-

tions of the multi-curves clearer, we add the proof of the following result.

Lemma 13 ([Se1]). Given α ∈ T1, and three continuous functions A : T1 → C∗, B : T1 →

C, and C : T1 → C, with wind(A(T1), 0) = 0, consider the fibred quadratic polynomial

F : T1 × C → T1 × C

(θ, z) 7→ (θ + α,A(θ)z2 +B(θ)z + C(θ)).

Then, there exists a continuous fibred transformation, affine at each fiber,

W : T1 × C → T1 × C

(θ, z) 7→ (θ, u1(θ)z + u2(θ))

and a continuous parameter C : T1 → C such that

W ◦ F ◦W−1(θ, z) = (θ + α, z2 + C(θ)),

for every θ ∈ T1.

Proof. The transformation W will be obtained as a composition of two affine transfor-

mations. First, by eliminating the linear part of the polynomial F , and secondly, by
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normalizing the coefficient of the quadratic term.

Let WB(θ, z) = (θ, z + w(θ)) be a continuous map. calculating, we have

W−1
B ◦ F ◦WB(θ, z) = (θ + α,A(θ)z2 + {2A(θ)w(θ) +B(θ)}z+

+ {C(θ) +A(θ)w(θ)2 +B(θ)w(θ)− w(θ + α)}).

By taking

w(θ) = − B(θ)

2A(θ)
,

the linear coefficient of F vanishes. So, after conjugacy, we may assume that F (θ, z) =

A(θ)z2 + C(θ)). Consider the continuous map WA(θ) = (θ, u(θ)z), after a careful calcula-

tion, we have

W−1
A ◦ F ◦WA(θ, z) =

(
θ + α,

A(θ)u(θ)2

u(θ + α)
z2 +

C(θ)

u(θ + α)

)
.

We want that the quadratic term above has a coefficient equal to 1. Putting û(θ) =

u(θ)A(θ), the equation to solve changes to

A(θ + α)

A(θ)

û(θ)2

û(θ + α)
= 1. (4.7)

Set

ϕ(θ) = − log

(
A(θ + α)

A(θ)

)
,

note that ϕ is well-defined since the topological degree of
A(θ + α)

A(θ)
with respect to the

origin is zero. If v̂ = log û, Equation (4.7) yields

2v̂(θ) = ϕ(θ) + v̂(θ + α)

v̂(θ) =
1

2
ϕ(θ) +

1

4
ϕ(θ + α) +

1

8
ϕ(θ + 2α) + ...

This series is uniformly convergent in T1 and defines a continuous function, and then a

continuous function u : T1 → C∗ as required.

Defining W = WB ◦WA, we have the desired normalization.
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Remark 7. After a (very) careful calculation, we have that

u(θ) = [A(θ)]−1 ·
∞∏
j=0

[
A(θ + jα)

A(θ + (j + 1)α)

] 1

2j+1

1

u(θ + α)
= A(θ + α) ·

∞∏
j=1

[
A(θ + (j + 1)α)

A(θ + jα)

] 1

2j+1
.

Hence, if α > 0 is sufficiently small, then the products in the above relations are very close

to 1, so u(θ) is very close to [A(θ)]−1 and [u(θ + α)]−1 is very close to A(θ + α).

4.3 Invariant 2-curves for small perturbation of a static quadratic

dynamics

The ‘static’ fibred polynomial

Let P (θ, z) = (Rα(θ), pθ(z)) be a fibred polynomial dynamics, where pθ(z) is a degree d

polynomial and α = 0, in other words, P (θ, z) may be viewed as a continuous parametrized

family of polynomial dynamics. We refer to this case as the static fibred polynomial case.

Suppose that Z ⊂ T1 × C is a connected component of the continuous solution to the

fixed-points equation:

pθ(z(θ)) = z(θ).

Since α = 0, it follows that P
∣∣
Z is a homeomorphism. Suppose also that Z is a n-curve,

then it is easy to see that Z is an invariant multi-curve according to Definition 4.3.

The strategy of this chapter is to construct invariant multi-curves through the curves

generated by the set of fixed points of the static fibred polynomial. We will consider

suitable parametric curves (small circle with the classical parabolic parameter c0 = 1/4 in

its interior). Then, after a post-composition with a Lagrange Interpolation Polynomial,

adding the fibred nature with the irrational rotation as described in Example2, we will

maintain the invariance of the multi-curve for a fibred polynomial dynamics which will

be still quadratic since the Lagrange Interpolation polynomial will be linear. Finally, via
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Lemma 13 we will come back to the canonical form of the fibred quadratic polynomial.

4.3.1 Fixed Points of the quadratic polynomial

Consider the canonical form of a quadratic polynomial

qc(z) = z2 + c, z ∈ C∗,

it is well known that the fixed points of qc are given by

z1(c) =
1

2
+

√
1

4
− c, & z2(c) =

1

2
−
√

1

4
− c (4.8)

If c = 1/4, qc possesses one, and only one fixed point; otherwise, there are always two

distinct fixed points.

For fixed ε > 0 sufficiently small, let C : T1 → C be the continuous function given by

C(θ) = 1/4− ε2e2πiθ,

that is, C : T1 → C is a simple continuous loop around the parabolic parameter c = 1/4.

If we keep tracking the fixed points z0(C(θ)), z1(C(θ)) when θ goes from 0 to 1 (in T1), we

see that this tour to the loop of parameters gives rise to a transposition of the fixed points,

as we will see in the next lines.

Now, if we substitute the form of c = C(θ) = 1/4 − ε2e2πiθ in the solutions (4.8) we

have

z1(θ) := z1(C(θ)) =
1

2
+ εeπiθ, & z2(θ) := z2(C(θ)) =

1

2
− εeπiθ,

and if we take −1 = eπi, then

z1(θ) =
1

2
+ εeπiθ, & z2(θ) =

1

2
+ εeπi(θ+1).

So, let γ̃ : [0, 2] → C be the continuous function defined as

γ̃(θ) = 1/2 + εeπiθ.
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It is clear that γ̃(θ) ̸= γ̃(θ + p), for θ ∈ (0, 2) and p ∈ {0, 1}, and that γ̃(2) = γ̃(0). It

follows that γ̃ induces the 2-curve γ = (γ1 γ2),

γ : T1 × C → T1 × C

(θ, z) 7→ (⟨θ⟩, γ̃(θ))

where γ0 = z1 and γ1 = z2.

Remark 8. As was mentioned above, this γ is our candidate for an invariant 2-curve for

a static quadratic dynamics.

Consider the static fibred quadratic dynamics, that is, with α = 0,

Q : T1 × C → T1 × C

(θ, z) 7→ (θ, qC(θ)(z)).
(4.9)

.

Proposition 12. The 2-curve γ = (z1 z2) is invariant for the static fibred polynomial

Q(θ, z) = (θ, qC(θ)(z)).

Proof. Since γ = (γ0 γ1) = (z1 z2), we have that Q
∣∣
γ
is a homeomorphism, further given

that z0(θ) and z1(θ) are fixed points of qC(θ), we can take τ = 0 for the lifted fhd

Q̂ : T1 × C → T1 × C

(θ, z) 7→ (θ, qC(⟨2θ⟩)(z)),

with Π(θ, z) = (2θ, z). Rest to prove that each unfolding curve γ̂0,1 : [0, 1] → C of the

2-curve γ is a (simple) invariant curve for Q̂, which follows from the next result.

Lemma 14. Let γ̂i, i = 0, 1, be the unfolding curves of the 2-curve γ = (z1 z2). Then γ̂i

is an invariant curve for Q̂ (here α = 0).

Proof. We want to show that

qC(⟨2θ⟩)(γ̂i(θ)) = γ̂i(θ).
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This follows directly from Equation (4.2). Since

γ̂i(θ) = z⌊i+2θ⌋(⟨2θ⟩),

we have,

qC(⟨2θ⟩)(γ̂i(θ)) = qC(⟨2θ⟩)(z⌊i+2θ⌋(⟨2θ⟩)) = z⌊i+2θ⌋(⟨2θ⟩) = γ̂i(θ).

This finishes the proof of the proposition.

4.3.2 From Static to Fibred. The Post-Composition

For α > 0, we want to “transform” Q̂ in such a way that z1 and z2 still form an invariant

2-curve for a fibred quadratic polynomial. For each θ ∈ T1, consider the two pairs of points

(γ̂0(θ), γ̂1(θ)) and (γ̂0(θ +
α
2 ), γ̂1(θ +

α
2 )), and define the linear fibred map

L̃α : T1 × C → T1 × C

(θ, ζ) 7→ (θ, ℓ̃θ(ζ)),

where ℓ̃θ is given by the Lagrange interpolation polynomial (affine, since n = 2) between

the pairs of points considered above. Then,

ℓ̃θ(γ̂0(θ)) = γ̂0(θ +
α

2
), and ℓ̃θ(γ̂1(θ)) = γ̂1(θ +

α

2
).

Explicitly, we have

ℓ̃θ(z) = z + (γ̂0(θ +
α

2
)− γ̂0(θ))

(
z − γ̂1(θ)

γ̂0(θ)− γ̂1(θ)

)
+ (γ̂1(θ +

α

2
)− γ̂1(θ))

(
z − γ̂0(θ)

γ̂1(θ)− γ̂0(θ)

)

Proposition 13. For α > 0, and ℓ̃θ and qC(θ) as above, define the fibred quadratic polyno-

mial

Q̃ = L̃α ◦ Q̂,
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that is,

Q̃ : T1 × C → T1 × C

(θ, ζ) 7→ (θ + α
2 , ℓ̃θ ◦ qC(⟨2θ⟩)(ζ)).

Then the unfolding curve γ̂ is an invariant curve for Q̃.

Proof. The result follows once again by a direct calculation.

ℓ̃θ ◦ qC(⟨2θ⟩)(γ̂0(θ)) = ℓ̃θ(γ̂0(θ))

= γ̂0(θ +
α

2
),

and

ℓ̃θ ◦ qC(⟨2θ⟩)(γ̂1(θ)) = ℓ̃θ(γ̂1(θ))

= γ̂1(θ +
α

2
),

where the first equality follows since both curves are invariants by qC(⟨2θ⟩) with α = 0, and

the second one follows by the definition of ℓ̃θ.

Proposition 14. The 2-curve γ = (z0 z1) is an indifferent invariant multi-curve, with

jumping integer τ = 0, of the fibred quadratic polynomial

F (θ, z) = (θ + α, ℓ̃θ/2(qC(⟨θ⟩)(z))). (4.10)

Proof. Recall that Q̃ lives in the lifting world of Q. Now, we want to ‘project’ these curves

to the world of Q as a single 2-curve of a fibred quadratic polynomial. By using the same

factor Π(θ, z) as in the case of α = 0 (here τ = 0), we have

Π ◦ Q̃(θ, ζ) = Π ◦ L̃α ◦ Q̂(θ, ζ)

= Π ◦ L̃α(θ +
α

2
, qC(⟨2θ⟩)(ζ))

= Π(θ +
α

2
, ℓ̃θ(qC(⟨2θ⟩)(ζ)))

= (2θ + α, ℓ̃θ(qC(⟨2θ⟩)(ζ))).
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Since the fibred quadratic polynomial F : T1 × C → T1 × C is given by,

F (θ, z) = (θ + α, ℓ̃ θ
2
◦ qC(⟨θ⟩)(z)),

by checking compositions, we obtain

F ◦Π(θ, z) = F (2θ, z)

= (2θ + α, ℓ̃θ(qC(⟨2θ⟩)(z))),

hence

Π ◦ Q̃ = F ◦Π,

so F and Q̃ are semi-conjugated. Since γ̂0 and γ̂1 are invariants for Q̃, it follows that their

projection forms a 2-curve for F .

In order to see the dynamical nature of the invariant curve, we have to calculate its

multiplier. For this, a careful calculation will prove that

ℓ̃ θ
2
◦qC(θ)(z) =

δ(θ) + δ1(θ)− δ2(θ)

δ(θ)
z2+

C(θ)(δ(θ) + δ1(θ)− δ2(θ)) + δ2(θ)z1(θ)− δ1(θ)z2(θ)

δ(θ)

where

δ(θ) = z1(θ)− z2(θ) = 2εeπiθ,

δ1(θ) = z1(θ + α)− z1(θ) = εeπiθ(eπiα − 1),

and

δ2(θ) = z2(θ + α)− z2(θ) = εeπiθ(1− eπiα).

A simple calculation gives that

A(θ) =
δ(θ) + δ1(θ)− δ2(θ)

δ(θ)
= eπiα
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is a constant coefficient with respect to the coordinate θ. And

C(θ) =
C(θ)(δ(θ) + δ1(θ)− δ2(θ)) + δ2(θ)z1(θ)− δ1(θ)z2(θ)

δ(θ)

= eπiα
(
1

4
− ε2e2πiθ

)
+

1

2
(1− eπiα).

Applying Lemma 13 with these coefficients (note that B(θ) = 0) we have the corre-

sponding normalized fibred quadratic polynomial

P (θ, z) =

(
θ + α, z2 + e2πiα

(
1

4
− ε2e2πiθ

)
+

eπiα

2
(1− eπiα)

)
. (4.11)

With γ = (γ0 γ1) given by

γ0,1(θ) = eπiαz1,2(θ) = eπiα
(
1

2
± εeπiθ

)

as its invariant 2-curve.

Note that the canonical parameter in Equation (4.11) is given by

Cε(θ) = e2πiα
(
1

4
− ε2e2πiθ

)
+

eπiα

2
(1− eπiα). (4.12)

The following lemma is direct by small perturbations.

Lemma 15. For suitable ε > 0 and α > 0 sufficiently small, the curve Cε(θ) defined in

(4.12) of the above quadratic polynomial, is a simple closed curve whose winding number

with respect to c0 = 1/4 is 1. □

Applying the definition of the fibred multiplier for multi-curves, we have to calculate

the corresponding unfolding curve in the lifted fpd :

P̃ (θ, z) =

(
θ +

α

2
, z2 + e2πiα

(
1

4
− ε2e2πi(2θ)

)
+

eπiα

2
(1− eπiα)

)
,

with invariant curve given by

γ̃(θ) = eπiα
(
1

2
+ εe2πiθ

)
,
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this way,

log(κ(γ)) = log(κ(γ̃))

=

∫
T1

log |2γ̃(θ)|dθ

=

∫ 1

0
log |eπiα(1 + 2εe2πiθ)|dθ.

=

∫ 1

0
log |eπiα|dθ +

∫ 1

0
log |1 + 2εe2πiθ|dθ

Taking f(z) = 1± z, it follows from the Jensen’s formula applied over {|z| = 2ε}, that

κ(γ) = 1.

In other words, γ is an indifferent (dynamically) invariant multi-curve.

Fibred combinatory (τ = 1)

In the above construction, by obtaining the invariance of the curve in the lifting, dy-

namically we stay over the same ‘part’ of the 2-curve. We recall that a n-curve may have

defined a combinatorics “over the fibred”.

For the case of the 2-curve, there are only two possible combinatorics.

• The dynamics stay in the same part of the curve (τ = 0).

• The dynamics do “jumps” between the two parts (τ = 1).

It is clear that τ = 0 in the above construction. For τ = 1, the Lagrange interpolation

polynomial (affine) ℓ̃, may be defined by the pairs

(γ̂0(θ), γ̂1(θ)) and (γ̂1(θ +
α

2
), γ̂0(θ +

α

2
)).

However, the idea of taking α > 0 sufficiently small is that the Lagrangian interpolation

polynomial l̃ is very close to the identity so that the composed fibered polynomial P ◦ l̃ is

in fact a perturbation of the static dynamics.
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There is another way to obtain a 2-invariant curve with “jumping integer” τ = 1. Let’s

consider the parameterized curve, ϵ > 0 small,

C(θ) = −3

4
− ϵ2e2πiθ

That is, C : T1 → C is a simple closed curve around the parameter, which is a parameter

with parabolic multiplicity equal to 2.

Given the static quadratic polynomial

P (θ, z) = (θ, z2 + C(θ)),

we have that the sets (curves) of periodic points of period 2 are given by:

z1(θ) = −1

2
+ ϵeπiθ and z2(θ) = −1

2
− ϵeπiθ

with

pθ(z1(θ)) = z2(θ) and pθ(z2(θ)) = z1(θ).

In other words, the dynamics (in each iteration) “jumps” between the two curves z1

and z2.

Similar to the previous case, the curve γ̃ : [0, 2] → C given by

γ̃(θ) = −1

2
+ ϵeπiθ

induces the 2-curve γ = (z1, z2). Furthermore γ̃, is an invariant curve for the static

quadratic polynomial

(θ, z) 7→ (θ, z2 + C(⟨2θ⟩)).

For sufficiently small α > 0 we take the (linear) Lagrange Interpolation polynomial

that sends z1(θ) to z1(θ+
α
2 ) and z2(θ) to z2(θ+

α
2 ), we have the following analogous result

for τ = 1.
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Lemma 16. For sufficiently small α > 0 and τ = 1 define the fibred quadratic polynomial.

P̃ : T1 × C → T1 × C

(θ, z) 7→ (θ + α+τ
2 , z2 + C(⟨2θ⟩)),

Then the curve (unfolding) γ̃ is invariant for P̃ .

Proposition 15. The 2-curve γ = (z0 z1) is an invariant multi-curve of fibred quadratic

polynomial

F (θ, z) = (θ + α+ τ, ℓ̃θ/2(qC(⟨θ⟩)(z))), (4.13)

where τ = 1 is the jumping integer for the fqp.

4.3.3 Attracting 2-curves

In non-fibred dynamics, indifferent (parabolic) periodic points are part of the bifurcation

locus of the system. Applied to the fibred dynamics, we can expect this to be the case as

well.

In this section, we consider a slight perturbation in the above construction to obtain at-

tracting invariant 2-curves, and then the possibility to linearize the local dynamics around

it.

Let ϵ > 0, x0 > 0 such that

0 < x0 <
1

4
and

ϵ2

1
4 − x0

< 1 (4.14)

and consider the parametric curve C : T1 → C given by,

C(θ) =
1

4
− ϵ2x0 − ϵ2e2πiθ (4.15)

Proposition 16. Let α ∈ (0, 1)\Q small enough. For ϵ and x as in (4.14), there exists a

fibred quadratic polynomial in canonical form

(θ, z) 7→ (θ + α, z2 + C(θ))
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containing a 2-invariant attracting curve.

Proof. This demonstration will be done using the small perturbation procedure described

in Section 4.3.2. We define our perturbation on the static model

P (θ, z) = (θ, z2 + C(θ)),

where C(θ) is given by (4.15). Following the construction in Proposition 14, we have that

the curves

z1(θ) =
1

2
+ ϵeπiθ

√
1 + x0e−2πiθ

and

z2(θ) =
1

2
− ϵeπiθ

√
1 + x0e−2πiθ,

they form a set of fixed points and their concatenation γ : [0, 2] → C

γ(θ) = 1/2 + εeπiθ
√
1 + x0e−2πiθ,

induces an invariant 2-curve for the static quadratic polynomial P (θ, z).

In order to determine the dynamical nature of this 2-curve, we have to calculate the

multiplier of the (unfolding) invariant curve of the lifted system P̃ (θ, z).

For this, note that, if z̃(θ) is the (unfolding) invariant curve for the lifted fibred poly-

nomial, then z̃(θ)
∣∣
[0,1/2]

= z1(2θ) and z̃(θ)
∣∣
[1/2,1]

= z2(2θ), and hence
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log(κ(z̃(θ))) =

∫ 1

T
log |2z̃(θ)|dθ

=

∫ 1/2

0
log |2z̃(θ)|dθ +

∫ 1

1/2
log |2z̃(θ)|dθ

=

∫ 1/2

0
log |2z1(2θ)|dθ +

∫ 1

1/2
log |2z2(2θ)|dθ

=

∫ 1/2

0
log |4z1(2θ)z2(2θ)|dθ

=

∫ 1/2

0
log |4C(2θ)|dθ

=
1

2

∫ 1

0
log |4C(θ)|dθ.

So, for the case α = 0 it is enough to calculate the integral

2 log(κ(γ)) =

∫ 1

0
log |4C(θ)|dθ.

From the form in 4.15 and the conditions on ε and x0, we have

2 log(κ(γ)) =

∫ 1

0
log |4CT (θ)|dθ

=

∫ 1

0
log |4(1/4− ε2e2πiθ − x0)|dθ

=

∫ 1

0
log |4(1/4− x0)(1−

ε2

1/4− x0
e2πiθ)|dθ

=

∫ 1

0
log |4(1/4− x0)|dθ +

∫ 1

0
log |1− ε2

1/4− x0
e2πiθ|dθ,

so, if

4(1/4− x0) < 1 and
ε2

1/4− x0
< 1,

then

κ(γ) < 1.

Hence, the curve is attracting for the static fibred polynomial. But we are interested in the

non-static fibred case α > 0, that is, after applying Lagrange interpolation and normalizing
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to the canonical form.

A direct calculus shows that the fibred quadratic polynomial, in its canonical form

obtained this way, is given by

Q(θ, z) =

(
θ + α, z2 +

C(θ)

u(θ + α)

)
,

where u(θ) is the coefficient function described in Remark 7. Here, we have

A(θ) =
eπiα

√
1 + x0e−2πi(θ+α)√
1 + x0e−2πiθ

,

with the invariant 2-curve given by

γ =
1

u(θ)
· (z1 z2),

and corresponding unfolding

γ̃(θ) =
γ(θ)

u(θ)
.

So, the multiplier of the (unfolding) invariant 2-curve is

κ(γ̃) = exp

(∫
log

∣∣∣∣2γ(θ)u(θ)

∣∣∣∣ dθ)
= exp

(∫
log |γ(θ)|dθ −

∫
log

∣∣∣∣u(θ)2

∣∣∣∣ dθ) .

Hence, for γ̃ (and then γ) be attracting, is enough that

∫
log

∣∣∣∣u(θ)2

∣∣∣∣ dθ = 0,

which is equivalent, from the form of u(θ) to the condition

∫
log

∣∣∣∣A(θ)

2

∣∣∣∣ dθ = 0 (4.16)
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But, A(θ) =
eπiα

√
1 + x0e−2πi(θ+α)

√
1 + xe−2πiθ

, so (4.16) reduces to

∫
log |

√
1 + x0e−2πiθ|dθ =

∫
log |

√
1 + x0e−2πi(θ+α)|dθ = 0,

which follows by noticing that each integral above is the real part of the integral

∫
|z|=r

f(z)dz,

where f(z) =
√
1 + z and r = x0 in the former and f(z) =

√
1 + eπiαz and r = x0 in the

former. We conclude that

κ(γ̃) = κ(γ) < 0.

This way, the 2-curve γ =
1

u(θ)
· (z1 z2) is an attracting invariant multi-curve for the fibred

quadratic polynomial

P (θ, z) =
(
θ + α, z2 + C(θ)

)
,

with C(θ) = C(θ)/u(θ + α).

Remark 9. Conditions (4.14), also imply that the parametric curve of the perturbed fibred

quadratic polynomial P (θ, z) has topological degree one with respect to c0 = 1/4.

4.4 Searching for 3-curves

There are two well-known parametrizations for quadratic dynamics.

z 7→ Pc(z) = z2 + c, c ∈ C and z 7→ Qλ(z) = λz + z2, λ ∈ C.

The former generates the picture of the famous Mandelbrot set, defined as

Mc = {c ∈ C : {Pn
c (c)}n∈N is bounded}

This parametrization is based on the behavior of the only critical value zc = c. On the

other hand, the further parametrization is based on the dynamical nature of the two fixed
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Figure 4.4: Mandelbrot Set

points of the system, In particular, λ ∈ D corresponds to a quadratic dynamics with an

attracting fixed point (for λ = 0, z = 0 is a super-attracting fixed point). The parameter

space can be defined as

Λλ = {λ ∈ C : {Qn
λ(−λ/2)}n∈N} is bounded}.

Figure 4.5: The Lambda space Λ

From the definition, it follows that

Par := {λ = e2πiθ : θ ∈ Q},
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is the set of parameters with a parabolic fixed point. We have a natural correspondence

(2 to 1) between the sets Λλ and Mc, given by the conjugation by Tλ/2(z) = z + λ/2

(zλ = −λ/2 corresponds to the critical point of Qλ). The corresponding quadratic function

is

Pλ(z) = z2 +
λ

2

(
1− λ

2

)
.

Note that λ = 1 corresponds to the critical value c = 1/4 and λ = −1 to c = −3/4 as

expected. It follows that the map

λ 7→ λ

2

(
1− λ

2

)
,

is a correspondence (2-1) between the Lambda space and the Mandelbrot set.

One of the parabolic fixed points with 3-petals, in the Lambda space, is given by the

parameter λ0 = e
2πi
3 , then the quadratic polynomial

pλ0(z) = z2 +
λ0

2

(
1− λ0

2

)

has a parabolic fixed point with 3-petals. So, λ0 is a center candidate for the fibred (family

Figure 4.6: Filled-in Julia set for pλ0
. The red point corresponds to the parabolic fixed point. It

can be appreciate the 3-petals around it.

of) quadratic polynomial with α = 0.
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For α = 0, consider the fibred quadratic polynomial

P : T1 × C → T1 × C

(θ, z) 7→ (z, pλ0(z) + ε2e2πiθ),

with ε > 0 sufficiently small (ε ∼ 1/100). Here are some images of the filled Julia set,

corresponding to some of the θ’s values.

Conjecture 1. By “tracking” the corresponding 3-periodic points generated by the pertur-

bation of the parabolic fixed point at λ0, we have an invariant 3-curve.
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a b c

Table 4.1: The table shows the Filled-in Julia sets (in blue for the static polynomial (θ, z) 7→
(θ, z2 +C(θ)), where C(θ) is a simple loop around the parabolic parameter λ0. In all of the images
the red point corresponds to the parabolic fixed point of multiplicity 28 of z 7→ z2 + c0. From left
to right and from upper to lower, we have the fiber for the values of θ = 0.0 to θ = 0.8.
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4.4.1 The rational quadratic 3-curve

Conjecture 1 in the previous section has two basic obstacles: there is no closed formula

to find the 3-period points of the quadratic polynomial, and if we could know the 3-

cycle, the Lagrange Interpolation polynomial is no longer linear, now is quadratic, so the

polynomial obtained with it is now of degree 4.

Nevertheless, it is possible to maintain the degree when we construct the 3-curve, but

there is a price to pay. The fibred dynamics is now rational. It is well known that the

Möbius transformations are 3-transitive: that is, given two set of points (z1, z2, z3) and

(w1, w2.w3), there exists a Möbius transformation mapping zi to wi.

Let γ : T1 → C∗ be a simple (and small) loop around the parabolic parameter λ0

mentioned before. Consider the “fibred” quadratic polynomial given by

P : T1 × C → T1 × C

(θ, z) 7→ (θ, z2 + γ(θ)).

The polynomial pθ(z) = z2 + γ(θ) may be considered as a loop-perturbation of the poly-

nomial z 7→ z2 + λ0 (parabolic implosion). In this sense, for every θ ∈ T1, pθ has a 3-cycle

(γ0(θ), γ1(θ), γ2(θ)). By the continuity of γ, this 3-cycle moves continuously on T1 × C.

Now, for α > 0 sufficiently small, consider the two 3-tuples (γ0(θ), γ1(θ), γ2(θ)) and

(γ0(θ + α), γ1(θ + α), γ2(θ + α)), for each θ ∈ T1. Now, for each θ ∈ T1, let M : Ĉ → Ĉ be

the Möbius transformation that maps (γ0(θ), γ1(θ), γ2(θ)) into (γ0(θ+α), γ1(θ+α), γ2(θ+

α)) (here, Ĉ denotes the Riemann sphere). The following result follows from a direct

calculation.

Proposition 17. Given the fibred rational quadratic dynamics,

Q : T1 × C → T1 × C

(θ, z) 7→ (z + α,M(z2 + γ(θ))),

for a suitable loop γ with index number 1 with respect to the parabolic parameter λ0, then

the 3-cycle (γ0(θ), γ1(θ), γ2(θ)) is an invariant 3-curve for Q.
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Lagrange interpolation

The most (simple) useful tool to construct invariant multi-curves will be the Lagrange

interpolation polynomial.

Let w1, w2, ..., wn be distinct points in C and y1, y2, ..., yn be distinct points in C. The

idea is to construct a polynomial s(z) such that s(wi) = yi for each i = 1, ..., n. Further-

more, we want that s(z)− z tends to zero uniformly over compact sets when wi − yi → 0.

Take δi = yi−wi and s̃(z) the Lagrange interpolation polynomial taking values δi in z = wi,

that is

s̃(z) =
n∑

i=0

δi

∏
j ̸=i

z − wj

wi − wj

 .

Then, the polynomial s(z) = z + s̃(z) verifies our requirements. We call s(z) the inter-

polation polynomial closed to identity related with points {wi, yi}1≤i≤n. From the

definition is clear that s(z) is a degree n− 1 polynomial.

Remark 10. If n = 2, then s(z) is an affine mapping.
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Julia sets through the lens of

fibered dynamics: A

computational exploration

We would like to include some graphical examples of the dynamical planes (Julia and

filled-in Julia sets) in the context of fibred dynamics.

B.1 Non-hyperbolic model

The Ponce’s family,

P ε(θ, z) = (θ + α, z(1 + a(θ)(z − 1))),

where a(θ) = cos(θ) + i(1 − ε) sin(θ), marks a significant difference between the classic

quadratic dynamics and the fibred quadratic dynamics by exhibiting fibred quadratic poly-

nomials with two distinct attracting invariant curves, a phenomenon that cannot happen

in the classic quadratic case.

Moreover, it was this family which inspired the mechanism to obtain the non-hyperboli-

city in the fibred quadratic context.

The Table B.1 shows a sequel of images of fibres for one member of the family P ε for
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a b c

Table B.1: The table shows some filled-in Julia sets (blue and pink) of a member of the family P ε.
In blue we have the basin of attraction of the attracting invariant curve {z ≡ 1} (red point), while
the pink zone correspond to the basin of attraction of the attracting invariant curve {z ≡ 0}(red
point). The curve in yellow denotes the critical set, and the red point on it is the critical point of
the corresponding fiber. From left to right and upper to lower, we have the corresponding fibers to
t = 0 to t = 0.4.
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different values of θ. Independent of 0 < ε < 1, the invariant curves {z ≡ 0}θ∈T and

{z ≡ 0}θ∈T are attracting in the sense defined in Section 2.4.

In the table, we have on each fiber: the invariant curves (points in red) z = 0 and

z = 1, the critical set (the curve projected to the fiber in yellow)) and the corresponding

critical point on the fiber. In the sequel of images, we can appreciate how the critical point

‘pass’ from the basin of attraction of the invariant curve {z ≡ 0} (the pink zone) to the

basin of attraction of the invariant curve {z ≡ 1}.

From the continuity of the critical curve, we can say that both basin of attraction are

connected via the critical set. If the given polynomial P ε were hyperbolic, the boundary of

the Filled-in Julia set (the union of the pink and blue zones) coincides with the Julia set,

and then the critical curve should intersects the Julia set, which contradicts the Sester’s

condition form hyperbolicity.

The reasoning does not depends on the degree of the polynomial, for the contradiction

holds we only need that there exists at least two basins of attraction and that a path of

the critical curve connects them.

B.2 Invariant multi-curves

The idea of this section is to show (numerically) how the different loops around parabolic

fixed points in the Mandelbrot set, degenerate into multi-curves via small perturbations,

as described in Section 4.3.2.

Figure B.1: The 2-curve from small perturbation. Left: we appreciate a small loop around the
point c0 = 1/4 in the Mandelbrot set. Right: the 2-curve induces by γ(θ) = 1/2 + εeπiθ, the set of
fixed points.
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a b c

Table B.2: The table shows some filled-in Julia sets (blue) for the unperturbed fibred system
(θ, z) 7→ (θ+ α, z2 +C(θ). From left to right and upper to lower, we have the corresponding fibres
from t = 0 to t = 0.08.
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For the first table of images, we consider a simple loop around the parabolic parameter

c0 = 1/4, as shown in Figure B.1. As was prove in Section 4.3.2, this curve generates an

invariant 2-curve for the static quadratic polynomial (θ, z) 7→ (θ, z2 + C(θ)).

Table B.2 shows some Filled-in Julia sets for distinct values of fiber θ close to 0 for the

fibred polynomial (θ, z) 7→ (θ + α, z2 + C(θ)). In this case, there is no invariant 2-curve.

In Table B.3, the Filled-in Julia sets (in blue again) are shown for the attracting

invariant 2-curve obtained after applied Lagrange interpolation and normalizing to the

form (θ, z) 7→ (z + α, z 2 + C(θ)) (recall α > 0 is taken small enough). Since this is a very

small perturbation of the parabolic parameter c0 = 1/4, it is notorious the similarity of

the Filled-in Julia sets to the cauliflower describe in the classic dynamics.
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a b c

Table B.3: The table shows some filled-in Julia sets (blue) for the normalized fibred system
(θ, z) 7→ (θ + α, z2 + C(θ)) obtained via small perturbation with an attracting invariant 2-curve.
From left to right and upper to lower, we have the corresponding fibres from t = 0 to t = 0.8.
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Jumping integer τ = 1

Finally, we consider a simple loop around the parabolic parameter of multiplicity 2

c0 = −3/4. Given the polynomial z 7→ z2 + c, we know that the 2-period points are given

by

z = −1

2
±
√
−3

4
− c.

Hence, the loop generates a set (curve) of 2-period points

z1,2(θ) = −1

2
± ε+ eπiθ,

which in turn, after applying Lagrange interpolation to them in the fiber θ to the fiber

θ + α, (α small enough), into an invariant 2-curve, see Figure B.2. In Table B.4, we

Figure B.2: The 2-curve from small perturbation. Left: we appreciate a small loop around the
point c0 = −3/4 in the Mandelbrot set. Right: the 2-curve induced by γ(θ) = −1/2 + εeπiθ, the
set of 2-period points.

visualize the fibers of Filled-in Julia sets (in blue) for different values of θ’s. Since the

points z1,2 for a cycle, with the Lagrange interpolation we generate a jump from one to

other curve, meaning that the jumping integer is equal τ = 1. Analogous to the loop

around c0 = 1/4, we have similarity with the Filled-in Julia set described by the parabolic

of multiplicity 2 fixed point.
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APPENDIX B. JULIA SETS THROUGH THE LENS OF FIBERED DYNAMICS: A
COMPUTATIONAL EXPLORATION

a b c

Table B.4: The table shows some filled-in Julia sets (blue) for the normalized fibred system
(θ, z) 7→ (θ + α, z2 + C(θ)) obtained via small perturbation with an invariant 2-curve and jumping
integer equal 1. From left to right and upper to lower, we have the corresponding fibres from t = 0
to t = 0.8.
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