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Introduction

Elliptic curves are one of the main topics of research in number theory. For example,

they play a crucial role in the proof of Fermat’s last theorem. Elliptic curves are also of

great relevance in applied mathematics, specially in cryptography, and they are useful

in algorithms to obtain the prime factorization of big numbers.

The rank of elliptic curves over Q, which is the number of generators of the free part

of the finitely generated abelian group of its rational points (see Chapter 1 for more

details), has been extensively studied and there are many open questions about it (see

[Sil]). It is still unknown if this number is bounded or not; traditionally people expects

that this number should be unbounded because Ulmer proved that this is what hap-

pens on function fields (see [U]), but recent probabilistic heuristics by Poonen, Park,

Voight, and Wood suggest that the rank should be bounded by 21 except for finitely

many cases (see [PPVW]). In 2013, Bhargava and Shankar proved that the average

rank of elliptic curves over Q is bounded (see [BS]); the first author was awarded the

Fields Medal for this result, among other contributions. One of the Millenium Prize

Problems is to prove the Birch and Swinnerton-Dyer conjecture, which asserts that the

rank of an elliptic curve is related with the behaviour of its Hasse-Weil L-function.

The problem that motivates this thesis is what can we say about the length of x-arithmetic

progressions of rational points on elliptic curves, which are sequences of points whose

x-coordinates form an arithmetic progression. For example, the integral points (−528, 25136),

(−363, 22869), (−198, 17424) form an x-arithmetic progression of length 3 on the con-

gruent elliptic curve y2 = x3 − 12542x. This problem has been studied by Mohanty for

the particular case of Mordell curves (see [Mo1], [Mo2]). Due to a theorem of Garcı́a

and Pastén, there exists a relationship between the rank of an elliptic curve and the

length of an x-arithmetic progression of rational points. There is a result of Bremner,

Silverman, and Tzanakis which asserts that there are no x-arithmetic progressions of

integral points on congruent elliptic curves of rank one (see [BST]).

We are interested on seeing what happens in the rank two case of Bremner, Silverman,

and Tzanakis theorem. We obtain the following result:

Theorem 0.1. Let n be a squarefree integer, and let En be the elliptic curve y2 = x3 − n2x.

Let P1, . . . , Pd be integral points in x-arithmetic progression. Suppose also that x(Pi) ≥ n,

gcd(x(Pi), n) = 1, and h(Pi) > 40 (where h denotes the Weil height of Pi). If En has rank

two, then d ≤ 13.
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Now, we describe the organization of this thesis. On Chapter 1 we recall some defini-

tions and basic facts about elliptic curves, the group law, heights, etc. On Chapter 2 we

present the problem of arithmetic progressions of rational points, some motivation and

related results. We also present the main theorem of this thesis and we briefly describe

the strategy of Bremner, Silverman, and Tzanakis result, which serves as a motivation

for the proof of the main theorem. On Chapter 3 we present the proof of the main result.

Finally, on Chapter 4 we describe some natural questions that are left unanswered, and

present some questions for future work.



Chapter 1

Preliminaries

1.1 Basic definitions

Definition 1.1. An elliptic curve is a pair (E,O), where E is a smooth projective curve

of genus one over a field K, and O ∈ E is an specified point.

Every such curve can be written as the locus on P2 of a cubic equation with only one

point, the base point, on the line at infinity.

When char(K) 6= 2, 3 , an elliptic curve E can be described by a Weierstrass equation

E : y2 = x3 +Ax+B.

There are similar (but more complicated) equations for elliptic curves over fields with

char(K) = 2, 3, but this thesis is focused on elliptic curves over Q, so we will omit

them.

Given an elliptic curve E with Weierstrass equation y2 = x3 + Ax + B, there are two

important quantities associated, the discriminant and the j-invariant.

Definition 1.2. The discriminant of E is

∆E = −16(4A3 + 27B2).

This number tells us if the curve E is smooth or not; E is smooth if and only if ∆E 6= 0.

Definition 1.3. The j-invariant of E is given by

jE = −1728
(4A)3

∆E
.

1



2

The j-invariant is important because it characterizes elliptic curves defined over C; two

complex elliptic curves are isomorphic if and only if they have the same j-invariant.

Nonetheless, in this thesis the j-invariant fulfills the role of classifying elliptic curves

(in some sense).

Example 1.4. Let En/Q be the congruent elliptic curve y2 = x3 − n2x, where n is a

squarefree integer. Then

∆En = −16 · 4A3 = 64n6,

jEn = −1728
(4A)3

∆En

= 1728.

Then, the family of congruent elliptic curves has constant j-invariant.

Definition 1.5. Let d in K which is not a square. The quadratic twist Ed/K of E is given

by

Ed : y2 = x3 + d2Ax+ d3B.

The elliptic curves E and Ed are not isomorphic over K, but they are isomorphic over

the larger field K(
√
d).

Theorem 1.6. The map

ϕ : Ed(K(
√
d)) → E(K(

√
d))

(x, y) 7→
(x
d
,
y

d3/2

)
.

is an isomorphism.

Proof. Sea Example 2.4 on page 321 of [Si2]. �

The previous result will be useful later.

1.2 Group law of elliptic curves

Let E/Q be an elliptic curve defined by a Weierstrass equation

y2 = x3 +Ax+B,

where A,B ∈ Z and 4A3 + 27B2 6= 0. Let O be the point at infinity, that is, the point

[0 : 1 : 0] in the projectivized curve.

Definition 1.7. The set E(Q) of rational points of E is given by

E(Q) = {(x, y) ∈ E : x, y ∈ Q} ∪ {O} .
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Remark 1.8. If P ∈ E(Q) and P 6= O, we denote the x-coordinate and y-coordinate of

P by x(P ) and y(P ) respectively.

We define a binary relation on E(Q) in the following way. Let P,Q ∈ E(Q), and let L

be the line through P and Q (if P = Q, the line L is tangent at P ). By Bezout’s theorem,

L must intersect E at a third point R. Let L′ be the line through R and O. Again by

Bezout’s theorem, L′ must intersect E at a third point. We define P + Q as that third

point.

Example 1.9. Consider the elliptic curve y2 = x3 + 17 over Q, and the two rational

points P = (−1, 4) and Q = (2, 5). The line through P and Q is y =
1

3
x +

13

3
, and let

R = (x3, y3) be the third point of intersection. In order to intersect this line with the

curve, we replace y in the equation

(
1

3
x+

13

3

)2

= y2 = x3 + 17.

This is a degree 3 polynomial equation in the variable x, for which we know two solu-

tions already, −1 and 2, so we can factorize it as

(x3 + 17)−
(

1

3
x+

13

3

)2

= (x+ 1)(x− 2)(x− x3).

Equating the coefficients of x2 at both sides we have

−1

9
= −(−1 + 2 + x3),

so x3 = −8

9
. Since (x3, y3) lies on the line y =

1

3
x+

13

3
, we obtain y3 =

1

3
x3 +

13

3
=

109

27
,

so R = (x3, y3) =

(
−8

9
,
109

27

)
. Finally, the line through R and O is just the vertical line

x =
−8

9
so the third point of intersection is just the reflection of R trough the x-axis. All

this shows that

P +Q = (−1, 4) + (2, 5) = (x3,−y3) =

(
−8

9
,−109

27

)
.

If we want to compute 2P = P + P , we need the line through P and P , which is the

tangent line at P . From the equation

y2 = x3 + 17,

defining f(x) := x3+17, we have by implicit differentiation that the slope of the tangent

line at a point (x0, y0) is given by
f ′(x0)

2y0
(if y0 = 0, the tangent line is just the vertical
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line x = x0), so the slope of the tangent line at (−1, 4) is
f ′(−1)

2 · 4
=

3

8
, and this tangent

line is given by y =
3

8
x +

35

8
. Replacing this equation on the curve and equating the

coefficients of x2 as before, we obtain

2P = P + P = (−1, 4) + (−1, 4) =

(
137

64
,−2651

512

)
.

The same reasoning can be used to obtain

P +O = P.

Remark 1.10. Using the same method as before, we can obtain explicit formulas for

this binary relation. If P = (x1, x2) and Q = (x2, y2), let y = λx+ ν be the line through

P and Q (or the tangent line at P in the case that P = Q), which intersects E at a third

point R = (x3, y3). We have different cases

• If x1 6= x2, then λ =
y2 − y1
x2 − x1

, ν = y1 − λx1 = y2 − λx2, and

P +Q = (x3,−y3) = (λ2 − x1 − x2,−λx3 − ν).

• If x1 = x2 and y1 6= y2, then

P +Q = O.

• If P = Q and y1 = y2 = 0, then

2P = P +Q = O.

• If P = Q and y1 = y2 6= 0, then

λ =
f ′(x1)

2y1
=

3x21 +A

2y1
=

3x22 +A

2y2
, ν = y1 − λx1 = y2 − λx2,

and

2P = P +Q = (x3,−y3) = (λ2 − x1 − x2,−λx3 − ν).

This binary relation makes E(Q) into a group. The identity element is given by O,

and the inverses are given by −O = O and −(x, y) = (x,−y). Associativity can be

checked directly (in a very tedious way) from the previous formulas, or using again

Bezout’s theorem. There is a more geometric proof of the fact that E(Q) is a group,

which consists of identifying a point with a degree-0 divisor on Pic0(E) (see Proposition

3.4 on page 61 of [Si2]).
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Since the line that passes through P and Q is the same that the one that passes through

Q and P , we have that E(Q) is an abelian group. This fact can also be seen from the

explicit equations given above.

We recall that everything said on this section is valid for every field K, with little tech-

nical differences when char(K) = 2, 3. We work over Q for simplicity, and because the

main result of this thesis concerns elliptic curves over Q.

1.3 Some facts about elliptic curves over Q

Answering a question apparently posed by Poincaré around 1901, in 1922 Mordell

proves the following theorem (see [Mor])

Theorem 1.11. The abelian group E(Q) is finitely generated.

Some years later Weil generalizes the previous result to abelian varieties over number

fields. Then, by the classification theorem for finitely generated abelian groups, the

group E(Q) has the form

E(Q) = Zr ⊕ Cp
n1
1
⊕ . . .⊕ Cp

nk
k
,

where p1, . . . , pk are primes, and Cn denotes the cyclic group of order n.

Definition 1.12. The non-negative integer r is called the rank of E, and it will be de-

noted by rkE .

Definition 1.13. A torsion point P ∈ E(Q) is a point of finite order, i.e., there exists an

m 6= 0 such that mP = P + . . .+ P︸ ︷︷ ︸
m times

= O.

The 2-torsion points can be easily computed. First note that 2P = O is equivalent to

(x, y) = P = −P = (x,−y), so y = 0, and the x-coordinates will be the rational roots of

the polynomial x3 +Ax+B.

There is a useful theorem that allows us to easily compute the torsion points

Theorem 1.14. (Nagell-Lutz) Let P = (x, y) ∈ E(Q) be a torsion point. Then x, y ∈ Z, and

either y = 0, in which case 2P = O, or y divides −4A3 − 27B2.

Proof. See Theorem 2.5 on page 56 of [Si1]. �
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Example 1.15. Consider the elliptic curve y2 = x3+1 defined over Q, and let P = (x, y)

be a torsion point. We have that −4A3 − 27B2 = −27, so the only possibilities for y are

0,±1,±3. Replacing these values on the equation we obtain the values for x. Then the

torsion of points are (−1, 0), (0, 1), (0,−1), (2, 3), (2,−3), and O.

Since E(Q) is an abelian group, the set of torsion points forms a subgroup of E(Q),

which is called the torsion subgroup of E(Q). There is a theorem that completely clas-

sifies the possible torsion subgroups of E(Q) (see [Ma])

Theorem 1.16. (Mazur) The torsion subgroup of E(Q) is exactly one of the following:

• Cn, where 1 ≤ n ≤ 10 or n = 12.

• C2 ⊕ C2n, where 1 ≤ n ≤ 4.

On the other hand, there is not much information about the rank (see [Sil] for a sum-

mary of known results and open problems about it). Since the rank is unbounded when

elliptic curves are defined over function fields (see [U]), it is believed that this number

should be unbounded as E varies over all elliptic curves defined over Q, but recent

probabilistic heuristics suggest that the rank should be at most 21, except for finitely

many cases (see [PPVW]).

Here is a list of some ranks

elliptic curve rank

y2 = x3 − x 0

y2 = x3 − 5x 1

y2 = x3 − 243 1

y2 = x3 − 17x 2

y2 = x3 − 342x 2

y2 = x3 − 82x 3

y2 + xy + y = x3 − x2 +Ax+B 19

where

A = 31368015812338065133318565292206590792820353345

B = 302038802698566087335643188429543498624522041683874493555186062568159847

The last example was found by Elkies on 2009, and is the greatest exact rank that is

known. There is another example of a curve which has rank at least 28, and was found

by Elkies on 2006.

https://web.math.pmf.unizg.hr/~duje/tors/rkeq19.html
https://web.math.pmf.unizg.hr/~duje/tors/rk28.html
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1.4 Heights of elliptic curves

During this chapter, we follow [Si1] as the main reference.

1.4.1 Weil height

Definition 1.17. Let x =
m

n
be a rational number written in irreducible form. The Weil

height of x is

h(x) := log max{|m| , |n|}.

The Weil height measures the complexity of a rational number, it is approximately the

number of bits needed to store
m

n
in a computer.

Now, let E/Q be an elliptic curve given by a Weierstrass equation y2 = x3 + Ax + B,

where A,B ∈ Z.

Definition 1.18. Let P ∈ E(Q). The Weil height of P is the height of its x-coordinate,

that is

h(P ) := h(x(P )).

Also, we define h(O) = 0.

The Weil height satisfies the following finiteness result

Theorem 1.19. (Northcott property for h) For any B ∈ R, the set

{P ∈ E(Q) : h(P ) ≤ B}

is finite.

Proof. Write P = (x, y), and x =
m

n
in lowest terms. Since

h(P ) = h(x) = log max{|m| , |n|}

is bounded, we have finitely many options for m and n, so x has finitely many possible

values. Then, since y2 = x3 +Ax+B, we have finitely many possible values for y. �

1.4.2 Canonical height

Definition 1.20. Let P ∈ E(Q). The canonical height (or Néron-Tate height) of P is

ĥ(P ) := lim
n→∞

1

4n
h(2nP ),
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where 2nP denotes the sum P + . . .+ P︸ ︷︷ ︸
2n times

according to the group law of E(Q).

The canonical height is a normalized version of the Weil height. It has better properties

than the first one, but it is more difficult to compute.

Proposition 1.21. The canonical height has the following properties:

• ĥ(P ) = 0 if and only if P is a torsion point.

• ĥ(mP ) = m2ĥ(P ), where m ∈ Z.

• Parallelogram law: ĥ(P +Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q).

Proof. See Exercises 3.2 and 3.3 on page 111 of [Si1], or Theorem 9.3 on page 243 of

[Si2]. �

Remark 1.22. Due to the parallelogram law, the pairing

〈·, ·〉 : E(Q)× E(Q) → R

(P,Q) 7→ 1

2
(ĥ(P +Q)− ĥ(P )− ĥ(Q))

defines an inner product on the real vector space E(Q) ⊗Z R, so we have a natural

notion of an angle between points. This fact is a key ingredient in the proof of the main

theorem of this thesis.

It results that the two previous heights are the same up to a constant

Proposition 1.23. There is a constant C depending on A and B such that∣∣∣∣ĥ(P )− 1

2
h(P )

∣∣∣∣ ≤ C, for all P ∈ E(Q).

Proof. See Exercise 3.3 of [Si1]. �

As a corollary of this we also have Northcott’s property for the canonical height

Theorem 1.24. (Northcott property for ĥ) For any B ∈ R, the set

{P ∈ E(Q) : ĥ(P ) ≤ B}

is finite.

There are many results about the difference between these two heights.
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Theorem 1.25. Let K be a number field, and let E/K be an elliptic curve given by a Weier-

strass equation y2 = x3 +Ax+B. Then

−1

8
h(jE)− 1

12
h(∆E)− 0.973 ≤ ĥ(P )− 1

2
h(P ) ≤ 1

12
h(jE) +

1

12
h(∆E) + 1.07.

Proof. See Theorem 1.3 of [Si4]. �



Chapter 2

Arithmetic progressions of rational

points

In this chapter we present the problem of arithmetic progressions of rational points,

some results about it, and the main result of this thesis.

Definition 2.1. Let E/Q be an elliptic curve. Recall that a collection of rational points

P1, . . . , Pd are in x-arithmetic progression if their x-coordinates are in arithmetic progres-

sion.

Remark 2.2. The previous definition only makes sense when all the points are different

from the point at infinity O.

We are interested in the length of such x-arithmetic progressions. In particular, we will

focus on the following questions

How large can an x-arithmetic progression be?

Can there be x-arithmetic progressions of arbitrarily large length?

Note that for any point P we have that P = (x, y) and −P = (x,−y) have the same

x-coordinate, so we always have the trivial x-arithmetic progression ±P,±P,±P, . . .,
which can be of arbitrarily large length. In order to make the problem interesting we

want to avoid this situation. From here and so on, when we mention an x-arithmetic

progression we are actually speaking about a non-trivial x-arithmetic progression, i.e.,

the x-coordinates of its points are all distinct.

Example 2.3. Consider the elliptic curve y2 = x(x2−12542) over Q. The rational points

(−528, 26136), (−363, 22869), (−198, 17424)

10
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form a non-trivial x-arithmetic progression of length 3. Note that these points also have

integral coordinates.

Analogously we can define y-arithmetic progressions (in this case we don’t have to

worry about the ±P,±P,±P, . . . trivial situation).

2.1 Known results

On this section we will present some results about arithmetic progressions on elliptic

curves which are related with the thesis main result.

2.1.1 Mordell curves

Definition 2.4. A Mordell curve is an elliptic curve given by the equation

y2 = x3 + b,

where b ∈ Q∗.

In 1975, Mohanty studies the number of integer values of k for which the diophantine

equation y2 = x3 + k, has a given number of consecutive integer solutions either for

the x-coordinate, for the y-coordinate, or both (see [Mo1]). He proves that there are

infinitely many k’s such that there are three integral points in x-arithmetic progression

with common difference 1, the same result for both coordinates x and y, and there are

no k’s such that there are five integral points in y-arithmetic progression with common

difference 1. He also conjectured that there are only finitely many k’s with four integral

points in y-arithmetic progression with common difference 1, and possibly the only k

with that property is 1025 with solutions

(−5, 30), (−4, 31), (−1, 32), (4, 33).

In 1980, Mohanty extends the previous conjecture to arithmetic progressions with com-

mon difference not necessarily equal to 1 (see [Mo2]), and conjectures that there are

no x-arithmetic progressions of integral points of length greater than four on Mordell

curves, and the same for y-arithmetic progressions.

In 1992, Lee and Vélez found examples of y-arithmetic progressions of length four, five

and six (see [LV]); so the previous conjecture is false, but it is expected to be true when

five is replaced by a greater bound.
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Conjecture 2.5. (Mohanty’s conjecture) There exists an absolute bound M such that for any

b ∈ Q∗, there are no lengthM or greater y-arithmetic progressions of rational points on Mordell

curves.

Under the Bombieri-Lang conjecture for surfaces, in 2016 Garcı́a-Fritz proved Mohanty’s

conjecture (see [G-F]).

2.1.2 Edwards curves

The following result deals with elliptic curves given by an equation different than the

Weierstrass form.

Definition 2.6. An Edwards curve is an elliptic curve Ed/Q given by the equation

x2 + y2 = 1 + dx2y2,

where d ∈ Q\{0, 1}.

In 2011, Moody proved the following result (see [Moo])

Theorem 2.7. There are infinitely many d ∈ Q\ {0, 1} such that the Edwards curve Ed has at

least nine points in x-arithmetic progression.

Remark 2.8. It is interesting that the formula for sum of points on curves with these

equation becomes a little more friendly than the sum on curves with Weierstrass equa-

tion

(x1, y1) + (x2, y2) =

(
x1y2 + x2y1

1 + dx1x2y1y2
,
y1y2 − x1x2

1− dx1x2y1y2

)
=

(
x1y1 + x2y2
x1x2 + y1y2

,
x1y1 − x2y2
x1y2 − y1x2

)
.

2.1.3 Congruent curves

On this section we will introduce congruent elliptic curves, which are the main object

of study on this thesis.

Definition 2.9. A congruent curve is an elliptic curve En/Q given by the equation

y2 = x3 − n2x,

where n is a squarefree integer.

Before we state the result, we present some connections of congruent elliptic curves

with other interesting number theory problems.
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2.1.3.1 Congruent numbers

Definition 2.10. A positive rational number q ∈ Q>0 is called congruent if it is the area

of a right triangle with rational sides.

Example 2.11. 157 is a congruent number, because

6803298487826435051217540
411340519227716149383203

411340519227716149383203
21666555693714761309610

224403517704336969924557513090674863160948472041
8912332268928859588025535178967163570016480830

157

and these rational numbers are in lowest terms.

Suppose that r is congruent and x, y, z ∈ Q are the sides of a right triangle with area r.

We can find some s ∈ Q such that s2r is a squarefree integer, then the triangle with sides

sx, sy, sz has area s2r. Thus, when we ask if a certain rational number is congruent or

not, without loss of generality we may assume that q = n is a squarefree integer.

We are interested in characterizing squarefree integers wich are congruent.

From now on, n will always be a squarefree integer.

Note that the right triangles with area n are parametrized by rational points with non-

zero y-coordinate on the curve En. Suppose that n is a congruent number, and let

a, b, c ∈ Q such that a2 + b2 = c2 and
ab

2
= n. If we set x =

n(a+ c)

b
and y =

2n2(a+ c)

b2
we have y2 = x(x2−n2), so a right triangle with area n takes us to a rational point with

non-zero y-coordinate on the elliptic curve y2 = x(x2 − n2). Reciprocally, if (x, y) is a

rational point on the curve with non-zero y-coordinate, we have the right triangle with

area n with sides a =
x2 − n2

y
, b =

2nx

y
, and c =

x2 + n2

y
. Summarizing, we have a

bijection between the sets{
(a, b, c) ∈ (Q>0)

3 : a2 + b2 = c2,
ab

2
= n

}
and

{
(x, y) ∈ Q2 : y2 = x3 − n2x, y 6= 0

}
.

Furthermore, the elliptic curve y2 = x3 − n2x has (−n, 0), (0, 0), (n, 0), and O as torsion

points (see Proposition 6.1 on page 346 of [Si2]), so we have the following result (see

Proposition 18 on page 46 of [Ko])
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Theorem 2.12. A squarefree integer n is congruent if and only if the elliptic curve y2 =

x3 − n2x has positive rank.

In 1983, Tunnel found an almost characterization for these numbers (see [Tu])

Theorem 2.13. For a given congruent number n, define

An := #{(x, y, z) ∈ Z3 : n = 2x2 + y2 + 32z2},

Bn := #{(x, y, z) ∈ Z3 : n = 2x2 + y2 + 8z2},

Cn := #{(x, y, z) ∈ Z3 : n = 8x2 + 2y2 + 64z2},

Dn := #{(x, y, z) ∈ Z3 : n = 8x2 + 2y2 + 16z2}.

If n is odd, then 2An = Bn. If n is even, then 2Cn = Dn. Moreover, under the Birch

and Swinnerton-Dyer conjecture, the previous equalities are enough to conclude that n is a

congruent number.

2.1.3.2 Magic squares of squares

LaBar propose the following problem (see [La])

Does there exist a 3× 3 magic square with nine distinct perfect squares as entries?

Bremner found the following example with seven squares (see [Br2])

3732 2892 5652

360721 4252 232

2052 5272 222121

and, as of today, it is not known if there exists an example with eight.

Robertson found the following characterization (see [Ro])

Theorem 2.14. The following problems are equivalent

• Prove or disprove that a 3× 3 magic square can be constructed with nine distinct perfect

squares.
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• Prove or disprove that there are three rational triangles with the same area, such that the

squares of the hypotenuses are in arithmetic progression.

• Prove or disprove that there is an elliptic curve y2 = x3 − n2x, where n is a congruent

number, with three rational points which are the double of another rational points (in the

sense of the group structure), whose x-coordinates are in arithmetic progression.

Following the third characterization, in 2000, Bremner, Silverman, and Tzanakis proved

the following result (see [BST])

Theorem 2.15. Let n be a squarefree integer, and let En be the elliptic curve y2 = x3−n2x. If

En has rank one, then En has no arithmetic progressions of integral points.

This is the theorem that motivates this thesis. The main result of this thesis may be

viewed as an extension of this theorem to the rank two case.

2.2 Relationship with ranks of elliptic curves

After proving the result together with Silverman and Tzanakis, Bremner made the fol-

lowing commentary/conjecture (see [Br1])

It seems that points of an arithmetic progression have a tendency

to be linearly independent in the group of rational points.

In 2018, Garcı́a-Fritz and Pastén proved the following result (unfortunately this has not

been published yet, so we don’t have a proper reference)

Theorem 2.16. Given r ∈ N and j ∈ Q, there exist a constant M = M(r, j) > 0 such that for

every elliptic curve E/Q with rkE ≤ r and jE = j, the x-arithmetic progressions on E have

length at most M .

thus, at least for a fixed j-invariant, there exists a relationship between the rank of

elliptic curves and the maximal length of x-arithmetic progressions.

Remark 2.17. One of the most important unsolved problems about elliptic curves is

the question about boundedness of the rank. Traditionally, most people expects that

the rank should be unbounded (see [U]), but recent probabilistic heuristics suggest that

the rank should be at most 21, except for finitely many cases (see [PPVW]); including

the record curve found by Elkies on 2006 which has rank at least 28. Garcı́a-Fritz and

Pastén proved that the question of the length of x-arithmetic progressions may be used

to attack the central problem of the rank (at least for the case of a fixed j-invariant).

https://web.math.pmf.unizg.hr/~duje/tors/rk28.html
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2.3 Main result

To see what happens in the rank two case in the theorem of Bremner, Silverman, and

Tzanakis, we obtain the following result

Theorem 2.18. Let n be a squarefree integer, and let En be the elliptic curve y2 = x3 − n2x.

Let P1, . . . , Pd be integral points in x-arithmetic progression. Suppose also that x(Pi) ≥ n,

gcd(x(Pi), n) = 1, and h(Pi) > 40. If En has rank two, then d ≤ 13.

Note that the family of congruent elliptic curves has constant j-invariant equal to 0,

so we are giving a sharp explicit bound which the theorem of Garcı́a-Fritz and Pastén

does not provide.

2.3.1 Strategy of Bremner, Silverman, and Tzanakis result

Roughly speaking, the proof starts with height estimates for congruent elliptic curves;

these estimates are general and they have nothing to do (at first) with x-arithmetic pro-

gressions. The proof of their theorem has two cases. Assuming that such x-arithmetic

progressions exists, the height estimates are used to get a contradiction when n ≥ 72.

The n < 72 case is just a brute-force attack.

First of all, they proved the following estimates for the canonical height (Proposition

2.1 in [BST])

Proposition 2.19. Let n be a fixed squarefree integer. Let P ∈ En(Q) be a rational point such

that 2P 6= O, and write the x-coordinate of P as x =
a

d2
. Then

ĥ(P ) ≥ 1

16
log(2n2),

ĥ(P ) ≥ 1

4
log

(
a2 + n2d4

2n2

)
,

ĥ(P ) ≤ 1

4
log(a2 + n2d4) +

1

12
log(2).

Since En has rank 1, let P ∈ En(Q) be a generator of the free part of the group of

rational points, i.e., write En(Q) = 〈P 〉 ⊕ En(Q)tors. Let P1, P2, P3 be an arithmetic

progression of integral points. For i = 1, 2, 3 write Pi = miP + Ti, where mi ∈ Z and

Ti are torsion points. Under the aditional hypothesis of n ≥ 72 and using the property

ĥ(mP ) = m2ĥ(P ), they proved that there are very few possible values for mi’s (see

Corollary 3.2 in [BST]).
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Then, for each possible combination of mi’s, the x-arithmetic progression condition

gives rational roots of certain polynomials which do not have rational roots (see Section

4.1 in [BST]).

Finally, the case n < 72 is just a brute-force attack. By Siegel’s Theorem, elliptic curves

have only finitely many integral points, and they have explicit found all integral points

and verify that there is no such x-arithmetic progression (see Section 4.2 in [BST]).



Chapter 3

Proof of the main result

In this chapter we prove the main result of this thesis. For completeness, let us recall

the statement

Theorem 3.1. Let n be a squarefree integer, and let En be the elliptic curve y2 = x3 − n2x.

Let P1, . . . , Pd be integral points in x-arithmetic progression. Suppose also that x(Pi) ≥ n,

gcd(x(Pi), n) = 1, and h(Pi) > 40. If En has rank two, then d ≤ 13.

Remark 3.2. There are congruent elliptic curves of rank two, for example n = 34, 41, 65, . . .

In fact, there are 376 values of n between 1 and 10000 such that En has rank two (see

[WT] and [NW]).

3.1 Height estimates

Before proving Theorem 3.1, we will prove some height estimates for congruent elliptic

curves that will be useful later.

First of all, note that all the curves En’s are quadratic twists by n of the curve E1, and

there is an isomorphism over Q(
√
n) between En and E1 (see Theorem 1.6)

ϕ : En(Q(
√
n)) → E1(Q(

√
n))

(x, y) 7→
(x
n
,
y

n3/2

)
.

Lemma 3.3. Let P = (X,Y ), Q = (x, y) ∈ En(Q). Then

x(ϕ(P ) + ϕ(Q)) =
X2x+Xx2 − 2Y y − n2(X + x)

n(X − x)2
.

18
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Proof. Using the formula for the sum of points on an elliptic curve (see Remark 1.10),

we have

x(ϕ(P ) + ϕ(Q)) = x(ϕ(P +Q))

=
x(P +Q)

n

=
1

n

{(
Y − y
X − x

)2

−X − x

}

=
Y 2 − 2Y y + y2 +X2x−X3 − x3 +Xx2

n(X − x)2

=
X2x+Xx2 − 2Y y − n2(X + x)

n(X − x)2
.

�

Lemma 3.4. Let P,Q ∈ En(Q) be integral points such that x(P ), x(Q) ≥ n. If x(P ) > x(Q),

then:

h(ϕ(P ) + ϕ(Q)) ≤ 2h(P ) + h(Q) + 4 log(2).

Proof. This proof is based on Lemma 4.5 of [Al]. Write P = (X,Y ) andQ = (x, y). Since

X > x ≥ n, the quantities that appear on Lemma 3.3 are bounded as follows

log |2Y y| = 1

2
log |X3 − n2X|+ 1

2
log |x3 − n2x|+ log(2)

≤ 1

2
log |2X3|+ 1

2
log |2x3|+ log(2)

=
3

2
h(P ) +

3

2
h(Q) + 2 log(2).

Similarly

log |n2(X + x)| ≤ h(P ) + 2 log(n) + log(2),

and

log |n(X − x)2| = log(n) + 2 log |X − x| ≤ 2h(P ) + log(n) + 2 log(2).



20

Putting together all these estimates and using Lemma 3.3

h(ϕ(P ) + ϕ(Q)) ≤ max{log |X2x+Xx2 − 2Y y − n2(X + x)|, log |n(X − x)2|}

≤ max

{
max{log |X2x|, log |Xx2|, log |2Y y|, log |n2(X + x)|}+ log(4),

2h(P ) + log(n) + 2 log(2)

}
≤ max

{
2h(P ) + h(Q), h(P ) + 2h(Q),

3

2
h(P ) +

3

2
h(Q) + 2 log(2),

h(P ) + 2 log(n) + log(2), 2h(P ) + log(n)

}
+ 2 log(2)

≤ max

{
2h(P ) + h(Q), h(P ) + 2h(Q),

3

2
h(P ) +

3

2
h(Q),

h(P ) + 2 log(n), 2h(P ) + log(n)

}
+ 4 log(2)

= 2h(P ) + h(Q) + 4 log(2).

�

Lemma 3.5. For all P ∈ E1(Q(
√
n)) we have

−5

4
log(2)− 3

8
log(3)− 0.973 ≤ ĥ(P )− 1

2
h(P ) ≤ log(2) +

1

4
log(3) + 1.07.

Proof. Since its discriminant is ∆E1 = 64 and its j-invariant is jE1 = 1728 (see Example

1.4), by Theorem 1.25 we have the following estimate for the difference between the

Weil height and the canonical height

−1

8
h(1728)− 1

12
h(64)− 0.973 ≤ ĥ(P )− 1

2
h(P ) ≤ 1

12
h(1728) +

1

12
h(64) + 1.07

for all P ∈ E1(Q(
√
n)). Then, for all P ∈ E1(Q(

√
n)) we have

−5

4
log(2)− 3

8
log(3)− 0.973 ≤ ĥ(P )− 1

2
h(P ) ≤ log(2) +

1

4
log(3) + 1.07.

�

Lemma 3.6. Let P,Q ∈ En(Q) be integral points such that x(P ), x(Q) ≥ n, satisfying that

gcd(x(P ), n) = gcd(x(Q), n) = 1. If x(P ) ≥ x(Q), then

ĥ(P +Q) ≤ 2ĥ(P ) + ĥ(Q) +
27

4
log(2) +

11

8
log(3) + 3.989.

Proof. Since gcd(x(P ), n) = 1 we have

h(ϕ(P )) = h

(
x(P )

n

)
= max {log(x(P )), log(n)} = log(x(P )) = h(P ).
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Using the fact that the canonical height is invariant under isomorphism and Lemma 3.5

we have

h(P ) ≤ 2ĥ(P ) +
5

2
log(2) +

3

4
log(3) + 1.946,

and the same for Q. Using again the invariance of the canonical height, Lemma 3.5 and

Lemma 3.4, we have

ĥ(P +Q)− log(2)− 1

4
log(3)− 1.07 = ĥ(ϕ(P +Q))− log(2)− 1

4
log(3)− 1.07

≤ 1

2
h(ϕ(P ) + ϕ(Q))

≤ h(P ) +
1

2
h(Q) + 2 log(2)

≤ 2ĥ(P ) + ĥ(Q) +
23

4
log(2) +

9

8
log(3) + 2.919

so

ĥ(P +Q) ≤ 2ĥ(P ) + ĥ(Q) +
27

4
log(2) +

11

8
log(3) + 3.989.

�

3.2 Proof of main result

Before proving Theorem 3.1, we will prove a lemma about arithmetic progressions, and

other about angles between points

Lemma 3.7. Let x1 < x2 < . . . < xm be an arithmetic progression of positive numbers. Then,

for 2 ≤ i < j we have

xj < (j − i+ 1)xi.

Proof. For a fixed i ≥ 2, we will prove this by strong induction on j. For j = i + 1, the

arithmetic progression condition implies xi+1 + xi−1 = 2xi, so the result holds since

xi−1 > 0. Now suppose we have the result for all i + 1, . . . , j. For j + 1 we have

xj+1 = xj + (xi+1 − xi) < (j − i+ 1)xi + 2xi − xi = ((j + 1)− i+ 1)xi. �

Lemma 3.8. Let P,Q ∈ En(Q) be such as in Lemma 3.6. Let θP,Q be the angle between P and

Q induced by the inner product

〈P,Q〉 =
1

2

{
ĥ(P +Q)− ĥ(P )− ĥ(Q)

}
on the real vector space En(Q)⊗Z R. Then

cos(θP,Q) ≤ ‖P‖
2 ‖Q‖

+
C

2 ‖P‖ ‖Q‖
,
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where the norm ‖P‖ =

√
ĥ(P ) is induced by the inner product, and

C =
27

4
log(2) +

11

8
log(3) + 3.989

Proof. From Lemma 3.6 we have the following estimate for θP,Q

cos(θP,Q) =
〈P,Q〉
‖P‖ ‖Q‖

=
ĥ(P +Q)− ĥ(P )− ĥ(Q)

2 ‖P‖ ‖Q‖

≤ ĥ(P ) + C

2 ‖P‖ ‖Q‖

=
‖P‖

2 ‖Q‖
+

C

2 ‖P‖ ‖Q‖
.

�

Now we present the proof of Theorem 3.1.

Proof. Let θ =
π

6
. Let P1, . . . , P14 ∈ En(Q) be integral points in x-arithmetic progres-

sion, that is x1 < . . . < x14 and x2 − x1 = . . . = x14 − x13, where xi := x(Pi). Suppose

also that xi ≥ n and gcd(xi, n) = 1. We consider the thirteen points P2, . . . , P14. Since

En(Q) has rank two, En(Q)⊗Z R is a two-dimensional real vector space, so by pigeon-

hole principle, there exist points Pi 6= Pj , with 1 6= i < j, with angle less than
π

6
.

From lemma 3.5 we have

1

2
h(Pi)−

5

4
log(2)− 3

8
log(3)− 0.973 ≤ ĥ(Pi) ≤

1

2
h(Pi) + log(2) +

1

4
log(3) + 1.07.

Since h(Pi) > 40 the left hand side is non negative, so√
1

2
h(Pi)−

5

4
log(2)− 3

8
log(3)− 0.973 ≤ ‖Pi‖ ≤

√
1

2
h(Pi) + log(2) +

1

4
log(3) + 1.07.

By Lemma 3.7, we have xj < (j − i+ 1)xi, so

h(Pj) = log(xj) < log(xi) + log(j − i+ 1) ≤ h(Pi) + log(13).

Also, since i < j we have

h(Pi) < h(Pj).
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Then, by the previous estimates and Lemma 3.8 we can estimate the angle θi,j between

Pi and Pj

cos(θi,j) ≤
‖Pj‖

2 ‖Pi‖
+

C

2 ‖Pj‖ ‖Pi‖

≤

√
1

2
h(Pj) + log(2) +

1

4
log(3) + 1.07

2

√
1

2
h(Pi)−

5

4
log(2)− 3

8
log(3)− 0.973

+
C

2

√
1

2
h(Pj)−

5

4
log(2)− 3

8
log(3)− 0.973

√
1

2
h(Pi)−

5

4
log(2)− 3

8
log(3)− 0.973

≤

√
1

2
h(Pi) +

1

2
log(13) + log(2) +

1

4
log(3) + 1.07

2

√
1

2
h(Pi)−

5

4
log(2)− 3

8
log(3)− 0.973

+
C

2

√
1

2
h(Pi)−

5

4
log(2)− 3

8
log(3)− 0.973

√
1

2
h(Pi)−

5

4
log(2)− 3

8
log(3)− 0.973

≤ 1

2

√√√√√√1 +

1

2
log(13) +

9

4
log(2) +

5

8
log(3) + 2.043

1

2
h(Pi)−

5

4
log(2)− 3

8
log(3)− 0.973

+
C

h(Pi)−
5

2
log(2)− 3

4
log(3)− 1.946

.

Since θi,j <
π

6
, we have cos(θi,j) >

√
3

2
. On the other hand, since h(Pi) > 40, the

previous inequality gives cos(θi,j) <

√
3

2
which is a contradiction. �



Chapter 4

Final remarks

Let us recall the main theorem of this thesis

Theorem 4.1. Let n be a squarefree integer, and let En be the elliptic curve y2 = x3 − n2x.

Let P1, . . . , Pd be integral points in arithmetic progression. Suppose also that x(Pi) ≥ n,

gcd(x(Pi), n) = 1, and h(Pi) > 40. If En has rank two, then d ≤ 13.

This theorem may be viewed as an extension of Bremner, Silverman, and Tzanakis

result for the rank two case; and also as an explicit bound for the length of arithmetic

progressions which Garcı́a-Fritz, and Pastén theorem for congruent elliptic curves (a

family which has constant j-invariant) does not give.

There are some questions that arise naturally from this work.

On Bremner, Silverman, and Tzanakis work, there is no hypothesis of gcd(x(Pi), n) = 1.

In the rank one case, the property ĥ(mP ) = m2ĥ(P ) is very useful, but in the rank two

case there is no such easy formula for ĥ(mP + nQ), so we have to add an aditional

hypothesis of the gcd. This motivates the following question:

Question 4.2. Can we drop the gcd(x(Pi), n) = 1 hypothesis?

Note that if n is large enough the condition x(Pi) ≥ n implies h(Pi) > 65, but it is still

unknown that happens when −n ≤ x(Pi) ≤ 0. This motivates the following question:

Question 4.3. What can be say about arithmetic progressions of rational points which

has x-coordinates on [−n, 0]?

The arithmetic progression of rational points question still makes sense when the ellip-

tic curve is defined over a number field instead of just Q. One of the main ingredients of

the work of Bremner, Silverman, and Tzanakis is the height estimates that they obtain,

which are the following

24
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Proposition 4.4. Let n be a fixed squarefree integer. Let P ∈ En(Q) be a rational point such

that 2P 6= O, and write the x-coordinate of P as x =
a

d2
. Then

ĥ(P ) ≥ 1

16
log(2n2),

ĥ(P ) ≥ 1

4
log

(
a2 + n2d4

2n2

)
,

ĥ(P ) ≤ 1

4
log(a2 + n2d4) +

1

12
log(2).

The proof of this result is based on the decomposition of the canonical height of an

elliptic curve E/Q into local heights

ĥ =
∑
p∈MQ

λ̂p,

where MQ = {primes} ∪ {∞} is the set of places of Q, and λ̃p : E(Qp) → R are height

functions on the curve E defined over the completions of Q with respect to all its abso-

lute values (see Chapter VI of [Si3] for more details).

In the case of a number fieldK, there is a similar decomposition of the canonical height,

but the set of places MK is more difficult to describe.

Question 4.5. Using the previous decomposition of the canonical height, can we find

an analogue of the height estimates obtained by Bremner, Silverman, and Tzanakis over

number fields? If this is possible, can we use these estimates to obtain explicit bounds

for the length of arithmetic progressions of rational points in terms of the rank over

number fields?

The family of congruent elliptic curves has constant j-invariant, so Garcı́a-Fritz and

Pastén’s theorem tell us that there must exist a effectively computable but non-explicit

bound for the length arithmetic progressions of rational points

Question 4.6. Can we find an analogue of the main theorem for other families of elliptic

curves with constant (or bounded) j-invariant? For example, what can be said about

Mordell curves?
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