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Facultad de Matemáticas, Departamento de Estad́ıstica

Santiago de Chile, Chile

2019



Dedication

To my husband, with love.



Acknowledgments

I am deeply grateful to. . .





vii

Abstract

In this thesis, we propose novel Bayesian Nonparametric hypothesis testing proce-

dures for correlated data. First, we develop and study a proposal for comparing the

distributions of paired samples. Next, we propose and analyze a hypothesis testing

procedure for longitudinal data analysis. Both proposals are based on a flexible

model for the joint distribution of the observations. The flexibility is given by a

mixture of Dirichlet processes. Besides, for setting up the hypothesis testing proce-

dures, we use a hierarchical representation with a spike-slab prior specification for

the base measure of the Dirichlet process and a prior specification on the space of

models.

For the paired sample test, we use an appropriate parametrization for the kernel

of the mixture to facilitate the comparisons and posterior inference. Consequently,

the joint model allows us to derive the marginal distributions and test whether they

differ or not. The procedure exploits the correlation between samples, relaxes the

parametric assumptions, and detects possible differences throughout the entire dis-

tributions.

For the longitudinal data, we propose to use a mixture of Dependent Dirich-

let Processes to capture the correlation between the repeated measurements. The

weights of the mixture are built via a stick-breaking prior, that comes from a Marko-

vian process evolving in time. The effect of the predictors is modeled by the un-

derlying atoms. The proposal can provide an estimation of the density through the

time for different levels of the predictors, and at the same time can identify the effect

of the predictors, without assuming restrictive distributional assumptions.

We show the performance throughout the document of our proposals in illustra-

tions with simulated and real data sets. Finally, we provide concluding remarks and

discuss open problems.

Keywords: Spike-slab priors; Dirichlet Process; Shift function; Mixture model;

Dependent samples; Time-dependent data.
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Chapter 1

Introduction

In this Chapter, we give an account of some of the main concepts in statistics, that

will be used to set up notation and basic ideas about Bayesian nonparametric in-

ference. We start the discussion introducing concepts such as random phenomenon,

probability space, random variables, statistical model, stochastic dependence, and

exchangeability. We provide some examples and illustrations to describe the meth-

ods and approaches that will be used. Later, we introduce a general approach to

perform hypothesis testing from a Bayesian point of view, as well as, some elements

of the variable selection methods in the context of regression models, which together

with the Dirichlet process prior will be the main tools to develop our new Bayesian

hypothesis testing procedures. This Chapter ends describing the open problems that

will be working up in the next chapters.

1.1 Basic concepts

In statistics, the main goal is to try to explain the behavior of a phenomenon

surrounded by uncertainty. The uncertainty can be raised by epistemic causes or

aleatory causes Mena (2015). The epistemic uncertainty is related to the lack of in-

formation and it could be reduced with the arrival of new information, whereas the

aleatory uncertainty is related to the natural intrinsic variation of the phenomenon.

Hence, the essential job in statistics is to find a model that describes the behavior

of the phenomenon and that reduces the grade of uncertainty about the events of

our interest. These events can be expressed in mathematical language through of a

probability space. A probability space is a triple (Ω,F , P ), where Ω is called sample

space and denotes the set of all possible outcomes of the phenomena or experiments

at issue, F is a collection of subsets of Ω and constitutes a σ-field or also called

as σ-algebra. Finally, P is a probability measure (P : F 7→ [0, 1]) which satisfies

P (A) ≥ 0 for all events A ∈ F with P (Ω) = 1 and

P (∪∞i=1Ai) =
∞∑
i=1

P (Ai) , (1-1)

1



2 CHAPTER 1. INTRODUCTION

for disjoint events A1, A2, . . . ∈ F .

Frequently, to define a probabilistic model on F the events A1, A2, . . . ∈ F are

converted into numerical quantities called random variables. Strictly speaking, a

real value function Y defined on Ω is said to be a random variable if for every Borel

set A ⊂ R we have Y −1 {ω : Y (ω) ∈ A} ∈ F . If Y is a random variable, then Y

induces a probability measure on R called distribution by setting the set function

PY (A) = P (Y −1(A)) for Borel sets A. The distribution of a random variable Y is

usually described by its distribution function, Fy(Y ) = PY ((−∞, y]) = P (Y ≤ y)

and satisfied the Theorem (1) (Durret 2010). We denote Y as the sample space of

Y , i.e., the space on the data y lie.

Theorem 1. Any distribution function F has the fowolling propierties:

1. F is nondecreasing

2. limy→∞ F (y) = 1 limy→−∞ F (y) = 0

3. F is right continuous, that is, limx↓y F (x) = F (y)

4. if F (y−) = limx↑y F (x) then F (y−) = P (Y < y)

5. P (Y = y) = F (y)− F (y−)

When the distribution function Fy(Y ) = P (Y ≤ y) has the form

F (y) =

∫ y

−∞
f (y) dy, (1-2)

we say that Y has density function f(y).

Definition 1. We define a statistical model as a family of probability distributions

on a sample space Y , indexed by values θ ∈ Θ, called parameters, that is, unknown

quantities, which are the object of the inference. The statistical model is given by

{Pθ (y) , y ∈ Y , θ ∈ Θ},

where each Pθ is a probability measure, and Θ is the parameter space. If Θ has finite

dimension, Θ ⊂ Rd for some d ∈ N and d <∞, then the model is called parametric,

and if Θ has infinite dimension, it is called a nonparametric model.

Now, we discuss two ideas about the parameters that index a statistical model.

First, the statistical model transfers to the parameters the uncertainty underlying

to a random variable. To explain it, we consider a classical and didactic example

“flipping a fair coin”, which was taken from Mena (2015), to introduce the idea

about how the uncertainty underlying to a random variable Y is transferred to θ.
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In this example, we have two possible outcomes, “head” or “tail”, then the sam-

ple space is given by Ω = {head, tail} = {ω1, ω2} = {0, 1} and the σ-algebra by

F = {Ω, {0} , {1} , ∅}. Consider Y as a random variable that assigns 1 if the out-

come is tail and 0 otherwise. Naturally, the Bernoulli model could be considered as a

statistical model to Y . Therefore, our interest is on PY (1) = P (Y (ω1) = 1) = θ, i.e.

a value θ ∈ [0, 1]. In others words, we have transferred our interest in understanding

the phenomenon’s uncertainty to the parameter (Mena 2015).

Second, the parameter at a statistical model can be seen as a pattern that ex-

plains the data. To show this, let us present an example taken from Orbanz (2013)

about a linear regression problem. In this problem, the data should show a clear

linear trend and the line that we use to explain the data could be understood as

the pattern that dominates to them. If θ is a linear function, the parameter space

Θ is the set of linear functions on R, therefore, given a θ the model describes how

the dots scatter around the line. Since we consider a simple linear regression model

we have a linear function on R2, that can be specified using two scalars, an offset,

and a slope, thus the parameter space has finite dimension, on R2. However, if the

data set not follows a linear pattern, we could think about a continuous regression

function and reasonably smooth, i.e. the set of all twice continuously differentiable

functions on R, and in this case, the parameter space Θ is infinite dimensional and

the statistical model is of nonparametric nature.

According to Mena (2015), only is possible get statistical learning about a data

set if these are stochastically connected. This connection let us get a statistical

model for our data. Usually, when we consider a random sample y1, . . . , yn as n

observations of a random variable Y at a phenomenon, these observations are as-

sumed as distinct realizations of a random variable and also could be considered as

physically independent, that is, observations not measured in the same sample unit.

Physically independent observations imply symmetry among y1, . . . , yn, namely the

joint probability distribution is not affected by the order in which the observations

were sampled, thus physically independent is a particular case of symmetry or also

called exchangeability. In a statistical model, we can have a set of observations phys-

ically independent or exchangeable but not stochastically independent, otherwise,

the model does not have sense.

Definition 2. A finite set {Yi}ni=1 of random variables is said to be finite exchange-

able if

{Y1, . . . , Yn}
d
=
{
Yτ(1), . . . , Yτ(n)

}
, (1-3)

for any permutation τ of {1, . . . , n}. An infinite collection {Yi}∞i=1 is said to be

exchangeable if every subcollection is exchangeable.

Now, we consider the following theorem called de Finetti’s representation theorem

for binary variables.
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Theorem 2. (Diaconis 1977) An infinite sequence of Y := {0, 1}-valued random

variables, {Yi}∞i=1, is said to be exchangeable if and only if there exist a distribution

q on [0, 1] such that for all n ≥ 1

P (Y1 = y1, . . . , Yn = yn) =

∫
[0,1]

θsn (1− θ)n−sn q(dθ), (1-4)

where sn :=
∑n

i=1 yi denotes the number of successes. Furthermore, q is such that

its cumulative distribution function is

q(t) = lim
n→∞

P

(
Sn
n
≤ t

)
. (1-5)

Namely, Sn
n

a.s→ Θ with Θ := limn→∞
Sn
n

, the (strong-law) limiting relative frequency

of 1s.

This theorem says that if we have an exchangeable (rather than independent)

binary sequence {Yi}∞i=1 the probabilities θ′s not are only frequencies of infinite

numbers of observations, indeed θ could be thought like as random quantity by each

realization of Y1, . . . , Yn, with distribution function q(t). A general version of the de

Finetti’s theorem is given by,

Theorem 3. (Hewitt & Savage 1955) Let Y be a Polish space endowed with is

Borel σ-field B and PY the space of all probability measures on (Y,B). An infinite

sequence of Y-valued random variables, {Y }∞i=0 is exchangeable if and only if there

exist Q on (PY,PY) such that,

P [Y1 ∈ A1, . . . , Yn ∈ An] =

∫
PY

n∏
i=1

P (Ai)Q(dP ), (1-6)

for all n ≥ 1 and Ai ∈ B

Theorem 3 can be interpreted as that the exchangeability justifies the existence

of a random parameter at a statistical model and hence of its prior distribution Q.

This serves as a justification of the subjective view of the Bayesian statistics.

In Bayesian statistics, the parameter is considered as a random variable. The

basic principle is that all forms of uncertainty should be random, hence in this

context, θ is a random variable with values in the parameter space Θ. Since we

are interested in to model how θ is distributed, we start for proposing a specific

distribution Q given our prior knowledge about the phenomenon. This knowledge

is updated according to the data using the Bayes rule. The distribution Q is called

the prior distribution or de Finetti’s measure. Thus, the model in this context is
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given by

Y1, Y2, . . . |Θ
ind∼ PΘ,

Θ ∼ Q.

Our objective is then to determine the posterior distribution, i.e., the conditional

distribution of Θ given the data,

Q [Θ ∈ ·|Y1 = y1, . . . , Yn = yn] . (1-7)

As a consequence, we have that our grade of uncertainty about the stochastic

behavior of {Yi}∞i=1 in the light of observations should decrease if we improve our

knowledge about the parameter of the distribution. Indeed, if in the Theorem (3) we

consider PY as an infinite dimensional space, then the concept of Bayesian nonpara-

metric takes sense, and as a natural consequence of (3), we have that now we learn

about the whole infinite structure and not only on a finite dimensional parameter as

in parametric case. Under this approach, the subjectivity in the selection of Q is not

completely removed, instead is reduced to just the choice of de Finetti’s measure Q.

1.2 Dirichlet process

As in Frequentist statistics, in Bayesian statistics, there are also nonparametric

models. Such models have an infinite dimensional parameter space. In this setting,

we need to choose a prior distribution on an infinite dimensional space. The most

used prior F at the Bayesian nonparametric statistics is the Dirichlet process, which

was introduced by Ferguson (1973). This process is denoted by DP (α, F0), where F0

is a distribution function and should be thought as a prior guess of F . M is called

the mass or precision parameter since, it controls how tightly the prior is around F0.

The following definition was taken from Ferguson (1973),

Definition 3. Let Z1, Z2 . . . , Zk be independent random variables with Zj dis-

tributed Ga (Mj, 1), where Mj > 0 for some j, j = 1, 2, . . . , k. The Dirichlet dis-

tribution with parameter (M1, . . . ,Mk), denoted by Dir (M1, . . . ,Mk), is defined as

the distribution of (Y1, . . . , Yk), where

Yj =
Zj∑k
i=1 Zi

forj = 1, 2, . . . , k. (1-8)

This distribution is always singular with respect to Lebesgue measure in k-dimensional

space since Y1 +Y2 + . . .+Yk = 1. In addition, if any Mj = 0, the corresponding Yj is

degenerated at zero. However, if Mj > 0 for all j, the k−1 dimensional distribution
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of (Y1, . . . , Yk−1) is absolutely continuous with density

f (y1, . . . , yk−1|M1, . . . ,Mk) =
Γ (M1 + . . .+Mk)

Γ (M1) · · ·Γ (Mk)

(
k−1∏
j=1

y
nj−1
j

)
×

(
1−

k−1∑
j=1

yj

)Mk−1

IS (y1, . . . , yk−1) , (1-9)

where S is the simplex

S =

{
(y1, . . . , yk−1) : yj ≥ 0,

k−1∑
j=1

yj ≤ 1

}
. (1-10)

For k = 2 the expression (1-10) reduces to the Beta distribution denoted by Beta (M1,M2).

The main properties of the Dirichlet distribution are:

1. If (Y1, . . . , Yk) ∈ Dir (M1, . . . ,Mk) and r1, . . . , rl are integers such that 0 <

r1 < . . . < rl = k, then, r1∑
i=1

Yi,

r2∑
i=r1+1

Yi, . . . ,

rl∑
i=r(l+1)−1

Yi

 ∈ Dir

 r1∑
i=1

Mi,

r2∑
i=r1+1

Mi, . . . ,

rl∑
i=r(l+1)−1

Mi

 .

In particular, the marginal distribution of each Yi is Beta,

Yi ∈ Beta

(
Mj,

(
k∑
i=1

Mi

)
−Mj

)
.

2. If (Y1, . . . , Yk) ∈ Dir (M1, . . . ,Mk) then,

E{Yi} =
Mi

M
, (1-11)

E{Y 2
i } =

Mi (Mi + 1)

M (M + 1)
, (1-12)

E{YiYj} =
MiMj

M (M + 1)
for i 6= j, (1-13)

where M =
∑k

i=1Mi.

3. If the prior distribution of (Y1, . . . , Yk) is Dir (M1, . . . ,Mk) and if

P{X = j|Y1, . . . , Yk} = Yj a.s. for j = 1, . . . , k,
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then the posterior distribution of (Y1, . . . , Yk) given X = j is

Dir
(
M

(j)
1 , . . . ,M

(j)
k

)
where M

(j)
1 = Mi, if i 6= j or M

(j)
1 = Mj + 1, if i = j.

Definition 4. Let M > 0 and F0 be a probability measure defined on Ω. A Dirichlet

Process (DP) with parameters (M,F0) is a random probability measure F defined

on Ω which assigns probability F (A) to very (measurable) set A such that for

each (measurable) finite partition {A1, . . . , Ak} of Ω the joint distribution of the

(F (A1) , . . . , F (Ak)) is the Dirichlet distribution with parameters

(MF0 (A1) , . . . ,MF0 (Ak)) .

The Dirichlet process is commonly used in Bayesian nonparametric as a prior

model because it is a distribution over distributions, each realization of the process

is itself a distribution. The Dirichlet process has nature discrete, i.e., the random

realizations of F are discrete with probability 1.

From Ferguson (1973) we have that if F is a random measure then F (A) is a

random variable to any A ⊂ Ω and thus F (A) ∼ Beta {MF0 (A) ,M (1− F0 (A))}.
Such that,

E {F (A)} = F0 (A) and (1-14)

Var {F (A)} =
F0 (A) (1− F0 (A))

M + 1
. (1-15)

From (1-15) we can see that M controls the variability of realizations in the process,

thus large values of M reduces the variability of realizations around F0.

Figure 1-1 illustrates the role of the parameters in the Dirichlet process. Note,

for example, when M is small the realizations of the process have bigger deviations

from the base measure. When M is big the realizations are more concentrated

around the base measure F0.

Ferguson (1973) showed using Kolmogorov’s consistency theorem that the Dirich-

let process exists and in addition proved that is conjugate under i.i.d sampling, i.e.,

if θ1, . . . , θn is an i.i.d sample with θi|F ∼ F and F ∼ DP (M,F0) then,

F |θ1, . . . , θn ∼ DP

(
M + n,

MF0 +
∑n

i=1 δθi
M + n

)
, (1-16)

and the posterior mean is given by,

E (F |θ1, . . . , θn) =
MF0 +

∑n
i=1 δθi

M + n
. (1-17)
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Figure 1-1: Random distributions generated from the Dirichlet process prior with
varying mass parameter M . For all cases, the baseline measure corresponds to
a standard Gaussian distribution. Each case contains 10 independent realizations
with a common value for M . Note that M controls both the variability of the
realizations around F0 and the relative size of the jumps.



1.2. DIRICHLET PROCESS 9

The posterior mean is a weighted average between the base distribution F0 and

the empirical distribution function. Since the empirical distribution function is

a consistent estimator if θ′is are iid, is easy to show that when n −→ ∞, then

F (A)|θ1, . . . , θn
p−→ FT (A) for any measurable set A, being FT the true distribution

function, see e.g. Rodŕıguez & Müller (2013).

On the other hand, given the discrete nature of the Dirichlet process it can be

represented as a weighted sum of point masses. Thus, if we have θj i.i.d with prior

distribution F , which is a random measure such that F ∼ DP (M,F0), then F

can be writed as F (·) =
∑∞

j=1wjδθj (·), where w1, w2, . . . are random weights and

δθ (·) denotes the Dirac measure at θj. Sethuraman (1994) proposed a particular

form to construct the weights wj, known as the “stick-breaking” construction. This

construction considers w1 = ν1, and wj = νj
∏

k<j {1− νk} with νj ∼ Beta (1,M)

i.i.d. This constructive definition has taken an important role in the developed of

research on nonparametric mixture areas, especially, the Dirichlet process mixture

model has evidenced an increasing use for modeling complex data, see e.g. Hennig

et al. (2015), Airoldi et al. (2019).

1.2.1 Dirichlet mixture model

The Dirichlet process is a famous prior for a random probability measure, its re-

alizations or trajectories are discrete with probability 1, and dependents of two

parameters, the mass parameter M and the base measure F0. Thus, if our random

measure is discrete, then the Dirichlet process is an appropriate to model for it,

but when the random measure has continuous nature the Dirichlet process is not an

option. This limitation can be fixed by convolving the trajectories of the Dirichlet

process with some continuous kernel, see, e.g. Müller et al. (2015). This strategy

was proposed by Ferguson (1983) and Lo (1984) and later used by Escobar (1988,

1994) and Escobar & West (1995) among many others.

Suppose θ ∈ Θ be the parameter in the statistical model for the random variable

Y , where fθ(·) is a continuous density and Θ a finite dimensional parameter space,

for instance, fθ (·) could be a Gaussian density with θ = (µ, σ2), and Θ = R × R+.

Thus, given a discrete distribution function on Θ, such that θi|F
iid∼ F , where F ∼

DP (M,F0), the random variable Y has a probability density function given by

fF (y) =

∫
fθ (y)F (dθ) . (1-18)

The model in (1-18) is known as Dirichlet process mixtures model and denoted by
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DPM. This model can be written in a hierarchical way as follow,

yi|θi
ind∼ fθi ,

θi|F
iid∼ F,

(1-19)

where F ∼ DP (M,F0), θi’s are conditionally independent given F and the obser-

vations yi’s are conditionally independent of the other observations given θi.

In the next, section we present the mixture Gaussian model as a particular case

from the model in (1-19), also we discussed a strategy for the posterior inference

and ending the section with an illustration.

1.3 Density estimation with infinite mixture of

Gaussian distributions

In this section, we focus our attention in Dirichlet process mixture with Gaussian

kernel, namely, we consider fθ (·) as a Gaussian density, N (y | θ). Then, from (1-18)

we have that

fF (y) =

∫
N (y|θ)F (dθ) , (1-20)

where θ = (µ, σ2), F ∼ DP (M,F0) with M > 0, and F0 a distribution on R× R+.

Now, note that given the discrete nature of the Dirichlet process, (1-19) can be

written as a weighted infinite sum of fθj(·), j = 1, 2, . . .. Specifically, for a Gaussian

kernel, we have the following expression,

fF (y) =

∫
N (y|θ)

∞∑
j=1

wjδθj (dθ) (1-21)

=
∞∑
j=1

wj

∫
N (y|θ) δθj (dθ)

=
∞∑
j=1

wjN (y | θj)

In (1-21) we have to draw the weights wj and atoms θj =
(
µj, σ

2
j

)
for estimating of

fF (y). The wj’s are defined on the simplex space, in fact, wj > 0 and
∑∞

j=1 wj = 1,

j = 1, 2, . . .. They can be obtained by using the stick–breaking representation. Here,

obviously the essential problem is how to sample an infinite number of weights and

atoms. In next section, we discuss a strategy for posterior inference in the model

(1-21).
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1.3.1 Posterior Inference

Several strategies have been proposed for sampling DPM models. The first Gibbs

sampler for the DPM model was proposed by Escobar (1988, 1994). Many varia-

tions of the Escobar’s algorithm have been developed, see for example MacEachern

(1994), MacEachern & Müller (1998), Neal (2000). All these algorithms work in

the solution of the integral in (1-20), which is a marginal integrate on F , i.e., over a

random distribution function, and for this reason, they are called marginal methods.

In this way, they left out the problem of sampling infinite dimensional parameters.

However, some authors like Ishwaran & James (2001), Papaspiliopoulos & Roberts

(2008) and Walker (2007), have proposed strategies to sampling from (1-21), but

with a finite numbers of components in each iteration of a Markov Chain with a

correct stationary distribution, for instance, Walker (2007) resorts to ideas from

slice sampling to construct a Gibbs sampling algorithm based on four simple steps.

These latter methods are called conditional methods.

The slice sampling method to DPM proposed by Walker (2007) uses an ingenious

idea, his proposal introduces latent variables to transform (1-21) in a finite sum. Let

us define U be a latent variable, such that,

fw,θ (y, u) =
∞∑
j=1

1 (u < wj) N (y|θj) . (1-22)

We have changed the notation fF by fw,θ to indicate dependence of density function

on w and θ = (µ, σ2). Note that, when we introduce a latent variable u we solve

the problem of infinite terms at sum, because only a finite number of wj satisfies

the condition (u < wj). Walker (2007) introduced this variable without modifies

the original density, since if we marginalize over u in (1-22) we return to (1-21).

Alternatively, we can write (1-22) as

fw,θ (y, u) =
∞∑
j=1

wjUnif (u|0, wj) N (y|θj) , (1-23)

where with probability wj, Y and U are independent. Furthermore, Y and U are

Gaussian and Uniform distributed, respectively. Hence, the marginal density for U

is given by

fw,θ (u) =
∞∑
j=1

wjUnif (u|0, wj) =
∞∑
j=1

1 (u < wj) . (1-24)

Equivalently, if we consider the set Aw = {j : wj > u} we can rewrite (1-22) as,

fw,θ (y, u) =
∑

j∈Aw(u)

N (y | θj) , (1-25)
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where Aw(u) is a finite set for all u > 0. Then the conditional density for y given u

is

fw,θ (y|u) =
1

fw (u)

∑
j∈Aw(u)

N (y|θj) , (1-26)

where fw (u) =
∑

j 1 (u < wj) is the marginal density for u, with u ∈ (0, w∗) and

where w∗ is the largest wj. Thus, given a latent variable u, we have a finite mixture

model with equal weights, equal to 1/fw(u).

On the other hand, since a DPM model induce the existence of clusters, Walker

(2007) introduces an additional variable di to indicates if yi belongs to cluster k,

i.e. the new latent variable indicates which of these finite clusters provides the

observation, hence joint density distribution of (yi, ui, di) is given by

fw,θ (yi, ui, di) = 1 (ui < wdi) N (y|θd) . (1-27)

For a sample random y1, . . . , yn our likelihood function will take the form

n∏
i=1

1 (u < wdi) N (yi|θdi) , (1-28)

with θdi =
(
µdi , σ

2
di

)
. Kalli et al. (2011) summary at four steps the algorithm for the

posterior inference in the augmented model model. The variables to sampler via the

Gibbs algorithm are{(
µj, σ

2
j , νj

)
, j = 1, 2, . . . ; (di, ui) , i = 1, . . . , n

}
. (1-29)

Next, we enumerate the Gibbs sampling steps.

1. Sampling µj and σj from f
(
µj, σ

2
j | . . .

)
∝ p0

(
µj, σ

2
j

)∏
di=j

N
(
yi|µj, σ2

j

)
.

2. Drawing νj from Beta (νj|aj, bj), where

aj = 1 +
n∑
i=1

1 (di = j) ,

and

bj = M +
n∑
i=1

1 (di > j) ,

and compute the weights wj’s by “stick breaking” representation.

3. Sampling latent variable u from uniform distribution,

f (ui| . . .) ∝ 1 (0 < ui < wdi) .
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4. Sampling a number k of clusters for which wk > ui from P (di = k| . . .) ∝
1 (k : wk > ui) N (yi|µk, σ2

k). To complete this stage, we consider k as a set

{1, . . . , N} where N = maxiNi and Ni is the largest integer l for which wl > ui,

and we have to sample up to the integer N .

Finally, we include an additional step in order to update the mass parameter

M . For this, we follow the methodology discussed by Escobar & West (1995). In

consequence, we have for any k = 1, . . . , n, that the conditional distribution for M

is given by

f (M |k) ∝ f (M)Mk−1 (M + n) β (M + 1, n) , (1-30)

where β(·, ·) is the usual beta function. Then, equivalently, (1-30) can be written as

f (M |k) ∝ f (M)Mk−1 (M + n)

∫ 1

0

xα (1− x)n−1 dx. (1-31)

This suggests that f (M |k) is the marginal distribution from a joint for M and a

continuous quantity η such that

f (M, η|k) ∝ f (M)Mk−1 (M + n) ηM (1− η)n−1 , (1-32)

for M > 0 and 0 < η < 1. From (1-32), we can compute the conditional posterior

for M and for η, thus if we assume a Gamma prior distribution, Ga (c, d), for the

mass parameter, M is drawn from a mixture of two gamma densities,

f (M |η, k) = τηGa (c+ k, d− log (η)) + (1− τη) Ga (c+ k − 1, d− log (η)) (1-33)

with weights τη defined by τη/(1−τη) = (c+k−1)/(n(d−log(η))). From (1-32) the variable η

has conditional density, f (η|M,k) ∝ ηM (1− η)n−1, 0 < η < 1. Then, f (η|M,k) ∼
Beta (M + 1, n).

1.3.2 An Illustration

In this section, we provide illustrations of density estimation with infinite mixture

using the Walker’s algorithm. The data are simulated from variations of the model

Yi ∼ w1N
(
y | µ1, σ

2
1

)
+ w2N

(
y | µ2, σ

2
2

)
+ w3N

(
y | µ3, σ

2
3

)
. (1-34)

The hyperparameters for the Gaussian prior distribution of µj, j = 1, 2, 3, was fixed

at mean 0 and variance 1/s, with s = 0.1. For the parameter precision λj = 1/σ2
j ,

i = 1, 2, 3, we assume a Gamma prior distribution, Ga (ε, ε) with ε = 0.5. We draw

the atoms θj = (µj, σj) from the conditionals

f (µj| . . .) = N

(
ξjλj

mjλj + s
,

1

mjλj + s

)
, (1-35)
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f (λj| . . .) = Ga

(
ε+

mj

2
, ε+

n∑
i=1

1 (di = j) (yi − µj)2

)
, (1-36)

where ξj =
∑n

i=1 yi1 (di = j) and mj =
∑n

i=1 1 (di = j). On the other hand, for

the mass parameter M we fixed the hyperparameters for the gamma distribution

at c = 2 and d = 10. The table (1-1) presents the simulation cases used in the

illustration of the density estimation procedure.

Scenarios ωi µ1 σ1 µ2 σ2 µ3 σ3

I
0.5
0.5
0.0

−2 1 −2 1

II
0.7
0.3
0.0

−2 1 2 1

III
0.25
0.25
0.50

−4 1 0 1 8 1

IV
0.05
0.15
0.80

−4 1 0 1 8 1

Table 1-1: Parametrization of model (1-34), scenarios I to IV show the variations
of the model used to illustrate the density estimation.

The figure 1-2 displays the result of the fit in each simulated scenario via a

Dirichlet mixture model. We consider a sample size n = 100 for the four scenarios.

The base measure for the Dirichlet process, F0, was assumed as a Gaussian distri-

bution.

Next, we introduce some aspects of hypothesis testing from a Bayesian point of

view as well some elements of Bayesian variable selection in the regression model,

which will be key ingredients in the setting of our procedure.

1.4 Hypothesis Testing and Model Selection

In this section, we follow some basic ideas exposed by Berger (1985) and Ghosh et al.

(2007) for introducing the hypothesis testing procedures under a Bayesian approach

of inference. For starting, suppose that a random variable Y , with density f (y | θ)

is observed with θ an unknown element of the parameter space Θ, and that we are

interested in testing

H0 : Y has density f (y | θ) where θ ∈ Θ0, (1-37)

H1 : Y has density f (y | θ) where θ ∈ Θ1.
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Figure 1-2: Density estimation for scenarios I to IV. (a) Scenario I, (b) Scenario
II, (c) Scenario III, (d) Scenario IV. The dotted red line is the posterior mean f̂w,θ,
while the black continuous line is the “true” density. The gray regions correspond
to 0.95 point-wise credibility sets.
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In classical hypothesis testing, this procedure is developed concerning two types of

errors, the error type I and type II, which can be interpreted as the chance with an

observed sample the test statistic leads to take a wrong decision. In Bayesian anal-

ysis, the goal is to compute the posterior probability for H0 and H1 and then takes

a decision accordingly. To that end, we suppose that gi (θ) is the prior distribution

of θi, conditional on Hi, i = 0, 1, then we can decide between H0 and H1 using the

quantity known as Bayes Factor (BF),

BF (y) =
h0 (y)

h1 (y)
, (1-38)

where y = (y1, . . . , yn) denotes a random sample from Y and

hi =

∫
Θi

f (y | θ) gi (θ) dθ i = 0, 1 (1-39)

If, further we consider π0 = P (Θ0) and π1 = 1−P (Θ0) as the prior to H0 and H1,

respectively, then the posterior odds ratio of H0 relative to H1,(
π0

1− π0

)
BF (y), (1-40)

could be used to decide about H0. However, the former computations may not be

easy to perform depending on the complexity of the model. A possible solution is

to approximate the BF via the Bayesian Information Criterion (BIC) as proposed

by Schwarz (1978) or to resort to other approximations in the MCMC posterior

algorithm.

1.4.1 Bayesian Variable Selection in Regression Models

Variable selection is a traditional problem in Statistic, and especially in regression

models. The goal is to select from a list of regressors those that have a signifi-

cant effect on the response variable, and therefore which should be included in the

model. In Bayesian variable selection, many methods have been proposed (Mitchell

& Beauchamp 1988, George & McCulloch 1993, Chipman 1996, Geweke 1996, Kuo

& Mallick 1998, Chipman et al. 2001, Ishwaran & Rao 2003, 2005), most of them

based on the mixture of two components as the prior distribution for the parameters

in the regression model. This prior is a mixture of a spike and slab distributions,

the spike concentrated at zero and the slab comparably flat.

The Section follows the ideas exposed by Ishwaran & Rao (2005), Wagner &

Malsiner-Walli (2011) to explain the role of the spike-slab prior in the variable se-

lection procedure. To begin, let us consider the standard linear regression model,
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given by

Yi = β0 + β1xi,1 + . . .+ βKxi,k + εi, i = 1, . . . , n (1-41)

with n independent responses Yi and K-dimensional covariates xi = (xi,1, . . . , xi,K)T ,

where εi
ind∼ N (0, σ2). The goal is to find the subset of parameters (β1, . . . , βq)

T

nonzero. Here, the spike-slab distributions are used as prior on the parameters for

being selected. To specify the spike-slab prior on the parameter vector (β1, . . . , βK)T

an indicator vector δ = (δ1, . . . , δK) is defined, where δK takes the value of 1 if βK
is allocated to the slab component and zero if it is assigned to the spike. Thus, if

the parameters βk are assumed independent a priori, then spike-slab prior for the

parameter vector β can be specified as

p (β | δ) =
∏

j:δj′=1

pslab (βδj′)×
∏
j:δj=0

pspike (βδj) , (1-42)

where pslab and pspike denote the univariate slab and spike distribution, respectively,

and p(δi = 1 | wj) = wj with wj ∼ Beta(aw, bw). Two types of spike distributions

are common in the Bayesian literature, absolutely continuous and a point mass at

zero, so called Dirac spikes.

Absolutely continuous Spike

An absolutely continuous spike prior can be any continuous unimodal distribution

with mode at zero (Wagner & Malsiner-Walli 2011). A popular version of the spike-

slab prior, where this two components are specified from the same distribution was

proposed by George & McCulloch (1993), here the prior distribution is a mixture of

two Gaussian distributions

βk | ζk
ind∼ (1− ζk) N

(
0, τ 2

k

)
+ ζkN

(
0, c2

kτ
2
k

)
k = 1, . . . , K, (1-43)

where τ 2
k > 0 is some suitably small value, and ck > 1 is some suitably large value.

In consequence, if ζk = 1 then βk will have a prior with large hypervariance and the

values drawn in the posterior distribution will be large for βk. The opposite occurs

when ζ = 0. As highlighted in George & McCulloch (1993, 1997), the choice of τ 2
k

and ck are not an easy task. They suggest choice this hyperparameters of such that
Varspike(βk)/Varslab(βk)� 1. Thus, if βk ∼ N (0, τ 2

k ), then βk can be safely replaced by

0 (George & McCulloch 1993). Under this setting, usually, the random variables δk
are taken as independent from a Bernoulli (wk) where 0 < wk < 1. To deal with the

laborious task of choose values for ck and τ 2
k , Ishwaran & Rao (2000) proposed to

relax the choosing of this couple of parameters through a continuous bimodal prior

distribution for γk = ζτ 2
k . As a result, they defined the following prior hierarchical
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for βk

βk | ζk, τ 2
k

ind∼ N
(
0, ζkτ

2
k

)
, k = 1, . . . , K (1-44)

ζk | ν, w
i.i.d∼ (1− w)δν0 (·) + wδ1 (·) ,

τ−2
k | a1, a2

i.i.d∼ Gamma (a1, a2) ,

w ∼ Uniform [0, 1] .

In (1-44) ν0 is a small value near zero and the hyperparameters a1 and a2 are chosen

so that γk = ζτ 2
k has a continuous bimodal distribution with spike at ν0 and a

right-continuous tail. The ν0 parameter is important because it allows shrinking

the hypervariance and obtains posterior values for βk near zero, while the right

tail is used to identify nonzero βk. In this hierarchical model the parameter w

control the size of the model, since its value has a link with how likely is that ζk
equals to 1 or ν0 (Ishwaran & Rao 2003, 2005). The prior proposed in (1-44) is

known as a Gaussian mixture of inverse Gamma distributions. Here, marginally

both spike and slab components are student distributed, pspike (βk) = t2a1 (0, ν0
a2/a1)

and pslab (βk) = t2a1 (0, a2/a1). Later, Ishwaran & Rao (2005), in order to control the

reduction of the prior effect, as occur for any prior when the sample size increases,

propose to introduce a rescaled spike-slab prior that involves replacing the responses

Yi with ones transformed by
√
n factor. As a consequence, they have to include in

the model a factor for adjusting the variance in the new data.

Dirac Spike

The Dirac spike is defined as P (βk | ζk = 0) = δ0 (βk), thus, any mixture of a Dirac

delta that put mass at zero with a slab continuous distribution, could be considered

as a spike-slab prior distribution. Here, the prior distribution for βk is given by,

βk | ζk
ind∼ (1− ζk) δ0(·) + ζkN

(
0, τ 2

k

)
k = 1, . . . , K, (1-45)

where δ0(·) denotes the Dirac-measure at zero and τ 2
k > 0. As before, ζk is a Bernoulli

variable that takes values 0 or 1, with P (ζk = 1 | w) = w and 0 < w < 1. Bayesian

variable selection with spike-slab priors can be developed via MCMC methods Wag-

ner & Malsiner-Walli (2011). In particular, to simulate from the Dirac spike it is

necessary to compute the marginal likelihood, namely, integrating over the param-

eter involved in the selection, in each step of the Gibbs sampling. On the contrary,

this is not necessary when the spike prior is an absolutely continuous distribution.

However, under this last, an approximation of P (βk = 0 | Data) is provided (George

& McCulloch 1993).

Once the prior distribution on the parameters of the model has been defined,

the coming step is to choose the prior distribution on the model space. In the
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next section, we discuss the prior distribution on the model space to complete the

background necessary to define a Bayesian hypothesis procedure properly.

1.4.2 Prior distribution on space of models

In this section, we follow the ideas exposed by Taylor-Rodŕıguez et al. (2016), we

present priors distribution usually used in variable selection under a hierarchical con-

dition in the model. The relevance of respecting the polynomial hierarchical among

variables in model variable selection is explained by Peixoto (1990). A model accom-

plishes with a strong hierarchical condition if for any predictor in the model, every

lower-order predictors associated with it is included in the model (Griepentrog et al.

1982, Peixoto 1987, 1990, McCullagh & Nelder 1989, Nelder 2000). Bayesian variable

selection, in models for which the hierarchical structure is respected, consists in the

comparison of models m̃ in a model space M through their posterior probabilities,

which are given by p (m̃ | y,M) ∝ π (y | m̃) πm̃ (m̃ | M). So that, these probabilities

depend on the prior on the model space as well as on the prior on the model-specific

parameters. Different prior structures on model spaces that accomplish the weak and

the strong Hierarchical condition are developed in Taylor-Rodŕıguez et al. (2016).

For instance, let us consider as predictors in a regression model the intercept, x1, x2

and the interaction x1x2. Then, a model that includes the intercept, x1, and x1x2,

is a model that satisfies the weak hierarchical condition, whereas if it also includes

x2, then it satisfies the strong hierarchical (SH) condition . In particular, for this

thesis, our interest is on models that satisfy the strong hierarchical condition. Un-

der the SH condition, the posterior concentrates on a single best model within the

model space, while under Weak Hierarchical (WS) condition does not occur Taylor-

Rodŕıguez et al. (2016).

Next, we provide five prior specifications on models space proposed by Taylor-

Rodŕıguez et al. (2016). For starting, we introduce the essential elements and nota-

tion used in these definitions. Let us consider the polynomial regression model,

y =
∑

β(α1,...,αk)

k∏
j=1

x
αj
j + ε, (1-46)

where y is the vector of observations, (α1, . . . , αk) = α ∈ Nk
0, where Nk

0 is the set of

natural numbers including 0, ε ∼ N (0, σ2I). Thus, for x2
1x2 the vector α is equal to

(2, 1), and the order of a term in the model is given by
∑
αj, therefore the order for

x2
1x2 is 3. In (1-46) we denote the base model by m̃B, which consist of terms that

are not subject to selection and is nested in the full model, denoted by m̃F .

In order to define the prior probability for m̃, Taylor-Rodŕıguez et al. (2016) used

the assumptions of conditional independence and immediate inheritance, exposed by
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Chipman (1996). In consequence, if two nodes, α and α′ have the same order j,

then γα and γα′ are assumed conditionally independent given γ<j(m̃) = ∪j−1
v=0γ

v(m̃),

where γα is an indicator function describing whether α is included in m̃. On the

other side, the immediate inheritance is defined as the probability that the node α

with order j be included in the model m̃ given that it contains all the lower-order

predictors associated to it, this set is known as the parent set for γ and denoted by

P(α), formally, π (γα(m̃) = 1 | γ<j(m̃),M) = π
(
γα(m̃) = 1 | γP(α)(m̃),M

)
. Un-

der the assumptions of conditional independence and immediate inheritance, the

probability of m̃ is

π(m̃ | πM,M) =
∏

πα(m̃)γα(m̃) (1− πα(m̃))(1−γα(m̃)) ,

with πM = {πα(m̃) : α ∈ Υ(m̃F ), m̃ ∈M} and where Υ(m̃) and C(m̃) are used to

denote the sets Υ(m̃) = m̃\m̃B and

C(m̃) = {α ∈ Υ(m̃F )\Υ(m̃) : m̃ ∪ {α} satisfies the SH condition}.

Then, under the SH condition, πα(m̃) = 0 if γP(α)(m̃) = 0. Below, we present the

prior distribution proposed by Taylor-Rodŕıguez et al. (2016).

Hierarchical Uniform Prior (HUP)

The HUP assumes that nonzero probabilities on the space of models are all equals.

Specifically, for a model m̃ ∈ M is assumed that the prior πα(m̃) = π for all α ∈
Υ(m̃) ∪ C(m̃). Then, if we complete the Bayesian formulation with π ∼ Beta (a, b)

we have

πHUP (m̃ | M, a, b) = B (|Υ(m̃)|+ a, |C(m̃)|+ b) /B(a, b),

where B is the beta function. The HUP assigns equal probabilities to all models for

which the sets Υ(m̃) and C(m̃) have the same cardinality.

Hierarchical Independence Prior (HIP)

This prior assumes that all πα(m̃) are different, such that πα(m̃) ∼ Beta (aα, bα),

then the prior probability of m̃ under the HIP is

πHIP (m̃ | M,a, b) =

 ∏
α∈Υ(m̃)

aα
aα + bα

 ∏
α∈C(m̃)

bα
aα + bα

 ,

where the product over the empty set is assumed equal to 1. Under the SH condition,

the HIP with parameters aα = bα = 1 coincides with the Chipman’s prior, where

the conditional inclusion probability is 0.5 for each term.
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Hierarchical Order Prior (HOP)

This prior assumes equality between the nonzero πα(m̃) with the same order and

independence across the different orders. Define Υj(m̃) = {α ∈ Υ(m̃) : order(α) =

j} and Cj(m̃) = {α ∈ C(m̃) : order(α) = j}. Here, πα(m̃) = π(j)(m̃) for all

α ∈ Υj(m̃) ∪ Cj(m̃), and π(j)(m̃) ∼ Beta (aj, bj) provides a prior probability, then

πHOP (m̃ | M,a, b) =

JmaxM∏
j=JminM

(
B (|Υj(m̃)|+ aj, |Cj(m̃)|+ bj)

(B (aj, bj))

)
,

if aj = bj = 1 we have the hierarchical version of the Scott & Berger (2010) multiplic-

ity correction. Now, if we consider aj = 1 and bj = |Υj(m̃)∪Cj(m̃)|, then we have the

hierarchical penalization introduced by Wilson et al. (2010). This parametrization

produces a penalization more strong as the model becomes more complex.

Hierarchical Length Prior (HLP) and Hierarchical Type Prior (HTP)

These priors penalize by the number of nodes that α has connection, namely, whose

nodes with more connections in a model’s graph should be penalized differently from

nodes that have fewer connections. These priors are equivalent when maximum order

in the m̃F is 3. In particular, for the HLP, the set of nodes in Υj(m̃) ∪ Cj(m̃) are

given by

(Υj(m̃) ∪ Cj(m̃))` = {α ∈ Υj(m̃) ∪ Cj(m̃) : length(α) = `} ,

which are assumed as independent across the different length groups but the nodes

within a given (Υj(m̃) ∪ Cj(m̃))` are exchangeable, namely, nodes of a given order

with the same number of parents in m̃F are assumed to be exchangeable, as long as

their inclusion satisfies the hierarchical condition ofM. On the other hand, for the

HTP, the nodes group is defined by

(Υj(m̃) ∪ Cj(m̃))t = {α ∈ Υj(m̃) ∪ Cj(m̃) : type(α) = t} ,

thus the nodes that have the same type are assumed exchangeable.

As already mentioned, the elements presented in this chapter are the main in-

gredients in the development of the thesis. With these in mind, we propose novel

nonparametric Bayesian hypothesis testing procedures. In Chapter 2, our proposal

is focused on paired data, and we would like to compare the distributions of these

dependent populations. We present the hierarchical model on which the hypothesis

testing has been set up as well as a posterior inference algorithm. We provide a

Monte Carlo study for assessing the performance of our methodology, at the ending

of Chapter 2 we supply an example with real data. In Chapter 3, we deal with
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the modeling of longitudinal data, where a set of independent experimental units

are measured through the time, and the goal is to test whether some predictors

have an effect on the response variable. We propose a flexible procedure based on

a Dependent Dirichlet process, for modeling the correlation structure among the

observations from the same experimental unit, and we use the theory of variable

selection and the priors on the model space to set up the hypothesis testing proce-

dure. Like in Chapter 2, we supply examples with simulated data for assessing the

performance of our proposal, an example with real data is also included. Finally,

in Chapter 4, we present a general discussion on the results from Chapter 2 and 3,

as well as future works and open problems. It is worth mentioning that Chapters 2

and 3 are self-contained.



Chapter 2

A Bayesian nonparametric testing

procedure for paired samples

2.1 Abstract

We propose a Bayesian hypothesis testing procedure for comparing the distributions

of paired samples. The procedure is based on a flexible model for the joint distribu-

tion of both samples. The flexibility is given by a mixture of Dirichlet processes. Our

proposal uses a spike-slab prior specification for the base measure of the Dirichlet

process and a particular parametrization for the kernel of the mixture in order to fa-

cilitate comparisons and posterior inference. The joint model allows us to derive the

marginal distributions and test whether they differ or not. The procedure exploits

the correlation between samples, relaxes the parametric assumptions and detects

possible differences throughout the entire distributions. A Monte Carlo simulation

study comparing the performance of this strategy to other traditional alternatives

is provided. Finally, we apply the proposed approach to spirometry data collected

in the U.S. to investigate changes in pulmonary function in children and adolescents

in response to air polluting factors.

Keywords: Spike-slab priors; Dirichlet Process; Shift function; Mixture model;

Dependent samples.

2.2 Introduction

Bayesian nonparametric models have shown to be a powerful alternative to para-

metric statistical models (see, e.g., Ghosh & Ramamoorthi 2003, Müller & Quintana

2004, Hjort et al. 2010, Müller & Mitra 2013). The literature on hypothesis test-

ing from the Bayesian nonparametric (BNP) standpoint is relatively new, and has

focused on few, and very specific problems. Comparisons between two independent

samples has received most of the attention; some proposals based on Pólya tree pri-

23



24 CHAPTER 2. BNP TESTING PROCEDURE FOR PAIRED SAMPLES

ors can be found in Ma & Wong (2011), Chen & Hanson (2014), Huang & Ghosh

(2014), Holmes et al. (2015), and Soriano & Ma (2017). Proposals based on Dirich-

let process priors are provided in the works of Borgwardt & Ghahramani (2009),

Bhattacharya & Dunson (2012), Shang & Reilly (2017), and Al-Labadi & Zarepour

(2017). BNP methods for dependent or paired samples include the works of Fil-

ippi et al. (2016), Filippi & Holmes (2017). Both of these works test for dependence

between the two samples using Dirichlet processes and Pólya tree priors, respectively.

In the context of multiple hypothesis testing, some developments are found in

the works of Gopalan & Berry (1998), Scott (2009), Kim et al. (2009), Cipolli III

et al. (2016) and Gutiérrez et al. (2019) among others. Although the literature on

BNP hypothesis testing is growing, there is still room to relax the constraining, and

often times untenable assumptions predominant in the classical hypothesis testing

literature, and propose more realistic procedures. A classical, and particularly im-

portant problem in a wide variety of scientific inquiries, is that of paired sample

comparison, but is yet to be suitably formulated from the BNP standpoint, which

constitutes the focus of this article.

In order to formalize the comparison of two dependent samples, let Yij, i =

1, . . . , n be random variables which represent the measurements for the i-th individ-

ual or sample unit at a time j, with j = 1, 2. For instance, the measurements could

represent the responses of patients before and after the application of a treatment.

Thus, for each individual, we have a bivariate vector Yi = (Yi1, Yi2)t, which follows

a joint distribution G(·) with support in R2. Our aim is to develop a Bayesian

nonparametric hypothesis testing procedure to perform comparisons between the

marginal distributions of Yi1 and Yi2 denoted by G1(·) and G2(·), respectively. In

particular, we would like to test the following hypotheses

H0 : G1(·) = G2(·) vs. H1 : G1(·) 6= G2(·), (2-1)

which synthesize the paired sample testing problem. Following a Bayesian approach,

our goal is to assess the strength of the evidence in favor of both of these hypothe-

ses by means of their posterior probabilities. Furthermore, if the evidence for H1

is stronger, we want to visualize in which aspects (i.e., regions of the support) the

distributions differ. For instance, if we consider a typical situation for paired sample

testing, in which we would like to determine the effect of a treatment on a particular

health outcome measurement, there exists the possibility that the effect varies across

members of the population. In these situations the differences between the distribu-

tions could be reflected, as an increased dispersion or as changes in the symmetry

of the distribution. Hence, traditional paired sample tests may prove ineffective, as

many of these are exclusively aimed at detecting differences in location or scale of

the distributions.
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The most popular procedure for this type of data is the T-test for paired sam-

ples proposed by Student (1908). This test follows a parametric approach to infer

about differences in the location parameters in G1 and G2 assuming a Gaussian

distribution. In particular, the paired T-test bases the inferences on the differences

Di = Yi2 − Yi1 for each subject. A popular alternative for testing differences in

scale in paired samples is the Morgan-Pitman test (Morgan 1939, Pitman 1939).

The Morgan-Pitman test is based on the correlation coefficient between two linear

combinations of the variables Y1 and Y2, which are assumed to follow a bivariate

Gaussian distribution. Among the nonparametric procedures available to compare

paired samples are the Wilcoxon signed-rank test (Wilcoxon 1945) and its Bayesian

version proposed by Benavoli et al. (2014). While the Wilcoxon test is also based

upon the differences Di, it relaxes the parametric assumptions required for the T-

test. The method proposed by Benavoli et al. (2014) uses a Dirichlet process as a

prior on the Di’s.

Asides from the Morgan-Pitman test, all of the alternatives mentioned above

depend on the Di’s to compare paired samples; however, using the Di’s with this

purpose has been shown to be problematic. For paired sample T-tests, Zimmerman

(1997) found that the sign of the correlation between the measurements can impact

the power of the test. In particular, positive correlations increase the probability of

rejecting the null hypothesis when it is false. Conversely, negative correlations re-

duce such probability. This is because Var (D) = Var (Y2)+Var (Y1)−2Cov (Y1, Y2),

thus tests based on the differences D lose power as the correlation between Y1 and Y2

approaches minus one, since the variance of D increases when the sign of Cov (Y1, Y2)

is negative. Having noticed this issue, Girón et al. (2003) developed an alternative to

the paired T-test via a model selection approach. This strategy uses a hierarchical

model to represent the dependence between the measurements for each individual

under a bivariate Gaussian distribution.

Although the proposal in Girón et al. (2003) considers the dependence in the

paired observations, it relies on strong parametric assumptions, such as normal-

ity and a positive correlation structure between the paired samples, restricting its

applicability. In this work, we propose a novel BNP hypothesis testing procedure

based on the joint distribution G(·) that explicitly accounts for the dependence be-

tween the samples, bypassing the restrictive assumption on the sign of the covariance

structure. The inference on G(·) is based on an infinite mixture model (see, e.g.,

Ghosh & Ramamoorthi 2003, Müller & Quintana 2004, Hjort et al. 2010, Müller

& Mitra 2013), where the mixing distribution follows a Dirichlet process (Ferguson

1973, 1974). This formulation provides flexibility in the estimation of G(·) and,

consequently, in the marginal distributions G1(·) and G2(·). We consider a con-

tinuous version of the spike-slab prior (Mitchell & Beauchamp 1988) for the base
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measure of the Dirichlet process and a conditionally independent parametrization

of the bivariate kernel in the mixture. These choices define a Bayesian hypothesis

testing procedure, which yields estimates for P(H0 | Y ) and P(H1 | Y ). In addition,

due to the nonparametric nature of our procedure, we are able to detect differences

across the entire distribution and not only in location and scale as in the traditional

alternatives. Finally, whenever differences between the two marginal distributions

are identified, these differences can be further investigated using the shift function

(see, e.g., Doksum 1974, Doksum & Sievers 1976, Hollander & Korwar 1980, Wells

& Tiwari 1989, Lu et al. 1994).

The remainder of the manuscript is organized as follows. In Section 2.3, we

present the proposed paired-sample hypothesis testing procedure, providing details

about the parametrization of the bivariate kernel and the definition of the prior on

the random mixing distribution. In Section 2.4, we present a general outline for how

to conduct posterior inference using the proposed methods, together with a strategy

to visually compare differences between the distributions. A Monte Carlo simula-

tion study is provided in Section 2.5, comparing the performance of our procedure

against some traditional alternatives. In Section 2.6, we show an application on real

data from a spirometry study. Finally, in Section 2.7, we present a discussion and

concluding remarks.

2.3 The proposed hypothesis testing procedure

In this section, we develop the proposed methods to perform hypothesis testing of

paired samples. Suppose that the random vectors Y i (1 ≤ i ≤ n) with support in

R2, are independent and identically distributed (i.i.d.) from the joint distribution

G(·). Assume that G is absolutely continuous with respect to the Lebesgue mea-

sure. Hence, G(·) has density g(·) which is specified by the following nonparametric

Bayesian mixture model,

Y i | F
iid∼ g(·) :=

∫
Θ

K (· | θ) dF (θ), i = 1, . . . , n (2-2)

F | Hζ ∼ DP
(
M,F0|Hζ

)
,

Hζ ∼ πM.

In (2-2) K (· | θ) is a continuous kernel and F is a random probability measure which

follows a Dirichlet process, with parameters M and F0|Hζ . M is called the mass pa-

rameter of the process, because it controls the variability of the realizations from the

process around the base measure F0|Hζ , which can be thought as a prior to F . Note

that, the specification of F is conditional on the hypotheses Hζ , where ζ ∈ {0, 1}
and πM is a prior on the space of hypotheses M = {H0, H1}. A natural choice for
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the prior πM over the discrete space M is a Bernoulli distribution with parameter

π = P (H1). We complete the specification for this part of the model by letting π fol-

low a Beta(1/2, 1/2) prior, which corresponds to the Jeffreys prior for proportions.

This prior pushes most of its probability mass towards values near zero and one,

making it suitable for testing.

2.3.1 Parametrization of K(· | θ)

Our testing strategy is completed by specifying the kernel K(· | θ). Given the support

of the observations, a natural choice for K(· | θ) is a bivariate Gaussian distribution

N2(· | θ), θ = (µ,Σ). Considering the nature of the problem, the parametrization

for the kernel must accommodate the hypothesis testing problem specified in (2-1).

To this end, note that the bivariate Gaussian distribution can be expressed as,

N2(y1, y2 | θ) =

∫
N(y1 | θ, φ)N(y2 | θ, φ)dφ, (2-3)

where φ is a nuisance parameter such that Y1 and Y2 are conditionally independent

given φ. The formulation provided in (2-3) is widely used in mixed models (see,

e.g. Eisenhart 1947, Henderson 1953, Fahrmeir et al. 2013), where the parameter φ

represents a random effect. The random effects model yields marginals that only

allow for positive correlations between the repeated measures (Fitzmaurice et al.

2009, p. 6). However, our formulation must capture both positive and negative

correlations between the paired samples. In order to deal with this restriction,

we propose an alternative straightforward conditionally independent formulation,

that enables capturing both positive and negative correlations between the paired

samples. The conditional model is given by

Yij = β1 + β2Xij + Zijδi + εij, i = 1, . . . , n, j = 1, 2, (2-4)

εi1
iid∼ N

(
0, σ2

1

)
,

εi2
iid∼ N

(
0, σ2

1σ
2
2

)
,

δi
iid∼ N

(
0, τ 2

)
,

In model (2-4) β1 corresponds to the mean value of Y1 and β2 represents the mean

shift of Y2 in relation to Y1. Xij is a given known value, which takes the values 0 if

the i-th observation was taken at time j = 1 and 1 if it was taken at time j = 2.

The variable Zij is a latent variable that takes the values −1 or 1, with probability

mass function given by

P (Zij = zij) =

{
γj if zij = −1,

1− γj if zij = 1,
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where γj ∼ Beta(a, b) and the precision 1/τ 2 follows a Gamma distribution denoted

by Ga(1/τ 2 | a0, b0) with E(1/τ 2) =
a0

b0

and V ar(1/τ 2) =
a0

b2
0

. This parametrization

for the Gamma distribution will be used in the remainder of the manuscript. The

random effects δi and the error terms εi1, εi2 are assumed to be mutually independent.

The conditional model (2-4) follows the representation in (2-3) with φ = (δi, Zi1, Zi2).

Proposition 1. From the conditional model in (2-4) we have:

1. The marginal model is given by Y ∼ N2 (µ,Σ), where

µ =

(
β1

β1 + β2

)
and Σ =

(
σ2

1 + τ 2 (1− 2γ1)(1− 2γ2)τ 2

(1− 2γ1)(1− 2γ2)τ 2 σ2
1σ

2
2 + τ 2

)
.

2. −1 < Corr(Y1, Y2) < 1.

Proof. The proof is given in the Appendix A.

We adopt the parametrization of Proposition 1 for the bivariate Gaussian ker-

nel because: 1) the parameters β2 and σ2
2 capture the possible differences between

the 1st and 2nd measurements, making this formulation amenable to testing the

hypotheses in (2-1) (see Remark 1); 2) the conditional representation of (2-4) fa-

cilitates posterior sampling given the simplicity of the structure provided by the

hierarchical representation (see the details in Section 2.4); 3) positive and negative

covariance values between the paired observations can be captured.

Remark 1. From model (2-2) and Proposition 1 we have that the joint and the

marginals distributions can equivalently be expressed as

G (·) =
∑
h≥1

whΦ2 (· | µh,Σh) ,

G1 (·) =
∑
h≥1

whΦ
(
· | β1h, σ

2
1h + τ 2

h

)
,

G2 (·) =
∑
h≥1

whΦ
(
· | β1h + β2h, σ

2
1hσ

2
2h + τ 2

h

)
,

where Φ (·) denotes the Gaussian cumulative density function, µh and Σh are defined

as in Proposition 1.

Note that, the sign of the covariance in Σ is determined by γ1 and γ2, and the

magnitude is mainly captured by τ 2. For instance, if γ1 or γ2 is close to 0.5, the

covariance is close to zero. If γ1 and γ2 are less than 0.5, then the covariance is

positive. Finally, if γ1 < 0.5 and γ2 > 0.5 (or viceversa) the covariance is negative.

The previous parametrization allows us to define the hypothesis testing procedure

properly, with a minimum cost in the correlation, which can not take the singleton

values {-1} and {1}. However, as we will show in Section 2.4, such a restriction

rarely poses a problem in practice.
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2.3.2 Induced prior on the random measure F

Given the discrete nature of the Dirichlet process, F can be expressed as a weighted

sum of point masses such that F (·) =
∑∞

h=1whδθh(·), where w1, w2, . . . are random

weights and θ1, θ2, . . . are i.i.d. random variables from the distribution F0|Hζ . Here,

δθ (·) denotes the Dirac measure at θ. In the above specification, the weights wh’s can

be obtained via the “stick-breaking” construction proposed by Sethuraman (1994).

Under this specification, the weights are given by w1 = ν1 and wh = νh
∏

k<h(1−νk),
where νh

iid∼ Beta(1,M). To build additional flexibility into the model, we assume a

Gamma distribution for the parameter M denoted by Ga(M | a1, b1).

Now, for the base measure F0|Hζ (explicitly dependent onHζ) we adopt a modified
version of the continuous spike and slab formulation of Ishwaran & Rao (2005), which
defines a hypothesis testing procedure. In particular, the base measure under H0 is
defined as

F0|Hζ : N2

(
(β1h, β2h)T | µ0 = (0, 0)T ,Σ0 = diag

[
ψ, κ

(
1(ζ=1) + ν01(ζ=0)

)])
× (2-5)

Ga
(
1/σ2

1h | ε, ε
)

Ga
(
1/σ2

2h | s
(
1(ζ=1) + ν−1

0 1(ζ=0)

)
, s
(
1(ζ=1) + ν−1

0 1(ζ=0)

))
,

which is completed with the specification of the hyperpriors on κ and s given by

1

κ
∼ Ga (a2, b2) , (2-6)

s ∼ Ga (a3, b3) .

The values ai, bi, i = 2, 3, are chosen so that the Var(β2h) and Var(1/σ2
2h) have a continu-

ous bimodal distribution with a spike at ν0 and a right continuous tail as in Ishwaran &

Rao (2005). The ν0 value is chosen so that ν0 is a positive near-zero value. Thus, if ζ = 0

(supporting H0), then the base measure corresponds to the spike, meaning that the atoms

{β2h}h≥1 and
{
σ2

2h

}
h≥1

follow distributions with a small variance tightly concentrated

about 0 and 1, respectively. On the contrary, when ζ = 1 (supporting the alternative H1)

the base measure is the slab component of the density.

Following Ishwaran & Rao (2005), we fixed the hyperparameters in (2-6) at a2 = 5,

b2 = 1, a3 = 5, b3 = 50, and ν0 = 0.1. Figure 2-1 shows the behavior of the spike-

slab prior density for the hypervariance in (2-5) when fixing π = P (ζ = 1) = 0.5. The

remainder of the hyperparameters in (2-5) were fixed at ψ = 10 and ε = 0.1, so that the

prior for the parameters β1h and σ2
1h are relatively uninformative. Exact computation of

P (H0 | Data) is unviable as it requires marginalizing over {β2h}h≥1 and
{
σ2

2h

}
h≥1

the

infinite dimensional model in (2-2) (Geweke 1996, Smith & Kohn 1996, Malsiner-Walli

et al. 2011)
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Figure 2-1: Conditional density for the hypervariances ϕ1 = Var(β2h) and
ϕ2 = Var (1/σ2

2h): (a) fϕ1(ϕ1 | ζ, ν0, π) = π InvGa (ϕ1 | a2, b2) + 1/ν0 (1 −
π) InvGa (ϕ1/ν0 | a2, b2), with a2 = 5 and b2 = 1. (b) fϕ2(ϕ2 | ζ, ν0, π) =
π InvGa (1/ϕ2 | a3, b3) + 1/ν0 (1 − π) InvGa (ν0/ϕ2 | a3, b3), with a3 = 5, b3 = 50.
In both cases we set (for illustration purposes) π = 0.5 and ν0 = 0.1.

2.4 Posterior inference

We now turn to a general description of the approach proposed to conduct posterior

inference. First, we develop the Gibbs sampling algorithm used to obtain posterior draws

from model (2-2). In the second part of this section, we supply a formal definition of the

shift function, and a strategy to derive it from the Gibbs algorithm.

2.4.1 Gibbs algorithm

In order to fit Dirichlet process mixture (DPM) models, one must deal with the estimation

of infinite-dimensional parameters. Several strategies exist to sample DPM models (e.g.,

Escobar 1988, 1994, MacEachern 1994, MacEachern & Müller 1998, Neal 2000, Walker

2007, Kalli et al. 2011); among them we consider the method of Walker (2007) for its

efficiency due to the slice sampling step, which adapts the number of components in the

mixture according to the complexity of the data, thus reducing the infinite dimensional

space to a finite one. Given the discrete nature of the Dirichlet process, from Remark in

1, we have that the mixture model in (2-2) can be rewritten as the weighted infinite sum

of continuous kernels given by

g (y) =
∑
h≥1

whN2 (y | θh) , (2-7)
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where θh = (µh,Σh). Walker (2007) defined an augmented model given by

g (y, u) =
∑
h≥1

1 (u < wh) N2 (y | θh) , (2-8)

where u is Unif(0, 1). The model in (2-8) is finite, because only a finite number of wh’s

satisfy the condition (u < wh). Augmenting the likelihood with u does not alter the original

density; in fact marginalizing Equation (2-8) over u leads back to Equation (2-7). Since

the DPM model induces the existence of clusters, Walker (2007) introduces an additional

membership latent variable denoted by di, i = 1, . . . , n. This variable labels the cluster

each observation is generated from, resulting in the augmented joint likelihood given by

g(y,u,d) ∝
n∏
i=1

1 (ui < wdi) N2(yi | θdi). (2-9)

Combining the distributional assumptions provided in Section 2.3 with the augmented

likelihood defined above, the sampling algorithm consists of the following Gibbs steps

Algorithm 1

[1] p(θh | . . .) ∝ f0|Hζ (θh)
∏
{i:di=h}N2(yi | θh),

[2] p(νh | . . .) ∝ Beta
(
1 +

∑n
i=1 1(di=h),M +

∑n
i=1 1(di>h)

)
,

[3] p(ui | . . .) ∝ 1(0<ui<wdi )
,

[4] P (di = k | . . .) ∝ 1(k:wk>ui)N2(yi | θk),

[5] P (ζ = 1 | . . .) =
π
∏N

h=1 N(β2,h|0,κ)Ga(1/σ2
2,h|s,s)

π
∏N

h=1 N(β2,h|0,κ)Ga(1/σ2
2,h|s,s)+(1−π)

∏N
h=1 N(β2,h|0,κν0)Ga(1/σ2

2,h|sν
−1
0 ,sν−1

0 )
,

[6] P (π | . . .) ∝ Beta
(

1
2 + 1(ζ=1),

3
2 − 1(ζ=1)

)
,

[7] P

(
1

κ
| . . .

)
∝ Ga

(
a2 + N

2 , b2 +

∑N
h=1 β

2
2,h

2
(
1(ζ=1) + ν01(ζ=0)

)) ,
[8] P (s | . . .) ∝ sa3−1exp

{
− b3s+Ns

(
1(ζ=1) + ν−1

0 1(ζ=0)

)
log
(
s
(
1(ζ=1) + ν−1

0 1(ζ=0)

))
−N log

(
Γ
(
s
(
1(ζ=1) + ν−1

0 1(ζ=0)

)))
+ s

(
1(ζ=1) + ν−1

0 1(ζ=0)

)( N∑
h=1

log
(
1/σ2

2,h

)
− 1/σ2

2,h

)}
.

A key element of Algorithm 1 is that the subscript h takes values in the set {1, . . . , N},
where N = maxi{Ni} and Ni is the largest integer l for which wl > ui. Thus, at each

iteration, once N is determined only a finite number of weights and atoms is to be sam-

pled. Steps [2] to [8] in Algorithm 1 are relatively straightforward, in particular, in step

[8] a Metroplis-Hasting step is necessary. Step [1] needs more computation due to the

special parametrization of θh. To sample each element of θh, we resort to the conditional

model in (2-4). The full conditionals for the elements of θh are drawn from a bivariate
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Gaussian distribution for the parameters β1 and β2. The parameters 1/σ2
1 and 1/σ2

2 are

sampled from their full conditional distributions, which are Gamma. The full conditional

distributions for the latent parameters δi, 1/τ2 and γj in model (2-4) are Normal, Gamma

and Beta, respectively. Finally, the latent parameters Zij are sampled from a discrete

full conditional distribution with support in the set {−1, 1}. Explicit forms for each full

conditional distribution involved in the estimation of θh are provided in Appendix B. This

Appendix also provides the mechanism used to update the mass parameter M , as sug-

gested in (Escobar & West 1995).

We fix the hyperparameters for τ2 in model (2-4) at a0 = b0 = 0.01, because these val-

ues yield a weakly informative prior. To promote values of γj close to zero or one, we fixed

its hyperparameters to a = b = 1/2. As a consequence, the expression (1− 2γ1)(1− 2γ2)

is a priori close to -1 or 1; this expression determines the sign of the correlation. Further-

more, the magnitude of the correlation is mainly driven by the parameter τ2.

From Algorithm 1, the posterior probability for the alternative hypothesis P (H1 |
Y ) = P (ζ = 1 | Y ) can be approximated with

P(H1 | Y ) ≈ 1

B

B∑
`=1

1{ζ(`)=1}, (2-10)

where ζ(`), ` = 1, . . . , B, are samples from the full conditional distribution of Step [5].

Assuming a zero–one loss function, we select the most probable hypothesis.

2.4.2 Visualization of the differences

If the posterior evidence favors the alternative hypothesis, we would like to visualize in

what aspects the distributions G1(·) and G2(·) differ. To do so we compute the Shift

function as a measure of the difference between the two populations. This function was

proposed by Doksum (1974) and Doksum & Sievers (1976). The idea behind the Doksum’s

proposal is to find a function ∆ (·), such that, Y1 + ∆ (Y1) has the same distribution as

Y2. Formally, ∆ (·) is a function such that G1 (Y1) = G2 (Y1 + ∆ (Y1)) or equivalently,

∆ (Y1) = G−1
2 {G1 (Y1)} − Y1. Note that, under H0, ∆(Y ) is equal to 0, for all Y . Under

H1, ∆(Y ) is different from 0 for some set A := {Y : ∆(Y ) 6= 0}. The set A provides

information on what regions of the distribution are different.

Deriving the shift function using Algorithm 1 is immediate, since for each iteration of

the Gibbs algorithm, we have posterior random realizations of G
(`)
1 and G

(`)
2 , ` = 1, . . . , B.

Defining the left inverse of G2 as G−1
2 (u) = inf{x : G2(x) ≥ u}, a random realization of

∆(Y )(`) can be computed as

∆(Y )(`) =

G
−1(`)
2

{
G

(`)
1 (Y )

}
− Y if ζ(`) = 1,

0,∀ Y if ζ(`) = 0.
(2-11)

With the posterior realizations of the shift function, it is possible to compute some



2.5. MONTE CARLO SIMULATION STUDY AND ILLUSTRATIONS 33

functionals, as the sample posterior mean ∆̄(Y ) and a 95% credible set. The credible set

is particularly useful to determine the set A, which can be visualized looking at the values

of Y such that ∆(Y ) 6= 0.

2.5 Monte Carlo simulation study and illustra-

tions

This section provides a Monte Carlo simulation study. To ease the interpretation, we

assume that observations come from n subjects that were measured before and after the

application of a treatment. Our goal is to evaluate the ability of the hypothesis testing

procedure to detect the treatment effect, especially when the distributions differ. In the

Monte Carlo study, we consider six scenarios, four of them illustrate global changes in the

distributions before and after the treatment, the other two represent local changes. We

provide further details on two of the scenarios considered to illustrate the entire inferential

process. Data for all the scenarios were generated from variations of the following model

Y i ∼ ω1SN2(Y i | µ1,Σ1,α1) + ω2N2(Y i | µ2,Σ2) + ω3N2(Y i | µ3,Σ3), (2-12)

where SN2(µ,Σ,α) denotes a bivariate skew normal distribution with location µ, scale Σ

and shape α, and again N2(µ,Σ) denotes a bivariate normal distribution with location µ

and scale Σ.

Scenarios I and II were designed for assessing the performance of our BNP testing

procedure versus the traditional alternatives when the Gaussian assumption is valid. In

particular, scenario I represents an effect of the treatment in location (where T-test as-

sumptions hold), while scenario II shows a treatment effect in the scale (where Morgan-

Pitman test’s assumptions hold). A global change in location arises when the effect of the

treatment is the same across all individuals in the population. Scenarios III, IV and V,

were designed to emulate situations where only a portion of the population is influenced

by the treatment, or when the magnitude of the treatment effect varies across individuals.

Finally, scenario VI was planned with the aim of generating samples beyond the mixture of

Gaussian distributions and to emulate situations when the asymmetry of the distribution

changes. Table 2-1 provides details for the settings considered under each scenario.

With each scenario we consider sample sizes n1 = 50, n2 = 150 and n3 = 300. For

each particular combination of scenario and sample size we generated 100 Monte Carlo

replicates, for a total of 1,800 experiments. Model (2-2) was fitted via the Gibbs algo-

rithm of Section 2.4.1 to each of the 1,800 datasets generated, with 10,000 iterations, a

burn-in period of 2,000, and thinning the samples by keeping only every 8th draw of the

sampled parameters. The model was implemented in the R Programming Language (R

Core Team 2018). The hyperparameters or the prior distribution of the mass parameter

M were fixed at a1 = 20 an b1 = 1 chosen after calibration. This choice performed well

under all scenarios.
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Scenarios ω µ1 Σ1 α µ2 Σ2 µ3 Σ3 Grid of values

I (Global
shift)

1.0
0.0
0.0

[
0

µ2 = c

] [
1 −0.80

−0.80 1

] [
0
0

] c ∈ {0, 0.3, 0.6, 0.9,
1.6, 2.6, 3.6, 4.6, 5.6}

II (Global
dispersion)

1.0
0.0
0.0

[
0
0

] [
1 0.95

0.95 σ2
2

] [
0
0

] σ2
2 ∈ {1, 3, 5, 7, 9}

III (Mixture
global shift)

0.50
0.50
0.00

[
0

−µ2 = c

] [
1 0.8

0.8 1

] [
0
0

] [
0

µ2 = c

] [
1 0.8

0.8 1

] c ∈ {0, 1, 2, 3, 4}

IV (Local
dispersion)

0.60
0.40
0.00

[
1
1

] [
1 −0.8
−0.8 1

] [
0
0

] [
2
2

] [
4 −3.6
−3.6 σ2

2

] σ2
2 ∈ {4, 12, 20, . . . , 44}

V (Mixture
local shift)

0.50
0.25
0.25

[
0
0

] [
1 −0.7
−0.7 1

] [
0
0

] [
0

−µ2 = c

] [
1 −0.7
−0.7 1

] [
0

µ2 = c

] [
1 −0.7
−0.7 1

] c ∈ {0, 1.5, 3, . . . , 7.5}

VI (Global
asymmetry)

1.0
0.0
0.0

[
0
0

] [
1 −0.5
−0.5 1

] [
0
α2

] α2 ∈ {0, 1.5, 2, 4, 6, 8}

Table 2-1: Parametrization of model (2-12) for scenarios I to VI in the Monte Carlo
simulation study.

Additionally, for all datasets generated under the different scenarios we compute the

following classical alternatives: T-test, the Wilcoxon signed-rank test together with its

Bayesian version (Benavoli et al. 2014), and the Morgan-Pitman test (Morgan 1939, Pit-

man 1939), which is a traditional alternative for testing differences in scale in paired

samples. The Morgan-Pitman test is based on the correlation coefficient between two

linear combinations of the variables Y1 and Y2. To compare the performance of our pro-

posal with the alternative tests, we explore the power to detect the alternative hypothesis.

Considering that the power is a frequentist concept, we adapted our Bayesian test to get

a measurement of the statistical power. In particular, we used a zero-one loss function,

thus we select the alternative hypothesis when its posterior probability is bigger than 0.5

and report the proportion of times that the BNP test selected the correct hypothesis. For

the classical alternatives, the null hypothesis was rejected considering a significance level

of 5%. The test of Girón et al. (2003) was not included in the comparisons, because it is

based on a Bivariate normal distribution, and it is only able to detect changes in location

when the correlation between the measurements is positive, which is a particular case of

our BNP test.

Figure 2-2 shows the power curves for scenarios I to III. In Scenario I, the performance

of the classical location tests was quite good, as expected, given that in this case all of

the assumptions required for the classical tests hold. Importantly, under this scenario our

method’s performance was comparable to that of the classical approaches, even with a

sample size of 50. For scenario I, the Morgan-Pitman test behaves as expected given that

it does not detect differences in location. In scenario II, our test has a similar performance

as Morgan-Pitman test. However, the Morgan-Pitman test attained a higher proportion

of false positives than the proposed method, especially with smaller sample sizes. In sce-

nario III, the proposed BNP test and the Morgan-Pitman test do an outstanding job at

detecting differences, with approximately equal performance for n ≥ 150.

Figure 2-3 provides the power curves for scenarios IV through VI. In scenarios IV and

V, all classical location tests were unable to detect the alternative hypothesis for any value

in the corresponding grids. The performance of our proposal was very good, especially
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with n ≥ 150. The Morgan-Pitman test was able to detect the alternative hypothesis,

which can be thought of as a change in scale due to the treatment. However, the true

difference is due to the mixture specification of scenarios IV and V. In scenario VI, again

the BNP testing procedure achieves robust results. Even for n = 50, the power for the

BNP test is close to that of the Morgan-Pitman test. The Morgan-Pitman test shows very

good results for all sample sizes in this scenario, although the true differences are in the

symmetry and not only in the scale. The performance of the location tests, as expected,

is weak; regardless of the sample size, the power was never close to 1.

To elaborate on the results that are derived from the proposed method, we provide

posterior inference for scenarios IV and V from Table 2-1. In particular, assuming a

sample size of n = 150, we consider these scenarios since they pose a bigger challenge.

Similar figures for scenarios I, II, III and VI are included in the Appendix. For scenario

IV, we provide posterior inference for data generated assuming σ2
2 = 20. For scenario

V, the setting considered from the grid was c = 4.5. Figure 2-4 compares the true and

estimated joint densities, the estimation corresponds to the posterior mean. The figure

also includes the true and estimated marginal distributions along with their 95% credible

sets (represented by the grey regions). The true marginal densities are represented by

continuous black lines, and the estimated posterior mean for the measurements at time

1 is given by the red dotted line, while the posterior mean for the marginal at time 2 is

represented by the blue dashed line. Finally, we include the true (continuous black line)

and estimated shift functions (dashed line) along with the 95% point-wise credible sets.

As seen in Figure 2-4, the estimation of the joint distribution and consequently the

marginal distributions was quite good in both scenarios. The estimation of the shift

function was also accurate. The shift function for scenario IV suggests that the difference

between G1 (·) and G2 (·) is due to changes in the tails of the distribution. The shift

function for scenario V indicates differences across the entire distribution.

2.6 An application to spirometry data

In this Section, we develop an application of our hypothesis testing procedure to a real

data set. The application is in the context of spirometry studies. The data set generated

by Dockery et al. (1983) contains information from a cohort of 13,379 U.S. children born

on or after 1967 enrolled in the first or second grade in elementary school. The purpose of

the study was to identify changes in the pulmonary function in children and adolescents

associated to air pollution factors, which could influence lung function development. The

study includes measurements of the forced expiratory volume in one second also known

as FEV1. In this application we only consider a subset of the data publicly available

from Fitzmaurice et al. (2010). This subset contains records from 228 girls who resided in

Topeka, Kansas (USA). The measurements were obtained annually, each girl in the longi-

tudinal study has between one and twelve records over time. In this application we only

consider the two measurements from the first and third years. We fitted model (2-2) to

the logarithms of FEV1 considering the same settings used in the Monte Carlo simulation
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Figure 2-2: Power to detect the alternative hypothesis in the Monte Carlo simulation
study of Section 2.5. Top panel scenario I, middle panel scenario II and bottom panel
scenario III with different sample sizes.
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Figure 2-4: True and estimated joint densities together with the corresponding
true and estimated marginal densities and shift functions for scenarios IV and V of
Section 2.5.
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study. For this data set, the method took ∼ 9 minutes on a standard computer (AMD

A8-6410 processor running at 2.0 GHz) having the algorithm generate 10000 posterior

draws.

The posterior probability for the alternative hypothesis was 0.737. Thus, the pro-

posed BNP test supports the hypothesis that the marginal distributions are different. The

classical tests also detected differences in the marginal distributions with a significance

level of 5%. The T-test (p-value < 2.2e-16), the Wilcoxon test (p-value < 2.2e-16) and its

Bayesian version (P̂ (H1 | Data) > 0.95), all identified differences in location, while the

Morgan-Pitman test (p-value = 0.00042) detected differences in scale. Thus, the conclu-

sion with the classical test is that the girls experienced a change in location and variability

of their pulmonary capacity.

Figure 2-5 shows the posterior inference obtained from the BNP test. The joint esti-

mated density suggests a strong correlation between the paired measurements. From the

estimated marginal and cumulative distributions together with the shift function, it is pos-

sible to conclude that the increment in FEV1 was not constant across girls in the sample.

In fact, the girls with the largest expiratory capacity underwent a greater increment. This

conclusion could not have been obtained from any of the classical alternatives.

2.7 Concluding remarks

We have proposed a procedure based on a BNP model for comparing the distributions of

paired samples. The comparison of paired samples is a classical problem in statistics with

important applications in many fields of science. The available tests are feature specific,

in the sense, that they target changes in specific attributes of the distributions, such as

location or scale. Additionally, some standard tests are only valid under restrictive para-

metric assumptions that are rarely fulfilled in practice.

The proposed BNP test bypasses the need for these restrictive parametric assumptions,

and at the same time, exploits the dependence between the samples. Furthermore, the

proposed strategy is able to detect differences across the entire distribution. We provide

a simple heuristic to visualize the differences between the distributions using the shift

function. As seen in the analysis of the spirometry data, the shift function confirms that

the treatment has an effect that varies across members of the population.

Our approach yields consistently good results as shown in Section 2.5, in many cases

outperforming the traditional tests. As expected, the classical tests were able to detect

differences for the features for which they were designed, that is, location or scale, but

may be misleading in many instances, pointing to differences in the erroneous features

of the distributions. From the study in Section 2.5, we can conclude that for problems

with small sample sizes, specific location or scale tests could be preferred, given that

they target specific features of the distributions. Nevertheless, many current applications

have sufficiently large data to make our approach the more appealing alternative. In
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Figure 2-5: Estimation of the joint and the marginal densities as well as of the shift
function and cumulative distribution for the spirometry study of Section 2.6.
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synthesis, the strategy developed in this article provides a hypothesis testing procedure

that is simultaneously capable of producing smooth, uncertainty equipped estimates for

the density. Additionally, the estimation of the shift function allows us to identify which

parts of the population are effectively influenced by the treatment and in what amount.

2.8 Appendix A

Proof of proposition 1

1. From the Gaussian assumption for the random effects and the errors we have,

E [Yij | Xij = xij ] = E [β1 + β2xij + Zijδi + εij ]

= β1 + β2xij + E [Zijδi]

= β1 + β2xij + E [Zij ]E [δi]

= β1 + β2xij ,

therefore, E [Yi1 | Xi1 = 0] = β1 and E [Yi2 | Xi2 = 1] = β1 +β2. On the other hand,

Var [Yij | Xij = xij ] = E [Var (Yij | Xij = xij , Zij , δi)] +

Var [E (Yij | Xij = xij , Zij , δi)]

= E [Var (β1 + β2xij + Zijδi + εij | Xij = xij , Zij , δi)] +

Var [E (β1 + β2xij + Zijδi + εij | Xij = xij , Zij , δi)]

= E [Var (εij)] + Var [Zijδi]

= E [Var (εij)] + τ2.

Thus, if j = 1 then Var [Yi1 | Xi1 = 0] = σ2
1+τ2, and if j = 2 then Var [Yi2 | Xi2 = 1] =

σ2
1σ

2
2 + τ2. Finally,

Cov [Yi1, Yi2 | Xij = xij ] = E [Cov (Yi1, Yi2 | Xij = xij , Zij , δi)]

+ Cov [E (Yi1 | Xi1 = 0, Zij , δi) E (Yi2 | Xi2 = 1, Zij , δi)]

= Cov [Zi1δi, Zi2δi]

= E [(Zi1δi − E (Zi1δi)) (Zi2δi − E (Zi2δi))]

= E
[
Zi1Zi2δ

2
i

]
= E [Zi1] E [Zi2] E

[
δ2
i

]
= (1− 2γ1) (1− 2γ2) τ2,

where, τ2 > 0 and γ1, γ2 ∈ (0, 1).

2. If γ1 > 1
2 and γ2 < 1

2 or γ1 < 1
2 and γ2 > 1

2 then (1− 2γ1) (1− 2γ2) < 0

and Cov [Yi1, Yi2] < 0. If γ1 < 1
2 and γ2 < 1

2 or γ1 > 1
2 and γ2 > 1

2 then

(1− 2γ1) (1− 2γ2) > 0 and Cov [Yi1, Yi2] > 0. On other hand,

|Cov(Yi1, Yi2)| = | (1− 2γ1) (1− 2γ2) |τ2 < τ2, (2-13)
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and using the Cauchy-Schwarz inequality, we have

|Corr(Y1, Y2)| = |(1− 2γ1)(1− 2γ2)|τ2√(
σ2

1 + τ2
) (
σ2

1σ
2
2 + τ2

) < τ2√(
σ2

1 + τ2
) (
σ2

1σ
2
2 + τ2

) ≤ 1.

In fact, we have two cases from the above expression, the first one is when we suppose

that H0 is true and we take the limit of τ2 going to infinity, when τ2 −→ ∞, then

we have that

lim
τ2→∞

|(1− 2γ1)(1− 2γ2)|τ2(
σ2

1 + τ2
) = |(1− 2γ1)(1− 2γ2)| < 1. (2-14)

In the second case, we suppose that H1 is true and,

lim
τ2→∞

(1− 2γ1)(1− 2γ2)τ2√(
σ2

1 + τ2
) (
σ2

1σ
2
2 + τ2

) = |(1− 2γ1)(1− 2γ2)| < 1. (2-15)

Consequently, |Corr(Y1, Y2)| < 1.

2.9 Appendix B

In the Section 2.4, we have provided an algorithm of eight stages for the posterior inference

of the BNP model. However, the Step [1] requires to clarify some details about the

computation due to the special parametrization of θh. In the following, we supply details

about the full conditional distributions used in the Step [1]. Additionally, we present the

details for the updating of the mass parameter M of the Dirichlet Process.

Gibbs sampling for the posterior inference of θh.

According to parametrization in the Proposition 1, we develop a Gibbs sampling for up-

dating θh = (µh,Σh). Next, we present the expressions of the full conditional distributions

for the parameters β1, β2, σ
2
1, σ

2
2, τ

2, γ1, γ2, Zi1, Zi2, δi.

1. Full conditional distributions for updating µ.

Sample β1, β2 from

β1, β2| . . . ∼ N2

[(
nXTΣ−1X + Σ−1

0

)−1
(
XTΣ−1

n∑
i=1

Y i + Σ−1
0 µ0

)
,
(
nXTΣ−1X + Σ−1

0

)−1
]
,

where X =

[
1 0

1 1

]
is a design matrix and µ0, Σ0 are the hyper-parameters

in the prior distribution defined in F0|Hζ .

2. Full conditionals for updating Σ.

(i) Sample σ2
1 from

1

σ2
1

| . . . ∼ Ga [n+ ε, λ1] ,
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where λ1 =
∑n
i=1(yi1−(β1+Zi1δi))

2

2 +
∑n
i=1(yi2−(β1+β2+Zi2δi))

2

2σ2
2

+ ε.

(ii) Sample σ2
2 from

1

σ2
2

| . . . ∼ Ga
[n

2
+ s

(
1(ζ=1) + ν−1

0 1(ζ=0)

)
, λ2

]
,

where λ2 =
∑n
i=1(yi2−(β1+β2+Zi2δi))

2

2σ2
1

+ s
(
1(ζ=1) + ν−1

0 1(ζ=0)

)
).

In (i)-(ii) ε and s correspond to the values defined in F0|Hζ .

(iii) Sample δi from

δi | . . . ∼ N


Zi1(yi1 − β1)

σ2
1

+
Zi2(yi2 − β1 − β2))

σ2
1σ

2
2

1

σ2
1

+
1

σ2
1σ

2
2

+
1

τ2

,
1

1

σ2
1

+
1

σ2
1σ

2
2

+
1

τ2

 .
(iv) Sample Zi1 ∈ {−1, 1} with probabilities

(a) P (Zi1 = −1 | . . .) ∝ γ1 × exp
{
−1
2σ2

1
(yi1 − β1 + δi)

2
}
,

(b) P (Zi1 = 1 | . . .) ∝ (1− γ1)× exp
{
−1
2σ2

1
(yi1 − β1 − δi)2

}
.

(v) Sample Zi2 ∈ {−1, 1} with probabilities

(a) P (Zi2 = −1 | . . .) ∝ γ2 × exp
{
−1

2σ2
1σ

2
2

(yi2 − β1 − β2 + δi)
2
}
,

(b) P (Zi2 = 1 | . . .) ∝ (1− γ2)× exp
{
−1

2σ2
1σ

2
2

(yi2 − β1 − β2 − δi)2
}
.

(vi) Sample γj from

γj | . . . ∼ Beta

(
1

a
+

n∑
i=1

1{Zij=−1},
1

b
+ n−

n∑
i=1

1{Zij=−1}

)
.

(vii) Sample τ2 from

1

τ2
| . . . ∼ Ga

[
a0 +

n

2
, b0 +

∑n
i=1 δ

2
i

2

]
.

Updating of the mass parameter M .

To sample M , we follow the idea proposed by Escobar & West (1995). Thus, M can be

sampled from a mixture of two gamma densities given by

π (M |η, k) = τηGa (a1 + k, b1 − log (η)) + (1− τη) Ga (a1 + k − 1, b1 − log (η)) ,

where for all k > 1, τη = 1/1+
n(b1−log(η))
a1+k−1

, n is the sample size, a1 and b1 are the hyper-

parameters for a prior Gamma distribution defined on M (see, Section 2.4.1), and η

is a random continuous variable defined on the unit interval, such that π (η|M,k) ∼
Beta (M + 1, n).
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2.10 Appendix C
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Figure 2-6: The contour of the joint distribution, the marginal density distributions,
and the shift function for scenarios I and II.
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Figure 2-7: The contour of the joint distribution, the marginal density distributions,
and the shift function for scenarios III and VI.



Chapter 3

Bayesian nonparametric

hypothesis testing for longitudinal

data analysis

3.1 Abstract

We propose a Bayesian nonparametric hypothesis testing procedure to find the possible

effect of predictors over the response variable in longitudinal data analysis. The method

is highly flexible because it does not assume a particular covariance structure nor a distri-

bution for the random effects, as usually done in longitudinal data analysis. The proposal

models the behavior of the repeated measurements with a mixture of dependent Dirichlet

processes. The weights of the mixture are built via a stick-breaking prior, that comes

from a Markovian process evolving in time. The effect of the predictors is modeled by the

underlying atoms. A hierarchical representation is used to define a hypothesis testing pro-

cedure for experimental designs that can include the effects of interactions. Illustrations

with simulated and real data sets, as well as a comparison study, are also presented.

Keywords: Dependent Dirichlet process; Markov Process; Spike and slab prior; Time-

dependent data.

3.2 Introduction

In longitudinal data analysis, experimental units are measured repeatedly over time. In

this context, units are assumed to be mutually independent, and measurements for the

same experimental unit are time-dependent. Suppose that our data consists of random

realizations of the time-dependent variables yitj from m mutually independent experimen-

tal units, where i = 1, . . . ,m, j = 1, . . . , ni and t1 < . . . < tj < . . . < tni are ordered-time

indexes in the interval [0, T ] not necessarily equally spaced. Experimental units have a

monotone missing-data pattern, meaning that all measurement times are the same across

experimental units until dropout.

46
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Assume that we observe time-fixed covariates, xi ∈ Rq, for each unit sample, and that

the final aim is to test hypotheses about possible effects of the covariates on the response

variable. Any suitable model for this kind of data should capture the correlation among

the repeated measurements within the same experimental unit. Simultaneously, it should

detect meaningful treatment effects, by setting a formal hypotheses testing procedure. A

simplistic approach for modeling longitudinal data, assumes exchangeability between the

repeated measurements over time (de Finetti 1931, 1937). This amounts to say that the

joint distribution, given the predictor x, is defined as

P(Yt1 ∈ A1, . . . , Ytn ∈ An | x) =

∫
F
F (A1 | x) · · ·F (An | x)µ(dF ), (3-1)

where µ is a probability measure characterizing the exchangeable sequence {Yt : t ∈ [0, T ]},
also known as the de Finetti’s measure. In hierarchical terms

P(Yt1 ∈ A1, . . . , Ytn ∈ An | F, x) =

n∏
i=1

F (Ai | x), (3-2)

F ∼ µ.

In (3-2), given the distribution F (·), the random variables are conditionally independent.

In the longitudinal data analysis literature, (3-1) and (3-2) are known as the marginal and

conditional models, respectively. A simple and useful approach to model the joint distri-

bution P(·) is via a parametric restriction of µ. Typically, F (·) is given by a Gaussian

distribution including random effects φ, fixed effects β, and a scale parameter σ. In this

latter case, the uncertainty in φ is also modeled with a Gaussian prior with zero mean and

unknown variance.

In this context, the covariate vector x is partitioned in two components, fixed and ran-

dom effects, leading to the well-known mixed models (Laird & James 1982). Under this

approach, the inference is based on the marginal model (Verbeke & Molenberghs 2009),

which is obtained integrating the random effects with respect to the distribution µ. As a

consequence, the research questions are answered performing the corresponding hypothesis

testing on the fixed effects. A widely used procedure for contrasting hypotheses are based

on t and F tests, which make use of the degrees of freedom, corresponding to the number

of independent observations. This approach to longitudinal data analysis is highly sensi-

tive to multivariate Gaussian assumption, and thus also the estimation of the underlying

degrees of freedom (Weiss 2005). In practice, a way to deal with this is to approximate

the t-distribution with the Gaussian distribution, which works for large data sets. That

said, there are no guidelines to select the sample size (Luke 2017). There are methods to

estimate the number of degrees of freedom (Satterthwaite 1941, Kenward & Roger 1997),

however, these can lead to notable differences in the corresponding p−values as they ex-

hibit a dependence on the significance level α and on the covariance matrix Weiss (2005).

The literature on classical approaches for longitudinal data analysis is vast, with the

most popular approach based on variations and extensions of the hierarchical specifica-

tion of (3-2), see e.g. Laird & James (1982), Liang & Zeger (1986), Breslow & Clayton
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(1993), Azzalini (1994), Diggle et al. (2002), Huang & Zhou (2002), Hogan et al. (2004),

Fitzmaurice et al. (2010), Chen & Zhong (2010), Liu (2015), among many others. Special

emphasis is placed to capture complex behaviour in the mean or correlation structures,

which is often done by modeling the fixed effects via splines, kernel estimators, (see, e.g.

Silverman 1984, Heckman 1986, Speckman 1988, Zeger & Diggle 1994, Carroll et al. 1997,

Stone et al. 1997, Silverman 1998, Zhang et al. 1998, Verbyla et al. 1999, Welsh et al. 2002,

Carroll et al. 2004, Crainiceanu & Ruppert 2004, Chen & Jin 2005). On the other hand, for

random effects, different correlation structures and methodologies for its estimation have

been proposed, e.g., Jennrich & Schluchter (1986), Muñoz et al. (1992), Nuñez Antón &

Zimmerman (2000), Zimmerman (2000), Wang & Hin (2010).

On the Bayesian counterpart, there is a strong emphasis on parametric models, Lopes

et al. (2003), Li et al. (2010), Wang & Daniels (2013), Müller et al. (2014), Huang et al.

(2014), Dahlin et al. (2016) and Castro et al. (2018), among others. Bayesian nonparamet-

ric constructions using Dirichlet processes under different parameterizations have been also

studied in Kleinman & Ibrahim (1998), Müller et al. (2005), Kliethermes (2013), Savitsky

& Paddock (2014), Shang (2016), Quintana et al. (2016) and Linero (2017). Related to

hypothesis testing procedures Dahl & Newton (2007) propose a nonparametric Bayesian

methodology for multiple hypothesis testing in random effects models. The procedure is

used to test if the random effects are zero or not. They use a Dirichlet process with base

measure a continuous distribution centered at zero. Latter, Kim et al. (2009) proposed to

modify the base measure of the DP by a spike-slab distribution.

In this work we consider the time evolution of the longitudinal data by means of

a Markovian Dependent Dirichlet processes (DDP) (MacEachern 1999, 2000, Gutiérrez

et al. 2016). In particular, our proposal considers the correlation between repeated mea-

surements and provides with a formal hypothesis testing procedure to find possible effects

of the predictors on the response variable. We do this, by capturing the time-dynamics

in the underlying stick-breaking weights, and the covariate effects, in the locations. An

adhoc hierarchical specification will be used with the purpose of formally define a hypoth-

esis testing procedure for the fixed effects. The prior on the hypothesis space borrows

ideas from the model selection literature in order to control for multiple testing (Berger

& Pericchi 1996, George 2000, Berger et al. 2001, Scott & Berger 2010). In particular, we

use the prior specification to test simple effects, as well as, the effect of the interactions

between the predictors proposed by Taylor-Rodŕıguez et al. (2016). Our proposal is a

novel nonparametric methodology in the context of longitudinal data analysis as, in ad-

dition to testing the effect of predictors, it captures the correlation between the repeated

measurements and provides a time-dependent density estimation for different levels of the

covariates.

The remainder of the manuscript is organized as follows. In Section 3.3, we present the

Bayesian nonparametric model for hypothesis testing in longitudinal data analysis. Here,

we also provide details about the prior specification on the hypotheses space and discuss

the framework of the Markov model use to capture the time-dependent measurements.

The algorithm for posterior inference is deferred to Subsection 3.4, with some of its details
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contained in the Appendix B 3.9. In Section 3.5, we illustrate and compare our proposal

with simulated data. An application to a real data is found in Section 3.6. A discussion

and some concluding remarks are given in Section 3.7.

3.3 A Bayesian nonparametric model for longitu-

dinal data

In order to capture the time-dependence in the longitudinal data observations, yitj , and

at the same time provides a hypothesis testing procedure, able to detect the effects of the

predictors, we propose the following hierarchical model

yitj | tj , x,P
ind∼

∫
N(· | µ, σ2)Pt,x(dµ, dσ

2), (3-3)

Pt,x | Hγ ∼ πDDP (· | Hγ),

Hγ ∼ πM,

where P = {Pt,x : t ∈ [0, T ], x ∈ Rq}, πDDP (· | Hγ) is the prior induced by a Dependent

Dirichlet Process under the hypothesis Hγ , and πM is a prior distribution defined on the

hypotheses spaceM. Model (3-3) follows the general form of (3-2), but it goes beyond the

exchangeable case, including a Markovian dependent structure in the second hierarchical

level and a prior on the hypotheses space. The Markovian dependence induces a richer

correlation structure on the observations compared to the exchangeable case. The details

of each component of model (3-3) are given in the following sections.

3.3.1 The space of hypotheses

To keep simplicity in the model, we assume that the predictors only affect the locations

of the mixture model (3-3) through a linear form given by

µ(xi) = ziβ, (3-4)

where zi is a design vector and β is a parameter vector. For instance, if we have a predictor

vector given by x = (x1, x2)t, where x1 and x2 are discrete, each one with two levels. In

such a case, we need two dummy variables to properly specify the design matrix. Thus, let

z1 = 1 for level 1 of x1 and zero in other case. Analogously, let z2 be the dummy variable

for x2, then a row of the design matrix could be given by zi = (1, z1, z2, z1z2), where z1z2

represents an interaction term. Consequently, the parameter vector is β = (β0, β1, β2, β3),

where β0 is the intercept. Here, any effect of the predictors is captured by {βj ; j = 1, 2, 3}.
As usual, any possible effect should be relative to the intercept, which is commonly called

the reference cell constrain. In this particular example, the elements of the hypothesis

space M can be represented by the following binary sequence γ = (γ1, γ2, γ3), where

γj ∈ {0, 1} and γj = 1 if βj 6= 0. Thus, for instance the model where only β2 is different to

zero is represented by γ = (0, 1, 0). The sequence γ = (0, 0, 1), which represents the model

with locations µ (x) = β0+β3z1z2 is not in the model space, because it does not accomplish

the Strong Heredity condition (SH)(Nelder 1998). A statistical model fulfills the Strong
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Figure 3-1: Hasse diagram of the space of hypothesesM for a model with the main
effects z1, z2 (a). Space of hypotheses M for a model with main effects z1, z2 and
the interaction term z1z2.

Heredity condition if for any predictor the very lower-order predictors associated with it are

also in the model (Taylor-Rodŕıguez et al. 2016). In general, the model space considering

interactions and satisfying the SH condition can be represented by the following set

M := {Hγ : γ ∈ {0, 1}p such that γ satisfies the SH condition}. (3-5)

The size of the spaceM is 2p, for a model without interactions, where p is the number

of columns in z minus one, while the size of the space of hypothesis for a model that

includes interaction is
p∑
j=0

(
p

j

)
+
∑̀
j=2

∑̀
{k:k≥j}

∑
i≥1

( p!
j!(p−j)!
i

)
,

where i takes values from 1 to the total number of terms with j-order in the model, and

` is the maximum order between the terms. Figure 3-1 shows the model space for the

above examples, that is, with and without interactions when p = 3.

The specification of the binary vectors γ is relevant, because the definition of a prior

on the hypotheses space is equivalent to the definition of a prior on the model space given

by the binary vectors γ. Therefore, the posterior probability of a particular hypothesis

Hγ is equal to the posterior probability on γ, that is π(Hγ | y) = π(γ | y).
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3.3.2 Prior on the hypotheses space

In this section, we will discuss the choice of the prior distribution on the space M. The

choice of the prior distribution on the space of hypotheses requires careful consideration

as seemingly innocuous alternatives can have undesirable consequences (Gutiérrez et al.

2019). As expected, the posterior inference is remarkably sensitive to this prior information

for small and moderate sample sizes. For example, it has been a common practice to as-

sume equal prior probabilities on all hypotheses; however, this seemingly non-informative

alternative favors models of a particular level of complexity, making this choice inadequate

(Taylor-Rodŕıguez et al. 2016). As a result, we would like a prior that assigns probabil-

ity to the hypothesis according to the level of model complexity. Whit this in mind, we

propose to use the Hierarchical Order Prior (HOP) proposed by Taylor-Rodŕıguez et al.

(2016) for the spaceM. This prior specification produces strong penalization as the model

become more complex.

To define the hierarchical order prior structure, let M be the space that involves

models, such that the order is less than or equal to ` and that satisfy the SH condition.

In M, the null hypothesis H(0,0,...,0) represents the base model, denoted by m̃B, that is, a

model that only contains the intercept, while H(1,1,...,1) is the full model denoted by m̃F.

In addition, let πj(m̃) = π
(
γj(m̃) = 1 | γP(j),M

)
be the conditional inclusion probability

for j-term in the model m̃, where γj(m̃) is the indicator function that describes whether j

is included in m̃ and γP(j) denotes the parent set for j, which contains all the lower-order

predictors associated with the j-term. Under the HOP, for a `-order term j(`), let us

define the prior as πj(m̃) = π(`)(m̃) for all j ∈ Υ(`)(m̃) ∪ C(`)(m̃), where Υ(`)(m̃) = {j ∈
Hγ : order(j) = `} and C(`)(m̃) = {j(`) ∈ Hγm̃F

: m̃ ∪ j(`)satisfies the SH condition}. If

we assume that π(`)(m̃) ∼ Be(a`, b`) with a` = 1 and b` = |Υ(`)(m̃) ∪ C(`)(m̃)| for all `,

together with independence across the different orders, we have a prior distribution for

the hypotheses space given by

π(Hγ | M, a`, b`) =

Lmax
M∏

`=Lmin
M

(
Be(|Υ(`)(m̃)|+ a`, |C(`)(m̃)|+ b`)

)
/Be(a`, b`), (3-6)

where Lmin
M and Lmax

M is the minimum and maximum `-order, respectively, in m̃F. Fol-

lowing Taylor-Rodŕıguez et al. (2016), we will use the parameterization a` = 1 and

b` = |Υ(`)(m̃) ∪ C(`)(m̃)| in π(`)(m̃), which produces a hierarchical version of the penal-

ization proposed by Wilson et al. (2010).

Figure 3-2 shows the prior specification for the models described in Figure 3-1, that

is, a model in the space M considering only the main effects, and a model in the same

space that includes also the interaction of the first order.
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Figure 3-2: Prior distribution defined in the space of hypotheses M for a model
with the main effects z1 and z2 (a). Prior specification in the space M for a model
with main effects z1, z2 and the interaction term z1z2.
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3.3.3 Prior distribution induced by the random process P

The elements of the class P are given by

Pt,x(·) =
∑
l≥1

wl(t) δ(µl(x),σ
2
l )(·), (3-7)

where

wl(t) := vl(t)
∏
k<l

(1− vk(t)). (3-8)

In (3-7) and (3-8), v = (v∞(t); t ≥ 0) and θ = (µ∞(x), σ2
∞; x ∈ Rq) are independent collec-

tions of independent stochastic processes v∞(t) := { (vl(t)) : t ∈ [0, T ], l = 1, 2, . . .} and

θ∞(x) := {(µl(x)), (σ2
l ) : x ∈ Rq, l = 1, 2, . . .} each taking values on (0, 1) and X := R×R+,

respectively, and with the restriction that
∑

l wl(t) = 1 for each t ∈ [0, T ]. The con-

struction of equation (3-7) has been widely studied in the literature, some references are

Gelfand & Kottas (2001), Griffin & Steel (2006), Rodŕıguez & Dunson (2011), Mena et al.

(2011), Gutiérrez et al. (2016), among many others. A excellent trade off choice is the

dependent process proposed by Gutiérrez et al. (2016), as it provides with a general and

tractable model for time-evolving densities. Here, we add the covariate-dependence to this

later approach. While a lot has been said about DDP constructions, to the best of our

knowledge, little has been said about their use in longitudinal data analysis in order to

detect the effect of the predictors using a hypothesis testing procedure. Here we look for

this new venture.

A key aspect to build a time dependent density model is to select a suitable stochastic

process for the sticks and/or the particles. In general, the desirable properties of a stochas-

tic process for time dependent density estimation are: 1) ability to share information be-

tween the different times to assure that the resulting model is not over-parametrized, 2)

flexibility to capture the changes in the density across the time, 3) simplicity to facilitate

the posterior inference. A general class of stochastic processes that satisfies properties 1)

to 3) is the strictly stationary Markovian processes. In fact, the Markov property offers

a key advantage to the hour of infer from the data, because the learning process depend

only of the last state. Additionally, the strictly stationary property reduces the number

of parameters in the model, because the correlation structure, in this kind of processes, is

habitually governed by a few parameters.

We propose to use a strictly stationary Markovian process for v∞(t) := { (vl(t))t≥0 :

l = 1, 2, . . .}. We denote the transition probabilities by Pv
t (vt | v0) and the invariant distri-

bution by πv. Notice that, for instance, if πv coincides with a Beta distribution, Be(1,M),

thus the invariant distribution of Gt is a Dirichlet process centered at E[Gt] = G0, namely

Gt ∼ DP(MG0) marginally.

In particular, we propose to use the following jump process for the sticks

Pv
t (vl(tj) ∈ B | vl(tj−1)) = (1− αdv)πv(B) + αdvδv(tj−1)(B), (3-9)
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where δx(B) is the Dirac measure at x, d = tj−tj−1, and αv is a continuous parameter in the

interval (0, 1), whose prior distribution is assumed as Be (a0, b0), and whose hyperparmeters

were fixed at a0 = b0 = 1.

Proposition 2. The correlation between the sticks induced by the jump process in (3-9)

is given by Corr(vt, vt+d) = αd.

Proposition (2) implies that the jump process for the sticks induces positive correlation,

which is going down to zero as d is going to infinity. The proof is provided in the Appendix

A 3.8.

Proposition 3. Under model (3-3) we have that

Corr(Yt, Yt+d) =

(
2µv − µ(2)

v

) (
αdσv + µ2

v

)
µ

(2)
v (2µv − µ2

v − αdσv)
, (3-10)

where µv := E[v], µ
(2)
v := E[v2], and σv := Var[v].

Proposition (3) provides a general expression for the correlation between two obser-

vations separated by a distance d. This expression is a function of the first and second

moment of the sticks and of course, it is also a function of the correlation between the

sticks. The proof is given in the Appendix A 3.8.

For the particular case when vlt
iid∼ Be(1,M), we have that µv = 1/1+M, µ

(2)
v =

2/(1+M)(2+M) and σv = M/(1+M)2(2+M). Now, using (3-10), we have

Corr(Yt, Yt+d) =
(1 +M)(2 +M + αdvM)αdv
(2 +M)(1 + 2M)− αdvM

. (3-11)

In (3-11) as αv ∈ (0, 1), if d −→ ∞, then Corr(Yt, Yt+d) −→ 0; conversely, if d −→ 0

then Corr(Yt, Yt+d) −→ 1.

To complete the prior specification of the elements of P, we assumed Gamma prior

distribution for the precision parameter M , that is, Ga (M | a1, b1), where a1 and b1 were

fixed at 0.01.

3.3.4 Prior distribution induced by the atoms of the Gaus-

sian kernel

Let θl = (µl(x), σ
2
l )l≥1 be the atoms for the mixture model (3-3), where µl(x) is the linear

combination of (3-4) and σ2
l is an scalar greater than zero. We specify the base measure

P0|γ in the DDP conditionally on the hypothesis Hγ . The specification is given by a

spike-slab prior (George & McCulloch 1993, Ishwaran & Rao 2005, Ročková & George

2016), which allow us to test the hypothesis about the effects of the predictors on the

response variable. Formally, the base measure conditionally on Hγ or equivalently on
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γ = (γ1, γ2, . . . , γp) is defined as

P0|γ : N
{

(β0, . . . , βp)
T | µ0|γ ,Σ0|γ

}
Ga

(
1

σ2
| ε, ε

)
, (3-12)

where N
(
· | µ0|γ ,Σ0|γ

)
denotes a multivariate normal distribution and Ga(ε, ε) denotes a

gamma distribution. The hyper-parameter µ0|γ was fixed at 0 and we suppose that Σ0|γ
is given by a diagonal matrix, such that

Σ0|γ = diag
[
ψ0, ψ1

(
1(γ1=1) + ν01(γ1=0)

)
, . . . , ψp

(
1(γp=1) + ν01(γp=0)

)]
. (3-13)

The specification of the base measure is completed by the hyperprior on ψj

1

ψj
∼ Ga (a, b) , j = 1, . . . , p.

The values for a and b are choosen such that the prior for Var (βj) is a continuous bimodal

distribution, with spike at ν0 and right continuous tail for the slab component as in George

& McCulloch (1993), and Ishwaran & Rao (2005). In (3-13) the parameter ν0 is known

as the shrink parameter, and is chosen such that ν0 � 1. Note that, under the above

parametrization when γj = 0 the prior is a spike distribution and the atoms {βj,l}l≥1 are

close to zero, supporting H0. Conversely, when γj = 1 the distribution is slab, and the

atoms {βj,l}l≥1 are far from zero, which support the alternative hypothesis. Following

Ishwaran & Rao (2005) we fixed a = 5, b = 0.3 and ν0 = 0.1. The rest of hyperparme-

ters ψ0 and ε were fixed at 10 and 0.1, respectively, so that the prior distributions were

uninformative.

Remark 2. From model (3-3) we have that the marginal distribution at time t = t′, is

given by

fz,t=t′ (y) =
∑
l≥1

wl(t
′)N(y | zβl, σ2

l ), (3-14)

thus, the weights and scales are common to all predictors levels, and the possible effect

of the predictors is captured by the locations βj , j = 1, . . . , p, as described in Section 3.3.

Indeed, with the above specification we provide an approximation of P (H0 | Data). An

exact computation of P (H0 | Data) involves the use of a spike distribution concentrated

exactly in zero, like as a Dirac measure. Unfortunately, posterior inference with the Dirac

measure would require to draw γ from the marginal posterior P (γ | y) integrating over

the infinite dimensional parameter {βj,l}l≥1 (Geweke 1996, Smith & Kohn 1996, Malsiner-

Walli et al. 2011), which is unviable for the model in (3-3).

3.4 Posterior Inference

In this Section, we develop a general scheme of the posterior algorithm for the mixture

model (3-3), the details are provided in the Appendix B 3.9. It is well known, that given
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the discrete nature of the Dirichlet process, model (3-3) can be rewritten as a weighted

infinite sum of continuous kernels

ft,x(y | v∞(t), θ∞(x)) =
∑
l≥1

wl(t)N(y | θl(x)). (3-15)

The model in (3-15) has potentially an infinite number of components. In practice, one

must take a strategy to deal with the infinite-dimensional parameters. For this, our plan

is to develop a Gibbs sampler algorithm with slice sampling steps as in Walker (2007). In

this algorithm, we have to consider an augmented model given by

ft,x(y, u, s | v∞(t), θ∞(x)) =
∑
l≥1

1(u < ws(t))N(y | θs(x)), (3-16)

where s denotes the allocation variable of y and u is a uniform random variable in the

interval (0,ws). In model (3-16), we should highlight that it is a finite model, because only

a limited number of ws(t) satisfies the condition that (u < ws(t)). This number depends on

the data complexity, note also that the variable u is included without modifies the original

density, because if we marginalize over u in (3-16) we return to model (3-15). Therefore, a

crucial step in the Gibbs sampling is to determinate a set {1, . . . , N} over which s will take

values, here N is maxiNi and Ni is the largest integer h for which wh > ui. Thus, once N

is determined the algorithm is reduced to sample a finite number of weights and atoms.

Now, given that in model (3-3) the dependency among Y is modeled through the process

v∞(t), then the observations yij are conditionally independents and the joint likelihood is

given by

L(Yñ,Uñ,Sñ | v(ni)
∞ , θ∞) =

m∏
i=1

ni∏
j=1

1(uij < wsij (tj))N(yij | µsij (x), σ2
sij ), (3-17)

where v
(ni)
∞ := {v∞(tj)}nij=1 denotes an infinite collection of the stick-breaking compo-

nents sample at times (t1, . . . , tni), Yñ =
(
y1tj , y2tj , . . . , ymtj

)T
represents the vector of

observations where yitj are the subvectors with the observations for each subject, namely,

yitj = (yi1, yi2, . . . , yini), with i = 1, . . . ,m and j = 1, . . . , ni. Uñ =
(
u1tj , u2tj , . . . , umtj

)T
denotes the vector of slice variables, here uitj represents the subvector (ui1, ui2, . . . , uini).

Finally, Sñ =
(
s1tj , s2tj , . . . , smtj

)T
represents the vector of the membership variables, that

contains the subvectors sitj = (si1, si2, . . . , sini). We use the subscript ñ for indicating the

total number of observations, namely,
∑m

i=1 ni.

With all elements defined above, we present a straightforward Gibbs sampling algo-

rithm to the posterior inference on the model in (3-3).

Algorithm [1]

The full conditionals distributions are given by:
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1. p (βl | . . .) := Np

{(
Σ−10|γ + ZTAZA/σ

2
l

)−1 (
Σ−10|γµ0|γ + ZTAyA/σ

2
l

)
,
(

Σ−10|γ + ZTAZA/σ
2
l

)−1}
,

2. p
(

1
ψj
| . . .

)
:= Ga

(
a+ N

2 , b+

∑N
l=1 β

2
jl

2
(
1(γj=1) + ν01(γj=0)

)),

3. p
(

1
σ2
l
| · · ·

)
:= Ga

(
κ+ |A|

2 , κ+ SSR(βl)
2

)
,

4. p(uij | · · · ) := U(0,wsij ),

5. P (sij = k | · · · ) ∝ 1(k : wk(tj) > uij) N(yij | θk),

6. p(vl(t1) | · · · ) := q01Be(vl(t1) | 1 + ni1,M + κi1) + q021{vl(t1)=vl(t2)},

7. p(vl(tj) | · · · ) := q0jBe(vl(tj) | 1 + nij ,M + κij) + q1j1{vl(tj)=vl(tj−1)} +

q2j1{vl(tj)=vl(tj+1)} + q3j1{vl(tj)=vl(tj+1)=vl(tj−1)}, for j 6= {1, τ},

8. p(vl(tτ ) | · · · ) := q0τBe(vl(tτ ) | 1 + niτ ,M + κiτ ) + q1τ1{vl(tτ )=vl(tτ−1)},

9. p(αv | · · · ) ∝ Be (a0, b0)×
∏N
l=1{p (vl (t1) | · · · )×

∏T−1
j=2 p (vl (tj) | · · · )× p (vl (tT ) | · · · )},

10. P (γ = (0, 0, . . . , 0) | . . .) ∝ πM
(
H(0,0,...,0)

) N∏
l=1

p∏
j=1

N (βjl | 0, ν0ψj) ,

P (γ = (1, 0, . . . , 0) | . . .) ∝ πM
(
H(1,0,...,0)

) N∏
l=1

N (β1l | 0, ψ1)

p∏
j=2

N (βjl | 0, ν0ψj) ,

...

P (γ = (1, 1, . . . , 1) | . . .) ∝ πM
(
H(1,1,...,1)

) N∏
l=1

p∏
j=1

N (βjl | 0, ψj) .

In Algorithm [1], A denotes an index set that contains the indexes of the observations

that belong to the cluster l, namely, A = {i, j : sij = l} and |A| denotes the size of the set.

Therefore, yA is a subvector from the vector of observations Yñ and ZA a submatrix of

the design matrix Z(m×(p+1)). In step 2, SSR(βl) corresponds to the expression yTAyA −
2βTl Z

T
AyA + βTl Z

T
AZAβl. Finally, in order to facilitate the readability of the manuscript,

the details for sampling the sticks in the steps 6 to 8, together with the Metropolis-Hasting

steps used at 9 and 10 are given in the Appendix B 3.9. This Appendix also provides the

methodology used for the updating of the mass parameter M in the DDP.
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3.4.1 Visualization of the differences

If the posterior evidence favors the alternative hypothesis, we would like to visualize the dif-

ferences in the response between the levels of the predictor in a given time. Without loss of

generality, if we suppose x1 as a discrete predictor with two levels, from (3-14) we have that

for x1 = 0, the cumulative density function is denoted by Ft,0(·) =
∑

l≥l wl(t)Φ(· | β0l, σ
2
l )

and for x1 = 1, Ft,1(·) =
∑

l≥l wl(t)Φ(· | β0l + β1l, σ
2
l ), where Φ(·) denotes the Gaussian

cumulative density function. To visualize the differences between Ft,0(·) and Ft,1(·), we

propose to compute the Shift function as a measure of the difference between the two

populations at t = t′.

The Shift function was proposed by Doksum (1974) and Doksum & Sievers (1976). The

idea behind the Doksum’s proposal is to find a function ∆ (·), such that, Y(0,t′) +∆
(
Y(0,t′)

)
has the same distribution as Y(1,t′). Here, Y(0,t′) and Y(1,t′) denotes the responses at time

t′, with the level x1 = 0 and x1 = 1, respectively. Formally, ∆ (·) is a function such that

Ft,0
(
Y(0,t′)

)
= Ft,1

(
Y(1,t′) + ∆

(
Y(1,t′)

))
or equivalently, ∆

(
Y(0,t′)

)
= F−1

t,1

{
Ft,0

(
Y(0,t′)

)}
−

Y(1,t′). Note that, if Ft,0(·) = Ft,1(·) then ∆(Y ) is equal to 0, for all Y at t = t′. Conversely,

∆(Y ) is different from 0 for some set A := {Y : ∆(Y ) 6= 0 at t = t′}. The set A provides

information on what regions of the distribution are different at the time t = t′.

Deriving the shift function using Algorithm [1] is immediate, since for each iteration of

the Gibbs algorithm, we have posterior random realizations of F
(`)
t,0 and F

(`)
t,1 , ` = 1, . . . , B.

Defining the left inverse of Ft,1 as F−1
t,1 (u) = inf{q : Ft,1(q) ≥ u}, a random realization of

∆(Y )(`) at the time t = t′ can be computed as

∆(Y )(`) =

F
−1(`)
t,1

{
F

(`)
t,0 (Y )

}
− Y if γ(`) = 1,

0, ∀ Y if γ(`) = 0.
(3-18)

With the posterior realizations of the shift function, it is possible to compute some

functionals, as the sample posterior mean ∆̄(Y ) and a 95% credible set at each point

in time t. The credible set is particularly useful to determine the set A, which can be

visualized looking at the values of Y such that ∆(Y ) 6= 0.

3.5 Data illustration

In this section, we illustrate the use and performance of our model with simulated data.

We simulated responses yi for a total of m = 300 subjects. Each individual has a maximum

of twelve measurements over the times, t1 = 1, t2 = 3, t3 = 4, t4 = 5, t5 = 6, t6 = 7,

t7 = 9, t8 = 13, t9 = 15, t10 = 17, t11 = 20, t12 = 22. Additionally, as usual in longitudinal

studies, we suppose a percentage of the subjects are leaving the study as time progresses.

The percentage of individuals leaving the study at each time are: 5% at t6 and t7, a 10%

at t8, 5% at t9 and finally, a 2.5% at t10 and t11, thus at t12 we have lost 30% of the

subjects that began the study. The index i of the individuals that leave the study was

selected randomly. We suppose that 153 individuals received the treatment and 147 are

in the control group, then the covariate zi is equal to 1 for individuals in the treatment
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Figure 3-3: Profile plot of responses over the time. Consecutive observations within
a subject are connected by a line. (a) Profiles of the control group, (b) Profiles of the
treatment group. The vertical dashed lines indicate the points at which the density
section was estimated in the Figure 3-4.

group and 0 for individuals in the control group. Then, under this setup, we generated

the responses for each individual from the following model

yi = βi + f i + εi, i = 1, . . . , 300, (3-19)

where yi =
(
yit1 , . . . , yitni

)t
, βi = (β0 + β1zi)×1t(1×ni), zi is the dichotomy variable defined

above without dependence of the time. The vector f i = (f (t1) , . . . , f (tni))
t has compo-

nents f(tj) = (15/1+exp{−(tj−9)/3})− 12. In addition, εi =
(
εi1, . . . , εitni

)t
is distributed as a

mixture of multivariate Gaussian distributions and its distribution is conditional on zi as

follows,

f (εi | zi) =

0.4× Nni
(
−2× 1t(1×ni),Σ

)
+ 0.6× Nni

(
4
3 × 1t(1×ni),Σ

)
, if zi = 0

0.7× Nni
(
−2× 1t(1×ni),Σ

)
+ 0.3× Nni

(
14
3 × 1t(1×ni),Σ

)
, if zi = 1

with E (εij) = 0 ∀i, tj and covariance matrix Σ = [σij ]
ni
i,j=1, where σij = λ2α|tj−ti|, λ > 0

and α ∈ (0, 1). Specifically, the model in 3-19 was set up with β0 = 1.5, β1 = 0.2 and for

the autoregressive structure, we fixed λ at 5 and α in 0.6.

Figure 3-3 shows the profiles of the responses simulated for the subjects. The Model

3-3 was fitted via the Gibbs Algorithm [1] of Section 3.4, we run 40,000 iterations, burn-in

a period of 8,000 and thinning the sample by keeping only each 32th draw of the sample

parameters.
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To get a basic idea of the quality of the estimations, we provide posterior inferences

for some time points. Figure 3-4 presents the true and estimated densities at the sections

that we choose in Figure 3-3, the estimation corresponds to the posterior mean. The

figures also include gray regions for representing the point-wise 95% credible intervals.

The posterior probability estimate for our procedure to the hypotesis H1, P̂ (γ1 = 1 | . . .),
was approximately 1. Additionally, Figure 3-5 shows the performance of our proposal for

estimating the correlation structure, the estimation corresponds to the posterior mean of

the correlation together with the point-wise 95% credible intervals. Finally, it is important

to note that our BNP longitudinal test was able to detect small differences, in spite of it

be close to 0 (β1 = 0.2).

3.6 Application to real data sets

In this section, we develop an application of our model to real data. The dataset comes

from an epidemiology study conducted in the Netherlands, in two different areas, rural

and urban. We use a sub-sample of the data publicly available in Fitzmaurice et al. (2010).

The data contains the measurements of the forced expiratory volume in one second (FEV1)

at 133 subjects residents in the rural area. The individuals chosen were those greater than

36 years old at their entry to the study and whose smoking status did not change over

time. The smoking status was divided into a current or former smoker. A subject that

smokes at least one cigarette by day is classified as current, and otherwise as a former

smoker. Each individual was measured between 1 to 7 times, they were measured every

three years for up 21 years. Figure 3-6 shows the profiles of the 133 subjects for the forced

expiratory volume in one second (FEV1).

We fitted model (3-3) to the FEV1 data using the same setup of Section 3.5 for the

hyperparameters. We ran 10, 000 Monte Carlo iterations. The posterior probability for the

alternative hypothesis was approximately 0.606, which indicates that there are differences

in the forced expiratory volume (FEV1) between current smokers and former smokers. We

also obtained the classical tests like as Wald Test and the F-test from the fitted of a linear

mixed model with random intercept, in both cases the p−values (0.00453) suggest that

exist differences in the FEV1. Thus, we can conclude that the condition of current smoker

reduces pulmonary capacity.

Figure 3-7 and 3-8 show the estimations of the density for the forced expiratory vol-

ume in one second (FEV1) by time points. The red dashed line corresponds to posterior

mean of the FEV1 for the current smoker group and the green dashed line for the former

smoker group. In the figure the gray regions represents the 95% credibility intervals. Fig-

ure 3-8 also include the Shift function estimated by time.

In general, the shift function tendency is not so far from zero, which indicates that there

are no marked differences between the FEV1 of a former and current smoker. The observed

differences are smaller in both tails of the distributions. Furthermore, the magnitude of
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Figure 3-4: True and estimated densities at the time points selected in Figure 3-3.
g(y | D, t, z = 0) denotes the density for the control group and g(y | D, t, z = 1)
for the treatment group. The dashed red line is the DDP estimated and the grey
regions represent the point-wise 95% credible intervals. The green and blue solid
line represent the true density for the treatment and control group, respectively.
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Figure 3-5: Plot of the correlation. The dashed red line is the estimated correlation,
the grey region represents the point-wise 95% credible intervals.
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Figure 3-6: Profile plot of the forced expiratory volume in one second (FEV1). The
observations within a subject are connected by a line. (a) Profiles of former smoker
group, (b) Profiles of current smoker group.
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the differences is decreasing over time. This last result could not be discovered using

traditional methods.

3.7 Concluding remarks

Longitudinal data structures are common in different scientific fields as Biology, Agricul-

ture, and Medicine. A key element in this kind of data is that the measurements are

taken repetitively over time. Consequently, the data are physically and stochastically de-

pendent through time. The reference model for this type of data is the mixed model,

which, through the inclusion of specific-subject parameters allows the modeling of the

inter-individual differences and induces correlation between the repeated measurements.

Under this approach, the inference about the possible effect of the predictors on the re-

sponse variable is based on the marginal model. The T-test, together with F-test, are

frequently used to identify the effect of the predictors based on the fixed effects on the

marginal model. Both tests are based on the Gaussian assumption on the errors and ran-

dom effects of the model. Additionally, the degrees of freedom employed in both test are

based on approximations (Satterthwaite 1941, Kenward & Roger 1997).

As in mixed models, our proposal is also based on a hierarchical specification. In

such specification, the data are conditionally independent, given a collection of random

measures. In a second hierarchy, a Markov process relates the measures through the stick-

breaking construction. The second hierarchy is defined conditionally on a hypothesis, and

the model is completed with a prior distribution on the hypotheses space, which penal-

izes more complex models. Our construction induces correlation on the observations as

described in Proposition 2. When the sticks follow a Beta distribution with parameters 1

and M , we have that, marginally, our model is a mixture of Dirichlet processes. The corre-

lation induced on the observations is a function of the parameters M , α, and the distance

between the observations d. Then, when the d = 0 the correlation is 1 and when d goes

to infinity, the correlation goes to zero. Thus, our proposal goes beyond the exchangeable

case usually employed in mixture models.

The flexibility in our BNP specification makes our model reasonable in a variety of

scenarios, including nonlinear behavior of the response across the time and different cor-

relation structures. Such flexibility allows us to test the effect of the predictors even when

the data does not follow a Gaussian distribution. The results with simulated data showed

that our model was flexible enough to capture nonlinear tendencies. The procedure esti-

mated well the correlation structure of the data and was able to detect the effect of the

predictors. Because the procedure captures differences across the entire distribution, in the

application to real data, we were capable of identifying the magnitude of the differences in

the distribution between the current and former smokers for the forced expiratory volume

in different moments of the time. In both, the illustration with simulated data and the

application to real data, the BNP procedure was competitive compared to the standard

tests used in mixed models. We are running extensive Monte Carlo simulations scenarios

to evaluate the performance of our proposal, especially concerning the capacity to detect
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Figure 3-7: Estimated densities of the FEV1 by time points. E (g(y | D, t, z = 0))
denotes the posterior estimated density at the time t for the former smoker group
and E (g(y | D, t, z = 1)) for the current smoker group. The dashed red line is the
DDP estimated and the grey regions represent the point-wise 95% credible intervals.
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Figure 3-8: Top panel and left bottom panel show the estimated densities of the
FEV1 at the last three time points. E (g(y | D, t, z = 0)) denotes the posterior
estimated density at the time t for the former smoker group and E (g(y | D, t, z = 1))
for the current smoker group. The dashed red line is the DDP estimated and the
grey regions represent the point-wise 95% credible intervals. The right bottom panel
presents the shift function by time, the color intensity represents the increment in
the time, thus the dark red corresponds to differences in the density between current
smoker and the former smoker by the last measure over the time, while the lightest
red is associated to the differences in over first measure.
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the effect of the predictors without restrictive distributional assumptions.

3.8 Appendix A

Proof of Proposition 2

Let E[vn] = E[vn+1] := µ, E[v2
n] := µ(2) and V(vn) = V(vn+1) := σ, then

Cov(vn, vn+1) = E[vnvn+1]− E[vn]E[vn+1]

E[vnvn+1] = E[E[vnvn+1 | vn]]

= E[vnE[vn+1 | vn]]

= E[vn[(1− αd)µ+ αdvn]]

= (1− αd)µE[vn] + αdE[v2
n]

= (1− αd)µ2 + αdµ(2)

= αdσ + µ2,

and

Cov(vn, vn+1) = αdσ + µ2 − µ2

= αdσ

thus

Corr(vn, vn+1) = αd.

Proof of Proposition 3

With the purpose of simplifies the notation, let t′ = t+d, then, the covariance between
two random measures Yit and Yit′ is given by

Cov[Yit, Yit′ ] = E
[
Cov

(
Yit, Yit′ | tj , xitj ,P

)]
+ Cov

[
E
(
Yit | tj , xitj ,P

)
,E
(
Yit′ | tj , xitj ,P

)]
= E [0] + Cov

[
E
(
Yit | tj , xitj ,P

)
,E
(
Yit′ | tj , xitj ,P

)]
= E

[ ∞∑
l=1

wltµl(x)
∞∑
l=1

wlt′µl(x)

]
− E

[ ∞∑
l=1

wltµl(x)

]
E

[ ∞∑
l=1

wlt′µl(x)

]
,
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where

E

[ ∞∑
l=1

wltµl(x)

]
=

∞∑
l=1

µ (x)E[wlt]

=

∞∑
l=1

µ (x)E

vlt l−1∏
j=1

(1− vjt)


=

∞∑
l=1

µ (x)E [vlt]
l−1∏
j=1

E(1− vjt)

=

∞∑
l=1

µ (x)µv(1− µv)
l−1

=

∞∑
l=0

µ (x)µv(1− µv)
l

= µ (x) .

and

E

[ ∞∑
l=1

wltµl(x)
∞∑
l=1

wlt′µl(x)

]
=

∞∑
k=1

∞∑
l=1

E[wktwlt′µk(x)µl(x)]

=

∞∑
k=1

E[wktwkt′ ]E[µk(x)µk(x)] +

∞∑
k=1

∞∑
l=k+1

E[wktwlt′ ]E[µk(x)µl(x)]

+

∞∑
l=1

∞∑
k=l+1

E[wktwlt′ ]E[µk(x)µl(x)].

For l = k, we have

E[wktwkt′ ] = E

vkt k−1∏
j=1

(1− vjt)vkt′
k−1∏
j=1

(1− vjt′)


= E

vktvkt′ k−1∏
j=1

(1− vjt)(1− vjt′)


= E

vktvkt′ k−1∏
j=1

(1− vjt′ − vjt + vjtvjt′)


= E [vktvkt′ ]

k−1∏
j=1

E [1− vjt′ − vjt + vjtvjt′ ]

= ϕtt′
k−1∏
j=1

(1− 2µv + ϕtt′)

= ϕtt′(1− 2µv + ϕtt′)
k−1

where ϕtt′ := E [vktvkt′ ] and µv := E[vkt] = E[vkt′ ]. On the other hand, we have that

E[µk(x)µl(x)] = V [µk(x)] + E2 (µk(x))

= σ2
0(x) + µ2(x).
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For l > k, we have

E[wktwlt′ ] = E

vktvlt′(1− vkt′)
k−1∏
j=1

(1− vjt)(1− vjt′)
l−1∏

s=k+1

(1− vst′)


= E

(vktvlt′ − vktvltvkt′)
k−1∏
j=1

(1− vjt′ − vjt + vjtvjt′)
l−1∏

s=k+1

(1− vst′)


= (E[vlt′ ]E[vkt]− E[vlt]E[vktvkt′ ])

k−1∏
j=1

E[1− vjt′ − vjt + vjtvjt′ ]
l−1∏

s=k+1

E[1− vst′ ]

= µv(µv − ϕtt′)(1− 2µv + ϕtt′)
k−1(1− µv)

l−k−1

and

E[µk(x)µl(x)] = E[µk(x)]E[µl(x)]

= µ2(x)

Finally for l < k we obtain

E[wktwlt′ ] = E

vktvlt′(1− vkt′)
l−1∏
j=1

(1− vjt)(1− vjt′)
k−1∏
s=l+1

(1− vst′)


= E

(vktvlt′ − vktvltvkt′)
l−1∏
j=1

(1− vjt′ − vjt + vjtvjt′)
k−1∏
s=l+1

(1− vst′)


= (E[vlt′ ]E[vkt]− E[vlt]E[vktvkt′ ])

l−1∏
j=1

E[1− vjt′ − vjt + vjtvjt′ ]
k−1∏
s=l+1

E[1− vst′ ]

= µv(µv − ϕtt′)(1− 2µv + ϕtt′)
l−1(1− µv)

k−l−1

and

E[µk(x)µl(x)] = E[µk(x)]E[µl(x)]

= µ2(x)
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Now,

E

[ ∞∑
l=1

wltµl(x)
∞∑
l=1

wlt′µl(x)

]
=

∞∑
k=1

ϕtt′(1− 2µv + ϕtt′)
k−1 [σ2

0(x) + µ2(x)
]

+

∞∑
k=1

∞∑
l=k+1

µ2(x)µv(µv − ϕtt′)(1− 2µv + ϕtt′)
k−1(1− µv)

l−k−1

+

∞∑
l=1

∞∑
k=l+1

µ2(x)µv(µv − ϕtt′)(1− 2µv + ϕtt′)
l−1(1− µv)

k−l−1

=
[
σ2
0(x) + µ2(x)

]
ϕtt′

∞∑
k=1

(1− 2µv + ϕtt′)
k−1

+ µ2(x)µv(µv − ϕtt′)
∞∑
k=1

(1− 2µv + ϕtt′)
k−1

∞∑
l=k+1

(1− µv)
l−k−1 +

+ µ2(x)µv(µv − ϕtt′)
∞∑
l=1

(1− 2µv + ϕtt′)
l−1

∞∑
k=l+1

(1− µv)
k−l−1

=

[
σ2
0(x) + µ2(x)

]
ϕtt′

2µv − ϕtt′
+ 2

µ2(x)(µv − ϕtt′)
2µv − ϕtt′

thus, we have

Cov[Yit, Yit′ ] = E

[ ∞∑
l=1

wltµl(x)
∞∑
l=1

wlt′µl(x)

]
− E

[ ∞∑
l=1

wltµl(x)

]
E

[ ∞∑
l=1

wlt′µl(x)

]

=

[
σ2
0(x) + µ2(x)

]
ϕtt′

2µv − ϕtt′
+ 2

µ2(x)(µv − ϕtt′)
2µv − ϕtt′

− µ2(x)

=
σ2
0(x)ϕtt′

2µv − ϕtt′
.

On the other hand, the variance of Yit is given by

Var [Yit] = Cov[Yit, Yit]

=
σ2
0(x)ϕtt

2µv − ϕtt

where ϕtt = E[v2
kt] := µ

(2)
v . Then,

Corr[Yit, Yit′ ] =
ϕtt′(2µv − ϕtt)
ϕtt(2µv − ϕtt′)

If we consider the jump process for vkt like in (3-9), then the correlation is given by

Corr[Yit, Yit′ ] =
ϕtt′(2µv − ϕtt)
ϕtt(2µv − ϕtt′)

=
(2µv − µ(2)

v )
(
αdσv + µ2

v

)
µ
(2)
v (2µv − αdσv − µ2

v)
,

where Var[v] = σv.
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3.9 Appendix B

Gibbs sampling for the posterior inference

In this section we provide details on the Gibbs sampling for updating the parameters vl(tj),

αv, γ and M of the Algorithm 1.

1. Updating of the weights processes.

We have that for j 6= {1, τ}, where τ is the last point at the time with observations,

the posterior distribution is given by

L(vl(tj) | · · · ) ∝ pv(vl(tj+1) | vl(tj)) pv(vl(tj) | vl(tj−1))

× vl(tj)
nij (1− vl(tj))

κij , (3-20)

where nij =
∑m

i=1 1 {sij = l} and κij =
∑m

i=1 1(sij > l). On the other hand, for

j = 1 it is given by

L(vl(t1) | · · · ) ∝ pv(vl(t2) | vl(t1)) pv(vl(t1))

× vl(t1)nij (1− vl(t1))κij (3-21)

and finally for j = τ we have

L(vl(tτ ) | · · · ) ∝ pv(vl(tτ ) | vl(tτ−1))

× vl(tτ )nij (1− vl(tτ ))κij . (3-22)

In particular, if πv = Be(1,M) then (3-20) is given by

L(vl(tj) | · · · ) ∝ q0jBe(vl(tj) | 1 + nij ,M + κij) + q1j1{vl(tj)=vl(tj−1)} +

q2j1{vl(tj)=vl(tj+1)} + q3j1{vl(tj)=vl(tj+1)=vl(tj−1)},

where

q0j = (1− αdv)2M
Γ(1 + nij)Γ(M + κij)

Γ(1 +M + nij + κij)
Be(vl(tj+1) | 1,M),

q1j = αdv(1− αdv)vl(tj−1)nij (1− vl(tj−1))κijBe(vl(tj+1) | 1,M),

q2j = αdv(1− αdv)M
Γ(1 + nij)Γ(M + κij)

Γ(1 +M + nij + κij)
Be(vl(tj+1) | 1 + nij ,M + κij),

q3j = α2d
v vl(tj−1)nij (1− vl(tj−1))κij .

In the same way, the expression in (3-21) is given by

L(vl(t1) | · · · ) ∝ q01Be(vl(t1) | 1 + ni1,M + κi1) + q021{vl(t1)=vl(t2)},

where

q01 = (1− αdv)MBe(vl(t2) | 1,M),

q02 = αdvBe(vl(t2) | 1 + ni1,M + κi1).
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and finally (3-22) by

L(vl(tτ ) | · · · ) ∝ q0τBe(vl(tτ ) | 1 + niτ ,M + κiτ ) + q1τ1{vl(tτ )=vl(tτ−1)},

where

q0τ = (1− αdv)M
Γ(1 + niτ )Γ(M + κiτ )

Γ(1 +M + niτ + κiτ )
,

q1τ = αdvvl(tτ−1)niτ (1− vl(tτ−1))κiτ .

2. Updating αv.

The posterior distribution for the correlation parameter between the sticks is given

by

L(αv | · · · ) ∝ Be (a2, b2)×
N∏
l=1

{L (vl (t1) | · · · )×
T−1∏
j=2

L (vl (tj) | · · · )×L (vl (tT ) | · · · )}

and because this expression does not have a closed form, then a Metropolis-Hasting

step is needed. We propose to use a truncated normal distribution as a pro-

posal distribution for αv, thus at iteration i, a candidate α∗v is to propose from

N
(
α∗v | α

(i−1)
v , c

)
1[0,1]. Then, αv = α∗v with probability min(r,1), where r is defined

as

r =
L(α∗v | · · · )N

(
α

(i−1)
v | α∗v, c

)
1[0,1]

L(α
(i−1)
v | · · · )N

(
α∗v | α

(i−1)
v , c

)
1[0,1]

3. Updating of vector γ = (γ1, γ2, . . . , γj).

We use a Metropolis-Hastings step with probabilities of acceptation proportional to

P (γ = (0, 0, . . . , 0) | . . .) ∝ πM
(
H(0,0,...,0)

) N∏
l=1

p∏
j=1

N (βjl | 0, ν0ψj) ,

P (γ = (1, 0, . . . , 0) | . . .) ∝ πM
(
H(1,0,...,0)

) N∏
l=1

N (β1l | 0, ψ1)

p∏
j=2

N (βjl | 0, ν0ψj) ,

...

P (γ = (1, 1, . . . , 1) | . . .) ∝ πM
(
H(1,1,...,1)

) N∏
l=1

p∏
j=1

N (βjl | 0, ψj) .

The proposed candidate γ∗ for the MH step is a vector that is different of γ(i−1)

in one element only. For instance, if we have four covariables and at i − 1 step,

γ(i−1) = (0, 1, 0, 1), then the candidate is sampled of the set

{(1, 1, 0, 1) , (0, 0, 0, 1) , (0, 1, 1, 1) , (0, 1, 0, 0)} ,

with acceptation probability φ′ = P (γ∗|...)/P (γ∗|...)+P (γ(i−1)|...), thus at iteration i if
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u ≤ φ′, then γ(i) = γ∗ else γ(i) = γ(i−1), here u ∼ U(0, 1).

4. The mass parameter M is updated as in Escobar & West (1995).

Thus, M is sampled from a gamma mixture given by

π(M | N, η) = φGa (M | a1 +N, b1 − log(η)) + (1− φ)Ga (M | a1 +N − 1, b1 − log(η))

where for all N > 1, φ = 1/
(

1+
n(b1−log(η))
(a1+N−1)

)
, n is the sample size, and η is a continuous

random variable such that π (η |M,N) ∼ Be (M + 1, n).



Chapter 4

Concluding remarks and future

directions

In this thesis, we have presented two novel procedures to perform hypothesis testing in

data structures, which considers correlation. In Chapter 2, we proposed a procedure to

compare the marginal distributions of paired samples, which is an essential problem in

statistics. The proposal follows a Bayesian Nonparametric approach of inference. Thus,

it was able to detect differences across the entire distribution. The hypothesis testing

procedure showed results consistently good in the simulated scenarios, and was compet-

itive compared to the traditional tests, even in situations where the assumptions for the

conventional test were accomplished.

An interesting problem related to the results in Chapter 2 is to identify whether two

samples are correlated or not (see, e.g. Filippi et al. 2016, Filippi & Holmes 2017). This

can be developed exploiting the hierarchical structure and the special parametrization of

the kernel to identify if the correlation is zero or not, which can be tested, for example,

defining a spike-slab prior distribution for the parameter τ2.

In Chapter 3, we proposed a procedure for testing the effect of predictors on the re-

sponse variable in the context of longitudinal data analysis. The procedure was able to

capture the correlation among the observations from the same individual, and at the same

time, it was capable of detecting the effect of the predictors. In the illustration with real

and simulated data, our method showed excellent performance for detecting the effects of

predictors on the response variable, and the time evolution of the density was appropri-

ately captured.

The problem modeled in Chapter 3 has received a lot of attention in the literature.

There are many variations of statistical models for longitudinal data. Our proposal is

flexible, but it just considers the case of monotone missing-data patterns. Specifically,

we have assumed that an individual is measured from the first follow-up time and if a

dropout takes place, then the individual is retired of the study definitively. Additionally,

we suppose an ignorable mechanism to the missing. In fact, we have assumed a mechanism

of missing completely at random (MCAR). The data are said to be missing completely at
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random when the probability that responses are missing not dependent to either specific

values. Bayesian nonparametric approaches when missingness is monotone can be found

in Wang et al. (2010), Daniels & Linero (2015), Linero (2015). However, in longitudinal

studies, given the dynamic to collect the observations, in practice is frequent the presence

of non-ignorable and non-monotone missingness. Under non-monotone missing patterns,

for instance, either a non-response can occur starting the follow-up, or in the middle of

the follow-up period, just to mention a few situations among other more complex.

An engaging issue arises from Chapter 3 is the development of a hypothesis testing

procedure in the presence of non-ignorable and non-monotone missing data in longitudinal

studies. Thus, non-ignorable missing data implies to include a hierarchy for the missing

data in the model, that could allow incorporating the missing information in the joint

probability of the observed data. However, the treatment of non-monotone missing data

is not necessarily straightforward. Its modeling exhibit essential challenges for the prior

on the completed data space, and there are few works available in the Bayesian literature

(see, e.g., Linero (2017)).
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