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Abstract

Bayesian nonparametric (BNP) statistics is a relative new area of statistics. The intersection of

Bayesian and non-parametric statistics was almost empty until the sixties and seventies where

the first advances were made, primarily on the mathematical formulations. It was only in the

early nineties with the advent of sampling based methods, in particular Markov chain Monte

Carlo methods, that substantial progress has been made in the area. Posterior distributions

ranging over functional spaces are highly complex and hence sampling methods play a key

role. A number of themes are in continuous development including theory, methodology and

applications.

The main objective of this dissertation is to propose and study, theoretical and applied issues,

concerning BNP models for single probability measures and collections of predictor-dependent

probability measures defined on compact sets. The emphasis is on the following three aspects:

(I) the proposal of novel BNP models for single density estimation for compositional data and

the study of the large sample behavior of its posterior distribution under independent and iden-

tically distributed sampling, (II) the empirical study of the small sample behavior of two BNP

models for single probability measures for data supported on compact intervals, (III) the pro-

posal and study of the basic properties of predictor-dependent BNP models for compositional

data.
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CONTENTS

In (I), we study the large sample behavior of a BNP procedure for the density estimation for

compositional data, that is, data supported in a m–dimensional simplex ∆m. The procedure is

based on a Dirichlet process mixture model of a specific class of mixture of Dirichlet densities.

We derive a posterior convergence rate by assuming that the underlying data generating density

belongs to a Hölder class with regularity α, 0 < α ≤ 1. Specifically, we show that, up to a

logarithmic factor, the convergence rate of the posterior distribution is n−α/(2α+m) and, thus the

procedure is rate–optimal. These results are summarized in Chapter 2.

In (II), we compare a rate-optimal and rate-suboptimal BNP model for density estimation

for data supported on a compact interval by means of the analyses of simulated and real data.

The convergence rate of the posterior distribution is usually considered as a standard criteria

for model comparison and selection; the faster the rate, the better the model. However, the

rate-optimal behavior of a model might well trap the unwary into a false sense of security on

the performance of the model, by suggesting that it has the best performance in a wide range

of settings and sample sizes. The results illustrate that rate-optimal models are not uniformly

better, across sample sizes, with respect to the way in which the posterior mass concentrates

around a true model and that suboptimal models can outperform the optimal ones, even for

relatively large sample sizes. These results are summarized in Chapter 3.

In (III), we proposed BNP procedures for fully nonparametric regression for compositional

data. The procedures are based on a modified class of multivariate Bernstein polynomials,

which retains the well known approximation properties of the classical versions defined on

[0, 1]m and ∆m, m ≥ 1, and on the use of dependent stick-breaking processes. A general

model class and two simplified versions of the general class are discussed in detail. Appealing

theoretical properties such as continuity, association structure, support and consistency of the

posterior distribution are established for all models. These results are summarized in Chapter

4.
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Chapter 1

Introduction

1.1 Literature overview

1.1.1 The general context

Statistical models are used to understand and to learn about the data generating mechanism and

they correspond to simplifications of the actual phenomena. The remark of the well known

statistician George Box (Box, 1979) “all models are wrong but some models are useful” rec-

ognizes the fact that the statistical inference depends not only on the data but also on the back-

ground knowledge of the situation which is formalized in the assumptions with which the anal-

ysis is entered. The data are envisioned as realizations of a collection of random variables

x1, . . . ,xn, where xi itself could be a vector of random variables, corresponding to data that

are collected on the i-th experimental unit in a sample of n units. It is also assumed that the col-

lection of random variables follow a joint probability distribution F and the statistical problem

begins when there exists uncertainty about F , characterized by a p.d.f. f . A statistical model

arises when f is known to be a member fθ from a family {fθ : θ ∈ Θ}, labeled by a set of

1



1.1. LITERATURE OVERVIEW

parameters θ from an index set Θ.

Statistical models that are described through a vector θ of a finite number of, typically, real

values are referred to as finite-dimensional or parametric models. Parametric models can be

described as {fθ : θ ∈ Θ ⊂ <p}. Constraining the inference to a specific parametric form,

however, may limit the scope and type of inferences that can be drawn. In many practical

situations a parametric model cannot describe in an appropriate manner the chance mechanism

generating an observed dataset, and unrealistic features of some common models (for example,

the thin tails of the normal distribution when compared to the distribution of observed data)

could lead to unsatisfactory inferences. In these situations, we would like to relax parametric

assumptions to allow greater modeling flexibility and robustness against mis-specification of a

parametric statistical model. Specifically, we may want to consider models where the class of

densities is so large that it can no longer be indexed by a set of finite-dimensional parameter,

and we therefore require parameters θ in an infinite-dimensional space, such as the space of all

probability measures defined on the sample space. Statistical models that are described through

infinite-dimensional parameters are referred to as non-parametric models. Infinite-dimensional

parameters of interest are usually functions. Functions of common interest, among many others,

include the probability distribution (through some specific characteristic) and the conditional

mean (regression function).

The definition and study of theoretical properties of probability models defined over infinite-

dimensional spaces have received increasing attention in the statistical literature because these

models are the basis for the Bayesian nonparametric (BNP) generalization of parametric sta-

tistical models (see, e.g., Ghosh & Ramamoorthi, 2003; Müller & Quintana, 2004; Hjort et al.,

2010; Müller et al., 2015). BNP models are specified by defining a stochastic process whose

trajectories lie in a functional space, F . The law governing such a process is then used as a

prior distribution for a functional parameter in a Bayesian framework.

The increase in applications of BNP methods in the statistical literature has been motivated

largely by the availability of simple and efficient methods for posterior computation in Dirich-

let process mixture (DPM) models (Ferguson, 1983; Lo, 1984). The DPM model incorporate

Dirichlet process (DP) priors (Ferguson, 1973, 1974) for components in Bayesian hierarchical
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models, resulting in an extremely flexible class of models. Due to the flexibility and ease in

implementation, DPM models are now routinely implemented in a wide variety of applications,

ranging from machine learning to genomics (see, e.g. Müller et al., 2015). Furthermore, a rich

theoretical literature showing large support, posterior consistency and concentration rates of the

posterior distribution (Lo, 1984; Ghosal et al., 1999; Lijoi et al., 2005; Ghosal & Van der Vaart,

2007) justify the use of DPM models for inference in single density estimation problems.

Let F be the space of all probability measures, with density w.r.t. Lebesgue measure, de-

fined on an appropriate measurable space (S,B(S)), with S ⊆ Rq, and where B(S) is the Borel

σ-field. A DPM model for density estimation is a F-valued stochastic process, F , defined on an

appropriated probability space (Ω,A, P ), such that for almost every ω ∈ Ω, the density function

of F is given by

f(y | G(ω)) =

∫
Θ

ψ(y, θ)G(ω)(dθ), y ∈ S, (1.1)

where ψ(·, θ) is a continuous density function on (S,S), for every θ ∈ Θ ⊆ Rq, and G is

a DP, whose sample paths are probability measures defined on (Θ,B(Θ)), with B(Θ) being

the corresponding Borel σ-field. If G is DP with parameters (M,G0), where M ∈ R+
0 and

G0 is a probability measure on (Θ,B(Θ)), written as G | M,G0 ∼ DP (MG0), then the

trajectories of the process can be a.s. represented by the following stick-breaking representation

(Sethuraman, 1994): G(B) =
∑∞

i=1 ωiδθi(B), B ∈ B(Θ), where δθ(·) is the Dirac measure at

θ, ωi = Vi
∏

j<i(1 − Vj), with Vi | M
iid∼ Beta(1,M), and θi | G0

iid∼ G0. Discussion of

properties and applications of DP can be found, for instance, in Ferguson (1973, 1974), Korwar

& Hollander (1973), Antoniak (1974), Blackwell & MacQueen (1973), Cifarelli & Regazzini

(1990), Hanson et al. (2005), Hjort & Ongaro (2005), Hjort et al. (2010), Müller et al. (2015) and

in references therein. Recent work in BNP models has concentrated on different generalizations

of the problem, which are described in the next sections.
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1.1.2 Alternatives to Dirichlet process mixing

Alternative discrete probability models to the DP have been considered. Some examples are

members of the general class of species sampling models (SSM) introduced by Pitman (1996).

The class of SSM includes as special cases the DP and the normalized random measures (Nieto-

Barajas et al., 2004), among many others. Members of this class can be represented in the form

G(B) =
∑∞

i=1 ωiδθi(B) + (1−
∑∞

i=1 ωiδθi(B))G0(B), B ∈ B, where, the atoms θi are iid

random variables with common distribution G0, θi
iid∼ G0, which are assumed independent of

the non-negative random weights ωi. The weights ωi are constrained such that
∑∞

i=1 ωi ≤ 1

a.s. The name of the class is motivated by the interpretation of the parameters; the ith weight

ωi is interpreted as the relative frequency of the ith species in a species’ list present in a certain

population, and θi is interpreted as the tag assigned to that species. If
∑∞

i=1 ωi = 1 then the SSM

is called proper and the corresponding random probability measure G is a.s. discrete. Some

examples of SSM are the Dirichlet-multinomial processes (Muliere & Secchi, 1995), the ε-DP

(Muliere & Tardella, 1998), the normalized inverse Gaussian processes (Lijoi et al., 2005), the

two parameter Poisson-Dirichlet processes (Pitman, 1995, 1996; Pitman & Yor, 1997; Ishwaran

& James, 2001) and the beta two-parameter processes (Ishwaran & Zarepour, 2000).

1.1.3 Continuous and absolutely continuous random probability measures

Alternatives formulations of the problem have been considered by using BNP models which

admit directly continuous and absolutely continuous distributions, thus avoiding the convolu-

tion with a continuous kernel to generate probability measures with density w.r.t. Lebesgue

measure. Some examples are the general class of tail-free processes (Freedman, 1963; Fabius,

1964; Ferguson, 1974), Polya trees (Ferguson, 1974; Mauldin et al., 1992; Lavine, 1992, 1994),

mixtures of Polya trees (Lavine, 1992; Hanson & Johnson, 2002; Hanson, 2006; Christensen

et al., 2008; Jara et al., 2009), randomized Polya trees (Paddock, 1999, 2002; Paddock et al.,

2003), Gaussian processes (O’Hagan, 1992; Angers & Delampady, 1992), Wavelets (Müller &

Vidakovic, 1998), random Bernstein polynomials (Petrone, 1999a,b; Ghosal, 2001; Petrone &

Wasserman, 2002), logistic Gaussian processes (see, e.g. Tokdar & Ghosh, 2007), and quantile
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pyramids (Hjort & Walker, 2009).

1.1.4 Models for related probability measures

Generalizations of the models discussed in Section 1.1.1 have been proposed to accommodate

dependence of the data on predictors. To date, most of the extensions have focused on construc-

tions that generalize the DPM model by considering

f(y | x,Gx(ω)) =

∫
Θ

ψ(y, θ)Gx(ω)(dθ), y ∈ S, (1.2)

where f(y | x,Gx), Gx ≡ Gx(ω), is a conditional density indexed by the value of predictors

x ∈ X ⊂ Rp, and the dependence is introduce through the mixing probability measure Gx.

Thus, the inferential problem is related to the modeling of the collection of predictor-dependent

probability measures {Gx : x ∈ X}. Some of the earliest developments on dependent DP

models appeared in Cifarelli & Regazzini (1978), who defined dependence across related ran-

dom measures by introducing a regression for the baseline measure of marginally DP random

measures. A more flexible construction was proposed by MacEachern (1999, 2000), called

the dependent Dirichlet process (DDP). The key idea behind the DDP is to create a set of

marginally DP random measures and to introduce dependence by modifying the stick-breaking

representation of each element in the set. Specifically, MacEachern (1999, 2000) generalized

the stick-breaking representation by assuming Gx(B) =
∑∞

i=1 ωi(x)δθi(x)(B), B ∈ B, where

the point masses θi(x), i = 1, . . ., are independent stochastic processes with index set X ,

and the weights take the form ωi(x) = Vi(x)
∏

j<i[1 − Vj(x)], with Vi(x), i = 1, . . ., be-

ing independent stochastic processes with index set X and Beta(1,M) marginal distribution.

MacEachern (2000) also studied a version of the process with predictor-independent weights,

Gx(B) =
∑∞

i=1 ωiδθi(x)(B). Versions of the predictor-independent weights DDP have been

successfully applied in a variety of applications (see, e.g. De Iorio et al., 2004; Gelfand et al.,

2005; Jara et al., 2010). Barrientos et al. (2012) studied the support properties of different ver-

sions of the DDP and extensions to more general dependent stick-breaking processes. Other

extensions of the DP for dealing with related probability distributions include the DPM mixture
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of normals model for the joint distribution of the response and predictors (Müller et al., 1996),

the hierarchical mixture of DPM (Müller et al., 2004), the hierarchical DP (Teh et al., 2006),

the order-based DDP model (Griffin & Steel, 2006), the nested DP (Rodriguez et al., 2008),

the predictor-dependent weighted mixture of DP (Dunson et al., 2007), the kernel-stick break-

ing process (Dunson & Park, 2008), the matrix-stick breaking process (Dunson et al., 2008),

the local DP (Chung & Dunson, 2011), the logit-stick breaking processes (Ren et al., 2011),

the probit-stick breaking processes (Chung & Dunson, 2009; Rodriguez & Dunson, 2011), the

cluster-X model (Müller & Quintana, 2010), the PPMx model (Müller et al., 2011), and the

dependent skew DP model (Quintana, 2010), among many others. Dependent neutral to the

right processes and correlated two-parameter Poisson-Dirichlet processes have been proposed

by Epifani & Lijoi (2010) and Leisen & Lijoi (2011), respectively, by considering suitable

Lévy copulas. The general class of dependent normalized completely random measures has

been discussed, for instance, by Nipoti (2011) and Lijoi et al. (2014). Based on a different for-

mulation of the conditional density estimation problem, Tokdar et al. (2010) and Jara & Hanson

(2011) proposed alternatives to convolutions of dependent stick-breaking approaches, which

yield conditional probability measures with density w.r.t. Lebesgue measure without the need

of convolutions.

1.2 Outline of this dissertation

This thesis is devoted to a series of chapters that propose and study properties of BNP models for

single probability measures and collections of predictor-dependent probability measures defined

on compact sets. As a result of different work carried out at several stages of the project, the

chapters are self-contained regarding its notation and abbreviations. The organization of the

thesis is as follows.
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1.2.1 Chapter 2

We propose a BNP model for density estimation for data supported on a m–dimensional sim-

plex, ∆m, and study its large sample behavior. Motivated by the uniform approximation prop-

erties, and the models proposed by Petrone (1999a,b) for data supported on compact intervals,

Barrientos et al. (2015a) proposed a BNP procedure for density estimation for data supported

on ∆m based on multivariate Bernstein polynomials (MBP). The proposed model corresponds

to a DPM of Dirichlet densities and has desirable support properties. However, they found

that for “true” densities in a Hölder class with α regularity, α ∈ (0, 2], the convergence rate

of the posterior distribution associated with the proposed model is, up to a logarithmic factor,

n−α/(2α+2m), which is suboptimal from a minimax point of view.

In this chapter we suggest a modification of the model proposed in Barrientos et al. (2015a).

The modification follows the ideas used by Kruijer & Van der Vaart (2008), who proposed a

modification of the model developed by Petrone (1999a,b). Our proposal is based on a class

of MBP that retains the same uniform approximation properties than the original class. The

proposed model is a DPM of mixtures of Dirichlet densities. We derive the posterior conver-

gence rate by assuming that the underlying data generating density belongs to a Hölder class

with α regularity, α ∈ (0, 1]. We show that, up to a logarithmic factor, the convergence rate

of the posterior distribution is n−α/(2α+m), which is the optimal minimax rate for this class of

densities.

1.2.2 Chapter 3

We compare rate-optimal and rate-suboptimal BNP models for single probability measures de-

fined on a compact interval by means of the analyses of simulated and real data. The conver-

gence rate of the posterior distribution is usually considered as a standard criteria for model

comparison and selection; the faster the rate, the better the model.

We argue that the use of purely asymptotic criteria for models selection is not appropriate

and can lead to the choice of a model not well suited for finite sample sizes. Asymptotic results

usually depend on assumptions which are unverifiable in practice (e.g., the smoothness of the
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underlying “true” density). Furthermore, rate-optimal models are not necessarily better with

respect to the way in which the posterior mass concentrates around a given true model for all

sample sizes. Some reasons for this are that they are derived asymptotically and not for finite

sample sizes, and that the derived results are usually an upper bound for the concentration rate

and not the concentration rate itself.

In this chapter we compare the Bernstein–Dirichlet model proposed by Petrone (1999a,b)

and the DPM of mixtures of beta densities proposed by Kruijer & Van der Vaart (2008), which

are suboptimal and optimal, respectively. In the simulated data comparison, we consider under-

lying distributions generating data that belong to a Hölder class with α regularity, α ∈ (0, 1],

which is the class of densities where the asymptotic results have been obtained. Furthermore,

we consider sample sizes ranging from 100 to 10,000. The results illustrate that rate-optimal

models are not uniformly better, across sample sizes, and that suboptimal models can outper-

form the optimal ones, even for relatively large sample sizes.

1.2.3 Chapter 4

We propose BNP procedures for fully nonparametric regression for compositional data, that

is, data supported in ∆m. The propose procedures extend the class of MBP priors defined by

Barrientos et al. (2015a) for single density estimation, and are based on the use of dependent

stick-breaking processes. Three classes of models are defined; a general one in which both

weights and support points are indexed by predictors; a single weight class, where only the sup-

port points depend on predictors; and a single support point class where only the weights of the

stick–breaking process depend on predictors. Appealing theoretical properties such as continu-

ity, association structure, support and consistency of the posterior distribution are established.

In particular, we study the covariance function of the random measures. The support of the pro-

cesses was studied by considering the weak product, L∞ product, L∞, and Kullback–Leibler

topologies. Finally, we showed that the posterior distribution associated with the random joint

distribution for predictor and responses, induced by the proposed model, is weakly consistent

at any joint distribution with the same marginal distribution generating the predictors.
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Chapter 2

Posterior convergence rate of a class of Dirichlet process

mixture model for compositional data

This chapter has been submitted for publication as:

BARRIENTOS, A.F., JARA, A., WEHRHAHN, C. (2015). Posterior convergence rate of a

class of Dirichlet process mixture model for compositional data.
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2.1. INTRODUCTION

2.1 Introduction

Models based on convex combinations of densities from parametric families underly main-

stream approaches to density estimation (Silverman, 1986; Lindsay, 1995; Lo, 1984). Un-

der a Bayesian nonparametric approach, a mixture model provides a convenient set up in

that a prior distribution on densities is induced by placing a prior distribution on the mixing

measure (see, e.g. Ferguson, 1983; Lo, 1984; Escobar & West, 1995). Extending the work

by Petrone (1999a,b) on the unit interval by using Bernstein polynomials, Barrientos et al.

(2015a) suggested to construct a probability model for densities on the d–dimensional simplex

∆d =
{

(y1, . . . , yd) ∈ [0, 1]d :
∑d

i=1 yi ≤ 1
}

, by using mixtures of Dirichlet–densities of the

form

bk,G(y) =
∑

j∈H 0
k,d

G

((
j1 − 1

k
,
j1

k

]
× . . .×

(
jd − 1

k
,
jd
k

])
d(y | α(k, j)), (2.1)

where k is discrete random variable supported on N, G is a discrete random probability measure

defined on ∆0
d = {y ∈ ∆d : yj ≥ 0, j = 1, . . . , d}, j = (j1, . . . , jd),

H 0
k,d =

{
(j1, . . . , jd) ∈ {1, . . . , k}d :

d∑
l=1

jl ≤ k + d− 1

}
,

d(· | (α1, . . . , αm)) denotes the density function of a m–dimensional Dirichlet distribution with

parameters (α1, . . . , αm), and α (k, j) =
(
j, k + d−

∑d
l=1 jl

)
.

By assuming that G is a stick–breaking process, Barrientos et al. (2015a) showed that the

induced prior distribution has full weak, L∞ and Kullback–Leibler support. By using results

provided by Ghosal et al. (1999), Barrientos et al. (2015a) showed that the posterior distribution

is L1–consistent, under mild conditions on the distribution of k. Furthermore, they showed

that if the “true” density belongs to the proposed class of mixture models, then the speed of

convergence of the posterior distribution is at most log n/
√
n. They also showed that when

the “true” density belongs to a Hölder class with α–regularity, α ∈ (0, 2], then the speed of

convergence of the posterior distribution is at most (log n)(2α+d)/(2α+2d)/nα/(2α+2d), which is

10



2.2. THE DIRICHLET PROCESS MIXTURE MODEL AND PROPERTIES

suboptimal.

Following a similar approach to the one suggested by Kruijer & Van der Vaart (2008) for

data supported on [0, 1] and [0, 1]2, we proposed a modification of the mixture model given by

expression (2.1), for which we showed that the posterior convergence rate is optimal up to a

logarithmic factor, by assuming a Dirichlet process mixing. Specifically, we showed that if the

“true” density belongs to a Hölder class with α–regularity, of at most α = 1, then convergence

of the posterior distribution is at most (log n)(4α+d)/(4α+2d)/nα/(2α+d).

2.2 The Dirichlet process mixture model and properties

Suppose we have independent observations y1,y2, . . . ,yn from a common density f supported

on ∆d. We model the common density f using the following Dirichlet process mixture model,

yi | k,θi
ind.∼ fk,θi(·) ≡

Tk(dkθ(i,1)e)
√
k∑

j1=(Tk(dkθ(i,1)e)−1)
√
k+1

. . .

Tk(dkθ(i,d)e)
√
k∑

jd=(Tk(dkθ(i,d)e)−1)
√
k+1

C(j)d (· | α(k, j)) ,(2.2)

θi | G
i.i.d.∼ G, (2.3)

G |M,G0 ∼ DP (MG0), (2.4)

k ∼ ρ, (2.5)

where

C(j) = IH 0
k,d

(j)

(
k−d/2

(
1− IQk

d
(j)
)

+
(d!(
√
k − 1)!

(
√
k + d− 1)!

IQk
d
(j)

)
,

IA(·) is the indicator function for the set A, Qk
d =

{
j ∈H 0

k,d :
∑d

i=1 Tk(ji) =
√
k + d− 1

}
,

Tk(j) =
∑√k

i=1 i IA(k,i)(j), A(k, i) =
{

(i− 1)
√
k + 1, . . . , i

√
k
}

, d·e denotes the ceiling func-
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tion, j = (j1, . . . , jd),G ∼ DP (MG0) refers toG being a Dirichlet process with baseline distri-

butionG0 and total mass parameterM ,M is a nonnegative constant,G0 is a probability measure

defined on ∆0
d, and ρ is a probability measure defined on K =

{
l ∈ N : l1/2 is an integer

}
. Note

that the hierarchical representation of the model given by expressions (2.2) – (2.3), induces the

following model for the unknown density

b̃k,G(y) =

∫
∆d

fk,θi(y)G (dθi) ,

where k and G are unknown parameters. It is easy to see that bk,G(·) is a polynomial function

of y. This polynomial class can approximate any element in the set of absolutely continuous

probability measures defined on ∆d and with α-Hölder continuous density function, α ∈ (0, 1].

The following theorem provides the order of approximation of b̃k,G(y) as k increases.

Theorem 2.1. Let P be an absolutely continuous probability measure defined on ∆d, w.r.t.

Lebesgue measure, with α–Hölder continuous density function, p. Then

‖b̃k,P − p‖∞ = O
(
k−α/2

)
.

The previous result and the weak support properties of the DP allow us to show that the

posterior distribution of the model induced by expressions (2.2) – (2.5) is rate–optimal.

Theorem 2.2. Let P (∆d) be the set of all absolutely continuous probability measures defined

on ∆d, w.r.t. Lebesgue measure, and with continuous density. Let F ∈ P (∆d) be the true data

generating probability measure define on ∆d, with strictly positive density f . Assume that f is

α–Hölder continuous for α ∈ (0, 1]. LetG0 be a probability measure defined on ∆d with strictly

positive density w.r.t. Lebesgue measure. Assume that for every k̄ ∈ K, B1 exp(−β1k̄
d/2) ≤

ρ(k̄) ≤ B2 exp(−β2k̄
d/2), for some positive constants B1, B2, β1 and β2. Then for a sufficiently

large constant C,

Π

{
P ∈ P (∆d) : H(p, f) ≥ C

(log n)(4α+d)/(4α+2d)

nα/(2α+d)

∣∣∣∣y1, . . . ,yn

}
−→
n→∞

0,
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in F n-probability, where p is the density of P , H(p, f) is the Hellinger distance between P and

F and Π{· | y1, . . . ,yn} is the posterior distribution induced by b̃k,G and expressions (2.4) and

(2.5).

2.3 Proofs

2.3.1 Proof of Theorem 1

By the triangle inequality it follows that, for every probability measure P defined on ∆d and

with α–Hölder continuous density p, ‖b̃k,P − p‖∞ ≤ ‖bk,P − p‖∞ + ‖bk,P − b̃k,P‖∞, where

bk,P is the class of polynomials functions proposed by Barrientos et al. (2015a). They showed

that ‖bk,P − p‖∞ = O(k−α/2). Thus, to prove the theorem it is sufficient to show that ‖bk,P −

b̃k,P‖∞ = O(k−α/2).

Let zj = (zj,1, . . . , zj,d+1)
i.i.d.∼ Multinomial(1,π), where π =

(
y, 1−

∑d
l=1 yl

)
. Set

Sk =
∑k+d−1

j=1 zj and Wk = (Sk,1, . . . , Sk,d). By the multivariate version of the mean value

theorem proposed by Ash (2008), it is possible to ensure the existence of (0, 1)d–valued random

vectors cWk
and c̃Wk

such that,

P

((
Tk(Sk,1)√

k
,
Tk(Sk,1) + 1√

k

]
× · · · ×

(
Tk(Sk,d)√

k
,
Tk(Sk,d) + 1√

k

])
=

1

kd/2
p

(
Tk(Wk) + c̃Wk√

k

)
,

and

P

((
Sk,1
k
,
Sk,1 + 1

k

]
× . . .×

(
Sk,d
k
,
Sk,d + 1

k

])
= k−dp

(
Wk + cWk

k

)
.

Now, notice that b̃k,P (y) can be expressed as a mixture of Dirichlet densities of the form

b̃k,P (y)=
∑

j∈H 0
k,d

P

((
Tk(j1)− 1√

k
,
Tk(j1)√

k

]
× . . .×

(
Tk(jd)− 1√

k
,
Tk(jd)√

k

])
C(j)d(y | α(k, j)).

Given the relationship between the kernel of a Dirichlet density and the kernel of a multinomial
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distribution, b̃k,P can also be expressed as

b̃k,P (y) =
(k + d− 1)!

(k − 1)!
ESk

[
C(Wk)P

((
Tk(Sk,1)√

k
,
Tk(Sk,1) + 1√

k

]
× · · ·×(

Tk(Sk,d)√
k

,
Tk(Sk,d) + 1√

k

])]
, (2.6)

=
(k + d− 1)!

(k − 1)!kd/2
ESk

[
C(Wk)p

(
Tk(Wk) + c̃Wk√

k

)]
. (2.7)

From expression (2.6) and the fact that bk,P (y) = (k+d−1)!
(k−1)!kd

ESk

[
p
(

Wk+cWk

k

)]
(see, Barri-

entos et al., 2015a, section 6.1), it follows that

‖b̃k,P − bk,P‖∞

≤ (k + d− 1)!

(k − 1)!kd/2
sup
y∈∆d

∣∣∣∣ESk

[
C(Wk)p

(
Tk(Wk) + c̃Wk√

k

)
− k−d/2p

(
Wk + cWk

k

)]∣∣∣∣ ,
≤ (k + d− 1)!

(k − 1)!kd
sup
y∈∆d

∣∣∣∣ESk

[(
Tk(Wk) + c̃Wk√

k

)
− p

(
Wk + cWk

k

)]∣∣∣∣
+

(k + d− 1)!

(k − 1)!kd/2
sup
y∈∆d

∣∣∣∣ESk

[∣∣C(Wk)− k−d/2
∣∣ p(Tk(Wk) + c̃Wk√

k

)]∣∣∣∣ ,
≤ (k + d− 1)!

(k − 1)!kd
Lα(p) sup

y∈∆d

ESk

[∥∥∥∥Tk(Wk) + c̃Wk√
k

−Wk + cWk

k

∥∥∥∥α]
+

(k + d− 1)!

(k − 1)!kd/2
‖p‖∞

∣∣∣∣∣ d!(
√
k − 1)!

(
√
k + d− 1)!

− k−d/2
∣∣∣∣∣ ,

≤ (k + d− 1)!

(k − 1)!kd
Lα(p) sup

y∈∆d

ESk

[
d∑
j=1

(
Tk(Sk,j) + c̃Sk,j√

k
−
Sk,j + cSk,j

k

)2
]α/2

+
(k + d− 1)!

(k − 1)!kd
‖p‖∞

∣∣∣∣∣ d!k−d/2∏d
j=1(
√
k + j − 1)!

− 1

∣∣∣∣∣ ,
where Lα(p) is the Hölder constant for the function p. The proof of the theorem is completed

by noticing that

(
Tk(Sk,j) + c̃Sk,j√

k
−

Sk,j + cSk,j
k

)2

≤

(√
k − 1

k

)2

+ 2

(√
k − 1

k

)(
1√
k

+
1

k

)
+

(
1√
k

+
1

k

)2

,

≤ 5

k
,

14



2.3. PROOFS

∣∣∣∣∣ d!k−d/2∏d
j=1(
√
k + j − 1)!

− 1

∣∣∣∣∣ = O(k−1/2),

and that for k large enough, (k + d− 1)!/((k − 1)!kd) ≤ 2.

2.3.2 Proof of Theorem 2

To prove this theorem it is sufficient to show that all the conditions of Theorem 2.1 in Ghosal

(2001) are satisfied. In our context, the conditions of Theorem 2.1 are satisfied if there is a

sequence (Fn)n≥1 of subsets of the parameter space and there are positive sequences (ε̃n)n≥1

and (ε̄n)n≥1 satifying ε̃n, ε̄n −→ 0 and nmin{ε̃n, ε̄n} −→ ∞, such that for certain positive

constants a1, a2, a3, a4, the following conditions hold:

Π {P ∈ P (∆d) : P ∈ N(ε̃n, f)} ≥ a1 exp
(
−a2nε̃

2
n

)
, (2.8)

Π
{
P ∈ P (∆d) : P ∈ FCn

}
≤ a3 exp

(
−(a2 + 4)nε̃2n

)
, (2.9)

log (D (ε̄n,Fn, H)) ≤ a4nε̄
2
n, (2.10)

where Π is the prior distribution induced by b̃k,G and expressions (2.4) – (2.5),

N(ε, f) =

{
Q ∈ P (∆d) :

∫
∆d

f(y) log

(
f(y)

q(y)

)
dy ≤ ε,

∫
∆d

f(y)

(
log

f(y)

q(y)

)2

dy ≤ ε

}
,

q is the density function of the probability measure Q, FCn is the complement of the set Fn, and

D (ε,F , H) is the ε–packeting number defined to be the maximum number of points in F such

that the H–distance between each pair is at least ε.
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Let ε̃n = (log n/n)α/(2α+d), kn =
⌈
max{M,M−1}/ε̃1/αn

⌉
− 1, π̃Pk2n =

(
π̃Pk2n,j

)
j∈H 0

k2n,d

, and

b̃k2n,P (·) =
∑

j∈H 0
k2n,d

C(j)π̃Pk2n,jd(· | α(k2
n, j)),

where

πPk2n,j = P

((
Tk2n

(j1)− 1

kn
,
Tk2n

(j1)

kn

]
× . . .×

(
Tk2n

(jd)− 1

kn
,
Tk2n

(jd)

kn

])
.

By Theorem 1, there exists a positive constant, C1, such that ‖f− b̃k2n,F‖∞ ≤ C1/k
α
n . Therefore,

if P is such that
∥∥∥πPk2n − πFk2n∥∥∥1

≤ ε̃
1+2d/α
n , then, for some C2 > 0,

‖f − b̃k2n,P‖∞ ≤ ‖f − b̃k2n,F‖∞ + ‖b̃k2n,F − b̃k2n,P‖∞ ≤
C1

kαn
+ k2d

n ε̃ 1+2d/α
n ≤ C2ε̃n.

This implies that H2(f, b̃k2n,P ) ≤ 4 ‖f−1‖∞C2
2 ε̃

2
n. Thus, this results along with expression (8.6)

in Ghosal et al. (2000a) and the assumption that P also satisfies that πPk2n,j > ε̃2n/2, for every

j ∈ H 0
k2n,d

, imply that for some C3 > 0, b̃k2n,P ∈ N(C3ε̃n, f). Therefore, by Lemma A.1

(Ghosal, 2001),

Π {P ∈ P (∆d) : P ∈ N(C3ε̃n, f)} ≥ B1 exp(−β1k
d
n)C4 exp

(
−c1k

d
n log

(
2/ε̃ 1+2d/α

n

))
,

≥ B1C4 exp
(
−c2k

d
n log n

)
,

≥ B1C4 exp
(
−c3nε̃

2
n

)
,

where C4, c1, c2 and c3, are suitable positive constants. Thus, the condition (2.8) is satisfied.

Now, let {sn}n≥1 be a sequence such that

L1 n
1/(d+2α)(log n)2α/(d(d+2α)) ≤ sn ≤ L2 n

1/(d+2α)(log n)2α/(d(d+2α)),

where L1 and L2 are positive constants, and Fn :=
⋃sn
r=1 Br, where, Br =

{
b̃k̄,P : k̄ = r2

}
. The
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condition (2.9) is satisfied since, for some c4 > 0,

Π
{
P ∈ P (∆d) : P ∈ FCn

}
≤

∞∑
r=sn+1

ρ(r2),

≤ B2 exp
(
−β2L1 n

d/(2α+d)(log n)2α/(2α+d)
)
,

≤ B3 exp
(
−(c4 + 4)nε̃2n

)
.

Finally, set ε̄n = (log n)(4α+d)/(4α+2d)/nα/(2α+d). Since
∥∥π̃Pr2 − π̃P0

r2

∥∥
1
≤ ε2/(r2 + d − 1)d

implies that H(b̃r2,P , b̃r2,P0
) ≤ ε, by Lemma A.4 in Ghosal & van der Vaart (2001), it follows

that

D (ε̄n,Fn, dH) ≤
sn∑
r=1

D
(
ε̄2n,Br, ‖ · ‖1

)
≤

sn∑
r=1

D

(
ε̄2n

(r2 + d− 1)d
,∆ (r+d−1)!

d!(r−1)!

, ‖ · ‖1

)

≤
sn∑
r=1

(
5(r2 + d− 1)d

ε̄2n

) (r+d−1)!
(d!(r−1)!

−1

≤ sn

(
5(s2

n + d− 1)d

ε̄2n

)(sn+d−1)d

.

This implies that

log (D (ε̄n,Fn, dH)) ≤ log sn + (sn + d− 1)d log

(
5(s2

n + d− 1)d

ε̄2n

)
,

≤ sn log n+ C5 s
d
n log

(
5c5s

2d
n

ε̄2n

)
,

≤ C5s
d
n log n,

≤ C5nε̄
2
n,

where C5 and c5 are suitable positive constants. Therefore, condition (2.10) is also satisfied,

which implies that the proof of the theorem is completed.
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Chapter 3

On the small sample behavior of Dirichlet process mixture

models for data supported on compact intervals

This chapter has been submitted for publication as:

WEHRHAHN, C., JARA, A., BARRIENTOS, A.F. (2015). On the small sample behavior of

Dirichlet process mixture models for data supported on compact intervals.
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3.1. INTRODUCTION

3.1 Introduction

The definition and study of theoretical properties of probability models defined over infinite-

dimensional spaces have received increasing attention in the statistical literature because they

are the basis for the Bayesian nonparametric (BNP) generalization of parametric statistical mod-

els and offer a highly flexible model-based treatment for standard nonparametric procedures

(see, e.g., Müller et al., 2015). For instance, in a single density estimation problem the pa-

rameter space corresponds to the set of all probability measures defined on a given measurable

space (S,S) and that admit a density function w.r.t. Lebesgue measure, P(S). In this setting,

a BNP model corresponds to a prior distribution defined on P(S), which is expected to satisfy

minimal desirable properties: the topological support should be large and the induced posterior

distribution given a sample of observations should be tractable and consistent.

We say that a posterior distribution is d-consistent at P0 ∈ P(S), usually belonging to a

given class, if for every ε > 0,

lim
n−→∞

EY1,...,Yn|P0 {Π [P ∈ P(S) : d(P, P0) < ε | Y1, . . . , Yn]} = 1

where d is a metric on P(A) and Π{· | Y1, . . . , Yn} is the posterior distribution given the

random sample Y1, . . . , Yn, drawn from P0. For a d-consistent BNP model, the study of the

way in which the posterior distribution concentrates around the true model when the sample

size increases allows for a better understanding of the behavior of the BNP model. In this

regard, the literature has mainly focused on the so called rates of convergence of the posterior

distribution, εn. We say that a posterior distribution converges to P0 with rate εn if, for some

sufficiently large constant M ,

lim
n−→∞

EY1,...,Yn|P0 {Π [P ∈ P(A) : d(P, P0) < Mεn | Y1, . . . , Yn]} = 1,

where εn is a sequence that converges to zero when n goes to infinity. Posterior convergence

rates are typically used to compare BNP models and to contrast them with frequentist alterna-

tives, and the usual optimality criterion that is considered is the minimaxity over a given class.
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3.1. INTRODUCTION

Posterior concentration rates have been derived under extremely weak conditions for many BNP

models and in a wide variety of contexts (see, e.g., Ghosal et al., 2000b; Ghosal, 2001; Shen &

Wasserman, 2001; Ghosal & Van der Vaart, 2007; Rivoirard & Rousseau, 2012).

We argue that the use of purely asymptotic criteria for models selection is not appropriate

and can lead to the choice of a model not well suited for finite sample sizes. More specifically,

we argue that the suboptimal behavior of the posterior concentration rate of a BNP model should

not be the “cause of death” of the model. The overriding problem is that rate-optimal models

are not necessarily better with respect to the way in which the posterior mass concentrates

around a given true model for all sample sizes. Some reasons for this are: i) usually the derived

concentration rate is rather an upper bound for it because it is not proved that εn is sharp in

the case of a sub-optimal model (which can be explained by the mathematical tools employed

in the proofs or the researcher’s ability to find it), ii) concentration rates are usually derived

asymptotically (for a sufficiently large n) and unknown for finite sample sizes, iii) the constant

M above can be quite different for different models and can play an important role in the

comparison in which different models assign posterior mass around the truth, and iv) optimal

rates are usually derived up to a logarithmic factor, which can also play an important role in the

comparison of models for small samples.

In this work we illustrate the previous point by comparing the small sample properties of

a rate-optimal and a rate-suboptimal BNP model for single density estimation for data sup-

ported on a compact interval. Both models correspond to Dirichlet process mixtures (DPM)

of probability density functions defined on the unitary interval. Specifically, we consider the

Bernstein-Dirichlet prior proposed by Petrone (1999a,b) and the DPM of mixtures of beta den-

sities proposed by Kruijer & Van der Vaart (2008). Under the Hellinger metric, the posterior

distribution of the Bernstein-Dirichlet prior and the DPM of mixtures of beta models is mini-

max suboptimal and optimal, respectively. We compare the models by means of simulated and

real data. In the simulation study, different true models were chosen from the class were the

posterior concentration rates of the models hold. For the analyses of the real data, the models

were compared from a goodness-of-fit point of view.

The structure of the chapter is the following. In Section 3.2, the two models are introduced
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3.2. THE MODELS

and their basic properties are discussed. The main asymptotic properties of the models are

described in Section 3.3. The comparison of the models using simulated data is described in

Section 3.4. The comparison of the performance of the models using real data is given in

Section 3.5.

3.2 The models

3.2.1 The Dirichlet-Bernstein model

The Dirichlet-Bernstein model proposed by Petrone (1999a,b) corresponds to a particular ex-

ample of random Bernstein polynomials (BP). BP were introduced by Bernstein (1912) to give

a proof of Weierstrass’ approximation theorem. If G : [0, 1] −→ R, the associated BP of degree

k is given by

BP1(y | k,G) =
k∑
j=0

G(j/k)

 k

j

 yj(1− y)k−j,

y ∈ [0, 1]. If G is the restriction of the cumulative density function (CDF) of a probability

measure defined on the unit interval, then its BP is also the restriction of a CDF on [0, 1] and

represents a mixture of beta distributions. If G(0) = 0, its density function is given by

f1(y | k,G) =
k∑
j=1

w1,j,kβ(y | j, k − j + 1), (3.1)

where w1,j,k = G(j/k)−G((j − 1)/k), and β(·|a, b) stands for a beta density with parameters

a and b. The random BP prior arises by considering a random density given by expression

(3.1), where k has probability mass function ρ, and given k, w1,k = (w1,1,k, . . . , w1,k,k) has

distribution Hk on the simplex

∆k−1 =

{
(w1, . . . , wk) ∈ Rk : 0 ≤ wj ≤ 1, j = 1, . . . , k,

k∑
j=1

wj = 1

}
.
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3.2. THE MODELS

Petrone (1999a,b) referred to (3.1) as the Bernstein polynomial density with parameters k and

w1,k, and showed that if ρ assigns positive mass to all naturals N, and the density of Hk is

positive for any point in ∆k, then the weak support of the BP is the space of all probability

measures on ([0, 1] ,B ([0, 1])). Letting ζj,k = M (G0(j/k)−G0((j − 1)/k)), j = 1, . . . , k,

G0 being a probability distribution on (0, 1] and M being a positive constant, Petrone (1999a,b)

used the fact that assuming

w1,k ∼ Dirichlet(ζ1,k, . . . , ζk,k),

is equivalent to assuming thatG follows a Dirichlet process (DP) prior,G |M,G0 ∼ DP (MG0).

Petrone (1999a,b) refers to the later model as the Bernstein-Dirichlet prior (BDP), and proposed

a Markov chain Monte Carlo (MCMC) algorithm to scan its posterior distribution.

The BDP model can be equivalently written as the following DPM of beta densities

f1(y | k,G) =

∫
[0,1]

β(y | dzke, k − dzke+ 1)G(dz), (3.2)

k | ρ1 ∼ ρ1, (3.3)

and

G |M,G0 ∼ DP (MG0), (3.4)

where d·e denotes the ceiling function and ρ1 is a probability measure on N.

3.2.2 The DPM of mixtures of beta densities

The DPM of mixtures of beta models proposed by Kruijer & Van der Vaart (2008), referred to

as DPMMB, can be justified in a similar way to BDP construction. In this case, the density

function can be seen as the derivative of a particular modified class of BP, referred to as BP2.

Such modification results in a mixture of mixtures of beta densities, were the dimension the
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random weights vector is smaller. If G : [0, 1] −→ R, then the associated modified BP of

degree k ∈ K = {l ∈ N :
√
l is an integer} is given by

BP2(y | k,G) =

√
k−1∑
i=0

(i+1)
√
k∑

j=i
√
k+1

[ai,j,kG (T1(j, k)) + (1− ai,j,k)G (T2(j, k))]

(
k

j

)
yj(1− y)k−j,

+G(0)(1− y)k, (3.5)

ai,j,k =

(
j − i

√
k√

k

)
, T1(j, k) =

dj/√ke√
k

and T2(j, k) =
dj/√ke−1
√
k

. If G is the restriction of the

CDF of a probability measure defined on the unit interval, then BP2 is also the restriction of a

CDF on [0, 1] and represents the following mixture model

√
k∑

j=1

w2,j,k

 j
√
k∑

j1=(j−1)
√
k+1

1√
k

Be(y | j1, k − j1 + 1)

+G(0),

where Be(· | a, b) stands for the CDF of a beta distribution with parameters a and b, w2,j,k =

G(j/
√
k) − G((j − 1)/

√
k). In this case, if G(0) = 0, its density function is given by the

following mixture of mixtures of beta densities

f2(y | k,G) =

√
k∑

j=1

w2,j,k

 j
√
k∑

j1=(j−1)
√
k+1

1√
k
β(y | j1, k − j1 + 1)

 . (3.6)

Figure 3.1 illustrates the differences between expression (3.1) and (3.6). Specifically, Fig-

ure 3.1 displays the bases functions under both models for k = 9. Under BDP model the bases

functions are beta densities, while under DPMMB model the bases functions are mixtures of

beta densities with equal weights. Figure 3.1 also illustrates the partition of the unit interval

under the different models, implying a different role of G in each case. For a given degree k,

the density under DPMMB model is less flexible than the one arising under BDP model. As

a matter of fact, expression (3.6) can be seen as a mixture of the same beta densities of ex-

pression (3.1), where some components share the same weights and which are functions of the
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Figure 3.1: The models: Panel (a) and (d) display the bases functions of the mixture model
with k = 9 arising under BDP and DPMMB model, respectively. In the former case, the bases
functions are beta densities. In the latter, the bases functions are mixtures of beta densities. For
a given function represented as a solid line, panel (b) and (e) display the weighted beta densities
(gray lines) used by the BDP and DPMMB model, respectively. Finally, for a given function
represented as a solid line, panel (c) and (f) display the approximation (dashed line) arising
under BDP and DPMMB model, respectively, along with the weighted beta densities.
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weights considered by BDP model,

f2(y | k,G) =
k∑
j=1

(w2,dj/√ke,k√
k

)
β(y | j, k − j + 1),

=
k∑
j=1


∑dj/√ke√k

j1=(dj/√ke−1)
√
k+1

w1,j1,k

√
k

 β(y | j, k − j + 1).

DPMMB model can be equivalently written as the following DPM of mixtures of beta den-

sities

f2(y | k,G) =

∫
[0,1]

dz
√
ke
√
k∑

j1=(dz
√
ke−1)

√
k+1

1√
k
β(y | j1, k − j1 + 1)G(dz), (3.7)

k | ρ2 ∼ ρ2, (3.8)

and

G |M,G0 ∼ DP (MG0), (3.9)

where ρ2 is a probability mass function on K.

3.3 The asymptotic properties of the models

Petrone & Wasserman (2002) showed that under the same assumptions for BDP model to have

full weak support, the posterior distribution of the model under iid sampling is weakly consistent

if the underlying distribution function generating the data has continuous and bounded Lebesgue

density. They also showed that if the model is specified such that the prior distribution on the

degree of the polynomial, ρ1, satisfies an additional tail condition, the posterior distribution of

the model is Hellinger consistent. Specifically, if there exists a sequence kn −→ ∞ such that

kn = o(n) and such that
∑

k≥kn ρ1(k) ≤ e−cn, then the posterior mean of the density under the
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BDP model converges in the Hellinger sense to the true density, where c is a positive constant.

Ghosal (2001) studied the concentration rate for BDP model and showed that if the true

model admits a density w.r.t. Lebesgue measure that is bounded away from zero and has con-

tinuous and bounded second derivatives, then the posterior distribution under iid sampling con-

verges in a Hellinger sense to the true density at rate εn = log(n)5/6/n1/3, provided that ρ1 is

specified such that there exist positive constantsB1,B2, c1, and c2, such thatB1e
−c1k ≤ ρ1(k) ≤

B2e
−c2k, for all k ≥ 1. Ghosal (2001) also showed that if the true density is itself a mixture of

beta distributions, then the rate is close to the parametric case: n−1/2 up to a logarithmic factor.

Kruijer & Van der Vaart (2008) extended the results obtained by Ghosal (2001) for BDP

model by considering an α-smooth class of true models, α ∈ (0, 2], denoted by Cα. For α ∈

(0, 1], a real value function defined on [0, 1], f0, is α-smooth if there exists a constant C such

that |f0(y1)− f0(y2)| ≤ C|y1− y2|α, ∀ y1, y2 ∈ [0, 1]. For α ∈ (1, 2], f0 is α-smooth if and only

if it is differentiable and its derivative f ′0 is (α− 1)-smooth. Clearly α regulates the smoothness

of the elements of the class Cα: the bigger the α the smoother the function. Under the same

assumption on ρ1 considered by Ghosal (2001), Kruijer & Van der Vaart (2008) showed that

the posterior distribution of the BDP model under iid sampling converges in a Hellinger sense

to the true density at rate εn = log(n)(1+2α)/(2+2α)/nα/(2+2α), provided that the true density is

strictly positive and belongs to Cα, which is suboptimal in a minimax sense for 0 < α ≤ 2.

Kruijer & Van der Vaart (2008) also showed that if ρ2 is specified such that there exist

positive constants B1, B2, c1, and c2, such that B1e
−c1k ≤ ρ1(k) ≤ B2e

−c2k, for all k ≥ 1, then

the posterior distribution of DPMMB model under iid sampling converges in a Hellinger sense

to the true density at rate εn = log(n)(1+4α)/(2+4α)/nα/(1+2α), provided that the true density

belongs to Cα, α ∈ (0, 1], which is known to be, up to logarithmic factor, the optimal rate for

α-smooth densities.

The different behavior of the convergence rate εn associated with the models is illustrated

in Figure 3.2. The figure displays the convergence rate when the true model belongs to the

Cα class, for different values of α. Please notice that the posterior convergence rates described

above were obtained using asymptotic arguments and they may not be valid for finite sample

sizes.
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Figure 3.2: Convergence rates: Panel (a), (b), (c), and (d) display the convergence rates, εn,
the models as a function of the sample size n, when the true model belongs to the Cα class for
α = 0.25, α = 0.5, α = 1.0 and α = 2.0, respectively. In each plot, the result for BDP and
DPMMB model is displayed as continuous and dashed line, respectively.
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3.4 An empirical comparison

3.4.1 Simulation settings

Four simulation scenarios were considered. The true density f0 for Scenario I, II, III and IV is

given by

f0(y) =

∑8
i=1 2−i×0.2[cos(2iy0.2) + 1]∑8

i=1 2−i×0.2[
∫ 1

0
cos(2iy0.2)dy + 1]

, (3.10)

f0(y) =

∑5
i=1 2−i×0.4[cos(2iy0.4) + 1]∑5

i=1 2−i×0.4[
∫ 1

0
cos(2iy0.4)dy + 1]

, (3.11)

f0(y) =

 1/2 + 2y, if 0 ≤ y ≤ 1/2

5/2− 2y, if 1/2 < y ≤ 1
, (3.12)

and

f0(y) =
∑√25

j=1 wj
∑j
√

25

j1=(j−1)
√

25+1
1√
25
β(y | j1, 25− j1 + 1), (3.13)

respectively, where w1 = 0.1, w2 = 0.35, w3 = w4 = 0 and w5 = 0.55. Figure 3.3 show the

true models under each scenario.

The four probability models satisfy the conditions for the concentration rates described in

Section 3.3 to hold. In all cases f0(x) > 0 for all x ∈ [0, 1]. Furthermore, all models belong

to the Cα class. Specifically, the true model of Scenario I is α-smooth with α = 0.2, while

the true model of Scenario II is α-smooth with α = 0.4. As a matter of fact, by using a few

trigonometric identities and inequalities, it follows that for x ∈ [0, 1], y ∈ [0, 1], and every
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Figure 3.3: Simulation Scenarios: Panel (a), (b), (c), and (d) display the true densities under
simulation Scenario I, II, III, and IV, respectively.
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m ∈ N and α ∈ (0, 1],

|f0(x)− f0(y)| = K1,α

∣∣∣∣∣
m∑
i=1

2−iα
[
cos
(
2ixα

)
− cos

(
2iyα

)]∣∣∣∣∣ ,
≤ 2K1,α

m∑
i=1

2−iα
∣∣∣∣sin(2ixα + 2iyα

2

)
sin

(
2ixα − 2iyα

2

)∣∣∣∣ ,
≤ 2K1,α

m∑
i=1

2−iα
∣∣∣∣sin(2ixα − 2iyα

2

)∣∣∣∣ ,
≤ K1,α

m∑
i=1

2−i(α−1)|xα − yα|,

≤ Kα|x− y|α,

where K1,α =
(∑m

i=1 2−iα
[∫ 1

0
cos (2iyα) dy + 1

])−1

and Kα = K1,α ×
(

1−2−m(α−1)

2α−1−1

)
. Sce-

nario III is also an α-smooth density with α = 1, because |f0(x) − f0(y)| ≤ 2|x − y|. Finally,

Scenario IV is a particular case of the DPMMB, given by expression (3.6), with k = 25 and

w2,1,25 = 0.1, w2,2,25 = 0.35, w2,3,25 = w2,4,25 = 0 and w2,5,25 = 0.55. Expression (3.6) is also

an α-smooth density with α = 1. In fact, by using binomial theorem, it follows that

|f0(x)− f0(y)| =

√
k∑

j=1

w2,j,k√
k

j
√
k∑

j1=(j−1)
√
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≤ k
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k

j
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k∑

j1=(j−1)
√
k+1

(
k
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i
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≤ 2k2

√
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k

j
√
k∑

j1=(j−1)
√
k+1

(
k

j1

) k−j1∑
i=0

(
k − j1

i

)
|x− y|,

≤ C|x− y|,

where C = 2k+1k2
∑√k

j=1
w2,j,k√

k

(∑j
√
k

j1=(j−1)
√
k+1

(
1
2

)j1 ( k
j1

))
.

For each true model, 15 different sample sizes, n, were considered, ranging from n = 50

to n = 10, 000. For each simulation scenario and sample size, a perfect sample was generated

where the data points correspond to the quantiles of equally-spaced probability from the true
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model.

3.4.2 Model specifications and comparison criteria

Three different versions of BDP model given by expressions (3.2) - (3.4) and DPMMB given by

expressions (3.7) - (3.9) were fit to each dataset, by considering different prior distributions on

the degree of the polynomial, ρ1 and ρ2. In all cases we assume an uniform centering distribution

for the underlying Dirichlet process G0 = U(0, 1) and set M = 1. Under Prior I, the following

restricted negative binomial (NB) prior distributions were assumed,

ρ1(k) ∝ NB(12, 0.3)I(k){k∈N:k≥1},

and

ρ2(k) ∝ NB(12, 0.3)I(k){k∈K:k≥1},

where I(x)A is the indicator function for the set A. The prior hyper-parameters, r = 12 and

p = 0.3, were chosen such that the prior mean and variance for the degree of the polynomial

was around 5 and 7, respectively, in both models.

Under Prior II, the following restricted NB prior distributions were assumed,

ρ1(k) ∝ NB(65, 0.28)I(k){k∈N:k≥1},

and

ρ2(k) ∝ NB(65, 0.28)I(k){k∈K:k≥1}.

In this case, the prior hyper-parameters, r = 65 and p = 0.28, were chosen such that the prior

mean and variance for the degree of the polynomial was around 25 and 35, respectively, in both

models. Finally, under Prior III, the following restricted discrete uniform prior distributions

where assumed,

ρ1(k) ∝ I(k){k∈N:1≤k≤100},
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and

ρ2(k) ∝ I(k){k∈K:1≤k≤625}.

The prior mean for the degree of the polynomial in both cases was around 46. Priors I and II

satisfy the condition required to obtain the concentration rates described in Section 3.3. In fact,

it suffices to show that for negative binomial distribution with discrete number of failures the

condition holds since ρ1 and ρ2 are simply restrictions of a particular member of this family.

The proof of the behavior of the negative distribution is given in Appendix A.1.

For each model a single Markov chain was generated. In each case, a conservative to-

tal number of 420,000 samples of the posterior distribution were generated. Standard tests

(not shown), as implemented in the BOA R library (Smith, 2007), suggested convergence of

the chains. Because of storage limitations, the chain was subsampled every 40 iterations and

considering a burn-in period of 10,000 samples to give a reduce chain of length 10,000. The

performance of the models was evaluated by comparing the posterior mean of the L1, L2 and

L∞ distances between the random density and the true model. Models were also compared

by considering the log pseudo marginal likelihood (LPML), originally developed by Geisser

& Eddy (1979) and further considered by Gelfand & Dey (1994). LPML for model M is de-

fined as LPMLM =
∑n

i=1 log pM
(
yi | y[−i]), where pM

(
yi | y[−i]) is the posterior predictive

distribution for observation yi, based on the data y[−i], under model M , with y[−i] being the

observed data vector after removing the ith observation. Models with larger LPML values are

to be preferred. The individual cross-validation predictive densities known as conditional pre-

dictive ordinates (CPO) have also been used. The CPOs measure the influence of individual

observations and are often used as predictive model checking tools. The method suggested by

Gelfand & Dey (1994) was used to obtain estimates of CPO statistics from the Markov chain

output.

Functions implementing the Markov chain Monte Carlo (MCMC) algorithms for each model

are available upon request to the authors. The implementation for the BDP model is an exten-

sion of the one available in DPpackage (Jara et al., 2011).
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3.4.3 The results

Figure 3.4 shows the posterior mean of the L1 distance between the true density and the random

probability measure, respectively. The results are displayed for BDP and DPMMB models

under the four simulation settings, different samples sizes and prior specification on the degree

of the polynomial. As expected, the L1 distance reduces as the sample size increases for both

models.

The results, however, strongly suggest that the sub-optimal BDP model has a better perfor-

mance regarding the L1 criteria, even when the assumptions needed to obtain the optimal results

for DPMMB model hold. Under Priori I for the degree of the polynomial and the biggest dif-

ferences in the performance of the models, the posterior mean of the L1 distance for DPMMB

model was 53%, 55%, 53% and 50% bigger than the corresponding value observed for BDP

model for Scenario I, II, III, and IV, respectively. Under Priori II for the degree of the poly-

nomial and the biggest differences in the performance of the models, the posterior mean of the

L1 distance for DPMMB model was 60%, 169%, 176% and 14% bigger than the corresponding

value observed for BDP model for Scenario I, II, III, and IV, respectively. Moreover, even when

the true probability model has the same functional form than DPMMB model, BDP behaves in

a similar manner and can outperform DPMMB model for large sample sizes. Similar results are

observed when considering the L2 distance and the results are provided in Appendix A.2.

Figure 3.5 shows the posterior mean of the L∞ distance between the true density and the

random probability measure, respectively. In general, the results under L∞ are similar to the

ones observed under the other distances. The main difference is observed under Scenario III,

where DPMMB outperforms BDP in the majority of the cases (35 out of 45). This suggest

that for true models with higher regularity, DPMMB produces better estimates under the L∞

distance.

Figure 3.6 show the results for LPML for each model under the different simulation sce-

narios, prior distribution for the degree of the polynomial and sample size. The results show

that LPML is an adequate but conservative model selection criteria; For instance, if the model

selection criteria is base on differences in LPML bigger than 5, it never choose the model with
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Figure 3.4: Simulated Data: Posterior mean of the L1 distance between the true density and the
random probability measure as a function of the sample size. The results for BDP and DPMMB
are shown as a solid and dashed line, respectively. Panel (a) - (c), (d) - (f), (g) - (i), and (j) - (l)
display the results under simulation Scenario I, II, III, and IV, respectively. Panel (a), (d), (g)
and (j), (b), (e), (h) and (k), and (c), (f), (i) and (l), display the results under Prior I, II and III,
respectively.
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Figure 3.5: Simulated Data: Posterior mean of the L∞ distance between the true density and
the random probability measure as a function of the sample size. The results for the BDP and
DPMMB are shown as a solid and dashed line, respectively. Panel (a) - (c), (d) - (f), (g) - (i),
and (j) - (l) display the results under simulation Scenario I, II, III, and IV, respectively. Panel
(a), (d), (g) and (j), (b), (e), (h) and (k), and (c), (f), (i) and (l), display the results under Prior I,
II and III, respectively.
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the worst L1 distance to the truth. However, in 68.3% of the cases where the competing mod-

els show a significantly different posterior means of L1 distance, LPML indicates evidence of

no difference in the behavior of the models. Similar agreement results were obtained between

LPML and the other distances.

Figures A.6 and A.9 illustrate the different performance of the models. These figures display

the posterior mean and point-wise 95% highest posterior density (95% HPD) credible bands for

the density under Prior II, and for Scenarios II and III. HPD bands were computed using the

method described by Chen & Shao (1999). Additional results for the simulation study are

provided in a supplementary material.

The results show that BDP model is highly flexible and is able to capture strong as well

as small deviations from standard parametric assumptions. In general under BDP model, the

posterior mean estimates with a minimal error and high precision the true density function,

even for relatively small sample sizes; the true model was completely covered by 95% point-

wise HPD bands and the quality of the estimation improved as the sample size increases. The

results also clearly illustrate that poor estimates can be obtained by using DPMMB model.

Similar results were observed under the different priors on the degree of the polynomial in

Scenarios I, II and III. Under Scenario IV, both models behaved in a similar manner, yielding

adequate posterior inferences on the true model.

3.5 An application to solid waste data

We consider data about residentially generated solid waste in the city of Santiago de Cali,

Colombia. The dataset contains information about 261 block sides and was collected to es-

timate the per capita daily production and characterization of solid waste in the city. The solid

waste in each of the 261 block sides was separated in different kinds of materials, including

food and hygienic waste. The proportions of these materials were registered for each block

side. We refer the reader to Klinger et al. (2009) for more details about these data.

The three versions of BDP and DPMMB models discussed in the previous section were fit

to the proportion of food and hygienic waste. In each case, one Markov chain was generated
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Figure 3.6: Simulated Data: Log pseudo marginal likelihood as a function of the sample size.
The results for the BDP and DPMMB are shown as a solid and dashed line, respectively. Panel
(a) - (c), (d) - (f), (g) - (i), and (j) - (l) display the results under simulation Scenario I, II, III, and
IV, respectively. Panel (a), (d), (g) and (j), (b), (e), (h) and (k), and (c), (f), (i) and (l), display
the results under Prior I, II and III, respectively.
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Figure 3.7: Simulated Data: Posterior mean (dashed line), point-wise 95% HPD band (grey
area), and true model (continuous line) under Scenario II and Prior II, for selected sample sizes.
Panel (a), (c) and (e) display the results for BDP model for sample size n = 100, n = 1000
and n = 10000, respectively. Panel (b), (d) and (f) display the results for DPMMB model for
sample size n = 100, n = 1000 and n = 10000, respectively.
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Figure 3.8: Simulated Data: Posterior mean (dashed line), point-wise 95% HPD band (grey
area), and true model (continuous line) under Scenario III and Prior II, for selected sample sizes.
Panel (a), (c) and (e) display the results for BDP model for sample size n = 100, n = 1000
and n = 10000, respectively. Panel (b), (d) and (f) display the results for DPMMB model for
sample size n = 100, n = 1000 and n = 10000, respectively.
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completing a conservative total number of 620,000 scans of the Markov chain cycle. Because

of storage limitations, the full chain was subsampled every 60 iterations, after a burn-in period

of 10,000 samples, to give a reduced chain of length 10,000. Model comparison was performed

using LPML criteria.

For the proportion of hygienic waste data, BDP model clearly outperformed DPMMB model

under LPML criteria. Furthermore, the results for DPMMB model were more sensitive to the

prior specification on the polynomial degree. LPML values for BDP model were 422.2, 422.5

and 422.2, under Prior I, II and III, respectively. LPML values for DPMMB model were 353.9,

370.0 and 373.2, under Prior I, II and III, respectively. Figure 3.9 show the posterior inferences

for the density under each model and confirm the results obtained under LPML criteria. The

results show that poor inferences can be obtain under the rate-optimal DPMMB model for finite

samples. Notice also that the results show an important departure from standard parametric

assumptions. Specifically, the positive density at zero and the existence of a central mode cannot

be obtained from a beta model. As a matter of fact, the positive density observed at zero for

the proportion of hygienic waste can be explained by the existence of zero values in the dataset.

Because of that, we were not able to fit the beta model to these data (the beta distribution is

not always well defined at zero or one). A possible solution would be to consider a constrained

parameter space for the model. However, this solution would imply that the density estimate

would be equal to zero on the extreme values of the domain, which is clearly not supported by

the data.

For the proportion of food the models behaved in a similar way regarding LPML criteria,

with the exception of DPMMB model under Prior I, which showed the worst goodness-of-fit

performance. LPML values were 213.9, 215.3 and 215.2 for BDP model under Prior I, II and

III, respectively. The corresponding LPML values for DPMMB model were 195.5, 218.3 and

218.1, under Prior I, II and III, respectively. Again DPMMB showed to be more sensitive to the

prior specification on the degree of the polynomial. Figure 3.10 displays the posterior inferences

for the density under each model.

The food waste data also shows an important departure from standard parametric assump-

tions. Specifically, the proportion of food waste is skew to the left. BDP model outperforms
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Figure 3.9: Proportion of hygienic waste: Posterior mean (solid line) and histogram of propor-
tion of hygienic waste data. Panels (a), (c) and (e) display the results for BDP model under
Prior I, II and III, respectively. Panels (b), (d) and (f) display the results for DPMMB model
under Prior I, II and III, respectively.
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Figure 3.10: Proportion of food: Posterior mean (solid line) and histogram of proportion of
food waste data. Panels (a), (c) and (e) display the results for BDP model under Prior I, II and
III, respectively. Panels (b), (d) and (f) display the results for DPMMB model under Prior I, II
and III, respectively.
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Figure 3.11: Proportion of food: Posterior mean (solid line) and histogram of proportion of
food waste data. Panels (a) and (c) and (e) display the results for a beta model and BDP model
under prior II for the degree of the polynomial.

a standard beta model for all priors. DPMMB model outperforms the beta model for priors II

and III on the degree of the polynomial only. For the beta model using independent Γ(1, 0.01)

priors for the model parameters LPML was 205.4. Figure 3.11 illustrates the deviation of the

data from the parametric model. For comparison purposes, the results for the beta model are

displayed along with the best BDP model.
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Chapter 4

Dependent Bayesian nonparametric modeling of

compositional data using random Bernstein polynomials

This chapter will be submitted for publication as:

WEHRHAHN, C., JARA, A., BARRIENTOS, A.F. (2015). Dependent Bayesian nonpara-

metric modeling of compositional data using random Bernstein polynomials.
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4.1. INTRODUCTION

4.1 Introduction

Models for probability distributions based on convex combinations of densities from parametric

families underly mainstream approaches to single and conditional density estimation, including

kernel techniques, nonparametric maximum likelihood and Bayesian nonparametric (BNP) ap-

proaches (see, e.g., Müller et al., 2015, and references therein). From a BNP point of view, the

mixture model provides a convenient set up for density estimation in that a prior distribution on

densities is induced by placing a prior distribution on the mixing measure.

On the real line, mixtures of normal densities induced by a Dirichlet process (DP) (Fer-

guson, 1973, 1974, 1983) or by a dependent Dirichlet process (MacEachern, 1999, 2000) are

often used to model a single smooth densities or a collection of smooth densities indexed by

predictors, respectively. Other extensions and alternative constructions for dealing with re-

lated probability distributions include the logistic Gaussian process (Tokdar et al., 2010), the

ordered-category probit regression model (Karabatsos & Walker, 2012), the dependent beta

process (Trippa et al., 2011), the dependent tailfree processes (Jara & Hanson, 2011), the de-

pendent neutral to the right processes and correlated two-parameter Poisson-Dirichlet processes

(Epifani & Lijoi, 2010; Leisen & Lijoi, 2011) and the general class of dependent normalized

completely random measures (Lijoi et al., 2014).

Due to the flexibility and ease in computation, these models are now routinely implemented

in a wide variety of applications. While the normal kernel is a sensible choice on the real line,

its usefulness is rather limited when considering densities on convex and compact subspaces,

such as the closed unit interval or the m–dimensional simplex

∆m =

{
(y1, . . . , ym) ∈ [0, 1]m :

m∑
i=1

yi ≤ 1

}
.

Although methods based on the normal kernel could be used to deal with data supported on

these spaces by using transformations, the resulting model is susceptible to boundary effects.

Motivated by its uniform approximation properties, frequentist and Bayesian methods based

on univariate Bernstein polynomials (BP) have been proposed for the estimation of probabil-

45



4.1. INTRODUCTION

ity distributions supported on bounded intervals and on unit hyper-cubes (see, e.g. Petrone,

1999a,b; Petrone & Wasserman, 2002; Tenbusch, 1994; Babu & Chaubey, 2006; Zheng et al.,

2010). Babu & Chaubey (2006) studied a general multivariate version of the bivariate estimator

proposed by Tenbusch (1994). Zheng et al. (2010) construct a multivariate Bernstein polyno-

mial (MBP) prior for the spectral density of a random field. Multivariate extensions of Bernstein

polynomials defined on ∆m were considered by Tenbusch (1994) to propose and study a den-

sity estimator for the data supported on ∆2. Tenbusch’s estimator arises by taking G to be the

restriction of the empirical cumulative distribution function (CDF) to ∆2, and it is based on the

class of MBP given in Definition 4.1.

Definition 4.1. For a given function G : ∆m −→ R, the associated MBP of degree k on ∆m is

defined by

B̃k,G(y) =
∑
j∈J k

m

G

(
j1

k
, . . . ,

jm
k

)
k!

(
∏m

l=1 jl!) (k −
∑m

l=1 jl)!

(
m∏
l=1

yjll

)(
1−

m∑
l=1

yl

)k−
∑m
l=1 jl

,

=
∑
j∈J k

m

G

(
j1

k
, . . . ,

jm
k

)
Mult (j | k,y) ,

where j = (j1, . . . , jm), J k
m = {(j1, . . . , jm) ∈ {0, . . . , k}m :

∑m
l=1 jl ≤ k} and Mult (· | k,y)

stands for the probability mass function of a multinomial distribution with parameters (k,y).

Although Tenbusch’s estimator is consistent and optimal at the interior points of the simplex,

it is not a valid density function for finite k and finite sample size. Indeed, it is not difficult to

show that, under Definition 4.1, if G is the restriction of the CDF of a probability measure on

∆m, then B̃k,G(·) is not the restriction of the CDF of a probability measure defined on ∆m for

a finite k. In this case, B̃k,G(·) can be expressed as a linear combination of CDFs of probability

measures defined on ∆m, where the coefficients are nonnegative but do not add up to 1. To

avoid this problem, Barrientos et al. (2015a) proposed a modified class of MBP, which retains

the well known approximation properties of the original version.

We extend the class of MBP priors of Barrientos et al. (2015a), to deal with sets of predictor-

dependents probability distributions for compositional data, based on the use of dependent stick-
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breaking processes (see, e.g. Barrientos et al., 2012). The proposed methods and the study of its

properties complement the results obtained by Barrientos et al. (2015b) for data supported on

[0, 1]. The rest of the chapter is organized as follows. The modified clases of MBP and its main

properties are summarized in Section 4.2. The proposed models for collections of probability

measures defined on ∆m are discussed in Section 4.3. The basic properties of the proposed

model class are provided in Section 4.4.

4.2 The modified class of MBP on ∆m

The modified class of MBP proposed by Barrientos et al. (2015a) is obtained by increasing the

size of the set J k
m and the domain of function G from the original definition.

Definition 4.2. For a given function G : Rm −→ R, the associated MBP of degree k ∈ N on

∆m is defined by

Bk,G(y) =
∑

j∈Hk,m

G

(
j1

k
, . . . ,

jm
k

)
k1!

(
∏m

l=1 jl!) (k1 −
∑m

l=1 jl)!

(
m∏
l=1

yjll

)(
1−

m∑
l=1

yl

)k1−
∑m
l=1 jl

,

=
∑

j∈Hk,m

G

(
j1

k
, . . . ,

jm
k

)
Mult (j | k1,y) ,

where k1 = k +m− 1 andHk,m = {(j1, . . . , jm) ∈ {0, . . . , k}m :
∑m

l=1 jl ≤ k +m− 1}.

As shown by Barrientos et al. (2015a), the modified class Bk,G retains most of the appealing

approximation properties of univariate BP and the standard class of MBP, B̃k,G. Specifically, if

G is a real-valued function defined on Rm and G|∆m its restriction on ∆m, then

lim
k→∞

Bk,G(y) = G|∆m(y),

at each point of continuity y of G|∆m . Furthermore, the relation holds uniformly on ∆m if

G|∆m is a continuous function.

It is also possible to show that if G is the restriction of the CDF of a probability mea-

sure defined on ∆m, then Bk,G(·) is also the restriction of the CDF of a probability measure

47



4.3. RANDOM MBP FOR FULLY NONPARAMETRIC REGRESSION

defined on ∆m. Furthermore, if G is the CDF of a probability measure defined on ∆̃m =

{y ∈ ∆m : yj > 0, j = 1, . . . ,m}, then Bk,G(·) is the restriction of the CDF of a probability

measure with density function given by the following mixture of Dirichlet distributions,

bk,G(y) =
∑

j∈H0
k,m

Wk,j,G × d(y | α(k, j)), (4.1)

whereH0
k,m = {(j1, . . . , jm) ∈ {1, . . . , k}m :

∑m
l=1 jl ≤ k +m− 1} ,

Wk,j,G = G

((
j1 − 1

k
,
j1

k

]
× . . .×

(
jm − 1

k
,
jm
k

])
,

α (k, j) = (j, k +m−
∑m

l=1 jl) , and d(· | (α1, . . . , αm+1)) denotes the density function of a

m–dimensional Dirichlet distribution with parameters (α1, . . . , αm+1).

4.3 Random MBP for fully nonparametric regression

4.3.1 The inferential problem and motivating ideas

Suppose that we observe regression data {(xi,yi) : i = 1, . . . , n}, where xi ∈X ⊆ Rp is a p-

dimensional vector of predictors and yi is a continuous ∆m-valued outcome vector. Rather than

assuming an unknown functional form for the mean function or another functional, as is usually

done in nonparametric regression, under the framework of fully nonparametric regression the

problem is cast as inference for a family of conditional distributions

{Fx : x ∈ X ⊂ Rp} ,

where yi | xi
ind.∼ Fxi . Therefore, from a Bayesian point of view, the specification of a fully

nonparametric regression model requires of the definition of a probability model for the set of

predictor-dependent absolutely continuous probability measures {Fx : x ∈ X}, allowing the

complete shape of the elements of {Fx : x ∈ X} to change flexibly with the values of x.

To introduce dependence in the continuous random probability measures defined on ∆m,
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we replace the mixing distribution G in expression (4.1) by a dependent stick-breaking process,

which is defined by using stochastic processes indexed by predictors x ∈ X . Specifically,

by using the fact that expression (4.1) can be equivalently written as the following mixture of

Dirichlet densities

bk,G(y) =

∫
∆m

d (y | |dkθe, k +m− ‖dkθe‖1 )G(dθ),

where d·e denotes the ceiling function and ‖ · ‖ denotes L1−norm, we define random dependent

densities by considering dependent mixing distributions Gx,

gx(y | k,Gx) =

∫
∆m

d (y | |dkθe, k +m− ‖dkθe‖1 )Gx(dθ),

where the set of mixing distributions {Gx : x ∈ X } is a dependent stick-breaking process,

with elements of the form Gx(·) =
∑∞

j=1wj(x)δθj(x)(·), with wj(x) = Vj(x)
∏

l<j[1−Vl(x)],

and where Vj(x) and θj(x) are transformations of underlying stochastic processes.

4.3.2 The formal definition of the models

Let V = {vx : x ∈ X } and H = {hx : x ∈ X } be two sets of known biyective continuous

functions, such that for every x ∈X , vx : R −→ [0, 1] and hx : Rm −→ ∆̃m, are such that for

every a ∈ R and b ∈ Rm, vx(a) and hx(b) are continuous functions of x. Let P (∆m) be the

set of all probability measures defined on ∆m.

Definition 4.3. Let V and H be two sets of functions as before. Let F = {F (x, · ) : x ∈X }

be a P (∆m)-valued stochastic process defined on an appropriate probability space (Ω,A , P ),

such that:

(i) ηj : X × Ω −→ R, j ≥ 1, are independent and identically distributed real-valued

stochastic processes with law indexed by a finite-dimensional parameter Ψη.

(ii) zj : X × Ω −→ Rm, j ≥ 1, are independent and identically distributed real-valued

stochastic processes with law indexed by a finite-dimensional parameter Ψz.
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(iii) k ∈ N is a discrete random variable with distribution indexed by a finite-dimensional

parameter λ.

(iv) For every x ∈ X and almost every ω ∈ Ω, the density function of F (x, ω), w.r.t.

Lebesgue measure, is given by the following dependent mixture of Dirichlet densities,

f(x, ω)(·) =
∞∑
j=1

wj(x, ω)d
(
·
∣∣dk(ω)θj(x, ω)e, k(ω) +m− ‖dk(ω)θj(x, ω)e‖1

)
,(4.2)

where θj(x, ω) = hx(zj(x, ω)),

dk(ω)θj(x, ω)e = (dk(ω)θj1(x, ω)e, . . . , dk(ω)θjm(x, ω)e) ,

and

wj(x, ω) = vx {ηj(x, ω)}
∏
l<j

[1− vx {ηl(x, ω)}] .

The process F = {F (x, · ) : x ∈X } will be referred to as dependent MBP process with pa-

rameters (λ,Ψη,Ψz,V ,H ), and denoted by DMBPP(λ,Ψη,Ψz,V ,H ).

In the search of parsimonious models, it is of interest to study two special cases of the gen-

eral construction given by Definition 4.3. The special involving dependent stick-breaking pro-

cesses with common support points and predictor-dependent weights is referred to as ‘single–

atoms’ DMBPP. In this simplified version, the real-valued stochastic processes of condition (ii)

in Definition 4.3, zj = {zj(x) : x ∈X }, are replaced by independent and identically dis-

tributed ∆̃m-valued random vectors, θj .

Definition 4.4. Let V and H be two sets of functions as before. Let F = {F (x, · ) : x ∈X }

be a P (∆m)-valued stochastic process defined on an appropriate probability space (Ω,A , P ),

such that:

(i) ηj : X × Ω −→ R, j ≥ 1, are independent and identically distributed real-valued

stochastic processes with law indexed by a finite-dimensional parameter Ψη.
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(ii) θ1,θ2, . . ., are independent ∆̃m-valued random vectors with common distribution indexed

by a finite-dimensional parameter Ψθ.

(iii) k ∈ N is a discrete random variable with distribution indexed by a finite-dimensional

parameter λ.

(iv) For every x ∈ X and almost every ω ∈ Ω, the density function of F (x, ω), w.r.t.

Lebesgue measure, is given by the following dependent mixture of Dirichlet densities,

f(x, ω)(·) =
∞∑
j=1

wj(x, ω)d
(
·
∣∣dk(ω)θj(ω)e, k(ω) + d− ‖dk(ω)θj(ω)e‖1

)
, (4.3)

where wj(x, ω) are defined as in Definition 4.3 and

dk(ω)θj(ω)e = (dk(ω)θj1(ω)e, . . . , dk(ω)θjm(ω)e) .

The process F = {F (x, · ) : x ∈X } will be referred to as single–atoms dependent MBP pro-

cess with parameters (λ,Ψη,V ,Ψθ), and denoted by θDMBPP(λ,Ψη,V ,Ψθ).

The case involving a dependent stick-breaking process with common weights and predictor-

dependent support points is referred to as ‘single weights’ DMBPP. In this simplified version,

the real-valued stochastic processes of condition (i) in Definition 4.3, ηj = {ηj(x) : x ∈X },

are replaced by [0, 1]-valued independent and identically distributed random variables, vj .

Definition 4.5. Let V and H be two sets of functions as before. Let F = {F (x, · ) : x ∈X }

be a P (∆m)-valued stochastic process defined on an appropriate probability space (Ω,A , P ),

such that:

(i) v1, v2, . . ., are independent [0, 1]-valued random variables with common distribution in-

dexed by a finite-dimensional parameter Ψv.

(ii) zj : X × Ω −→ Rm, j ≥ 1, are independent and identically distributed real-valued

stochastic processes with law indexed by a finite-dimensional parameter Ψz.
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(iii) k ∈ N is a discrete random variable with distribution indexed by a finite-dimensional

parameter λ.

(iv) For every x ∈ X and almost every ω ∈ Ω, the density function of F (x, ω), w.r.t.

Lebesgue measure, is given by the following dependent mixture of Dirichlet densities,

f(x, ω)(·) =
∞∑
j=1

wj(ω)d
(
·
∣∣dk(ω)θj(x, ω)e, k(ω) + d− ‖dk(ω)θj(x, ω)e‖1

)
, (4.4)

where θj(x, ω) and dk(ω)θj(x, ω)e are defined as in Definition 4.3, and

wj(ω) = vj(ω)
∏
l<j

[1− vl(ω)] .

The process F = {F (x, · ) : x ∈X } will be referred to as single–weight dependent MBP

process with parameters (λ,Ψv,Ψz,H ), and denoted by wDMBPP(λ,Ψv,Ψz,H ).

Notice that DMBPP are well defined if the mapping induced by (iv) in Definition 4.3, 4.4,

and 4.5 is measurable. This will be discussed in detail in Section 4.3.3. Notice also that ex-

pressions (4.2), (4.3), and (4.4) are indeed a density w.r.t. Lebesgue measure since, for every

x ∈X ,

∞∑
j=1

log [1− E (vx {ηj(x)})] = −∞, and
∞∑
j=1

log [1− E(νj)] = −∞,

which are sufficient and necessary conditions for the corresponding weights to add up to one

with probability one. It is important to emphasize that DMBPP, including its special cases,

generates dependent mixture of Dirichlet densities with constant support points and covariate-

dependent weights,

fx(·) =
∑

j∈H0
k,m

Wk,j,x × d( · | α(k, j)), (4.5)
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where

Wk,j,x =


∑∞

l=1wl(x)δθl(x)

((
j1−1
k
, j1
k

]
× . . .×

(
jm−1
k
, jm
k

])
, for the DMBPP,∑∞

l=1wlδθl(x)

((
j1−1
k
, j1
k

]
× . . .×

(
jm−1
k
, jm
k

])
, for the wDMBPP,∑∞

l=1wl(x)δθl
((

j1−1
k
, j1
k

]
× . . .×

(
jm−1
k
, jm
k

])
, for the θDMBPP,

which has some advantages when the main interest is on single functionals, such as the mean

function (Wade et al., 2014).

4.3.3 The measurability of the processes

In this section, we show that the corresponding mappings defining the trajectories of DMBPP,

wDMBPP, and θDMBPP are measurable under the Borel σ-field generated by the weak prod-

uct topology, L∞ product topology and L∞ topology, which correspond to generalizations

of standard topologies for spaces of single probability measures. A sub-base for the weak

product topology for the space P (∆m)X =
∏
x∈X P (∆m), is given by sets of the form

BW
f,ε,x0

({Qx : x ∈X }) =
∏
x∈X ∆W

f,ε,x0
(Qx), where

∆W
f,ε,x0

(Qx) =

P (∆m) , if x ∈X ,x 6= x0,{
Mx ∈P (∆m) :

∣∣∣∫∆m
f dMx −

∫
∆m

f dQx
∣∣∣ < ε

}
, if x ∈X ,x = x0,

for every f : ∆m −→ R bounded continuous function, ε > 0, x0 ∈X and Qx ∈P (∆m).

Let D (∆m) ⊂ P (∆m) be the space of all probability measures defined on ∆m that are

absolutely continuous w.r.t. Lebesgue measure and with continuous density function. A base

for the L∞ product topology for the space D (∆m)X =
∏
x∈X D (∆m) is given by sets of the

form BL∞
ε,x0

({Qx : x ∈X }) =
∏
x∈X ∆L∞

ε,x0
(Qx), where

∆L∞
ε,x0

(Qx) =

D (∆m) , if x ∈X ,x 6= x0,{
Mx ∈ D (∆m) : supy∈∆m

| mx(y)− qx(y) | < ε
}
, if x ∈X ,x = x0,

for every ε > 0, x0 ∈ X and Qx ∈ D (∆m), where mx and qx denote the density function of
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Mx and Qx, respectively.

Now, assume that the predictor vector x contains only continuous predictors and that the

predictor space X is compact. A base for theL∞ topology for the space D (∆m)X =
∏
x∈X D (∆m),

is given by sets of the form

BL∞
ε ({Qx : x ∈X }) =

{
{Mx : x ∈X } ∈ D (∆m)X : sup

x∈X
sup
y∈∆m

| mx(y)− qx(y) | < ε

}
,

for every ε > 0 and Qx ∈ D (∆m).

The following theorem, proved in Appendix B.1, summarizes the measurability results for

the different versions of the proposed model.

Theorem 4.1. Let B1, B2 and B3 be the Borel σ-field generated by the weak product topol-

ogy, L∞ product topology and L∞ topology, respectively. If F is a DMBPP, wDMBPP or

θDMBPP, defined on the appropriate measurable space (Ω,A ), then the following mappings

are measurable:

• F : (Ω,A) −→ (P (∆m)X ,B1).

• F : (Ω,A) −→ (D (∆m)X ,B2).

• F : (Ω,A) −→ (D (∆m)X ,B3).

4.4 The main properties

In this section, we establish basic properties of the proposed models. They include the character-

ization of the topological support, continuity, association structure and the asymptotic behavior

of the posterior distribution under i.i.d. sampling from responses and predictors.

4.4.1 The support of the processes

Full support is a minimum requirement and almost a “necessary” property for a Bayesian model

to be considered “nonparametric”. In a fully nonparametric regression model setting, full sup-

port implies that the prior probability model assigns positive mass to any neighborhood of every
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collection of probability measures {Qx : x ∈X }. Therefore, the definition of support strongly

depends on the choice of a “distance” defining the basic neighborhoods. The results presented

here are based on the weak product topology, L∞ product topology, and L∞ topology, and

extend the ones provided by Barrientos et al. (2015a) for dependent Bernstein polynomials pro-

cesses for data supported on compact intervals.

The following theorem, proved in Appendix B.2, provides sufficient conditions for P (∆m)X

and D (∆m)X to be the support of DMBPPs under the weak product topology and the L∞

product topology, respectively.

Theorem 4.2. Let F be a DMBPP(λ,Ψη,Ψz,V ,H ), a θDMBPP(λ,Ψη,V ,Ψθ) or a

wDMBPP(λ,Ψv,Ψz,H ). If F is defined such that:

(i) for every (x1, . . . ,xL) ∈ X L, L ≥ 1, the joint distribution of (ηj(x1, ·), . . . , ηj(xL, ·)),

j ≥ 1, has full support on RL,

(ii) for every (x1, . . . ,xL) ∈ X L, L ≥ 1, the joint distribution of (zj(x1, ·), . . . ,zj(xL, ·)),

j ≥ 1, has full support on Rm×L,

(iii) k has full support on N,

(iv) vj , j ≥ 1, has full support on [0, 1],

(v) θj , j ≥ 1, has full support on ∆̃m,

then P (∆m)X and D (∆m)X is the support of F under the weak product topology and the L∞

product topology, respectively.

If stronger assumptions on the parameter space are imposed, a stronger support property can

be obtained. Specifically, consider the sub-space D̃ (∆m)X ⊂ D (∆m)X , where

D̃ (∆m)X =
{
{Qx : x ∈X } ∈ D (∆m)X : (y,x) −→ qx(y) is continuous

}
,

where qx denotes the density function of Qx w.r.t. Lebesgue measure. The following theorem,

proved in Appendix B.3, provides sufficient conditions for D̃ (∆m)X to be in the support of

DMBPPs under the L∞ topology.

55



4.4. THE MAIN PROPERTIES

Theorem 4.3. Let F be a DMBPP(λ,Ψη,Ψz,V ,H ), a θDMBPP(λ,Ψη,V ,Ψθ) or a

wDMBPP(λ,Ψv,Ψz,H ). Assume that x ∈ X contains only continuous components and

that X is compact. If F is defined such that:

(i) for every B ∈ B(∆m), every ∆̃m-valued continuous mapping x 7→ f(x), and every

j ≥ 1,

Pr

{
ω ∈ Ω : sup

x∈X
|hx (zj(x, ω))− f(x)| ∈ B

}
> 0,

(ii) for every ε > 0, every [0, 1]-valued continuous mapping x 7→ f(x), and every j ≥ 1,

Pr

{
ω ∈ Ω : sup

x∈X
|vx (ηj(x, ω))− f(x)| < ε

}
> 0,

(iii) k has full support on N,

(iv) vj , j ≥ 1, has full support on [0, 1],

(v) θj , j ≥ 1, has full support on ∆̃m,

then D̃ (∆m)X is contained in the support of F under the L∞ topology.

An important consequence of the previous theorem is that the proposed processes can as-

sign positive mass to arbitrarily small neighborhoods of any collection of probability measures

{Qx : x ∈ X } ∈ D̃ (∆m)X , based on the supremum over the predictor space of Kullback-

Leibler (KL) divergences between the predictor-dependent probability measures. The proof of

the following theorem is given in Appendix B.4.

Theorem 4.4. Let F be a DMBPP(λ,Ψη,Ψz,V ,H ), a θDMBPP(λ,Ψη,V ,Ψθ) or a

wDMBPP(λ,Ψv,Ψz,H ). Under the same assumptions of Theorem 4.3, it follows that

Pr

{
ω ∈ Ω : sup

x∈X

∫
∆m

qx(y) log

(
qx(y)

f(x, ω)(y)

)
dy < ε

}
> 0,

for every ε > 0, and every {Qx : x ∈X } ∈ D̃ (∆m)X with density functions {qx : x ∈X }.
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4.4.2 The continuity and association structure of the processes

The characteristics of the stochastic processes used in the definitions of a DMBPP determine

important properties of the resulting model. Regardless of the specific choice of the stochastic

processes used in its definition, the use of almost surely (a.s.) continuous stochastic processes

ensures that DMBPP and wDMBPP have a.s. a limit. The following theorem is proved in

Appendix B.5.

Theorem 4.5. Let F be DMBPP(λ,Ψη,Ψz,V ,H ) or wDMBPP(λ,Ψv,Ψz,H ), defined

such that V and H are sets of equicontinuous functions of x, and for every i ≥ 1, the stochas-

tic processes ηi and zi have a.s. continuous trayectories. Then for every {xl}∞l=0, with xl ∈X ,

such that liml→∞ xl = x0, F (x, ·) has a.s. a limit with the total variation norm.

An interesting property of the θDMBPP compared to the other version, and the general

model, is that the use of a.s. continuous stochastic processes in the weights guarantees a.s.

continuity of the ’single atoms’ DMBPP. The following theorem is proved in Appendix B.6.

Theorem 4.6. Let F be a θDMBPP(λ,Ψη,V ,Ψθ), defined such that V is a set of equicon-

tinuous functions, and such that for every j ≥ 1, the stochastic process ηj is a.s. continuous.

Then, for every {xl}∞l=0, with xl ∈X , such that liml→∞ xl = x0,

lim
l→∞

sup
B∈B(∆m)

|F (xl, ·)(B)− F (x0, ·)(B)| = 0, a.s..

That is, F (xl, ·) converges a.s. in total variation norm to F (x0, ·), when xl −→ x0.

The dependence structure of DMBPPs is completely determined by the association structure

of the stochastic processes used in their definition. For instance, under mild conditions on the

stochastic processes defining the DMBPPs, the correlation between the corresponding random

measures approaches to one as the predictor values get closer. The proof of the following

theorem is given in Appendix B.7.

Theorem 4.7. Let F be a DMBPP(λ,Ψη,Ψz,V ,H ), a θDMBPP(λ,Ψη,V ,Ψθ) or a

wDMBPP(λ,Ψv,Ψz,H ), defined such that V and H are sets of equicontinuous functions,
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and such that for every {xl}∞l=0, with xl ∈X , such that liml→∞ xl = x0, we have ηj(xl, ·)
L−→

ηj(x0, ·) and zj(xl, ·)
L−→ zj(x0, ·), as l→∞, j ≥ 1. Then, for every y ∈ ∆̃m,

lim
l→∞

ρ [F (xl, ·)(By), F (x0, ·)(By)] = 1,

where ρ(A,B) denotes the Pearson correlation between A and B, By = [0, y1]× . . .× [0, ym].

If the stochastic processes defining the DMBPP and wDMBPP are such that the pairwise

finite-dimensional distributions converge to the product of the corresponding marginal distribu-

tions as the Euclidean distance between the predictors grows larger, then under mild conditions

the correlation between the corresponding random measures can approach zero. The following

theorem, shows that under the assumptions previously discussed, the marginal covariance be-

tween the random measures is equal to the covariance between the conditional expectations of

the random measures, given the degree of the MBP. The proof of the following theorem is given

in Appendix B.8.

Theorem 4.8. Let F be a DMBPP(λ,Ψη,Ψz,V ,H ) or a wDMBPP(λ,Ψv,Ψz,H ), defined

such that V and H are sets of equicontinuous functions and such that there exists a constant

γ > 0 such that if (x1,x2) ∈X 2 and ‖x1 − x2‖ > γ, then

Cov
[
I{ηj(x1,·)∈A1}, I{ηj(x2,·)∈A2}

]
= 0,

for every A1, A2 ∈ B(R), and

Cov
[
I{zj(x1,·)∈A3}, I{zj(x2,·)∈A4}

]
= 0,

for every A3, A4 ∈ B(Rm), j ≥ 1. Assume also that for every (x1,x2) ∈ X 2 and for every

sequence {(x1l,x2l)}∞l=1, with (x1l,x2l) ∈ X 2 and such that liml→∞(x1l,x2l) = (x1,x2), we

have that (ηj(x1l, ·), ηj(x2l, ·))
L−→ (ηj(x1, ·), ηj(x2, ·)), and

(zj(x1l, ·), zj(x2l, ·))
L−→ (zj(x1, ·), zj(x2, ·)),
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j ≥ 1, as l→∞. Then, for every y ∈ ∆m,

lim
l→∞

Cov [F (x1l, ·)(By), F (x2l, ·)(By)] = Cov [E {F (x1, ·)(By) | k(·)} , E {F (x2, ·)(By) | k(·)}] ,

with

E {F (x, ·)(By)|k(·)} =
∑

j∈Hk(·),m

G0,x

(
Aj,k(·)

)
Mult(j | k(·) +m− 1,y),

where By = [0, y1]× . . .× [0, ym], Aj,k = [0, j1/k]× . . .× [0, jm/k] and G0,x is the marginal

probability measure of θj(x, ·) defined on ∆̃m.

From Theorem 4.8 it is easy to see that if DMBPP or wDMBPP are specified such that

the marginal distribution of k is degenerated, then the correlation between the corresponding

random measures goes to zero, since liml→+∞Cov [F (x1l, ·)(By), F (x2l, ·)(By)] = 0. For

θDMBPP the correlation between the associated random measures when the predictor values

are far apart reaches a different limit. In such case it is difficult to establish conditions on the

prior specification ensuring that the limit is zero. The proof of the following theorem is given

in Appendix B.9.

Theorem 4.9. Let F be a θDMBPP(λ,Ψη,V ,Ψθ). Asume that V is a set of equicontinuous

functions and that there exists a constant γ > 0, such that if x1,x2 ∈ X and ‖x1 − x2‖ > γ,

then Cov
[
I{ηj(x1,·)∈A1}, I{ηj(x2,·)∈A2}

]
= 0, for every A1, A2 ∈ B(R), j ≥ 1. Assume also

that for every (x1,x2) ∈ X 2 and for every sequence {(x1l,x2l)}∞l=1, with (x1l,x2l) ∈ X 2,

such that liml→∞(x1l,x2l) = (x1,x2), we have (ηj(x1l, ·), ηj(x2l, ·))
L−→ (ηj(x1, ·), ηj(x2, ·)),

j ≥ 1, as l→∞. Then, for every y ∈ ∆m,

lim
l→∞

Cov [F (x1l, ·)(By), F (x2l, ·)(By)] =

∞∑
k1=1

P{ω ∈ Ω : k(ω) = k1}
∑

j1, j2∈Hk1,m

M̄(j1, j2 | k1 + m− 1,y)

×
∞∑
j=1

E [wj(x1, ·)]E[wj(x2, ·)]Cov
[
I{θj(·)∈Aj1,k1}, I{θj(·)∈Aj2,k1}

]
+ Cov [E {F (x1, ·)(By) | k(·)} , E {F (x2, ·)(By) | k(·)}] ,
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with

E {F (x, ·)(By)|k(·)} =
∑

j∈Hk(·),m

G0,x

(
Aj,k(·)

)
Mult(j | k(·) +m− 1,y),

where By = [0, y1] × . . . × [0, ym], Aj,k = [0, j1/k] × . . . × [0, jm/k], G0,x is the marginal

probability measure of θj(x, ·) defined on ∆̃m, and M̄(j, j1 | k + m − 1,y) = Mult(j |

k +m− 1,y)×Mult(j1 | k +m− 1,y).

Finally, although the trajectories of the DMBPP and wDMBPP are a.s. pseudo-continuous

only, the autocorrelation function of all versions of the model are continuous under mild con-

ditions on the elements defining the processes. The proof of the following theorem is given in

Appendix B.10.

Theorem 4.10. Let F be a DMBPP(λ,Ψη,Ψz,V ,H ), a θDMBPP(λ,Ψη,V ,Ψθ) or a

wDMBPP(λ,Ψv,Ψz,H ), defined such that V and H are sets of equicontinuous functions.

Assume that for every (x1,x2) ∈ X 2 and for every sequence {(x1l,x2l)}∞l=1, with (x1l,x2l) ∈

X 2, such that liml→∞(x1l,x2l) = (x1,x2), we have that

(ηj(x1l, ·), ηj(x2l, ·))
L−→ (ηj(x1, ·), ηj(x2, ·)),

and

(zj(x1l, ·), zj(x2l, ·))
L−→ (zj(x1, ·), zj(x2, ·)),

as l→∞, j ≥ 1. Then, for every y ∈ ∆̃m,

lim
l→∞

ρ [F (x1l, ·)(By), F (x2l, ·)(By)] = ρ [F (x1, ·)(By), F (x2, ·)(By)] ,

where By = [0, y1]× . . .× [0, ym].
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4.4.3 The asymptotic behavior of the posterior distribution

In this section we study the asymptotic behavior of the posterior distribution of DMBPPs. Here

we assume that we observe a random sample (yi,xi), i = 1, . . . , n. As is common in regression

settings, we assume that the predictor vector xi contains only exogenous covariates. Notice that

the exogeneity assumption allows us to focusing on the conditional density estimation problem,

regardless the data generating mechanism of the predictors, that is, if they are randomly gen-

erated or fixed by design (see, e.g. Barndorff-Nielsen, 1973, 1978; Florens et al., 1990). Let Q

be the true probability measure generating the predictors, with density w.r.t. a corresponding

σ-additive measure denoted by q. By the exogeneity assumption, the true probability model for

the response variable and predictors takes the form h0(y,x) = q(x)q0(y | x), where both q

and {q0(· | x) : x ∈ X } are in free variation, with q0(y | x) denoting a conditional density

defined on ∆m, x ∈X . The proof of the following theorem is given in Appendix B.11.

Theorem 4.11. Let F be a DMBPP(λ,Ψη,Ψz,V ,H ), a θDMBPP(λ,Ψη,V ,Ψθ) or a

wDMBPP(λ,Ψv,Ψz,H ). If the assumptions of Theorem 4.3 are satisfied, then the poste-

rior distribution associated with the random joint distribution induced by the corresponding

DMBPP model, h(·)(y,x) = q(x)f(x, ·)(y), where q is the density generating the predic-

tors, is weakly consistent at any joint distribution of the form h0(y,x) = q(x)q0(y | x), where

{q0(· | x) : x ∈X } ∈ D̃ (∆m)X .

Although Theorem 4.11 assumes that x contains only continuous predictors, a similar result

can be obtained when x contains only predictors with finite support (e.g., categorical, ordinal

and discrete predictors) or mixed continuous and predictors with finite support.
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Chapter 5

Conclusions and future work

In this dissertation, we have addressed three different topics in the context of Bayesian nonpara-

metric (BNP) models for single and predictor–dependent probability measures. This Chapter

summarizes the main conclusions of this dissertation and gives some directions of future work.

5.1 Conclusions

In Chapter 2, we have proposed a class of MBP priors for density estimation for data supported

on a m–dimensional simplex, which has optimal posterior convergence rate. We also showed

that this class, being a modification of the class of MBP priors proposed by Barrientos et al.

(2015a), preserves appealing properties of Bernstein polynomials such as approximation of

functions that belong to a Hölder class with α regularity, α ∈ (0, 1].

In Chapter 3, we have compared two BNP models for density estimation for data supported

on a compact interval using simulated and real data: a posterior convergence rate-optimal and

a rate-suboptimal model. The results show that the rate-suboptimal model can outperform the

rate-optimal model when finite samples are considered. Furthermore, the results show that poor

62



5.2. FUTURE WORK

inferences can be obtained from the rate-optimal model, even for relatively large sample sizes

and when the conditions to obtain the asymptotic results hold. The results reported in Chapter

3 strongly suggest that the suboptimal behavior w.r.t. the posterior concentration rate of a BNP

model should not imply the “death” of the model and their merits should be evaluated on a

case-by-case basis.

In Chapter 4, we have proposed a novel class of probability models for sets of predictor-

dependent probability distributions supported on simplex spaces. The proposal corresponds to

an extension of the dependent univariate Bernstein polynomial process proposed by Barrientos

et al. (2012) and is based on the modified class of MBP proposed by Barrientos et al. (2015a).

We showed that the proposed model class, called dependent multivariate Bernstein poly-

nomial process (DMBPP) has appealing theoretical properties such as full support, continuity,

well behaved correlation function and consistent posterior distribution. We also considered two

simplified versions of the model, where only weights or support points of the dependent stick–

breaking process depend on predictors, and proved they have the same support and posterior

consistency properties as the general model, and share continuity and well behaved correla-

tion function properties from the general model. Since all the versions of the model can be

represented by a dependent Dirichlet process mixture of dirichlet densities, their use becomes

attractive in the context of regression modeling for compositional data.

5.2 Future work

Probability models for sets of predictor-dependent probability distributions supported on sim-

plex spaces could be developed based on the model proposed in Chapter 2. However, the results

obtained In Chapter 3 suggest that the models proposed in Chapter 4 would outperform such

models from a small sample point of view. This is the subject of future research.

A rather weak consistency result was established for the model proposed in Chapter 4.

Specifically, we showed that the posterior distribution associated with the random joint distri-

bution for predictor and responses, induced by a DMBPP model, is weakly consistent at any

joint distribution with the same marginal distribution generating the predictors. The study of the
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asymptotic behavior of the posterior distribution under stronger topologies is part of ongoing

research. Specifically, the study of the behavior of the models under a similar construction to

the one used in Theorem 12 by Barrientos et al. (2015b) is being currently considered. This is

based on the use of specific probit stick-breaking processes (Pati et al., 2013, Section 5).

The study of practicable special cases of the models proposed in Chapter 4 and its compu-

tational implementation is subject of ongoing research. User-friendly functions implementing

these methods will be written in compiled language and incorporated into the R library DP-

package (Jara, 2007; Jara et al., 2011).

The proof of Theorem 4.3 in Chapter 4 involved a novel class of polynomial functions

defined on ∆m × [0, 1]p. Specifically, the proof of Lemma B.3 involved a class of polynomials

that can approximate uniformly the cumulative distribution function and the density function of

absolutely continuous, w.r.t. Lebesgue measure, probability measures defined on ∆m × [0, 1]p,

and which admit continuous density functions. This novel class of functions can be used to

define novel BNP for joint probability measures for data supported on ∆m × [0, 1]p. This class

can be also used to define BNP regression models for data supported on ∆m and with predictors

supported on a unit-hypercube, or for response vectors supported in a unit-hypercube and with

predictors supported on ∆m. This is the subject of ongoing research.
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Appendix A

Supplementary material for Chapter 2

A.1 Proof of the behavior of the NB distribution

It is necessary to prove that there exist positive constants B1, B2, c1 and c2, such that, for all

k ≥ 1,

B1e
−c1k ≤ Γ(k + r)

Γ(k + 1)Γ(r)
pk(1− p)r ≤ B2e

−c2k, (A.1)

where r > 0 and 0 < p < 1. The proof is constructive. In what follows ρ(k) denotes the

probability mass function from a negative binomial distribution with parameters r and p.

We will first consider the case where r is an integer. Here, we will first show that for a suffi-

ciently large k, condition (B.11) holds. Notice that limk−→∞ [log Γ(k + r)− log Γ(k + 1)] /k =

0. Therefore, for every ε > 0, there exists k0 ∈ N, such that, for every k > k0, it follows that

−ε < log Γ(k + r)− log Γ(k + 1)

k
< ε.

Take c1 > − log p and c2 > 0 such that c1 + c2 < −2 log p. Now, by noticing that log p+ c1 <
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− log p− c2 and taking ε = log p+ c1, it follows that

−k log p− kc1 < log Γ(k + r)− log Γ(k + 1) < −k log p− kc2. (A.2)

Thus, by adding r log(1− p)− log Γ(r) and applying exponential function to expression (A.2),

it follows that, for every k > k0,

(1− p)r

Γ(r)
e−c1k < ρ(k) <

(1− p)r

Γ(r)
e−c2k,

which in turn shows that condition (B.11) holds for every k ≥ k0. The proof is completed by

noticing that since

0 < ρ(k) < 1,

there exists

B1 < (1− p)r/Γ(r),

and

B2 > (1− p)r/Γ(r),

such that condition (B.11) holds for every k ≥ 1.

A.2 Additional results for the simulation study
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Figure A.1: Simulated Data: Posterior mean of the L2 distance between the true density and the
random probability measure as a function of the sample size. The results for BDP and DPMMB
are shown as a solid and dashed line, respectively. Panel (a) - (c), (d) - (f), (g) - (i), and (j) - (l)
display the results under simulation Scenario I, II, III, and IV, respectively. Panel (a), (d), (g)
and (j), (b), (e), (h) and (k), and (c), (f), (i) and (l), display the results under Prior I, II and III,
respectively.
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Figure A.2: Simulated Data: Posterior mean (dashed line), point-wise 95% HPD band (grey
area), and true model (continuous line) under Scenario I and Prior I, for selected sample sizes.
Panel (a), (c) and (e) display the results for BDP model for sample size n = 100, n = 1000
and n = 10000, respectively. Panel (b), (d) and (f) display the results for DPMMB model for
sample size n = 100, n = 1000 and n = 10000, respectively.
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Figure A.3: Simulated Data: Posterior mean (dashed line), point-wise 95% HPD band (grey
area), and true model (continuous line) under Scenario I and Prior II, for selected sample sizes.
Panel (a), (c) and (e) display the results for BDP model for sample size n = 100, n = 1000
and n = 10000, respectively. Panel (b), (d) and (f) display the results for DPMMB model for
sample size n = 100, n = 1000 and n = 10000, respectively.
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Figure A.4: Simulated Data: Posterior mean (dashed line), point-wise 95% HPD band (grey
area), and true model (continuous line) under Scenario I and Prior I, for selected sample sizes.
Panel (a), (c) and (e) display the results for BDP model for sample size n = 100, n = 1000
and n = 10000, respectively. Panel (b), (d) and (f) display the results for DPMMB model for
sample size n = 100, n = 1000 and n = 10000, respectively.
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Figure A.5: Simulated Data: Posterior mean (dashed line), point-wise 95% HPD band (grey
area), and true model (continuous line) under Scenario II and Prior I, for selected sample sizes.
Panel (a), (c) and (e) display the results for BDP model for sample size n = 100, n = 1000
and n = 10000, respectively. Panel (b), (d) and (f) display the results for DPMMB model for
sample size n = 100, n = 1000 and n = 10000, respectively.
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Figure A.6: Simulated Data: Posterior mean (dashed line), point-wise 95% HPD band (grey
area), and true model (continuous line) under Scenario II and Prior II, for selected sample sizes.
Panel (a), (c) and (e) display the results for BDP model for sample size n = 100, n = 1000
and n = 10000, respectively. Panel (b), (d) and (f) display the results for DPMMB model for
sample size n = 100, n = 1000 and n = 10000, respectively.
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Figure A.7: Simulated Data: Posterior mean (dashed line), point-wise 95% HPD band (grey
area), and true model (continuous line) under Scenario II and Prior I, for selected sample sizes.
Panel (a), (c) and (e) display the results for BDP model for sample size n = 100, n = 1000
and n = 10000, respectively. Panel (b), (d) and (f) display the results for DPMMB model for
sample size n = 100, n = 1000 and n = 10000, respectively.

73



A.2. ADDITIONAL RESULTS FOR THE SIMULATION STUDY

y

d
e

n
s
it
y

0
1

2

0.0 0.5 1.0

(a) n = 100

y

d
e

n
s
it
y

0
1

2

0.0 0.5 1.0

(b) n = 100

y

d
e

n
s
it
y

0
1

2

0.0 0.5 1.0

(c) n = 1000

y

d
e

n
s
it
y

0
1

2

0.0 0.5 1.0

(d) n = 1000

y

d
e

n
s
it
y

0
1

2

0.0 0.5 1.0

(e) n = 10000

y

d
e

n
s
it
y

0
1

2

0.0 0.5 1.0

(f) n = 10000

Figure A.8: Simulated Data: Posterior mean (dashed line), point-wise 95% HPD band (grey
area), and true model (continuous line) under Scenario III and Prior I, for selected sample sizes.
Panel (a), (c) and (e) display the results for BDP model for sample size n = 100, n = 1000
and n = 10000, respectively. Panel (b), (d) and (f) display the results for DPMMB model for
sample size n = 100, n = 1000 and n = 10000, respectively.
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Figure A.9: Simulated Data: Posterior mean (dashed line), point-wise 95% HPD band (grey
area), and true model (continuous line) under Scenario III and Prior II, for selected sample sizes.
Panel (a), (c) and (e) display the results for BDP model for sample size n = 100, n = 1000
and n = 10000, respectively. Panel (b), (d) and (f) display the results for DPMMB model for
sample size n = 100, n = 1000 and n = 10000, respectively.
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Figure A.10: Simulated Data: Posterior mean (dashed line), point-wise 95% HPD band (grey
area), and true model (continuous line) under Scenario III and Prior I, for selected sample sizes.
Panel (a), (c) and (e) display the results for BDP model for sample size n = 100, n = 1000
and n = 10000, respectively. Panel (b), (d) and (f) display the results for DPMMB model for
sample size n = 100, n = 1000 and n = 10000, respectively.
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Figure A.11: Simulated Data: Posterior mean (dashed line), point-wise 95% HPD band (grey
area), and true model (continuous line) under Scenario IV and Prior I, for selected sample sizes.
Panel (a), (c) and (e) display the results for BDP model for sample size n = 100, n = 1000
and n = 10000, respectively. Panel (b), (d) and (f) display the results for DPMMB model for
sample size n = 100, n = 1000 and n = 10000, respectively.
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Figure A.12: Simulated Data: Posterior mean (dashed line), point-wise 95% HPD band (grey
area), and true model (continuous line) under Scenario IV and Prior II, for selected sample sizes.
Panel (a), (c) and (e) display the results for BDP model for sample size n = 100, n = 1000
and n = 10000, respectively. Panel (b), (d) and (f) display the results for DPMMB model for
sample size n = 100, n = 1000 and n = 10000, respectively.
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Figure A.13: Simulated Data: Posterior mean (dashed line), point-wise 95% HPD band (grey
area), and true model (continuous line) under Scenario IV and Prior I, for selected sample sizes.
Panel (a), (c) and (e) display the results for BDP model for sample size n = 100, n = 1000
and n = 10000, respectively. Panel (b), (d) and (f) display the results for DPMMB model for
sample size n = 100, n = 1000 and n = 10000, respectively.
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Appendix B

Supplementary Material for Chapter 3

B.1 Proof of Theorem 4.1

Let T, Tθ and Tw be dependent stick-breaking processes of the form:

• T = {Tx : x ∈ X }, where Tx(ω, ·) =
∑∞

j=1wj(x, ω)δθj(x,ω) (·), where wj(x, ω) and

θj(x, ω) are define as in Definition 4.3.

• Tθ = {T θx : x ∈ X }, where T θx(ω, ·) =
∑∞

j=1wj(x, ω)δθj(ω) (·), where wj(x, ω) and

θj(ω) are define as in Definition 4.4.

• Tw = {Twx : x ∈ X }, where Twx (ω, ·) =
∑∞

j=1wj(ω)δθj(x,ω) (·), where wj(ω) and

θj(x, ω) are define as in Definition 4.5.

Let S be a mapping defined on N×P(∆̃m)X of the form

S(k0,Q) := {H(k0,Qx) : x ∈X }, (B.1)
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where k0 ∈ N, Q = {Qx : x ∈ X } ∈ P(∆̃m)X and H(k0,Qx) is the probability measure

associated to the Bernstein polynomial of degree k0 of the measure Qx. As stated in (Barrientos

et al., 2015b), F can thus be expressed as S(k,T), S(k,Tθ) or S(k,Tw), when F corresponds

to DMBPP(λ,Ψη,Ψz,V ,H ), θDMBPP(λ,Ψη,V ,Ψθ) and wDMBPP(λ,Ψv,Ψz,H ), re-

spectively. Since T, Tθ and Tw are well-defined stochastic processes, to prove the measura-

bility of F, it suffices to prove the measurability of S which is prove by showing that mapping

S is continuous. For this, it is necessary to consider some topologies in the space where the

mapping is valued and defined. This topologies and spaces are described below.

Let T1 be the weak product topology for the space P (∆m)X and let T2 and T3 be the L∞

product topology and L∞ topology for the space D (∆m)X , respectively. A sub-base for the

weak product topology, T4, for the space P(∆̃m)X =
∏
x∈X P(∆̃m) is given by sets of

the form B̃W
f,ε,x0

(Q) =
∏
x∈X ∆̃W

f,ε,x0
(Qx), where ∆̃W

f,ε,x0
(Qx) = ∆W

f,ε,x0
(Qx)

⋂
P(∆̃m), with

Q ∈ P (∆m)X , f : ∆m −→ R a bounded continuous function, ε > 0 and x0 ∈ X . A

sub-base for the product topology, L1, for the space N×P(∆̃m)X is given by sets of the form

BD×W
f,ε,x0

(Q) =
∏
x∈X

[
{k0} × ∆̃W

f,ε,x0
(Qx)

]
. Finally, a sub-base for the product topology, L2,

for the space N ×P(∆̃m)X is given by sets of the form BD×L∞
ε,N (k0,Q) = {k0} × ∆̃L∞

ε,N (Q),

where

∆̃L∞
ε,N (Q) =

{
{Mx : x ∈X } ∈P(∆̃m)X : max

j∈H0
N,m

sup
x∈X
|Mx(Aj,N)− Qx(Aj,N)| < ε

}
,

(B.2)

where k0 ∈ N, N ∈ N, ε > 0, Aj,N =
(
j1−1
N
, j1
N

]
× . . . ,×

(
jm−1
N

, jm
N

]
and Q ∈P(∆̃m)X .

The following Lemma states that mapping S defined as B.1, is continuous under T1, T2 and

T3 in the space where S is valued, ensuring thus that F is measurable under B1, B2 and B3,

respectively.

Lemma B.1. Let S be a mapping defined as in (B.1), then

(i) S :
(
N×P(∆̃m)X ,L1

)
−→

(
P(∆m)X ,B1

)
,

(ii) S :
(
N×P(∆̃m)X ,L1

)
−→

(
D(∆m)X ,B2

)
,
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B.1. PROOF OF THEOREM 4.1

(iii) S :
(
N×P(∆̃m)X ,L2

)
−→

(
D(∆m)X ,B3

)
,

are continuous.

The proof of each part of Lemma B.1 is given below:

(i) LetQ ∈P(∆̃m)X , k0 ∈ N and V (S(k0,Q); ε) =
⋂L
i=1

⋂Ki
j=1B

W
fij ,ε,xi

(S(k0,Q)), where

L, Ki, i ∈ {1, . . . , L}, are positive integers, fij , j = 1, . . . , Ki, i = 1, . . . , L, are bounded

continuous functions, ε > 0 and (x1, . . . ,xL) ∈ X L. The proof is based on finding and

open set U ∈ L1 such that (k0,Q) ∈ U and S (U) ⊆ V (S(k0,Q); ε).

Notice that for everyM = {Mx : x ∈X } ∈P(∆̃m)X ,∣∣∣∣∫
∆m

fij dH(k0,Mxi)−
∫

∆m

fij dH(k0,Qxi)
∣∣∣∣

≤

∣∣∣∣∣∣∣
∫

∆m

fij(y)
∑

j∈H0
k0,m

Mxi (Aj,k0) d ( y | j, k0 +m− ‖j‖1)

−
∫

∆m

fij(y)
∑

j∈H0
k0,m

Qxi (Aj,k0) d ( y | j, k0 +m− ‖j‖1)

∣∣∣∣∣∣∣ ,
≤
∫

∆m

|fij(y)|
∑

j∈H0
k0,m

∣∣Mxi (Aj,k0)− Qxi (Aj,k0)
∣∣ d ( y | j, k0 +m− ‖j‖1) ,

≤ M0(k0 +m− 1)!

m!(k0 − 1)!
Nk0(M,Q),

where

Nk0(M,Q) = max
i∈{1,...,L}

max
j∈H0

k0,m

∣∣Mxi (Aj,k0)− Qxi (Aj,k0)
∣∣ ,

M0 = maxi∈{1,...,L}maxj∈{1,...,Ki} supy∈∆m
|fij(y)|, || · ||1 denotes the l1–norm, and

Aj,k0 =
(
j1−1
k0
, j1
k0

]
× . . .×

(
jm−1
k0

, jm
k0

]
. From Lemma 1 in (Barrientos et al., 2012), there

exists Q′ = {Q′x : x ∈ X } ∈ P(∆̃m)X such that for every x ∈ X , Q′x is absolutely
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continuous w.r.t Lebesgue measure and such that,

Nk0(Q′,Q) ≤ m!(k0 − 1)!

2M0(k0 +m− 1)!
ε.

Since Q′xi , i = 1, . . . , L, is an absolutely continuous measure, w.r.t. Lebesgue measure,

then Aj,k0 , j ∈ H0
k0,m

, are sets of Q′xi continuity, i.e., the boundaries of Aj,k0 have null

Q′xi measure, for every j ∈ H0
k0,m

and every i = 1, . . . , L. Thus, the set

U ′(Q′; ε̃) =
L⋂
i=1

{
Mxi ∈P(∆̃m) : max

j∈H0
k0,m

∣∣Mxi (Aj,k0)− Q′xi (Aj,k0)
∣∣ ≤ ε̃

}
,

=
{
M∈P(∆̃m)X : Nk0(M,Q′) ≤ ε̃

}
, (B.3)

belongs to T4. Notice that if ε̃ = m!(k0−1)!
2M0(k0+m−1)!

ε, then

∣∣∣∣∫
∆m

fij dH(k0,Mxi)−
∫

∆m

fij dH(k0,Qxi)
∣∣∣∣ < ε,

whereH(k0,Qx) is the probability measure associated to the multivariate Bernstein poly-

nomial of measure Qx of degree k0. Therefore, if U = {k0} × U ′(Q′; ε̃), then U ∈

L1, (k0,Q) ∈ U and S (U) ⊆ V (S(k0,Q), ε), which completes the proof of (i) in

Lemma B.1.

(ii) Let Q ∈ P(∆̃m)X , k0 ∈ N and V (S(k0,Q); ε) =
⋂L
i=1B

L∞
ε,xi

(S(k0,Q)), where L is a

positive integer, ε > 0 and (x1, . . . ,xL) ∈ X L. The proof is based on finding and open

set U ∈ L1 such that (k0,Q) ∈ U and S (U) ⊆ V (S(k0,Q); ε).
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Notice that for everyM = {Mx : x ∈X } ∈P(∆̃m)X ,

sup
y∈∆m

∣∣bp(y | k0,Mxi)− bp(y | k0,Qxi)
∣∣

≤ sup
y∈∆m

∣∣∣∣∣∣∣
∑

j∈H0
k0,m

Mxi (Aj,k0) d ( y | j, k0 +m− ‖j‖1)

−
∑

j∈H0
k0,m

Qxi (Aj,k0) d ( y | j, k0 +m− ‖j‖1)
∣∣ ,

≤ sup
y∈∆m

∑
j∈H0

k0,m

∣∣Mxi (Aj,k0)− Qxi (Aj,k0)
∣∣ d ( y | j, k0 +m− ‖j‖1) ,

≤ M0(k0 +m− 1)!

m!(k0 − 1)!
Nk0(M,Q),

where M0 = maxj∈H0
k0,m

supy∈∆m
d ( y | j, k0 +m− ‖j‖1), bp(y | k0,Mxi) stands for

the density function of the multivariate Bernstein polynomial of function Mxi of degree

k0, and Nk0(M,Q) and Aj,k0 are defined as in part (i) of the proof. By the same argu-

ments from part (i), it follows that if U = {k0}×U ′(Q′; ε̃), where U ′(Q′; ε̃) is defined as

in (B.3), with ε̃ = m!(k0−1)!
2M0(k0+m−1)!

ε, thenU ∈ L1, (k0,Q) ∈ U and S (U) ⊆ V (S(k0,Q), ε),

which completes the proof of (ii) in Lemma B.1.

(iii) Let Q ∈ P(∆̃m)X , k0 ∈ N and V (S(k0,Q); ε) = BL∞
ε (S(k0,Q)). The proof is based

on finding and open set U ∈ L2 such that (k0,Q) ∈ U and S (U) ⊆ V (S(k0,Q); ε).

Notice that for everyM = {Mx : x ∈X } ∈P(∆̃m)X ,

sup
x∈X

sup
y∈∆m

|bp(y | k0,Mx)− bp(y | k0,Qx)|

≤ sup
x∈X

sup
y∈∆m

∑
j∈H0

k0,m

|Mx (Aj,k0)− Qx (Aj,k0)| d ( y | j, k0 +m− ‖j‖1) ,

≤ M0(k0 +m− 1)!

m!(k0 − 1)!
sup
x∈X

max
j∈H0

k0,m

|Mx (Aj,k0)− Qx (Aj,k0) |,

where M0 = maxj∈H0
k0,m

supy∈∆m
, d ( y | j, k0 +m− ‖j‖1), and Aj,k0 are defined as in

the proof of (i). Then, if U = {k0} × ∆̃L∞
ε̃,k0

(Q), where ∆̃L∞
ε̃,k0

(Q) is defined as in (B.2),
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with ε̃ = m!(k0−1)!
M0(k0+m−1)!

ε, then U ∈ L2, (k0,Q) ∈ U and S (U) ⊆ V (S(k0,Q), ε), which

completes the proof of (iii) in Lemma B.1.

B.2 Proof of Theorem 4.2

First we prove that P (∆m)X is the support of F under the weak product topology. Then we

prove that D (∆m)X is the support of F under the L∞ product topology. In each case all three

versions of F are considered.

To prove that P (∆m)X is the support of F under the weak product topology, it suffices

to prove that any open set of the weak product topology has positive P ◦ F−1–measure. Let

Q ∈P(∆m)X and V (Q; ε) =
⋂L
i=1

⋂Ki
j=1B

W
fij ,ε,xi

(Q), where L,Ki, i = 1, . . . , L, are positive

integers, fij , j = 1, . . . , Ki, i = 1, . . . , L, are bounded continuous functions, ε > 0 and

(x1, . . . ,xL) ∈ X L. From Lemma 1 in (Barrientos et al., 2012), there exists Q′ = {Q′x : x ∈

X } ∈ P(∆m)X , such that for every x ∈ X , Q′x is absolutely continuous w.r.t Lebesgue

measure and such that Q′x = Qx if x 6= xi and∣∣∣∣∫
∆m

fijQxi −
∫

∆m

fijdQ′xi

∣∣∣∣ < ε

2
,

if x = xi, i = 1, . . . , L. Then, V (Q′; ε/2) ⊂ V (Q; ε). Since for every x ∈ X , H(k,Q′x)

converges weakly to Q′x as k →∞, for every ε > 0, there exists large enough k0 ∈ N such that∣∣∣∣∫
∆m

fijdH(k0,Q′xi)−
∫

∆m

fijdQ′xi

∣∣∣∣ < ε

4
,

then V (S(k0,Q′); ε/4) ⊂ V (Q′; ε/2). By Lemma B.1 part (i), there exists U = {k0} ×

U ′(Q′; ε̃) ∈ L1, with ε̃ = m!(k0−1)!
4M0(k0+m−1)!

ε, k0 ∈ N and U ′(Q′; ε̃) ∈ T4, such that S(U) ⊂

V (S(k0,Q′); ε/4). Thus, to prove this theorem, it suffices to prove that P ◦ F−1(V (Q; ε)) ≥

P{ω ∈ Ω : (k(ω),T) ∈ U} > 0, where U = {k0} × U ′(Q′; ε̃), with U ′(Q′; ε̃) defined as

in (B.3) and T is either T, Tθ or Tw.

First assume that T is T. Notice that there are N = (k0+m−1)!
m!(k0−1)!

disjoint sets in H0
k0,m

. Denote
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each of this sets by A[l],N , l = 1, . . . , N . If for each i = 1, . . . , L,

θl(xi, ω) ∈ A[l],N , l = 1, . . . , N,

θl1(xi, ω) /∈ A[l],N , l1 6= l, l, l1 = 1, . . . , N,

θj(xi, ω) ∈ ∆̃m, j > N,∣∣V1(xi, ω)− Q′xi(A[1],N)
∣∣ ≤ ε̃

4(N − 1)
, (B.4)

Q′xi(A[l],N)− ε̃/4(N − 1)∏
l1<l

[1− Vl1(xi, ω)]
≤ Vl(xi, ω) ≤

Q′xi(A[l],N)− ε̃/4(N − 1)∏
l1<l

[1− Vl1(xi, ω)]
,

l = 2, . . . , N − 1, (B.5)

1−
∑N−1

l=1 Q′xi(A[l],N)− ε̃/3∏
l1<N

[1− Vl1(xi, ω)]
≤ VN(xi, ω) ≤

1−
∑N−1

l=1 Q′xi(A[l],N)− ε̃/4∏
l1<N

[1− Vl1(xi, ω)]
, (B.6)

where Vj(x, ω) = vx(ηj(x, ω)), j ≥ 1, then
∣∣Mxi (Aj,k0)− Q′xi (Aj,k0)

∣∣ ≤ ε̃, for every j ∈

H0
k0,m

and every i = 1, . . . , L. Finally, since the stochastic processes ηj and zj are well defined

and have full support,

P ◦ F−1(V (Q; ε)) ≥ P{ω ∈ Ω : k(ω) = k0}

× P

{
ω ∈ Ω : max

i∈{1,...,L}
max

j∈H0
k0,m

∣∣Mxi (Aj,k0)− Q′xi (Aj,k0)
∣∣ ≤ ε̃

}
,

≥ P{ω ∈ Ω : k(ω) = k0}

×
N∏
l=1

P
{
ω ∈ Ω : (θl(x1, ω), . . . ,θl(xL, ω)) ∈ AL[l],N

}
× P

{
ω ∈ Ω : (Vl(x1, ω), . . . , Vl(xL, ω)) ∈ BL

l , l ∈ {1, . . . , N}
}

×
∞∏

l=N+1

P
{
ω ∈ Ω : (θl(x1, ω), . . . ,θl(xL, ω)) ∈ ∆̃L

m

}
×

∞∏
l=N+1

P
{
ω ∈ Ω : (Vl(x1, ω), . . . , Vl(xL, ω)) ∈ [0, 1]L

}
,

> 0,
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where

BL
1 =

L⊗
i=1

{
Q′xi(A[1],N)− ε̃

4(N − 1)
; Q′xi(A[1],N) +

ε̃

4(N − 1)

}
,

BL
l =

L⊗
i=1

{
Q′xi(A[l],N)− ε̃

4(N−1)∏
l1<l

[1− Vl1(xi, ω)]
;

Q′xi(A[l],N) + ε̃
4(N−1)∏

l1<l
[1− Vl1(xi, ω)]

}
, l = 2, . . . , N − 1,

BL
N =

L⊗
i=1

{
Q′xi(A[N ],N)− ε̃

3∏
l1<N

[1− Vl1(xi, ω)]
;

Q′xi(A[N ],N)− ε̃
4∏

l1<N
[1− Vl1(xi, ω)]

}
,

AL[l],N =
⊗L

i=1A[l],N , l = 1, . . . , N , ∆̃L
m =

⊗L
i=1 ∆̃d and [0, 1]L =

⊗L
i=1[0, 1]. This completes

the proof that F considered as DMBPP(λ,Ψη,Ψz,V ,H ) has weak product support.

Now assume that T is Tθ. The proof follows the same arguments used when T is T. Here,

to ensure that
∣∣Mxi (Aj,k0)− Q′xi (Aj,k0)

∣∣ ≤ ε̃, for every j ∈ H0
k0,m

and every i = 1, . . . , L,

consider , for each l = 1, . . . , N ,

θl(ω) ∈ A[l],N ,

θl1(ω) /∈ A[l1],N , l1 6= l, l1 = 1, . . . , N,

θj(ω) ∈ ∆̃m, j > N,

and remain conditions (B.4), (B.5), and (B.6) as before. Finally, since the stochastic processes

ηj , and the random vectors θj are well defined and have full support, it follows that

P ◦ F−1(V (Q; ε)) ≥ P{ω ∈ Ω : k(ω) = k0}

×
N∏
l=1

P
{
ω ∈ Ω : (θl(ω), . . . ,θl(ω)) ∈ AL[l],N

}
× P

{
ω ∈ Ω : (Vl(x1, ω), . . . , Vl(xL, ω)) ∈ BL

l , l ∈ {1, . . . , N}
}
,

> 0,

where BL
1 , BL

l , l = 2, . . . , N − 1, BL
N and AL[l],N , l = 1, . . . , N , are defined as above. This

completes the proof that F considered as θDMBPP(λ,Ψz,V ,Ψθ) has weak product support.
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Finally, assume that T is Tw. Since ∆m is a separable space and ∆̃m is dense in ∆m, then

the space of measures whose support points are finite subsets of ∆̃m is dense in P (∆m)

(Parthasarathy, 1967). Then, for each x ∈ X , there exists a probability measure Q̃x(·) =∑R
j=1 w̃jδθ̃j(x)(·), defined on ∆̃m, where R is an integer, w̃j ∈ [0, 1], j = 1, . . . , R,

∑R
j=1 w̃j =

1, and θ̃j(x) ∈ ∆̃m are continuous functions of x, j = 1, . . . , R, such that, for every x ∈ X ,

j ∈ H0
k0,m

,

∣∣Q̃x(Aj,k0)− Q′x(Aj,k0)
∣∣ < ε̃

2
.

Then U ′(Q̃; ε̃/2) ⊂ U ′ (Q′; ε̃), where U ′(Q; ε) is defined as in (B.3). Thus, it suffices to prove

that

P
{
ω ∈ Ω : (k(ω),Tw) ∈ {k0} × U ′(Q̃; ε̃/2)

}
> 0.

Consider
{
Ã[l̃],M

}M
l̃=1

, a finer partition ofH0
k0,m

than
{
A[l],N

}N
l=1

, such thatA[1],N =
⋃n1

l̃=1
Ã[l̃],M

and A[l],N =
⋃nl
l̃=nl−1+1

Ãl̃,M , l = 1, . . . , N , where
∑N

l=1 nl = M . To ensure that∣∣∣Mxi (Aj,k0)− Q̃xi (Aj,k0)
∣∣∣ ≤ ε̃/2, for every j ∈ H0

k0,m
and every i = 1, . . . , L, consider,

for each i = 1, . . . , L,

(
dk0θ1(xi, ω)e − dk0θ̃j(xi)e

)
= 0, j = 1, . . . , n1,(

dk0θl(xi, ω)e − dk0θ̃j(xi)e
)

= 0, j = nl−1 + 1, . . . , nl, l = 2, . . . , N,
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and consider, ∣∣∣∣∣v1(ω)−
n1∑
j=1

w̃j

∣∣∣∣∣ ≤ ε̃

8(N − 1)
,

nl∑
j=nl−1+1

w̃j −
ε̃

8(N − 1)∏
l1<l

[1− Vl1(ω)]
≤ vl(ω) ≤

nl∑
j=nl−1+1

w̃j +
ε̃

8(N − 1)∏
l1<l

[1− Vl1(ω)]
, l = 2, . . . , N − 1

1−
nN−1∑
j=1

w̃j −
ε̃

6∏
l1<N

[1− Vl1(ω)]
≤ vN(ω) ≤

1−
nN−1∑
j=1

w̃j −
ε̃

8∏
l1<N

[1− Vl1(ω)]
.

Finally, since the stochastic processes zj and the random variables vj are well defined and have

full support, it follows that

P ◦ F−1(V (Q; ε))

≥ P{ω ∈ Ω : k(ω) = k0}

× P
{
ω ∈ Ω :

(
dk0θ1(xi, ω)e − dk0θ̃j(xi)e

)
= 0,m = 1, . . . , L, j = 1, . . . , n1

}
×

N∏
l=2

P
{
ω ∈ Ω :

(
dk0θl(xi, ω)e − dk0θ̃j(xi)e

)
= 0, i = 1, . . . , L, j = nl−1 + 1, . . . , nl

}
× P

{
ω ∈ Ω : vl(ω) ∈ BL

l , l = 1, . . . , N
}
,

> 0,
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where

BL
1 =

{
n1∑
j=1

w̃j −
ε̃

8(N − 1)
;

n1∑
j=1

w̃j +
ε̃

8(N − 1)

}
,

BL
l =



nl∑
j=nl−1+1

w̃j −
ε̃

8(N − 1)∏
l1<l

[1− Vl1(ω)]
;

nl∑
j=nl−1+1

w̃j +
ε̃

8(N − 1)∏
l1<l

[1− Vl1(ω)]


, l = 2, . . . , N − 1,

BL
N =


1−

nN−1∑
j=1

w̃j −
ε̃

6∏
l1<N

[1− Vl1(ω)]
;

1−
nN−1∑
j=1

w̃j −
ε̃

8∏
l1<N

[1− Vl1(ω)]


,

which completes the proof that F considered as wDMBPP(λ,Ψv,Ψz,H ) has weak product

support. Thus the proof that P (∆m)X is the support of F under the weak product topology is

completed. �

Now we will prove that D (∆m)X is the support of F under the L∞ product toplogy. For

this we use the following Lemma, stating that if Q is an absolutely continuous measure, w.r.t.

Lebesgue measure, defined on ∆m with continuous density, q, then the density function of the

Bernstein polynomial of function Q of degree k converges uniformly to q as k →∞.

Lemma B.2. Let Q be an absolutely continuous measure, w.r.t. Lebesgue measure, defined on

∆m, with continuous density q. Consider bk,Q(y) the density function, w.r.t. Lebesgue measure,

of the Bernstein polynomial of function Q of degree k ∈ N. Then for every ε > 0, there exists

k0 ∈ N such that for every k ≥ k0,

sup
y∈∆m

| bk,Q(y)− q(y) | < ε.
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Proof of Lemma B.2

Notice that the density function, w.r.t. Lebesgue measure, of the Bernstein polynomial of func-

tion Q of degree k, can be written as

bk,Q(y) =
m∏
l=1

(k +m− l)
∑

j∈Hk−1,m

Q
((

j1

k
,
j1 + 1

k

]
× . . .×

(
jm
k
,
jm + 1

k

])
Mult(j | k − 1,y),

whereHk−1,m = {(j1, . . . , jm) ∈ {0, . . . , k − 1}m :
∑m

l=1 jl ≤ k − 1} , and Mult(j | k−1,y)

stands for a multinomial distribution with parameters k − 1 and y. Since Q is continuous and

defined on ∆m, by the multivariate mean value theorem, there exists c ∈
(
j1
k
, j1+1

k

]
× . . . ×(

jm
k
, jm+1

k

]
, such that

Q
((

j1

k
,
j1 + 1

k

]
× . . .×

(
jm
k
,
jm + 1

k

])
=
q(c)

km
.

Notice that if c ∈
(
j1
k
, j1+1

k

]
× . . . ×

(
jm
k
, jm+1

k

]
, then ||c − j/k||2 < m/k, where || · || de-

notes the l1 norm. Thus, by the uniform continuity of q and considering large enough k,

it follows that |q(c) − q(j/k)| < ε/2. In addition, since q is a continuous density func-

tion and J follows a multinomial distribution with parameters k − 1 and y, then for large

enough k, supy∈∆m
EJ
∣∣q (J

k

)
− q(y)

∣∣ < ε/2. Also, for large enough k, C(k)/km ≈ 1, where

C(k) =
∏m

l=1(k +m− l). Therefore, for large enough k,

sup
y∈∆m

|bk,Q(y)− q(y)| ≤ sup
y∈∆m

∑
j∈Hk−1,m

|q(c)− q(y)|Mult(j | k − 1,y),

≤ sup
y∈∆m

∣∣∣∣∣∣
∑

j∈Hk−1,m

[
q (c)− q

(
j

k

)]
Mult(j | k − 1,y)

∣∣∣∣∣∣
+ sup
y∈∆m

∑
j∈Hk−1,m

∣∣∣∣q( j

k

)
− q (y)

∣∣∣∣Mult(j | k − 1,y),

< ε.

Which completes the proof of Lemma B.2. �
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Now we will prove the L∞ product support of F. For this, it suffices to prove that any

open set of the L∞ product topology has positive P ◦ F−1–measure. Let Q ∈ D(∆m)X and

V (Q; ε) =
⋂L
i=1 ∆L∞

ε,xi
(Q), where L is a positive integer, ε > 0, and (x1, . . . ,xL) ∈ X L.

Recall that for every x ∈ X , Qx ∈ D(∆m) is an absolutely continuous measures, w.r.t.

Lebesgue measure, with continuous density, qx. By Lemma B.2, for every ε > 0, there exists

large enough k0 ∈ N, such that for every x ∈X ,

sup
y∈∆m

|bp(y | k0,Qx)− qx(y)| < ε

2
,

where bp(y | k,Qx) stands for the density function of the multivariate Bernstein polynomial of

degree k of function Qx. Then V (S(k0,Q); ε/2) ⊂ V (Q; ε). By Lemma B.1 part (ii), there

exists U = {k0} × U ′(Q′; ε̃) ∈ L1, with ε̃ = m!(k0−1)!
2M0(k0+m−1)!

ε, k0 ∈ N and U ′(Q′; ε̃) ∈ T4, such

that S(U) ⊂ V (S(k0,Q); ε/2). In analogy with the weak product support proof, it suffices

to prove that P ◦ F−1(V (Q; ε)) ≥ P{ω ∈ Ω : (k(ω),T) ∈ {k0} × U ′(Q; ε̃)} > 0, where

T is either T, Tθ or Tw. By the same arguments used to prove the weak product support of

F, it follows that P ◦ F−1(V (Q; ε)) > 0, when F is considered as DMBPP, θDMBPP, or

wDMBPP. This completes the proof that D (∆m)X is the support of F under the L∞ product

toplogy, and thus completes the proof of Theorem 4.2. �

B.3 Proof of Theorem 4.3

The following Lemma is used in the proof of this theorem.

Lemma B.3. Let {Qx : x ∈ X } ∈ D̃(∆m)X be an absolutely continuous measure, w.r.t.

Lebesgue measure, such that the mapping (x,y) 7→ qx(y) is continuous and consider X a

compact space on Rp. Denote bk,Qx
(y), the density function, w.r.t. Lebesgue measure, of the

multivariate Bernstein polynomial of degree k of function Qx. Then for every ε > 0, there exists

k0 ∈ N such that for every k ≥ k0,

sup
x∈X

sup
y∈∆m

| bk,Qx
(y)− qx(y) | < ε.
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Proof of Lemma B.3

Consider X = [0, 1]p, and a uniform marginal distribution for x on X . Then, qx(y) is a joint

density on ∆m ×X . Note that bk,Qx
(y) can be written as

bk,Qx
(y) =

∑
j∈H0

k,m

[∫
Aj,k

qx(y)dy

]
× d(y | α(k, j)),

whereH0
k,m = {(j1, . . . , jm) ∈ {1, . . . , k}m :

∑m
l=1 jl ≤ k +m− 1} , Aj,k =

(
j1−1
k
, j1
k

]
×. . .×(

jm−1
k
, jm
k

]
, j = (j1, . . . , jm), α (k, j) = (j, k +m−

∑m
l=1 jl) , and d(· | (α1, . . . , αm)) de-

notes the density function of a m–dimensional Dirichlet distribution with parameters

(α1, . . . , αm). Now, set

bk,l,Q(y,x) =∑
j∈H0

k,m

l1∑
i1=1

. . .

lp∑
ip=1

[∫
Bi1

. . .

∫
Bip

∫
Aj,k

qx(y)dydxp . . . dx1

]
×

p∏
s=1

β(xs | as, bs)d(y | α(k, j)),

where Bis =
(
is−1
ls
, is
ls

]
, as = is, bs = ls − is + 1, s = 1, . . . , p, and β(· | a, b) stands for a beta

density with parameters a and b. Given that (x,y) 7→ qx(y) is a continuous mapping, it is not

difficult to show that bk,l,Q(y,x) can approximate uniformly any continuous density function

defined on ∆m ×X . Thus, for large enough k, l1, . . . , lp, it follows that

sup
x∈X

sup
y∈∆m

|bk,l,Q(y,x)− qx(y)| < ε/2.

Now, noting that

l1∑
i1=1

. . .

lp∑
ip=1

[∫
Bi1

. . .

∫
Bip

∫
Aj,k

qx(y)dy dxp . . . dx1

]
×

p∏
s=1

β(xs | as, bs), (B.7)

93



B.3. PROOF OF THEOREM 4.3

is the density function of the multivariate Bernstein polynomial of degree l1, . . . , lp, of continu-

ous mapping

x 7→
∫
Aj,k

qx(y)d y,

defined on X , it follows that (B.7) converges uniformly to
∫
Aj,k

qx(y)d y, as (l1, . . . , lp)→∞.

Therefore, for large enough (l1, . . . , lp),

sup
x∈X

sup
y∈∆m

|bk,Qx
(y)− bk,l,Q(y,x)| <

∑
j∈H0

k,m

ε̃

2
d(y | α(k, j)) <

ε

2
,

where ε̃ = m!(k−1)!
M0(k+m−1)!

ε, with M0 = maxj∈H0
k,m

supy∈∆m
d(y | α(k, j)). Finally, there exists

large enough k, l1, . . . , lp, such that,

sup
x∈X

sup
y∈∆m

|bk,Qx
(y)− qx(y)| < ε,

which completes to proof of the Lemma. �

Now we will prove that D̃(∆m)X is contained in the support of F under the L∞ topology.

For this, it suffices to prove that any open set of the L∞ topology has positive P ◦ F−1–

measure. Let Q ∈ D̃(∆m)X and V (Q; ε) = BL∞
ε (Q), ε > 0. Recall that X is compact, and

Qx ∈ D̃(∆m) is an absolutely continuous measures, w.r.t. Lebesgue measure, with continuous

density, qx, sucht that (x,y) 7→ qx(y) is continuous. From Lemma B.3, there exists large

enough k0, such that,

sup
x∈X

sup
y∈∆m

|bp(y | k,Qx)− qx(y)| < ε

2
,

where bp(y | k,Qx) stands for the density function of the multivariate Bernstein polynomial

of function Qx of degree k. Then, V (S(k0,Q); ε/2) ⊂ V (Q; ε). By Lemma B.1 part (iii),

there exists U = {k0} × ∆̃L∞
ε̃,k0

(Q) ∈ L2, with ε̃ = m!(k0−1)!
2M0(k0+m−1)!

ε, k0 ∈ N , such that S(U) ⊂

V (S(k0,Q); ε/2). Thus, to prove this theorem, it suffices to prove that P ◦ F−1(V (Q; ε)) ≥
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P{ω ∈ Ω : (k(ω),T) ∈ {k0} × U?(Q; ε̃)} > 0, where

U?(Q; ε̃) =

{
M∈P(∆̃m)X : sup

x∈X
max

j∈H0
k0,m

|Mx (Aj,k0)− Qx (Aj,k0)| ≤ ε̃

}
, (B.8)

and T is either T, Tθ or Tw.

First assume that T is T. Following a similar reasoning as in the proof of Theorem 4.2, and if

for each l = 1, . . . , N ,

sup
x∈X
|θl(x, ω)| ∈ A[l],N ,

sup
x∈X
|θl1(x, ω)| /∈ A[l],N , l 6= l1, l1 = 1, . . . , N,

sup
x∈X
|θj(x, ω)| ∈ ∆̃m, j > N,

sup
x∈X

∣∣V1(x, ω)− Qx(A[1],N)/2
∣∣ < ε̃

2N
, (B.9)

sup
x∈X

∣∣∣∣Vl(x, ω)−
Qx(A[l],N)/2∏

l1<l
[1− Vl1(x, ω)]

∣∣∣∣ < ε̃

2N
, (B.10)

where Vj(x, ω) = vx(ηj(x, ω)), j ≥ 1, then supx∈X |Mx (Aj,k0)− Qx (Aj,k0)| ≤ ε̃, for every

j ∈ H0
k0,m

. Finally, since the stochastic processes ηj and zj are well defined and have full

support, A[l],N ∈ B(∆m) and the mappings

x 7→ Qx(A[l],N),

x 7→
Qx(A[l],N)/2∏

l1<l
[1− Vl1(x, ω)]

,
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are continuous, it follows that,

P ◦ F−1(V (Q; ε))

≥ P{ω ∈ Ω : k(ω) = k0}

×
N∏
l=1

P

{
ω ∈ Ω : sup

x∈X
|θl(x, ω)| ∈ A[l],N

}
× P

{
ω ∈ Ω : sup

x∈X

∣∣V1(x, ω)− Qx(A[l],N)/2
∣∣ < ε̃

2N

}
× P

{
ω ∈ Ω : sup

x∈X

∣∣∣∣Vl(x, ω)−
Qx(A[l],N)/2∏

l1<l
[1− Vl1(x, ω)]

∣∣∣∣ < ε̃

2N
, l = 2, . . . , N

}
,

> 0,

which completes the proof that F considered as DMBPP(λ,Ψη,Ψz,V ,H ) has L∞ support.

Now assume that T is Tθ. The proof follows the same as arguments used when T is T. Here,

to ensure that supx∈X |Mx (Aj,k0)− Qx (Aj,k0)| ≤ ε̃, for every j ∈ H0
k0,m

, we consider for each

l = 1, . . . , N ,

θl(ω) ∈ A[l],N ,

θl1(ω) /∈ A[l],N , l 6= l1, l1 = 1, . . . , N,

θj(ω) ∈ ∆̃m, j > N,

and remain conditions (B.9) and (B.10) as before. Then P ◦ F−1(V (Q; ε)) > 0, which com-

pletes the proof that F considered as θDMBPP(λ,Ψη,V ,Ψθ) has L∞ support.

Finally, assume that T is Tw. Consider the partition
{
A[l],N

}N
l=1

of ∆m and for each l =

1, . . . , N , consider {Xl,j}Nlj=1, a partition of space X , Nl ∈ N, Nl > N . Since Qx ∈ D̃(∆m)

are such that (y,x) 7→ qx(y) are continuous, then (y,x) 7→ Qx(y) are continuous and can be

approximated by functions of the form,

Qx(y) =
N∑
l=1

Nl∑
j=1

al,j I(x,y){Xl,j×A[l],N},
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where {al,j}Nlj=1, l = 1, . . . , N are positive constants, IA denotes the indicator function of set A,

x ∈ X and y ∈ ∆m. Now, for each l = 1, . . . , N , consider the mapping (al,1, . . . , al,Nl) 7→

w̃l,j = al,j/
∑Nl

j=1 al,j and the continuous mappingsx 7→ θ̃l,j(x), where w̃l,j ∈ [0, 1],
∑Nl

j=1 w̃l,j =

1, θ̃l,j(x) ∈ ∆̃m and θ̃(Xl,1, . . . ,Xl,Nl) =
{
Ã[l,j],Nl

}Nl
j=1

is a finer partition of H0
k0,m

than{
A[l],N

}N
l=1

, such that A[l],N =
⋃nl
j=1 Ã[l,j],Nl , nl < Nl. Thus, for each l = 1, . . . , N , Qx(A[l],N)

can be written as a measure of the form

Q̃x(A[l],N) =

Nl∑
j=1

w̃l,j I
{
θ̃l,j(x)

}
{Ã[l,j],Nl}

,

such that , for every l = 1, . . . , N ,

sup
x∈X

∣∣Q̃x(A[l],N)− Qx(A[l],N)
∣∣ < ε̃

2
.

Then U?(Q̃; ε̃/2) ⊂ U?(Q; ε̃), where U?(Q; ε) is defined as (B.8). Thus, in analogy with the

previous proofs, it suffices to prove that P
{
ω ∈ Ω : (k(ω),Tw) ∈ {k0} × U?(Q̃; ε̃/2)

}
> 0.

Following a similar reasoning as in the proof of Theorem 4.2 when T was considered as Tw,

and considering,

sup
x∈X

∣∣∣dk0θ1(x, ω)e − dk0θ̃1,j(x)e
∣∣∣ = 0, j = 1, . . . , n1,

sup
x∈X

∣∣∣dk0θl(x, ω)e − dk0θ̃l,j(x)e
∣∣∣ = 0, j = nl−1 + 2, . . . , nl, l = 2, . . . , N,∣∣∣∣∣v1(ω)−

n1∑
j=1

w̃1,j/2

∣∣∣∣∣ < ε̃

2N
,∣∣∣∣∣vl(ω)−

∑nl
j=1 w̃l,j/2∏

l2<l
[1− vl2(ω)]

∣∣∣∣∣ < ε̃

2N
, l = 2, . . . , N,

then, supx∈X

∣∣Mx (Aj,k0)− Q̃x (Aj,k0)
∣∣ ≤ ε̃, for every j ∈ H0

k0,m
. Finally, since the stochastic

processes ηj and zj are well defined and have full support, A[l],N ∈ B(∆m), and the mappings

x 7→ k0θ̃l,j(x), j = 1, . . . , nl, l = 1, . . . , N,
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are continuous, it follows that,

P ◦ F−1(V (Q; ε))

≥ P{ω ∈ Ω : k(ω) = k0}

×
N∏
l=1

P

{
ω ∈ Ω : sup

x∈X

(
dk0θl(x, ω)e − dk0θ̃l,j(x, ω)e

)
= 0, j = 1, . . . , nl

}

× P

{
ω ∈ Ω :

∣∣∣∣∣v1(ω)−
n1∑
j=1

w̃1,j(ω)/2

∣∣∣∣∣ < ε̃

2N

}

× P

{
ω ∈ Ω :

∣∣∣∣∣vl(ω)−
∑nl

j=1 w̃l,j(ω)/2∏
l2<l

[1− vl2(ω)]

∣∣∣∣∣ < ε̃

2N
, l = 2, . . . , N

}
,

> 0,

which completes the proof that F considered as wDMBPP(λ,Ψv,Ψz,H ) has L∞ support.

Thus the proof of the Theorem is completed. �

B.4 Proof of Theorem 4.4

Let {Qx : x ∈ X } ∈ D̃ (∆m)X with continuous density function {qx : x ∈ X }. Here we

will prove that, for every δ > 0, any Kullback-Leibler neighborhood of {Qx : x ∈ X } has

positive P ◦ F−1–measure. This is,

P

{
ω ∈ Ω : sup

x∈X
KL(qx, f(x, ω)) < δ

}
> 0,

where KL(q, p) =
∫

∆m
q(y) log

(
q(y)
p(y)

)
dy. Since X and ∆m are compact sets and (x,y) 7→

qx(y) is a continuous mapping, it follows that infx∈X infy∈∆m qx(y) exists and is bounded.

First, suppose that infx∈X infy∈∆m qx(y) > 0. If for every ε > 0, supx∈X supy∈∆m
|f(x, ω)(y)−

qx(y)| < ε, then infx∈X infy∈∆m f(x, ω)(y) > 0 and for every ε′ > 0, there exists ε > 0 such
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that for every x ∈X and every y ∈ ∆m,

log

(
qx(y)

f(x, ω)(y)

)
< ε′.

This in turn implies that supx∈X KL(qx, f(x, ω)) < ε′. From Theorem 4.3, it follows that

P

{
ω ∈ Ω : sup

x∈X
KL(qx, f(x, ω)) < ε′

}
> P

{
ω ∈ Ω : sup

x∈X
sup
y∈∆m

|g(x, ω)− qx| < ε

}
> 0.

Now, suppose that infx∈X infy∈∆d
qx(y) ≈ 0. Here we use a similar reasoning as in the proof

of Theorem 2 of Petrone & Wasserman (2002). Consider a > 0 and

q1
x(y) =

qx(y) ∨ a∫
∆m

qx(y) ∨ a dy
,

where a ∨ b stands for the maximum between a and b. Clearly q1
x(y) is a density function

such that qx(y) ≤ Cq1
x(y), with C =

∫
∆m

qx(y) ∨ a dy, and is greater than zero. Hence

supx∈X KL(q1
x, f(x, ω)) < ε′. Considering a and ε′ sufficiently small, it follows that there

exists ε̃ > 0, sucht that

KL(qx, f(x, ω)) ≤ (C + 1) log(C) + C
{
KL(q1

x, f(x, ω)) +
√
KL(q1

x, f(x, ω))
}
< ε̃.

Thus, from the firt part of this proof, it follows that

P

{
ω ∈ Ω : sup

x∈X
KL(qx, f(x, ω)) < ε̃

}
≥ P

{
ω ∈ Ω : sup

x∈X
KL(q1

x, f(x, ω)) < ε′
}
> 0,

which completes the proof. �
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B.5 Proof of Theorem 4.5

The following Lemma is used in the proofs of continuity and association structure of the pro-

cesses. This Lemma states that equicontinuous families of functions preserve a.s. continuity

and convergence in distribution of stochastic processes.

Lemma B.4. Let F = {fx : x ∈ X } be a set of known biyective continuous functions

such that for every x ∈ X , fx : Rm −→ Rn is such that for every a ∈ Rm, fx(a) is a

continuous functions of x. In addition asume that F is an equicontinuous family of functions

of a or {x 7→ fx(a) : a ∈ Rm, fx ∈ F} is an equicontinuous family of functions of x. Let

gi : X ×Ω −→ Rm, i ≥ 1, be stochastic processes defined on an appropiate probability space

(Ω,A , P ).

(i) If for every i ∈ N, the stochastic process gi is P -a.s. continuous, then x 7→ fx{gi(x, ·)},

i ∈ N is P -a.s. continuous.

(ii) Consider {xj}∞j=1 ⊂ X , such that limj→∞xj = x0 ∈ X . If gi(xj, ·)
L−→ gi(x0, ·), as

j −→∞, then fxj{gi(xj, ·)}
L−→ fx0{gi(x0, ·)}, as j −→∞.

Proof of Lemma B.4

(i) First consider, for every x ∈ X , fx an equicontinuous of function of a. Consider x0 ∈

X . Since fx(gi(x0, ω)) is a continuous function of x, there exists δ1 > 0 such that for all

x ∈ B(x0, δ1), |fx(gi(x0, ω))−fx0(gi(x0, ω))| < ε/2. By assumption, gi, being a P -a.s.

continuous stochastic process, implies that, for almost every ω ∈ Ω, and for every ε2 > 0,

there exists δ2 > 0 such that for all x ∈ B(x0, δ2), |gi(x, ω)− gi(x0, ω)| < ε2. Hence, by

the equicontinuity of fx, for almost every ω ∈ Ω, and every gi(x, ω) ∈ B(gi(x0, ω), ε2),

|fx(gi(x, ω)) − fx(gi(x0, ω))| < ε/2. Finally, considering δ = min{δ1, δ2} which does

not depend on fx, by the triangle inequality, it follows that for every ω ∈ Ω and every

x ∈ B(x0, δ), |fx{gi(x, ω)} − fx0{gi(x0, ω)}| < ε, which completes this part of the

proof.

Now consider {x 7→ fx(a) : a ∈ Rm, fx ∈ F} an equicontinuous family of functions of
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x. The proof is similar to the previous. By the equicontinuity consideration, there exists

δ1 > 0 such that for every x ∈ B(x0, δ1), |fx(gi(x, ω))− fx0(gi(x, ω))| < ε/2. Since gi

is a P -a.s. continuous stochastic process, for almost every ω ∈ Ω, and for every ε2 > 0,

there exists δ2 > 0 such that for every x ∈ B(x0, δ2), |gi(x, ω) − gi(x0, ω)| < ε2. Due

to continuity of fx as a function for a, it follows that for almost every ω ∈ Ω, and every

gi(x, ω) ∈ B(gi(x0, ω), ε2), |fx0(gi(x, ω))− fx0(gi(x0, ω))| < ε/2. Finally, considering

δ = min{δ1, δ2} which does not depend on fx, by the triangle inequality, it follows that

for every ω ∈ Ω and every x ∈ B(x0, δ), |fx{gi(x, ω)} − fx0{gi(x0, ω)}| < ε, which

completes the proof of the first part of the Lemma. �

(ii) Consider F an equicontinuous family of functions of a or {x 7→ fx(a) : a ∈ Rm, fx ∈

F} an equicontinuous family of functions of x. If gi(xj, ·)
L−→ gi(x0, ·), as j −→

∞, then by baby Skorohod’s theorem (Resnick, 2013), there exist random variables

{g̃i(xj, ·)}j≥0 defined on the Lebesgue probability space ([0, 1],B([0, 1]), λ), where λ

is the Lebesgue measure, such that for each fixed j ≥ 0, gi(xj, ·)
d
= g̃i(xj, ·), and

g̃i(xj, ·) −→ g̃i(x0, ·) λ-a.s. as j −→ ∞. Since fx(a) is a continuous function of a,

it follows that for x ∈ X , fx{gi(xj, ·)}
d
= fx{g̃i(xj, ·)}. In particular, fxj{gi(xj, ·)}

d
=

fxj{g̃i(xj, ·)} and fx0{gi(xj, ·)}
d
= fx0{g̃i(xj, ·)}. Since g̃i(xj, ·) −→ g̃i(x0, ·) λ-a.s. as

j −→∞ then g̃i is λ-a.s continuous. Therefore, by Lemma B.4 part (i), fxj{g̃i(xj, ·)} −→

fx0{g̃i(x0, ·)} λ-a.s. as j −→ ∞ which implies that fxj{g̃i(xj, ·)}
L−→ fx0{g̃i(x0, ·)}.

Thus

fxj{gi(xj, ·)}
d
= fxj{g̃i(xj, ·)}

L−→ fx0{g̃i(x0, ·)}
d
= fx0{gi(x0, ·)},

as j −→∞, which completes proof of this part of the Lemma. �

Now we provide the proof of the theorem. Firstly, assume that F is a DMBPP(λ,Ψη,Ψz,V ,H ).

Since the elements of V and H are equicontinuous functions of x, and for every i ≥ 1, the

stochastic processes ηi and zi are P–a.s. continuous, by Lemma B.4 and continuous mapping

theorem, it follows that x 7→ vx(ηi(x, ·)), x 7→ wi(x, ·), and x 7→ θi(x, · ) are P–a.s. con-

tinuous mappings. Now, the ceiling function being continuous from the left and having a limit

101



B.5. PROOF OF THEOREM 4.5

from the right implies that, for i ≥ 1, and almost every ω ∈ Ω, dk(ω)θi(xl, ω)e has a limit, as

l −→∞. Note that there exists M > 0 such that, for every y ∈ ∆m, i ≥ 1, x ∈X and ω ∈ Ω,

d(y | α (k(ω), dk(ω)θi(x, ω)e)) ≤ M , where α(k, j) = (j, k + m −
∑m

l=1 jl), and that for

every x ∈ X and ω ∈ Ω,
∑∞

i=1wi(x, ω) = 1. Then by dominated convergence theorem for

series, the density, w.r.t. Lebesgue measure, of F (x, ·), f(xl, ω), has a.s. a limit, say f̃(x0, ·).

This is, for every y ∈ ∆m,

Pr
{
ω ∈ Ω : lim

l→∞
f(xl, ω)(y) = f̃(x0, ω)(y),

}
= 1,

Let F̃ (x, ω) be a probability measure with density function f̃(x, ω). A direct application of

Scheffe’s theorem implies that F (xl, ·) converges in total variation norm to F̃ (x0, ·) as l −→∞,

a.s., this is,

P

{
ω ∈ Ω : lim

l→∞
sup

B∈B(∆m)

|F (xl, ω)(B)− F̃ (x0, ω)(B)| = 0,

}
= 1,

which completes the proof of the Theorem when F as DMBPP is considered.

Now, assume that F is wDMBPP(λ,Ψv,Ψz,H ). This proof follows the same arguments as in

the previous part, but the arguments related to the weights of the process are not needed. Thus,

there exists a probability measure F̃ (x, ω), such that

P

{
ω ∈ Ω : lim

l→∞
sup

B∈B(∆m)

|F (xl, ω)(B)− F̃ (x0, ω)(B)| = 0,

}
= 1.

The proof of the theorem is thus completed. �
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B.6 Proof of Theorem 4.6

Here we prove that for every {xl}∞l=0, with xl ∈X , such that liml→∞ xl = x0,

P

{
ω ∈ Ω : lim

l→∞
sup

B∈B(∆m)

|F (xl, ω)(B)− F (x0, ω)(B)| = 0,

}
= 1.

By assumption, for every i ≥ 1, the stochastic processes ηi are a.s. continuous, i.e., for every

i ≥ 1, x 7−→ ηi(x, ·) is an a.s. continuous function. By Lemma B.4, the equicontinuity assump-

tion of V as a function of x, and continuous mapping theorem, it follows that for every i ≥ 1,

x 7−→ wi(x, ·) is an a.s. continuous function. Therefore for every i ≥ 1 and every {xl}∞l=0,

such that liml→∞ xl = x0,we have that liml→∞wi(xl, ·) = wi(x0, ·), a.s.. Noting that there ex-

istsM > 0 such that, for every y ∈ ∆m, i ≥ 1, and ω ∈ Ω, d(y | α (k(ω), dk(ω)θi(ω)e)) ≤M ,

and that for every x ∈ X and ω ∈ Ω,
∑∞

i=1 wi(x, ω) = 1, dominated convergence theorem

for series implies that the density, w.r.t. Lebesgue measure, of F (x, ·) is a.s. continuos, i.e., for

every y ∈ ∆m,

Pr
{
ω ∈ Ω : lim

l→∞
f(xl, ω)(y) = f(x0, ω)(y),

}
= 1.

Finally, a direct application of Scheffe’s theorem implies that F(xj, ·) converges in total varia-

tion norm to F(x0, ·) as j −→∞, a.s., which completes the proof of the Theorem. �

B.7 Proof of Theorem 4.7

Here we prove that for every y ∈ ∆̃m, every {xl}∞l=0, with xl ∈X , such that liml→∞ xl = x0,

lim
l→∞

E {F (xl, ·)(By)F (x0, ·)(By)} − E {F (xl, ·)(By)}E {F (x0, ·)(By)}√
V ar {F (xl, ·)(By)}V ar {F (x0, ·)(By)}

= 1, (B.11)

where By = [0, y1]× . . .× [0, ym], and expectations are obtained by the law of total expectation

conditioning on the degree of the polynomial. The proof is developed for the three definitions
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of F. In order to reduce the notation, k(ω) is denoted by k when necessary.

First, assume that F is a DMBPP(λ,Ψη,Ψz,V ,H ). Notice that for every y ∈ ∆m and every

x ∈X ,

E {F (x, ·)(By)| k = k0} =
∑

j∈Hk0,m

E

{
F ∗(x, ·)

(
j

k

)∣∣∣∣ k = k0

Mult(j | k0 +m− 1,y),

whereHk,m = {(j1, . . . , jm) ∈ {0, . . . , k}m :
∑m

l=1 jl ≤ k +m− 1}, (j/k) = (j1/k, . . . , jm/k),

Mult(· | k0 +m−1,y) denotes the probability mass function of a multinomial distribution with

parameters (k0 +m− 1,y), and

F ∗(x, ·)
(

j

k

)
=
∞∑
i=1

wi(x, ·)I {θi(x, ·)}{θi1(x,·)≤ j1
k
,...,θim(x,·)≤ jm

k } .

Since the stochastic processes {ηi}i≥1 and {zi}i≥1 are independent and indentically distributed,

it follows that,

E

{
F ∗(x, ·)

(
j

k

)∣∣∣∣ k = k0

}
=
∞∑
i=1

E

{
wi(x, ·)I {θi(x, ·)}{θi1(x,·)≤ j1

k0
,...,θim(x,·)≤ jm

k0

}} ,
=
∞∑
i=1

E {wi(x, ·)}E
{
I {θi(x, ·)}{θi1(x,·)≤ j1

k0
,...,θim(x,·)≤ jm

k0

}} ,
=
∞∑
i=1

E {wi(x, ·)}E
{
I {θ1(x, ·)}{

θi1(x,·)≤ j1
k0
,...,θim(x,·)≤ jm

k0

}} ,
= G0,x (Aj,k0) ,

where Aj,k0 = [0, j1/k0]× . . .× [0, jm/k0] and G0,x(A) = G0(x, ·)(A) denotes the distribution

function of θ1(x, ·) defined on ∆̃m. Thus

E {F (x, ·)(By) | k = k0} =
∑

j∈Hk0,m

G0,x (Aj,k0) Mult(j | k0 +m− 1,y).
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Noting that for every x,x0 ∈X and every y ∈ ∆m,

E {F (x, ·)(By)F (x0, ·)(By)| k = k0}

=
∑

j1∈Hk,m,
j2∈Hk,m

E

{
F ∗(x,x0, ·)

(
j1

k
,
j2

k

)∣∣∣∣ k = k0

}
× M̄(j1, j2 | k +m− 1,y),

where M̄(j1, j2 | k +m− 1,y) = Mult(j1 | k +m− 1,y)×Mult(j2 | k +m− 1,y), and

F ∗(x,x0, ·)
(

j1

k
,
j2

k

)
=
∞∑
i=1

wi(x, ·)wi(x0, ·)I {θi(x, ·)}{Aj1,k} I {θi(x0, ·)}{Aj2,k} ,

+
∞∑

i,i1=1,
i 6=i1

wi(x, ·)wi1(x0, ·)I {θi(x, ·)}{Aj1,k} I {θi1(x0, ·)}{Aj2,k} .

Applying a similar reasoning as before, it follows that, for every x,x0 ∈X and every y ∈ ∆m,

E {F (x, ·)(By)F (x0, ·)(By) | k = k0}

=
∑

j1∈Hk0,m
,j2∈Hk0,m

{
∞∑
i=1

E {wi(x, ·)wi(x0, ·)}G0,x,x0 (Aj1,k0 × Aj2,k0) ,

+
∞∑

i,i1=1,
i 6=i1

E {wi(x, ·)wi1(x0, ·)}G0,x (Aj1,k0)G0,x0 (Aj2,k0)

 ,

× M̄(j1, j2 | k0 +m− 1,y),
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whereG0,x,x0(A) = G0((x,x0), ·)(A) denotes the joint distribution function of (θi(x, ·),θi(x0, ·))

defined on ∆̃2
m. In particular, for x = x0,

E
{
F (x, ·)(By)2

∣∣ k = k0

}
=

∑
j1∈Hk0,m
,j2∈Hk0,m

{
∞∑
i=1

E
{
wi(x, ·)2

}
G0,x

(
Amin{j1,j2},k0

)
,

+
∞∑

i,i1=1,
i 6=i1

E {wi(x, ·)wi1(x, ·)}G0,x (Aj1,k0)G0,x (Aj2,k0)

 ,

× M̄(j1, j2 | k0 + d− 1,y),

where Amin{j1,j2},k = [0,min{j11, j21}/k] × . . . × [0,min{j1m, j2m}/k]. By assumption, for

every i ≥ 1, and every {xl}∞l=0, with xl ∈X , such that liml→∞ xl = x0, the processes ηi(xl, ·)

and zi(xl, ·) converge in distribution to ηi(x0, ·) and zi(x0, ·), respectively, as l → ∞. Since

V and H are sets of equicontinuous functions of x, by Lemma B.4, and continuous mapping

theorem, it follows that wi(xl, ·) converges in distribution to wi(x0, ·) and θi(xl, ·) converges

in distribution to θi(x0, ·), as l → ∞. Thus, for every a ∈ ∆̃m, liml→∞G0,xl(a) = G0,x0(a).

Noting that wi(x, ·) are bounded variables, Portmanteau‘s theorem implies that the mappings

x 7→ E{wi(x, ·)}, x 7→ E{wi(x, ·)2} and x 7→ E{wi(x, ·)wi(x0, ·)}, are continuous. Now,

considering y ∈ ∆̃m, the above expressions and few applications of dominated convergence

theorem for series, it follows that,

lim
j→∞

E {F (xj, ·)(By)} =
∞∑
k0=1

lim
l→∞

E {F (xl, ·)(By) | k0}P{ω ∈ Ω : k(ω) = k0},

=
∞∑
k0=1

E {F (x0, ·)(By) | k0}P{ω ∈ Ω : k(ω) = k0},

= E {F (x0, ·)(By)} ,
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lim
l→∞

E
{
F (xl, ·)(By)2

}
=

∞∑
k0=1

lim
l→∞

E
{
F (xl, ·)(By)2

∣∣ k0

}
P{ω ∈ Ω : k(ω) = k0},

=
∞∑
k0=1

E
{
F (x0, ·)(By)2

∣∣ k0

}
P{ω ∈ Ω : k(ω) = k0},

= E
{
F (x0, ·)(By)2

}
,

and

lim
j→∞

E {F (xj, ·)(By)F (x0, ·)(By)} =
∞∑
k0=1

lim
j→∞

E {F (xj, ·)(By)F (x0, ·)(By) | k0} ,

× P{ω ∈ Ω : k(ω) = k0},

=
∞∑
k0=1

E
{
F (x0, ·)(By)2

∣∣ k0

}
P{ω ∈ Ω : k(ω) = k0},

= E
{
F (x0, ·)(By)2

}
.

Thus the proof is completed when F as DMBPP(λ,Ψη,Ψz,V ,H ) is considered.

Now, assume that F is a θDMBPP(λ,Ψη,V ,Ψθ). Notice that for every y ∈ ∆m and every

x ∈X ,

E {F (x, ·)(By)| k = k0} =
∑

j∈Hk0,m

E

{
F ∗(x, ·)

(
j

k

)∣∣∣∣ k = k0

Mult(j | k0 +m− 1,y),

whereHk,m, (j/k), and Mult(· | k0 +m− 1,y) are defined as in the first part of this proof, and

F ∗(x, ·)
(

j

k

)
=
∞∑
i=1

wi(x, ·)I {θi(·)}{θi1≤ j1k ,...,θim≤ jmk } .
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Since {θi}i≥1 are indentically distributed and independent of the stochastic processes {ηi}i≥1,

it follows that

E

{
F ∗(x, ·)

(
j

k

)∣∣∣∣ k = k0

}
=
∞∑
i=1

E

{
wi(x, ·)I {θi(·)}{θi1≤ j1k0 ,...,θim≤ jmk0 }} ,

=
∞∑
i=1

E {wi(x, ·)}E
{
I {θ1(·)}{

θi1≤
j1
k0
,...,θim≤ jmk0

}} ,
= G0 (Aj,k0) ,

where Aj,k0 is defined as in the first part of the proof and G0 is the distribution function of θ1.

Thus

E {F (x, ·)(By) | k = k0} =
∑

j∈Hk0,m

G0 (Aj,k0) Mult(j | k0 +m− 1,y).

Notice that for every x,x0 ∈X and every y ∈ ∆m,

E {F (x, ·)(By)F (x0, ·)(By)| k = k0}

=
∑

j1∈Hk,m,
j2∈Hk,m

E

{
F ∗(x,x0, ·)

(
j1

k
,
j2

k

)∣∣∣∣ k = k0

}
× M̄(j1, j2 | k +m− 1,y),

where M̄(j1, j2 | k +m− 1,y) is defined as in the first part of the proof, and

F ∗(x,x0, ·)
(

j1

k
,
j2

k

)
=
∞∑
i=1

wi(x, ·)wi(x0, ·)I {θi(·)}{Amin{j1,j2},k} ,

+
∞∑

i,i1=1,
i 6=i1

wi(x, ·)wi1(x0, ·)I {θi(·)}{Aj1,k} I {θi1(·)}{Aj2,k} ,
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where Amin{j1,j2},k is defined as in the first part of the proof. Thus, it follows that for every x,

x0 ∈X and every y ∈ ∆m,

E {F (x, ·)(By)F (x0, ·)(By) | k = k0}

=
∑

j1∈Hk0,m
,j2∈Hk0,m

{
∞∑
i=1

E {wi(x, ·)wi(x0, ·)}G0

(
Amin{j1,j2},k0

)
,

+
∞∑

i,i1=1,
i 6=i1

E {wi(x, ·)wi1(x0, ·)}G0 (Aj2,k0)G0 (Aj2,k0)

 ,

× M̄(j1, j2 | k0 +m− 1,y).

In particular, for x = x0,

E
{
F (x, ·)(By)2

∣∣ k = k0

}
=

∑
j1∈Hk0,m
,j2∈Hk0,m

{
∞∑
i=1

E
{
wi(x, ·)2

}
G0

(
Amin{j1,j2},k0

)
,

+
∞∑

i,i1=1,
i 6=i1

E {wi(x, ·)wi1(x, ·)}G0 (Aj2,k0)G0 (Aj2,k0)

 ,

× M̄(j1, j2 | k0 +m− 1,y).

By the same arguments used when F as DMBPP(λ,Ψη,Ψz,V ,H ) was considered, it follows

that

lim
j→∞

E
{
F (xj, ·)(By)2

}
= E

{
F (x0, ·)(By)2

}
,

lim
j→∞

E {F (xj, ·)(By)F (x0, ·)(By)} = E
{
F (x0, ·)(By)2

}
,

109



B.7. PROOF OF THEOREM 4.7

and

lim
j→∞

E {F (xj, ·)(By)} = E {F (x0, ·)(By)} ,

which completes this part of the proof.

Finally, assume that F is a wDMBPP(λ,Ψv,Ψz,H ). Notice that for every y ∈ ∆m and every

x ∈X ,

E {F (x, ·)(By)| k = k0} =
∑

j∈Hk0,m

E

{
F ∗(x, ·)

(
j

k

)∣∣∣∣ k = k0

Mult(j | k0 +m− 1,y),

where

F ∗(x, ·)
(

j

k

)
=
∞∑
i=1

wi(·)I {θi(x, ·)}{θi1(x,·)≤ j1
k
,...,θim(x,·)≤ jm

k } .

Since for every i ≥ 1, the stochastic processes zi are identically distributed and independent of

vi, it follows that

E

{
F ∗(x, ·)

(
j

k

)∣∣∣∣ k = k0

}
=
∞∑
i=1

E {wi(·)}E
{
I {θ1(x, ·)}{

θ11(x,·)≤ j1
k0
,...,θ1m(x,·)≤ jm

k0

}} ,
= G0,x (Aj,k0) .

Thus

E {F (x, ·)(By) | k = k0} =
∑

j∈Hk0,m

G0,x (Aj,k0) Mult(j | k0 +m− 1,y).

Notice that for every x,x0 ∈X and every y ∈ ∆m,

E {F (x, ·)(By)F (x0, ·)(By)| k = k0}

=
∑

j1∈Hk,m,
j2∈Hk,m

E

{
F ∗(x,x0, ·)

(
j1

k
,
j2

k

)∣∣∣∣ k = k0

}
× M̄(j1, j2 | k +m− 1,y),
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and

F ∗(x,x0, ·)
(

j1

k
,
j2

k

)
=
∞∑
i=1

wi(·)2I {θi(x, ·)}{Aj1,k} I {θi(x0, ·)}{Aj2,k} ,

+
∞∑

i,i1=1,
i 6=i1

wi(·)wi1(·)I {θi(x, ·)}{Aj1,k} I {θi1(x0, ·)}{Aj2,k} ,

Thus, it follows that for every x, x0 ∈X and every y ∈ ∆m,

E {F (x, ·)(By)F (x0, ·)(By) | k = k0}

=
∑

j1∈Hk0,m
,j2∈Hk0,m

{
∞∑
i=1

E
{
wi(·)2

}
G0,x,x0 (Aj1,k0 × Aj2,k0) ,

+
∞∑

i,i1=1,
i 6=i1

E {wi(·)wi1(·)}G0,x (Aj1,k0)G0,x0 (Aj2,k0)

 ,

× M̄(j1, j2 | k0 +m− 1,y).

In particular, for x = x0,

E
{
F (x, ·)(By)2

∣∣ k = k0

}
=

∑
j1∈Hk0,m
,j2∈Hk0,m

{
∞∑
i=1

E
{
wi(·)2

}
G0,x

(
Amin{j1,j2},k0

)
,

+
∞∑

i,i1=1,
i 6=i1

E {wi(·)wi1(·)}G0,x (Aj1,k0)G0,x (Aj2,k0)

 ,

× M̄(j1, j2 | k0 +m− 1,y).

By the same arguments as in the first part of the proof, it follows that

lim
j→∞

E
{
F (xj, ·)(By)2

}
= E

{
F (x0, ·)(By)2

}
,
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lim
j→∞

E {F (xj, ·)(By)F (x0, ·)(By)} = E
{
F (x0, ·)(By)2

}
,

and

lim
j→∞

E {F (xj, ·)(By)} = E {F (x0, ·)(By)} .

which completes the proof of the theorem. �

B.8 Proof of Theorem 4.8

Here we use the law of total covariance conditioning on the degree of the polynomial. As-

sume now that F is a DMBPP(λ,Ψη,Ψz,V ,H ). By assumption, for every i ≥ 1, and every

{(x1l,x2l)}∞l=1 with (x1l,x2l) ∈ X 2, (x1,x2) ∈ X 2, such that liml→∞(x1l,x2l) = (x1,x2),

the joint processes (ηi(x1l, ·), ηi(x2l, ·)) and (zi(x1l, ·), zi(x2l, ·)) converge in distribution to

(ηi(x1, ·), ηi(x2, ·)), and (zi(x1, ·), zi(x2, ·)), as l → ∞, respectively. Since V and H are

sets of equicontinuous functions of x, by Lemma B.4 and continuous mapping theorem, it

follows that for every i ≥ 1, (wi(x1l, ·), wi(x2l, ·)) and (θi(x1l, ·),θi(x2l, ·)) converge in dis-

tribution to (wi(x1, ·), wi(x2, ·)) and (θi(x1, ·),θi(x2, ·)), as l → ∞, respectively. Thus, for

every a1 ∈ ∆̃m and a2 ∈ ∆̃m, liml→∞G0,x1l,x2l
(a1,a2) = G0,x1,x2(a1,a2), where G0,x1,x2

denotes the joint distribution function of (θi(x1, ·),θi(x2, ·)). Noting that for every x, wi(x, ·)

are bounded variables, Portmanteau’s theorem implies that mappings x 7→ E {wi(x, ·)} and

(x1,x2) 7→ E {wi(x1, ·)wi1(x2, ·)}, i, i1 ∈ N, are continuous. In addition, for (x1,x2) ∈ X 2

such that ‖x1 − x2‖ > γ, the assumption

Cov
[
I{A1} {zi(x1, ·)} , I{A2} {zi(x2, ·)}

]
= 0,

and

Cov
[
I {ηi(x1, ·)}{A1} , I {ηi(x2, ·)}{A2}

]
= 0,
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imply that

E
{
I {zi(x1, ·)}{A1} I {zi(x2, ·)}{A2}

}
= E

{
I {zi(x1, ·)}{A1}

}
E
{
I {zi(x2, ·)}{A2}

}
,

E
{
I {ηi(x1, ·)}{A1} I {ηi(x2, ·)}{A2}

}
= E

{
I {ηi(x1, ·)}{A1}

}
E
{
I {ηi(x2, ·)}{A2}

}
.

Therefore, for every (x1,x2) ∈X 2 such that ‖x1−x2‖ > γ, it follows thatG0,x1,x2(a1,a2) =

G0,x1(a1)G0,x2(a2), and E {wi(x1, ·)wi1(x2, ·)} = E {wi(x1, ·)}E {wi1(x2, ·)}, i, i1 ∈ N.

Now, considering the expressions from the proof of theorem 4.7, for every y ∈ ∆m, (x1,x2) ∈

X 2 such that ‖x1−x2‖ > γ, and an application of dominated convergence theorem, it follows

that,

lim
l→∞

E {F (x1l, ·)(By)F (x2l, ·)(By) | k = k0

}
=

∑
j1∈Hk0,m
j2∈Hk0,m

∞∑
i=1,
i1=1

E {wi(x1, ·)}E {wi1(x2, ·)}G0,x1 (Aj1,k0)G0,x2 (Aj2,k0) ,

× M̄(j1, j2 | k0 +m− 1,y),

= lim
l→∞

E {F (x1l, ·)(By) | k = k0} E {F (x2l, ·)(By) | k = k0} .

Thus,

lim
l→∞

Cov {F (x1l, ·)(By), F (x2l, ·)(By) | k = k0

}
= 0.
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Finally, by dominated convergence theorem for series, it follows that

lim
l→∞

Cov [F (x1l, ·)(By), F (x2l, ·)(By)]

= lim
l→∞

E {Cov [F (x1l, ·)(By), F (x2l, ·)(By) | k0]} ,

+ lim
l→∞

Cov [E {F (x1l, ·)(By) | k0} , E {F (x2l, ·)(By) | k(·)}] ,

= E
{

lim
l→∞

Cov [F (x1l, ·)(By), F (x2l, ·)(By) | k0]
}
,

+ Cov
[

lim
l→∞

E {F (x1l, ·)(By) | k0} , lim
l→∞

E {F (x2l, ·)(By) | k(·)}
]
,

= Cov [E {F (x1, ·)(By) | k0} , E {F (x2, ·)(By) | k(·)}] ,

where for every x ∈X ,

E {F (x, ·)(By) | k = k0} =
∑

j∈Hk0,m

G0,x (Aj,k0) Mult(j | k0 +m− 1,y).

which completes this part of the proof.

Assume now that F is a wDMBPP(λ,Ψv,Ψz,H ). By the same arguments as when F is

the general model, for every y ∈ ∆m and (x1,x2) ∈ X 2 and an application of dominated

convergence theorem, it follows that

lim
l→∞

E {F (x1l, ·)(By)F (x2l, ·)(By) | k = k0

}
=

∑
j1∈Hk0,m
j2∈Hk0,m

∞∑
i=1,
i1=1

E {wi(·)wi1(·)}G0,x1 (Aj1,k0)G0,x2 (Aj2,k0) M̄(j1, j2 | k0 +m− 1,y),

and

lim
l→∞

E {F (x1l, ·)(By) | k = k0} E {F (x2l, ·)(By) | k = k0}

=
∑

j1∈Hk0,m
j2∈Hk0,m

∞∑
i=1,
i1=1

E {wi(·)}E {wi1(·)}G0,x1 (Aj1,k0)G0,x2 (Aj2,k0) M̄(j1, j2 | k0 +m− 1,y).

114



B.9. PROOF OF THEOREM 4.9

Since Cov
[∑∞

i=1 wi(ω),
∑∞

i1=1 wi1(ω)
]

= 0, it follows that

lim
l→∞

Cov {F (x1l, ·), (By)F (x2l, ·)(By) | k = k0

}
= 0.

Finally, the proof is completed using the same arguments as in the first part. Thus, the proof of

the theorem is completed. �

B.9 Proof of Theorem 4.9

Here we use the law of total covariance conditioning on the degree of the polynomial. Assume

that F is a θDMBPP(λ,Ψη,V ,Ψθ). By the same arguments as in the proof of the first part

of Theorem 4.8, for every y ∈ ∆m and (x1,x2) ∈ X 2 such that ‖x1 − x2‖ > γ, and few

applications of dominated convergence theorem, it follows that

lim
l→∞

E {F (x1l, ·)(By)F (x2l, ·)(By) | k = k0

}
=

∑
j1∈Hk0,m
j2∈Hk0,m

∞∑
i=1,
i1=1

E {wi(x1, ·)}E {wi1(x2, ·)}

× E
{
I {θi(·)}{Aj1,k0

} I {θi1(·)}{Aj2,k0}
}
× M̄(j1, j2 | k0 +m− 1,y),

and

lim
l→∞

E {F (x1l, ·)(By) | k = k0} E {F (x2l, ·)(By) | k = k0}

=
∑

j1∈Hk0,m
j2∈Hk0,m

∞∑
i=1,
i1=1

E {wi(x1, ·)}E {wi1(x2, ·)} ,

× E
{
I {θi(·)}{Aj1,k0}

}
E
{
I {θi1(·)}{Aj2,k0}

}
M̄(j1, j2 | k0 +m− 1,y).
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Since {θi}i≥1 are independent, then

lim
l→∞

Cov [F (x1l, ·)(By), F (x2l, ·)(By) | k0]

=
∑

j1∈Hk0,m
j2∈Hk0,m

∞∑
i=1

E {wi(x1, ·)}E {wi(x2, ·)}Cov
{
I {θi(·)}{Aj1,k0} , I {θi(·)}{Aj2,k0}

}
,

× M̄(j1, j2 | k0 +m− 1,y).

Finally, by dominated convergence theorem, it follows that, for every y ∈ ∆̃m,

lim
l→∞

Cov [F (x1l, ·)(By), F (x2l, ·)(By)]

= E
{

lim
l→∞

Cov [F (x1l, ·)(By), F (x2l, ·)(By) | k0]
}
,

+ Cov
[

lim
l→∞

E {F (x1l, ·)(By) | k0} , lim
l→∞

E {F (x2l, ·)(By) | k(·)}
]
,

=
∞∑
k0=1

lim
l→∞

Cov [F (x1l, ·)(By), F (x2l, ·)(By) | k0]P ({ω ∈ Ω : k(ω) = k0}),

+ Cov [E {F (x1, ·)(By) | k0} , E {F (x2, ·)(By) | k(·)}] ,

which completes the proof of the theorem. �

B.10 Proof of Theorem 4.10

We proof this theorem using the definition of correlation. Expectations are obtained by the

law of total expectation, conditioning on the degree of the polynomial. Assume that F is a

DMBPP(λ,Ψη,Ψz,V ,H ), a θMDBPP(λ,Ψη,V ,Ψθ) or a wDMBPP(λ,Ψv,Ψz,H ). By

assumption, for every i ≥ 1, and every {(x1l,x2l)}∞l=1 with (x1l,x2l) ∈ X 2, (x1,x2) ∈ X 2,

such that liml→∞(x1l,x2l) = (x1,x2), the joint processes (ηi(x1l, ·), ηi(x2l, ·)) and

(zi(x1l, ·), zi(x2l, ·)) converge in distribution to (ηi(x1, ·), ηi(x2, ·)), and (zi(x1, ·), zi(x2, ·)),

as l → ∞, respectively. By the same arguments used in the proof of the first part of The-

orem 4.8, it follows that for every a1 ∈ ∆̃m and a2 ∈ ∆̃m, liml→∞G0,x1l,x2l
(a1,a2) =
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G0,x1,x2(a1,a2), where G0,x1,x2 denotes the joint distribution function of (θi(x1, ·),θi(x2, ·)),

and mappings x 7→ E {wi(x, ·)} and (x1,x2) 7→ E {wi(x1, ·)wi1(x2, ·)}, i, i1 ∈ N, are contin-

uous. By few applications of dominated convergence theorem, it follows that for m = 1, 2,

lim
l→∞

E {F (xml, ·)(By)} = E {F (xm, ·)(By)} ,

lim
l→∞

E
{
F (xml, ·)(By)2

}
= E

{
F (xm, ·)(By)2

}
,

and

lim
l→∞

E {F (x1l, ·)(By)F (x2l, ·)(By)} = E {F (x1, ·)(By)F (x2, ·)(By)} .

Finally, for y ∈ ∆̃m and by the definition of correlation, the proof is completed. �

B.11 Proof of Theorem 4.11

Let m(y,x) = q(x)gx(y) be the random joint distribution for the response and predictors aris-

ing when {gx(y) : x ∈ X } is a DMBPP, wDMBPP or θDMBPP. Since the KL divergence

between m0 and the implied joint distribution m can be bounded by the supremum over the

predictor space of KL divergences between the predictor-dependent probability measures,

KL(m0,m) =

∫
X

∫
∆m

m0(y,x) log

(
m0(y,x)

m(y,x)

)
dydx,

=

∫
X

q(x)

∫
∆m

q0(y | x) log

(
q0(y | x)

gx(y)

)
dydx,

≤ sup
x∈X

∫
∆m

q0(y | x) log

(
q0(y | x)

gx(y)

)
dy,

when x contains only continuous predictors, it follows that, for every δ > 0,

Pr {KL(m0,m) < δ} ≥ Pr
{

sup
x∈X

∫
∆m

q0(y | x) log

(
q0(y | x)

gx(y)

)
dy < δ

}
> 0,
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under the assumptions of Thorem 4.4. Thus, by Schwartz’s theorem (Schwartz, 1965), it follows

that the posterior distribution associated with the random joint distribution induced by any of the

proposed models is weakly consistent, that is, the posterior measure of any weak neighborhood,

of any joint distribution of the form m0(y,x) = q(x)q0(y | x), converges to one as the sample

size goes to infinity. �
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TRIPPA, L., MÜLLER, P. & JOHNSON, W. (2011). The multivariate beta process and an exten-

sion of the Polya tree model. Biometrika 98 17–34.

WADE, S., WALKER, S. G. & PETRONE, S. (2014). A predictive study of Dirichlet process

mixture models for curve fitting. Scandinavian Journal of Statistics 41 580–605.

WEHRHAHN, C., JARA, A. & BARRIENTOS, A. F. (2015). On the small sample behavior

of Dirichlet process mixture models for data supported on compact intervals. Tech. rep.,

Department of Statistics, Pontificia Universidad Católica de Chile.
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