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Chapter 1

Introduction

Let Q = (qn)n≥1 be a sequence of natural numbers such that qn ≥ 2 for every n ∈ N. A
Cantor series determined by Q is a series of the form

∑
n≥1

εn
q1 · · · qn

, (1.1)

where εn ∈ Ωn := {0, 1, . . . , qn−1}. Since qn ≥ 2, the series in (1.1) converges absolutely

by comparison with an = 2−(n−1).

A natural question that arises is if an arbitrary x ∈ [0, 1) can be written in the form

of (1.1). Indeed, given x ∈ [0, 1), the digits εn of the series can be obtained using the

following recursive formulas.

Define r0(x) := x and set ε1(x) = [q1r0(x)], r1(x) = {q1r0(x)}, where [·] and {·} are the

integer and fractional parts respectively. For n ≥ 2, define

εn(x) = [qnrn−1(x)], rn(x) = {qnrn−1(x)}. (1.2)

If rm(x) = 0 for some m, then εn(x) = 0 for n ≥ m+ 1.

We write

x =
∑
n≥1

εn(x)

q1 · · · qn
=: [ε1(x), ε2(x), . . .]Q.

A direct consequence of (1.2) is that every x ∈ [0, 1) admits at least one representation

in the form of (1.1). We call a representation in this form a Cantor series expansion of

x with respect to Q. The expansion obtained as in (1.2) converges to x, as we will see

now.
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Define xn := [ε1(x), ε2(x), . . . , εn(x)]Q and αn := xn+1 − xn for n ≥ 1. It is clear from

the definition of εn(x) that x− xn ≥ 0 and αn ≥ 0, as can be seen in Figure 1.1. Also,

αn =
εn+1(x)

q1 · · · qn+1
≤ qn+1 − 1

q1 · · · qn+1
=

1

q1 · · · qn
− 1

q1 · · · qn+1
.

Then, |αn| ≤ (q1 · · · qn)−1 − (q1 · · · qn+1)−1.

xn xn +
1

q1 · · · qn
xn +

εn+1(x)

q1 · · · qn+1
xn +

εn+1(x) + 1

q1 · · · qn+1

xn +
qn+1 − 1

q1 · · · qn+1
xn +

1

q1 · · · qn+1

x

qn+1 subintervals of equal length

· · · · · ·

Figure 1.1

Using induction on n, suppose that x− xn−1 ≤ (q1 · · · qn−1)−1. Then,

x− xn = x− xn−1 − αn−1 ≤ x− xn−1 + (q1 · · · qn)−1 − (q1 · · · qn−1)−1 ≤ (q1 · · · qn)−1.

Hence,

|x− xn| ≤ (q1 · · · qn−1)−1 ≤ 2−n
n−−→ 0.

It follows that xn
n−−→ x.

Now that we have seen that every x ∈ [0, 1) has a Cantor series expansion with respect

to Q, the question that follows concerns the uniqueness of this representation. In order

to study this, consider x ∈ [0, 1) with two different expansions

∑
n≥1

εn(x)

q1 · · · qn
=
∑
n≥1

δn(x)

q1 · · · qn
.

Let n0 ∈ N such that εn0(x) 6= δn0(x) but εn(x) = δn(x) if n < n0. Multiplying both

expansions by q1 · · · qn0 and subtracting the first n0 − 1 terms we get

εn0(x) +
∑
n>n0

εn(x)

qn0+1 · · · qn
= δn0(x) +

∑
n>n0

δn(x)

qn0+1 · · · qn
. (1.3)

Without loss of generality, assume εn0(x) > δn0(x). Subtracting in (1.3) we obtain

0 < εn0(x)− δn0(x) =
∑
n>n0

δn(x)− εn(x)

qn0+1 · · · qn
. (1.4)
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The right-hand side of (1.4) is bounded above by

∑
n>n0

δn(x)− εn(x)

qn0+1 · · · qn
≤
∑
n>n0

qn − 1

qn0+1 · · · qn
=
∑
n>n0

1

qn0+1 · · · qn−1
− 1

qn0+1 · · · qn
≤ 1.

Since εn0 − δn0 ∈ N, we have that εn0 − δn0 = 1. Thus,

∑
n≥n0+1

δn(x)− εn(x)

qn0+1 · · · qn
= 1,

and δn−εn = qn−1 for every n ≥ n0 +1. Recall that δn, εn ∈ Ωn. Then, δn(x) = qn−1,

εn(x) = 0.

The uniqueness follows if we ask εn(x) 6= qn − 1 for all but finitely many n. This is the

case of the expansion obtained in (1.2), which we will call the Cantor series representation

of x with respect to Q. Some examples of representations of certain x with respect to

some Q are

• Q = (n+ 1)n≥1 and {e} =
∑
n≥1

1

(n+ 1)!
= [1, 1, 1, . . .]Q.

• Q = (qn)n≥1 where

qn =

2 if n is even.

3 if n is odd.

Hence
1

24
= [0, 0, 0, 1, 1, 1, 0, 0, 0, 0, . . .]Q = [0, 0, 0, 1, 1, 0, 2, 1, 2, 1, 2, . . .]Q. This

second representation is not correct if we ask εn 6= qn − 1 for all but finitely many

n.

• Q = (qn)n≥1 where qn = b for every n and b is a natural number greater than 1.

Then x = [ε1(x), ε2(x), . . .]Q is the expansion in base b of x.

The third example shows that the Cantor series expansion of x with respect to Q is a

generalization of the base b expansion.

1.1. Cantor series as a dynamical system

The expansion in base b is a classic example of a dynamical system. If we consider x ∈
[0, 1) we can relate its b-ary expansion, defined in the last example, with a transformation.

Let Tb : [0, 1) −→ [0, 1) be defined by x 7−→ bx mod 1. The map Tb acts as a shift on

the digits of the expansion in the following sense.
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If x = [ε1, ε2, . . .] is the b-ary expansion of x, then Tb([ε1, ε2, . . .]) = [ε2, ε3, . . .].

The transformation Tb allows to calculate the digits εn of the expansion as follows. Given

x ∈ [0, 1), εn(x) = [b{Tn−1
b (x)}], where T 0

b (x) = x. For example, consider the number

x = 0.1469 where the representation is its decimal expansion. The formula for εn gives

• ε1(x) = [10 · {0.1469}] = [1.469] = 1

• ε2(x) = [10 · {10 · 0.1469}] = [10 · 0.469] = [4.69] = 4.

• ε3(x) = [10 · {100 · 0.1469}] = 6.

• ε4(x) = 9 and εn(x) = 0 if n ≥ 5.

Then, we know the orbit of a point under Tb if and only if we know its expansion in base

b. This calculation can be seen graphically in Figure 1.2.

x T10(x)

1

1

1 4

(a) Step 1: ε0(x), ε1(x).

x T10(x) T 2
10(x)

1

1

1 4 6

(b) Step 2: ε3(x)

x T10(x) T 2
10(x) T 3

10(x)

1

1 4 6 9

(c) Step 3: ε4(x).

Figure 1.2: Expansion in base b = 10 of x = 0.1469.

The Lebesgue measure is ergodic for the dynamical system ([0, 1), Tb) (c.f. [EW11])

Hence, the Birkhoff ergodic theorem (Theorem 3.1.2) is a tool that we can use. In fact,

in Chapter 3 this theorem is used to prove the Borel theorem on normal numbers.

In a similar way, we can introduce a dynamical system to study the Cantor series expan-

sion with respect to a given Q.

Consider x ∈ [0, 1) and its Cantor series expansion with respect to Q given by x =

[ε1(x), ε2(x), . . .]Q. Note that q1x mod 1 = [ε2(x), ε3(x), . . .]Q. More generally,

qnqn−1 · · · q1x mod 1 = [εn+1(x), εn+2(x), . . .]Q (1.5)
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The family of transformations (gn)n≥1 defined by

gn : [0, 1) −→ [0, 1), x 7−→ qnx mod 1 (1.6)

acts as a shift in the expansion of x. The digits of the expansion can be recovered as in

the b-ary case. If we set Gn := gn ◦ gn−1 ◦ · · · ◦ g1, the formula to do this is

εn(x) = [qn{Gn−1(x)}].

For example, consider Q such that q1 = 5, q2 = 2 and q3 = 4. Choose x = 7/10. Its Q

expansion is calculated in the following way.

• ε1

Å
7

10

ã
=

ï
5 · 7

10

ò
= 3.

• ε2

Å
7

10

ã
=

ï
2

ß
5 · 7

10

™ò
=

ï
2 · 1

2

ò
= 1.

• ε3

Å
7

10

ã
=

ï
4

ß
2 · 5 · 7

10

™ò
= 0.

• εn(x) = 0 for every n ≥ 4,

a calculation illustrated in Figure 1.3. Hence, its representation as a Cantor series with

respect to Q is

7

10
=

3

5
+

1

2 · 5
= [3, 1, 0, 0, . . .]Q.

1

3

1

xG1(x)

Step 1: ε1(x)

1

1

1

xG1(x) G2(x)

Step 2: ε2(x)

1

0

1

xG1(x) G2(x)G3(x)

Step 3: ε3(x)

Figure 1.3: Cantor series expansion with respect to Q of x = 7/10

Then, if we want to know the digits of the Cantor series expansion of a given x, we need

to understand the orbit of x under the dynamical system ([0, 1), (Gn)n),

{x,G1(x), G2(x), . . . , Gn(x), . . .}.
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However, we need to apply a different function if we want to shift a digit in a specific

position. This essential difference with the b-ary case changes completely how to approach

the problems concerned with Cantor series expansion. Its associated dynamical system

([0, 1), (gn)n) is non-autonomous, and its theory is not fully developed.



Chapter 2

Hausdorff dimension of sets defined

in terms of Cantor series

2.1. Hausdorff dimension

2.1.1. Definition of the Hausdorff dimension

Let T be the compact space R/Z. Henceforth, T will be identified with the interval [0, 1),

E will denote an arbitrary subset of [0, 1), µ a positive Radon measure on [0, 1), and F
a family of half-open intervals of [0, 1).

Definition 2.1.1. Let ε > 0 and E ⊆ [0, 1). An (ε,F , µ)-cover of E is a countable

collection of elements {Fn}n ⊆ F such that

E ⊆
⋃
n

Fn, µ(Fn) < ε ∀n ∈ N.

For every α > 0, we define

Hα(ε,F ,µ)(E) := inf

{∑
n

µ(Fn)α : {Fn}n is an (ε,F , µ)-cover of E

}
. (2.1)

In this definition, the sequence of sets {
∑

n µ(Fn)α : {Fn}n is an (ε,F , µ)-cover of E} is
increasing in ε. Hence,Hα(ε,F ,µ)(E) is decreasing in ε and consequently limε→0Hα(ε,F ,µ)(E)

exists and could be +∞. We denote this limit by HαF ,µ(E) and we call this quantity the

α-dimensional Hausdorff outer measure of E.
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α

HαF ,µ(E)

+∞

dimF ,µ(E)

Figure 2.1: Hausdorff outer measure and Hausdorff dimension.

It is clear from (2.1) that if α is such that HαF ,µ(E) < ∞, then HβF ,µ(E) = 0 for every

β > α and that HαF ,µ(E) is decreasing in α. So, there exists a unique value of the

parameter α in which the outer measure jumps from +∞ to 0. This observation allows

to make the following crucial definition.

Definition 2.1.2. Let E ⊆ [0, 1). The (F , µ)-Hausdorff dimension of E is the non-

negative number

dimF ,µ(E) := inf{α > 0 : HαF ,µ(E) = 0} = sup{α > 0 : HαF ,µ(E) =∞}. (2.2)

If α = dimF ,µ(E), then HαF ,µ(E) can be finite or infinite.

When F is the family of all half-open intervals of [0, 1) and µ is the Lebesgue measure,

Definition 2.2 coincides with the definition of Hausdorff dimension. In that case, we will

omit the subscripts.

Changing the set of possible covers of a set could also vary its Hausdorff dimension.

Hence, a natural question would be

Which assumptions about the family F should be made to obtain the same Hausdorff

dimension as when we consider the family of all half-open intervals of [0, 1)?

Definition 2.1.3. Let F be a family of right-open intervals of [0, 1). The class F allows

the calculation of the Hausdorff dimension if

dimF (E) = dim(E) for every E ⊆ [0, 1).
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2.1.2. Assumptions on F

In this section we will give conditions on the family F in order to give a partial answer

to the previous question.

From now on, F will satisfy the following hypotheses:

(H1) F =
⋃
n≥0Fn, where Fn is a finite partition of [0, 1).

(H2) Fn+1 is a strict refinement of Fn, namely, for every I ∈ Fn+1 there exists J ∈ Fn
such that I ( J . The set J is called the father of I and is denoted by p(I).1

Since our aim is to capture the local shape of the sets, we also assume that

(H3) For every x ∈ [0, 1) and ε > 0 there exists I ∈ F such that x ∈ I and |I| < ε,

where |I| denotes the Lebesgue measure of the half-open interval I.

Finally, a fourth assumption is made to control the speed at which the length of the

elements of F decrease in each step. Define the function k : F → R by

I 7−→ sup

 |I||J | : J ∈
⋃
n≥1

Fn, p(J) = I

 .

(H4) For every α > 0, |I|αk(I) −→ 0 whenever |I| −→ 0.

2.1.3. Calculation of the Hausdorff dimension

The objective of this section is to prove the following theorem of Peyrière (cf. [Pey77]).

Theorem 2.1.1. If F satisfies the hypotheses H1, H2, H3 and H4, then F allows the

calculation of the Hausdorff dimension.

Its proof requires some auxiliary results.

Lemma 2.1.1. If F satisfies H1, H2 and H3, then sup{|I| : I ∈ Fn}
n−−→ 0.

Proof. We proceed by contradiction. If that is not the case, there exists η > 0 and

{In}n ⊆ F a sequence of intervals such that In ∈ FNn with Nn
n−−→∞ and |In| > η.

1The function is denoted by p because its original name is père in [Pey77]
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Order {In} by inclusion. Then it must exist an infinite chain, because if not, there are

infinite disjoint intervals I such that |I| > η, contradicting |[0, 1)| = 1. Thus, we can

construct a sequence {Jn}n≥0 ⊆ F such that Jn ∈ Fn, Jn+1 ( Jn and |Jn| > η for every

n ≥ 0.

Let x ∈
⋂
n≥0 Jn, which is non-empty because its measure is greater or equal to η (since

Fn+1 is a refinement of Fn). This x cannot be covered by arbitrarily small intervals,

contradicting (H3). �

Lemma 2.1.2. Let F satisfy (H1), (H2) and (H3). Then, for every ε > 0 there exists

η > 0 such that

I ∈ F and |I| < η =⇒ |p(I)| < ε.

Proof. Let ε > 0. By Lemma 2.1.1, there exists n0 ∈ N such that sup{|I| : I ∈ Fn0} < ε.

Consider the set A of the intervals in
⋃
n≤n0

Fn such that their lengths are less than ε,

ordered by inclusion.

The maximal elements of A, say J1, J2, . . . , JN , form a finite partition of [0, 1). Set

η = inf{|Jk| : k ∈ {1, 2, . . . , N}}. We claim that η is the one we were looking for. In

fact, if I ∈ F satisfies |I| < η, then there exists k ∈ {1, 2, . . . , N} such that I ( Jk. By

(H2) we have that p(I) ⊆ Jk, and therefore |p(I)| ≤ |Jk| < ε. �

Lemma 2.1.3. Let I be an arbitrary right-open interval of [0, 1) such that |I| < inf{|J | :
J ∈ F0}. Then, one of the following cases occurs:

(1) There exists J ∈ F such that J ⊆ I ⊆ p(J),

(2) There exist J1, J2 ∈ F disjoint sets such that J1 ∪ J2 ⊆ I ⊆ p(J1) ∪ p(J2).

Proof. For J ∈ F , define g(J) ∈ N as the unique number such that J ∈ Fg(J).

Set A := {J ∈ F : J ⊆ I}, which is non-empty by (H3), ordered by inclusion. We choose

one of its maximal elements, say J1, such that g is the least possible. If p(J1) ⊇ I, the

first case occurs.

If I 6⊆ p(J1), since J1 is a maximal element of A, p(J1) 6⊆ I. Observe that I ∩
p(J1) ⊇ J1, and in particular, I ∩ p(J1) 6= ∅. Since I and p(J1) are intervals, I

must contain exactly one extreme of p(J1). Consider B := {J ∈ F : J ⊆ I ∩
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p(J1)c such that J is adjacent to p(J1)} ordered by inclusion, and choose one of its max-

imal elements, say J2. Then

• p(J2) 6⊆ p(J1), because if this is not the case, J2 ⊆ p(J2) ⊆ p(J1), contradicting

the fact that J2 is an element of B.

• p(J1) 6⊆ p(J2), because if this is not the case, p(J1) ( p(J2) and therefore g(J1) ≥
g(J2) + 1 > g(J2), contradicting the minimality of g(J1), since J2 ∈ A.

Since F is a family of partitions, this implies that p(J1) ∩ p(J2) = ∅ and, consequently,

J1∩J2 = ∅. Also, J1∪J2 ⊆ I. Clearly, p(J1)∩ I ⊆ p(J1) and p(J1)c∩ I ⊆ p(J2) because

J2 is maximal. It follows that I ⊆ p(J1) ∪ p(J2). �

J1 J2

I

p(J1) p(J2)

Figure 2.2: Lemma 2.1.3, second case.

Hypothesis (H4) has not been used until now. This is the essential hypothesis in the

proof of Theorem 2.1.1, which we present now. This proof can be found in [Pey77].

Proof (of Theorem 2.1.1). Let F be a family satisfying (H1), (H2), (H3) and (H4). Since

F is a sub-family of all right-open intervals of [0, 1), we haveHαε (E) ≤ Hα(ε,F)(E) for every

E ⊂ [0, 1). Making ε→ 0, Hα(E) ≤ HαF (E) and, consequently, dim(E) ≤ dimF (E).

For the remaining inequality, lets fix E ⊆ [0, 1) and α > 0 such that dim(E) < α. We

will prove that for every β > 0, dimF (E) ≤ α(1 + β).

Let β > 0 and define ϕβ(ε) := sup{|J |βk(J) : J ∈ F , |J | < ε}, which is well-defined by

(H3), and satisfies ϕβ(ε)
ε→0−−−→ 0 by Lemma 2.1.1 and (H4).

Let ε > 0 and choose η as in Lemma 2.1.2, also satisfying η < inf{|J | : J ∈ F0}. Consider
an η-cover T of E by right-open intervals. We can divide T in two families of sets by

Lemma 2.1.3:
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• T1 := {I ∈ T : I satisfies (1) of Lemma 2.1.3},

• T2 := {I ∈ T : I satisfies (2) of Lemma 2.1.3}.

For every I ∈ T1, we choose JI ∈ F satisfying condition (1) in Lemma 2.1.3 and for

every I ∈ T2 we consider JI1 , JI2 ∈ F satisfying condition (2) in the same lemma. By

Lemma 2.1.2, {JI}I∈T1 ∪ {JI1}I∈T2 ∪ {JI2}I∈T2 is an (ε,F)-cover of E.

Hence,

∑
I∈T1

|p(JI)|α(1+β) ≤
∑
I∈T1

|I|α
Ç
|p(JI)|
|JI |

åα
|p(JI)|αβ ≤

∑
I∈T1

k(JI)α|I|α|p(JI)|αβ ≤

≤
∑
I∈T1

ϕβ(ε)α|I|α,

where the first inequality follows from |I|/|JI | ≥ 1, the second from the definition of k,

and the third from the definiton of ϕβ(ε).

The inequalities

∑
I∈T2

|p(JI1 )|α(1+β) ≤
∑
I∈T2

ϕβ(ε)α|I|α,
∑
I∈T2

|p(JI2 )|α(1+β) ≤
∑
I∈T2

ϕβ(ε)α|I|α

are proven analogously. Then,

Hα(1+β)
(ε,F) (E) ≤ 2ϕβ(ε)αHαη (E)

ε→0−−−→ 0.

Recalling that α > dim(E) and ϕβ(ε)α
ε→0−−−→ 0, it follows that Hαη (E)

ε→0−−−→ Hα(E) = 0.

In consequence, considering the inequality, dimF (E) ≤ α(1 + β).

To prove dimF (E) = dim(E), suppose that dim(E) < dimF (E). Then there exists α > 0

such that dim(E) < α < dimF (E). By the previous argument, dimF (E) ≤ α(1 + β) for

every β > 0 and therefore dimF (E) ≤ α, a contradiction. �

2.2. Cantor series and Hausdorff dimension

Let Q = (qn)n≥1 ⊆ N be a sequence such that qn ≥ 2 for every n ∈ N. The Cantor

series expansion determined by Q defines a natural family of finite partitions of [0, 1)

consisting of right-open intervals. In order to compute the Hausdorff dimension of certain

sets related to this expansion, it would be easier if we restrict our definition of Hausdorff

dimension to this particular family. To obtain the same dimension that we obtain using
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all right-open intervals of [0, 1), we will make some assumptions on Q that will fulfill the

requirements in Theorem 2.1.1 proved previously.

2.2.1. Natural partitions and hypotheses

Let Q = (qn)n ⊆ N such that qn ≥ 2 for every n ∈ N, conditions that will be assumed

throughout the chapter. Consider the family F of partitions by right-open intervals given

by

F0 := {[0, 1)}, Fn :=

ßï
k

q1 · · · qn
,
k + 1

q1 · · · qn

ã™
0≤k≤q1···qn−1

for n ≥ 1.

The family F satisfies (H1). Condition (H2) is fulfilled because qn ≥ 2. Since q1 . . . qn ≥
2n, and for any interval I ∈ Fn we have |I| = (q1 · · · qn)−1 ≤ 2−n

n−−→ 0, condition (H3)

also holds. If I ∈ Fn with n ≥ 1, then p(I) ∈ Fn−1. Therefore, |p(I)| = (q1 · · · qn−1)−1

if n ≥ 2 and |p(I)| = 1 if n = 1. In any case, |p(I)|/|I| = qn and k(I) = qn+1. Thus, is

sufficient to assume that

|I|αk(I) =
qn+1

(q1 · · · qn)α
n−−→ 0

for every α > 0 if we want (H4) to hold.

Under these assumptions, F allows the calculation of the Hausdorff dimension in virtue

of Theorem 2.1.1.

2.2.2. Setting and auxiliary results

We will identify [0, 1) with a symbolic space. Consider the set Ωn := {0, 1, . . . , qn − 1}.
If we define

Ω =
∏
n≥1

Ωn,

an element ε = (εn)n≥1 ∈ Ω can be identified with x = [ε1, ε2, . . .]Q ∈ [0, 1). The

cylinders of rank n in Ω are then identified with the elements of Fn defined before.

The main idea to prove the results in this section is to construct measures on Ω, calculate

the Hausdorff dimension for those measures and deduce from that results in [0, 1). The

following classical results will be used to achieve such an aim.
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Theorem 2.2.1 (Kolmogorov’s strong law of large numbers). Let {Xn}n be a sequence

of independent random variables such that E(Xn),V(Xn) <∞ for every n ∈ N.

If
∑
n≥1

V(Xn)

n2
<∞, then 1

n

n∑
i=1

Xi − E(Xi)
n−−→ 0 almost surely.

The proof can be found in [SS93]. The result that will allow us to translate our calcula-

tions into [0, 1) is due to Billingsley and can be found in [Bil61].

Let In(x) denote the unique element of Fn containing the point x.

Theorem 2.2.2. Let µ,m be probability measures on [0, 1), F a family of sets satisfying

(H1), (H2) and (H3). If given B ⊆ [0, 1) there exists a δ > 0 satisfying

B ⊆
ß
x ∈ [0, 1) : lim inf

n

logµ(In(x))

logm(In(x))
≥ δ
™
,

then dimF ,m(B) ≥ δ dimF ,µ(B).

2.2.3. Mean of digits

First, consider the expansion in base b. Eggleston in [Egg49] proved that for 0 < ` < 1

the Hausdorff dimension ρ ofx ∈ [0, 1] : lim
n→∞

1

n

n∑
j=1

εj(x)

b
= `

 ,

the set of x ∈ [0, 1] such that their mean of digits is `, satisfies the equation bρ =

(1 + r+ r2 + . . .+ rb−1)r−b`, where r is the real root between 0 and 1 of the polynomial

p(x) = (b − 1 − b`)xb−1 + (b − 2 − b`)xb−2 + · · · + (1 − b`)x − b`. In particular, the

value ` = (b− 1)/2 is the only one that produces a set of Hausdorff dimension 1, and it

corresponds to the value given by calculation using Birkhoff’s ergodic theorem.

When we consider the Cantor series expansion with respect to Q with the additional

hypothesis qn → ∞, the change is radical. Every value of ` ∈ (0, 1) produces a set of

dimension 1, so we obtain a continuous and disjoint family of subsets of [0, 1] with full

Hausdorff dimension.

The aim of this subsection is to prove the aforementioned theorem, due to Peyrière (cf.

[Pey77]), which can be stated as follows.
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Theorem 2.2.3. Let Q = (qn)n be such that qn
n−−→∞. Then, for every ` ∈ (0, 1),

dim

Ñx ∈ [0, 1) : lim
n→∞

1

n

n∑
j=1

εj(x)

qj
= `


é

= 1. (2.3)

Proof. In first place, we will see the case when ` ∈ (0, 1/2]. Define a measure pn on Ωn

whenever 2`qn > 1 as follows:

pn({j}) =

1/[2`qn] if 0 ≤ j < [2`qn],

0 if [2`qn] ≤ j < qn.

We can assume that 2`qn > 1 for every n since the first terms of Q do not affect the

limit in (2.3). Endow Ω with the probability p =
⊗

n≥1 pn and consider the independent

random variables εj : Ω→ R, j ∈ N, giving the j-th term of ε.

The expected values and variances

E
Å
εj
qj

ã
=

1

qj

∫
Ω
εj dp =

1

qj

qj−1∑
k=0

k · pqj ({k}) =
[2`qj ]− 1

2qj
,

V
Å
εj
qj

ã
=

1

qj
(E(ε2

j )− E(εj)
2) =

1

qj

qj−1∑
k=0

k2 · pqj ({k})−
Å

[2`qj ]− 1

2qj

ã2

=
[2`qj ]

2 − 1

12q2
j

.

are finite. Also

∑
n≥1

V(εn/qn)

n2
=
∑
n≥1

[2`qn]2 − 1

12q2
n

· 1

n2
≤ C

∑
n≥1

1

n2
<∞,

since ([2`qn]2 − 1)/12q2
n

n−−→ `2/3.

By Theorem 2.2.1,

1

n

n∑
j=1

εj
qj
− E
Å
εj
qj

ã
n−−→ 0 p-almost surely.

In order to apply theorem 2.2.2, we need to prove that

1

n

n∑
j=1

E
Å
εj
qj

ã
=

1

n

n∑
j=1

[2`qj ]− 1

2qj

n−−→ `,



16 Chapter 2

but this is a consequence of the Stolz-Cesàro theorem (c.f. [PS98]), since ([2`qn] −
1)/2qn

n−−→ `. We conclude that

1

n

n∑
j=1

εj
qj

n−−→ ` p-almost surely.

To finish the proof, we need to prove an auxiliary result.

Lemma 2.2.1. If A is a Borel set such that p(A) > 0, then dim(A) = 1.

Proof. First note that p({x : εj > [2`qj ] for some j ∈ N}) = 0. Then, log p(In(x)) =

−
∑n

j=1 log[2`qj ] for every n p-almost everywhere. Thus,

log p(In(x))

log |In(x)|
=

∑n
j=1 log[2`qj ]

−
∑n

j=1 log qj

n−−→ 1 p-almost everywhere,

in virtue of Stolz-Cesàro theorem. Therefore,

p

Åß
x : lim

n→∞

log p(In(x))

log |In(x)|
= 1

™ã
= 1.

Set B :=

ß
x : limn→∞

log p(In(x))

log |In(x)|
= 1

™
. If A is a Borel set such that p(A) > 0, then

1 ≥ p(A ∩ B) = p(A) > 0. In consequence, dimF ,p(A ∩ B) = 1. Since A ∩ B ⊆ B,

Theorem 2.2.2 gives 1 = dimF ,p(A∩B) = dimF (A∩B) = dim(A∩B), because F allows

the calculation of the Hausdorff dimension. Hence, dim(A) ≥ 1. Since A ⊆ [0, 1), we

have that dim(A) ≤ 1, which concludes the proof. �

Now, note that

p

Ñx : lim
n→∞

1

n

n∑
j=1

εj(x)

qj
= `


é

= 1 > 0,

and by Lemma 2.2.1 its Hausdorff dimension is 1.

For the case ` ∈ (1/2, 1), consider the measure on Ωn defined by

pn({j}) =


0 if 0 ≤ j < [(2`− 1)qn],

1

qn − [(2`− 1)qn]
if [(2`− 1)qn] ≤ j < qn.

and the procedure is analogous. �
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2.2.4. Dimension of sets determined by the frequency of digits

In this section we will study the Hausdorff dimension of sets of points for which every

digit appears with a given frequency in the Cantor series expansion. To achieve this

purpose, we need to make some assumptions.

2.2.4.1. Hypotheses on Q

Define the sets Fn = {1, . . . , n} and Eν = {j ∈ N : qj = ν} for ν ≥ 2. The cardinality of

the intersection Fn ∩Eν is the number of digits in {q1, . . . , qn} equal to ν. We will make

the following assumptions.

First, we need that every digit in Q occurs with a well defined frequency:

(h1) There exists a sequence (dν)ν≥2 ⊆ [0,∞) such that for every ν,

lim
n→∞

card(Fn ∩ Eν)

n
= dν .

And some conditions that will allow the use of limit theorems:

(h2) There exists c > 0 such that for every ν,

sup
n≥1

card(Fn ∩ Eν)

n
≤ cdν .

(h3) The series

∑
ν≥2

dν(log ν)2

is convergent.

Lemma 2.2.2. Under the assumptions (h1), (h2) and (h3) we have

(a)
∑

ν≥2 dν = 1,

(b)
∑

j∈Eν
1

j2
≤ 2cdν ,

(c) limn→∞
1

n
log(q1 · · · qn) =

∑
ν≥2 dν log ν.
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Proof. Note that

k∑
ν=2

dν = lim
n→∞

k∑
ν=2

card(Fn ∩ Eν)

n
= lim

n→∞

1

n
· card

(
Fn ∩

k⋃
ν=2

Eν

)
≤ 1.

Hence
∑

ν≥2 dν ≤ 1. Also,
∑

ν≥2

card(Fn ∩ Eν)

n
= 1. Then, by (h2) we have that

card(Fn ∩ Eν)

n
≤ cdν ∈ L1

ν(N) (the space of integrable functions f : N → R with ν as

the variable). In virtue of the dominated convergence theorem

∑
ν≥2

dν = 1 = lim
n→∞

∑
ν≥2

card(Fn ∩ Eν)

n
,

which proves (a).

To prove (b), consider the sequences defined by

gj =

0 if j = 1,

card(Fj−1 ∩ Eν) if j ≥ 2,
and fj =

1

j2
for j ≥ 1.

Noting that gj+1 − gj = 1 if and only if qj = ν and it is 0 otherwise a summation by

parts gives

∑
j∈Eν

1

j2
=
∑
j≥1

fj(gj+1 − gj) = lim
n→∞

n∑
j=1

fj(gj+1 − gj)

= lim
n→∞

Ñ
fngn+1 − f1g1 −

n∑
j=2

gj(fj−1 − fj)

é
= lim
n→∞

Ñ
card(Fn ∩ Eν)

n2
−

n∑
j=2

gj(fj − fj−1)

é
= lim

n→∞

n∑
j=2

gj(fj−1 − fj)

≤cdν lim
n→∞

n∑
j=2

Å
1

j − 1
− j − 1

j2

ã
=
π2

6
cdν ≤ 2cdν .

For (c), observe that
∑

ν≥2 card(Fn ∩ Eν) log ν = log(q1 . . . qn). Therefore, for every

ν ≥ 2.

log(q1 · · · qn)

n
=
∑
ν≥2

card(Fn ∩ Eν) log ν

n
.

Since

card(Fn ∩ Eν)

n
log ν ≤ cdν log ν ≤ cdν(log ν)2 ∈ L1

ν(N),
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by (h3), the dominated convergence theorem gives

lim
n→∞

log(q1 . . . qn)

n
=
∑
ν≥2

dν log ν.

�

2.2.4.2. Proof of Theorem 2.2.4.

First, we need the following result.

Lemma 2.2.3. The following holds:

(a) For every n ∈ N,

sup


n∑
j=1

pj log
1

pj
: pj ≥ 0,

n∑
j=1

pj = 1

 = log n. (2.4)

(b) For every ν ≥ 2,

sup


n∑
j=1

pj

(
log

1

pj
−

n∑
k=1

pk log
1

pk

)2

: pk ≥ 0,
n∑
k=1

pk = 1

 ≤ (log n)2. (2.5)

Proof. (a) is a direct consequence of Jensen’s inequality. For (b), consider the random

variable Y (x) = log(1/x). Thus

n∑
j=1

pj

(
log

1

pj
−

n∑
k=1

pk log
1

pk

)2

= E(Y − E(Y ))2 ≤ E(Y 2) =

n∑
j=1

pj log

Å
1

pj

ã2

.

The function x log2(1/x) is concave, so Jensen’s inequality gives E(Y 2) ≤ (log n)2. �

Finally, we can state the main theorem of the subsection, proved by Peyrière in [Pey77].

Theorem 2.2.4. Let Q be a sequence satisfying the hypotheses (h1), (h2) and (h3). Let

{pν,k}ν≥2,0≤k≤ν−1 ⊆ [0,∞) be such that for every ν ≥ 2 we have

∑
0≤k≤ν−1

pν,k = 1.
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Consider the set

A :=

ß
x ∈ [0, 1) : lim

n→∞

1

n
· card({j ∈ Fn ∩ Eν : εj = k}) = dνpν,k ∀ν ≥ 2, 0 ≤ k < ν

™
.

Then

dim(A) =
−
∑

ν≥2 dν
∑ν−1

k=0 pν,k log pν,k∑
ν≥2 dν log ν

.

To simplify notation, set hν := −
ν−1∑
k=0

pν,k log pν,k and λ :=
−
∑

ν≥2 dνhν∑
ν≥2 dν log ν

. Thus, we want

to prove dim(A) = λ.

Notice that all the conditions imposed on the sequence Q are satisfied when qn = b for a

fixed natural number b ≥ 2. In this particular case, λ is a quotient between the entropy

of ([0, 1], Tb) and its Lyapunov exponent.

In the non-autonomous case, whenQ is not constant, the concepts of entropy or Lyapunov

exponent are not defined, but maybe we should expect that the numerator and the

denominator of λ could be the appropriate generalization of those concepts in this more

general setting.

Proof. First, we prove that dim(A) ≥ λ.

Endow Ωqj with the probability measure µj({k}) = pqj ,k and Ω with the product proba-

bility measure µ =
⊗

j≥1 µj . Fix ν ≥ 2 and 0 ≤ k ≤ ν−1. If we consider the independent

random variables

Xj(ε) =

1 if qj = ν, εj = k,

0 otherwise,

we have that

E(Xj) = 1Eν (j)pν,k <∞, V(Xj) = 1Eν (j)(pν,k − p2
ν,k) <∞,

∑
j≥1

V(Xj)

j2
≤
∑
j≥1

1

j2
<∞,

where 1X denotes the indicator function of the set X.

In virtue of Theorem 2.2.1,

1

n

n∑
j=1

Xj − pν,k1Eν (j)
n−−→ 0 µ-almost surely,
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or equivalently, by (h1),

1

n

n∑
j=1

Xj
n−−→ lim

n→∞
pν,k

card(Fn ∩ Eν)

n
= pν,kdν µ-almost surely. (2.6)

Observe that

1

n

n∑
j=1

Xj =
card({j ∈ Fn ∩ Eν : εj = k})

n
,

so we have proved that µ(A) = 1 by (2.6).

Now, define the independent random variables Yj = − log pqj ,εj . We have that

E(Yj) = hqj ≤ log qj <∞, V(Yj) ≤ K(log qj)
2 <∞

by Lemma 2.2.3. In virtue of Lemma 2.2.2 and (2.5),

∑
j≥1

V(Yj)

j2
≤ K

∑
j≥1

(log qj)
2

j2
= K

∑
ν≥2

∑
j≥1

1Eν (j)
(log ν)2

j2
≤ 2Kc

∑
ν≥2

dν(log ν)2 <∞,

where the finiteness follows from (h3). Again, by Theorem 2.2.1

1

n

n∑
j=1

Yj − E(Yj)
n−−→ 0 µ-almost surely.

Since limn→∞
log(q1 · · · qn)

n
exists by Lemma 2.2.2,

∑n
j=1 Yj − E(Yj)

log(q1 · · · qn)

n−−→ 0 µ-almost surely.

If we rewrite this limit we obtain

logµ(In(x))

log |In(x)|
− hq1 + · · ·+ hqn

log(q1 · · · qn)

n−−→ 0 µ-almost surely.

Since

1

n

n∑
j=1

hqj =
∑
ν≥2

card(Fn ∩ Eν)hν
n
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and, by (h2), each term of this series is bounded by cdνhν ≤ cdν log ν ∈ L1
ν(N) by formula

(2.4) and (h3), the dominated convergence theorem gives

∑n
j=1 hqj

log(q1 · · · qn)
=

1

n

∑n
j=1 hqj

1

n
log(q1 · · · qn)

n→∞−−−−→
∑

ν≥2 dνhν∑
ν≥2 dν log ν

= λ. (2.7)

Therefore

logµ(In(x))

log |In(x)|
n→∞−−−−→ λ µ-almost surely.

Define

B =

ß
x ∈ [0, 1) : lim inf

n→∞

logµ(In(x))

log |In(x)|
≥ λ
™
.

The limit in (2.7) implies that µ(B) = 1, thus µ(A∩B) = 1, and consequently dimF ,µ(A∩
B) = 1. Since A ∩B ⊆ B, by Theorem 2.2.2 and the fact that F allows the calculation

of the Hausdorff dimension,

dim(A ∩B) = dimF (A ∩B) ≥ λ dimF ,µ(A ∩B) = λ.

It follows that dim(A) ≥ λ because A ⊇ A ∩B.

It remains to show that dim(A) ≤ λ.

For every N ≥ 1 define the sets

AN :=

ß
x ∈ [0, 1) : lim

n→∞

(card{j ∈ Fn ∩ Eν : εj = k})
n

= dνpν,k,

ν = 1, . . . , N and 0 ≤ k ≤ ν − 1

™
.

Clearly A ⊆ AN for every N . We will prove that dim(AN )
N→∞−−−−→ λ.

Define the measure µNj on Ωqj as follows:

µNj ({k}) =


pqj ,k if qj ≤ N,
1

qj
if qj > N,

and endow Ω with the product measure µN =
⊗

j≥1 µ
N
j . We can see that dimF ,µN (AN ) =

1 just like we did to prove dimF ,µ(A) = 1.
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Let x ∈ AN and set Eν,k := {j ∈ Eν : εj = k}. By definition, limn→∞
card(Fn ∩ Eν,k)

n
=

pν,k whenever ν ≤ N . Thus,

− 1

n
logµN (In(X)) = −

N∑
ν=2

ν−1∑
k=0

card(Fn ∩ Eν,k) log pν,k
n

+
∑
ν>N

card(Fn ∩ Eν) log ν

n
,

and taking limit when n −→∞,

lim
n→∞

− 1

n
logµN (In(x)) =

N∑
ν=2

pν,k log pν,k +
∑
ν>N

dν log ν =
N∑
ν=2

dνhν +
∑
ν>N

dν log ν.

Then,

lim
n→∞

− 1

n
logµN (In(x))

1

n
log |In(x)|

=

∑N
ν=2 dνhν +

∑
ν>N dν log ν∑

ν≥2 dν log ν
=: C(N)

N→∞−−−−→ λ

since
∑

ν≥2 dν log ν converges by (h3). Hence, in virtue of Theorem 2.2.2 and F allowing

the calculation of the Hausdorff dimension,

1 = dimF ,µN (AN ) = C(N)−1 dimF (AN ) = C(N)−1 dim(AN ).

Therefore, dim(AN ) = C(N) for every N , and since A ⊂ AN , dim(A) ≤ dim(AN )
N−→ λ.

This concludes the proof. �
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Normal numbers with respect to the

Cantor series expansion

In this chapter, we will review the definition of a normal number for two different rep-

resentations of real numbers: base b and continued fractions expansions. An essential

tool to prove that almost every x ∈ (0, 1) in each setting is normal will be Birkhoff’s

ergodic theorem. In order to mimic the definitions for the base b expansion, we will

extend the normality notion for the Cantor series representations in three different and

non-equivalent ways. We shall focus in just one of them and go on to prove that, under

certain assumptions on the sequence which determines the series, Lebesgue almost every

x is normal. This is an analogous result to Borel’s theorem for normal numbers.

3.1. Normality of classic expansions

3.1.1. Base b expansion

Definition 3.1.1. Let b ≥ 2 be an integer. For every x ∈ [0, 1) we define the b-ary

expansion of x as

x =
∞∑
n=1

εn(x)

bn
= [ε1(x), ε2(x), . . .]b,

where εn(x) ∈ {0, 1, . . . , b− 1}.

This expansion is essentially unique. Every x ∈ [0, 1) can be written uniquely as an

infinite series of this type and the numbers which also have a finite expansion are the
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rationals, which have zero Lebesgue measure.

In this setting, there are three well known and equivalent definitions of normality that

we shall discuss, and all of them are important because each one will give rise to a

possible definition of normality for a Cantor series expansion. In order to define these

generalizations, we need to review some concepts first.

Definition 3.1.2. Given an integer k ≥ 1, a block B of length k is an ordered k-tuple

B = (b1, b2, . . . , bk) ∈ {0, 1, . . . , b− 1}k.

We say that a block B of length k occurs at x with starting position n in the b−ary
expansion of x ∈ [0, 1) if the equality (εn(x), εn+1(x), . . . , εn+k−1(x)) = B holds.

Denote by N b
n(B, x) the number of times that B occurs at x with starting position no

greater than n. In other words,

N b
n(B, x) = card({1 ≤ j ≤ n : (εj(x), εj+1(x), . . . , εj+k−1(x)) = B}).

Now we can state the first definition of normality for the base b expansion.

Definition 3.1.3. Let x ∈ [0, 1), and b ≥ 2 be a integer. We say that x is normal in

base b if

lim
n→∞

N b
n(B, x)

n
= b−k (3.1)

for every k ≥ 1 and every block B of length k.

Roughly speaking, a number x is normal if every block of a given length occurs at x with

the same frequency.

The second way to define a normal number for this expansion is related directly with the

distribution of the orbit of x under an appropriate mapping.

Definition 3.1.4. Given a sequence X = (xn)n ⊂ [0, 1] and a subinterval J ⊂ [0, 1] we

define An(X,J) as the number of times X enters in J , namely,

An(X, J) = card({1 ≤ j ≤ n : xj ∈ J}).
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We say that X is uniformly distributed modulo 1 (u.d. mod 1) if for every pair of real

numbers a, b such that 0 ≤ a < b ≤ 1,

lim
n→∞

An(X, [a, b])

n
= b− a. (3.2)

The map Tb : x 7→ bx mod 1 is closely related to the base b expansion because it acts as

a shift on the digits, namely, if x = [ε1, . . . , εn, . . .]b, then bx mod 1 = [ε2, . . . , εn, . . .]b.

So, if we consider the sequence (Tnb x)n≥0, we can define a distribution of digits of x.

Definition 3.1.5. Let x ∈ [0, 1) be given. We say that x is normal in base b if the

sequence (Tnb x)n≥0 is u.d. mod 1.

It is easy to see that this definition implies (3.1). Note that a given blockB = (b1, b2, . . . , bk)

occurs in x at position n if and only if

Tn−1
b x ∈ IB :=

ï
b1
b

+
b2
b2

+ · · ·+ bk
bk
,
b1
b

+
b2
b2

+ · · ·+ bk + 1

bk

ã
. (3.3)

If (Tnb x)n≥0 is u.d. mod 1, then

N b
n(B, x)

n
=
An((T jb )j , IB)

n

n→∞−−−→ λ(IB) = b−k,

where λ denotes the Lebesgue measure. Since B and k were arbitrary, the result follows.

For the converse, see [KN74].

Finally, we give a third definition of a normal number in this setting.

Definition 3.1.6. Let x ∈ [0, 1). We say that x is normal in base b if for every two

blocks B1, B2 of the same length,

lim
n→∞

N b
n(B1, x)

N b
n(B2, x)

= 1.

Now we provide a proof of the equivalence of Definition 3.1.6 and Definition 3.1.3. Let

x ∈ [0, 1) be a normal number as in Definiton 3.1.3. Let B1, B2 be two blocks of some

length k. Then,

lim
n→∞

N b
n(B1, x)

N b
n(B2, x)

= lim
n→∞

N b
n(B1, x)/n

N b
n(B2, x)/n

= 1.



28 Chapter 3

For the other direction, fix k and note that there exist bk different blocks of this length,

B1, . . . , Bbk . Let B be of length k. For every 1 ≤ i ≤ bk,

lim
n→∞

N b
n(Bi, x)

N b
n(B, x)

= 1,

and therefore,

lim
n→∞

n

N b
n(B, x)

= lim
n→∞

∑bk

i=1N
b
n(Bi, x)

N b
n(B, x)

=
bk∑
i=1

lim
n→∞

N b
n(Bi, x)

N b
n(B, x)

= bk.

Given that we already know the equivalence of these three definitions of normality, we

are able to prove the Borel classical result.

Theorem 3.1.1. Lebesgue almost every x ∈ [0, 1) is normal in base b.

Proof. Consider the map Tb : [0, 1) → [0, 1), x 7→ bx mod 1. It is a well known result

that ([0, 1),B, λ, Tb) is an ergodic dynamical system (cf. [Has17]). This fact allows us to

invoke Birkhoff’s ergodic theorem.

Theorem 3.1.2. Let (X,B, µ, T ) be an ergodic system. If f ∈ L1
µ, then

lim
n→∞

1

n

n−1∑
i=0

f ◦ T i(x) =

∫
X
f dµ

for µ-almost every x ∈ X.

Fix k ≥ 1. Let B = (b1, . . . , bk) be a block of length k, and consider IB as defined in

(3.3). Let f = 1IB ∈ L 1
µ be the characteristic function of IB. Hence, for almost every

x ∈ [0, 1),

lim
n→∞

N b
n(B, x)

n
= lim

n→∞

1

n

n−1∑
i=0

f ◦ T jb (x) =

∫
[0,1)

f dλ = λ(IB) = b−k.

Since k and B are arbitrary, and there are only finitely many choices of B and countable

many choices of k, the result follows. �

The original proof of this theorem relies heavily in results of probability theory and it

is more difficult than the one presented here. The ergodic theorem turns out to be a

powerful method to conclude the same result.
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3.1.2. Continued fraction expansion

In the same spirit of Definition 3.1.5 for the base b expansion, we can define normal

numbers with respect to the continued fractions expansion. Our interest in this case

relies in the fact that the possible digits appearing in the expansion are infinite, just like

in the case of Cantor series expansions.

Definition 3.1.7. Let x ∈ (0, 1). A continued fraction expansion of x is a expansion of

the form

x =
1

a1 +
1

a2 +
1

a3 + · · ·

, (3.4)

where an ∈ N for all n ∈ N.

It is a well-known result that every x ∈ (0, 1) can be written in the form (3.4) (c.f.

[EW11]). We will denote

x =
1

a1(x) +
1

a2(x) +
1

a3(x) + · · ·

= [a1(x), a2(x), a3(x), . . .].

This representation of x is known as the continued fraction expansion of x.

If we consider the Gauss map T : (0, 1]→ (0, 1] defined by x 7→ {1/x}, where {·} denotes
the fractional part, that mapping is closely related to the continued fraction expansion.

As an example of this connection, T acts as a shift in the digits of the continued fraction

expansion, namely, if x = [a1, a2, a3, . . .], then Tx = [a2, a3, . . .].

The measure-preserving system ((0, 1],B, µ, T ), where

µ(A) =
1

log 2

∫
A

1

1 + x
dλ whenever A ∈ B,

is also ergodic (cf. [EW11]).

Given this probability measure µ (or any other probability measure ν on (0, 1]), we can

make the following definition in the spirit of the Lebesgue case of (3.2).
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Definition 3.1.8. Let (xn)n ⊂ R be a sequence. We say that (xn)n is uniformly dis-

tributed modulo 1 with respect to ν if for every a, b ∈ R such that 0 ≤ a < b ≤ 1,

lim
n→∞

An((xj)j , (a, b])

n
= ν((a, b]).

Because of the shift behavior of T with respect to the continued fraction expansion, an

appropriate definition of a normal number in this setting should be the following.

Definition 3.1.9. Let x ∈ (0, 1]. We say that x is normal with respect to the continued

fraction expansion if the sequence (Tnx)n is uniformly distributed modulo 1 with respect

to µ.

Normality of Lebesgue almost every x then follows as a direct application of Birkhoff’s

ergodic theorem and the equivalence of µ with the Lebesgue measure, as we will see now.

Theorem 3.1.3. Lebesgue almost every x ∈ (0, 1] is normal with respect to the contin-

ued fraction expansion.

Proof. Let (a, b] ⊂ (0, 1] be a non-empty interval and x ∈ (0, 1]. We can write

An((T jx)j , (a, b]) = card({1 ≤ j ≤ n : T j−1x ∈ (a, b]}) =
n−1∑
j=0

1(a,b] ◦ T j(x),

hence

lim
n→∞

An((xj)j , (a, b])

n
= lim

n→∞

1

n

n−1∑
i=0

1(a,b] ◦ T j(x) =

∫
(0,1]

1(a,b](x) dµ = µ((a, b])

for µ-almost every x ∈ (0, 1] because 1(a,b] is integrable. Since µ � λ, the conclusion is

also valid for λ-almost every x ∈ (0, 1]. �

3.1.3. Expected properties of normal numbers with respect to Cantor
series expansions

One question appears naturally during the development of the theory of normal numbers

for b-ary expansions.

• Is it possible to define a normal number in the Cantor series setting? Is this

definition a generalization of the b-ary notion?
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We will see in the next section that the answers to these questions are affirmative, and

in three different ways. Each one extends one of the previous equivalent definitions of a

normal number.

Comparing the cases of different series expansions, such as the previous analyzed and

some others (cf. [Man10]), we can find the following similarities between them:

• The set of normal numbers has full Lebesgue measure.

• A condition on the frequency of occurrence of blocks is equivalent to a condition

on the distribution of the orbit of a map that acts as a shift in the expansion.

The first question has a partial answer, restricted to some conditions on the sequence

which defines the Cantor series expansion. The second question is not affirmative in

general, as we will see later.

3.2. Definitions of a normal number

In this section we will provide three different definition of a normal number, and a

stronger version of each one will be presented. The non-equivalence of them will be

highlighted with some examples at the end of the section.

Henceforth, the sequence Q = (qn)n≥1 always satisfies qn ≥ 2 for all n ∈ N.

3.2.1. Q-normal numbers

The definition we will develop now is the analogous of Definition 3.1.3. It consists in the

frequency of appearance of blocks of digits in this new setting.

Definition 3.2.1. Let k ∈ N. A block B of length k is a k-tuple B = (b1, . . . , bk) ∈
(N ∪ {0})k.

Note that we are changing the set of possible entries for a block because the digits in

the Cantor series expansion determined by an arbitrary Q can be unbounded, contrary

to what happens in the case of base b expansions.

Definition 3.2.2. Let x ∈ [0, 1) and B a block of length k. We say that B occurs in

x at position j if (εj(x), . . . , εj+k−1(x)) = B. The number of times B occurs in x at



32 Chapter 3

position no greater than n is defined by

NQ
n (B.x) := card({1 ≤ j ≤ n : (εj(x), . . . , εj+k−1(x)) = B}).

We will denote this quantity also as Nn(B, x) when the sequence Q is fixed.

Note that the quotient in (3.1) can be written as

lim
n→∞

N b
n(B, x)

nb−k
= 1.

The denominator in the quotient represents the sum of the frequencies that should have a

block of length k if its starting position goes from 1 to n. Since each frequency should be

b−k, the sum gives nb−k. In the Cantor series expansion determined by Q, the number

of blocks of length k starting at position j depends on Q, so we need to change the

denominator by an analogous quantity.

Definition 3.2.3. Let Q be a sequence and k ∈ N. Q is said k-divergent if

Qkn :=
n∑
j=1

1

qjqj+1 · · · qj+k−1

satisfies limn→∞Q
k
n = +∞. If this condition holds for every k, we say that Q is fully

divergent. If Q is not k-divergent, we say that Q is k-convergent.

The number Qkn is the substitute of nb−k because the number of blocks of length k

starting at position j is qjqj+1 · · · , qj+k−1 given that εi ∈ {0, 1, . . . , qi − 1}.

We are finally able to define a normal number in this context.

Definition 3.2.4. Let Q be a sequence and k ∈ N. A number x ∈ [0, 1) is said Q-normal

of order k if for every block B of length k,

lim
n→∞

NQ
n (B, x)

Qkn
= 1

If this is holds for every k, we say that x is Q-normal.

If we restrict the possible entries for a block and consider qn = b for all n ∈ N, we recover
the definition of a normal number in base b.
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3.2.2. Q-distribution normal numbers

In this section we will extend the definition of a normal number following the guidelines

of Definition 3.1.5. In the b-ary expansion case, the normality of x ∈ [0, 1) is stated

in terms of the distribution of the orbit of x under a map that acts as a shift in that

expansion.

In the Cantor series expansion, there exists not one but a sequence of functions shifting

the digits depending onQ and on how many digits we want to shift. The sequence of maps

{Gn(x) : x 7→ qnqn−1 · · · q1x mod 1}n is such that, given x ∈ [0, 1) with expansion x =

[ε1(x), ε2(x), . . .]Q, it happens that Gn(x) = [εn+1(x), εn+2, . . .]Q. Then, the following

definition generalizes Definition 3.1.5.

Definition 3.2.5. Let Q = (qn)n be a sequence. A number x ∈ [0, 1) is Q-distribution

normal if the sequence (Gn(x))n≥0 is u.d. mod 1.

3.2.3. Q-ratio normal numbers

The notion of normality given by Definition 3.1.6 can be easily extended to this general

setting as follows.

Definition 3.2.6. Let Q be a sequence. We say that x is Q-ratio normal if given two

arbitrary blocks B1, B2 of the same length, we have

lim
n→∞

NQ
n (B1, x)

NQ
n (B2, x)

= 1.

It is clear that Q-normal implies Q-ratio normal.

3.2.4. Stronger definitions of normality

Definitions 3.2.4, 3.2.5 and 3.2.6 can be stated in stronger versions, as it is done in

[Man10]. In order to prove the main result of this chapter, we will require the following

stronger version of Definition 3.2.4.

Definition 3.2.7. Let Q be a sequence, x ∈ [0, 1), B a block of length k, and integers

n ∈ N, p ∈ [1, k]. We define NQ
n,p(B, x) as the number of times that B occurs in x with
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starting position of the form jk + p, 0 ≤ j < n/k. That is,

NQ
n,p(B, x) = card({0 ≤ j < n/k : (εjk+p, . . . , εjk+p+k−1) = B}).

The theorem that we will prove relies heavily in certain estimates of NQ
n (B, x), which are

proved using appropriate random variables. The main problem with Nn(B, x) is that it

counts non-necessarily disjointed positions in which the block B occurs. If we consider

disjoint position, we can obtain independence of these random variables. Independence

is a crucial hypothesis in the law of the iterated logarithms, the theorem that will be

used to prove the main estimate. Hence, introducing p in the definition of NQ
n,p(B, x)

solves the non-disjointedness problem.

In a similar spirit of the discussion of how to generalize the quotient for the definition of

a Q-normal number in Definition 3.2.3, we need to replace the denominator to make it

count the total number of blocks considered in Nn,p(B, x).

Definition 3.2.8. Let Q be a sequence. We define

Qkn,p :=

ρ(n,k)∑
j=0

1

qjk+pqjk+p+1 · · · qjk+p+k−1
,

where ρ(n, k) = max{i ∈ Z : i < n/k} is the maximum possible value of j considered in

Definition 3.2.7. If limn→∞Q
k
n,p = +∞ for every p, we say that Q is strongly k-divergent.

If that holds for every k ∈ N, we say that Q is strongly fully divergent.

We need to define the strong version of k-divergence because it can happen that the limit

limn→∞Q
k
n,p < +∞ with Q k-divergent, as it can be seen in [Man11]. We are interested

in divergence of this quantity because we want that a block occurs infinitely many times

in the expansion of a normal number. So, if the numerator in the definition of Q-normal

is unbounded, then the denominator should be too.

The definition of strong Q-normality can be stated as follows.

Definition 3.2.9. Let Q be a sequence, x ∈ [0, 1) and k ∈ N. We say that x is strongly

Q-normal of order k if for every block B of length k and every integer p ∈ [1, k] it is true

that

lim
n→∞

NQ
n,p(B, x)

Qkn,p
= 1.

If x is strongly Q-normal of order k for every k ∈ N, we say that x is strongly Q-normal.
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Now we can enunciate the main result that will be proved in the last section of this

chapter.

Theorem 3.2.1. Let Q be a sequence such that qn
n−→∞. Then Lebesgue almost every

x ∈ [0, 1) is Q-normal if and only if Q is fully divergent.

It is also possible to define stronger versions of Q-distribution normality and Q-ratio

normality as follows.

Definition 3.2.10. LetQ be a sequence. We say that x ∈ [0, 1) is strongly Q-distribution

normal if for every k ∈ N and integer p ∈ [1, k] the sequence

(q1 · · · qnk+p x mod 1)n≥0

is u.d. mod 1.

This definition is stronger than Q-distribution normality and it has its analogous result

to Theorem 3.2.1 and can be found in [Man10].

Theorem 3.2.2. Let Q be a sequence. Then Lebesgue almost every x ∈ [0, 1) is strongly

Q-distribution normal.

Finally, we can define a strong Q-ratio normal number.

Definition 3.2.11. Let Q be a sequence. We say that x ∈ [0, 1) is strongly Q-ratio

normal of order k if for every two blocks B1, B2 of length k and every integer p ∈ [1, k]

lim
n→∞

NQ
n,p(B1, x)

NQ
n,p(B2, x)

= 1.

If x is strongly Q-ratio normal of order k for every k ∈ N, we say that x is strongly

Q-ratio normal.

In this case, there is no analogous result to Theorem 3.2.1. A weaker result can be

found in [Man11]. This result states that if qn
n−→∞, then there exists a Q-ratio normal

number. A more interesting result (see [Man11]), of topological nature, states that if

qn
n−→ ∞, then the set of Q-ratio normal numbers is of the first category and dense in

[0, 1).
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3.2.5. Non-equivalence of definitions

In the first section of this chapter we remarked that the three notions of a normal number

in base b were equivalent. Interestingly, in the Cantor series expansion this is, in general,

not true. To demonstrate this fact, we will mention some illustrative examples.

Example 3.2.1. Consider Q = (2, 3, 3, 4, 4, 4, 5, 5, 5, 5, . . .) and

x = [1, 1, 2, 1, 2, 1, 2, 3, 1, 2, 3, 4, . . .]Q.

Since (ε1(x)/q1, . . . , εn(x)/qn, . . .) is uniformly distributed modulo 1 (cf. [Mur08]) and

this condition is equivalent to Q-distribution normality whenever qn
n−→∞ (cf. [Man10]),

x is Q-distribution normal.

Note that the block (0), of length 1, never occurs in x. In conclusion, x is not Q-normal

of order 1 and therefore not Q-normal.

Example 3.2.2. ConsiderQ = (2, 2, 3, 3, 3, 4, 4, 4, 4, . . .) and x = [0, 1, 0, 1, 2, 0, 1, 2, 3, . . .]Q.

Then x is Q-distribution normal and Q-normal of order 1 (cf. [Man10]).

Example 3.2.3. ConsiderQ = (4, 4, 6, 6, 6, 8, 8, 8, . . .) and x = [0, 1, 0, 1, 2, 0, 1, 2, 3, . . .]Q.

If we set Q′ = (2, 2, 3, 3, 3, 4, 4, 4, 4, . . .) and y = [0, 1, 0, 1, 2, 0, 1, 2, 3, . . .]Q′ , the previous

example gives

lim
n→∞

NQ′
n (B, y)∑n
k=1(q′k)

−1
= 1

for every block B of length 1. Since NQ′
n (B, y) = NQ

n (B, x) and qn = 2q′n, we get

lim
n→∞

NQ
n (B, x)∑n
k=1(qk)−1

= 2,

and x is not Q-normal of order 1. Also, if we consider (ε1(x)/q1, . . . , εn(x)/qn, . . .) =

(0, 1/4, 0, 1/6, 2/6, . . .), this sequence is not dense in [0, 1) since its terms are always less

than 1/2. We conclude that x is not Q-distribution normal.

However, since NQ′
n (B, x) = NQ′

n (B, y) for every block B of arbitrary length, the Q-ratio

normality of x follows as an immediate consequence of the Q′-normality of y.

An example of a sequence Q and x that is Q-normal but not Q-distribution normal is con-

structed in [Man10]. Some techniques for the construction of Q-normal, Q-distribution

normal and Q-ratio normal numbers can also be found in this work.
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3.3. Measure of Q-normal numbers

The aim of this section is to prove the following result.

Theorem 3.3.1. Let Q be a sequence such that qn
n−→∞. Then almost every x ∈ [0, 1)

is Q-normal if and only if Q is fully divergent.

First of all, we start discussing the condition qn
n−→ ∞. It is related to the admissibility

of a block B, namely, when it can occur infinitely many times. Recall that B ∈ Nk0 for

some k, and their entries can be as large as we want. If b is the maximum value of its

entries, the condition qn → ∞ guarantees that B can occur at position n for every n

large enough. For a more concrete example of this condition, see [Rén55]. However, this

condition can be relaxed to

lim
n→∞

1

n

n∑
j=1

1

qj
= 0,

which is equivalent to qn
n−→ ∞ for n in a subset of N whose complement has density 0

(cf. [Man10]).

As said in the Introduction, the dynamical system associated to a general Cantor series

expansion is non-autonomous. Hence, Birkhoff’s ergodic theorem (Theorem 3.1.2) cannot

be used in this setting. The main tool that we will use to obtain Theorem 3.3.1 is the law

of iterated logarithms, a classical probabilistic result. Then, it is necessary to introduce

some concepts of probability theory.

Recall that for a random variable X in (X,B, µ), E(X) =
∫
X X dµ denotes the expected

value of X. Also, V(X) denotes the variance of X, namely, V(X) = E(X2)−E(X)2. We

will also use P(X = j) to indicate the probability of X = j.

Henceforth, Q is a fixed sequence. Every super index denoting the dependence on Q will

be suppressed to soften the notation.

If we write x = [ε1(x), ε2(x), . . .], then εn is a random variable in the probability space

([0, 1),B,P) for all n, where P will denote the Lebesgue measure on [0, 1).

It is clear that for j ∈ N0

P(εn(x) = j) =


1

qn
0 ≤ j ≤ qn − 1,

0 j ≥ qn.
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Our first claim concerns the independence of these random variables.

Lemma 3.3.1. The random variables ε1(x), ε2(x), . . . are independent.

Proof. Let n ∈ N and 0 ≤ ηj ≤ qj − 1 for j ∈ {1, 2, . . . , n}. Then

P(ε1(x) = η1, . . . , εn(x) = ηn) =

= λ

Åß
x ∈ [0, 1) : x ∈

ï
η1

q1
+

η2

q1q2
+ · · ·+ ηn

q1 · · · qn
,
η1

q1
+

η2

q1q2
+ · · ·+ ηn + 1

q1 · · · qn

ã™ã
=

=
1

q1 . . . qn
=

1

q1
· · · 1

qn
=

n∏
j=1

P(εj(x) = ηj).

Since n is arbitrary, the independence follows. �

Definition 3.3.1. Let b ∈ N0 and n ∈ N. We define the random variable

rb,n(x) :=

1 εn(x) = b,

0 εn(x) 6= b.

This is a random variable because rb,n(x) = 1{εn=b}. As a direct consequence of Lemma

3.3.1, we obtain the following.

Lemma 3.3.2. Let b ∈ N0. The random variables rb,1, rb,2, . . . , rb,n, . . . are independent.

Now we are able to define the occurrence of a block B in terms of random variables.

Definition 3.3.2. Let k ∈ N and B be a block of length k. For i ∈ N0 and p ∈
N ∩ [1, k], we define εik+p,k as the block of k digits of x starting at position ik + p, that

is, εik+p,k(x) = (εik+p(x), . . . , εik+p+k−1(x)). We also define

rB,i,p(x) =

1 εik+p,k(x) = B,

0 εik+p,k(x) 6= B.

Note that if B = (b1, . . . , bk), then rB,i,p = rb1,ik+prb2,i+p+1 · · · rbk,ik+p+k−1. As an im-

mediate consequence of the disjointedness of the positions considered in Definition 3.3.2

for k, p fixed and i ∈ N0 and Lemma 3.3.2, we obtain the following result.

Corollary 3.3.1. Let B be a block of length k and an integer p ∈ [1, k]. Then

rB,0,p, rB,1,p, . . . are independent random variables.
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A consequence of this corollary is the following lemma.

Lemma 3.3.3. Let k ∈ N. If B is a block of length k, then

E(rB,i,p(x)) =
1

qik+pqik+p+1 · · · qik+p+k−1
,

V(rB,i,p(x)) =
1

qik+pqik+p+1 · · · qik+p+k−1
−
Å

1

qik+pqik+p+1 · · · qik+p+k−1

ã2

.

Proof. If B = (b1, . . . , bk), then by the independence

E(rB,i,p) = E(rb1,ik+p · · · rb2,ik+p+k−1) =

k∏
j=1

E(rbj ,ik+p+j−1) =

k−1∏
j=0

1

qik+p+j
.

Now, for the variance, note that

V(rB,i,p) = E(r2
B,i,p)− E(rB,i,p)

2 = E(rB,i,p)− E(rB,i,p)
2 =

k−1∏
j=0

1

qik+p+j
−

Ñ
k−1∏
j=0

1

qik+p+j

é2

.

�

Since we have calculated all the probabilistic quantities that we will require in the demon-

stration, we can state our main tool. This is the law of iterated logarithms.

Theorem 3.3.2. Let ξ1, ξ2,. . . be a sequence of independent random variables with

E(ξk) = 0,E(ξ2
k) = σ2

k. Assume that limn→∞ sn =∞ and

P
Å
|ξn| ≤

sn

(log log sn)3/2

ã
= 1,

where s2
n = σ2

1 + σ2
2 + · · ·+ σ2

n. Then

P
Ç

lim
n→∞

ξ1 + ξ2 + · · ·+ ξn√
2s2
n log log s2

n

= 1

å
= 1.

This theorem can be found in [Rév68]. It can be rewritten as

ξ1 + ξ2 + · · ·+ ξn = O(
»
s2
n log log s2

n) (3.5)

for almost every x.
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Definition 3.3.3. Let k ∈ N, p ∈ N ∩ [1, k] and B a block of length k. For i ∈ N0 we

define

F ki = E(rB,i,p(x)), V k
i = V(rB,i,p(x)), tkn,p =

ρ(n,k)∑
i=0

V k
i .

Recall that ρ(n, k) = max{i ∈ Z : i < n/k}.

Lemma 3.3.4. Let n, k ∈ N, B a block of length k and p ∈ N ∩ [1, k]. Then

1

2
Qkn,p ≤ tkn,p < Qkn,p. (3.6)

Proof. Note that Qkn,p =
∑ρ(n,k)

i=0 F ki in virtue of Lemma 3.3.3. Moreover, given n, k ∈ N,
B a block of length k and p ∈ N ∩ [1, k], we can see that

tkn,p =

ρ(n,k)∑
i=0

V k
i =

ρ(n,k)∑
i=0

1

qik+p · · · qik+p+k−1
−
Å

1

qik+p · · · qik+p+k−1

ã2

<

<

ρ(n,k)∑
i=0

1

qik+p · · · qik+p+k−1
=

ρ(n,k)∑
i=0

F ki = Qkn,p,

and

tkn,p =

ρ(n,k)∑
i=0

1

qik+p · · · qik+p+k−1
−
Å

1

qik+p · · · qik+p+k−1

ã2

≥

≥
ρ(n,k)∑
i=0

1

qik+p · · · qik+p+k−1
− 2−k

qik+p · · · qik+p+k−1
≥

≥ 1

2

ρ(n,k)∑
i=0

1

qik+p · · · qik+p+k−1
=

1

2
Qkn,p.

�

The next step is to prove an estimate closely related to strong Q-normality.

Lemma 3.3.5. Let k ∈ N and B a block of length k. Then, for almost every x ∈ [0, 1),

Nn,p(B, x) = Qkn,p +O
(»

Qkn,p log logQkn,p

)
.

Proof. Fix p ∈ N ∩ [1, k]. We will consider two cases.

• limn→∞Q
k
n,p < +∞.
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By the definition of rB,i,p,

lim
n→∞

Qkn,p = lim
n→∞

ρ(n,k)∑
i=0

E(rB,i,p) = lim
n→∞

ρ(n,k)∑
i=0

P(rB,i,p = 1) < +∞.

So, by the Borel-Cantelli lemma, P(rB,i,p = 1 i.o.) = 0. Thus, P(rB,i,p = 0 a.a.) =

1. and therefore limn→∞Nn,p(B, x) < +∞. The conclusion follows immediately.

• limn→∞Q
k
n,p = +∞. Because of (3.6),

lim
n→∞

tkn,p ≥ lim
n→∞

1

2
Qkn,p = +∞. (3.7)

Also, Nn,p(B, x) =
∑ρ(n,k)

i=0 rB,i,p(x). If we take ξi = rB,i,p − E(rB,i,p), we have

E(ξi) = 0, E(ξ2
i ) = V(rB,i,p) = V k

i . Note that s2
n =

∑ρ(n,k)
i=0 V k

i = tkn,p
n−→ +∞.

Since tkn,p ≥ 0 and tkn,p
n−→∞,

lim
n→∞

sn = lim
n→∞

(tkn,p)
1/2 = +∞.

Moreover, |ξi| ≤ 1 for all i and x(log log x)−3/2 ≥ 1 for x > 0, so we also have

P
Å
|ξn| ≤

sn

(log log sn)3/2

ã
= 1.

By equation (3.5),

Nn,p(B, x)−Qkn,p =

ρ(n,k)∑
i=0

rB,i,p − F ki =

ρ(n,k)∑
i=0

ξi = O
(»

tkn,p log log tkn,p

)

for almost every x. Since tkn,p < Qkn,p by (3.6), it follows that

Nn,p(B, x)−Qkn,p = O
(»

Qkn,p log logQkn,p

)
for almost every x.

�

Note that this estimate would imply the Q-normality of order k of x if the index p did

not appear. However, these estimates will allow us to deduce analogous asymptotics for

Nn(B, x). The next step is to prove that
∑

pNn,p ∼ Nn and
∑

pQ
k
n,p ∼ Qkn.

From now on, the big and little O notations will be replaced by On and on respectively,

to indicate that the limit involved is taken in n while k remains fixed.
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Lemma 3.3.6. Let Q such that qn
n−→∞, n, k ∈ N such that p ∈ N ∩ [1, k]. Then,

k∑
p=1

(
Qkn,p +On

(»
Qkn,p log logQkn,p

))
= Qkn +On

Å»
Q

(k)
n log logQ

(k)
n

ã
.

Proof. Note that
∑k

p=1Q
k
n,p ≤ Qkn +

Ä
Qkdn/kek −Q

k
bn/kck

ä
and

Qkdn/kek −Q
k
bn/kck ≤

k∑
p=1

1

qρ(n,k)k+p
= on(1)

since qn →∞. Thus,
∑k

p=1Q
k
n,p = Qkn + on(1). Also,

k∑
p=1

»
Qkn,p log logQkn,p ≤ k

ÕÑ
k∑
p=1

Qkn,p

éÑ
k∑
p=1

log logQkn,p

é
= On

(»
Qkn log logQkn

)
.

�

In a similar way,
∑k

p=1Nn,p(B, x) ≤ Nn(B, x) + (Ndn/kek(B, x) − Nbn/kck(B, x)) ≤
Nn(B, x) + k = Nn(B, x) +On(1).

By Lemma 3.3.5,

Nn(B, x) =

k∑
p=1

(
Qkn,p +On

(»
Qkn,p log logQkn,p

))
+On(1)

for almost every x. Now, Lemma 3.3.6 allow us to conclude the following estimate.

Lemma 3.3.7. Let Q be a sequence such that qn
n−→ ∞, k ∈ N and B be a block of

length k. Then almost every x ∈ [0, 1) satisfies

Nn(B, x) = Qkn +On

(»
Qkn log logQkn

)
.

This is the final estimate we need to prove one implication in Theorem 3.3.1. It will be

obtained as a corollary of the next result.

Theorem 3.3.3. Let Q be a sequence such that qn
n−→∞. Then almost every x ∈ [0, 1)

is Q-normal of order k if and only if Q is k-divergent.
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Proof. First assume Q is k-divergent. Let B be a block of length k. By Lemma 3.3.7

almost every x ∈ [0, 1) satisfies

lim
n→∞

Nn(B, x)

Qkn
= lim

n→∞

Qkn +On
Ä√

Qkn log logQkn
ä

Qkn
= 1 + lim

n→∞
On

( 
log logQkn

Qkn

)
= 1.

Now, we will prove the reciprocal and assume that Q is k-convergent. Our aim is to prove

that there exists a set with positive measure where a block B of length k does not occur.

Let B := (0, 0, . . . , 0) of length k and consider A := {x ∈ [0, 1) : B does not occur in x}.

We have

λ(A) =
∏
n≥1

Å
1− 1

qn · · · qn+k−1

ã
. (3.8)

Since ∑
n≥1

1

qn · · · qn+k−1
<∞,

and 0 < (qn · · · qn+k−1)−1 < 1 for all n ∈ N, the product (3.8) converges to a positive

number. �

As a corollary of the previous theorem and the countably many choices of k we obtain

the desired result.

Corollary 3.3.2. Let Q be a sequence such that qn
n−→∞. Then almost every x ∈ [0, 1)

is Q-normal if and only if Q is fully divergent.





Bibliography

[Bil61] Patrick Billingsley, Hausdorff dimension in probability theory. II, Illinois J. Math. 5 (1961),

291–298. MR120339

[Egg49] H. G. Eggleston, The fractional dimension of a set defined by decimal properties, Quart. J.

Math. Oxford Ser. 20 (1949), 31–36, DOI 10.1093/qmath/os-20.1.31. MR31026

[EW11] Manfred Einsiedler and Thomas Ward, Ergodic theory with a view towards number theory, Grad-

uate Texts in Mathematics, vol. 259, Springer-Verlag London, Ltd., London, 2011. MR2723325

[Has17] Boris Hasselblatt (ed.), Ergodic theory and negative curvature, Lecture Notes in Mathematics,

vol. 2164, Springer, Cham; Société Mathématique de France, Paris, 2017. Lecture notes from

the workshops held at the CIRM Jean-Morlet Chair, Luminy, Fall 2013. MR3751323

[KN74] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley-Interscience [John

Wiley & Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics. MR0419394

[Man10] Bill Mance, Normal numbers with respect to the Cantor series expansion, ProQuest LLC, Ann

Arbor, MI, 2010. Thesis (Ph.D.)–The Ohio State University. MR2782384

[Man11] , Typicality of normal numbers with respect to the Cantor series expansion, New York

J. Math. 17 (2011), 601–617. MR2836784

[Mur08] M. Ram Murty, Problems in analytic number theory, 2nd ed., Graduate Texts in Mathematics,

vol. 206, Springer, New York, 2008. Readings in Mathematics. MR2376618

[Pey77] Jacques Peyrière, Calculs de dimensions de Hausdorff, Duke Math. J. 44 (1977), no. 3, 591–601.

MR444911

[PS98] George Pólya and Gabor Szegö, Problems and theorems in analysis. I, Classics in Mathematics,

Springer-Verlag, Berlin, 1998. Series, integral calculus, theory of functions; Translated from the

German by Dorothee Aeppli; Reprint of the 1978 English translation. MR1492447

[Rén55] Alfréd Rényi, On a new axiomatic theory of probability, Acta Math. Acad. Sci. Hungar. 6 (1955),

285–335, DOI 10.1007/BF02024393 (English, with Russian summary). MR81008

[Rév68] Pál Révész, The laws of large numbers, Probability and Mathematical Statistics, Vol. 4, Aca-

demic Press, New York-London, 1968. MR0245079

[SS93] Pranab K. Sen and Julio M. Singer, Large sample methods in statistics, Chapman & Hall, New

York, 1993. An introduction with applications. MR1293125

45


	Acknowledgements
	1 Introduction
	1.1 Cantor series as a dynamical system

	2 Hausdorff dimension of sets defined in terms of Cantor series
	2.1 Hausdorff dimension
	2.1.1 Definition of the Hausdorff dimension
	2.1.2 Assumptions on F
	2.1.3 Calculation of the Hausdorff dimension

	2.2 Cantor series and Hausdorff dimension
	2.2.1 Natural partitions and hypotheses
	2.2.2 Setting and auxiliary results
	2.2.3 Mean of digits
	2.2.4 Dimension of sets determined by the frequency of digits
	2.2.4.1 Hypotheses on Q
	2.2.4.2 Proof of Theorem 2.2.4.



	3 Normal numbers with respect to the Cantor series expansion
	3.1 Normality of classic expansions
	3.1.1 Base b expansion
	3.1.2 Continued fraction expansion
	3.1.3 Expected properties of normal numbers with respect to Cantor series expansions

	3.2 Definitions of a normal number
	3.2.1 Q-normal numbers
	3.2.2 Q-distribution normal numbers
	3.2.3 Q-ratio normal numbers
	3.2.4 Stronger definitions of normality
	3.2.5 Non-equivalence of definitions

	3.3 Measure of Q-normal numbers

	Bibliography

