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los que me impulsaron a seguir adelante en este complejo, pero maravilloso mundo de las
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Chapter 1

Introduction

Consider the bounded set Ω ⊂ Rn. The boundary of Ω is denoted by ∂Ω and n represents the
outward-pointing normal vector on ∂Ω. Let T > 0 be the final time. We define the space-time
domain as ΩT := Ω × (0, T ) and the boundary of space-time domain as ∂ΩT := ∂Ω × (0, T ).
We introduce the space:

S(Ω) := {u1 ∈ H1(Ω) : u1 = 0 in ∂Ωϕ},

such that ∂Ωϕ is the Dirichlet part of the boundary ∂Ω. Let ϕ(x, t) = ϕ = ϕ + u1 ∈ L2(Ω) be
the membrane potential, where ϕ is defined in Ω (i.e, ϕ can be extended to a C∞(Ω) function),
u1 ∈ S(Ω) and r(x, t) = r ∈ L2(Ω) be the plasma membrane recovery current.

In this thesis we will work with the FitzHugh-Nagumo equations in cardiac electrophysiology
(based in the Hodgkin-Huxley model, winner of the Nobel Prize in Physiology or Medicine,
1963), defined as the following system of equations:



∂ϕ

∂t
−D∆ϕ− c1ϕ(ϕ− α)(1− ϕ) + c2r = 0, (x, t) ∈ ΩT

∂r

∂t
− b(ϕ− dr) = 0, (x, t) ∈ ΩT

ϕ = ϕ, in ∂Ωϕ × (0, T )

D∇ϕ · n = 0, in ∂Ωq × (0, T )

ϕ(x, 0) = ϕ0(x), x ∈ Ω,

r(x, 0) = r0(x), x ∈ Ω.

(1.1)
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In (1.1), D > 0 is the diffusion rate (depending of the membrane potential ϕ), α ∈ R and
c1, c2, b, d ∈ R+. Note that FitzHugh-Nagumo equations are a coupled system of a partial
parabolic differential equation and an ordinary differential equation with boundary and initials
conditions.

The boundary ∂Ω satisfies the conditions:

∂Ωϕ ∩ ∂Ωq = ∅,
∂Ωϕ ∪ ∂Ωq = ∂Ω,

where ∂Ωϕ, ∂Ωq are relatively open and smooth in ∂Ω. We will emphasize that ∂Ωq is the
Neumann part of boundary ∂Ω and ∂Ωϕ is the Dirichlet part of boundary ∂Ω. As an example,
in [1] a simulation is performed with the following values for the parameters:

Parameter Value Description
α 0.08 Normalized threshold potential
c1 0.175 Excitation rate constant
c2 0.03 Excitation decay constant
b 0.011 Recovery rate constant
d 0.55 Recovery decay constant

Table I: Parameter values for a single-cell example.

Let’s define F ′
ion(ϕ) := −c1ϕ(ϕ − α)(1 − ϕ) as the ionic current and consider the membrane

potential ϕ = ϕ + u1, where u1 = ϕ − ϕ = 0 ∈ S(Ω) on the boundary ∂Ωϕ. Moreover, if we
introduce cr :=

c2
b
as the relative weight of c2 (which represents the transfer coefficient from r

to ϕ in the partial differential equation (PDE) ∂ϕ
∂t

−D∆ϕ = c1ϕ(ϕ−α)(1−ϕ)− c2r) and b (the
transfer coefficient from ϕ to r in the ordinary differential equation (ODE) ∂r

∂t
= bϕ− bdr), we

can rewrite Equation (1.1) as follows:



∂u1
∂t

−D∆u1 + F ′
ion(ϕ+ u1) + c2r + Lu1 = Lu1 −

∂ϕ

∂t
+D∆ϕ,

cr
∂r

∂t
+ c2dr − c2u1 + Lr = Lr + c2ϕ,

D∇u1 · n = −D∇ϕ · n,

u1(x, 0) = ϕ0(x)− ϕ(x) = u01(x),

r(x, 0) = r0(x).

(1.2)

where L > 0.
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In Chapter 3 it will be shown that FitzHugh-Nagumo equations given in (1.2) can be expressed
as the following evolution equation:

u′(t) + F(u(t)) = g(t), t ∈ (0, T ) (1.3)

where F is called evolution operator, g(t) is a function and u(t) is the solution of (1.3). If we
consider the time discretization of the equation u′(t)+F(u(t)) = g(t) in (0, T ) using a Backward-
Euler finite difference scheme, we will obtain the semi-discrete equation δUn + F(Un) = Gn,
which can be described as follow:

U ′ + F(U) = G, (1.4)

with step-time τn = tn − tn−1, τ = max
1≤n≤N

τn and U is the numerical solution of (1.4), where P
is a partition of the time interval [0, T ]:

P = {0 = t0 < t1 < ... < tN−1 < tN = T}.

The advantage of considering (1.2) instead (1.1) lies in the fact that the coefficients of r (in
the PDE) and ϕ (in the ODE) have the same magnitude, preserving the opposite sign that
they had in (1.1). This implies that the antisymmetric part in the evolution operator F is
well-balanced and the mathematical analysis of Backward-Euler scheme in time that we will
present in this thesis can be carried out successfully.

The main purpose of this thesis is to show that the solution U(t) of discrete problem (1.4)
converges to weak solution u(t) of continuous problem (1.3) when τ → 0 (in ∥∥L∞(Ω) norm).
To do this, we must introduce the error estimate EH (defined in Chapter 4). This will be allow
us to validate the Backward-Euler finite difference scheme in time for (1.1). These analytical
results and conclusions will be complemented with a numerical simulation.

In fact, we use a Finite Element Method (FEM) in the space Ω and Forward-Euler finite
difference scheme in time for a generalized FitzHugh-Nagumo equations. In Chapter 5, the
simulations are performed with fixed initial conditions and parameters (as in Table I).

The angle-bounded condition (defined in Chapter 4) will be extremely useful in the development
of this thesis, which are studied in more details by Haim Brézis in [2] and [3]. These concepts
also allow us to definite a variational structure for the FitzHugh-Nagumo equations.

Being able to provide a specific variational structure for FitzHugh-Nagumo equations is the
concrete achievement of this thesis.
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The remainder of this work is organized as follows:

� Chapter 2: Mathematical Preliminares. In this chapter we will introduce the spaces
L1(Ω), H1(Ω), S(Ω) and the key results that will allow us to demonstrate the convergence
from discrete to continuous time.

� Chapter 3: Continuous-Discrete Problem. In this chapter we are going to define a contin-
uous problem (writing the FitzHugh-Nagumo equations as an abstract evolution equation)
and the discrete problem (time discretization of continuous problem using a Backward-
Euler finite difference scheme). Additionally, we will ensure the existence of solutions
for these problems (discrete and continuous) utilizing certain properties satisfied by the
evolution operator F .

� Chapter 4: Error Estimates. In this chapter we will define the error estimates, which will
make it possible to show that the solution U(t) of discrete problem (1.4) converges to
weak solution u(t) of continuous problem (1.3) when τ → 0. To achieve this purpose, we
will introduce the concept of angle-bounded operators and provide a concise overview of
the theory of maximal monotone operators.

� Chapter 5: Numerical Simulations. We are going to provide a numerical simulation
for the FitzHugh-Nagumo equations using a Finite Element Method (FEM) in space
and Forward-Euler finite difference scheme in time with the purpose to visualizing and
interpreting the behavior of the membrane potential under fixed initial conditions in a
tridimensional domain.

� Chapter 6: We are going to define a concrete variational structure for the FitzHugh-
Nagumo equations using the error estimates and the angle-bounded condition.

� Appendix #1: Electrophysiological Glossary. We provide the biological and electrophys-
iological concepts used throughout this thesis (plasma membrane, membrane potential,
ionic current and plasma membrane recovery current).

� Appendix #2: Code (in NGSolve) for numerical simulation.
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Chapter 2

Mathematical Preliminaries

Let Ω be a bounded subset of Rn. The main purpose of this chapter is to introduce three
important function spaces: L2(Ω), H1(Ω), and S(Ω). These spaces will be used extensively
throughout this thesis and they play a crucial role in demonstrating the convergence from
discrete to continuous time. More details about these spaces can be found in [9]

Firstly, we introduce the space L2(Ω) (which consists of square-integrable functions on Ω).
Next, we discuss the Sobolev space H1(Ω) (consisting in functions on Ω whose first-order weak
derivatives are square-integrable). Finally, we define the space S(Ω) (which consists of the
functions u1 ∈ H1(Ω) such that they have zero Dirichlet boundary condition).

Definition 2.1. Let Ω ⊂ Rn be a bounded set. We define the L2(Ω) space as follow:

L2(Ω) :=

{
φ : Ω → R : φ is measurable and

∫
Ω

|φ|2 dµ <∞
}
.

Definition 2.2. From the space L2(Ω), we can define the Sobolev space H1(Ω) as follow:

H1(Ω) :=

{
φ ∈ L2(Ω) : For all i = 1, 2, ..., n, exists

∂φ

∂xi
∈ L2(Ω) such that∫

Ω

φ
∂ψ

∂xi
dµ = −

∫
Ω

∂φ

∂xi
ψ dµ ∀ψ ∈ C∞

0 (Ω)

}
.

Remark. C∞
0 (Ω) denotes the set of functions that are C∞ whose support is contained on a

compact set Ω. The spaces L2(Ω) and H1(Ω) are Hilbert spaces equipped with the following
inner products:

⟨f, g⟩L2(Ω) =

∫
Ω

fg dµ, ∀ f, g ∈ L2(Ω),

⟨f, g⟩H1(Ω) =

∫
Ω

fg dµ+

∫
Ω

∇f · ∇g dµ, ∀ f, g ∈ H1(Ω).
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Definition 2.3. From the Sobolev Space H1(Ω), we define the space S(Ω) as follow:

S(Ω) := {u1 ∈ H1(Ω) : u1 = 0 in ∂Ωϕ},

where ∂Ωϕ is the Dirichlet part of the boundary ∂Ω.

Remark. The space S(Ω) is a vectorial subspace of L2(Ω). By the trace-zero function theorem
(see [8], Theorem 2, Page 259), we can conclude that S(Ω) is a closed subset of L2(Ω). Moreover,
since L2(Ω) is a Banach space it follows that S(Ω) is a complete vector subspace of L2(Ω). This
allow us to conclude that S(Ω) is a Banach space with the subspace norm.

Throughout the thesis, we will work with the Hilbert space L2(Ω)× L2(Ω) equipped with the
inner product:

⟨(f1, g1), (f2, g2)⟩ = ⟨f1, g1⟩L2(Ω) + ⟨f2, g2⟩L2(Ω),

for all f1, f2, g1, g2 ∈ L2(Ω).

Theorem 2.4. (Poincaré Inequality) Let 1 ≤ p <∞ and Ω be a bounded and connected subset
of Rn. Then, exists a constant C > 0 (who depends only from Ω and p) such that:

∥φ∥Lp(Ω) ≤ C ∥∇φ∥Lp(Ω) , ∀ φ ∈ H1(Ω).

Proof. See [8], Theorem 1, Page 275.

Throughout this section, we will use V to denote a Banach space with and norm ∥ |V .

Definition 2.5. Let V be a Banach space. We will say that Λ : V → R is a linear continuous
functional if:

� Λ(φ1 + φ2) = Λ(φ1) + Λ(φ2), ∀ φ1, φ2 ∈ V .

� Λ(kφ) = kΛ(φ), ∀ φ ∈ V .

� {φn}n∈N is a sequence of functions in V such that lim
n→+∞

∥φn − φ∥V = 0 then:

lim
n→+∞

Λ(φn) = Λ(φ).

From Definition 2.5, we can define the dual space of Banach space. For this, consider the
following definition:
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Definition 2.6: Let V a Banach Space. We define the dual space of V as follow:

V
′
:= {Λ : V → R : Λ is a linear continuous functional}.

The dual space V ′ is equipped with the norm:

∥Λ∥V ′ = sup
∥φ∥V ≤1, φ∈V

|Λ(φ)|.

Remark. The dual space of Lp(Ω) is the space Lq(Ω) where p, q satisfies q =
p

p− 1
(with p ̸= 1).

Remark. (L2(Ω))′ = L2(Ω)

Definition 2.7. Let V be a Banach space. We will said that Λ : V → R is lower semi-
continuous on V if it satisfies the two equivalent conditions:

� For all a ∈ R, the set D := {u ∈ V : Λ(u) ≤ a} is closed.

� For all u ∈ V , we have lim inf
u→u

Λ(u) ≥ Λ(u).

The space H1(Ω) can be further generalized to a more extensive class of Sobolev spaces known
as W 1,p(Ω). This generalization encompasses the functions whose weak derivatives up to order
one belongs to Lp(Ω). To provide a formal definition, consider the following:

Definition 2.8. Let 1 ≤ p <∞. From the space:

Lp(Ω) :=

{
φ : Ω → R : φ is measurable and

∫
Ω

|φ|p dµ <∞
}
,

we can define the Sobolev space W 1,p(Ω) as follow:

W 1,p(Ω) :=

{
φ ∈ Lp(Ω) : For all i = 1, 2, ..., n, exists

∂φ

∂xi
∈ Lp(Ω) such that∫

Ω

φ
∂ψ

∂xi
dµ = −

∫
Ω

∂φ

∂xi
ψ dµ ∀ψ ∈ C∞

0 (Ω)

}
.

Remark. Clearly W 1,2(Ω) = H1(Ω).

Now it’s time to introduce one of the fundamental theorems in Functional Analysis:
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Theorem 2.9. (Hahn-Banach Theorem): Let p : E → R be a function satisfying:

p(λx) = λp(x), ∀x ∈ E, ∀λ ∈ R,
p(x+ y) ≤ p(x) + p(y), ∀x, y ∈ E.

Let G ⊂ E be a linear subspace (where E is a vectorial space) and let g : G → R be a linear
functional such that g(x) ≤ p(x), for all x ∈ G. Then, there exists a linear functional f defined
on all E that extends g. Indeed, g(x) = f(x), for all x ∈ G such that f(x) ≤ p(x), for all
x ∈ E.

Proof. See [9], Theorem 1.1, Page 16.

Theorem 2.10. (Riesz Representation Theorem) Let < p <∞ and φ ∈ (Lp(Ω))
′
. Then there

exists a unique function u ∈ (Lp(Ω))
′
such that:

⟨φ, f⟩(Lp(Ω))′ =

∫
uf dµ, ∀ f ∈ Lp(Ω).

Proof. See [9], Theorem 4.11, Page 97.

Definition 2.11. Let H be a Hilbert space and consider the function h : [0, T ] → H. If P is a
partition of time interval [0, T ] given by:

P = {0 = t0 < t1 < ... < tN−1 < tN = T}.

We define the total variation of h in [0, T ] as follow:

Var(h) := sup
{ti}∈P

{
n∑

j=1

|h(tj)− h(tj−1)|

}
.

Definition 2.12. Let H be a Hilbert space and consider the function h : [0, T ] → H. We will
say that g is a bounded variation function (denoted by g ∈ BV ((0, T ),H)) if for all t0 ∈ [0, T ),
there exists the right limit:

lim
t→t+0

g(t).

Now, we define the key results that will allow us to demonstrate the convergence from discrete
to continuous time:

Theorem 2.13. Let’s consider the measurable functions a, b, c, d : (0, T ) → [0,+∞[ and a2

be an absolutely continuous function on [0, T ]. If the differential inequality is satisfied almost
everywhere in (0, T ) for all ℓ ∈ R:

d

dt
(a2(t)) + b2(t) + 2ℓa2(t) ≤ c2(t) + 2d(t)a(t).
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Then

max

(
max
t∈[0,T ]

eℓta(t),

(∫ T

0

e2ℓsb2(s) ds

) 1
2

)
≤
(
a2(0) +

∫ T

0

e2ℓtc2(t) dt

) 1
2

+

∫ T

0

eℓtd(t) dt.

Proof. See [6], Lemma 3.7, Page 551.

Theorem 2.14. Let {an}Nn=0 and {bn, cn, dn}Nn=0 be nonneagitve numbers. Consider the given

coefficients {µn}Nn=1such that −1 < µn ≤ 0 and:

µ := min
1≤n≤N

µn,

sn :=
n∑

k=1

µk,

sn :=
sn + sn−1

2
,

s0 := 0.

If 2an(an − an−1) + b2n + 2µna
2
n ≤ c2n + 2andn for all 1 ≤ n ≤ N , then:

max

 max
1≤n≤N

e
sn
1+µan,

(
N∑

n=1

e
2sn
1+µ b2n

) 1
2

 ≤

(
a20 +

N∑
n=1

e2snc2n

) 1
2

+
√
2

N∑
n=1

esn−1dn.

Proof. See [6], Lemma 4.12, Page 569.
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Chapter 3

Continuous-Discrete Problem

Let us recall the definitions of the variables involved in the FitzHugh-Nagumo equations:

� The membrane potential (refers to electrical potential difference that exists between the
interior and exterior of a plasma membrane) is denoted as:

ϕ(x, t) = ϕ = ϕ+ u1 ∈ L2(Ω),

where ϕ is defined over the domain Ω and u1 belongs to the space S(Ω). Throughout this
thesis, we will be working with the following relation:

u1 = ϕ− ϕ ∈ S(Ω).

� The plasma membrane recovery current (refers to the electrical current that flows across
the cell membrane during this restoration phase) r(x, t) = r ∈ L2(Ω).

In Chapter 1 we introduce the FitzHugh-Nagumo equations, which constitute a coupled sys-
tem consisting of a parabolic partial differential equation (PDE) and an ordinary differential
equation (ODE). Indeed, the equations that we will work with throughout this thesis are given
by: 

∂u1
∂t

−D∆u1 + F ′
ion(ϕ+ u1) + c2r + Lu1 = Lu1 −

∂ϕ

∂t
+D∆ϕ,

∂r

∂t
+ c2dr − c2u1 + Lr = Lr + c2ϕ,

D∇u1 · n = −D∇ϕ · n,

u1(x, 0) = u01(x),

r(x, 0) = r0(x).

(3.1)

where L > 0. In order to modify the first equation (PDE) and the second equation (ODE) in
(1.2), we introduced the terms Lu1 and Lr on both sides respectively and set cr equals to 1.
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The purpose of this chapter is to introduce a continuous and discrete problem associated to
the FitzHugh-Nagumo equations in (3.1). To do this, we will rewrite the FitzHugh-Nagumo
equations as an evolution equation. This formulation allows us to describe the system behavior
over continuous time. In parallel, we introduce the discrete problem, which involves the time
discretization of the evolution equation using a Backward-Euler finite difference scheme. This
discretization method allows us to approximate the continuous dynamics of the system by
considering a sequence of discrete time step, facilitating numerical analysis.

To accomplish this, we will define an evolution operator F that will play a crucial role in
establishing a variational structure for FitzHugh-Nagumo. Additionally, we will review specific
theoretical results that guarantee the existence of solutions for the evolution equation and the
discrete problem associated with (3.1).

3.1 Continuous Problem

3.1.1 FitzHugh-Nagumo as Evolution Equation

An evolution equation is a mathematical formulation that describes the temporal evolution of
a dynamical system in space. It captures how the system behavior changes over time, taking
into account how the variable evolves and how it interacts with its surrounding environment.

To define the evolution equation associated with the system (3.1), we need to introduce defini-
tions and preliminary results:

Definition 3.1. Let’s consider the application u : (0, T ) → S(Ω)× L2(Ω) given by:

u(t) :=

(
u1(t)
r(t)

)
=

(
(u1(t))(x)
(r(t))(x)

)
.

Remark. Note immediately that (u(t))(x) describes the temporal evolution of variables u1 and
r, where the spatial component x ∈ Ω is fixed.

Remark. Using Definition 3.1, we can express the initial conditions of the FitzHugh-Nagumo
equation (3.1) as:

u(0) := u0(x) =

(
u01(x)
r0(x)

)
.

Definition 3.2. We define the evolution operator of the FitzHugh-Nagumo equations F :
D(F) → L2(Ω)× L2(Ω) as:

F(u(t)) :=

(
−D∆u1 + F

′
ion(ϕ+ u1) + c2r + Lu1

(c2d+ L)r − c2u1

)
.

where L > 0 and D(F) :=

{(
u1(t)
r(t)

)
∈ S(Ω)× L2(Ω) : −∆u1(t) ∈ L2(Ω)

}
is the proper do-

main of F .
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Definition 3.3. We define the function g : (0, T ) → L2(Ω)× L2(Ω) as follow:

g(t) :=

(
Lu1 − dϕ

dt
+D∆ϕ

Lr + c2ϕ

)
,

where g ∈ L1((0, T ), L2(Ω)× L2(Ω)).

We must emphasize that we are only studying the temporal evolution of the equations. In this
manner (using the Definitions 3.1, 3.2 and 3.3), we can rewrite the FitzHugh-Nagumo equations
given in (3.1) as a Cauchy problem. Indeed:

Definition 3.4. We define the evolution equation associated to FitzHugh-Nagumo equations
(3.1) by the expression: 

u′(t) + F(u(t)) = g(t), t ∈ (0, T )

u(0) = u0.
(3.2)

Remark. Since we are only studying the temporal evolution of the FitzHugh-Nagumo equations,
the partial derivative is total. In this way, we will consider the notation:

(u′(t))(x) =

(
(u′1(t))(x)
(r′(t))(x)

)
=

∂u1∂t∂r
∂t


.

3.1.2 Weak Formulation

In the last subsection, we have defined the evolution equation (3.2), which describes the tem-
poral evolution of the FitzHugh-Nagumo equations. The next question that we need to address
is ensuring the existence of solutions for (3.2). In fact, this is possible. But before that, we
need to determine the weak formulation of the equation (3.1). To do this, consider the test
function:

û(t) =

(
û1(t)
r̂(t)

)
∈ L2(Ω)× L2(Ω).
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If we multiply the equation (3.1) by the test function û and integrate over the domain Ω, we
obtain the following expresion:

∫
Ω

(
∂u1
∂t

−D∆u1 + F ′
ion(ϕ+ u1) + c2r + Lu1 − Lu1 +

∂ϕ

∂t
−D∆ϕ

)
û1 = 0,

∫
Ω

(
∂r

∂t
+ c2dr − c2u1 − c2ϕ+ Lr − Lr

)
r̂ = 0.

Using integration by parts:

∫
Ω

∂u1
∂t

û1 −
∫
∂Ω

û1 ·D
∂u1
∂n

+

∫
Ω

D∇u1 · ∇û1 +
∫
Ω

F ′
ion(ϕ+ u1)û1 +

∫
Ω

c2rû1

+

∫
Ω

Lu1û1 −
∫
Ω

Lu1û1 +

∫
Ω

∂ϕ

∂t
û1 −

∫
∂Ω

û1 ·D
∂ϕ

∂n
+

∫
Ω

D∇ϕ · ∇û1 = 0,

∫
Ω

∂r

∂t
r̂ +

∫
Ω

c2drr̂ −
∫
Ω

c2u1r̂ −
∫
Ω

c2ϕr̂ +

∫
Ω

Lrr̂ −
∫
Ω

Lrr̂ = 0.

Since we have a zero Neumann boundary condition in a part of the boundary ∂Ωq given by
D∇u1 · n = −D∇ϕ · n, we can conclude:

∫
∂Ω

û1 ·D
∂u1
∂n

= −
∫
∂Ω

û1 ·D
∂ϕ

∂n
.

In this way, we obtain the following weak formulation for the FitzHugh-Nagumo equations
(3.1):

∫
Ω

∂u1
∂t

û1 +

∫
Ω

D∇u1 · ∇û1 +
∫
Ω

F ′
ion(ϕ+ u1)û1 +

∫
Ω

c2rû1 +

∫
Ω

Lu1û1 =

∫
Ω

Lu1û1

−
∫
Ω

∂ϕ

∂t
û1 −

∫
Ω

D∇ϕ · ∇û1,

∫
Ω

∂r

∂t
r̂ +

∫
Ω

c2drr̂ −
∫
Ω

c2u1r̂ +

∫
Ω

Lrr̂ =

∫
Ω

Lrr̂ +

∫
Ω

c2ϕr̂.

(3.3)

From (3.3), we can define (for reasons that will be justified in Chapter 4) for all û ∈ S(Ω) ×
L2(Ω):

16



� Bilinear forms:

b(u, û) :=

∫
Ω

[u1û1 + rr̂] ,

a(u, û) :=

∫
Ω

[c2(rû1 − u1r̂) + (c2d+ L)rr̂ +D∇u1 · ∇û1] .

� Functionals:

⟨L(t), û⟩L2(Ω)×L2(Ω) :=

∫
Ω

[
Lu1û1 + Lrr̂ + c2ϕr̂ −

∂ϕ

∂t
û1 −D∇ϕ · ∇û1

]
,〈

L(0), û
〉
L2(Ω)×L2(Ω)

:=

∫
Ω

[
u01û1 + r0r̂

]
.

� Non-linear term: ⟨F2(u), û⟩L2(Ω)×L2(Ω) :=

∫
Ω

[
F ′
ion(ϕ+ u1)û1 + Lu1û1

]
.

In this way, we can express (3.3) as follow:
b(u′, û) + a(u, û) + ⟨F2(u), û⟩L2(Ω)×L2(Ω) = ⟨L(t), û⟩L2(Ω)×L2(Ω) , t ∈ (0, T )

b(u(0), û) =
〈
L(0), û

〉
L2(Ω)×L2(Ω)

.
(3.4)

Let V := S(Ω)×L2(Ω). Because a, b : V ×V → R are positive, continuous and weakly-coercive
bilinear forms, then a, b can be associated to linear operators F1, Id : D(F) → L2(Ω)× L2(Ω)
(respectively) such that:

⟨F1(w), v⟩L2(Ω)×L2(Ω) = a(w, v),

⟨Id(w), v⟩L2(Ω)×L2(Ω) = b(w, v),

for all v ∈ S(Ω)× L2(Ω). Thus, we can rewrite (3.4) as follow:
⟨u′, û⟩L2(Ω)×L2(Ω) + ⟨F1(u), û⟩L2(Ω)×L2(Ω) + ⟨F2(u), û⟩L2(Ω)×L2(Ω) = ⟨L(t), û⟩L2(Ω)×L2(Ω) , t ∈ (0, T )

⟨u(0), û⟩L2(Ω)×L2(Ω) =
〈
L(0), û

〉
L2(Ω)×L2(Ω)

.

(3.5)

The expression (3.4) motivates us to decompose the evolution operator F into the sum of two
operators: F1 and F2. Indeed, such decomposition will be crucial when studying the angle-
bounded condition for operators. Indeed, consider the following definition:
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Definition 3.5. We define the operators F1,F2 : D(F) → L2(Ω)× L2(Ω) as follow:

F1(u(t)) :=

(
−D∆u1 + c2r

(c2d+ L)r − c2u1

)
,

F2(u(t)) :=

(
F

′
ion(ϕ+ u1) + Lu1

0

)
.

Furthermore, F1 and F2 satisfies F(u(t)) = (F1 + F2)(u(t)) = F1(u(t)) + F2(u(t)), for all

u(t) ∈ D(F) =

{(
u1(t)
r(t)

)
∈ S(Ω)× L2(Ω) : −∆u1(t) ∈ L2(Ω)

}
.

Utilizing (3.5), we can express the FitzHugh-Nagumo equations in the weak form, which can
be written compactly as:

⟨u′(t) + F(u(t)), û(t)⟩L2(Ω)×L2(Ω) = ⟨L(t), û(t)⟩L2(Ω)×L2(Ω) , t ∈ (0, T )

⟨u(0), û(t)⟩L2(Ω)×L2(Ω) =
〈
L(0), û(t)

〉
L2(Ω)×L2(Ω)

.
(3.6)

3.1.3 Existence of Solutions

In subsection 3.1.1, we defined an evolution equation associated to the FitzHugh-Nagumo
system (3.1). Our next mission is to ensure the existence of solutions for the evolution equation
(3.2) in order to demonstrate the robustness of the Backward-Euler method (i.e the solution of
the discrete problem converge to the continuous-time solution). To do this, we need to consider
the following definitions:

Definition 3.6. We say that u ∈ C0((0, T ), L2(Ω) × L2(Ω)) is a strong solution of (3.2) if u
is locally absolutely continuous in (0, T ) and satisfies (3.4) almost everywhere for t ∈ (0, T ).

Definition 3.7. We say that u ∈ C0((0, T ), L2(Ω) × L2(Ω)) is a weak solution of (3.2) if u
can be uniformly approximated by a sequence {uk}k∈N of strong solutions that solve (3.2) with
respect to a family of data {gk}k∈N approaching g in L1((0, T ), L2(Ω)×L2(Ω)) and uk(0) → u0
in L2(Ω)× L2(Ω).

Proposition 3.8. The evolution equation (3.2) admits a unique strong solution.

Proof. Let’s remember that:

u(0) := u0(x) =

(
u01(x)
r0(x)

)
.

Clearly, u01(x) ∈ S(Ω) and r0(x) ∈ L2(Ω). This implies that u0 ∈ S(Ω)× L2(Ω).
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In the other side, the function g : (0, T ) → L2(Ω)× L2(Ω) given by:

g(t) =

(
Lu1 − dϕ

dt
+D∆ϕ

Lr + c2ϕ

)
,

is bounded total variation (i.e, g ∈ BV ((0, T ), L2(Ω) × L2(Ω))), because exists the right limit
for all t0 ∈ [0, T ):

lim
t→t+0

g(t) =

(
Lu1(t0)− dϕ

dt
(t0) +D∆ϕ(t0)

Lr(t0) + c2ϕ(t0)

)
.

Indeed, ϕ is a smooth function that does not depend on x ∈ Ω. By [6] (see Section 2.1, Basic
Existence Results and Energy Solutions), we can ensure the existence and uniqueness of strong
solution for the evolution equation (3.2) associated to FitzHugh-Nagumo system.

□

Remark. Note that:

u(t) =

(
u1(t)
r(t)

)
= g(t)︸︷︷︸

∈L2(Ω)×L2(Ω)

− F(u(t))︸ ︷︷ ︸
∈L2(Ω)×L2(Ω)

.

Because L2(Ω) × L2(Ω) is a Hilbert space, we can conclude that u(t) ∈ L2(Ω) × L2(Ω). Also,
u(t) is a Lipschitz continuous function. Because the derivative of u(t) exists, it follow that:

u′(0) = g(0)−F(u(0)),

where lim
t→0+

g(t) = g(0).

Proposition 3.9. The evolution equation (3.2) admits a unique weak solution.

Proof. Proposition 3.8 guarantees the existence and uniqueness of strong solutions for the
evolution equation (3.2) associated with the FitzHugh-Nagumo system (3.1). Given f ∈
L1((0, T ), L2(Ω) × L2(Ω)) (see Definition 3.3) and because u0 can be extended to D(F), in
virtue of [6] (Section 2.1, Basic Existence Results and Energy Solutions) we can ensure the
existence and uniqueness of weak solutions.

□

Remark. Based on Propositions 3.8 and 3.9, we have established the existence and uniqueness
of weak/strong solutions for the evolution equation (3.2) associated to the FitzHugh-Nagumo
system (3.1).
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Remark. Using the weak formulation (3.5) for the FitzHugh-Nagumo equations (3.1), Theorem
1 in [10] (page 59) also guarantees the existence and uniqueness of (strong) solutions u(t) for
the evolution equation (3.2).

Definition 3.10. The continuous problem involves to obtaining the weak solution for the
evolution equation (3.2) associated to the FitzHugh-Nagumo system (3.1).

However, our objective is not to determine a specific weak solution for (3.2). We are interested
in demonstrating the convergence of the solution from discrete problem to the solution of the
continuous problem. In order to accomplish this, we will define the discrete problem based on
the evolution equation (3.2).

3.2 Discrete Problem

Once we have defined the continuous problem (which consists of obtaining a weak solution to
the evolution equation associated with the FitzHugh-Nagumo system (3.1)), we will focus on
obtaining a discrete problem. To do this, we need to perform the temporal discretization of
equation (3.1) using Backward-Euler method defined as follow:

Definition 3.11. (Backward-Euler scheme in time) Consider the Cauchy problem:
dy

dt
= f(t, y),

y(t0) = y0,

The function f(t, x) and the initial data y(t0) = y0 are known. The Backward-Euler finite
difference scheme in time gives a sequence {yn}Nn=0 such that yn approximates the solution
y(t0 + nh) where h is the step-time, 1 ≤ n ≤ N and:

yn − yn−1

h
= f(tn, yn).

Remark. The information at time t = tn is assumed to be known.

Because we need to discretize the evolution equation (3.2), let us consider a partition P of time
interval [0, T ] given by:

P = {0 = t0 < t1 < ... < tN−1 < tN = T},

with step-time τn = tn − tn−1, Lτn < 1 (for robustness of numerical method) and τ := max τn,
for all 1 ≤ n ≤ N . For the evolution equation (3.2), we know the operator F (see Definition
3.2), the function g (see Definition 3.3), and the initial condition u(0) = u0.
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Our goal is to approximate the temporal derivative in (3.2). Using a Backward-Euler finite
difference scheme in time given in Definition 3.16 for the evolution equation (3.2), we will
obtain the discrete equation: 

Un − Un−1

τn
+ F(Un) = Gn,

U(0) = U0,

(3.7)

where {Un}Nn=0 ∈ D(F) is a sequence whose first term U(0) = U0 is given (by the initial
conditions) and the other ones are recursively defined for 1 ≤ n ≤ N . Furthermore Un ≈ u(tn)
and U is the piecewise linear interpolant of the values {Un}Nn=0 on the grid P . Also, {Gn}Nn=0 ∈
D(F) is a sequence that approximates g(t): Gn(tn) ≈ g(tn).

From the semi-discrete equation, consider the following definition:

Definition 3.12. For any sequence {Un}Nn=0 we define in the interval (tn−1, tn]:

� The piecewise upper constant function: U(t) := Un.

� The piecewise lower constant function: U(t) := Un−1.

� The piecewise linear interpolation U(t) := (1− λ(t))Un + λ(t)Un−1, where:

λ(t) :=
tn − t

τn
, ∀ 1 ≤ n ≤ N .

Definition 3.13. We define the discrete derivative for the sequence {Un}Nn=0 as:

δUn :=
Un − Un−1

τn
, 1 ≤ n ≤ N .

Definition 3.14. We define the second discrete derivative for the sequence {Un}Nn=0 as follow:

δ2Un :=
δUn − δUn−1

τn
, 1 ≤ n ≤ N

Using the Definitions 3.12 and 3.13, we can obtain the following result:
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Proposition 3.15. For all t ∈ (tn−1, tn], we have δUn = U ′(t).

Proof. For all tj ∈ (tn−1, tn], it is verified:

U ′(tj) = lim
t→tj

U(t)− U(tj)

t− tj
,

= lim
t→tj

[(1− λ(t))Un + λ(t)Un−1]− [(1− λ(tj))Un + λ(tj)Un−1]

t− tj
,

= lim
t→tj

Un − λ(t)Un + λ(t)Un−1 − Un + λ(tj)Un − λ(tj)Un−1

t− tj
,

= lim
t→tj

Un[λ(tj)− λ(t)]− Un−1[λ(tj)− λ(t)]

t− tj
,

= lim
t→tj

(Un − Un−1)(λ(tj)− λ(t))

t− tj
,

= −(Un − Un−1 lim
t→tj

λ(tj)− λ(t)

t− tj
,

= −(Un − Un−1)λ
′(tj),

=
Un − Un−1

τn
,

= δUn.

□

Remark. We have used the fact λ′(t) = − 1

τn
for all t ∈ (tn−1, tn], Definitions 3.12 and 3.13.

Using Proposition 3.15, Definitions 3.12 and 3.13, we can rewrite the semi-discrete equation
(3.7) more compactly. Indeed, consider the following definition:

Definition 3.16. We define the discrete equation associated to FitzHugh-Nagumo evolution
equation (3.2) by the expression: U ′(t) + F(U(t)) = G(t), t ∈ [tn−1, tn)

U(0) = U0,
(3.8)

Remark. The existence of (strong/weak) solution for the continuous problem (corresponding
to the evolution equation) guarantees the existence of solution for the discrete equation (3.8),
which corresponds to the temporal discretization of equation (3.2) using the Backward-Euler
scheme in time. Moreover, this solution is unique (guaranteed in [NSV00], page 549). Taking
this into account, we can define the discrete problem as follows:

Definition 3.17. The discrete problem consists in obtaining a discrete solution of the equation
(3.8) associated to FitzHugh-Nagumo system.
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If we consider the definitions of the continuous problem and discrete problem, we can introduce
an error estimate (see in Chapter 4, Section 4.1). This will allow us to demonstrate that the
solution U(t) of discrete problem (3.8) converges to weak solution u(t) of continuous problem
(3.2) when τ → 0 in ∥∥L∞(Ω) norm.

Now, we will focus on defining some concepts and properties associated with the discrete prob-
lem. These results are explicitly presented in the development of Theorem 4.3 (the cornerstone
of this thesis).

Definition 3.18. Let’s consider the discrete solution {Un}Nn=0 of the discrete problem (3.8).
We define the discrete estimators for all 1 ≤ n ≤ N as follow:

D̃n := τn
〈
δGn − δ2Un, δUn

〉
L2(Ω)×L2(Ω)

.

Remark. Let us recall that u′(0) = g(0)− F(u(0)). We are inquiring about the existence of a
numerical expression for δU0, because the definition of discrete derivative (see Definition 3.13)
is only applicable for 1 ≤ n ≤ N . In fact, drawing from Section 3 in [6] we can obtain:

δU0 = g(0)−F(u(0)).
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Chapter 4

Error Estimates and Angle-Bounded
Condition

The main purpose of this chapter is to introduce the error estimates between the weak solution
u(t) of the continuous problem (3.2) and the discrete solution U(t) of the problem (3.8). The
error estimates allows us to conclude that U(t) converges to u(t) in L∞(Ω) norm as τ → 0,
where τ := max1≤n≤N τn and τn = tn − tn−1 (associated to a partition P of [0, T ]).

This result is the cornerstone of this thesis and will bring us very interesting consequences.
Indeed:

� We can validate the Backward Euler numerical method when approximating the solutions
of the continuous problem (which correspond to the evolution equation associated with
the FitzHugh-Nagumo system). In this way, we will have all the advantages of working
with a numerical problem (efficiency, flexibility, experimental validation).

� We will be able to give a specific variational structure to the FitzHugh-Nagumo equations,
where our evolution operator F will play a very important role.

However, in order to establish the convergence of solutions from discrete to continuous time, it is
necessary to introduce the concept of angle-bounded operators. The notion of angle-boundness
for operators was originally introduced by Haim Brézis and Felix Browder in [3] and it plays a
fundamental role in establishing a well-defined variational structure for the FitzHugh-Nagumo
equations. Furthermore, we will provide an overview of the theory of maximal monotone
operators.
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4.1 Error Estimates

In Chapter 3, a continuous problem was introduced with the objective of obtaining a weak
solution for the following evolution equation associated with the FitzHugh-Nagumo system
(3.1): 

u′(t) + F(u(t)) = g(t), t ∈ (0, T )

u(0) = u0,
(4.1)

where F : D(F) → L2(Ω) × L2(Ω) is the evolution operator associated to FitzHugh-Nagumo
equations given by:

F(u(t)) =

(
−D∆u1 + F

′
ion(ϕ+ u1) + c2r + Lu1
c2dr − c2u1

)
.

with L > 0 and D(F) =

{(
u1(t)
r(t)

)
∈ S(Ω)× L2(Ω) : −∆u1(t) ∈ L2(Ω)

}
.

Proposition 3.9 ensured the existence (and uniqueness) of weak solutions for (4.1). This moti-
vated us to introduce a continuous problem, which involved obtaining the temporal discretiza-
tion of the evolution equation (4.1) using the Backward-Euler scheme in time. By employing a
brief theory of discrete derivatives, we obtained the expression: U ′(t) + F(U(t)) = G(t), t ∈ [tn−1, tn)

U(0) = U0,
(4.2)

We will focus on estimating the difference between the solutions of the continuous and discrete
problems. To carry out this task, we will define an estimation error. Consider the following
definition:

Definition 4.1. Let u(t) be the weak solution of continuous problem (4.1) and U(t) be the
discrete solution of problem (4.2). We define the error estimates EH as follow:

EH := max
t∈[0,T ]

|u(t)− U(t)|.
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4.2 Main Result

We follow [6] in order to estimate the error estimates EH. The idea is to subtract the differential
equations satisfied independently by the continuous-in-time solution and the discrete-in-time
solution (that exists). The resulting equation for the error is then tested against the error itself,
obtaining a differential inequality for the error which yields an uniform-in-time error estimate.
More precisely, subtracting (4.1) from (4.2) we obtain:

(u(t)− U(t))′ + F(u(t))−F(U(t)) = g(t)−G(t).

Taking the inner product with u(t)− U(t), we find:

1

2

d

dt
|u(t)− U(t)|2 = ⟨F(U(t))−F(u(t)), u(t)− U(t)⟩L2(Ω)×L2(Ω) + ⟨g(t)−G(t), u(t)− U(t)⟩L2(Ω)×L2(Ω).

Using now that:

u(t)− U(t) = (λ(t)− 1)(U(t)− u(t)) + λ(t)(u(t)− U(t)),

we obtain:

1

2

d

dt
|u(t)− U(t)|2 = (λ(t)− 1)⟨F(U(t))−F(u(tU(t)− u(t)⟩L2(Ω)×L2(Ω) + ⟨g(t)−G(t), u(t)− U(t)⟩L2(Ω)×L2(Ω)

+ λ(t)⟨F(U(t))−F(u(t)), u(t)− U(t)⟩L2(Ω)×L2(Ω)

If F is monotone (see Definition 4.13) which is a customary assumption in evolution problems,
then the term with prefactor (λ− 1) is negative and:

1

2

d

dt
|u(t)− U(t)|2 ≤ λ⟨F(U(t))−F(u(t)), u(t)− U(t)⟩L2(Ω)×L2(Ω) + ⟨g(t)−G(t), u(t)− U(t)⟩L2(Ω)×L2(Ω).

If F was the gradient of a convex potential Γ, then we could write:

⟨F(U(t))−F(u(t)), u(t)− U(t)⟩L2(Ω)×L2(Ω) = ⟨F(U(t))−F(U(t)), U(t)− U(t)⟩L2(Ω)×L2(Ω)

+ ⟨F(U(t)), u(t)− U(t)⟩L2(Ω)×L2(Ω) + Γ(U(t))− Γ(u(t))︸ ︷︷ ︸
≤0

+ ⟨F(u(t)), U(t)− u(t)⟩L2(Ω)×L2(Ω) + Γ(u(t))− Γ(U(t))︸ ︷︷ ︸
≤0

+ ⟨F(U(t)), U(t)− U(t)⟩L2(Ω)×L2(Ω) + Γ(U(t))− Γ(U(t))︸ ︷︷ ︸
≤0

.
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This leads to the differential inequality:

1

2

d

dt
|u(t)− U(t)|2 ≤ λ⟨F(U(t))−F(U(t)), U(t)− U(t)⟩L2(Ω)×L2(Ω) + ⟨g(t)−G(t), u(t)− U(t)⟩L2(Ω)×L2(Ω).

Note that the difference between this and the differential inequality above is that F is being
compared -in the sense of monotone operators- between only two functions U and U , whereas
in the former stage of the differential inequality three actors were in scene: U , u, and U .

From here it is possible to use Gronwall-type arguments (albeit more sophisticated) to obtain
an a-posteriori error estimates. Now, what follows works all the same even if instead of the
previous differential inequality we would have obtained:

1

2

d

dt
|u(t)− U(t)|2 ≤ λγ2⟨F(U(t))−F(U(t)), U(t)− U(t)⟩L2(Ω)×L2(Ω) + ⟨g(t)−G(t), u(t)− U(t)⟩L2(Ω)×L2(Ω),

for some γ (which can be greater than 1). This leads to the consider the following property (see
Definition 4.2), which gives what seems to be the right intermediate class of evolution operators
between monotone operators and those that are gradients of a convex potential.

For practical purposes, we will use H to denote a separable Hilbert space with scalar product
⟨, ⟩H.

Definition 4.2. An operator G : D(G) ⊂ H → H is said to be angle-bounded (or more
specifically: γ2-angle-bounded) if there exists a positive constant γ such that:

⟨F(v)−F(w), w − z⟩H ≤ γ2 ⟨F(v)−F(z), v − z⟩H,

for all v, w, z ∈ D(G).

For the purpose of proving Theorem 4.3, we will decompose the function g : (0, T ) → L2(Ω)×
L2(Ω) given by Definition 3.3. In fact:

g(t) =

(
Lu1 − dϕ

dt
+D∆ϕ

Lr + c2ϕ

)
= L

(
u1
r

)
+

(
−dϕ

dt
+D∆ϕ

c2ϕ

)
= Lu(t) + f(t),

where f : (0, T ) → L2(Ω)× L2(Ω) is given by f(t) =

(
−dϕ

dt
+D∆ϕ

c2ϕ

)
.

Under this consideration, the sequence {Gn}Nn=0 ∈ D(F) that approximates g(t) can be ex-
pressed as follows:

Gn(t) = G(t) = LU(t) + F (t),

where Fn(t) = F (t) is a suitable approximation of f(t). The following theorem is the cornerstone
of this thesis:
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Theorem 4.3. Let u(t) be the weak solution of (4.1) and {Un}Nn=0 be the solution of discrete
problem (4.2), with U0 ∈ D(F) and Lτn < 1, for all 1 ≤ n ≤ N . If F is maximal monotone
and γ2 - angle bounded operator, then:

EH ≤ eLT

(|u0 − U0|2 + γ2
N∑

n=1

τ 2nD̃n

) 1
2

+
L

2

N∑
n=1

τ 2n |δUn|+
∥∥f − F

∥∥
L1((0,T ),H)

,
where H = L2(Ω)× L2(Ω). If f ∈ BV ((0, T ),H) and we fix U0 := u0, then we obtain:

EH ≤ τeLT
(
C̃ |δU0|+ (1 + C̃

√
2)Var(f)

)
,

where C̃ := 2e
Lτ(1+LT )

1−Lτ

(
γ + LT

2

)
and D̃n := τn ⟨δGn − δ2Un, δUn⟩H, for all 1 ≤ n ≤ N .

Unfortunately, we still lack the necessary tools to provide the proof of Theorem 4.3. It will be
necessary to work on and develop the theory of angle-bounded operators. For this, consider
the results of section 4.3.

4.3 Angle-Bounded Condition

Throughout this section, we will use H to denote a separable Hilbert space with scalar product
⟨, ⟩H.

Recall that an operator G : D(G) ⊂ H → H is said to be γ2-angle-bounded, if exists a positive
constant γ such that:

⟨F(v)−F(w), w − z⟩H ≤ γ2 ⟨F(v)−F(z), v − z⟩H,

for all v, w, z ∈ D(G). The angle-bounded condition represents an intermediate class of evolu-
tion operators, bridging the gap between monotone operators and operators that are gradients
of a convex potential.

One of the most important properties of the angle-bounded condition is additivity. In fact, the
sum of two angle-bounded operators is itself angle-bounded. We will formalize this result in
Proposition 4.4, which plays a key role in determining a specific variational structure for the
FitzHugh-Nagumo equations.
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Proposition 4.4. (Additivity) Let G,G1,G2 : D(G) → H be operators such that G1 is γ
2
1-angle-

bounded and G is γ22-angle-bounded. Then G = G1 + G2 : D(G) → H is γ2-angle-bounded with
γ2 = max {γ21 , γ22}.

Proof. By the algebraic properties of an operator, we know that:

G(x) = (G1 + G2)(x) = G1(x) + G2(x),

for all x ∈ D(G) (domain of operators G1,G2). Let’s consider v, w, z ∈ D(G). Using the
properties of scalar product, sum of operators and the hypotheses that G1 and G2 are γ

2
1-angle-

bounded and γ22-angle-bounded respectively, we obtain:

⟨G(v)− G(w), w − z⟩H = ⟨(G1 + G2)(v)− (G1 + G2)(w), w − z⟩H ,
= ⟨G1(v) + G2(v)− G1(w)− G2(w), w − z⟩H ,
= ⟨(G1(v)− G2(w)) + (G1(v)− G2(w)) , w − z⟩H ,
= ⟨G1(v)− G2(w), w − z⟩+ ⟨G1(v)− G2(w), w − z⟩H ,
≤ γ21 ⟨G1(v)− G2(z), v − z⟩+ γ22 ⟨G1(v)− G2(z), v − z⟩H ,
≤ γ2 ⟨G1(v)− G2(z), v − z⟩+ γ2 ⟨G1(v)− G2(z), v − z⟩H ,

where γ2 := max {γ21 , γ22}. This implies:

γ2 ⟨G1(v)− G2(z), v − z⟩H + γ2 ⟨G1(v)− G2(z), v − z⟩H = γ2 [⟨G1(v)− G2(z), v − z⟩H + ⟨G1(v)− G2(z), v − z⟩H] ,
= γ2 ⟨(G1(v)− G2(z)) + (G1(v)− G2(z)) , v − z⟩H ,

= γ2 ⟨(G1(v) + G2(v))− (G1(z) + G2(z)) , v − z⟩H ,

= γ2 ⟨(G1 + G2)(v)− (G1 + G2(z)), v − z⟩H ,

= γ2 ⟨G(v)− G(z), v − z⟩H .

Therefore:

⟨G(v)− G(w), w − z⟩H ≤ γ2 ⟨G(v)− G(z), v − z⟩H .

Using Definition 4.2, we can conclude that G is γ2-angle-bounded.

□
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Now, we will study the linear operators (defined below), since they are of great interest to us:

Definition 4.5. An operator G : D(G) → H is lineal if it satisfies the following properties:{
G(v + w) = G(v) + G(w),
G(kv) = kG(v),

for all v, w ∈ D(G) and for all k ∈ R.

Let’s remember that in Subsection 3.1.2 (Definition 3.5), we decomposed our evolution oper-
ator F as the sum of two operators: F1 and F2. Since the bilinear form a(v, w) is positive,
continuous, and weakly coercive; then it is satisfied:

⟨F1(w), v⟩L2(Ω)×L2(Ω) = a(w, v), (4.3)

for all v ∈ S(Ω)× L2(Ω). Now, let’s note that our operator F1 has the following property: ¡it
is linear! In fact, consider the following result:

Proposition 4.7. The operator F1 : D(F) → L2(Ω)× L2(Ω) given by:

F1(u(t)) =

(
−D∆u1 + c2r

(c2d+ L)r − c2u1

)
,

is linear.

Proof. We know that the Laplacian is a linear operator. Let’s consider:

v(t) =

(
u1(t)
r(t)

)
, w(t) =

(
û1(t)
r̂(t)

)
.

Then:

F1(v(t) + w(t)) =

(
−D∆(u1 + û1) + c2(r + r̂)

(c2d+ L)(r + r̂)− c2(u1 + û1)

)
,

=

(
−D∆u1 −D∆û1 + c2r + c2r̂

(c2d+ L)r + (c2d+ L)r̂ − c2u1 − c2û1)

)
,

=

(
−D∆u1 + c2r

(c2d+ L)r − c2u1

)
+

(
−D∆û1 + c2r̂

(c2d+ L)r̂ − c2û

)
,

= F1(v(t)) + F2(w(t)).
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Finally, let k ∈ R. Then:

F1(kv(t)) =

(
−D∆ku1 + c2kr

(c2d+ L)kr − c2ku1

)
,

=

(
−kD∆u1 + kc2r

k(c2d+ L)r − kc2u1

)
,

= k

(
−D∆u1 + c2r

(c2d+ L)r − c2u1

)
,

= kF1(v(t)).

By Definition 4.5, we can conclude that F1 is a linear operator.

□

Remark. It is evident that the operator F2 is non-linear due to the presence of the ionic current
F ′
ion(ϕ), which is a third-degree polynomial.

The fact that F1 is a linear operator brings significant advantages when demonstrating that it is
indeed an angle-bounded operator. Thanks to the theory of angle-bounded operators developed
by Haim Brézis and Felix Browder in [3], we have the following result for the angle-bounded
condition in linear operators:

Proposition 4.7. Let G : D(G) → H be a linear operator. Then the following propositions are
equivalent for all v, w ∈ D(G):

(a) G is γ2-angle-bounded.

(d) |⟨G(v), w⟩ − ⟨G(w), v⟩| ≤ 2µ
√

⟨G(v), v⟩
√

⟨G(w), w⟩, for a suitable µ ≥ 0.

Proof. See [3], Proposition 1, Page 124.

Remark. From Proposition 4.7, γ2 =
µ2 + 1

4
.

In virtue of (4.3), we can study the angle-bounded property for the operator F1 in terms of the
bilinear form a(v, w). Indeed, we have the following result for F1:

Corollary 4.8. The operator F1 : D(F) → L2(Ω)× L2(Ω) is γ2 - angle bounded if only if:

|a(v, w)− a(w, v)| ≤ 2µ
√

a(v, v)
√
a(w,w),

for all v, w ∈ D(F) and suitable µ ≥ 0.
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Proof. This is a immediately consequence of (4.3), because ⟨F1(u), v⟩ = a(v, w) for all v, w ∈
D(F). Then, by Proposition 4.7 we obtain: F1 : D(F) → L2(Ω)×L2(Ω) is γ21 - angle bounded
if only if:

|a(v, w)− a(w, v)| ≤ 2µ
√

a(v, v)
√

a(w,w),

for all v, w ∈ D(F) and suitable µ ≥ 0.

□

Throughout this subsection, we have developed and refined the concept of angle-boundedness
for operators. We have demonstrated some basic properties such as additivity and studied
the behavior of this angle-bounded property in linear operators. Under these considerations
(given the assumptions of Theorem 4.3) we are able to prove that our evolution operator F is
a γ2-angle bounded operator.

The key to this proof lies in decomposing F as the sum of two angle-bounded operators using
Proposition 4.4. Indeed, it is always good to remember that thanks to Definition 3.5, we have
the following decomposition for all u ∈ D(F):

F(u) = F1(u) + F2(u),

where:

F1(u(t)) =

(
−D∆u1 + c2r

(c2d+ L)r − c2u1

)
, F2(u(t)) =

(
F

′
ion(ϕ+ u1) + Lu1

0

)
,

and F ,F1,F2 : D(F) =

{(
u1(t)
r(t)

)
∈ S(Ω)× L2(Ω) : −∆u1(t) ∈ L2(Ω)

}
→ L2(Ω)× L2(Ω).

Based in the decomposition for F as the sum of two operators: F1,F2 and in order to make use
of Proposition 4.4, we will show that F1 and F2 are γ21 and γ22 angle bounded (respectively).

Theorem 4.9. The operator F1 : D(F) → L2(Ω)× L2(Ω) is γ21 - angle bounded.

Proof. We are going to use the Corollary 4.8. and the identity in (4.3). In fact, we know that
a(v, w) = ⟨F1(v), w⟩ for all v, w ∈ D(F). In this manner, F1 is γ21-angle-bounded if only if:

|a(v, w)− a(w, v)| ≤ 2µ
√

a(v, v)
√

a(w,w),

for all v, w ∈ D(F) and suitable µ ≥ 0. Note that:

a(v, w)− a(w, v) = 2aa(v, w),

where aa denotes the anti-symmetric part of the bilinear form a.
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Let’s consider v, w ∈ D(F) such that:

v(t) =

(
u1(t)
r(t)

)
, w(t) =

(
û1(t)
r̂(t)

)
.

In Chapter 3, Subsection 3.1.2, we have defined the bilinear form a as follow:

a(v, w) :=

∫
Ω

[c2(rû1 − u1r̂) + (c2d+ L)rr̂ +D∇u1 · ∇û1] .

Then:

aa(v, w) = c2

∫
Ω

(û1r − ur̂).

Furthermore:

a(v, v) := c2d

∫
Ω

r2 +D

∫
|∇u1|2 = c2d ∥r∥2L2(Ω) +D ∥∇u1∥2L2(Ω).

This implies:

|a(v, w)− a(w, v)|2 = 4 |aa(v, w)|2 ,

≤ 4c22

∫
Ω

∣∣û12r2 + u21r̂
2
∣∣ dµ,

≤ 4c22

∫
Ω

(∣∣û12r2∣∣+ ∣∣u21r̂2∣∣) dµ,
= 4c22

(∫
Ω

∣∣û12r2∣∣ dµ+

∫
Ω

∣∣u21r̂2∣∣ dµ) ,
≤ 4c2

(
∥û1∥2L2(Ω) ∥r∥

2
L2(Ω) + ∥u1∥2L2(Ω) ∥r̂∥

2
L2(Ω)

)
.

We have used the Cauchy-Schwarz inequality in the last step. Now, by the Poincare Inequality,
exists constants C1, C2 > 0 such that (Theorem 2.4):

∥û1∥L2(Ω) ≤ C1 ∥∇û1∥L2(Ω) ,

∥u1∥L2(Ω) ≤ C2 ∥∇u1∥L2(Ω) .

Therefore:

|a(v, w)− a(w, v)|2 ≤ 4c22

(
C2

1 ∥∇û1∥
2
L2(Ω) ∥r∥

2
L2(Ω) + C2

2 ∥∇u1∥
2
L2(Ω) ∥r̂∥

2
L2(Ω)

)
,

≤ 4c22

(
C2

1 ∥∇û1∥
2
L2(Ω) + ∥r̂∥2L2(Ω)

)(
C2

2 ∥∇u1∥
2
L2(Ω) + ∥r∥2L2(Ω)

)
,

≤ 4c22

(
C ∥∇û1∥2L2(Ω) + ∥r̂∥2L2(Ω)

)(
C ∥∇u1∥2L2(Ω) + ∥r∥2L2(Ω)

)
.
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Where C = max {C2
1 , C

2
2}. Let denote β = max {C, 1}. Then:

|a(v, w)− a(w, v)|2 ≤ 4c22β
2
(
∥∇û1∥2L2(Ω) + ∥r̂∥2L2(Ω)

)(
∥∇u1∥2L2(Ω) + ∥r∥2L2(Ω)

)
,

≤ 4
c22β

2

η2

(
D ∥∇û1∥2L2(Ω) + c2d ∥r̂∥2L2(Ω)

)(
D ∥∇u1∥2L2(Ω) + c2d ∥r∥2L2(Ω)

)
,

≤ 4
c22β

2

η2
a(v, v)a(w,w).

where η = min {D, c2d}. This implies:

0 < |a(v, w)− a(w, v)|2 ≤ 4
c22β

2

η2
a(v, v)a(w,w).

Taking square root in both sides of the last inequality, we obtain:

|a(v, w)− a(w, v)| ≤ 2
c2β

η

√
a(v, v)

√
a(w,w).

Let’s call µ =
c2β

η
≥ 0. In this manner:

|a(v, w)− a(w, v)| ≤ 2µ
√

a(v, v)
√

a(w,w).

By Corollary 4.8, we can conclude that F1 is a γ21-angle-bounded with γ21 =
µ2 + 1

4
, where

µ =
c2β

η
.

□

We will focus on working with the angle-bounded condition for our operator F2. Indeed, F2

includes the ionic current (a nonlinear term) and a perturbation Lu1 with L > 0. It is the
moment that we can justify the reason for adding Lu1 in equation (3.1). And the reason lies
in the fact that the following functional is convex with L > 0:

I[ϕ] :=

∫
Ω

Fion(ϕ) +
Lϕ2

2
.

And the gradient of a convex potential is always γ2-angle bounded with γ = 1. Indeed:

Theorem 4.10. The operator F2 : D(F) → L2(Ω)× L2(Ω) is γ22 - angle bounded.

Proof. Remember that F2 : D(F) → L2(Ω)× L2(Ω) is the operator given by:

F2(u(t)) =

(
F

′
ion(ϕ+ u1) + Lu1

0

)
.
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Let L > 0 and because F
′
ion(ϕ+ u1) is the derivative of four-degree polynomial in the undeter-

mined u1 (variable of polynomial), we obtain that F2(u(t)) is the gradient of a convex potential.
In fact, exists a convex potential Γ : D(F) ⊂ L2(Ω)×L2(Ω) → (−∞,+∞) such that F2 = ∇Γ.
This implies for all v, w, z ∈ D(F) :

⟨F2(v)−F2(w), w − z⟩L2(Ω) = ⟨F2(v)−F2(z), v − z⟩L2(Ω)

+ ⟨F2(v), w − v⟩L2(Ω) + Γ(v)− Γ(w)︸ ︷︷ ︸
≤0

+ ⟨F2(w), z − w⟩L2(Ω) + Γ(w)− Γ(z)︸ ︷︷ ︸
≤0

+ ⟨F2(z), v − z⟩L2(Ω) + Γ(z)− Γ(v)︸ ︷︷ ︸
≤0

,

≤ ⟨F2(v)−F2(z), v − z⟩L2(Ω).

We need to justify some calculations in our development. Because Γ is a convex function and
satisfied F2 = ∇Γ, we obtain for all v, w, z ∈ D(F) :

Γ(w) ≥ Γ(v) + ⟨∇Γ(v), w − v⟩L2(Ω) ⇒ 0 ≥ Γ(v)− Γ(w) + ⟨F2(v), w − v⟩L2(Ω),

Γ(z) ≥ Γ(w) + ⟨∇Γ(w), z − w⟩L2(Ω) ⇒ 0 ≥ Γ(w)− Γ(z) + ⟨F2(w), z − w⟩L2(Ω),

Γ(v) ≥ Γ(z) + ⟨∇Γ(z), v − z⟩L2(Ω) ⇒ 0 ≥ Γ(z)− Γ(v) + ⟨F2(z), v − z⟩L2(Ω).

In this manner, we can conclude that F2 is γ22-angle-bounded with γ2 = 1.

□

In virtue of the additivity of angle-bounded operators and the fact that F1 and F2 are γ21 and
γ22 angle-bounded operators (respectively), we obtain the following key result of this thesis as
an immediate consequence:

Corollary 4.11. The evolution operator F : D(F) → L2(Ω)× L2(Ω) associated to FitzHugh-
Nagumo equations (3.1) is γ2 - angle bounded operator.

Proof. By the Theorems 4.9 and 4.10, we know that F1 and F2 are γ21 and γ22 - angle bounded
operators (respectively). Because F(u) = F1(u(t)) + F2(u(t)) for all u(t) ∈ D(F) and using
the Proposition 4.4 (sum of two angle-bounded operators is angle-bounded), we can conclude
that the operator F is γ2 - angle bounded with:

γ2 = max {γ21 , γ22} = max

{
µ2 + 1

4
, 1

}
□
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4.4 Maximal Monotone Operators

In this section, we will present a concise overview of maximal monotone operators, as they
serve as a important tool for demonstrating the convergence from continuous time to discrete
time. However, we must emphasize that we will not delve into the details of this theory. For a
more in-depth understanding of maximal monotone operators, we recommend referring to [2],
where you can find comprehensive information.

Throughout this section, we will denote by H a Hilbert space with inner product ⟨, ⟩H and
G : D(G) ⊂ H → H as an operator with a proper domain D(G).

Definition 4.12. Consider the operator G : D(G) ⊂ H → H. We will say that G is monotone
if:

⟨G(v)− G(w), v − w⟩H ≥ 0, ∀ v, w ∈ D(G).

An immediate consequence of the definition of angle-bounded operator is related to monotonic-
ity. Indeed, every angle-bounded operator is monotone.

Proposition 4.13. If G : D(G) → H satisfies the angle-bounded condition, then G is monotone.

Proof. Taking w = z in Definition 4.2 and using the properties of scalar product, we will obtain:

0 = ⟨G(v)− G(z), 0⟩H ≤ γ2 ⟨G(v)− G(z), v − z⟩H.

However γ > 0. This implies 0 ≤ ⟨G(v)− G(z), v − z⟩H. Using the Definition 4.12, we can
conclude that G is monotone.

□

Another immediate consequence of Definition 4.12 is the additivity property for monotone
operators:

Proposition 4.14. (Additivity) Let consider the operators G,G1,G2 : D(G) ⊂ H → H with
proper domain D(G) such that G(u) = G1(u) + G2(u), for all u ∈ D(G). If G1,G2 are monotone
then G is monotone.

Proof. Because G1,G2 are monotone, we know that ∀ v, w ∈ D(G):

⟨G1(v)− G1(w), v − w⟩H ≥ 0,

⟨G2(v)− G2(w), v − w⟩H ≥ 0.

Using the properties of inner product and sum of operators, we obtain:

⟨G1(v)− G1(w), v − w⟩H + ⟨G2(v)− G2(w), v − w⟩H = ⟨G1(v)− G1(w) + G1(v)− G1(w), v − w⟩H ,

= ⟨(G1(v) + G2(v))− (G1(w) + G2(w)) , v − w⟩H ,

= ⟨(G1 + G2) (v)− (G1 + G2) (w), v − w⟩H ,

= ⟨G(v)− G(w), v − w⟩H .
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But ⟨G1(v)− G1(w), v − w⟩H + ⟨G2(v)− G2(w), v − w⟩H ≥ 0. This allow us to conclude that
⟨G(v)− G(w), v − w⟩H ≥ 0. Thus, we conclude that G is monotone.

□

Definition 4.15. Let’s consider w ∈ H and an operator G : D(G) → H. We will said that G
is maximal if the equation w + εG(w) = v admits a unique solution for all ε > 0 and for all
v ∈ H.

Taking into account Definitions 4.12 and 4.15, we can finally introduce the concept of a maximal
monotone operator.

Definition 4.16. An operator G : D(G) → H will be called maximal monotone if it is both
maximal (in the sense of Definition 4.12) and monotone (in the sense of Definition 4.15)
simultaneously.

Now, we will focus on working with the two aforementioned properties for our operator F (from
Definition 3.2) associated with the FitzHugh-Nagumo equations. Indeed, we will demonstrate
that F is a maximal monotone operator. But first, we need to introduce a key preliminary
result.

Theorem 4.17. Let G : D(G) → H be a maximal monotone operator and Λ : D(G) →
(−∞,+∞) be a convex and lower semi-continuous functional over D(G). Then G + ∇Λ is
maximal monotone.

Proof. See [2], Proposition 2.17, Page 48.

Remark. Proposition 2.17 of [2] states that the last result (Theorem 4.17) is valid for the sum
of a maximal monotone operator and the subdifferential of a convex and lower semicontinuous
functional. Since the gradient operator satisfies the properties of subdifferentials (as a particular
case), Proposition 2.17 also applies to the sum of a maximal monotone operator and the gradient
of a convex and lower semicontinuous functional (as stated in Theorem 4.17).

Theorem 4.18. The operator F : D(F) → L2(Ω) × L2(Ω) associated to FitzHugh-Nagumo
(given in Definition 3.2) is maximal monotone.

Proof. According to Definition 3.5, we know that our evolution operator F can be decomposed
as:

F(u(t)) = F1(u(t)) + F2(u(t)),

for all u(t) ∈ D(F). We know that F1(u(t)) is a linear operator and F2(u(t)) is the gradient of
a convex potential (i.e F2 = ∇Γ). In order to use the Theorem 4.17, we will demonstrate the
following:

� F1 is maximal monotone.

� Γ is a convex and lower semi-continuous functional.
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The monotonicity of operator F1 can be easily deduced from the angle-bounded condition.
Indeed, by Theorem 4.9, we obtain that F1 is angle-bounded. According to Proposition 4.13,
we know that every angle-bounded operator is monotone.

For ease of notation, we will consider H = L2(Ω) × L2(Ω). Now we will demonstrate that
F1 is maximal. According to Definition 4.15, we need to prove that for any ε > 0 and any
v ∈ L2(Ω)×L2(Ω), the equation w+ ϵF1(w) = v admits a unique solution w ∈ D(F). Indeed,
for z ∈ S(Ω)× L2(Ω):

⟨w + ϵF1(w), z⟩H = ⟨v, z⟩H.

In virtue of Theorem 2.9 (Hahn-Banach), ⟨ϵF1(w), z⟩H becomes a bilinear form over S(Ω) ×
L2(Ω). This is because in S(Ω)× L2(Ω), we can define a linear mapping:

z ∈ S(Ω)× L2(Ω) 7→ c(v, z).

In this manner, c(v, z) =

∫
∇v · ∇z = ⟨F1(v), z⟩H. Using the inner product properties, we

obtain:

⟨w + ϵF1(w), z⟩H = ⟨w, z⟩H + ϵ ⟨F1, z⟩H.

This implies (using the Cauchy-Schwarz inequality):

|⟨w, z⟩H + ϵ ⟨F1, z⟩H| ≤ ∥w∥H ∥z∥H + ε ∥∇w∥H ∥∇z∥H ,
≤ CP ∥w∥H ∥∇z∥H + ε ∥∇w∥H ∥∇z∥H ,
= (CP ∥w∥H + ε ∥∇w∥H) ∥∇z∥H ,
= (CP ∥w∥H + ε ∥∇w∥H) ∥z∥S(Ω)×L2(Ω) ,

where CP is the Poincare constant (see Theorem 2.4). This allows us to conclude that the map:

z 7→ ⟨w, z⟩H + ϵ ⟨F1, z⟩H,

is a element of the dual space of S(Ω) × L2(Ω). By the Theorem 2.10 (Riesz), we can ensure
the existence and uniqueness of a function v ∈ S(Ω)× L2(Ω))

′
= S(Ω)× L2(Ω) such that:

⟨w + ϵF1(w), z⟩H = ⟨v, z⟩H.
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Therefore, the equation w + ϵF1(w) = v admits a unique solution w ∈ D(F). Thus, F1 is
a maximal operator. In the other side, we know that F2(u(t)) is the gradient of a convex
potential. In this manner, there exists a convex functional Γ : D(F) → (−∞,∞) such that
∇Γ = F2.

We know that Γ is convex. We need to verify lower semi-continuous. For this, we will use
Definition 2.7 and demonstrate that the set D := {u ∈ D(F) : Γ(u) ≤ a} is closed for all
a ∈ R.

Indeed, the ionic current is given by F ′
ion(u1 + ϕ) = −c1(u1 + ϕ)(u1 + ϕ− α)(1− u1 − ϕ). This

allows us to define Γ : D(F) → (−∞,∞) as follow:

Γ(u) :=
c1
4
(u1 + ϕ)4 − c1(α + 1)

3
(u1 + ϕ)3 +

(c1α + L)

2
(u1 + ϕ)2 +K,

where u = u(t) =

(
u1(t)
r(t)

)
and K ∈ R. Consider a sequence {gn}n∈N ∈ D such that:

lim
n→+∞

gn = lim
n→+∞

(
un1
rn

)
=

(
lim

n→+∞
un1

lim
n→+∞

rn

)
=

(
L1

L2

)
= g.

We need to prove that g ∈ D. Because {gn}n∈N ∈ D, we obtain for all a ∈ R:

c1
4
(un1 + ϕ)4 − c1(α + 1)

3
(un1 + ϕ)3 +

(c1α + L)

2
(un1 + ϕ)2 +K ≤ a.

Using the continuity of power and polynomial functions (when we take the limit):

lim
n→+∞

[
c1
4
(un1 + ϕ)4 − c1(α + 1)

3
(un1 + ϕ)3 +

(c1α + L)

2
(un1 + ϕ)2 +K

]
≤ a,[

c1
4

(
lim

n→+∞
un1 + ϕ

)4

− c1α + 1

3

(
lim

n→+∞
un1 + ϕ

)3

+
(c1α + L)

2

(
lim

n→+∞
un1 + ϕ

)2

+K

]
≤ a,[

c1
4
(L1 + ϕ)4 − c1(α + 1)

3
(L1 + ϕ)3 +

(c1α + L)

2
(L1 + ϕ)2 +K

]
≤ a.

The last inequality implies that g =

(
L1

L2

)
∈ D. Therefore, D is closed. In this way, Γ is lower

semi-continuous in D(F). Using Theorem 4.17, we can conclude that:

F1 +∇Γ = F1 + F2 = F ,

is maximal monotone.

□

Remark. Because F is maximal monotone, we can conclude that for every w ∈ D(F), the
(nonempty) set F(w) is closed and convex set in L2(Ω)× L2(Ω).
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4.5 Proof of Theorem 4.3.

Finally, we are ready to prove Theorem 4.3, which is the cornerstone of this thesis due to
the strong conclusions that can be drawn from this result. To do this, we need to consider
the discrete and continuous problems, existence of solutions (for these problems), the error
estimates and the conditions satisfied by our evolution operator: F is maximal monotone and
γ2 angle-bounded.

Indeed, let us recall what Theorem 4.3 states:

Let u(t) be the weak solution of (4.1) and {Un}Nn=0 be the solution of discrete problem (4.2),
with U0 ∈ D(F) and Lτn < 1, for all 1 ≤ n ≤ N . If F is maximal monotone and γ2 - angle
bounded operator, then:

EH ≤ eLT

(|u0 − U0|2 + γ2
N∑

n=1

τ 2nD̃n

) 1
2

+
L

2

N∑
n=1

τ 2n |δUn|+
∥∥f − F

∥∥
L1((0,T ),H)

,
where H = L2(Ω)× L2(Ω). If f ∈ BV ((0, T ),H) and we fix U0 := u0, then we obtain:

EH ≤ τeLT
(
C̃ |δU0|+ (1 + C̃

√
2)Var(f)

)
,

where C̃ := 2e
Lτ(1+LT )

1−Lτ

(
γ + LT

2

)
and D̃n := τn ⟨δGn − δ2Un, δUn⟩H, for all 1 ≤ n ≤ N .

Proof of Theorem 4.3. In the entire proof of the theorem, we will consider H = L2(Ω)×L2(Ω).
It is important to emphasize that the condition Lτn < 1, for every 1 ≤ n ≤ N , is imposed for the
Backward-Euler method to be robust/efficient. Taking into account the continuous problem
(4.1), by Proposition 3.9 we know that the evolution equation associated to the FitzHugh-
Nagumo system (3.1) has a unique weak solution u(t). Because U(t) (the piecewise linear
interpolation, see Definition 3.12) is a suitable approximation of u(tn) in [tn−1, tn), we can
ensure the existence of solutions for the discrete problem (4.2). Subtracting the continuous-in-
time solution u(t) and the discrete-in-time solution U(t), we obtain the following expression:

(u(t)− U(t))′ = g(t)−G(t) + F(U(t))−F(u(t)). (4.4)

Taking the inner product in (4.4) with u(t)− U(t), we obtain:

1

2

d

dt
|u(t)− U(t)|2 = ⟨(u(t)− U(t))′, u(t)− U(t)⟩H ,

= ⟨g(t)−G(t) + F (U(t))−F(u(t)), u(t)− U(t)⟩H,
= ⟨g(t)−G(t), u(t)− U(t)⟩H + ⟨F(U(t))−F(u(t)), u(t)− U(t)⟩H,

by the inner product properties. We will work with the inequality:

1

2

d

dt
|u(t)− U(t)|2 ≤ ⟨g(t)−G(t), u(t)− U(t)⟩H + ⟨F(U(t))−F(u(t)), u(t)− U(t)⟩H. (4.5)
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Therefore, our mission will be to bound the expressions:

⟨g(t)−G(t), u(t)− U(t)⟩H and ⟨F(U(t))−F(u(t)), u(t)− U(t)⟩H.

We will begin with ⟨g(t)−G(t), u(t)−U(t)⟩H. Given that ϕ is fixed condition (that varies with
respect to time), it follows that:

g(t)−G(t) = L(u(t)− U(t)) + f(t)− F (t).

Therefore, by the Cauchy-Schwarz inequality and the inner product properties:

⟨g(t)−G(t), u(t)− U(t)⟩H = ⟨L(u(t)− U(t)) + (f(t)− F (t)), u(t)− U(t)⟩H,
= L⟨u(t)− U(t), u(t)− U(t)⟩H + ⟨f(t)− F (t), u(t)− U(t)⟩H,
≤ L⟨(u(t)− U(t)) + (U(t)− U(t)), u(t)− U(t)⟩H
+
∣∣f(t)− F (t)

∣∣ |u(t)− U(t)| ,
= L⟨u(t)− U(t), u(t)− U(t)⟩H + L

〈
U(t)− U(t), u(t)− U(t)

〉
H

+
∣∣f(t)− F (t)

∣∣ |u(t)− U(t)| ,
= L |u(t)− U(t)|2 + L

〈
U(t)− U(t), u(t)− U(t)

〉
H

+
∣∣f(t)− F (t)

∣∣ |u(t)− U(t)| .

Next, we are going to work with
〈
U(t)− U(t), u(t)− U(t)

〉
H. Remember that in Chapter 3

(Definition 3.12), we define the piecewise linear interpolation:

U(t) = (1− λ(t))Un + λ(t)Un−1 = (1− λ(t))U(t) + λU(t),

where:

λ(t) :=
tn − t

τn
, ∀ 1 ≤ n ≤ N .

This implies:

〈
U(t)− U(t), u(t)− U(t)

〉
H =

〈
(1− λ(t))U(t) + λU(t)− U(t), u(t)− U(t)

〉
H ,

=
〈
λU(t)− λU(t), u(t)− U(t)

〉
H ,

= −λ
〈
U(t)− U(t), u(t)− U(t)

〉
H ,

= −λ
〈
τn

(
U(t)− U(t)

τn

)
, u(t)− U(t)

〉
H
,

= −λτn ⟨U ′(t), u(t)− U(t)⟩H ,
≤ −λτn |U ′(t)| |u(t)− U(t)| ,
≤ λτn |U ′(t)| |u(t)− U(t)| .

We have used the Cauchy-Schwarz inequality to bounded the inner product ⟨U ′(t), u(t)− U(t)⟩H.
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Furthermore, in Chapter 3 (Definition 3.13 and Proposition 3.15), we define for all t ∈ [tn−1, tn):

U ′(t) =
U(t)− U(t)

τn
.

Therefore:

⟨g(t)−G(t), u(t)− U(t)⟩H = L |u(t)− U(t)|2 + Lλτn |U ′(t)| |u(t)− U(t)|+
∣∣f(t)− F (t)

∣∣ |u(t)− U(t)| .

Now we are going to estimate ⟨F(U(t))−F(u(t)), u(t)− U(t)⟩H. In fact:

u(t)− U(t) = (1− λ(t))(u(t)− U(t)) + λ(t)(u(t)− U(t)).

Therefore:

⟨F(U(t))−F(u(t)), u(t)−U(t)⟩H = ⟨F(U(t))−F(u(t)), (1−λ(t))(u(t)−U(t))+λ(t)(u(t)−U(t))⟩H.

By the inner product properties, we know that:

⟨F(U(t))−F(u(t)), (1− λ(t))(u(t)− U(t))⟩H = (1− λ(t))⟨F(U(t))−F(u(t)), u(t)− U(t)⟩H,
⟨F(U(t))−F(u(t)), λ(t)(u(t)− U(t))⟩H = λ(t)⟨F(U(t))−F(u(t)), u(t)− U(t)⟩H.

Note that:

(1− λ(t))⟨F(U(t))−F(u(t)), u(t)− U(t)⟩H = (λ(t)− 1)⟨F(U(t))−F(u(t)), U(t)− u(t)⟩H.

Because F is a maximal monotone operator (Theorem 4.18), we know that F is not empty and
⟨F(U(t))−F(u(t)), U(t)− u(t)⟩H ≥ 0. But λ(t)− 1 ≤ 0. This implies:

(1− λ(t))⟨F(U(t))−F(u(t)), u(t)− U(t)⟩H ≤ 0.

Since F is γ2 - angle bounded (Corollary 4.11), we can estimate ⟨F(U(t)) − F(u(t)), u(t) −
U(t)⟩H. Note that we have three actors in scene: U(t), u(t) and U(t). Then, by angle-bounded
condition:

λ(t)⟨F(U(t))−F(u(t)), u(t)− U(t)⟩H ≤ γ2λ⟨F(U(t))−F(U(t)), U(t)− U(t)⟩H.

Next, our objective is to express ⟨F(U(t)) − F(U(t)), U(t) − U(t)⟩H in terms of discrete esti-

mators D̃n. Because U ′(t) = δUn (Proposition 3.15, for t ∈ [tn−1, tn)) and using the equation
(4.2), we obtain:

F(U(t)) = LG(t)− δUn = LGn(t)− δUn,

F(U(t)) = LG(t)− δUn−1 = LGn−1(t)− δUn−1.
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Therefore:

F(U(t))−F(U(t)) = L(Un(t)− Un−1(t)) + Fn(t)− Fn−1(t)− δUn + δUn−1.

This implies:

⟨F(U(t))−F(U(t)), U(t)− U(t)⟩H = ⟨L(Un(t)− Un−1(t)) + (Fn(t)− Fn−1(t))− (δUn − δUn−1), U(t)− U(t)⟩H,
= ⟨LτnδUn + τnδFn − τnδ

2Un, τnδUn⟩H,
= τ2n⟨(LδUn + δFn)− δ2Un, δUn⟩H,
= τ2n⟨δGn − δ2Un, δUn⟩H,

= τnD̃n.

In this way:

⟨F(U(t))−F(u(t)), u(t)− U(t)⟩H ≤ γ2λ⟨F(U(t))−F(U(t)), U(t)− U(t)⟩H,
≤ γ2λτnD̃n.

Finally, the inequality (4.5) can be expressed as follow:

1

2

d

dt
|u(t)− U(t)|2 ≤ L |u(t)− U(t)|2 +

[
Lλτn |U ′(t)|+

∣∣f(t)− F (t)
∣∣] |u(t)− U(t)|+ γ2λτnD̃n.

Rearranging:

d

dt
|u(t)−U(t)|2−2L |u(t)− U(t)|2 ≤ 2γ2λτnD̃n+2

[
Lλτn

∣∣U ′(t)
∣∣+ ∣∣f(t)− F (t)

∣∣] |u(t)− U(t)| . (4.6)

Now we are going to use the Theorem 2.13 in the inequality (4.6). In fact, let’s consider a(t) :=

|u(t) − U(t)|, b(t) := 0, ℓ := −L, c2(t) := 2γ2λτnD̃n and d(t) := Lλτn |U ′(t)| +
∣∣f(t)− F (t)

∣∣.
By Theorem 2.13, we have:

max
t∈[0,T ]

e−Lt|u(t)− U(t)| ≤
(
|u(0)− U(0)|2 +

∫ T

0

e−2Lt2γ2λτnD̃n dt

) 1
2

+

∫ T

0

e−LtLλτn |U ′(t)| dt+
∫ T

0

e−Lt
∣∣f(t)− F (t)

∣∣ dt (4.7)

Our goal is to use the Proposition 3.15. To do this, we are going to decompose the integrals:

∫ T

0

e−2Lt2γ2λτnD̃n dt,

∫ T

0

e−LtLλτn |U ′(t)| dt, and
∫ T

0

e−Lt
∣∣f(t)− F (t)

∣∣ dt.
as the sum of integrals in the interval [tn−1, tn) for all 1 ≤ n ≤ N .
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In fact:

0 ≤
∫ T

0

e−2Lt2γ2λτnD̃n dt = 2γ2
N∑

n=1

∫ tn

tn−1

e−2LtλτnD̃n dt,

≤ 2γ2
N∑

n=1

D̃n

∫ tn

tn−1

e−2Ltn−1λτn dt,

= 2γ2
N∑

n=1

e−2Ltn−1D̃n

∫ tn

tn−1

(tn − t) dt,

= 2γ2
N∑

n=1

e−2Ltn−1D̃n
(tn − tn−1)

2

2
,

= γ2
N∑

n=1

e−2Ltn−1D̃nτ
2
n,

≤ γ2
N∑

n=1

τ 2nD̃n.

We can utilize the fact that h1(t) = e−2Lt is a non-increasing function (due to L > 0). Applying
the Extreme Value Theorem to the continuous function h1 in the interval [tn−1, tn], we can
conclude that h1 attains its maximum value at t = tn−1. Hence, we have e−2Lt ≤ e−2Ltn−1

for all t in [tn−1, tn]. Moreover, we know that λτn = tn − t for all 1 ≤ n ≤ N (as defined in
Definition 3.12). Finally, we can bound the sum as follows:

N∑
n=1

e−2Ltn−1D̃nτ
2
n,

to obtain an upper bound: γ2
N∑

n=1

τ 2nD̃n as in Theorem 4.3 (because e−2Ltn−1 ≤ 1, for all

tn ∈ [0, T ]). Also, e−2Lt2γ2λτnD̃n is a function with non-negative terms. By the monotony of
integral, we obtain:

0 ≤
∫ T

0

e−2Lt2γ2λτnD̃n.

This implies

0 ≤ |u(0)− U(0)|2 +
∫ T

0

e−2Lt2γ2λτnD̃n dt ≤ |u(0)− U(0)|2 + γ2
N∑

n=1

τ 2nD̃n.
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Taking square root in both sides of inequality, we obtain:

(
|u(0)− U(0)|2 +

∫ T

0

e−2Lt2γ2λτnD̃n dt

) 1
2

≤

(
|u(0)− U(0)|2 + γ2

N∑
n=1

τ 2nD̃n

) 1
2

.

In the other side:∫ T

0

e−LtLλτn |U ′(t)| dt =
N∑

n=1

L

∫ tn

tn−1

e−Ltλτn |U ′(t)| dt,

= L

N∑
n=1

∫ tn

tn−1

e−Ltλτn |δUn| dt,

≤ L
N∑

n=1

|δUn|
∫ tn

tn−1

e−Ltn−1(tn − t) dt,

≤ L
N∑

n=1

|δUn| e−Ltn−1

∫ tn

tn−1

(tn − t) dt,

≤ L
N∑

n=1

|δUn| e−Ltn−1
(tn − tn−1)

2

2
,

≤ L

2

N∑
n=1

e−Ltn−1 |δUn| τ 2n,

≤ L

2

N∑
n=1

τ 2n |δUn| .

We have made use of Proposition 3.15 and the fact that eLtn−1 ≤ 1 for all tn ∈ [0, T ]. Addi-
tionally: ∫ T

0

e−Lt
∣∣f(t)− F (t)

∣∣ dt ≤ ∫ T

0

∣∣f(t)− F (t)
∣∣ dt = ∥∥f − F

∥∥
L1((0,T ),H)

,

Finally, note that:

e−LT max
t∈[0,T ]

|u(t)− U(t)| ≤ max
t∈[0,T ]

e−Lt|u(t)− U(t)|.

Using the error estimates in Definition 4.1, we obtain e−LTEH ≤ max
t∈[0,T ]

e−Lt|u(t) − U(t)|. Fur-

thermore u(0) = u0 and U(0) = U0. In this way, the inequality in (4.7) can be rewritten as
follow:

e−LTEH ≤

(
|u0 − U0|2 + γ2

N∑
n=1

τ 2nD̃n

) 1
2

+
L

2

N∑
n=1

τ 2n |δUn|+
∥∥f(t)− F (t)

∥∥
L1((0,T ),H)

.
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Therefore:

EH ≤ eLT

(|u0 − U0|2 + γ2
N∑

n=1

τ 2nD̃n

) 1
2

+
L

2

N∑
n=1

τ 2n |δUn|+
∥∥f(t)− F (t)

∥∥
L1((0,T ),H)

 .
We have obtained the first condition stated by Theorem 4.3. Now for the second condition in
Theorem 4.3, we are going to work with the discrete estimators:

D̃n = τn ⟨δGn − δ2Un, δUn⟩H = τn ⟨LδUn + δFn − δ2Un, δUn⟩H .

Indeed, by the inner product properties and the Cauchy-Schwarz inequality:

D̃n = τn ⟨LδUn, δUn⟩H + τn ⟨δFn, δUn⟩H − τn
〈
δ2Un, δUn

〉
H ,

≤ Lτn ⟨δUn, δUn⟩H + τn |δFn| |δUn| − τn

〈
δUn − δUn−1

τn
, δUn

〉
H
,

≤ Lτn|δUn|2 + τn |δFn| |δUn| − ⟨δUn − δUn−1, δUn⟩H ,
≤ Lτn|δUn|2 + τn |δFn| |δUn| − ⟨δUn, δUn⟩H + ⟨δUn−1, δUn⟩H ,
≤ Lτn|δUn|2 + τn |δFn| |δUn| − |δUn|2 + |δUn| |δUn−1| ,
= Lτn|δUn|2 + τn |δFn| |δUn| − |δUn| (|δUn| − |δUn−1|).

This implies:

2 |δUn| (|δUn| − |δUn−1|) + 2D̃n − 2Lτn|δUn|2 ≤ 2τn |δFn| |δUn| .

Using that τn |δFn| = |Fn − Fn−1|, it follows that:

2 |δUn| (|δUn| − |δUn−1|) + 2D̃n − 2Lτn|δUn|2 ≤ 2 |Fn − Fn−1| |δUn| . (4.8)

We are going to use the Theorem 2.14 in (4.8). In fact, consider the non-negative numbers

an := |δUn|, b2n := 2D̃n, cn := 0, dn := |Fn − Fn−1| and µn := −Lτn. In virtue of Theorem 2.14,
we obtain the follow expression:

max

 max
1≤n≤N

e
−Ltn
1−Lτ |δUn| ,

(
2

N∑
n=1

e−
2L(tn−tn−1)

1−Lτ D̃n

) 1
2

 ≤ |δU0|+
√
2

N∑
n=1

e−Ltn−1 |Fn − Fn−1| .

(4.9)

Next, we have the following inequality:

tn
1− Lτ

≤ tn−1 +
τ(1 + LT )

1− Lτ
.
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This implies:

max

 max
1≤n≤N

e−
Lτ(1+LT )

1−Lτ e−Ltn−1 |δUn| , e−
Lτ(1+LT )

1−Lτ

(
2

N∑
n=1

e−2Ltn−1D̃n

) 1
2

 ≤

max

 max
1≤n≤N

e
−Ltn
1−Lτ |δUn| ,

(
2

N∑
n=1

e−
2L(tn−tn−1)

1−Lτ D̃n

) 1
2

 .

Rearranging

e−
Lτ(1+LT )

1−Lτ max

 max
1≤n≤N

e−Ltn−1 |δUn| ,

(
2

N∑
n=1

e−2Ltn−1D̃n

) 1
2

 ≤

max

 max
1≤n≤N

e
−Ltn
1−Lτ |δUn| ,

(
2

N∑
n=1

e−
2L(tn−tn−1)

1−Lτ D̃n

) 1
2

 .

In this way, the inequality (4.9) can be expressed as follow:

e−
Lτ(1+LT )

1−Lτ max

 max
1≤n≤N

e−Ltn−1 |δUn| ,

(
2

N∑
n=1

e−2Ltn−1D̃n

) 1
2

 ≤ |δU0|+
√
2

N∑
n=1

e−Ltn−1 |Fn − Fn−1| ,

max

 max
1≤n≤N

e−Ltn−1 |δUn| ,

(
2

N∑
n=1

e−2Ltn−1D̃n

) 1
2

 ≤ e
Lτ(1+LT )

1−Lτ

(
|δU0|+

√
2

N∑
n=1

e−Ltn−1 |Fn − Fn−1|

)
.

Before bounding (4.7), we rewrite the integrals in this inequality using sums. Indeed:

max
t∈[0,T ]

e−Lt|u(t)− U(t)| ≤

(
|u(0)− U(0)|2 + γ2

N∑
n=1

e−2Ltn−1τ 2nD̃n

) 1
2

+

∫ T

0

e−Lt
∣∣f − F

∣∣ dt+ L

2

N∑
n=1

τ 2ne
−Ltn−1 |δUn| .

But we know that:

e−LTEH ≤ max
t∈[0,T ]

e−Lt|u(t)− U(t)|.

In the other side, if U0 = u0 (which is what we have in our case, in virtue of (3.7), (4.1) and
(4.2) we obtain:
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(
|u(0)− U(0)|2 + γ2

N∑
n=1

e−2Ltn−1τ 2nD̃n

) 1
2

= γ

(
N∑

n=1

e−2Ltn−1τ 2nD̃n

) 1
2

,

≤ γ

(
N∑

n=1

e−2Ltn−1τ 2D̃n

) 1
2

,

= γτ

(
2

N∑
n=1

e−2Ltn−1D̃n

) 1
2

.

Additionally:

L

2

N∑
n=1

τ 2ne
−Ltn−1 |δUn| ≤

L

2

N∑
n=1

τ 2e−Ltn−1 |δUn| ,

≤ 1

2
Lτ 2

N∑
n=1

e−Ltn−1 |δUn| ,

≤ 1

2
Lτ 2N max

1≤n≤N
e−Ltn−1 |δUn| ,

≤ 1

2
LτT max

1≤n≤N
e−Ltn−1 |δUn| ,

This implies:

γτ

(
2

N∑
n=1

e−2Ltn−1D̃n

) 1
2

+
1

2
LτT max

1≤n≤N
e−Ltn−1 |δUn| ≤

(
γτ +

1

2
LτT

)(2 N∑
n=1

e−2Ltn−1D̃n

) 1
2

+ max
1≤n≤N

e−Ltn−1 |δUn|

 ≤

2

(
γτ +

1

2
LτT

)
max

 max
1≤n≤N

e−Ltn−1 |δUn| ,

(
2

N∑
n=1

e−2Ltn−1D̃n

) 1
2

 ,

Given that g ∈ BV ((0, T ),H) (see Proposition 3.8) and BV ((0, T ),H) is a Banach space
(therefore is a closed vectorial space), we obtain that f ∈ BV ((0, T ),H). This implies that the
expression can be bounded above as follow:∫ T

0

e−Lt
∣∣f − F

∣∣ dt ≤ ∥f − Fn∥L1((0,T ),H) ≤ τV ar(f).

Likewise (as in the previous step), we obtain:

√
2

N∑
n=1

e−Ltn−1 |Fn − Fn−1| ≤
√
2

N∑
n=1

|Fn − Fn−1| ≤
√
2V ar(F ) ≤

√
2V ar(f).
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Finally, with the bounds obtained during the development in pages 47, 48, and 49, we obtain
the following inequalities:

e−LTEH ≤ max
t∈[0,T ]

e−Lt|u(t)− U(t)|,

≤ γ

(
N∑

n=1

e−2Ltn−1τ 2nD̃n

) 1
2

+
L

2

N∑
n=1

τ 2ne
−Ltn−1 |δUn|+

∫ T

0

e−Lt
∣∣f − F

∣∣ dt,
≤ γτ

(
2

N∑
n=1

e−2Ltn−1D̃n

) 1
2

+
1

2
Lτ 2N max

1≤n≤N
e−Ltn−1 |δUn|+ τ V ar(f),

= γτ

(
2

N∑
n=1

e−2Ltn−1D̃n

) 1
2

+
1

2
LτT max

1≤n≤N
e−Ltn−1 |δUn|+ τ V ar(f),

≤
(
γτ +

1

2
LτT

)(2 N∑
n=1

e−2Ltn−1D̃n

) 1
2

+ max
1≤n≤N

e−Ltn−1 |δUn|

+ τ V ar(f),

≤ 2

(
γτ +

1

2
LTτ

)
max

 max
1≤n≤N

e−Ltn−1 |δUn| ,

(
2

N∑
n=1

e−2Ltn−1D̃n

) 1
2

+ τ V ar(f),

≤ 2e
Lτ(1+LT )

1−Lτ

(
γτ +

1

2
LTτ

)(
|δU0|+

√
2

N∑
n=1

e−Ltn−1 |Fn − Fn−1|

)
+ τ V ar(f),

≤ 2e
Lτ(1+LT )

1−Lτ

(
γτ +

1

2
LTτ

)(
|δU0|+

√
2V ar(f)

)
+ τ V ar(f),

= τ

[
2e

Lτ(1+LT )
1−Lτ

(
γ +

1

2
LT

)(
|δU0|+

√
2V ar(f)

)
+ V ar(f)

]
,

= τ

[
2e

Lτ(1+LT )
1−Lτ

(
γ +

1

2
LT

)
|δU0|+

[
1 + 2

√
2e

Lτ(1+LT )
1−Lτ

(
γ +

1

2
LT

)]
V ar(f)

]
,

= τ
[
C̃ |δU0|+

(
1 +

√
2C̃
)
V ar(f)

]
.

We have considered C̃ := 2e
Lτ(1+LT )

1−Lτ

(
γ +

1

2
LT

)
. This implies:

EH ≤ τeLT
[
C̃ |δU0|+

(
1 +

√
2C̃
)
V ar(f)

]
,

which is the second condition of Theorem 4.3 establishes. Therefore, we have successfully
demonstrated the fundamental result of our thesis.

□
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4.6 Consequences of Theorem 4.3.

As emphasized throughout this thesis, Theorem 4.3 serves as the cornerstone of this document
due to the wealth of information it provides, enabling us to draw significant conclusions.

In Chapter 1 (Introduction), we have set the objectives of this thesis. The first one is to
demonstrate that the solution U(t) of the discrete problem (4.2) converges to the weak solution
u(t) of the continuous problem (4.1) in order to validate the Backward-Euler method in time.

As an immediate consequence of Theorem 4.3, we obtain the following result:

Corollary 4.19. Let us consider the continuous problem defined by the evolution equation
associated with the FitzHugh-Nagumo system:

u′(t) + F(u(t)) = g(t), t ∈ (0, T )

u(0) = u0,

where u(t) is the unique weak solution and let: U ′(t) + F(U(t)) = G(t), t ∈ [tn−1, tn)

U(0) = U0,

be the discrete problem where U(t) is the numerical solution (linear interpolation). Considering
the assumptions of Theorem 4.3 and assuming that u0 = U0, f ∈ BV ((0, T ),H), and τ → 0
where τ = max

1≤n≤N
τn and τn = tn − tn−1 for all 1 ≤ n ≤ N . Then:

lim
τ→0

max
t∈[0,T ]

|u(t)− U(t)| = 0.

In other words, we have U(t) → u(t) as τ → 0 in L∞(Ω) norm.

Proof. Indeed, considering the assumptions of Theorem 4.3 and the conditions u0 = U0 and
f ∈ BV ((0, T ),H), the error estimates satisfies the following inequality:

0 ≤ EH ≤ τeLT
[
C̃ |δU0|+

(
1 +

√
2C̃
)
V ar(f)

]
,

Taking τ → 0 and using the squeeze theorem, we can conclude that:

lim
τ→0

max
t∈[0,T ]

|u(t)− U(t)| = 0.

□
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From Corollary 4.19, we obtain a very interesting consequence. If we considering the time
steps increasingly smaller when obtaining the temporal discretization of the evolution equation
associated to the FitzHugh-Nagumo system (thus, P becomes a finer partition of the interval
[0, T ]), it follows that the solution U(t) of the discrete problem (4.2) converges to the weak
solution of the continuous problem (4.1).

And the fact of achieving this convergence from discrete-time solutions to continuous-time
solutions is very advantageous. Indeed, we have validated the Backward-Euler method in time:
this time-scheme provides a series of solutions that accurately approximate the original solution
of the continuous problem with rate of convergence equals to 1.

Instead of attempting to obtain an analytical solution for the FitzHugh-Nagumo equations
(3.1), we can obtain a discrete solution using the Backward-Euler scheme in time. In this
way, we will have all the advantages provided by numerical methods (flexibility, computational
efficiency, practical solutions, validation and applications).

For this reason, in the next chapter we will carry out a numerical simulation with a generalized
version of the FitzHugh-Nagumo equations (3.1) in order to analyze and study the behavior
of the variables involved in FitzHugh-Nagumo system: the membrane potential and a recovery
variable (associated to the plasma membrane).
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Chapter 5

Numerical Simulations

Based on the work of article [1], the objective of this chapter is to show a numerical simulation
for the generalized FitzHugh-Nagumo equations in cardiac electrophysiology. As a primary
goal, we are interested in studying and researching the behavior of membrane potential ϕ(x, t)
and the plasma membrane recovery current r(x, t) in a three-dimensional domain under fixed
initial conditions.

This simulation holds a crucial role in our understanding of cardiac electrophysiology, making
significant contributions to the development of treatments to improve cardiac disorders.

For simulation purposes, consider the set Ω ⊂ R3 whose boundary ∂Ω has a outward-pointing
normal vector n and T > 0 is the final time. We define ΩT := Ω×(0, T ) and ∂ΩT := ∂Ω×(0, T )
as the domain and boundary of the problem (respectively). The boundary ∂Ω satisfies the
conditions:

∂Ωϕ ∩ ∂Ωq = ∅,
∂Ωϕ ∪ ∂Ωq = ∂Ω,

where ∂Ωϕ, ∂Ωq are relatively open and smooth in ∂Ω. We will emphasize that ∂Ωq is the
Neumann part of boundary ∂Ω and ∂Ωϕ is the Dirichlet part of boundary ∂Ω.

Let ϕ = ϕ(x, t) ∈ H1(Ω) be the membrane potential and r = r(x, t) ∈ H1(Ω) be the plasma
membrane recovery current. We define the generalized FitzHugh-Nagumo equations by the
following system:
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∂ϕ

∂t
− div(D∇ϕ)− c1ϕ(ϕ− α)(1− ϕ) + c2r = 0, (x, t) ∈ ΩT

∂r

∂t
− b(ϕ− dr) = 0, (x, t) ∈ ΩT

ϕ = ϕ, x ∈ ∂Ωϕ

D∇ϕ · n = 0, x ∈ ∂Ωq

ϕ(x, 0) = ϕ0(x), x ∈ Ω,

r(x, 0) = r0(x), x ∈ Ω.

(5.1)

In the expression (5.1), we incorporate the symmetric and positive-definite tensor D ∈ M3×3(R)
as a fundamental element distinguishing it from equation (1.1), where D is only a positive real
number. Introducing this additional factor, our intention is to achieve a higher degree of
accuracy and realism in representing the phenomena observed in cardiac electrophysiology.

5.1 Numerical Method

Since the (generalized) FitzHugh-Nagumo equations (5.1) constitute a spatial-temporal prob-
lem, we will utilize the following numerical method to approximate a solution and carry out
the computational simulations:

� Spatial problem: To address the spatial nature of the (generalized) FitzHugh-Nagumo
equations, we will employ the Lagrange Finite Element Method (FEM) in order to dis-
cretize the domain Ω.

� Temporal problem: For the temporal discretization, the simulation will be performed
using a Forward-Euler time step in the interval [0, T ].

5.1.1 Finite Element Method and Geometry of the Problem

It is important to note that in Finite Element Method, the geometry of the problem corresponds
to the spatial domain in which the numerical simulation takes place. This geometry is typically
represented using a mesh, which provides a discretized approximation of the problem domain.

The mesh accurately captures the shape and boundaries of the problem domain, allowing for
a precise representation of the geometry. For this purpose, let K be a unit simplex in R3 with
vertices ai for i = {0, 1, 2, 3} given by:

K :=

{
x⃗ = (x1, x2, x3) ∈ R3 : xi ≥ 0 and

3∑
i=1

xi ≤ 1, for 1 ≤ i ≤ 3

}
.
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In order to use the Lagrange Finite Element Method, we will discretize the space:

Ω := [0, 100]× [0, 100]× [0, 20] ⊂ R3,

with a non-homogeneous mesh Th of ∂Ω, where ∂Ω is the boundary of Ω and the length units
are in millimeters. The global mesh size h is set to 10 and the mesh Th for the spatial domain
Ω = [0, 100]× [0, 100]× [0, 20] is given by the Figure 5.1 (a).

With the aim to introduce a specific condition for the membrane potential ϕ(x, t) in a region
of the three-dimensional domain Ω = [0, 100]× [0, 100]× [0, 20], we will consider a brick-shaped
region in {0} × [−2, 48,−2]× [2, 52, 22]; see Figure 5.1 (b).

(a) Mesh Th for Ω. (b) Brick-shaped region in domain Ω.

Figure 5.1: Mesh and brick-shaped region.

Since the FitzHugh-Nagumo equations correspond to a coupled system of a partial parabolic
differential equation (PDE) and an ordinary differential equation (ODE) with variables ϕ (mem-
brane potential) and r (plasma membrane recovery current), we will work with the product
space of finite element:

V := H1(Ω)×H1(Ω).

The H1(Ω) finite element space consists of continuous and piecewise polynomial functions.
Based on Galerkin’s theory, consider the finite dimension subspace V 1

h ⊂ V defined as follows:

V 1
h := {v ∈ V : v|K ∈ P 1(K), for all K ∈ Th},
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where P 1(K) is the space of piecewise polynomial functions of degree one over the elements
of Th. According to [4], we know that (K,P1(K),Σ) is a Lagrange finite element where Σ =
{σ1, σ2, ...σn} and σi(p) = p(ai).

In order to obtain the spatial discretization for the FitzHugh-Nagumo equations (5.1), let’s
consider the test functions p, q ∈ V and the trial functions ϕ, r ∈ H1(Ω). If we consider the
Neumann boundary condition: D∇ϕ · n = 0 for (x, t) ∈ ∂ΩT , we derive the following weak
form for the generalized FitzHugh-Nagumo equations:∫

Ω

∂ϕ

∂t
p dx+

∫
Ω

D(∇ϕ)∇p dx−
∫
Ω

[c1ϕ(ϕ− α)(1− ϕ)− c2r] p dx = 0,

∫
Ω

∂r

∂t
q dx−

∫
Ω

b(ϕ− dr)q dx = 0,

(5.2)

From (5.2), we define:

� Bilinear forms:

m((ϕ, r), (p, q)) :=

∫
Ω

(ϕp+ rq) dx,

a((ϕ, r), (p, q)) :=

∫
Ω

D(∇ϕ)∇p dx−
∫
Ω

b(ϕ− dr)q dx.

� The operator: F((ϕ, r), (p, q)) :=

∫
Ω

[c1ϕ(ϕ− α)(1− ϕ)− c2r] p dx.

In this way, (5.2) can be rewritten as follow:

m

((
∂ϕ

∂t
,
∂r

∂t

)
, (p, q)

)
+ a((ϕ, r), (p, q))−F((ϕ, r), (p, q)) = L(p, q). (5.3)

Next, we will utilize the finite subspace V 1
h (based on the theory of Finite Element Method) in

order to solve the following problem:

m

((
dϕh

dt
,
drh
dt

)
, (p, q)

)
+ a((ϕh, rh), (p, q))−F((ϕh, rh), (p, q)) = 0, (5.4)

where (ϕh, rh) ∈ V 1
h , for all (p, q) ∈ V 1

h . In this way, we can find a approximate solution for (5.3).
The expression (5.4) corresponds to the spatial discretization of (5.1) and the main associated
advantage is that the derivative in (5.3) is total, turning (5.4) into an ordinary differential
equation.
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5.1.2 Temporal Discretization: Forward-Euler Time Step

Now, let’s proceed with the temporal discretization of (5.4). To accomplish this, we will em-
ploy a Forward-Euler time-step method over the interval [0, T ]. More information about this
numerical method can be found in [4].

The main advantage of employing the Forward-Euler scheme in time is that it allows us to solve
a linear problem with reduced computational cost, unlike Backward-Euler time step (where
we solve a nonlinear problem). However, we are aware that Forward-Euler has important
limitations. One of them is associated with the accuracy. Forward-Euler scheme in time is a
first-order method, which means that it has a lower accuracy compared to higher-order methods
(for example, Backward-Euler).

For a better understanding of the temporal discretization using the Forward-Euler method in
time and since (5.4) corresponds to an ordinary differential equation, let’s consider the following
definition:

Definition 5.1. (Forward-Euler scheme in time) Consider the Cauchy problem:
dy

dt
= f(t, y),

y(t0) = y0,

The function f(t, x) and the initial data y(t0) = y0 are known. The Forward-Euler finite
difference scheme in time gives a sequence {yn}Nn=0 such that yn approximates the solution
y(t0 + nh) where h is the step-time, 1 ≤ n ≤ N and:

yn+1 − yn

h
= f(tn, y

n).

Remark. The information at time t = tn is assumed to be known.

To achieve the temporal discretization of (5.4), let P denote a partition of the time interval
[0, T ] defined as follows:

P = {0 = t0 < t1 < ... < tN−1 < tN = T}.

Consider the equation (5.4). Our goal is to approximate the total derivatives. Using a Forward-
Euler finite-difference scheme in time (based in Definition 5.1) with step-time ∆t = tn+1 − tn
and initial values ϕ(x, 0) = 0.2, r(x, 0) = 0 for the next iterations, we obtain the following
discrete equation:

m(ϕn+1
h − ϕn

h, r
n+1
h − rnh), (p, q))

∆t
+ a((ϕn

h, r
n
h), (p, q))−F((ϕn

h, r
n
h), (p, q)) = 0, (5.5)
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where {ϕn
h}

N
n=0 and {rnh}

N
n=0 are two sequences whose first terms are given (by the initial condi-

tions) and the other ones are recursively defined for 1 ≤ n ≤ N . Furthermore ϕn
h ≈ ϕh(tn) and

rnh ≈ rh(tn). Multiplying (5.5) by ∆t and rearranging terms, we obtain:

m((ϕn+1
h , rn+1

h ), (p, q)) = ∆t[F((ϕn
h, r

n
h), (p, q))− a((ϕn

h, r
n
h), (p, q))] +m((ϕn

h, r
n
h), (p, q)). (5.6)

The expression (5.6) corresponds to the temporal discretization of (5.4), where we need to solve
for (ϕn+1

h , rn+1
h ). It is important to emphasize that all information at time t = tn is assumed to

be known. Therefore, the right-hand side of equation (5.6) is known.

5.1.3 Parameters for Simulations and CFL Condition

Let us recall that the main objective of this chapter is to present a numerical simulation for the
FitzHugh-Nagumo equations (5.1) in cardiac electrophysiology. To accomplish this, we have
discretized the equations using Finite Element Method (FEM) in space and using Forward-
Euler method in time.

With the implementation of this numerical simulation, our goal is to observe and analyze the
behavior of the membrane potential ϕ(x, t) and the plasma membrane recovery current r(x, t)
in the spatial domain Ω = [0, 100]× [0, 100]× [0, 20] ⊂ R3. To accomplish this, we will consider
specific parameters and their corresponding values in (5.1) based on the article [1]:

� Initial conditions:

ϕ(x, 0) = 0.2 mV,

r(x, 0) = 0.

� Dirichlet boundary condition: ϕ(x, t) = 1 mV in x ∈ {0} × [0, 20]× [4.8, 5.2].

� Final time: tend = 400 ms.

� Tensor:

D = disoI + dortn⊗ n,

where diso = 0.1 mm2/ms is an isotropic conductivity, dort = 0.9 mm2/ms is the increase
of conductivity and n = (1, 0, 0) is the direction of dort.
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� Parameters in (5.1):

Parameter Value Description
α 0.08 Normalized threshold potential
c1 0.0875 Excitation rate constant
c2 0.03 Excitation decay constant
b 0.0055 Recovery rate constant
d 0.55 Recovery decay constant

Table II: Parameters value for numerical simulation.

Now it’s time to select an appropriate time step ∆t for the numerical simulation. To ensure
that ∆t is compatible with the spatial discretization and guarantees accurate results, we must
consider the CFL condition (Courant – Friedrichs – Lewy condition).

The CFL condition for parabolic problems states that the time step ∆t must satisfy the in-
equality:

∆t ≤ Ch2,

where h is the global mesh size and C is the CFL number (where C ≤ 1). We must consider
this CFL condition because Forward-Euler is a numerical method prone to be unstable. Given
that h is fixed at 10 and consider the experimental CFL number C = 0.0005, the CFL condition
will tell us that ∆t ≤ 0.05. In this way, we will choose the time step size:

∆t = 0.05 ms.

Selecting a time step size ∆t = 0.05 ms, we satisfy the CFL condition. This ensures that the
numerical solution remains stable and accurate. We must emphasize that the CFL number
was obtained experimentally. Several numerical simulations were conducted for the membrane
potential ϕ, which turned out to be inconsistent. Considering C = 0.0005, we obtain an
appropriate ∆t that falls in the stability region of the numerical method.

5.2 Simulation and Conclusions

Based on the analysis presented in Section 5.1, we have the necessary tools to proceed with our
numerical simulation. Linking with (5.6) and utilizing the mesh Th, we can develop a code (see
Appendix: Code for Simuation, page 67). This code yields an approximate solution for the
behavior of the membrane potential ϕ, considering the fixed parameters outlined in Subsection
5.1.3.
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The intention behind including this code is to make it freely available for further enhancements
in order to achieve a more precise numerical simulation. The simulation was implemented
using the open-source finite element library Netgen/NGSolve. The graphical visualization of
the simulation results was obtained using the Paraview software.

Figures 5.2 and 5.3 illustrates the evolution of the membrane potential ϕ and the plasma
membrane recovery current r using a Finite Element Method (FEM) in space and Forward-
Euler scheme in time. Recall that in brick-shaped region {0} × [−2, 48,−2] × [2, 52, 22], the
membrane potential ϕ is setted to 1 mV.

(a) t = 20 ms (b) t = 80 ms (c) t = 120 ms (d) t = 160 ms

(e) t = 200 ms (f) t = 240 ms (g) t = 310 ms (h) t = 400 ms

Figure 5.2: Evolution of membrane potential ϕ.
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(a) t = 20 ms (b) t = 80 ms (c) t = 120 ms (d) t = 160 ms

(e) t = 200 ms (f) t = 240 ms (g) t = 310 ms (h) t = 400 ms

Figure 5.3: Evolution of plasma membrane recovery current r.

Based on the numerical simulation (whose results are displayed in Figures 5.2 and 5.3), we can
make the following comments:

� In the time interval [20, 80] ms, we can observe a gradual increase of the membrane
potential ϕ across the spatial domain Ω. The potential starts to 0.1 mV at t = 20 ms and
reaches 0.3 mV at t = 80 ms. This change in potential is clearly influenced by the fixed
condition ϕ(x, t) = 1. However, for the plasma membrane recovery current the situation
is different. There is no significant increase for r.

� During the time [80, 160] ms, the membrane potential ϕ continues to dissipate across the
spatial domain Ω, reaching 0.6 mV at t = 160 ms. Notably in the neighborhood of the
brick-shaped region, the membrane potential exhibits a higher value approaching 0.8 mV
compared to the rest of the domain Ω. In the other side, there is a significant increase
of the plasma membrane recovery current over Ω; especially in the brick-shaped region
(reaching 0.6 mV).

� In the time interval [200, 240] ms, the membrane potential along Ω is close to 0.8 mV. For
the recovery variable, there still exists a slight increase for r, with values close to 0.5 mV.
However, at t = 310 ms; the potential begins to decay (from 0.8 mV) noticeably around
the neighborhood of brick-shaped region. The same situation occurs for the recovery
variable r, except in {0} × [−2, 48,−2]× [2, 52, 22].
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� At t = 400 ms, the membrane potential drops to 0 mV throughout the spacial domain Ω
domain, except for the specified region 0×[−2, 48,−2]×[−2, 52, 22]. The recovery variable
r drops to 0.3 mV across the spacial domain Ω domain, except for the brick-shaped region.

Based on the numerical simulation (with results shown in Figures 5.2 and 5.3), we can conclude
that the voltage (in mV) decays due to the absence of external stimulation. This is equivalent
to what would occur in a plasma membrane only if there were an initial voltage condition with
no external current.
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Chapter 6

Conclusions

We have observed that the FitzHugh-Nagumo equations (which derived from the Hodgkin-
Huxley model) correspond to a coupled system of a parabolic partial differential equation (for
the variable ϕ representing the membrane potential) and an ordinary differential equation (for
the plasma membrane recovery current r).

Due the fact that ϕ(x, t) = ϕ = ϕ + u1 ∈ L2(Ω) (where u1 ∈ S(Ω), ϕ is defined in Ω) and
r(x, t) = r ∈ L2(Ω), we were able to rewrite the FitzHugh-Nagumo equations in (1.1) as the
system given in (3.1). If we consider the temporal evolution of (3.1), we obtain the following
evolution equation: 

u′(t) + F(u(t)) = g(t), t ∈ (0, T )

u(0) = u0.

The concrete achievement of this thesis consists in determining a specific variational structure
for the FitzHugh-Nagumo equations. To do this, we must work with our evolution operator.
Indeed, the operator F describes the temporal behavior of the FitzHugh-Nagumo equations
(3.1). Recall that F : D(F) → L2(Ω)× L2(Ω) is given by:

F(u(t)) :=

(
−D∆u1 + F

′
ion(ϕ+ u1) + c2r + Lu1

(c2d+ L)r − c2u1

)
.

where L > 0 and D(F) :=

{(
u1(t)
r(t)

)
∈ S(Ω)× L2(Ω) : −∆u1(t) ∈ L2(Ω)

}
.

We know that F can be decomposed as the sum of two operators: F1 and F2. Indeed F1,F2 :
D(F) → L2(Ω)× L2(Ω) are given by:

F1(u(t)) :=

(
−D∆u1 + c2r

(c2d+ L)r − c2u1

)
,

F2(u(t)) :=

(
F

′
ion(ϕ+ u1) + Lu1

0

)
.
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such that F(u(t)) = (F1 + F2)(u(t)) = F1(u(t)) + F2(u(t)), for all u(t) ∈ D(F). Remember
that F1 can be associated to a bilinear form a, where the antisymmetric part aAS of the bilinear
form is controlled by the symmetric part aAS. Indeed, by Theorem 4.9:

|aAS| ≤ 2µ|aS|, µ ≥ 0.

This allow us to conclude that F1 is γ21-angle-bounded operator.

On the other side, in F2 we have added a multiple of u1 in order to make it the gradient of a
convex potential. As demonstrated in Theorem 4.10, the gradients of a convex potential are
always γ22-angle-bounded, where γ

2
2 = 1. In virtue of Proposition 4.4, we can conclude that F

is γ2-angle-bounded with γ = max
{

µ2+1
4
, 1
}
.

Based on the properties satisfied by our evolution operator F , we can conclude that the
FitzHugh-Nagumo equations do not possess a gradient flow structure. However, they do exhibit
a specific variational structure. Indeed:

� From the linear operator F1, we conclude that FitzHugh-Nagumo is a system whose
dissipative part dominates the conservative part.

� Module -add a multiple of the identity-, the non-linear operator F2 is the first variation
of a convex functional.

If we employ the Backward-Euler scheme for the temporal discretization for the evolution
equation (3.2), we obtain the discrete problem:

 U ′(t) + F(U(t)) = G(t), t ∈ [tn−1, tn)

U(0) = U0,

We know that the evolution equation has a unique weak solution u(t). The discrete problem
provides us with a sequence of solutions U(t). This motivates us to introduce an estimation
error given by:

EH := max
t∈[0,T ]

|u(t)− U(t)|.

If we consider the assumptions of Theorem 4.3 and assuming that u0 = U0, f ∈ BV ((0, T ),H)
and τ → 0 (where τ = max

1≤n≤N
τn, τn = tn − tn−1 for all 1 ≤ n ≤ N), we obtain:

lim
τ→0

max
t∈[0,T ]

|u(t)− U(t)| = 0.
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In other words, we have U(t) → u(t) as τ → 0 in L∞(Ω) norm. From Corollary 4.19, we
derive a crucial consequence. Considering an increasingly smaller time steps in the temporal
discretization for the evolution equation associated to the FitzHugh-Nagumo system, we can
obtain that the solution U(t) of the discrete problem (4.2) converges to the weak solution of
the continuous problem (4.1).

And the fact of achieve this convergence from discrete-time solutions to continuous-time so-
lutions is highly advantageous. In fact, we have successfully validated the Backward-Euler
method in time as scheme generates a sequence of solutions that accurately approximate the
original solution of the continuous problem.

Based on the simulations obtained in Chapter 5 for the membrane potential ϕ(x, t) and the
plasma membrane recovery current r(x, t), we can conclude that using the Forward-Euler
method in time has its advantages and disadvantages. It is associated with lower compu-
tational cost, but it does not accurately describe the evolution of ϕ(x, t) and r(x, t) as the
Backward-Euler method would. This is because Forward-Euler scheme in time is a first-order
method, which means that it has a lower accuracy compared to higher-order methods.

The simulations (whose results can be observed in Figures 5.2 and 5.3) allow us to observe the
evolution of the membrane potential ϕ(x, t) and the plasma membrane recovery current r(x, t)
in the domain Ω. We can see that the voltage (in mV) decays due to the absence of external
stimulation. This is equivalent to what would happen in a plasma membrane if only an initial
voltage condition were given without any external current. Also, this numerical simulations are
consistent with the variational structure of the FitzHugh-Nagumo equations.

As possible generalizations and improvements of this thesis, the following projects/ideas are
proposed to be developed:

� ConsiderD as a tensor diffusion (instead of a real parameter) in the mathematical analysis
of FitzHugh-Nagumo equations.

� Use Backward-Euler or Runge-Kutta method in the temporal discretization for FitzHugh-
Nagumo equations in order to obtain the numerical simulations.
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Appendix: Electrophysiological
Glossary

Excitable cells (such as neurons and muscle cells) are encompassed by a plasma membrane,
whose main function is to control the passage of ions and molecules into and out of the cell.
The plasma membrane is a structure that bounds the cell. The membrane is mainly made of
lipid, which often represents as much as 70% of the membrane volume depending on cell type.
The membrane lipid itself prevents the passage of ions through the membrane.

The plasma membrane is a heterogeneous structure that contains numerous large complex
proteins (some of which consist of approximately 2.500 amino acids). These proteins are em-
bedded within the membrane and serve as constituents of pumps and channels responsible for
the exchange of ions between the intracellular and extracellular spaces. Figure A.1 shows the
structure and composition of the plasma membrane.

Figure A.1: Structure and composition of plasma membrane.
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In the context of the plasma membrane, the electrical potential refers to the electric voltage
that exists across the plasma membrane of a cell. If the electrical potential at the inside surface
of the plasma membrane ϕi (in a excitable cell) is compared to the potential at the outside
surface ϕe, we can define mathematically the membrane potential as follow:

ϕ = ϕi − ϕe.

In fact, the membrane potential ϕ refers to the electrical potential difference that exists
between the interior and exterior of a plasma membrane. The membrane potential is measured
in millivolts (mV).

Because the plasma membrane has a resistence, there will be a ionic current F ′
ion(ϕ). This ionic

current refers to the flow of ions through a cell membrane or any other conducting medium.
Ions -which are electrically charged particles- can move through ion channels present in the cell
membrane and other mechanisms of ion transport. Furthermore, this current is considered to
have a positive sign when it flows across the membrane potential in the direction from inside
to outside.

The membrane potential is crucial for various cellular functions including the transmission of
nerve impulses, muscle contractions, and cell signaling. It allows for the generation and prop-
agation of action potentials, which are electrical signals that enable cells to communicate and
perform their specialized functions. Changes in the membrane potential, such as depolariza-
tion (a decrease in potential) or hyperpolarization (an increase in potential), are important for
cellular processes like synaptic transmission, sensory perception, and information processing.

The membrane potential can be altered by various factors, including ion channel activity, ion
concentration gradients and the presence of signaling molecules. These changes in membrane
potential play a significant role in cell behavior, signal integration and the regulation of physi-
ological processes. It is important to note that the membrane potential is a dynamic property
that can be modified in response to stimuli and can vary across different cell types and physi-
ological conditions.

During cell recovery, the membrane potential gradually returns to resting state. This process
involves the movement of ions across the cell membrane through ion channels and pumps,
which helps restore the proper distribution of charges and ion concentrations. The recovery
current r(x, t) of the plasma membrane refers to the electrical current that flows across the
cell membrane during this restoration phase. It represents the movement of ions, such as
potassium (K+), sodium (Na+), calcium (Ca2+), and chloride (Cl−), in and out of the cell to
restore the normal balance of charges and ion concentrations. The recovery current is measured
in millivolts (mV).

The direction and magnitude of the recovery current of membrane potential depend on the
specific ion channels and pumps involved and the specific characteristics of the perturbation or
stress that the cell experienced. The restoration of the membrane potential is crucial for the
cell to regain its normal functioning, including the ability to generate and transmit electrical
signals, maintain proper ion gradients, and carry out various cellular processes.
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Appendix: Code for Simulation

#Import NGSolve

from ngsolve import *

from ngsolve.webgui import Draw

#Parameters

alpha = 0.08

c1 = 0.0875

c2 = 0.03

b = 0.0055

d = 0.55

Iapp = 0

#Functions

def D(v):

diso = 0.1

dort = 0.9

return diso*v + (dort*v[0],0,0)

#Mesh

from netgen.csg import *

brick = OrthoBrick(Pnt(0,0,0), Pnt(100,100,20))

brick2 = OrthoBrick(Pnt(-2,48,-2), Pnt(2,52,22))

geo = CSGeometry()

geo.Add(brick-brick2)

geo.Add(brick*brick2)

hraw = 10

mesh = Mesh(geo.GenerateMesh(maxh=hraw))

mesh.ngmesh.SetBCName(3,’in’)

# Finite Element Space

order = 1

V = H1(mesh, order=order, dirichlet=’in’)

W = H1(mesh, order=order)

fes = V*W

(phi,r), (p,q) = fes.TnT()

# Bilinear Forms

alinear = BilinearForm(fes)

alinear += (D(grad(phi))*grad(p))*dx

anonlinear = BilinearForm(fes)

anonlinear += -c1*phi*(phi-alpha)*(1-phi)*p*dx

anonlinear += c2*r*p*dx

anonlinear += -(b*phi-b*d*r)*q*dx
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m = BilinearForm(fes, symmetric=True)

m += phi*p*dx

m += r*q*dx

# Assembly Matrices

alinear.Assemble()

anonlinear.Assemble()

m.Assemble()

invm = m.mat.Inverse(freedofs=fes.FreeDofs())

# Time Loop

import time

tend = 400

dt = 0.05

tn = 0

t = Parameter(0)

phi0 = 0.2

r0 = 0

phi in = 1.0

gfu = GridFunction(fes)

gfphi, gfr = gfu.components

gfphi.Set(phi0)

gfr.Set(r0)

# Solution

scene = Draw(gfu.components[0], mesh, min=0, max=1, autoscale=False)

reslinear = gfu.vec.CreateVector()

resnonlinear = gfu.vec.CreateVector()

res = gfu.vec.CreateVector()

while tn < tend - 0.5 * dt:

m.Apply(gfu.vec, res)

alinear.Apply(gfu.vec, reslinear)

anonlinear.Apply(gfu.vec, resnonlinear)

res.data -= dt*reslinear

res.data -= dt*resnonlinear

tn += dt

t.Set(tn)

gfu.components[0].Set(phi in, BND)

res.data -= m.mat*gfu.vec

gfu.vec.data += invm * res
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