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Summary

In usual directed polymer models, each step of the path receives a weight given by

ξ = exp (β ω(t, x)), where
{

ω(t, x) : t ∈ N, x ∈ Zd} is a family of real-valued ran-

dom variables and β > 0 is the inverse temperature of the system. The partition

function corresponds to the normalization constant of a random measure on paths,

known as the polymer measure. It is known that the model exhibits a phase tran-

sition: for small values of β, polymer paths resemble a random walk, whereas, for

large β, paths are concentrated in energy-advantageous areas. These two opposite

phases are known as the region of weak and strong disorder, respectively, and can

be identified through the asymptotics of the partition function or, equivalently, by

the value of the free energy.

In this work, we examine a model of directed polymers with complex random

weights introduced by Cook and Derrida in [7]. Derrida, Evans, and Speer in [8]

prove the existence of a third regime governed by interferences due to random

phases that cannot observe in the model with positive weights.

We partially extend the results of [8], in two different directions. First, the au-

thors of [8] assume that the random phases and radii of the environment are inde-

pendent, i.e., ξ = exp (ω + i θ), where the ω and θ random variables are indepen-

dent. We remove this limitation in most of the phase diagram, except in a part of the

region of strong disorder, where the model with weights |ξ| is in the region of weak

disorder but where sufficiently disordered random phases produce a phase transi-

tion. Secondly, under mild regularity assumptions on the law of the environment,

we show that the convergence to the free energy proved to hold in probability in [8]

can be reinforced to an almost sure convergence. We also show that the standard

martingale techniques used for positive weights can still be applied in the region of

weak disorder, resulting in a direct calculation of the free energy and almost sure

convergence without additional assumptions beyond those of [8].

vii



Chapter 1

Introduction

One of the main problems in disordered systems theory is the study of the behavior

of directed polymers in a random environment. The model was introduced in the

physics literature by Huse and Henley, in [13], and reached the mathematics com-

munity by Imbrie and Spencer, in [14]. We refer the reader to the Comets’ book [6]

for an account of the main mathematical results up to 2016.

Let us first introduce the model following [6].

• The random walk:
(
S = {Sn}n∈N , Px

)
is a simple random walk on the d-

dimensional integer lattice Zd starting from x ∈ Zd. Precisely, the random

sequence S is defined on the probability space Ωtraj =
(
Zd)N

with the cylin-

dric σ-algebra F and a probability measure Px such that, under Px, the jumps

S1 − S0, . . ., Sn − Sn−1 are independent with

Px (S0 = x) = 1, Px
(
Sn − Sn−1 = ±ej

)
= (2d)−1, j = 1, 2, . . . , d,

where ej =
(
δkj
)d

k=1 is the j-th vector of the canonical basis of Zd. In the sequel,

Ex[X] denotes the Px-expectation of a random variable (r.v.) X, and P0 will be

simply written by P.

• The random environment: ω =
{

ω(n, x) : (n, x) ∈ N × Zd} is a sequence of

r.v.’s which are real valued, non-constant, and i.i.d. (independent identically

distributed), defined on a probability space
(

Ω = RN∗×Zd
,G, P

)
such that

∀β ∈ R : E[exp(β ω(n, x))] < ∞.

From these two basic ingredients we define the object we consider in this work.
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• The polymer measure: For any n ∈ N∗, define the probability measure Pβ,ω
n

on the path space
(
Ωtraj,F

)
by

Pβ,ω
n (dx) =

1
Zn(ω, β)

exp [β Hn(x)] P(dx), (1.1)

where β > 0 is a parameter (the inverse temperature), where

Hn(x) = Hω
n (x) =

n

∑
j=1

ω
(

j, xj
)

,

is the energy of the path x in environment ω (Hamiltonian potential) and

Zn = Zn(ω, β) = E

[
exp

(
β

n

∑
j=1

ω
(

j, Sj
))]

,

is the normalizing constant to make Pβ,ω
n a probability measure. From its def-

inition (1.1), Pβ,ω
n is the Gibbs measure with Boltzmann weight exp [βHn], and

Zn is the so-called partition function. Of course, in the present context, the

above expectation is simply a finite sum,

Zn(ω, β) = ∑
x
(2d)−n exp (β Hn(x)) ,

where x ranges over the (2d)n possible paths of length n for the simple random

walk.

This problem arose in statistical mechanics, specifically in the thermal equilibrium

of this system. As such, our main object of interest is the effect of the disorder on

the asymptotic of the partition function. The model is known to transition from a

diffusive regime on Zd at high temperatures to a superdiffusive behavior at lower

temperatures (see [6]).

1.1 Physical interest of the model

The problem is associated with several physical phenomena, such as the study of

an Ising ferromagnet with random impurities below the Tc temperature [13], or the

growth patterns of clusters and solidification fronts, described by Kardar, Parisi and

Zhang in [16].

In [9], Derrida and Spohn show that the problem also shares many features with

the spin-glass phase, especially in the mean-field approximation. In the language of

2



statistical mechanics, the mean field version of directed polymers corresponds to the

model on a Cayley tree. So far, this is one of the few disordered systems for which

it has been proved that the predictions of replica theory, in the case of the broken

symmetry, provide the correct free energy on the tree.

1.2 Model on the Cayley Tree with positive weights

Various techniques have been used to treat the model on the Cayley tree with pos-

itive weights. From the physics perspective, Derrida and Spohn in [9] showed that

the study of directed polymers on trees can be reduced to the analysis of nonlin-

ear reaction-diffusion equations. Later, Chauvin and Rouault, in [5], used traveling

waves, while, on the mathematics side, Buffet, Patrick, and Pulé in [4] focus on the

computation of non-integer moments of the partition function, along with martin-

gale arguments, which have the advantage of being transparent and rigorous. All

these approaches lead to the same phase diagram and the same expressions for the

free energy in the different regions. See also [11] or [15].

The weights assigned to the lattice bonds are positive in the original version of

the directed polymer problem. In [7], the problem was generalized by removing this

limitation, e.g., weights may have random signs or take complex random values.

Goldschmidt and Blum, in [12], work with this generalization as a reasonable model

for the conductivity of strongly localized jumping electrons since the transmission

of such electrons is dominated by directed paths, and interference effects occur by

summing the contributions of individual paths.

In [7], the authors predicted a phase diagram consisting in three regions, which we

will denote R1, R2 and R3. The regions R1 and R2 are the only regions found

in the case of positive weights; in this case, they are the high and low-temperature

regions, respectively. The region R3 is characterized by a new high temperature

phase, characterized by substantial interference effects, which occur when the weight-

sign fluctuations in the region are significant.

Goldschmidt and Blum, in [12], have examined the problem of continuous di-

rected polymers with complex weights in finite dimensions using a replica approach.

At high dimensoins, where results are expected to match those of the model on the

tree, they found a phase diagram quite different from that predicted in [7]. Specif-

ically, they obtained two additional regions (R4 and R5), which correspond to dif-

ferent schemes for the broken symmetry of the replicas. The validity of these results
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were questioned in [7].

The model was solved on mathematical grounds by Derrida, Evans, and Speer, in

[8]. It was proved that there are only three regions in the phase diagram. However,

the precise phase diagram on the lattice is still an open question.

We note that the phase diagram of the model shares similarities with Complex

Multiplicative Chaos [17, 18, 19]. It can also be interpreted as multiplicative cascades

[1, 2, 3].

In this thesis, we extend the results of [8] by incorporating arguments from [4].

We were able to relax the hypothesis on the independence of the random radii and

phases. Along the way, we simplified many of the arguments from [8].

1.3 Outline of the document

The next chapter presents a mathematical introduction, including some tools used

in the proofs. Specifically, we discuss some aspects of martingales, concluding with

the Martingale Convergence Theorem for complex-valued martingales.

Our results are presented in Chapter 3, which is divided into six sections. In

Section 3.1, we define precisely the model and the free energy that we consider, we

expose our hypotheses on the environment then state the main results. A brief com-

parison is made with the results holding for a random environment with positive

values.

In Section 3.2, we obtain general estimates regarding the partition function and

its moments. Then, we prove some extensions of the key estimates of [8]. We end

that section exposing our main scheme of proof.

The region R1 is presented in Section 3.3, where we use martingale techniques.

We continue with region R3 in Section 3.4. The region R2 is treated in Section 3.5,

which is divided into two parts. In the second part, a monotonicity argument is used

to compute the free energy, which reduces the problem to the results obtained for

the region R1 and the model with positive-valued random environments. Finally,

Section 3.6 characterizes the three regions for the model with random independent

phases and radii.

Chapter 4 presents conclusions and discusses possible extensions of our results.

Finally, the Appendix contains the proof of a lemma which was omitted in the

core of the thesis.
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Chapter 2

Notations and Preliminary Results

This chapter presents definitions and basic results of probability theory, which will

allow us to understand more efficiently the demonstrations made throughout this

document.

It is also intended to standardize the notations used in this document.

2.1 Discrete time Martingales

Let (Ω,F ) be a measurable space. A filtration is an increasing sequence of sub σ-

algebras F = (Fn)n∈N, i.e., for all n ∈ N we have Fn ⊆ Fn+1. We will suppose that

F0 = {∅, Ω} is the trivial σ-algebra, and we will denote

F∞ = σ

( ⋃
n∈N

Fn

)
.

DEFINITION 2.1 (Natural filtration). We say that F is a natural filtration, or canoni-

cal filtration, for the process X = (Xn)n∈N if Fn = σ (Xk : 1 ≤ k ≤ n), for all n ∈ N.

We say that a process X = (Xn)n∈N is an adapted process with respect to F, if

∀n ∈ N : Xn ∈ Fn.

DEFINITION 2.2 (Martingale, Submartingale and Supermartingale). We say that X

is an F-martingale if each Xn is integrable, X adapted and satisfies the martingale

property, i.e.,

∀n ∈ N : E [Xn+1 | Fn] = Xn.

5



If we replace = by ≥ or ≤, in the previous identity, we will say that the process X is

an F-submartingale or an F-supermartingale, respectively.

REMARK. When the filtration F is clear, we eliminate “F” from the notation.

THEOREM 2.1. For all m, n ∈ N such that m ≤ n we have:

(i) If X is an F-martingale, then E [Xn | Fm] = Xm.

(ii) If X is an F-submartingale, then E [Xn | Fm] ≥ Xm.

(iii) If X is an F-supermartingale, then E [Xn | Fm] ≤ Xm.

For the proof, see [10, Theorems 5.2.1-2, pp. 233].

THEOREM 2.2. Suppose that X is an F-martingale (more generally a submartingale)

and ϕ : R → R is a convex function (respectively convex and increasing). Let

ϕ(X) = (ϕ(Xn))n∈N. If each ϕ(Xn) is integrable, then ϕ(X) is an F-submartingale.

For the proof, see [10, Theorems 5.2.3-4, pp. 233-234].

2.2 Martingale Convergence Theorem

We say that a collection of random variables (Xi)i∈I that satisfies

lim
n→∞

sup
i∈I

E
[
|Xi|1(|Xi|>n)

]
= 0.

it is uniformly integrable (u.i.).

THEOREM 2.3 (Martingale Convergence Theorem). Let X be an F-martingale (su-

permartingale, submartingale) such that sup
n∈N

E [|Xn|] < ∞, then there exists X ∈ L1

such that Xn
a.s.−→ X.

For the proof, see [21, Theorem 9.8.12, pp. 343-344].

THEOREM 2.4. Suppose that X is a u.i. F-martingale (supermartingale, submartin-

gale). Then there exists an integrable random variable X such that Xn
a.s.−→ X and in

L1. Furthermore,

∀n ∈ N : Xn = E [X | Fn] ,

and with the corresponding inequalities in the super and submartingale cases.

6



For the proof, see [21, Theorem 9.8.14, pp. 344].

COROLLARY 2.5. Let r ∈ (1, ∞) and let X be an F-martingale which is bounded in

Lr, where r ∈ (1, ∞). Then, X is u.i. and there exists a random variable X ∈ Lr such

that Xn
a.s.−→ X and in Lr.

For the proof, see [21, Corollary 9.8.22, pp. 348].

We say that M = (Mn)n∈N is a complex-valued F-martingale is Mn ∈ C for all

n ∈ N, E[|Mn|] < ∞ for all n ∈ N and

∀n ∈ N : Mn = E [Mn+1 | Fn] .

LEMMA 2.6. Let M = (Mn)n∈N be a complex-valued F-martingale. Then the pro-

cesses

Re(M) = (Re(Mn))n∈N and Im(M) = (Im(Mn))n∈N ,

are (real-valued) F-martingales.

Proof. Let us prove each condition in the definition of a martigales:

(i) (Integrability) Since M is integrable we have

∞ > E [|Mn|] = E

[√
|Re(Mn)|2 + |Im(Mn)|2

]
≥ E [|Re(Mn)|] .

Similarly, E [|Im(Mn)|] < ∞.

(ii) (Adaptability) As Mn ∈ Fn and the functions z 7→ Re(z) and z 7→ Im(z) are

continuous, we conclude that Re(Mn), Im(Mn) ∈ Fn.

(iii) (Martingale property) Applying the linearity of the conditional expectation, we

have

E [Mn+1 | Fn] = E [Re(Mn+1) + i Im(Mn+1) | Fn]

= E [Re(Mn+1) | Fn] + i E [Im(Mn+1) | Fn] . (2.1)

On the other hand, since M is a martingale, we have

E [Mn+1 | Fn] = Mn = Re(Mn) + i Im(Mn). (2.2)

Replacing (2.2) in (2.1) we obtain

E [Re(Mn+1) | Fn] = Re(Mn) and E [Im(Mn+1) | Fn] = Im(Mn).

7



We conclude from the above points that the processes Re(M) and Im(M) are F-

martingales.

PROPOSITION 2.7. Let r > 1 and let M = (Mn)n∈N be a complex-valued F-martingale

such that

sup
n∈N

E [|Mn|r] < ∞.

Then there exist random variables Re(M), Im(M) ∈ Lr such that

Re(Mn)
a.s.−→ Re(M) and Im(Mn)

a.s.−→ Im(M),

and in Lr. As a consequence, Mn
a.s.−→M := Re(M) + i Im(M) and in Lr.

Proof. From the above lemma the processes Re(M) and Im(M) are F-martingales.

It is enough to verify the hypothesis of Corollary 2.5, i.e. we will show that

Re(M), Im(M) ∈ Lr. Let us note

|Mn|r =
[√

|Re(Mn)|2 + |Im(Mn)|2
]r

≥ |Re(Mn)|r .

Similarly, |Im(Mn)|r ≤ |Mn|r. This finishes the proof.

8



Chapter 3

Directed polymers in complex-valued

environments on trees

3.1 The model and main results

The model we consider throughout this chapter is that of directed polymers on the

Cayley tree (T, E) with branching relation b ∈ N.

Figure 3.1: Cayley tree with branching ratio three

We will label the vertices with pairs (j, k) where j belongs to N0 = N ∪ {0} and

identifies the generation while k is in
{

1, . . . , bj} and lists the vertices or sites from

left to right in the j-th generation.

9



(a) Cayley tree labeled (b) T1 or First Generation

We will define the set of all nodes of the n-th generation, where n ∈ N, as

Tn = {(j, k) ∈ T : j = n} .

A path s starting at vertex x ∈ T and of length |s| = n is a finite sequence of

vertices [(j0, k0) , (j1, k1) , . . . , (jn, kn)], where (j0, k0) = x and

∀i ∈ {1, . . . , n} : ki = b ki−1 + a, ji = ji−1 + 1,

where a takes values in the set {−(b − 1), . . . , 0}.

We denote by Sn,x the space of paths of length n starting at vertex x ∈ T, and simply

by Sn when x is the root node, i.e., x = (0, 1).

Figure 3.3: A path over the Cayley Tree.

10



Our random environment on the tree (minus its root) is a set of i.i.d. complex

valued non-trivial random variables indexed by T:

ξ = {ξ(x) : x ∈ T} , ξ(0, 1) = 1.

With a slight abuse of notation, we will define their common law by ξ.

REMARK. To be more precise, these random variables are defined on the probability

space (Ω,F , P) where Ω = CT, F is the Borel σ-algebra over Ω, and P = P⊗T
0 for

some probability measure P0 defined on the Borel σ-algebra of C. We then take ξ as

the canonical process.

We will further assume that ξ satisfies the following assumptions:

• (HA1) The distribution of the amplitude |ξ| is continuous, i.e.,

∀a ∈ R : P (|ξ| = a) = 0.

• (HA2) All moments of the amplitude of ξ are well defined, i.e.,

∀α ≥ 0 : E
[
|ξ|α

]
< ∞.

We will denote by Zn,x(ξ) the partition function given by

Zn,x(ξ) = ∑
s∈Sn,x

n

∏
t=1

ξ(st),

We also denote Zn(ξ) = Zn,(0,1)(ξ).

REMARK. Fixing m ∈ N, for all x ∈ Tm it is clear that the random variables Zn,x(ξ)

are i.i.d. and distributed as Zn(ξ).

REMARK. Throughout this paper, as we will always work with fixed ξ, we will often

denote Zn,x = Zn,x(ξ). We will use the full notation Zn,x(ξ) whenever it is necessary

to highlight the dependence on environment.

3.1.1 The Free Energy

Turning now to a discussion of the phase diagram of the model, let us define the

function
G : R+ −→ R

α 7−→ 1
α ln (b E [|ξ|α]) .

11



Note that hypothesis HA2 guarantees that G is well-defined.

We start with some simple properties of the function G.

PROPOSITION 3.1.

(i) The function α 7→ α G(α) = ln (b E [|ξ|α]) is convex, with G(0) = ln b.

(ii) The function G satisfies exactly one of the following properties:

– There exists a unique minimizer of G denoted by αmin > 0 , i.e., G is

strictly decreasing in (0, αmin] and strictly increasing in [αmin, ∞).

– G is strictly decreasing in R+.

The proof is deferred to the appendix.

REMARK. If G is strictly decreasing, we adopt the convention αmin = ∞.

Our goal is to study the behavior of the free energy

1
n

ln |Zn|,

of infinitely long polymers, i.e., when n → ∞. The system may exist in three regions

or lie on their boundaries. Distinct regions are characterized by distinct analytic

expressions for the free energy value per step in the limit of infinitely long polymers.

The following theorem is our main result and extends [8, Theorems 6.5 and 7.4].

THEOREM 3.2 (Regions). Assume that ξ satisfies hypotesis HA1 and HA2. There-

fore, the free energy limit, i.e.,

f(ξ) = lim
n→∞

1
n

ln |Zn(ξ)|, (3.1)

exists in probability. Furthermore:

• (REGION R1) If there exists α ∈ (1, 2] such that G(α) < ln (b |E [ξ]|), we have

f(ξ) = fI = ln (b |E [ξ]|) . (3.2)

• (REGION R2) If αmin < 1 or if 1 ≤ αmin < 2, G (αmin) > ln (b |E [ξ]|) and the

families of random variables |ξ(x)| and ξ(x)
|ξ(x)| are independent, then

f(ξ) = fII = G (αmin) . (3.3)

12



• (REGION R3) If αmin > 2 and G (2) > ln (b |E [ξ]|), we obtain

f(ξ) = fIII = G (2) . (3.4)

Furthermore, the limit (3.1) holds P-a.s. in the region R1 and in the part of the

region R2 where αmin < 1.

The above result was obtained by Derrida, Evans, and Speer, in [8], under the

hypothesis that the random variables |ξ(x)| and ξ(x)
|ξ(x)| are independent. As can be

seen above, we remove this constraint from most of the phase diagram, except for

the part of the region R2 where 1 ≤ αmin < 2. As noted below, under this hypoth-

esis, the model with positive weights, |ξ(x)|, is in the weak disorder regime. Here,

the addition of sufficiently disordered random phases can induce strong disorder.

It is then quite natural to expect that some hypothesis is required to observe such

behavior.

REMARK. Let us note that if the law of the environment is nontrivial, applying

Jensen’s inequality, we have

ln (b |E [ξ]|) < ln (b E [|ξ|]) = G(1).

Then, if αmin < 1, we have G(α) > G(1) for all α > 1 and the system cannot be in

the region R1. Therefore, in the region R1, one has αmin > 1.

However, in the region R1, if there exists α ∈ (1, 2] such that G(α) < ln (b |E [ξ]|),
we have again G (αmin) < ln (b |E [ξ]|), so that the system cannot be in the region

R2. In the same vein, if αmin > 2, we obtain G(2) < G(α) < ln (b |E [ξ]|) so that the

system cannot be in the region R3.

The observation above shows that the three regions are mutually exclusive.

REMARK. From the exact calculations of Section 3.2, we will see that, in the R1

region of weak disorder, it holds that

f(ξ) = lim
n→∞

1
n

ln |E [Zn(ξ)] |.

The right-hand side is generally referred to as the annealed free energy. In the Sec-

tion below, we will recall the possible values of the free energy for the model with

positive weights. We can then remark that, in the regions R2 and R3, it holds that

f(ξ) = lim
n→∞

1
2n

lnZn(|ξ|2),
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where Zn(|ξ|2) denotes the partition function of the model with random environ-

ment

|ξ|2 =
{
|ξ(x)|2 : x ∈ T

}
, (3.5)

which is in the regime of strong disorder (respect. weak disorder) in the region R2

(respect. R3). In the case of the R3 region, it also holds that

f(ξ) = lim
n→∞

1
2n

ln E
[
Zn(|ξ|2)

]
,

which corresponds to (half of) the annealed free energy for the model with random

environment (3.5).

The limit (3.1) is, in fact, an almost surely limit in the region R1 and in the case

αmin ≤ 1. This can be extended to the entire phase diagram under additional as-

sumptions on the law of the environment.

DEFINITION 3.1 (τ-property). Let τ ∈ (0, 2] be fixed, and let us denote the ball of

center z ∈ C and radius r as B(z, r). We say that the environment satisfies the τ-

property if there exists a finite constant C > 0 such that

(∀(z, r) ∈ C × R∗
+ : P[ξ ∈ B(z, r)] ≤ Crτ) ∧ E

[
|ξ|−τ

]
< ∞.

THEOREM 3.3. If the law of the environment satisfies the τ-property, for some τ ∈
(0, 2], then the limit (3.1) almost surely exists.

For positive weights, martingale techniques are a powerful tool for obtaining

information about the model. It remains valid for complex weights, at least in the

R1 region.

We will denote T≤n =
n⋃

i=0

Ti the set of all nodes up to the n-th generation, and

the natural filtration F = (Fn)n∈N such that

Fn = σ (ξ(x) : x ∈ T≤n) .

It is standard, when E [ξ] ̸= 0, to define the process M = (Mn)n∈N such that

Mn =
Zn

E [Zn]
,

which turns out to be a F-martingale. Moreover, we can say that in the region R1:

PROPOSITION 3.4. The martingale M is uniformly integrable in the region R1. More-
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over, if

b |E [ξ]|2 > E
[
|ξ|2
]

, (3.6)

then

sup
n∈N

E
[
|Mn|2

]
< ∞. (3.7)

The region L2 is given by the condition (3.6).

3.1.2 An Example of Goldschmidt and Blum (1992)

Goldschmidt and Blum, in [12] (see also [8]), examined the problem of directed

walks with a random potential with real and imaginary parts ω and θ respectively,

i.e., ξ given by the expression

ξ = exp (−βω + iγθ) ,

where (β, γ) ∈ R+ × R is fixed, and the energy ω and phase θ are standard inde-

pendent Gaussian random variables (i.e., with distribution function N(0, 1)). Note

that:

• β allows to adjust the width of the amplitude of ξ, i.e., |ξ|.

• γ allows us to adjust the phase width of ξ, i.e., s = ξ/|ξ|.

We now verify that hypotheses HA1 and HA2 are satisfied.

• (HA1) Since ω ∼ N(0, 1), we have −βω ∼ N(0, β2). Then,

|ξ| = |exp (−βω + iγθ)| = |exp (−βω)| |exp (iγθ)|

= exp (−βω) ∼ Log − N(0, β2),

i.e., the amplitude of ξ has a continuous (lognormal) distribution.

• (HA2) For all α > 0,

E
[
|ξ|α

]
= E [exp (−βαω)] = exp

(
(βα)2

2

)
< ∞.

Recall that the random variables ω and θ are independent. Therefore, the ampli-

tude and phase of ξ are independent, i.e.,

|ξ| = exp (−βω) , (3.8)
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s =
ξ

|ξ| = exp (iγθ) , (3.9)

are independent.

We will continue studying G. By using (3.8) and the moment-generating function

of the normal distribution, we have that G can be expressed by

G(α) =
1
α

ln (b E [|ξ|α]) = 1
α

ln
(

b exp
(
(βα)2

2

))
=

ln b
α

+
α β2

2
, (3.10)

which generates the following table showing the characteristics of G:

α
0 β0/β

G(α) ln b
α + α β2

2 ∄ + β β0 +

G′(α) β2

2 − ln b
α2 ∄ − 0 +

G′′(α) 2 ln b
α3 ∄ + β3/β0 +

Table 3.1: Characteristic of G

where β0 = (2 ln b)1/2. From the above table we can see that G is convex and reaches

its minimum at αmin = β0/β.

We will continue with the characterization of ln (b |E [ξ]|). By (3.8) and (3.9)

together with the moment generating and characteristic functions of the Gaussian

variables ω and θ, and their independence, we obtain

ln (b |E [ξ]|) = ln (b |E [|ξ| s]|) = ln (b |E [|ξ|]| |E [s]|)

= ln (bE [|ξ|]) + ln (|E [s]|)

= ln (bE [exp (−βω)]) + ln (|E [exp (iγθ)]|)

= ln
(

b exp
(

β2

2

))
+ ln

(
exp

(
−γ2

2

))
= ln b +

β2 − γ2

2
. (3.11)

Thanks to (3.10) and (3.11) our conditions for the regions will be:

• (REGION R1) Since G(1) ≥ ln (b |E [ξ]|), then applying the intermediate

value theorem, the condition (3.2) is equivalent to

(2 < αmin ∧ G(2) < ln (b |E [ξ]|)) ∨ (1 < αmin ≤ 2 ∧ G(αmin) < ln (b |E [ξ]|)) ,
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and using (3.11) together with (3.10) we obtain(
β <

β0

2
∧ β2 + γ2 <

(
β0√

2

)2
)

∨
(

β0

2
≤ β < β0 ∧ β + γ < β0

)
.

• (REGION R2) The condition (3.3) is equivalent to

β0 < β ∨
(

β0

2
≤ β < β0 ∧ β + γ > β0

)
.

• (REGION R3) The condition (3.4) is equivalent to

β0

2
> β ∧ β2 + γ2 >

(
β0√

2

)2

.

Then the values of the free energy f(ξ), for the three regions are

fI = ln b +
β2 − γ2

2
, fII = β β0, fIII =

β2
0

4
+ β2.

Figure 3.4: Regions using Gaussian random variables.
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3.1.3 Independent Radii and Phases

With the above example in mind, we can formulate the problem of independent

radii and phases in general. Let ω(0, 1) = θ(0, 1) = 0,

{ω(x) : x ∈ T} and {θ(x) : x ∈ T} ,

be independent families of i.i.d. real-valued random variables. We assume that

• The distributions of ω and θ are continuous, i.e.,

∀a ∈ R : P (ω = a) = 0, P (θ = a) = 0.

• The moment-generating function of ω is well defined, i.e.,

∀β ≥ 0 : E
[
eβω
]
< ∞.

We define our random environment as

ξβ,γ(x) = exp(βω(x) + iγθ(x)),

where β and γ are parameters. We further define the logarithmic moment-generating

and characteristic functions as

λR : R −→ R

β 7−→ ln (E [exp(βω)])
and

λC : R −→ R

γ 7−→ − ln |E [exp(iγθ)]| .

Let us note that using (4.1) below, we can prove that λ′′
R is equal to a variance, i.e.,

λR is a convex function.

As in [4], we define βc ∈ (0, ∞] as the solution of the equation

βcλ′
R(βc)− λR(βc) = ln b,

if it exists, with the convention βc = ∞ if it does not. In order to keep our discussion

concise, we assume that βc < ∞. We also define β0 = βc/2.

Next, we define 0 < γ0 < γc such that

λR(2β0)− 2λR(β0) + 2λC(γ0) = ln b, 2λC(γc) = ln b.

In Section 3.6, we will discuss the proof of the following corollary that helps us

to better characterize the regions of the phase diagram in this case.
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COROLLARY 3.5. Under the hypotheses above, the three regions can be character-

ized as follows:

• (REGION R1) β0 ≤ β < βc and γ ≥ 0 satisfy

βλ′
R(βc)− λR(β) + λC(γ) < ln b,

or 0 ≤ β ≤ β0 and γ ≥ 0 satisfy

λR(2β)− 2λR(β) + 2λC(γ) < ln b.

Furthermore, the value of the free energy f(ξ) is

fI(β, γ) = ln b + λR(β)− λC(γ).

• (REGION R2) β > βc or β0 ≤ β < βc and γ ≥ 0 satisfy

βλ′
R(βc)− λR(β) + λC(γ) > ln b.

Furthermore, the value of the free energy f(ξ) is

fII(β, γ) = βλ′
R(βc).

• (REGION R3) 0 ≤ β < β0 and γ ≥ 0 satisfy

λR(2β)− 2λR(β) + 2λC(γ) > ln b.

Furthermore, the value of the free energy f(ξ) is

fIII(β, γ) =
1
2
(ln b + λR(2β)) .

3.1.4 Comparison with positive-valued environments

Buffet, Patrick and Pulé, in [4], worked with a family {ω(x) : x ∈ T} of i.i.d. real-

valued random variables and ξ given by the expression

ξ = ξβ = exp (βω) , β ≥ 0.

Define the moment-generating functions λ : R+ → R by

λ(β) =ln E [exp(β ω)],

19



and write ξβ(x) = exp(βω(x)). The partition function is given by

Zn(ξβ) = ∑
s∈Sn

n

∏
t=1

ξβ(st) = ∑
s∈Sn

exp

[
β

n

∑
t=1

ω(st)

]
.

Let βc be the positive solution of the equation

β λ′(β)− λ(β) = ln b,

if it exists; otherwise, let βc = ∞.

The following is a result proved in [4].

THEOREM 3.6. For all β ≥ 0, the limit of

f(β) = lim
n→∞

1
n

lnZn(ξβ),

exists almost surely. In addition, f is characterized by

f(β) =

ln b + λ(β), 0 ≤ β ≤ βc,

βλ′(βc), β > βc.

Let us rewrite all this in our language to understand the behavior of the model

with positive weights {|ξ(x)| : x ∈ T}. We define

Zn(|ξ|) = ∑
s∈Sn

n

∏
t=1

|ξ(st)| and Zn(|ξ|2) = ∑
s∈Sn

n

∏
t=1

|ξ(st)|2.

These correspond to directed polymer partition functions in positive-valued en-

vironments. We write |ξ(x)| = exp(ω(x)), λ(β) = ln E[|ξ|β], and already de-

fined βc as the inverse critical temperature for the model with weights |ξ(x)|β =

exp(βω(x)). Therefore,

G(α) =
1
α

ln (b E [|ξ|α]) = ln b + λ(α)

α
,

G′(α) =
αλ′(α)− λ(α)− ln b

α2 .

In particular, αmin = βc and G(αmin) = λ′(βc). Let us note that the model with

positive weights |ξ(x)|β is in the weak disorder regime if and only if G′(β) < 0.

We can then identify the behaviour of the model with positive weights |ξ| in each

of the regions of the phase diagram of the model with complex weights ξ.

• (REGION R1) Here, there exists α > 1 such that G(α) < ln(b|E[ξ]|), in par-
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ticular, G(α) < ln(bE[|ξ|]) = G(1) and G′(1) < 0. Therefore, the model with

positive weights |ξ| is in the weak disorder regime and

1
n

lnZn(|ξ|)
a.s.−→ f(|ξ|) = ln b + ln E[|ξ|].

• (REGIÓN R2) If αmin < 1, then G′(1) > 0, which means that the model with

positive weights |ξ| is in the strong disorder regime, and

1
n

lnZn(|ξ|)
a.s.−→ f(|ξ|) = βλ′(βc) = G(αmin).

The remaining part of the region corresponds to 1 ≤ αmin < 2 and G(αmin) >

ln(b|E[ξ]|). In particular, G′(1) < 0 and G′(2) > 0, which means that the

model with positive environments |ξ| (resp. |ξ|2 = exp(2ω)) is in the weak

disorder regime (resp. strong disorder) and

1
n

lnZn(|ξ|)
a.s.−→ f(|ξ|) = ln b + ln E[|ξ|],

1
n

lnZn(|ξ|2)
a.s.−→ f(|ξ|2) = 2G(αmin).

• (REGION R3) We have αmin > 2, then G′(1) < 0 and G′(2) < 0, so the models

with positive environments |ξ| and |ξ|2 are in the weak disorder regime, and

as a consequence

1
n

lnZn(|ξ|)
a.s.−→ f(|ξ|) = ln b + ln E[|ξ|],

1
n

lnZn

(
|ξ|2
)

a.s.−→ f
(
|ξ|2
)
= ln b + ln E

[
|ξ|2
]

.

3.2 General Estimates

Although the random variables ξ(x) are i.i.d., if we take different paths s, s′ ∈ Sn,

the random variables
n

∏
i=1

ξ(si) and
n

∏
i=1

ξ(s′i),

are not independent. However, the dependence between the summands is manage-

able.

Since the random variables ξ(x) are independent, we can write Zn, for all n ≥ 2,

as

Zn = ∑
x∈T1

ξ(x) Zn−1,x, (3.12)
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Figure 3.5: Example of two paths that start identically (violet color) but separate in
the first generation (red and blue colors).

where the Zn−1,x are independent, with the same law as Zn−1.

LEMMA 3.7. We have E [Z1] = b E [ξ], and

E [Zn] = b E [ξ] E [Zn−1] , n ≥ 2 (3.13)

E [Zn] = (b E [ξ])n , n ≥ 0. (3.14)

Proof. Using the fact that the random variables ξ(x) are i.i.d., with law ξ, we obtain

E [Z1] = E

[
∑

x∈T1

ξ(x)

]
= ∑

x∈T1

E [ξ(x)] = ∑
x∈T1

E [ξ] = b E [ξ] .

On the other hand, for n ≥ 2, we apply reasoning analogous to the previous

one: from (3.12), recalling that the random variables Zn−1,x are independent and

distributed as Zn−1,

E [Zn] = ∑
x∈T1

E [ξ(x) Zn−1,x] = ∑
x∈T1

E [ξ(x)] E [Zn−1,x]

= ∑
x∈T1

E [ξ] E [Zn−1] = b E [ξ] E [Zn−1] ,

thus we conclude (3.13).

22



To prove the (3.14), we will proceed by induction:

(i) (Case n = 1) By the above lemma we prove that indeed E [Z1] = b E [ξ].

(ii) (Case n + 1) We will check that the structure of (3.14) holds for n + 1, assuming

that the formula (3.14) holds for n. Indeed,

E [Zn+1] = b E [ξ] E [Zn] = (b E [ξ]) (b E [ξ])n = (b E [ξ])n+1 .

The following lemma gives us a recursive formula for the second moment of the

modulus of Zn.

LEMMA 3.8. The second moment of the modulus of Zn+1 satisfies

E
[
|Zn+1|2

]
= b E

[
|ξ|2
]

E
[
|Zn|2

]
+ b(b − 1) |E [ξ]|2 |E [Zn]|2 . (3.15)

Proof. First, we note that

|Zn|2 = Zn Zn = ∑
x∈T1

|ξ(x) Zn−1,x|2 + ∑
y,y′∈T1,y ̸=y′

ξ(y) Zn−1,y ξ(y′) Zn−1,y′ . (3.16)

Together with the independence of the random variables ξ(x) and Zn−1,x, x ∈ T1,

we obtain

E
[
|Zn+1|2

]
= ∑

x∈T1

E
[
|ξ(x)|2

]
E
[
|Zn,x|2

]
+ ∑

y′,y∈T1,y′ ̸=y
E
[
ξ(y′)

]
E
[
Zn,y′

]
E [ξ(y)] E

[
Zn,y

]
.

Remember thatξ(x) L
= ξ(y) L

= ξ(y′) L
= ξ and Zn,x

L
= Zn,y

L
= Zn,y′

L
= Zn, then

E
[
|Zn+1|2

]
= ∑

x∈T1

E
[
|ξ|2
]

E
[
|Zn|2

]
+ ∑

y′,y∈T1,y′ ̸=y
E [ξ] E [Zn] E [ξ] E [Zn]

= b E
[
|ξ|2
]

E
[
|Zn|2

]
+ ∑

y′,y∈T1,y′ ̸=y
|E [ξ]|2 |E [Zn]|2

= b E
[
|ξ|2
]

E
[
|Zn|2

]
+ b(b − 1) |E [ξ]|2 |E [Zn]|2 ,

whereupon we conclude (3.15).

We will adopt the notation mα for the moments of ξ, i.e.,

mα = E [ξα] , α ≥ 0.
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Recall that we defined the following objects

F = (Fn)n∈N , Fn = σ (ξ(x) : x ∈ T≤n) , T≤n =
n⋃

i=0

Ti.

LEMMA 3.9. The discrete-time process (Zn)n∈N is integrable, adapted to the filtra-

tion F and satisfies

E [Zn+1| Fn] = bm1 Zn. (3.17)

Proof.

(i) (Integrability) We need to prove E [|Zn|] < ∞. Applying the triangular inequal-

ity, i.i.d. property of the random variables ξ(st), HA2 and Jensen’s inequality

we have

E [|Zn|] ≤ ∑
s∈Sn

∣∣∣∣∣E
[

n

∏
t=1

ξ(st)

]∣∣∣∣∣ = ∑
s∈Sn

n

∏
t=1

|E [ξ(st)]| ≤ ∑
s∈Sn

n

∏
t=1

|E [ξ]|

= ∑
s∈Sn

|E [ξ]|n = |E [ξ]|n ∑
s∈Sn

1 = (b |E [ξ]|)n ≤ (b E [|ξ|])n < ∞.

(ii) (Adaptivity) We need Zn ∈ Fn, for all n ≥ 1. But this trivial because F is the

natural filtration of the random variables ξ(st).

(iii) To prove (3.17), let us note

Zn+1 = ∑
s∈Sn+1

n+1

∏
t=1

ξ(st) = ∑
s∈Sn,

(
n

∏
t=1

ξ(st)

)
Z1,sn . (3.18)

Then, calculating the conditional expectation, we obtain

E [Zn+1| Fn] = ∑
s∈Sn

((
n

∏
t=1

ξ(st)

)
E [Z1,sn | Fn]

)
= ∑

s∈Sn

(
n

∏
t=1

ξ(st) E [Z1]

)

= ∑
s∈Sn

((
n

∏
t=1

ξ(st)

)
(b E [ξ])

)
= bm1 ∑

s∈Sn

n

∏
k=1

ξ(st) = bm1Zn.

We will denote by σ2 the variance of ξ, i.e., σ2 = Var(ξ) = E
[
|ξ − |E [ξ] ||2

]
.

LEMMA 3.10. The second conditional moment of the modulus of Zn+1 satisfies

E
[
|Zn+1|2

∣∣∣Fn

]
= b2 |m1|2 |Zn|2 + bσ2 Zn(|ξ|2). (3.19)
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Proof. Applying properties of the conditional variance and (3.17), we have

E
[
|Zn+1|2

∣∣∣Fn

]
= |E [Zn+1| Fn]|2 + Var [Zn+1| Fn] (3.20)

= (b |m1|)2 |Zn|2 + Var [Zn+1| Fn] . (3.21)

We will continue calculating the conditional variance of Zn+1. We will use (3.18)

and the fact that the random variables Z1,x, where x ∈ Tn, are i.i.d.

Var [Zn+1| Fn] = ∑
s∈Sn

∣∣∣∣∣ n

∏
t=1

ξ(st)

∣∣∣∣∣
2

Var [Z1,sn | Fn] = ∑
s∈Sn

((
n

∏
t=1

|ξ(st)|2
)

Var [Z1]

)

= ∑
s∈Sn

((
n

∏
t=1

|ξ(st)|2
)

(b Var [ξ])

)
= bσ2 ∑

s∈Sn

n

∏
t=1

|ξ(st)|2

= bσ2 Zn(|ξ|2). (3.22)

Therefore, we conclude (3.19) by replacing the recent equality in (3.21).

By computing the expected value in (3.19) and by properties of conditional ex-

pectation, we obtain the following problem in finite differencesE
[
|Zn|2

]
= (b |m1|)2

E
[
|Zn−1|2

]
+ bσ2 (bm̃2)

n−1 , n ≥ 2,

E
[
|Z1|2

]
= (b |m1|)2 + bσ2,

where m̃α denotes the moment of the modulus of ξ, i.e.,

m̃α = E
[
|ξ|α

]
, α ≥ 0.

From this problem, we can obtain the following recursive equations

E
[
|Zn|2

]
− (b |m1|)2

E
[
|Zn−1|2

]
= bσ2 (bm̃2)

n−1 ,

(b |m1|)2
E
[
|Zn−1|2

]
− (b |m1|)2·2

E
[
|Zn−2|2

]
= bσ2 (bm̃2)

n−2 (b |m1|)2 ,
...

(b |m1|)2(n−2)
E
[
|Z2|2

]
− (b |m1|)2(n−1)

E
[
|Z1|2

]
= bσ2 (bm̃2)

1 (b |m1|)2(n−2) .

By adding all these equations on the left (respect. right) side of the equalities, we

will have a telescopic (respect. geometric) summation, i.e.,

E
[
|Zn|2

]
= (b |m1|)2(n−1)

E
[
|Z1|2

]
+ bσ2

n−2

∑
i=0

(bm̃2)
n−1−i (b |m1|)2i
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= (b |m1|)2n + bσ2 (bm̃2)
n−1

n−1

∑
i=0

(
b |m1|2

m̃2

)i

. (3.23)

With this equation, we can infer that the behavior E
[
|Zn|2

]
of an infinitely large

polymer will depend on the value of
b |m1|2

m̃2
.

LEMMA 3.11. It hold that

lim
n→∞

1
n

ln E
[
|Zn|2

]
=


2 fI, b |E [ξ]|2 > E

[
|ξ|2
]

,

2 fIII, b |E [ξ]|2 < E
[
|ξ|2
]

,

2 fI = 2 fIII, b |E [ξ]|2 = E
[
|ξ|2
]

.

(3.24)

Proof. First,

(bm̃2)
n−1

n−1

∑
i=0

(
b |m1|2

m̃2

)i

≈


(b |m1|)2(n−1) , b |m1|2 > m̃2,

(bm̃2)
n−1 , b |m1|2 < m̃2,

n (bm̃2)
n−1 = n (b |m1|)2(n−1) , b |m1|2 = m̃2.

Therefore, using these approximations and (3.23) we get

E
[
|Zn|2

]
≈


(b |m1|)2n

(
1 + σ2

b|m1|2
)

, b |m1|2 > m̃2,

(bm̃2)
n σ2

m̃2
, b |m1|2 < m̃2,

(bm̃2)
n
(

1 + σ2n
b|m1|2

)
= (b |m1|)2n

(
1 + σ2n

b|m1|2
)

, b |m1|2 = m̃2.

This proves (3.24).

REMARK. Assuming E [ξ] = 0, by the previous lemma, we will only have

lim
n→∞

1
n

ln E
[
|Zn|2

]
= 2 fIII.

With that in mind, from this point on we will assume E [ξ] ̸= 0.

3.2.1 Moments Estimates

Recall that we define the process

M = (Mn)n∈N , Mn =
Zn

E [Zn]
.
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Then by setting m ∈ N, for x ∈ Tm it is clear that the random variables Mn,x are i.i.d.

and distributed as Mn.

LEMMA 3.12. The process M is an F-martingale. In other words, M is integrable,

adapted, and satisfies the martingale property, i.e.,

E [Mn+1| Fn] = Mn. (3.25)

Proof. This proposition can be proved using Lemma 3.9.

(i) (Integrability) We need to prove E [|Mn|] < ∞. This literal is obtained by the

integrability of Zn, because

E [|Mn|] =
1

|bm1|n
E [|Zn|] < ∞.

(ii) (Adaptivity) We will continue by showing that Mn ∈ Fn. Now let us note that

Mn =
1

(bm1)
n Zn, so that, by the adaptivity of Zn we have

Mn =
1

(bm1)
n Zn ∈ Fn.

(iii) (Martingale property) To prove (3.25) we use (3.17), whereby

E [Mn+1| Fn] =
1

(bm1)
n+1 E [Zn+1| Fn] =

bm1

(bm1)
n+1Zn = Mn.

By using (3.20), we can obtain a formula analogous to 3.19 for M.

LEMMA 3.13. The second conditional moment of modulus Mn+1 satisfies

E
[
|Mn+1|2

∣∣∣Fn

]
= |Mn|2 +

σ2

b |m1|2

(
m̃2

b |m1|2

)n

Mn(|ξ|2),

where Mn =
Zn(|ξ|2)

E [Zn(|ξ|2)]
and Zn(|ξ|2) = ∑

s∈Sn

n

∏
t=1

|ξ(st)|2.

Proof. Applying properties of the conditional variance, the fact that M is a martin-

gale, and (3.14) together with (3.22) we have

E
[
|Mn+1|2

∣∣∣Fn

]
= |E [Mn+1| Fn]|2 + Var [Mn+1| Fn]

= |Mn|2 + Var

[
Zn+1

(b E [ξ])n+1

∣∣∣∣∣Fn

]
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= |Mn|2 +
1

|b E [ξ]|2(n+1)
Var [Zn+1| Fn]

= |Mn|2 +
bσ2

|b E [ξ]|2(n+1)
Zn(|ξ|2)

= |Mn|2 +
σ2

b |m1|2

(
m̃2

b |m1|2

)n

Mn(|ξ|2).

Remember that Proposition 3.1 tells us that the function

G(α) =
1
α

ln (b E [|ξ|α]) ,

satisfies exactly one of the following properties:

• There exists a unique minimizer of G denoted by αmin > 0 , i.e., G is strictly

decreasing in (0, αmin] and strictly increasing in [αmin, ∞).

• G is strictly decreasing in R+, in this case we note αmin = ∞.

PROPOSITION 3.14. Suppose b |E [ξ]|2 > E
[
|ξ|2
]

which is equivalent to G(2) <

ln(b |E [ξ]|). For all α ∈ [0, 2] we have

sup
n∈N

E
[
|Mn|α

]
< ∞. (3.26)

Moreover for all α ∈ (0, 2) such that G(α) < ln(b |E [ξ]|), (3.26) is also satisfied.

Proof. Let us take 0 < α ≤ 2. Using Jensen’s inequality and Lemma 3.13, we have

E
[
|Mn|α

∣∣Fn−1
]
≤
(

E
[
|Mn|2

∣∣∣Fn−1

])α/2

=

(
|Mn−1|2 +

σ2

b |m1|2

(
m̃2

b |m1|2

)n

Mn−1(|ξ|2)
)α/2

≤ |Mn−1|α +
(

σ√
b |m1|

)α (
m̃2

b |m1|2

)nα/2

Mα/2
n−1(|ξ|

2). (3.27)

From the last inequality, we can obtain a recursive inequality, using the proper-

ties of conditional expectation and Jensen’s inequality, with α/2 ∈ [0, 1]: we have

E
[
|Mn|α

]
= E

[
E
[
|Mn|α

∣∣Fn−1
]]

≤ E
[
|Mn−1|α

]
+

(
σ√

b |m1|

)α (
m̃2

b |m1|2

)nα/2

E
[
Mα/2

n−1(|ξ|
2)
]
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≤ E
[
|Mn−1|α

]
+

(
σ√

b |m1|

)α (
m̃2

b |m1|2

)nα/2 (
E
[
Mn−1(|ξ|2)

])α/2

≤ E
[
|Mn−1|α

]
+

(
σ√

b |m1|

)α (
m̃2

b |m1|2

)nα/2

,

if this inequality is applied recursively, we have

E
[
|Mn|α

]
≤ E

[
|Mn−1|α

]
+

(
σ√

b |m1|

)α (
m̃2

b |m1|2

)nα/2

≤ E
[
|Mn−2|α

]
+

(
σ√

b |m1|

)α 1

∑
i=0

(
m̃2

b |m1|2

)(n−i)α/2

≤ · · ·

= E
[
|M1|α

]
+

(
σ√

b |m1|

)α n

∑
i=2

(
m̃2

b |m1|2

)iα/2

, (3.28)

with this control we conclude (3.26) if m̃2
b|m1|2

< 1, i.e., b |E [ξ]|2 > E
[
|ξ|2
]
.

On the other hand, by Lemma 3 and since 0 < α ≤ 2, for all n ≥ 1 we have

Z1/2
n

(
|ξ|2
)
≤ Z1/α

n
(
|ξ|α

)
which is equivalent to

Zα/2
n

(
|ξ|2
)
≤ Zn

(
|ξ|α

)
,

so that

Mα/2
n

(
|ξ|2
)
=

 Zn

(
|ξ|2
)

E
[
Zn

(
|ξ|2
)]
α/2

=

Zn

(
|ξ|2
)

(bm̃2)n

α/2

≤
Zn
(
|ξ|α

)(
b E

[
|ξ|α

])n

 b E
[
|ξ|α

](
b E

[
|ξ|2
])α/2


n

=
Zn(|ξ|α)

E
[
Zn
(
|ξ|α

)]
 b E

[
|ξ|α

](
b E

[
|ξ|2
])α/2


n

= Mn
(
|ξ|α

)  b E
[
|ξ|α

](
b E

[
|ξ|2
])α/2


n

. (3.29)

Using the identity (3.29) in (3.27) we get

E
[
|Mn|α

∣∣Fn−1
]
≤ |Mn−1|α +

(
σ√

b |m1|

)α (
b E

[
|ξ|α

]
(b |E [ξ]|)α

)n

Mn−1(|ξ|α),
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by taking the expected value, we have

E
[
|Mn|α

]
= E

[
E
[
|Mn|α

∣∣Fn−1
]]

≤ E
[
|Mn−1|α

]
+

(
σ√

b |m1|

)α (
b E

[
|ξ|α

]
(b |E [ξ]|)α

)n

E
[
Mn−1(|ξ|α)

]
= E

[
|Mn−1|α

]
+

(
σ√

b |m1|

)α (
b E

[
|ξ|α

]
(b |E [ξ]|)α

)n

,

if we work analogously to the inequality (3.26) we get

E
[
|Mn|α

]
≤ E

[
|M1|α

]
+

(
σ√

b |m1|

)α n

∑
i=2

(
b E

[
|ξ|α

]
(b |E [ξ]|)α

)i

. (3.30)

Then based on the above inequality we conclude (3.26) if
b E[|ξ|α]
(b|E[ξ]|)α < 1, which in turn

is equivalent to G(α) < ln(b |E [ξ]|).

Proof of Proposition 3.4. We use (3.28) with α = 2 to obtain

E
[
|Mn(ξ)|2

]
≤ E

[
|M1|2

]
+

σ2

b |m1|2
n

∑
i=2

(
m̃2

b |m1|2

)i

,

by (3.6), the right-hand side of the above inequality converges, with which we con-

clude (3.7).

COROLLARY 3.15. If there exists α ∈ (1, 2) such that G(α) < G(2) < ln(b |E [ξ]|),
then we still obtain (3.26).

Proof. By using (3.30) in the recent inequality we get

E
[
|Mn|α

]
≤ E

[
|M1|α

]
+

(
σ√

b |m1|

)α n

∑
i=2

(
b E

[
|ξ|α

]
(b |E [ξ]|)α

)i

,

to conclude, it is sufficient to remember that G(α) < G(2) < ln(b |E [ξ]|), then

we have
b E

[
|ξ|α

]
(b |E [ξ]|)α

< 1, so that the summation on the right converges. We obtain

(3.26).

In Proposition (3.14) we considered the hypothesis b |E [ξ]|2 > E
[
|ξ|2
]
. Then it

is natural to ask what happens when the inequality is in the opposite direction.

We will continue studying the case b |E [ξ]|2 < E
[
|ξ|2
]

by defining a new pro-
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cess

X = (Xn)n∈N , Xn =
|Zn|2

E
[
|Zn|2

] .

Because of the linearity of the expected value, it is trivial to note that E [Mn] =

E [Xn] = 1.

The following lemma gives us a result similar to Proposition 3.14.

LEMMA 3.16. The conditional expectation of Xn+1 is given by

E [Xn+1| Fn] = b2|m1|2
E
[
|Zn|2

]
E
[
|Zn+1|2

] Xn + bσ2 (bm̃2)
n

E
[
|Zn+1|2

] Mn(|ξ|2).

Proof. It is sufficient to use (3.19) together with the respective denominators of the

processes X and Y

E [Xn+1| Fn] =
1

E
[
|Zn+1|2

] E
[
|Zn+1|2

∣∣∣Fn

]

=
b2|m1|2

E
[
|Zn+1|2

] |Zn|2 +
bσ2

E
[
|Zn+1|2

] Zn(|ξ|2)

= b2|m1|2
E
[
|Zn|2

]
E
[
|Zn+1|2

] Xn + bσ2 (bm̃2)
n

E
[
|Zn+1|2

] Mn(|ξ|2).

Following the idea of presenting similar results, we have one for Corollary 3.15.

THEOREM 3.17. Suppose αmin > 2, then there exists α > 2 such that

sup
n∈N

E
[
|Xn|α/2

]
< ∞. (3.31)

Proof. Applying the triangular inequality together with the Multinomial Theorem,

we have

|Zn+1|4 ≤
(

∑
x∈T1

|ξ(x)Zn,x|
)4

= ∑
k1+k2+···+kb=4

(
4

k1, k2, . . . , kb

) b

∏
i=1

∣∣∣ξ(1, ki)Zn,(1,ki)

∣∣∣ki
.

Now taking α ≤ 8/3, we have α/4 < 1; applying Lemma 3 together with the above

and Jensen’s inequality, by defining Pb
k =

b!
(b − k)!

and λR(β) = ln
(

E
[
|ξ|β

])
we
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obtain

E
[
|Zn+1|α

]
≤ E

[(
|Zn+1|4

)α/4
]

≤ E

[
∑

k1+···+kb=4

(
4

k1, . . . , kb

) b

∏
i=1

∣∣∣ξ(1, ki)Zn,(1,ki)

∣∣∣kiα/4
]

= ∑
k1+···+kb=4

(
4

k1, . . . , kb

) b

∏
i=1

E

[∣∣∣ξ(1, ki)Zn,(1,ki)

∣∣∣kiα/4
]

= Pb
1 eλR(α) E

[
|Zn|α

]
+ 3 Pb

2 e2λR(α/2)
(

E
[
|Zn|α/2

])2

+ 4 Pb
2 eλR(α/4)+λR(3α/4) E

[
|Zn|α/4

]
E
[
|Zn|3α/4

]
+ 6 Pb

3 e2λR(α/4)+λR(α/2)
(

E
[
|Zn|α/4

])2
E
[
|Zn|α/2

]
+ Pb

4 e4λR(α/4)
(

E
[
|Zn|α/4

])4

≤ Pb
1 eλR(α) E

[
|Zn|α

]
+ 3 Pb

2 eα/2λR(2)
(

E
[
|Zn|2

])α/2

+ 4 Pb
2 eλR(2)(α/8+3α/8)

(
E
[
|Zn|2

])α/8 (
E
[
|Zn|2

])3α/8

+ 6 Pb
3 eλR(2)(α/4+α/4)

(
E
[
|Zn|2

])α/4 (
E
[
|Zn|2

])α/4

+ Pb
4 eα/2λR(2)

(
E
[
|Zn|2

])α/2

= bm̃α E
[
|Zn|α

]
+ b(b − 1)(b2 + 3)m̃α/2

2

(
E
[
|Zn|2

])α/2
,

applying (3.15), we have E
[
|Zn+1|2

]
≥ bm̃2 E

[
|Zn|2

]
. In the above inequality, we

obtain the following estimate

∀n ∈ N : E
[
Xα/2

n+1

]
≤ bm̃α

(bm̃2)
α/2 E

[
Xα/2

n

]
+ c,

where c = b(b−1)(b2+3)
bα/2 , then with the above recursion, we can pose the following

system of inequations

E
[
Xα/2

n

]
− bm̃α

(bm̃2)
α/2 E

[
Xα/2

n−1

]
≤ c,

bm̃α

(bm̃2)
α/2 E

[
Xα/2

n−1

]
−
(

bm̃α

(bm̃2)
α/2

)2

E
[
Xα/2

n−2

]
≤ c bm̃α

(bm̃2)
α/2 ,

...(
bm̃α

(bm̃2)
α/2

)n−2

E
[
Xα/2

2

]
−
(

bm̃α

(bm̃2)
α/2

)n−1

E
[
Xα/2

1

]
≤ c

(
bm̃α

(bm̃2)
α/2

)n−2

.

If we add all these inequations on the left-hand side, we will have a telescopic sum-
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mation and on the right-hand side, a geometric series, i.e., we have

E
[
Xα/2

n

]
≤
(

bm̃α

(bm̃2)
α/2

)n−1

E
[
Xα/2

1

]
+ c

n−2

∑
i=0

(
bm̃α

(bm̃2)
α/2

)i

.

Recall that αmin > 2 and G is convex so that taking α ∈ (2, 8/3), we have G(2) >

G(α), i.e., bm̃α

(bm̃2)
α/2 < 1, and consequently the summation of the right-hand side of

the above inequality converges to

B̃α =
b(b − 1)(b2 + 3)

bα/2

(
1 − bm̃α

(bm̃2)
α/2

)−1

.

REMARK. Based on the assumptions of the above theorem, we still obtain (3.31) in

the region R3 and on the boundary of the regions R1 and R3.

3.2.2 Lower tail bounds

The following results correspond to [8, Lemma 6.1] and [8, Theorem 6.4]. We include

the proofs for the convenience of the reader.

Let us begin by introducing some notation and establishing two preliminary re-

sults. Given (z1, z2, . . . , zb) = z ∈ Cb we define ∥z∥ = ∥z∥∞ = max
1≤k≤b

|zk| and

q(w, z) =
w · z
∥z∥ =

1
∥z∥

b

∑
k=1

wk zk, w, z ∈ Cb, ∥z∥ ̸= 0.

LEMMA 3.18. Let x1, x2, . . . , xb be i.i.d. complex-valued random variables such that

their moduli |xk| have continuous distribution. Then for all ν > 0 there exists c =

c(ν) > 0 such that for all z ∈ Cb − {0} we have

P (|q(x, z)| < c) < ν, (3.32)

where x = (x1, x2, . . . , xb).

Proof. First, let us study the distribution function of |x1|. We will denote

F : R+ −→ R

t 7−→ F(t) = P (|x1| ≤ t) .

By hypothesis, F is continuous. Furthermore,

lim
t→∞

F(t) = 1 and lim
t→−∞

F(t) = 0.
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Hence, F is uniformly continuous so that, for all ν > 0, there exists δ = δ(ν) > 0

such that

∀t, t′ ≥ 0 :
∣∣t − t′

∣∣ < δ ⇒ P
(
min{t, t′} < |x1| ≤ max{t, t′}

)
=
∣∣F(t)− F(t′)

∣∣ < ν,

if we take, in particular, t = d + c and t′ = d − c, where c = c(ν) = δ/3 and d ∈ R+,

in the above proposition we obtain

sup
d∈R+

P (|x1| ∈ B(d, c)) < ν. (3.33)

Now let z = (z1, . . . , zb) ∈ Cb − {0}. Without loss of generality, we will assume

that |z1| = ∥z∥. Since z ̸= 0, then |z1| > 0.

Using the definition of q, the inverse triangular inequality, properties of the condi-

tional expectation along with independence, we have

P (|q(x, z)| < c) = P

(∣∣∣∣∣x1 +
b

∑
k=2

xk zk

|z1|

∣∣∣∣∣ < c

)
≤ P

(∣∣∣∣∣|x1| −
∣∣∣∣∣ b

∑
k=2

xk zk

|z1|

∣∣∣∣∣
∣∣∣∣∣ < c

)

= E

[
P

(∣∣∣∣∣|x1| −
∣∣∣∣∣ b

∑
k=2

xk zk

|z1|

∣∣∣∣∣
∣∣∣∣∣ < c

)]

= E

[
P

(∣∣∣∣∣|x1| −
∣∣∣∣∣ b

∑
k=2

xk zk

|z1|

∣∣∣∣∣
∣∣∣∣∣ < c

∣∣∣∣∣ ∣∣∣ b

∑
k=2

xk zk

|z1|

∣∣∣)] .

We conclude (3.32) by applying (3.33) to the above equality, as

P (|q(x, z)| < c) = E

[
P

[
|x1| ∈ B

(∣∣∣∣∣ b

∑
k=2

xk zk

|z1|

∣∣∣∣∣ , c

)∣∣∣∣∣ ∣∣∣ b

∑
k=2

xk zk

|z1|

∣∣∣]] ≤ ν.

Now, let us take ν ∈ (0, 1) and define the function

ϕν : R+ −→ R+

t 7−→ tb + ν.

Let us check that ϕν has two fixed points in the interval [0, 1] for ν small enough.

Indeed, let
Φν : R+ −→ R

t 7−→ tb − t + ν.

Now, Φ′
ν(tcrit) = 0 is equivalente to

b (tcrit)
b−1 − 1 = 0 i.e. tcrit =

1
b1/(b−1)

.
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As Φ′′
ν ≥ 0, then Φν is convex, so Φν(tcrit) = inf

t∈R+

Φν(t). To find the two fixed points,

it is enough to require that Φν(tcrit) < 0, which is equivalent to

0 < ν <
1

b1/(b−1)
− 1

bb/(b−1)
=

b − 1
bb/(b−1)

.

From now on, we will assume that ν fulfills the previous inequality with which we

have the existence of two fixed points for ϕν which we will denote t−ν and t+ν such

that 0 < t−ν < t+ν < 1. Now,

ϕν(2ν) = 2bνb + ν < 2ν ⇔ νb−1 <
1
2b .

Hence, if this estimate is satisfied, ϕν(2ν) < 2ν. As ϕν(0) > 0, we conclude that

t−ν < 2ν for ν small enough. In particular, lim
ν↓0

t−ν = 0. Similarly, lim
ν↓0

t+ν = 1.

On the other hand, if t ∈ (t−ν , t+ν ), it holds that ϕν(t) < t, so that

∀0 ≤ t < t+ν : lim
n→∞

ϕn
ν (t) = t−ν .

The following results correspond to [8, Lemma 6.3].

LEMMA 3.19. Suppose that for some n ∈ N there exists (F, a) ∈ R × (0, 1) such that

P (ln |Zn| ≤ F) < a. (3.34)

Then for all η > 0 there exists K = K(η, a) ∈ N0 and C = C(η) ∈ R such that for all

k > K we have

P (ln |Zn+k| ≤ F − kC) < η.

Proof. Take a generic η > 0. By the previous discussion, there exist νη, νa > 0 such

that

∀0 < ν < νη : t−ν <
η

2
,

∀0 < ν < νa : t+ν > a.

Then, let us set ν = ν (η, a) ∈
(
0, min

{
νη, νa

})
whereby

lim
n→∞

ϕn
ν (a) <

η

2
. (3.35)

On the other hand, by Lemma 3.18, there exists a constant c = c(ν) > 0, such that

sup
z∈Cb−{0}

P
(

ln
∣∣∣q (ξ, z

)∣∣∣ < −C
)
< ν, ξ = (ξ(x))x∈T1

,
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where C = ln(1/c).

Now we will prove by induction that for all j ∈ N0 we have

P
(
ln
∣∣Zn+j

∣∣ ≤ F − jC
)
< ϕ

j
ν(a). (3.36)

The case j = 0 follows trivially, from the hypothesis (3.34). Now we will assume

that (3.36) is satisfied, with j, and we will prove that the estimate holds for j + 1. For

this, let us note the following points:

1. Applying (3.12), we have

ln
∣∣Zn+j+1

∣∣ = ln

∣∣∣∣∣ ∑
x∈T1

ξ(x) Zn+j,x

∣∣∣∣∣ = ln
∣∣∣q (ξ,Zn+j

)∣∣∣+ ln max
x∈T1

∣∣Zn+j,x
∣∣

= ln
∣∣∣q (ξ,Zn+j

)∣∣∣+ max
x∈T1

ln
∣∣Zn+j,x

∣∣ , (3.37)

where Zn+j =
(
Zn+j,x

)
x∈T1

.

2. By the induction assumption (3.36) and since the random variables Zn+j,x are

i.i.d., we obtain

P

(
max
x∈T1

ln
∣∣Zn+j,x

∣∣ ≤ F − jC
)
= P

( ⋂
x∈T1

{
ln
∣∣Zn+j,x

∣∣ ≤ F − jC
})

= ∏
x∈T1

P
(
ln
∣∣Zn+j,x

∣∣ ≤ F − jC
)

= ∏
x∈T1

P
(
ln
∣∣Zn+j

∣∣ ≤ F − jC
)

< ∏
x∈T1

ϕ
j
ν(a) =

(
ϕ

j
ν(a)

)b
. (3.38)

3. We will continue with a control for the event
{

ln
∣∣∣q (ξ,Zn+j

)∣∣∣ < −C
}

. By

Lemma 3.18, we have

P
(

ln
∣∣∣q (ξ,Zn+j

)∣∣∣ < −C
)
= E

[
P
[

ln
∣∣∣q (ξ,Zn+j

)∣∣∣ < −C
∣∣∣Zn+j

]]
< E [ν] = ν.

4. Finally, to conclude the proof by induction, we apply (3.37), (3.38), the above

inequality, together with the definition of ϕ, and we obtain

P
(
ln
∣∣Zn+j+1

∣∣ ≤ F − (j + 1)C
)
≤ P

({
ln
∣∣∣q (ξ,Zn+j

)∣∣∣ < −C
}
∪
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{
max
x∈T1

ln
∣∣Zn+j,x

∣∣ ≤ F − jC
})

≤ P
(

ln
∣∣∣q (ξ,Zn+j

)∣∣∣ < −C
)

+ P

(
max
x∈T1

ln
∣∣Zn+j,x

∣∣ ≤ F − jC
)

<
(

ϕ
j
ν(a)

)b
+ ν = ϕ

j+1
ν (a).

To conclude, we use (3.36) and the limit (3.35), so that there exists K = K(η, a) ∈
N0 such that for all k > K we have

P (ln |Zn+k| ≤ F − kC) < ϕk
ν(a) < η.

COROLLARY 3.20. Let ε > 0. Suppose that there exists (N1, f, a) ∈ N × R × (0, 1)

such that

P

(
1
n

ln |Zn| ≤ f − ε

2

)
< a, (3.39)

for all n ≥ N1. Then, for all η > 0 there exists N = N(η, a, ε, N1) ∈ N such that

P

(
1
n

ln |Zn| ≤ f − ε

)
< η, (3.40)

for all n > N.

Proof. By (3.39) and Lemma 3.19, there exists (K, C) ∈ N × R (depending only on η

and independent of n) such that, for all k > K, we have

η > P
[
ln |Zn+k| ≤ n

(
f − ε

2

)
− kC

]
= P

[
1

n + k
ln |Zn+k| ≤

1
n + k

(
n
(
f − ε

2

)
− kC

)]
= P

[
1

n + k
ln |Zn+k| ≤ f − ε

2
− k

n + k

(
f − ε

2
+ C

)]
. (3.41)

Recall that K is independent of n. Then as lim
n→∞

k
n + k

(
f − ε

2
+ C

)
= 0, there

exists N2 = N2(ε) ∈ N such that, for all n > N2, we obtain∣∣∣∣ k
n + k

(
f − ε

2
+ C

)∣∣∣∣ < ε

2
, (3.42)

whereby, defining N3 = max{N1, N2}, for all n > N3, we have

P

[
1

n + k
ln |Zn+k| ≤ f − ε

]
= P

[
1

n + k
ln |Zn+k| ≤ f − ε

2
− ε

2

]
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≤ P

[
1

n + k
ln |Zn+k| ≤ f − ε

2
− k

n + k

(
f − ε

2
+ C

)]
< η,

where we applied (3.42) and (3.41). We conclude (3.40) using the above inequality

and defining N = N(η, a, ε, N1) = K + N3.

3.2.3 Almost-Sure Lower Bounds

The following result improves the lemmas of the previous section with the τ-property;

recall that we defined this property as follows:

DEFINITION 3.2 (τ-property). Let τ ∈ (0, 2] be fixed, and let us denote the ball of

center z ∈ C and radius r as B(z, r). We say that the environment satisfies the τ-

property if there exists a finite constant C > 0 such that

(∀(z, r) ∈ C × R∗
+ : P[ξ ∈ B(z, r)] ≤ Crτ) ∧ E

[
|ξ|−τ

]
< ∞.

The next result will be the key to show the almost sure convergence of the free

energy.

LEMMA 3.21. Let ξ1, ξ2, . . . , ξk be i.i.d. random variables, with law ξ satisfying the

τ-property. Then,

P
[
ξ[1,k] ∈ B(z, r)

]
≤ Crτ

(
E
[
|ξ|−τ

])k−1
, (3.43)

where ξ[1,k] =
k

∏
i=1

ξi.

Proof. We will proceed to develop this proof by induction.

(i) (Case k = 1) This case is just the definition of the τ-property.

(ii) (Case k + 1) Now we will assume our induction hypothesis, i.e., suppose that

(3.43) holds for k and show that the structure of the inequality holds for k + 1:

P
[
ξ[1,k+1] ∈ B(z, r)

]
= P

[
ξ[1,k]ξk+1 ∈ B(z, r)

]
= E

[
P

[
ξ[1,k] ∈ B

(
z

ξk+1
,

r
|ξk+1|

)∣∣∣∣ ξk+1

]]
≤ E

[
C
(

r
|ξk+1|

)τ (
E
[
|ξ|−τ

])k−1
]
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= Crτ
(

E
[
|ξ|−τ

])k−1
E
[
|ξk+1|−τ

]
= Crτ

(
E
[
|ξ|−τ

])k
.

LEMMA 3.22. Under the assumptions of the previous lemma, assume that, for all

c > 0, there exists N ∈ N such that

P

(
1
n

ln |Zn| < f − c
)
≤ p < 1, (3.44)

for all n ≥ N. Then, almost surely,

lim inf
n→∞

1
n

ln |Zn| ≥ f. (3.45)

Proof. Let c > 0. Let m ∈ N and set l ∈ {0, 1, . . . , m}. Then, by decomposing

Zl+(m+1)k into the generation l + k, we obtain

ln
∣∣∣Zl+(m+1)k

∣∣∣ = ln

∣∣∣∣∣ ∑
s∈Sl+k

ξl+k(s) Zmk,sl+k

∣∣∣∣∣
= ln

∣∣∣q (ξ l+k,Zmk

)∣∣∣+ ln max
x∈Tl+k

|Zmk,x|

= ln
∣∣∣q (ξ l+k,Zmk

)∣∣∣+ max
x∈Tl+k

ln |Zmk,x|

= ln |Ak,l|+ max
x∈Tl+k

ln |Zmk,x| , (3.46)

where

Ak,l = q
(

ξ l+k,Zmk

)
, ξ l+k = (ξl+k(s))s∈Sl+k

,

ξl+k(s) =
l+k

∏
t=1

ξ(st), Zmk = (Zmk,x)x∈Tl+k
.

Applying the fact that the random variables Zn+j,x are i.i.d. and the hypothesis

(3.44) we obtain

P

(
max

x∈Tl+k
ln |Zmk,x| ≤ mk(f − c)

)
= P

 ⋂
x∈Tl+k

{ln |Zmk,x| ≤ mk(f − c)}


= ∏

x∈Tl+k

P (ln |Zmk,x| ≤ mk(f − c))

= ∏
x∈Tl+k

P (ln |Zmk| ≤ mk(f − c))

≤ ∏
x∈Tl+k

p = pbl+k
.
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Then, by Borel-Cantelli’s First Lemma, there exists an almost surely finite value K ∈
N such that

max
x∈Tl+k

ln |Zmk,x| ≥ mk(f − c),

for all k ≥ K. Applying the above inequality in (3.46), it is true that

1
l + (m + 1)k

ln |Zl+(m+1)k| ≥
1

l + (m + 1)k
ln |Ak,l|+

mk
l + (m + 1)k

(f − c)

= f − c +
1

l + (m + 1)k
ln |Ak,l|

− l + k
l + (m + 1)k

(f − c)

≥ f − 2c +
1

l + (m + 1)k
ln |Ak,l|,

for k or m, sufficiently large. Then, we have

lim inf
k→∞

1
l + (m + 1)k

ln |Zl+(m+1)k| ≥ f − 2c + lim inf
k→∞

1
l + (m + 1)k

ln |Ak,l|. (3.47)

Take κ > 0 and let x∗ ∈ Tl+k be such that |Zmk,x∗ | = max
x∈Tl+k

|Zmk,x|. Then,

P
[
|Ak,l| < κk+l

]
= ∑

x∈Tl+k

P
[
|Ak,l| < κk+l

∣∣∣ x∗ = x
]

P [x∗ = x]

= ∑
x∈Tl+k

P
[
ξl+k(x) ∈ B

(
Zmk, κl+k

)]
P [x∗ = x]

= ∑
x∈Tl+k

P
[
ξ(x) ξ̃(x) ∈ B

(
Zmk, κl+k

)]
P [x∗ = x] , (3.48)

where ξ̃(x) =
l+k−1

∏
t=1

ξ(xt). Furthermore

P
[
ξ(x) ξ̃(x) ∈ B

(
Zmk, κl+k

)]
= E

[
P
[

ξ(x) ∈ B
(

ξ̃(x)−1Zmk, |ξ̃(x)|−1κl+k
)∣∣∣ ξ l+k−1

]]
≤ C E

[
|ξ̃(x)|−τκτ(l+k)

]
≤ C E[|ξ|−τ]l+k−1κτ(l+k),

therefore, taking κ small enough, we apply the recent inequality in (3.48) and to-

gether with the Borel-Cantelli First Lemma, there exists an almost surely finite k1 =

k1(ξ) ∈ N such that

∀k ≥ k1 : |Ak,l| ≥ κl+k.
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As a consequence, we have

lim inf
k→∞

1
l + (m + 1)k

ln |Ak,l| ≥ lim inf
k→∞

l + k
l + (m + 1)k

ln κ =
1

m + 1
ln κ.

Therefore, if m is sufficiently large, we apply the above inequality in (3.47) so that

lim inf
k→∞

1
l + (m + 1)k

ln |Zl+(m+1)k| ≥ f − 3c.

We conclude (3.45) by taking c → 0 in the above inequality.

3.2.4 A Generic Computation

Let us see how the arguments from the previous sections will be applied. The fol-

lowing scheme will be used in the proofs of Lemma 3.28 for the region R3 and

Lemma 3.32 for the region R2, where details will be omitted.

We consider the usual partition function Zn(ξ) and a quantity of the form

Wn = E
[
|Zn|2

∣∣∣ G] ,

where G ⊂ F is a σ-algebra. Assume that

E

[
|Zn|2η

|Wn|η

∣∣∣∣ G] ≤ C, (3.49)

almost surely, for some η > 1 and all n ≥ 1.

PROPOSITION 3.23. If the limit

lim
n→∞

1
2n

lnWn(ξ) = f,

holds almost surely, then the limit

lim
n→∞

1
n

ln |Zn(ξ)| = f,

holds in probability. Furthermore, under the τ-condition, this limit holds almost

surely.

Proof. We remove ξ from the notation. Integrating (3.49) and applying Chebyshev’s

inequality, we obtain

P
[
|Zn|2 ≥ nWn

]
≤ C

nη ,
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for some finite C > 0, so that, by Borel-Cantelli, there exists an almost surely finite

quantity C(ω) > 0 such that

|Zn|2 ≤ C(ω)nWn,

for all n ≥ 1. Hence,

lim sup
n→∞

1
n

ln |Zn|2 ≤ lim
n→∞

1
n

lnWn = f, P − almost surely. (3.50)

To obtain a lower bound, let c > 0. By Paley-Zygmund’s inequality (Lemma 3.24),

(3.49) also implies that there exists p ∈ (0, 1) such that

P
[
|Zn|2 ≥ e−cnWn

]
≥ 1 − p > 0,

for all n ≥ 1. This entails that

P
[
ln |Zn|2 < lnWn − cn

]
≤ p < 1,

for all n ≥ 1. Hence, if p < p′ < 1,

P
[
ln |Zn|2 < nf − 2cn

]
= P

[
ln |Zn|2 < nf − 2cn, lnWn ≥ n(f − c)

]
+ P

[
ln |Zn|2 < nf − 2cn, lnWn < (f − c)

]
≤ P

[
ln |Zn|2 < lnWn − cn

]
+ P [lnWn < n(f − c)] ≤ p′,

for n large enough. By Corollary 3.20, we can make the right hand side as small as

we want by taking n large enough. This yields convergence in probability. Under the

τ-condition, we can apply Lemma 3.22 to obtain the almost sure lower bound.

To continue our study, we will present the following lemma, whose proof is

based on the Paley-Zygmund inequality.

LEMMA 3.24. Suppose that the non-negative random variable Y satisfies

E [Yγ]

(E [Y])γ ≤ B, (B, γ) ∈ R+ × [1, ∞).

Then, for all 0 ≤ θ ≤ 1,

P

[
Y

E [Y]
> θ

]
≥
(

1 − θ

1 + θ

)γ/(γ−1) 1
B1/(γ−1)

.

Proof. First, let us take a 0 ≤ θ ≤ 1, then applying the inequalities of Hölder,
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Minkowski, and Jensen, we have

(1 − θ) E [Y] = E [Y − θE [Y]] ≤ E
[
(Y − θE [Y]) 1{Y>θE[Y]}

]
≤
(
E
[
|Y − θE [Y]|γ

])1/γ
(P [Y > θE [Y]])(γ−1)/γ

≤
(
(E [Yγ])1/γ +

(
E
[
(θE [Y])γ])1/γ

)
(P [Y > θE [Y]])(γ−1)/γ

≤
(
(E [Yγ])1/γ + (E [(θγE [Yγ])])1/γ

)
(P [Y > θE [Y]])(γ−1)/γ

= (1 + θ) (E [Yγ])1/γ (P [Y > θE [Y]])(γ−1)/γ ,

which is equivalent to writing

P

[
Y

E [Y]
> θ

]
= P [Y > θE [Y]] ≥

((
1 − θ

1 + θ

)γ (E [Y])γ

E [Yγ]

)1/(γ−1)

≥
(

1 − θ

1 + θ

)γ/(γ−1) 1
B1/(γ−1)

.

3.3 Region R1

For this region we will assume that there exists α ∈ (1, 2] such that G(α) < ln(b |E [ξ]|),
and recall that E [ξ] ̸= 0. Since the process (Mn(ξ))n∈N is a uniformly integrable

martingale, by the Martingale Convergence Theorem, there exists M∞(ξ) ∈ L1 such

that

Mn(ξ)
a.s.−→ M∞(ξ), (3.51)

and in L1.

The following lemma allows us to calculate the free energy in this regime.

LEMMA 3.25. Assume that there exists α ∈ (1, 2] such that G(α) < ln(b |E [ξ]|) and

the law of ξ is continuous. Then the probability of the event {M∞(ξ) = 0} is zero or

one.

We will postpone the demonstration until the end of the section and calculate

the free energy in the region R1.

LEMMA 3.26. Under the assumptions of Theorem 3.2, it holds that

1
n

ln |Zn(ξ)|
a.s.−→ ln (b |E[ξ]|) .
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Proof. Applying (3.51) and u.i. we obtain

E[M∞] = lim
n→∞

E[Mn] = 1,

then P [Mn = 0] = 0. Therefore,

lim
n→∞

1
n

lnMn = lim
n→∞

1
n

lnM∞ = 0, P − a. s. .

We thus conclude

1
n

ln |Zn| =
1
n

ln |E [Zn]Mn| =
1
n

ln
∣∣(bE [ξ])n Mn

∣∣ a.s.−→ ln (b | E [ξ]|) ,

by applying the definition of Mn and (3.14).

The following technical lemma is key to proving Lemma 3.25.

LEMMA 3.27. Let z1, · · · , zb ∈ C and ω1, · · · , ωb be complex-valued independent

random such that their moduli |ωk| have continuous distribution.. Then,

P

[
b

∑
k=1

zkωk = 0

]
= 0,

if and only if z1 = · · · = zb = 0.

Proof. Let us note that Lemma 3.18 proves this statement.

Proof of Lemma 3.25. By (3.12), we have the simple identity

Zn+1 = ∑
x∈T1

ξ(x) Zn,x,

so that using (3.12) and (3.14) we have

Mn+1 =
Zn+1

E [Zn+1]
=

1

(b E [ξ])n+1

(
∑

x∈T1

ξ(x) Zn,x

)
=

1
b ∑

x∈T1

ξ(x)
E [ξ]

Mn,x,

with a hopefully self-explanatory notation. Now, all these martingales converge a.s.

and we obtain that

M∞ = b−1 ∑
x∈T1

ξ(x)
E[ξ]

M∞,x. (3.52)

It is clear that the random variables M∞,x are i.i.d. and distributed as M∞.

Studying the event {M∞ = 0}, by the above lemma applied to the random vari-
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ables
ξ(x)
E[ξ]

, we have

{M∞ = 0} =
{
M∞,(1,1) = 0,M∞,(1,2) = 0, . . . ,M∞,(1,b) = 0

}
, (3.53)

almost surely. Then, from (3.52) and (3.53), we obtain

P (M∞ = 0) = P
(
M∞,(1,1) = 0,M∞,(1,2) = 0, . . . ,M∞,(1,b) = 0

)
= ∏

x∈T1

P (M∞,x = 0) = ∏
x∈T1

P (M∞ = 0) = (P (M∞ = 0))b .

3.4 Region R3

LEMMA 3.28. Under the hypothesis of Theorem 3.25, about the region R3, it is sat-

isfied that
1
n

ln |Zn(ξ)|
p−→ 1

2
ln
(

b E[|ξ|2]
)
= G(2). (3.54)

Under the τ-property, we ensure convergence almost surely.

Proof. Recall that there exists ν > 1 such that

sup
n∈N

E [Xν
n] < ∞, Xn =

|Zn|2
E [|Zn|2]

.

Following a reasoning analogous to the calculation of (3.50), we have

lim sup
n→∞

1
n

lnXn ≤ 0,

almost surely, therefore

lim sup
n→∞

1
n

ln |Zn|2 ≤ lim
n→∞

1
n

ln E
[
|Zn|2

]
= G(2). (3.55)

Let c > 0. Let us take θ = e−
cn
2 and Y = Xn in Lemma 3.24. Then when n → ∞,

there exists N ∈ N∗ and p = p(N) ∈ (0, 1) such that for all n ≥ N we have

P
[
Xn > e−

cn
2

]
≥ p ⇒ P

[
1
n

ln |Zn|2 <
1
n

ln E
[
|Zn|2

]
− c

2

]
< 1 − p < 1.

Let us define f = G(2) = lim
n→∞

1
n

ln E
[
|Zn|2

]
. Then there exists N0 ∈ N such that

for all n ≥ N0 we have

f − c <
1
n

ln E
[
|Zn|2

]
− c

2
,
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whereby, for all n ≥ n0 = max{N0, N}, we have

P

[
1
n

ln |Zn|2 < f − c
]
< 1 − p < 1.

Then, by setting ε > 0, by the Corollary 3.20 applied in the inequality above, there

exists n1 ≥ 1 such that for all n ≥ n1 we have

P

[
1
n

ln |Zn|2 < f − 2c
]
< ε. (3.56)

On the other hand, let us note that (3.55), for n sufficiently large, implies

P

[
1
n

ln |Zn|2 > f + 2c
]
< ε,

whereupon we conclude (3.54) by the inequality above and (3.56).

Finally, we ensure almost sure convergence under the τ-property by applying

Lemma 3.22.

3.5 Region R2

Let us see that, in the region R2, for n sufficiently large, we have

|Zn(ξ)|2 ≈ Zn

(
|ξ|2
)

,

while the last partition function, which, according to the discussion in Subsection

3.1.4, corresponds to a polymer with a positive environment in the strong disorder

regime, i.e.,

lim
n→∞

1
n

lnZn

(
|ξ|2
)
= 2G(αmin).

3.5.1 Region αmin ≤ 1

LEMMA 3.29. Under the assumptions of Theorem 3.2, if αmin < 1, then

lim
n→∞

1
n

ln |Zn(ξ)|
a.s.−→ G(αmin). (3.57)

Proof. By the triangle inequality |Zn(ξ)| ≤ Zn(|ξ|), then

lim sup
n→∞

1
n

ln |Zn(ξ)| ≤ lim sup
n→∞

1
n

lnZn(|ξ|) = G(αmin). (3.58)

46



We will define En(ξ) = ∑
s ̸=s′∈Sn

n

∏
t=1

ξ(st)ξ(s′t), then by (3.16) we obtain

|Zn(ξ)|2 = Zn

(
|ξ|2
)
+ En(ξ)

= Zn

(
|ξ|2
)(

1 +
En(ξ)

Zn (|ξ|2)

)
≥ Zn

(
|ξ|2
)(

1 +
En(ξ)

Zn (|ξ|)2

)
. (3.59)

Now suppose that

lim inf
n→∞

1
n

ln
(

1 +
En(ξ)

Zn (|ξ|2)

)
< 0,

then there exist c1, c2 > 0 and an indexed subsequence (nk)k∈N such that

1 +
Enk(ξ)

Znk (|ξ|2)
≤ c1e−c2nk ⇔ Enk(ξ) ≤

(
c1e−c2nk − 1

)
Znk(|ξ|)

2,

which is negative for k large enough, so that(
1 − c1e−c2nk

)
Znk(|ξ|)

2 ≤ |Enk(ξ)| ≤ Enk(|ξ|),

by the triangle inequality. Hence,

Znk

(
|ξ|2
)
+
(
1 − c1e−c2nk

)
Znk(|ξ|)

2 ≤ Zn

(
|ξ|2
)
+ Enk(|ξ|) = Znk(|ξ|)

2,

so that

Znk

(
|ξ|2
)
≤ c1e−c2nkZnk(|ξ|)

2,

and, after computing the free energies,

f(|ξ|2) ≤ −c2 + 2f(|ξ|) < 2f(|ξ|),

which contradicts the fact that f(|ξ|2) = 2f(|ξ|) = 2G(αmin). Hence,

lim inf
n→∞

1
n

ln
(

1 +
En(ξ)

Zn(|ξ|)2

)
≥ 0,

and, going back to (3.59), we conclude that

lim inf
n→∞

1
n

ln |Zn(ξ)|2 ≥ lim inf
n→∞

1
n

lnZn

(
|ξ|2
)
= 2G(αmin).

Together with (3.58), we conclude (3.57).
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3.5.2 Region 1 < αmin ≤ 2: Averaging The Phases

Let us define ω(x) ∈ R and θ(x) ∈ [0, 2π) for x ∈ T trough the relations ξ(x) =

exp(ω(x) + iθ(x)). Therefore, the partition function can be written as

|Zn(ξ)|2 = ∑
s,s′∈Sn

n

∏
t=1

ξ(st)ξ(s′t) = ∑
s,s′∈Sn

n

∏
t=1

ei[θ(st)−θ(s′t)]
n

∏
t=1

|ξ(st)||ξ(s′t)|.

We will adopt the notation E [ ·|ω] = E [ ·| σ (ω(x) : x ∈ T)]. Then

E
[
|Zn(ξ)|2

∣∣∣ω
]
= E

[
∑

s,s′∈Sn

n

∏
t=1

ξ(st)ξ(s′t)

∣∣∣∣∣ω

]

= E

[
∑

s,s′∈Sn

n

∏
t=1

ei[θ(st)−θ(s′t)]
n

∏
t=1

|ξ(st)||ξ(s′t)|
∣∣∣∣∣ω

]

= ∑
s,s′∈Sn

n

∏
t=1

E
[
ei[θ(st)−θ(s′t)]

] n

∏
t=1

|ξ(st)||ξ(s′t)|

= ∑
s∈Sn

n

∏
t=1

|ξ(st)|2 + ∑
s ̸=s′∈Sn

∏
t>s∧s′

∣∣∣E [eiθ
]∣∣∣2 n

∏
t=1

|ξ(st)||ξ(s′t)|

= Zn

(
|ξ|2
)
+ En(ω),

where En(ω) = ∑
s ̸=s′∈Sn

∏
t>s∧s′

∣∣∣E [eiθ
]∣∣∣2 n

∏
t=1

|ξ(st)||ξ(s′t)| ≥ 0, so that

E
[
|Zn(ξ)|2

∣∣∣ω
]
≥ Zn

(
|ξ|2
)

accordingly

lim inf
n→∞

1
n

ln E
[
|Zn(ξ)|2

∣∣∣ω
]
≥ lim

n→∞

1
n

lnZn

(
|ξ|2
)
= 2G(αmin), P − a. s. .

The following theorem is crucial to our estimates and holds in all regions as long

as we assume independence between radii and phase.

LEMMA 3.30. Let us assume that ω and θ are independent. Then

∀n ∈ N :
E
[
|Zn|4

∣∣∣ω
]

(
E
[
|Zn|2

∣∣∣ω
])2 ≤ 3.
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Furthermore, in the region R1, there exists η > 1 such that

sup
n∈N

E

[
E
[
|Zn|2

∣∣∣ω
]η/2

]
|E[Zn]|η

< ∞.

Proof. Before we begin, for convenience, we will fix some notations for both the

weight of the path s ∈ Sn and its associated phase, respectively:

Bs = Bs,n =
n

∏
t=1

ξ(st) and Γs = Γs,n =
Bs,n

|Bs,n|
.

With these notations,

|Zn|2m =
(
|Zn|2

)m
=

m

∏
i=1

Zn Zn = ∑
s1,s2,...,s2m∈Sn

m

∏
i=1

Bs2i−1 Bs2i

= ∑
s1,...,s2m∈Sn

∣∣∣∣∣ 2m

∏
i=1

Bsi

∣∣∣∣∣ m

∏
i=1

Γs2i−1 Γs2i .

Now, conditioning with respect to ω,

E
[
|Zn|4

∣∣∣ω
]
= ∑

s1,s2,s3,s4∈Sn

E
[(
|Bs1 Bs2 Bs3 Bs4 | Γs1 Γs2 Γs3 Γs4

)∣∣ω
]

= ∑
s1,s2,s3,s4∈Sn

|Bs1 Bs2 Bs3 Bs4 | E
[

Γs1 Γs2 Γs3 Γs4

∣∣ω
]

= ∑
s1,s2,s3,s4∈Sn

|Bs1 Bs2 Bs3 Bs4 | E
[
Γs1 Γs2 Γs3 Γs4

]
. (3.60)

E
[
|Zn|2

∣∣∣ω
]
= ∑

s1,s2∈Sn

|Bs1 Bs2 | E
[
Γs1 Γs2

]
.

If we square this last equation, we have(
E
[
|Zn|2

∣∣∣ω
])2

= ∑
s1,s2,s3,s4∈Sn

|Bs1 Bs2 Bs3 Bs4 | E
[
Γs1 Γs2

]
E
[
Γs3 Γs4

]
. (3.61)

Taking a permutation of the four paths s1, s2, s3, and s4, i.e.,

(s1, s2, s3, s4) → (sP(1), sP(2), sP(3), sP(4)), P ∈ Sym(4),

the amplitude |Bs1 Bs2 Bs3 Bs4 | remains unchanged, so that (3.60) and (3.61) can be

written as

E
[
|Zn|4

∣∣∣ω
]
= ∑

s1,...,s4∈Sn

∣∣∣∣∣ 4

∏
i=1

Bsi

∣∣∣∣∣
 1

24 ∑
P∈Sym(4)

E

[
2

∏
j=1

ΓsP(2j−1) ΓsP(2j)

] ,
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(
E
[
|Zn|2

∣∣∣ω
])2

= ∑
s1,...,s4∈Sn

∣∣∣∣∣ 4

∏
i=1

Bsi

∣∣∣∣∣
 1

24 ∑
P∈Sym(4)

2

∏
j=1

E
[
ΓsP(2j−1) ΓsP(2j)

] .

Now for any choice of the four paths s1, s2, s3 and s4 there exists a permutation

Q ∈ Sym(4) such that

E
[
ΓsQ(1) ΓsQ(2)

]
E
[
ΓsQ(3) ΓsQ(4)

]
= E

[
ΓsQ(1) ΓsQ(2) ΓsQ(3) ΓsQ(4)

]
= |E [Υ]|2(2n−τ1−τ3) ,

where Υ = ξ/|ξ| and τi represents i-th time a path separates from the others (with

τi+1 = τi if more than one path separate at that time).

Let us notice that, for each choice of four paths s1, · · · , s4, there exists at least a

permutation Q such that sQ(i) is the i-th path that separates from the others. Without

lost of generality, suppose that Q = (1 2 3 4). Then,

|E [Υ]|2(2n−τ1−τ3) = E
[
Γs1 Γs2 Γs3 Γs4

]
= E

[
Γs1 Γs2

]
E
[
Γs3 Γs4

]
= |E [Υ]|2(n−τ1) |E [Υ]|2(n−τ3) ,

Furthermore, note that any permutation within the set{
(1 2 3 4), (1 2 4 3), (2 1 3 4), (2 1 4 3)

(3 4 1 2), (4 3 1 2), (3 4 2 1), (4 3 2 1)

}
,

will yield the same result. In general, for any choice of four paths s1, · · · , s4, there

exist at least eight permutations such that

E
[
ΓsP(1) ΓsP(2) ΓsP(3) ΓsP(4)

]
= |E [Υ]|2(n−τ1) |E [Υ]|2(n−τ3) .

As E
[
ΓsQ(1) ΓsQ(2)

]
E
[
ΓsQ(3) ΓsQ(4)

]
≥ 0, we obtain

(
E
[
|Zn|2

∣∣∣ω
])2

≥ 8
24 ∑

s1,...,s4∈Sn

|Bs1 Bs2 Bs3 Bs4 | |E [Υ]|2(2n−τ1−τ3) . (3.62)

On the other hand, note that for any choice of four paths s1, · · · , s4, it always hold

that

E
[
Γs1 Γs2 Γs3 Γs4

]
≤ |E [Υ]|2(n−τ1) |E [Υ]|2(n−τ3) .

Hence,

E
[
|Zn|4

∣∣∣ω
]
≤ ∑

s1,...,s4∈Sn

|Bs1 Bs2 Bs3 Bs4 | |E [Υ]|2(2n−τ1−τ3) . (3.63)
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Then, we use (3.62) and (3.63) to prove the first estimate. The second one follows by

straightforward adaptations of the argument leading to the first estimate in Lemma

3.14.

LEMMA 3.31. Suppose that the non-negative random variable Y satisfies

E [Yγ]

(E [Y])γ ≤ B,

for B, γ ≥ 0. Then, for all η > 0, there exists m > 0 such that

P

(
Y

E [Y]
< m

)
≥ 1 − η.

Proof. First, let us take an arbitrary m ∈ N. By Chebyshev’s inequality, we have

1 − P

(
Y

E [Y]
< m

)
= P

(
Y

E [Y]
≥ m

)
≤ 1

mγ
E

[∣∣∣∣ Y
E [Y]

∣∣∣∣γ] = 1
mγ

E [Yγ]

(E [Y])γ ≤ B
mγ

< η,

for m enough.

LEMMA 3.32. Suppose that 1 ≤ αmin < 2, G(αmin) > ln(b E[ξ]|), and in addition

to the hypotheses of Theorem 3.2, assume that the random variables ω and θ are

independent. Then,

lim
n→∞

1
n

ln E
[
|Zn(ξ)|2

∣∣∣ω
]
= 2G(αmin),

almost surely.

Proof. As noticed above, E
[
|Zn(ξ)|2

∣∣∣ω
]
≥ Zn

(
|ξ|2
)
, so that

lim inf
n→∞

1
n

ln E
[
|Zn(ξ)|2

∣∣∣ω
]
≥ lim

n→∞

1
n

lnZn

(
|ξ|2
)
= 2G(αmin).

Hence, we only have to obtain an upper bound.

Now, assume that 1 ≤ αmin ≤ 2 and write ξ = eiθ|ξ| = eiθ+ω. We will define a

new environment eiθ̃|ξ| such that γ 7→
∣∣∣E [eiγθ̃

]∣∣∣ is decreasing in [0, 1]. For this, we

let t =
∣∣E [eiθ]∣∣, z = t + i

√
1 − t2 and

eiθ̃ =

z, with probability 1/2,

z, with probability 1/2.
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Note that

E
[
|Zn(ξ)|2

∣∣∣ω
]
= E

[∣∣∣Zn

(
eiθ̃|ξ|

)∣∣∣2∣∣∣∣ω

]
.

Now, there exists 0 < γ0 < 1 such that Zn

(
eiθ̃|ξ|

)
will be in the region R1 for all

0 ≤ γ < γ0 and on the R1 −R2 boundary for γ = γ0. Hence, for 0 ≤ γ < γ0, the

second estimate in Lemma 3.30 and a Borel-Cantelli argument imply

lim sup
n→∞

1
n

ln E

[∣∣∣Zn

(
eiθ̃|ξ|

)∣∣∣2∣∣∣∣ω

]
≤ lim

n→∞

1
n

ln
∣∣∣E [Zn

(
eiθ̃|ξ|

)]∣∣∣
= lim

n→∞

1
n

ln
∣∣∣Zn

(
eiθ̃|ξ|

)∣∣∣ =: f (γ),

almost surely. Let δ > 0. As the model falls into the region R2 when γ > γ0, there

exists 0 < γ1 < γ0 such that f (γ1) < 2G(αmin) + δ. Now, by construction, the

function

[0, 1] ∋ γ 7→ E

[∣∣∣Zn

(
eiθ̃|ξ|

)∣∣∣2∣∣∣∣ω

]
,

is decreasing. Hence,

lim sup
n→∞

1
n

ln E
[
|Zn(ξ)|2

∣∣∣ω
]
= lim sup

n→∞

1
n

ln E

[∣∣∣Zn

(
eiθ̃|ξ|

)∣∣∣2∣∣∣∣ω

]
≤ lim sup

n→∞

1
n

ln E

[∣∣∣Zn

(
eiγ1 θ̃|ξ|

)∣∣∣2∣∣∣∣ω

]
= f (γ1) < 2G(αmin) + δ,

almost surely. This finishes the proof.

The next lemma finishes the proof of Theorem 3.2.

LEMMA 3.33. Assume that 1 ≤ αmin < 2, G(αmin) > ln(bE[ξ]|) and, in addition

to the hypotheses of Theorem 3.2, assume that the random variables ω and θ are

independent. Then,

lim
n→∞

1
n

ln |Zn(ξ)| = G(αmin),

in probability. Under the τ-condition, the convergence holds P-almost surely.

Proof. Thanks to the previous lemma and the first estimate in Lemma 3.30, the result

follows by an application of Proposition 3.23 with G = σ (ω(x) : x ∈ T).
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3.6 Independent Radii and Phases

In this section, we will analyse how the three regions described in Theorem 3.2 are

characterized in the case of independent phases and radii. The discussion below

contains the proof of Corollary 3.5.

Recall that

ξβ,γ = exp(βω + iγθ), λR(β) = ln (E [exp(βω)]) , λC(γ) = − ln |E [exp(iγθ)]| .

Let us keep in mind that we define our function G as

G(α) = Gβ(α) =
1
α

ln
(
b E

[
|ξβ,γ|α

])
=

ln b + λR(αβ)

α
.

Hence,

G′
β(α) =

(α β) λ′
R(α β)− λR(α β)− ln b

α2 .

As a preliminary, we note that αmin > 2 is equivalent to G′
β(2) < 0, which is equiva-

lent to

2βλ′
R(2β)− λR(2β) < ln b,

i.e. β < β0. Note that this corresponds to the L2-region for the model with γ = 0.

In the same vein, the condition αmin > 1 is equivalent to G′
β(1) < 0 which can be

rewritten as

βλ′
R(β)− λR(β) < ln b,

which corresponds to the weak disorder region for the model with γ = 0, i.e., β <

βc.

Finally, note that αmin = αmin(β) satisfies

αminβλ′
R(αminβ)− λR(αminβ) = ln b.

Hence, αmin = βc/β. Furthermore,

Gβ(αmin) =
ln b + λR(βc)

βc/β
=

βcλ′
R(βc)

βc/β
= βλ′

R(βc).

The region R1 is characterized by the condition that there exists α ∈ (1, 2] such
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that Gβ(α) < ln(b|E[ξβ,γ]|), i.e.,

ln b + λR(αβ)

α
< ln b + λR(β)− λC(γ) = Gβ(1)− λC(γ). (3.64)

We split our discussion into three cases. If 1 < αmin ≤ 2, then the above condition is

equivalent to

Gβ(αmin) < ln b + λR(β)− λC(γ) ⇔ βλ′
R(βc)− λR(β) + λC(γ) < ln b.

We have seen above that 1 < αmin ≤ 2 is equivalent to β0 ≤ β < βc.

Next, assume that αmin > 2 (in particular, implies that β < β0). In this case,

the function α 7→ Gβ(α) is decreasing in the interval (1, 2] and Condition (3.64) is

therefore equivalent to Gβ(2) < Gβ(1)− λC(γ), i.e.,

ln b + λR(2β)

2
< ln b + λR(β)− λC(γ) ⇔ λR(2β)− 2λR(β) + 2λC(γ) < ln b.

We are left with the possibility that αmin ≤ 1, which, in particular, implies that

β ≥ βc. In this case, the function α 7→ Gβ(α) is increasing in the interval (1, 2] and

Gβ(α) ≥ G(1) for all (1, 2]. Hence, Condition (3.64) cannot be satisfied.

Finally, note that, in the whole R1 region, we have

f (β, γ) = fI(β, γ) = ln
(
b
∣∣E[ξβ,γ]

∣∣) = ln b + λR(β)− λC(γ).

The region R3 is characterized by the condition that αmin > 2 (so that β > β0)

and Gβ(2) > ln(b|E[ξβ,γ]|), i.e.,

Gβ(2) =
1
2

ln
(

b E
[
|ξβ,γ|2

])
=

1
2
(ln b + λR(2β)) > ln b + λR(β)− λC(γ).

We can rewrite this as

λR(2β)− 2λR(β) + 2λC(γ) > ln b.

Furthermore,

f (β, γ) = fIII(β, γ) = Gβ(2) =
1
2
(ln b + λR(2β)) .

Finally, the region R2 has two parts. The first one is characterized by the condi-

tion αmin < 1. We have seen above that this is equivalent to

βλ′
R(β)− λR(β) > ln b,
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i.e., β > βc.

The second possibility is given by the conditions 1 ≤ αmin < 2 (i.e. β0 ≤ β < βc)

and Gβ(αmin) > ln(b|E[ξβ,γ]|), i.e.,

βλ′
R(βc) > ln b + λR(β)− λC(γ),

which can rewrite as

βλ′
R(βc)− λR(β) + λC(γ) > ln b.

In both cases,

f (β, γ) = fII(β, γ) = Gβ(αmin) = βλ′
R(βc).

The above discussion finishes the proof of the Corollary 3.5.
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Chapter 4

Conclusions

In this study, we have established the asymptotic behavior of the partition function

Zn for the directed polymer problem with a complex-valued random environment

over the Cayley tree. In particular, we have shown that only the three regions de-

termined by Derrida, Evans, and Speer in [8] are possible and that, in these regions,

the free energy for polymers of infinite size converges in probability

1
n

ln |Zn(ξ)|
p−→ f,

and, if we assume the τ-property, almost surely. The main methods used to prove

these results are an extension of the martingale method and the estimation of non-

integer moments of the partition function in the spirit of Buffet, Patrick, and Pulé

in [4], as well as an extension of [8], which allowed us to understand where we

can weaken hypotheses and provide the appropriate property to ensure almost sure

convergence.

By demonstrating that we only need to consider hypotheses H1 and H2 about

the distribution of the environment ξ, we relaxed the hypotheses of [8] in the regions

R1 and R3. For the region R2, we showed that it is only necessary to include the

hypothesis of independence between radii and phase in the part where 1 < αmin ≤
2. Moreover, we simplified many of the arguments used in [8].

Recall that the partition function Zn can be expressed as

Zn = ∑
s∈Sn

|Bs| Γs, Bs =
n

∏
t=1

ξ(st), Γs =
Bs

|Bs|
,

where |Bs| represents the amplitude and Γs the phase. A better bound was calcu-

lated for [8, Theorem 4.2] thanks to a thorough study of its proof. Since such a limit
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is significant for our study, three questions naturally arise to extend this work:

• Can we make the independence of radii and phases more flexible? For exam-

ple, would it be enough to assume an estimate of the type

e−λ−(γ)
∣∣ξβ,γ

∣∣ ≤ ∣∣E [ξβ,γ
∣∣ω
]∣∣ ≤ e−λ+(γ)

∣∣ξβ,γ
∣∣ .

• As these expressions arose several times during the preparation of this work,

is it possible to obtain results

lim
n→∞

1
n

ln
[
|Zn(ξ)|2

∣∣∣Fn−1

]
= 2G(αmin),

and

sup
n∈N

E

 |Zn(ξ)|4

E
[
|Zn(ξ)|2

∣∣∣Fn−1

]2

∣∣∣∣∣∣∣Fn−1

 < ∞?

• Is it possible to find an example of an environment such that 1 < αmin ≤ 2 and

such that the model is not in the R2 region?

Answering these questions could help us to weaken the hypothesis of independence

between radius and phase. We defer them to future work.
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Appendix

We prove Proposition 3.1, which we state again for the convenience of the reader.

PROPOSITION 4.1.

(i) The function α 7→ α G(α) = ln (b E [|ξ|α]) is convex, with G(0) = ln b.

(ii) The function G satisfies exactly one of the following properties:

– There exists a unique minimizer of G denoted by αmin > 0 , i.e., G is

strictly decreasing in (0, αmin] and strictly increasing in [αmin, ∞).

– G is strictly decreasing in R+.

Proof. It is trivial to note the identity ln
(
b E

[
|ξ|0
])

= ln b.

(i) First, we will prove that such a function is differentiable. Indeed,

d
dα

E [|ξ|α] = lim
h→0

E
[

h−1
(
|ξ|α+h − |ξ|α

)]
= lim

h→0
E
[
|ξ|αh−1

(
|ξ|h − 1

)]
.

Therefore, we must prove that we can enter the limit within the expectation.

Let h > 0 (the case h < 0 is similar). If |ξ| ≥ 1, write |ξ|h = ehX (with X ≥ 0).

Then,

h−1(|ξ|h − 1) =
ehX − 1

h
= X

ehX − 1
hX

≤ XehX ≤ XeX = |ξ| ln |ξ| ≤ |ξ|2.

If |ξ| ≤ 1, write |ξ|h = e−hY, with Y ≥ 0. In this case,

e−hY − 1
h

≥ −1.

In any case, ∣∣∣∣∣ |ξ|h − 1
h

∣∣∣∣∣ ≤ max
{

1, |ξ|2
}

.
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Hence, by the dominated convergence theorem,

d
dα

E [|ξ|α] = E [|ξ|α ln |ξ|] .

Higher-order derivatives can be handled similarly. Now,

d
dα

ln (b E [|ξ|α]) = E [|ξ|α ln |ξ|]
E [|ξ|α] = E

[
ln |ξ| |ξ|α

E [|ξ|α]

]
= EPα [ln |ξ|] ,

d2

dα2 ln (b E [|ξ|α]) =
E
[
|ξ|α ln2 |ξ|

]
E [|ξ|α]− (E [|ξ|α ln |ξ|])2

(E [|ξ|α])2

= E

[
ln2 |ξ| |ξ|α

E [|ξ|α]

]
−
(

E

[
ln |ξ| |ξ|α

E [|ξ|α]

])2

= VarPα [ln |ξ|] ≥ 0, (4.1)

where
dPα

dP
=

|ξ|α
E [|ξ|α] . By (4.1) we conclude that the function α G(α) is convex.

(ii) If ξ is concentrated at a point, then G takes the form

G(α) =
1
α

ln (b E [|ξ|α]) = 1
α

ln (b |ξ|α) = ln b
α

+ ln |ξ|.

Therefore, G is strictly decreasing.

In all other cases, α G(α) is strictly convex, so for every β, α > 0 such that

β ̸= α we have

α G(α) > βG (β) + [x G(x)]′
∣∣∣
x=β

(α − β)

= βG (β) +
[
G (β) + β G′ (β)

]
(α − β) .

– In particular, if G has a local extremum at αmin and αmin ̸= α, we get

α G(α) > αminG (αmin) +
[
G (αmin) + αmin G′ (αmin)

]
(α − αmin)

= αminG (αmin) + G (αmin) (α − αmin)

= α G (αmin) ,

Therefore, αmin is the only value where G reaches its global minimum.

– Finally, if G has no local extrema, G is strictly monotone. Since

ln
[
b E

[
|ξ|0
]]

= ln b ⇒ lim
α→0+

G(α) = +∞.

Hence, G must be strictly decreasing.
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