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2 Introduction

In this work we will study a more general version of isometry in different
metric spaces. Isometries by themselves are a very useful object of study
in various areas and the number of areas in which they are used are very
diverse, from geometry to Special Relativity [1]. For this reason, studying
a more general version of isometry that manages to preserve the dynamic
behavior of isometries is so attractive.

Let (M1, d1), (M2, d2) metrics spaces an isometry T : (M1, d1)→ (M2, d2)
is a continuous function such that preserves distance, then generalization
would be to define a function that almost preserves distances between points,
this is how we have the following functions:

Definition 2.1. Quasi-isometry Suppose that g is a (not necessarily con-
tinuous) function from one metric space (M1, d1) to a second metric space
(M2, d2). Then f is called a quasi-isometry from (M1, d1) to (M2, d2) if
there exist constants A ≥ 1, B ≥ 0, and C ≥ 0 such that the following two
properties both hold:
1. For every two points x and y in M1, the distance between their images is
up to the additive constant B within a factor of A of their original distance.
More formally

∀x, y ∈M1 :
1

A
d1(x, y)−B ≤ d2(f(x), f(y)) ≤ Ad1(x, y) +B

2. Every point of M2 is within the constant distance C of an image point.
More formally: ∀z ∈M2 : ∃x ∈M1 : d2(z, f(x)) ≤ C

As we have just defined quasi-isometry, we can detect the first drawback
for our objective of preserving dynamic behavior, and that is the continuity
of quasi-isometries. Without continuity in the functions we do not have
access to classical results in dynamic systems (and analysis in general) such
as the fixed point theorems or invariance of sets.

Then we will define a type of function more general than an isometry but
not as general as a quasi-isometry. This class of function will be continuous,
therefore we can use the classical results of Dynamical Systems.

Definition 2.2. Distorted isometry. Suppose that f is a continuous function
from one metric space (M1, d1) to a second metric space (M2, d2). Then f
is called a distorted isometry from (M1, d1) to (M2, d2) if there exists an
isometry Tf from (M1, d1) to (M2, d2) and ε > 0 such that

∀x ∈M1 : d2(f(x), Tf (x)) < ε.

Therefore the set of distorted isometries from (M1, d1) to (M2, d2) is a
subsets of quasi-isometries from (M1, d1) to (M2, d2) , see lemma 5.5.
In the way we define this new class of functions we can observe a difference
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with the quasi-isometries, distorted isometries are continuous function, in
particular we have fixed points theorems. This is the main reason why we
will study distorted isometries and not quasi-isometries. Given the continu-
ity of distorted isometries we have more opportunity to preserve dynamic
behaviors of isometries.

We have divided our thesis into three sections: Section 2 we set distorted
positive isometries in R2 and some propierties of smoothnes, also we also
give an example of distorted isometry which pushes us to study this type
of functions in other types of metric spaces, in order to find more desired
dynamic behaviors. In Section 3 we examine such basic definitions about
isometries on the Half plane model and we will classify them. Then we study
the distorted isometries depending on what type of isometry is related. In
Section 4 it is initially motivated by the geometry of the distorted isometries
but we were able to establish dynamics results on the dynamic behavior as
a limit process of composition of these functions.

We would like to make it clear that it is a work on dynamicals systems
strongly motivated by the geometry of isometries, but our objective is always
to obtain information on classical dynamic properties such as fixed points,
global attractors, global repulsors and invariant sets.
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3 Dynamics of distorted positive isometries in R2.

For this it is important to remember that every isometry can be uniquely
written as Ψv + t where Ψ ∈ On(R) and t ∈ Rn.

Definition 3.1. Distorted isometry. We call distorted isometry to a con-
tinuous function f : Rn → Rn such that exists an isometry A, f(x) =
A(x) + ρ(x) with ρ : Rn → Rn a bounded function.

Lemma 3.1. A distorted isometry can be uniquely written as Ψ + r where
Ψ is ortonormal and r is a bounded function.

Proof. It is sufficient to prove that the ortonormal part is unique.
Let f(x) = A(x) + ρ with A(x) = Ψ(x) + b then taking r = b+ ρ(x) we

can write f(x) = Ψ(x) + r. Suppose by contradiction there exists Ψ1,Ψ2, r1

and r2 such that Ψ1 6= Ψ2 and r1 6= r2. Thus

f = Ψ1 + r1

f = Ψ2 + r2.

Then
Ψ1 + r1 = Ψ2 + r2

Now we get
Ψ1 −Ψ2 = r2 − r1

The RHS is the difference of 2 bounded functions and hence bounded. The
LHS is a linear map. So we get Ψ1 −Ψ2 is a linear map which is bounded
as a function (please do not confuse this with bounded linear map). This
forces Ψ1 −Ψ2 = 0 and hence r1 = r2

Thus we prove tha uniqueness of the ortonormal part.

Remark 1. If ρ is not bounded, but it is a function such that limx→∞
|ρ(x)|
|x| →

0 then the previous lemma also holds.

We can work with distorted isometry in the specific case when n = 2
then f : R2 → R2. Is very common to identifies R2 with C, for us will be
helpful this identification because we are interested with behavior of dis-
torted isometry near ”infinity”. Then a compactification R2 is the Riemann
Sphere C∞. Note that f : R2 → R2 is a continuous function, also we will in-
troduce the following notation: Let Ψ ∈ O(n) and ρ bounded a continuous,
then Ψ(z) 7→ Ψz with Ψ = eiα.
Now we will ask for continuity of f : C∞ → C∞.

Lemma 3.2. Let f : C∞ → C∞ such that

f(z) =

{
Ψz + ρ(z) if z 6=∞
∞ if z =∞

is a continuous function.
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Proof. Let {zn} a sequence of complex numbers such that zn
n→∞−−−→∞. Now

we have to study the behavior of f near ∞ point, for that

lim
n→∞

f(zn) = lim
n→∞

Ψzn + ρ (zn) .

Remember that ρ is a bounded function, therefore this function is not im-
portant in the dynamic behavior of f at infinity. Thus we can ignore that
term and just focus on the linear part Ψ ∈ O2(R). Indeed for all x we get
|Ψx| = |x|. Now we take a point far away from the origin because of that
Ψx is far away from the origin i.e. limn→∞Ψzn =∞, then we can conclude
the following:

lim
n→∞

f(zn) =∞.

Thus f is continuous function in C∞.

Since linear systems are simplest and well studied, we are always inter-
ested to find a good change of coordinates to make, in this case, distorted
isometry compare it to a linear system. Indeed we are looking for a change
of coordinates, so if we look at distorted isometry from a very great distance
somehow we only expect to see the isometry.

Example 3.1. The first (non trivial) case if we considerer ρ to be a function
of compact support K. Then for all z0 /∈ K we have f(z0) = Ψ(z0)+ρ(z0) =
Ψ(z0), so in this case our desire change of coordinates h when we look from
a very great distance is h(z) = z because for all z /∈ K we have

Ψ(z) = h ◦ f ◦ h−1(z) = f(z)

To find the changes of coordinates desire we will use a technique from
Inversive geometry. We will map the ∞ point to the origin and then we
study the dynamical behavior in a neighborhood around the origin and
finally return to infinity. The technique is called Reciprocation and it is the
following:

h : C∞ → C∞, z 7→
1

z
.

Note that h(w) = 1
w = h−1(w) then we can compose this function with f in

the following form:

h ◦ f ◦ h(w) = g(w) =
1

Ψ 1
w + ρ( 1

w )
.

Definition 3.2. We call g defined above as the extension to infinity of f.

Remark 2. g(0) = 0 and g : C∞ → C∞ is continuous function.

Lemma 3.3. If ρ is a bounded function then g : C∞ → C∞ is differentiable
at w = 0 with derivative equals to Ψ−1 = e−iα.
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Proof. Using the previous remark is sufficient to prove the case when Ψ is a
rotation then Ψ(w) = eiαw. Let w = 1

z , note that when z =∞ then w = 0.
So

g(w) =
1

Ψ 1
w − (−ρ( 1

w ))

= w

(
1

Ψ− (−wρ
(

1
w )
))

= Ψ−1w

(
1

1− (−Ψ−1wρ
(

1
w )
))

Taking r = −Ψ−1ρ
(

1
w )
)

note wr converges to 0 when w goes to 0 because ρ
is a bounded function. Indeed |r| < 1 because Ψ is a isometry and |w| < 1,
then we can write the last equality as follow:

g(w) = Ψ−1w(1 + wr + w2r2 + w3r3 + . . .)

= Ψ−1w + Ψ−1w2r + Ψ−1w3r2 + Ψ−1w4r3 + . . .

= Ψ−1w + wr̂(w)

With r̂(w) = Ψ−1wr + Ψ−1w2r2 + Ψ−1w3r3 + . . . a bounded function, note
that limw→0 r̂(w) = 0.

Now to compute the derivative:

Dg|w=0 = lim
w→0

g(w)− g(0)

w − 0
= lim

w→0

Ψ−1w + wr̂(w)− g(0)

w − 0

= lim
w→0

Ψ−1 + r̂(w)

= Ψ−1.

As we desire.

Remark 3. Note that we just get another proof for uniqueness for the
ortonormmal part Ψ of f.

3.1 The Yoccoz example.

We can think that for every distorted isometry f will have a good behavior
at z =∞ in terms that f, through the changes of coordinates, can be conju-
gated with a rotation in some neighbourhood of the origin (infinity). Now we
will an example by Yoccoz example, that is the well known non linearizable
quadratic polynomial λz−λz2 to exhibit an example that distorted isometry
f needs some extra conditions to ensure the desired linearization. Lets build
the distorted isometry f such that through the changes coordinates w = 1

z
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will have the form g(w) = eiαw − eiαw2 near the origin.

g(w) =
1

f̂(z)

eiαw − eiαw2 =
1

f̂(z)

f̂ (z) =
1

eiα 1
z − eiα(1

z )2

=
z

eiα − eiα(1
z )

= e−iαz

(
1

1− 1
z

)

Note when z is near to ∞ then |1z | < 1 so from the last equality we get:

f̂ (z) = e−iαz(1 +
1

z
+

1

z2
+

1

z3
+ . . .).

Then taking Φ(z) = e−iαz(1
z + 1

z2
+ 1

z3
+ . . .) we get from the last equation

f̂(z) = e−iαz + Φ(z).

Note that Φ(z) is not a bounded function but through the change of coor-
dinates we get the desire quadratic polynomial. To fix that issue we will
multiply Φ(z) with another function to get a bounded function, also we can
ask to this function to be C∞, for that we will need the following lemma.

Lemma 3.4. C∞ Urysohn lemma. If K is a compact subset of Rd and U
is an open set containing K, then there exists a function φ ∈ C∞(Rd) with
0 ≤ φ ≤ 1 and φ = 1 on K, and suppφ ⊂ U.

Proof. Let
δ = d (K,U c)

which is positive because K is compact and U c is closed. Let

V =

{
x ∈ Rd : d(x,K) <

δ

3

}
= K +Bδ/3

and define f on Rd by

f =

(∫
Rd

ψ(x)dx

)−1

ψδ/3

whose support is
supp f = suppψδ/3 = Bδ/3
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Finally define φ on Rd by
φ = 1V ∗ f

Because V is bounded and f is C∞, the function φ is C∞. The support of
φ is

suppφ = supp (1V ∗ f) ⊂ supp 1V + supp f = V +Bδ/3 = K +B2δ/3 ⊂ U

Because 1V and f are nonnegative, so is their convolution φ. For any x

φ(x) =

∫
Rd

1V (x− y)f(y)dy ≤
∫
Rd

f(y)dy = 1

so 0 ≤ φ ≤ 1. For x ∈ K, if y ∈ V c then |x − y| ≥ δ/3. But f(u) = 0 for
|u| ≥ δ/3, so in this case f(x − y) = 0. This implies that for x ∈ K the
functions y 7→ 1V (y)f(x− y) and y 7→ f(x− y) are equal, hence

φ(x) =

∫
Rd

1V (y)f(x− y)dy =

∫
Rd

f(x− y)dy =

∫
Rd

f(y)dy = 1

This shows that φ = 1 on K, verifying all the assertions made about φ.

Now given the compactK = [1, 2] ⊂ R there exists a function φ ∈ C∞(R)
such that φ = 1 on K, then we can define a function ∆ ∈ C∞(R) as follows

∆(z) =

{
φ(|z|) if |z| ≤ 1

1 if 1 ≤ |z|

1

10

Then we get a bounded function ρ(z) = ∆(z)Φ(z) because when z is
near to ∞ the function Φ(z) is bounded function and at the problematic
points, the sets of points z which are near to 0, we get ∆(z)Φ(z) = 0. So we
have the following illustration:
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Φ(z)

∞

∆(z)Φ(z)

0

0

Then we can get a C∞ distorted isometry

f(z) = e−iαz + ∆(z)Φ(z).

Note that f is a distorted isometry such that, thorugh the changes of coor-
dinates, neart to 0 is g(w) = eiαw− eiαw2. Thanks to Yoccoz we know that
g needs some arithmetic condition over α to ensure the conjugation with the
desire rotation.

Theorem 3.5. Yoccoz [2]. If α satisfied the Brjuno condition, then g is
linearizable. On the other hand if α does not satisfied the Brjuno condition
then the quadratic polynomial Pα(z) = e2πiαz + z2 is not linearizable.

From the proof made by Yoccoz we know that g has periodic points accu-
mulating at the origin, which means that f has periodic points accumulating
at +∞ which makes it different from z 7→ eiαz.

Lemma 3.6. If α is a Diophantine number and g is an analytic map with a
fixed point at 0 with multiplier e2πiα then g is conjugate to a complex rotation
in angle α near the origin.

Proof. It is a direct application of Siegel Theorem (see [3]).

Lemma 3.7. If α ∈ R \ Q is a Brjuno number then g is linearizable near
the origin.

Proof. Note that if g is a holomorphic function near the origin and satisfy
all arithmetical conditions needed to apply the Brjuno Theorem.
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3.2 Smoothness of Distorted Isometries at infinity.

From a dynamical point of view, there exists a lot of well known results
about linearization, so in order to apply these classical theorems we need
some kind of regularity over our distorted isometry g.

In a previous lemma we prove that g is differentiable at the origin and
moreover we compute the derivative, the purpose of the following lemma is
to ensure that g is a C1 function.

Notation: We write ρ′ to refer to the derivative of ρ with respect to z.

Lemma 3.8. Let g(w) = 1
Ψ( 1

w
)+ρ( 1

w
)

with ρ bounded and C1 function. If

limz→+∞ ρ
′(z) = 0 then g is a C1 function.

Proof. Let

g′(w) =
Ψ + ρ′( 1

w )

(Ψ + wρ( 1
w ))2

Using the fact that Dg|w=0 = Ψ−1 in the the following limit we get

lim
w→0

g′(w) = lim
w→0

Ψ + ρ′( 1
w )

(Ψ + wρ( 1
w ))2

= Ψ−1.

Therefore g′(w) is a continuous function then g(w) is a C1 as we desire.

Remark 4. Note that if ρ′ is a convergent function as z → +∞, necessarily
has to converges to 0. Let c any non zero constant. If ρ′ → c when z → ∞
that implies that ρ is not a bounded function, then ρ′ has to converges to 0.

Remark 5. Note that the condition ρ′ converges to 0 when w goes to 0 in
fact is a if only if condition to ensure the continuity of the first derivative
of g. Also note that condition is a very strong and restrictive condition and
this is a evidence of the limitation of compactification at one point, so we
need to explore another type of compactification.

But a question arises: what condition do we need to ensure that is a Cr

function? The following lemma will provide us a condition over ρ to ensure
the desired behavior, we will not prove this lemma because the main idea of
the proof is contained at the previous lemma and the calculations are too
long.

First we need to prove a result that will help us to have simpler expres-
sions.

Lemma 3.9. Leibniz formula. Let u, v functions such that u and v have
the derivatives up to nth order. Then

(uv)(n) =

n∑
i=0

(
n
i

)
u(n−i)v(i)

12



Proof. The first derivative is described by the following formula

(uv)′ = u′v + uv′.

Then suppose by induction the desire formula hold up to n, we have to prove
it also holds for n+ 1. Let y = uv and suppose u and v have the derivatives
of (n + 1)th order. Using the recurrence relation we write the (n + 1)th
derivative in the following form:

y(n+1) =
[
y(n)

]′
=
[
(uv)(n)

]′
=

[
n∑
i=0

(
n
i

)
u(n−i)v(i)

]′
After differentiation we obtain:

y(n+1) =
n∑
i=0

(
n
i

)
u(n−i+1)v(i) +

n∑
i=0

(
n
i

)
u(n−i)v(i+1)

Both sums in the right-hand side can be combined into a single sum. Indeed
let m such that 1 ≤ m ≤ n. The first term when i = m is the following:(

n
m

)
u(n−m+1)v(m),

and the second term when i = m− 1:

(
n

m− 1

)
u(n−(m−1))v((m−1)+1) =

(
n

m− 1

)
u(n−m+1)v(m)

And the sum of these two terms is:

(
n
m

)
u(n−m+1)v(m)+

(
n

m− 1

)
u(n−m+1)v(m) =

[(
n
m

)
+

(
n

m− 1

)]
·u(n−m+1)v(m).

Then

[(
n
m

)
+

(
n

m− 1

)]
· u(n−m+1)v(m) =

(
n+ 1
m

)
u(n+1−m)v(m).

Note that when m changes from 1 to n this combination will cover all
terms of both sums except the term for i = 0 in the first sum equal to(

n
0

)
u(n−0+1)v(0) = u(n+1)v(0),

and the term i = n in the second sum equal to

13



(
n
n

)
u(n−n)v(n+1) = u(0)v(n+1).

Therefore the (n+ 1)th derivative of y have the following form:

y(n+1) = u(n+1)v(0) +

n∑
m=1

(
n+ 1
m

)
u(n+1−m)v(m) + u(0)v(n+1),

then

y(n+1) =

n+1∑
m=0

(
n+ 1
m

)
u(n+1−m)v(m).

Thus the desire formula is proved for an arbitrary natural number n.

Lemma 3.10. Let g(w) = 1
Ψ( 1

w
)+ρ̂( 1

w
)

with ρ̂ a Cr function. If limz→+∞ ρ̂
(i)(z) =

0 for all i ∈ {0, 1, . . . , r} then g is a Cr function.

Proof. We want to compute the derivative of higher order of

g(w) = h ◦ f ◦ h(z) = h(f(h(z))).

The first derivative of h(f(h(z))) have the following form:

h′(f(h(z)))f ′(h(z))h′(z).

Using the previous lemma with u = h′(f(z)) and v = f ′(h(z))h′(z) we
can write the rth derivative of h ◦ f ◦ h(z) = h(f(h(z))) :

(uv)(n) =
n∑
i=0

(
n
i

)(
h′(f(h(z))

)(n−i)(
f ′(h(z))h′(z)

)(i)
.

Now taking the limit when w → 0 is equivalent to z → ∞, so we need
to compute the following limit to ensure the continuity of the derivative of
higher order:

lim
w→0

g(n)(w) = lim
z→∞

n∑
i=0

(
n
i

)(
h′(f(h(z))

)(n−i)(
f ′(h(z))h′(z)

)(i)
.

Note that limz→∞ ρ
(i)(h(z)) = 0 implies that limz→∞ f

′(h(z)) = 0 on
the other hand we know that limz→∞ h

′(z) = 0 then

lim
z→∞

(
f ′(h(z))h′(z)

)(i)
= 0,

14



for every i ∈ {0, 1, 2, . . . , n}.
Is easy to check that limz→∞ h

′(f(h(z)) = 0 for every i ∈ {0, 1, 2, . . . , r}.
Therefore all derivatives of g(w) are continuous function then g is a Cr

function.
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3.3 Discussion on the hypotheses of ρ for quadratics maps.

As we have seen in previous sections, reducing itself to making the corre-
sponding coordinate change and applying the KAM theory to our problem
is not enough to obtain satisfactory answers from the dynamic behavior of
distorted isometries. Applying the desired coordinate change is not enough
to achieve the smoothness requirements necessary to apply classical results
of the KAM theory.

Previously we construct the Yoccoz example for distorted isometry, in
that case the condition limz→∞ ρ

(i)(z) = 0 is achieved, but a question arises:
what happens when we look for this condition in a general quadratic map?
Let g(w) = eiθw − k(w)w2, so we proceed to find the desired function f̂(z).

Let k(w) = k(h(z)) = r(z) a bounded function

f̂(z) =
1

eiθ 1
z −

r(z)
z2

= e−iθz

(
1

1− r(z)
z

)

Since r(z) is a bounded function when z →∞ then | r(z)z | < 1 so we get the
following:

f̂(z) = e−iθz(1 +
r(z)

z
+

(
r(z)

z

)2

+

(
r(z)

z

)3

+ . . . )

Taking Φ(z) = e−iθ( r(z)z +
(
r(z)
z

)2
+
(
r(z)
z

)3
+ . . . ) then f̂(z) = e−iθz+Φ(z).

In the same way we did with the Yoccoz example we get the following
function:

f(z) = e−iθz + ∆(z)Φ(z),

and that f coincides with f̂ in a neighbourhood of∞. And, as we expected,
limz→∞ ρ

(i)(z) = limz→∞(∆(z)Φ(z))(i) = 0 for all i ∈ {0, 1, . . . , r}.
Throughout these sections we have studied and become convinced of the

limitations of compactification at one point, since we have seen that the
conditions necessary to ensure the desired smoothness on distorted isome-
tries are not arbitrary. That is why the next step is to use another type of
compactification where we can find interesting dynamic behaviors and with
weaker conditions.
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4 Distorted isometries of the hyperbolic plane.

In the sequel we will recall the fundamentals of isometries on hyperbolic
geometry. With this, we will start the study of distorted versions of these
maps.

4.1 Möbius transformation.

What are the analogous orientation- and distance-preserving functions in
hyperbolic geometry? In particular, what are the orientation and distance-
preserving functions in the Poincaré model? Since all rigid Euclidean isome-
tries can be realized as certain one-to-one and onto complex functions, a
good place to look for hyperbolic transformations might be in the entire
class of one-to-one and onto complex functions. But, which functions should
we consider? Since we are concentrating on the Poincaré model, we need to
find one-to-one and onto orientationpreserving functions that preserve the
Euclidean notion of angle, but do not preserve Euclidean length. Thus our
first set of candidates are conformal maps. Euclidean rigid motions such
as rotations and translations preserve angles, and preserve length globally.
Such motions comprise a subset of all conformal maps.

If we consider the entire set of all conformal maps of the plane onto
itself, then such maps must have the form f(z) = az + b, where a 6= 0 and
b is a complex constant. since a = |a|eiθ, then f is the composition of a
translation, a rotation, and a scaling by |a|. Thus, f maps figures to similar
figures. The set of all such maps forms a group called the group of similitudes
or similarity transformations of the plane. If b = 0(f(z) = az, a 6= 0), we
call f a dilation of the plane. Most similarity transformations cannot be
isometries of the Poincaré model since most similarities (like translations
and scalings) do not fix the boundary circle of the Poincaré disk. Clearly,
we must expand our set of possible transformations. One way to do this is to
consider the set of all one-to-one and onto conformal maps of the extended
complex plane to itself.

Definition 4.1. The general form of a Möbius transformation is a function
on the extended complex plane defined by:

f(z) =
az + b

cz + d
, ad− bc 6= 0

The set of Möbius transformations forms a group called the Möbius group.

Every Möbius transformation is composed of simpler transformations.

Theorem 4.1. Let T be a Möbius transformation. Then T is the composi-
tion of translations, dilations, and inversion

(
h(z) = 1

z

)
.
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Proof. If c = 0, then f(z) = a
dz+ b

d , which is the composition of a translation
with a dilation.

If c 6= 0, then f(z) = a
c −

ad−bc
c2

1
z+ d

c

· Thus, f is the composition of a

translation (by d
c ), an inversion, a dilation (by −ad−bc

c2
), and a translation

( by a
c

)
·�.

Note that the Möbius group includes the group of Euclidean rigid mo-
tions (|a| = 1, c = 0, d = 1), and the group of similarities (a 6= 0, c = 0, d = 1)
as subgroups. Also note that we could define Möbius transformations as
those transformations of the definition with ad − bc = 1, by dividing the
numerator by an appropriate factor.

4.2 Geometric properties of Möbius transformation.

Of particular interest to us will be the effect of a Möbius transformation on
a circle or line.

Theorem 4.2. Given any three distinct complex numbers z1, z2, z3, there is
a unique Möbius transformation f that maps these three values to a specified
set of three distinct complex numbers w1, w2, w3.

Proof. Let g1(z) = z−z2
z−z3

z1−z3
z1−z2 . Then g1 is a Möbius transformation and g1

maps z1 to 1, z2 to 0, and z3 to the point at infinity.
Let g2(w) = w−w2

w−w3

w1−w3
w1−w2

. We see that g2 is a Möbius transformation

mapping w1 to 1, w2 to 0, and w3 to ∞. Then f = g−1
2 ◦ g1 will map z1 to

w1, z2 to w2, and z3 to w3.
Is f unique? Suppose f ′ also mapped z1 to w1, z2 to w2, and z3 to w3.

Then f−1 ◦ f ′ has three fixed points, and so f−1 ◦ f ′ = id and f ′ = f

Definition 4.2. The cross ratio of four complex numbers z0, z1, z2, and z3

is denoted by (z0, z1, z2, z3) and is the value of

z0 − z2

z0 − z3

z1 − z3

z1 − z2
.

Definition 4.3. A subset of the plane is called a cline if it is either a circle
or a line.

The cross ratio can be used to identify clines.

Lemma 4.3. Let z0, z1, z2, and z3 be four distinct points. Then the cross
ratio (z0, z1, z2, z3) is real if and only if the four points lie on a cline.

Proof. Let f(z) = (z, z1, z2, z3) . Then since f is a Möbius transformation,
we can write

f(z) =
az + b

cz + d

18



Now f(z) is real if and only if

az + b

cz + d
=
az + b̄

cz + d̄

Multiplying this out, we get

(ac̄− cā)|z|2 + (ad̄− cb̄)z − (dā− bc̄)z̄ + (bd̄− db̄) = 0. (1)

If (ac̄− cā) = 0, let α = (ad̄− cb̄) and β = bd̄. Equation (1) simplifies to

Im(αz + β) = 0

This is the equation of a line. If (ac̄ − cā) 6= 0, then dividing through by
this term we can write equation (1) in the form

|z|2 +
ad̄− cb̄
ac̄− cā

z − dā− bc̄
ac̄− cā

z̄ +
bd̄− db̄
ac̄− cā

= 0

Let γ = ad̄−c̄b̄
ac̄−cā and δ = bd̄−db̄

ac̄−cā . since ac̄− cā is pure imaginary, we have that

γ̄ = (−)
dā− bc̄
ac̄− cā

=
dā− bc̄
cā− ac̄

Equation (1) becomes
|z|2 + γz + γz + δ = 0

Or
|z + γ̄|2 = −δ + |γ|2

After multiplying and regrouping on the right, we get

|z + γ̄|2 =

∣∣∣∣ad− bcac̄− cā

∣∣∣∣2
since ad− bc 6= 0, this gives the equation of a circle centered at −γ̄.

Theorem 4.4. A Möbius transformation f will map clines to clines. Also,
given any two clines c1 and c2, there is a Möbius transformation f mapping
c1 to c2.

Proof. Let c be a cline and let z1, z2, and z3 be three distinct points on c.
Let w1 = f (z1) , w2 = f (z2) , and w3 = f (z3) . These three points will lie
on a line or determine a unique circle. Thus, w1, w2, and w3 will lie on a
cline c′. Let z be any point on c different than z1, z2, or z3. By the previ-
ous theorem we have that (z, z1, z2, z3) is real. Also, (f(z), w1, w2, w3) =
(f(z), f (z1) , f (z2) , f (z3)) = (z, z1, z2, z3) , and thus f(z) is on the cline
through w1, w2, and w3.

For the second claim let z1, z2, and z3 be three distinct points on c1 and
w1, w2, and w3 be three distinct points on c2. By Theorem 3.2 there is a
Möbius transformation f taking z1, z2, z3 to w1, w2, w3. It follows from the
first part of this proof that f maps all points on c1 to points on c2.
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Remark 6. Möbius transformations of H such that a, b, c and d are real
numbers are orientation-preserving. And from now on we will refer to them
as Möbius transformations.

Now we proceed to define a metric on our space in term of the cross
ratio.

Definition 4.4. Let d : H2 → R+ ∪ {0} defined as follows

d (z1, z2) = log
(
z1, z2; z×1 , z

×
2

)
Here, z×1 and z×2 are the endpoints, on the real number line, of the geodesic
joining z1 and z2. These are numbered so that z1 lies in between z×1 and z2.

Lemma 4.5. If z1, z2, and z3 are distinct points and T is a Möbius trans-
formation, then (z, z1, z2, z3) = (T (z), T (z1) , T (z2) , T (z3)) for any z.

Proof. Proof: Let g(z) = (z, z1, z2, z3) . Then g ◦ T−1 will map T (z1) to 1,
T (z2) to 0, and T (z3) to∞. But, h(z) = (z, T (z1) , T (z2) , T (z3)) also maps
T (z1) to 1, T (z2) to 0, and T (z3) to∞. since g◦T−1 and h are both Möbius
transformations, and both agree on three points, then g ◦ T−1 = h. Since
g ◦ T−1(T (z)) = (z, z1, z2, z3) and h(T (z)) = (T (z), T (z1) , T (z2) , T (z3))
the result follows.

Lemma 4.6. Möbius transformations are isometries in H.

Proof. Since we define our metrics by cross ratio and using the previous
lemma the result is direct.

It can be shown that every orientation preserving isometry of H is a
Möbius transformation.
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4.3 Compactification of the Poincaré disk.

In this section we will review some tools necessary for the compactification
of hyperbolic spaces.The reference for this sequell is [4].
We will be working with very general definitions but it is important to keep
in mind that the motivation of this section is always the compactification of
the Poincaré disk (or equivalently the Poincaré Halfplane) and then develop
results as we did in the last section.

Definition 4.5. Two geodesic rays c, c′ : [0,∞) → X in a metric space X
are said to be asymptotic if supt d(c(t), c′(t)) is finite.

Remark 7. This condition is equivalent to the Hausdorff distance between
the images of c and c′ is finite.

One of the main themes of this work is the large scale dynamics and
geometry of metric spaces. In this context one needs a language that will
lend precision to observations such as the following: if one places a dot at
each integer point along a line in the Euclidean plane, then the line and
the set of dots become indistinguishable when viewed from afar, whereas
the line and the plane remain visibly distinct. One makes this observation
precise by saying that the set of dots is quasi-isometric to the line whereas
the line is not quasi-isometric to the plane.

Definition 4.6. Quasi-Isometry. Let (X1, d1) and (X2, d2) be metric spaces.
A (not necessarily continuous) map f : X1 → X2 is called a (λ, ε)-quasi-
isometric embedding if there exist constants λ ≥ 1 and ε ≥ 0 such that for
all x, y ∈ X1

1

λ
d1(x, y)− ε ≤ d2(f(x), f(y)) ≤ λd1(x, y) + ε

If, in addition, there exists a constant C ≥ 0 such that every point of X2

lies in the C− neighbourhood of the image of f, then f is called a (λ, ε)
-quasi-isometry. When such a map exists, X1 and X2 are said to be quasi-
isometric.

Definition 4.7. Quasi-Geodesics. A (λ, ε) -quasi-geodesic in a metric space
X is a(λ, ε) -quasi-isometric embedding c : I → X, where I is an interval of
the real line (bounded or unbounded) or the intersection of Z with such an
interval. More explicitly,

1

λ

∣∣t− t′∣∣− ε ≤ d (c(t), c (t′)) ≤ λ ∣∣t− t′∣∣+ ε

for all t, t′ ∈ I. If I = [a, b] then c(a) and c(b) are called the endpoints of c.
If I = [0,∞) then c is called a quasi-geodesic ray.
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Quasi-geodesics will play an important role in this section. In particu-
lar we will see that quasi-geodesics in hyperbolic spaces such as Hn follow
geodesics closely.

Definition 4.8. Two quasi-geodesic rays are said to be asymptotic if the
Hausdorff distance between their images is finite.

Being asymptotic is an equivalence relation on quasi-geodesic rays. We
write ∂X to denote the set of equivalence classes of geodesic rays in X and
we write ∂qX to denote the set of equivalence classes of quasi-geodesic rays.
In each case we write c(∞) to denote the equivalence class of c.

Definition 4.9. Slim Triangles. Let δ > 0. A geodesic triangle in a met-
ric space is said to be δ -slim if each of its sides is contained in the δ -
neighbourhood of the union of the other two sides. A geodesic space X is
said to be δ -hyperbolic if every triangle in X is δ -slim. (If X is δ -hyperbolic
for some δ > 0, one often says simply that X is hyperbolic.)

Theorem 4.7. (Stability of Quasi-Geodesics). For all δ > 0, λ ≥ 1, ε ≥ 0
there exists a constant R = R(δ, λ, ε) with the following property: If X is a
δ -hyperbolic geodesic space, c is a (λ, ε) -quasi-geodesic in X and [p, q] is
a geodesic segment joining the endpoints of c, then the Hausdorff distance
between [p, q] and the image of c is less than R.

Lemma 4.8. If X is a proper geodesic space that is δ -hyperbolic, then the
natural map from ∂X to ∂qX is a bijection. For each p ∈ X and ξ ∈ ∂X
there exists a geodesic ray c : [0,∞)→ X with c(0) = p and c(∞) = ξ

Proof. The natural map ∂X → ∂qX is obviously injective. To prove the
remaining assertions, given p ∈ X and a quasi-geodesic ray c : [0,∞)→ X,
let cn be a geodesic with cn(0) = p that joins p to c(n). since X is proper, a
subsequence of the cn converges to a geodesic ray c∞ : [0,∞) → X (by the
Arzelà-Ascoli Theorem (I.3.10)). The previous theorem provides a constant
k such that the Hausdorff distance between c([0, n]) and the image of cn is
less than k; thus we obtain a bound on the Hausdorff distance between c
and c∞.

Lemma 4.9. (Visibility of ∂X). If the metric space X is proper, geodesic
and δ-hyperbolic, then for each pair of distinct points ξ1, ξ2 ∈ ∂X there exists
a geodesic line c : R→ X with c(∞) = ξ1 and c(−∞) = ξ2

Proof. Fix p ∈ X and choose geodesic rays c1, c2 : [0,∞) → X from p
with c1(∞) = ξ1 and c2(∞) = ξ2. Let T be such that the distance from
c1(T ) to the image of c2 is greater than δ. For each n > T we choose a
geodesic segment [c1(n), c2(n)] and consider the geodesic triangle with sides
c1([0, n]), c2([0, n]) and [c1(n), c2(n)] . Since this triangle is δ-slim, [c1(n), c2(n)]
must intersect the closed (hence compact) ball of radius δ about c1(T ), at
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a point pn. By the Arzelà-Ascoli Theorem, as n→∞ a subsequence of the
geodesics [pn, c2(n)] ⊂ [c1(n), c2(n)] will converge. By passing to a further
subsequence we may assume that the sequence [c1(n), c2(n)] converges. The
limit is a geodesic line which we call c. Since each [c1(n), c2(n)] is contained
in the δ-neighbourhood of the union of the images of c1 and c2, the image
of c is also contained in this neighbourhood. Thus the endpoints of c are ξ1

and ξ2

Lemma 4.10. (Asymptotic Rays are Uniformly Close). Let X be a proper
δ -hyperbolic space and let c1, c2 : [0,∞)→ X be geodesic rays with c1(∞) =
c2(∞) (1) If c1(0) = c2(0) then d (c1(t), c2(t)) ≤ 2δ for all t > 0 (2) In
general, there exist T1, T2 > 0 such that d (c1 (T1 + t) , c2 (T2 + t)) ≤ 5δ for
all t ≥ 0

Now we proceed to work on the main objective of this section, compact-
ifaction of the δ−hyperbolic space. The following description that we will
give of the topology on X̄ = X ∪ ∂X. For this task it will be convenient to
define a more general idea of rays.

Definition 4.10. A generalized ray is a geodesic c : I → X, where either
I = [0, R] for some R ≥ 0 or else I = [0,∞). In the case I = [0, R] it is
convenient to define c(t) = c(R) for t ∈ [R,∞]. Thus X̄ := X ∪ ∂X is the
set {c(∞) | c a generalized ray }

Definition 4.11. (The Topology on X̄ = X ∪ ∂X). Let X be a proper
geodesic space that is δ -hyperbolic. Fix a basepoint p ∈ X. We define
convergence in X̄ by: xn → x as n→∞ if and only if there exist generalized
rays cn with cn(0) = p and cn(∞) = xn such that every subsequence of (cn)
contains a subsequence that converges (uniformly on compact subsets) to a
generalized ray c with c(∞) = x. This defines a topology on X̄ : the closed
subsets B ⊂ X̄ are those which satisfy the condition [xn ∈ B, ∀n > 0 and
xn → x] =⇒ x ∈ B

Lemma 4.11. (Neighbourhoods at Infinity). Let X and p ∈ X be as above.
Let k > 2δ. Let c0 : [0,∞) → X be a geodesic ray with c0(0) = p and for
each positive integer n let Vn (c0) be the set of generalized rays c such that
c(0) = p and d (c(n), c0(n)) < k Then {Vn (c0) | n ∈ N} is a fundamental
system of (not necessarily open) neighbourhoods of c(∞) in X̄.

Proof. Let c′ be a ray in X with c′(0) = p. It follows from a previous lemma
that c′(∞) = c0(∞) if and only if c′(n) ∈ Vn (c0) for all n > 0. And if ci is
a sequence of generalized rays in X with ci(0) = p and ci /∈ Vn (c0) , then
by the Arzelà-Ascoli theorem there is a subsequence ci(j) that converges to
some c /∈ Vn (c0) , hence ci does not converge to c0 in X̄. Thus ci → c0 in X̄
if and only if for every n > 0 there exists Nn > 0 such that ci ∈ Vn (c0) for
all i > Nn.

23



Lemma 4.12. Let X be a proper geodesic space that is δ−hyperbolic then
X̄ = X ∪ ∂X is compact.

Proof. The balls B(x, r), with r > 0 rational, form a fundamental system
of neighbourhoods about x ∈ X ⊂ X̄. This observation, together with the
preceding lemma, shows that the topology on X̄ satisfies the first axiom of
countability. Thus it suffices to prove that X̄ is sequentially compact, and
this is obvious by Arzelà-Ascoli.

Do not forget that all the tools reviewed in this section were motivated
by looking for an analog of compactification by a point on the Poincaré disk.

Remark 8. The Poincaré disk is a log3-hyperbolic space.
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4.4 Distorted Möbius transformations.

We want to study some distorted version of Möbius transformations as we
did before with the orientation-preserving isometries of R2.

Definition 4.12. A distorted Möbius transformations is a continuous func-
tion f : H→ H such that there exists a Möbius transformation T and a small
number ε > 0 such that

d(f(z), T (z)) < ε, for all z ∈ H

Lemma 4.13. Given f a distorted Möbius transformation and ε > 0, T,H ∈
Mob(D) such that dist(f(z), T (z)) < ε and dist(f(z), H(z)) < ε ∀z ∈ D,
then T = H.

Definition 4.13. Given f a distorted Möbius transformation we write Tf
the unique Möbius transformation of the lemma 4.13.

We will not give the proof of this result yet, we will do it in the next
section when we have a general result that will give an elegant and simple
proof.

Remark 9. Note the previous lemma is different than lemma 3.1 because
in lemma 3.1 the isometry was not unique, only the lineal part was unique.

Example 4.1. Let a a point in ∂H and a positive constant ε. Let considerer
the following function:

fa,ε : H→ H a function such that for a point p the image fa,ε(p) is in the
horocycle Hp wich contains a and p such that the arc length between p and
fa,ε(p) is ε, note we can consider two points to be fa,ε(p) (because we can
move along to Hp to the right and to the left) but we will only consider the
point such that the first coordinates in the Half plane model of the Poincaré
disk is bigger than the pre-image, that means we will consider the point to
the right of the pre-image.
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a

Hp

Hq

p

q fa,ε(p)

fa,ε(q)

ε

ε

The previous function is a distorted Möbius transformation because the
distance between the two points q and fa,ε(q) is bounded because these two
points belongs to the same horocycle Hq. The previous function is a distorted
Möbius transformation but it is not an isometry.

Lemma 4.14. The function fa,ε is not an isometry.

Proof. To prove that fa,ε is not an isometry, it would be easiest to work in
the upper half plane model using a = ∞, in which the horocycles are the
horizontal lines y = y0 along which the horocyclic distance is ∆x/y0. We
may take p = (0, 1) and so Hp is the y = 1 horocycle. Take q = (0, y0), and
so Hq is the y = y0 horocycle, where y0 6= 1. We have d(p, q) = ln |y0|, and
A = fa,ε(p) = (ε, 1), and B = fa,ε(q) = (εy0, y0).

Every distance mimizing line segment from the y = 1 horocycle Hp to
the y = y0 horocycle Hq is a ”vertical” line segment in the upper half plane,
from a point (x, 1) to the point (x, y0), all having the same length ln |y0|.
Every ”nonvertical” path from a point on Hp to a point on Hq has length
strictly larger than ln |y0|. Since the points A and B do not lie on the same
vertical segment (because ε 6= εy0), every path between those two points
A,B has length strictly larger than ln |y0|; its not hard to prove this by
simply looking at the path length integral for any parameterized path from
A to B, and using the fact that the path must have a nonvertical tangent
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line along a subinterval of the parameter interval. It follows that fa,ε is not
an isometry.

(0, 1)

Hp

Hq (0, y0)

A

B

ln|y0| d 6= ln|y0|
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4.5 Continuous extension of distorted Möbius.

In a previous section we prove that distorted isometries are continuous in
the compact metric space C̄, so we are able to give a similar answer to the
boundary at infinity of the compactification of the Poincaré disk.

Recall that a distorted Möbius is a function f such that d(f(z), T (z)) is
bounded with, T a Möbius transformation. Now we will give the proof to
the lemma(4.13) that we left pending.

Lemma 4.15. If γ : [0,∞)→ X is geodesic ray then B ◦ γ : [0,∞)→ X is
a quasi-geodesic ray.

Lemma 4.16. Let the geodesic ray γ then the geodesic ray T ◦ γ and the
quasi-geodesic ray f ◦γ belongs to the same equivalence class of geodesic ray.

Proof. By definition f ◦ γ is close to T ◦ γ (because f is a distorted Möbius
transformation). And using theorem of Stability of quasi-geodesics (Theo-
rem(4.7)) there exist γ′ close to f ◦ γ. Then T ◦ γ is close to γ′ then they
have the same class of equivalence. Therefore f ◦ γ and T ◦ γ have the same
class of equivalence.

T ◦ γ

f ◦ γ
γ′

Figure 1: Construction

Remark 10. f at the boundary, ∂H, looks like the Möbius transformation
T . Note that we have just given the proof that we had left pending on the
uniqueness of T.

Definition 4.14. Given a function f let define f∗ as the action in ∂D.
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Lemma 4.17. Let the continuous function (−)∗ then it has some properties:

1. T ∗1 ◦ T ∗2 = (T1 ◦ T2)∗.

2. (T−1)∗ = (T ∗)−1.

Proof. We will not give a detailed demonstration but we will give an idea
of how to prove the first part since point two is a direct consequence of the
first. For the first point the main idea is take an arbitrary geodesic γ and
then see the image of γ under the composition of T1 ◦ T2 and observe that
on ∂D the image the same under T ∗1 ◦ T ∗2 .

Lemma 4.18. Distorted Möbius transformation extends continuously to the
boundary.

Proof. Because f is a distorted Möbius transformation, in particular is a
continuous function on H. Recall that f = Tf on ∂H because of continuity
of Tf the distorted Möbius transformation f is continuous on ∂H. Now let
γ : R → H ∪ ∂H a geodesic with end points a, b ∈ ∂H, then Tf (γ) is a
geodesic with end points Tf (a), Tf (b) ∈ ∂H. Let {γ(n)} a sequence such
that limn→+∞ γ(n) = a, because of continuity of f we have the following:

lim
n→+∞

f(γ(n)) = f

(
lim

n→+∞
γ(n)

)
= f(a).

Since f = Tf we have f(a) = T (a) therefor f is a continuous function on
H ∪ ∂H.

Lemma 4.19. Let T ∗ the action in ∂H related to a isometry T. Then the
function T 7→ T ∗ is injective.

Proof. We will prove that a given an isometry it is determined by its action
at the boundary. Let γ1 and γ2 two geodesic such that γ1 ∩ γ2 6= ∅ with
A,B ∈ ∂H∩γ1 and C,D ∈ ∂H∩γ2. We know that isometry maps geodesic to
geodesic then image of γ1 is determined by the geodesic through T ∗(A) and
T ∗(B), analogous for γ2 and the points T ∗(C) and T ∗(D). But γ1 ∩ γ2 6= ∅
then there exists a point x such that x ∈ γ1∩γ2 then T (x) ∈ T ∗(γ1)∩T ∗(γ2)
then T ∗ is unique for T.

Lemma 4.20. Let f be a distorted Möbius transformation and T a isometry
related to f then T ∗ = f∗. In particular T is unique.

Proof. Note for a given geodesic γ with end points A,B f(γ) is of the same
class of equivalence as T (γ) then by the previous lemma the action in the
boundary determines that f and T are the same in the boundary. Moreover
T is unique (f∗ = T ∗).
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Is important to notice that in the case of Euclidean isometries when
we consider the one point compactification we give an algebraic proof about
uniqueness of the linear part but in this compactification we give a geometric
proof about uniqueness of T.

Definition 4.15. We say that a distorted Möbius transformation f is ”hy-
perbolic”, ”parabolic” or ”elliptic” when Tf is ”hyperbolic”, ”parabolic” or
”elliptic” respectively.
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4.6 Classification of Isometries.

In this section we give a detailed account of this classical topic see [5] for
further references. When given a description of an isometry, it is possible to
classify it into one of several categories which closely resemble the well-known
types of Euclidean isometries. Note that it is conventional to classify Möbius
transformations in a similar fashion, but using different terms. To highlight
similarities with and distinctions to Euclidean geometry, I’ll primarily use
names like those used for Euclidean geometry, but mention the names from
the Möbius group classifications as well. The key to either classification
is an analysis of the fixed points of the transformation. Let z = x + yi
be the position of a point. In order for this point to be a fixed point,
its homogeneous coordinates must be an eigenvector of the transformation
matrix.(

a− bi c+ di
c− di a+ bi

)
·
(
z
1

)
= λ

(
z
1

)
a, b, c, d ∈ R

λ = (c− di)z + (a+ bi)

(a− bi)z + (c+ di) = λz = ((c− di)z + (a+ bi))z

(c− di)z2 + (2bi)z − (c+ di) = 0
If c = d = 0, then the matrix will represent a multiplication by a fixed

complex root of unity a−bi
a+bi , which corresponds to a rotation around the ori-

gin, as described above. In this case, the second fixed point would be the
point at infinity, which isn’t described by the equation as its coordinates
(1, 0)T don’t match the prescribed form. In the classification of Möbius
transformations, such a transformation is a special case of the elliptic trans-
formations. If we even have b = c = d = 0, then the equation will hold for
any z, thus representing the identity transformation. The identity transfor-
mation can be seen as a special case of most of the other classes, so in a
complete classification it makes sense to consider it as a distinct class by
itself. If c+ di 6= 0, then there will in general be two fixed points.

z1,2 =
−2bi±

√
(2bi)2 − 4(c− di)(c+ di)

2(c− di)
=
−bi±

√
c2 + d2 − b2
c− di

In case the discriminant c2 + d2 − b2 is positive, both results will be
located on the unit circle, as the following computation verifies.

|z1|2 = z1·z1 =

√
c2 + d2 − b2 − bi

c− di
·
√
c2 + d2 − b2 + bi

c+ di
=
c2 + d2 − b2 + b2

c2 + d2
= 1

A similar equation holds for z2. Those two points on the unit disk can
be considered the ideal “endpoints” of a hyperbolic line, which is uniquely
defined by those two points. The corresponding transformation is a hyper-
bolic translation, moving all points away from one of the fixed points and
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towards the other, keeping their connecting line as a whole invariant. In
terms of the usual classification of Möbius transformations, such a group
would be called hyperbolic, although the use of this term here has only a
very remote connection to its use in hyperbolic geometry. These two uses
should not be confused. If the discriminant is negative, the square root will
result in a purely imaginary number. Conjugating that number will change
its sign. For this reason, the computation above now expresses a slightly
different product, namely

z1 · z2 =

√
c2 + d2 − b2 − bi

c− di
·
√
c2 + d2 − b2 + bi

c+ di
=
c2 + d2 − b2 + b2

c2 + d2
= 1

This means that z1 and z2 are related to one another via an inversion in
the unit circle, those two points in the model are in fact different represen-
tatives of the same point in the hyperbolic plane. That single fixed point is
the center of a hyperbolic rotation. In the common classification of Möbius
transformations, this would be called an elliptic transformation. The two
fixed points coincide in a single point on the unit circle. This denotes a
so-called limit rotation. Like a rotation, it has no finite fixed lines, but like
a translation, it has no finite fixed points either. Instead, all points will
be moved along horocycles which pass through the single ideal fixed point.
There is no obvious counterpart to this in Euclidean geometry, although
depending on the way one translates concepts, one can think of this as a
special case of either a translation or a rotation. In the nomenclature of
Möbius transformations, this would be called a parabolic transformation.

No. of
fixed points
in D

No. of
fixed points
in ∂D

Conjugate to

Hyperbolic. 0 2
a dilation
z 7→ kz, k 6= 1

Parabolic. 0 1
the translation
z 7→ z + 1

Elliptic. 1 0 a rotation
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4.6.1 Fixed points of distorted Möbius transformation.

The objective of this section is to answer the question about the fixed points
of a distorted Möbius transformation since for each distorted Möbius trans-
formation there is a unique Möbius transformation related to it. That is
why the work of the previous section of classifying Möbius transformation
by the number of fixed points and even more about the location of these
fixed points was important.

Theorem 4.21. Let f a distorted Möbius transformation and the Möbius
transformation Tf . If Tf is a Hyperbolic/Parabolic transformation and z is
fixed point for Tf then f(z) = z. If Tf is a Elliptic Möbius transformation
and z is fixed point for Tf then f has at least a fixed point.

Proof. We have two cases. First case is when Tf a Hyperbolic/Parabolic
Möbius transformation, recall that we prove in a previous section that f
and Tf are the same at ∂D then if z ∈ ∂D is fixed point for Tf then it will be
a fixed point for f. The last case if the distorted Möbius transformation f is
related to a Elliptic Möbius transformation Tf . Recall that f is a continuous
function from the compact Poincaré Disk to itself then by the Schauder fixed
point theorem f has a fixed point.

4.7 Dynamics of distorted Möbius transformation.

As we studied previously, each type of isometry has a different dynamic
behavior and different invariant set, Hyperbolic transformation, for example
one fixed point is a repulsor and the other points is an atractor, then we
can interpret this as that the dynamics of the transformation is that the
points in space move from the repulsor to the attractor and left invariant
the geodesic passing through this two fixed points. On the other hand,
elliptic transformation has one fixed point and left invariant ∂D, then we
can say that the dynamics is similar to a rotation in the euclidian case. And
finally we have parabolic transformations that left invariant the horocycles
passing through the fixed point, parabolic case can be considered as a limit
case of the previous situation where the fixed point goes to infinity, that
means the fixed point belongs to ∂D.

Now a natural question appears: given a distorted Möbius transforma-
tion f can we say something about the dynamics of f? In general we are
not able to ensure that invariant sets between T and the distorted Möbius
transformation f are the same.
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Definition 4.16. Given a Möbius transformation T we define the displace-
ment of T as the following number

disp(T ) := inf{dH(z, T (z))}.

The previous definition is somehow (from the metric point of view) to
measure how much a function moves the points in space.

Remark 11. It is important to note that the definition 4.16 is a way to
classify isometries.

If disp(T ) = 0 and the infimum is attained then T is a elliptic transfor-
mation, if disp(T ) = 0 and the infimum is not attained then T is a parabolic
transformation and if disp(T ) = c with positive constant c then T hyperbolic.

Definition 4.17. Given and a distorted Möbius transformation f and Tf
the related Möbius transformation. We define the isometric distortion to the
following number:

distor(f) := sup{dH(f, Tf )}.

Note that the above definition is well defined because f is a distorted
Möbius trasnformation.

4.7.1 Hyperbolic case.

The first case we will study will be the hyperbolic case. In this case, the
dynamics of T can be summarized in that there are two fixed points on the
boundary ∂D and T moves all the points away from one and takes them
to the other fixed point, leaving the geodesic that passes through these two
fixed points invariant. Therefore we would like to say that the fixed points
of f act in the same way as they did for T.

Now we will introduce some definitions and results to give the desired
answer.

Definition 4.18. Busseman functions. Let H be a unique geodesic hyper-
bolic space. Given α ∈ ∂H and a point p ∈ H, we define the Busseman
function Bp,α : H→ R in the direction α and with base point p as

Bp,α(h) = lim
n→∞

dH (xn, h)− dH (xn, p)

where (xn) ⊂ H is any sequence such that xn → α. The convergence and
independence on (xn) relies on the triangle inequality and the hyperbolicity
of H.

Lemma 4.22. Let α ∈ ∂H, xn → α if and only if Bx0,α(xn)→ −∞.

34



Proof. See [6].

Lemma 4.23. Let γ : R→ H be a geodesic with end points α, β ∈ ∂H then

Bx0,α(f(x)) ≤ Bx0,α(x)− (disp(Tf )− ε),

where ε ≥ distor(f).

Proof. By definition for a point x ∈ γ we have

Bx0,α(T (x)) + dH (T (x), x) = Bx0,α(x).

Because of hyperbolicity we have the following property:

Bx0,α(T (x))−Bx0,α(f(x)) ≤ dH (T (x), f(x)) ≤ ε.

Using the first part of this proof with the last inequality we get:

Bx0,α(f(x))−Bx0,α(x) + dH (T (x), x) ≤ ε
Bx0,α(f(x))−Bx0,α(x) + disp(T ) ≤ ε

Then we get
Bx0,α(f(x)) ≤ Bx0,α(x)− (disp(T )− ε)

Proposition 1. Let T a hyperbolic Möbius transformation and f be a
distorted Möbius transformation with Tf = T, and the point α ∈ ∂H be
the global attractor for T . If distor(f) < disp(T ) then α ∈ ∂H is a global
attractor point for f.

Proof. Using the lemma 4.23 is easy to see that

Bx0,α(fn(x)) ≤ Bx0,α(x)− n(disp(T )− ε). (2)

Now using x = x0 in (3) and recall that Bx0,α(x0) = 0 we get:

Bx0,α(fn(x)) ≤ −n(disp(T )− ε)

Now taking n→∞ and using lemma 4.22 we are done.

Remark 12. An analogous result for the global repulsor can be stated.

Example 4.2. We will construct an example where distor(f) ≥ disp(T ),
and such that the dynamics of f is different from the dynamics of T, showing
that Propositon 1 is sharp. Considerer the upper half plane model and T
hyperbolic Möbius transformation T with the imaginary axis γ the invariant
geodesic with end points ∞ and the origin. Suppose that the origin acts as
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γl1 l2

a

a repulsor and the infinity point acts as an attractor for T. Here we can
considerer T as the dilation z 7→ kz with k > 1. Let K the compact set
determined by two equidistants lines l1 and l2 such that ∂K = l1 ∪ l2 and
γ ⊂ K.

Let the continuous function h such that h|γ = T−1 this means that the
origin is now an attractor for z ∈ γ and the ∞ is a repulsor for γ. Now
we extends continuously to ∂K such that h|∂K = Id and then we extends
continuously to the boundary such that h = T.

l1 l2h(γ)

a

Then our distorted Möbius transformation f is the composition between
h and the continuous bounded function B such that limn→∞Re(B

n(z)) = 0,
this means that |Re(z)| > |Re(B(z))|.

Note that distor(f) ≥ disp(T ) and f on K the origin acts as an attractor
and the infinity points acts as a repulsor point.

a

b

Note that for all z there exists a number N ∈ N such that for all n > N,
fn(z) ∈ K, then the origin acts as an attractor point for all the point on
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the interior of the Poincaré Disk, analogous for the infinity points acts as a
repulsor for the points inside of the Poincaré Disk. Thus there are no open
sets for the previous construction such that the behavior of T is preserved
under f.
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4.7.2 Parabolic case.

Now we will discuss the case of a parabolic distorted Möbius transformation.
Recall for a parabolic Möbius transformation T the two invariant sets are:

the pencil of all geodesics passing through the fixed point in the boundary
(each element of this family maps to another) and horocycles which are
orthogonal to the geodesics from the first family and they are tangents to
the boundary at the fixed point. If T moves points of the horocycle clockwise,
that means Re(z) < Re(T (z)) in the upper half plane model, then f also
moves points clockwise.

But a question arises and it is if we can ensure that the dynamic behavior
of f is similar to that of T in some subset of space? For example, a subset
we could refer to a family of Horcycles near the imaginary axis in the model
of the upper half plane.

We will give an example sketch where the above is not true, that is, there
is no subset where the fixed point acts as a repulsor / attractor. Let T a
parabolic Möbius transformation and f the distorted Möbius transformation
related and by definition distor(f) > disp(T ) = 0.

To give the desire example, it would be easiest to illustrate the situation
first in the upper half model.

Recall that the hyperbolic distance of z and T (z) is:

dH(z, w) = Arc cosh

(
1 +

|z − w|2

2 Im(z) Im(T (z))

)
When |Im(z)| → 0 then dH(z, T (z)) := d→∞. WLOG we can take

T : z 7→ z + 1,

note that for all z, we have Im(z) = Im(T (z)), so if |Im(z)| is small
enough in the worst case the distance between f(z) and z is equal to
d − r > 0 with r = dH(T (z), f(z)). Thus Re(f(z)) > Re(z) in particular
Re(fk+1(z)) > Re(fk(z)) with k ≥ 0. And let f a distorted Möbius trans-
formation such that f it can have an erratic behavior compared to T , for
example it can transform the repulsor into an attractor for a family of hor-
cycles. An important observation is given the distance in this model there
will be a coordinate in the imaginary axis such that for every coordinate
smaller than this the function T will move the points much more than what
distorts f.

So now we concentrate on looking for an f such that it is a distorted and
that it somehow manages to move the points such that the images of the
iterates have increasingly larger imaginary coordinates.

And this is easy to imagine consider the translation T named above and
consider f a distortion of this such that the points under f are at a bounded
distance r from T (z).
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Let y0 the imaginary coordinate such that for all y ≥ y0 f has an erratic
behavior, that is, we cannot assure that it has a behavior similar to that of
the function T.

Let z an arbitrary point such that Im(z) < y0 is easy to see that there
exists an iterative of f such that Im(fk(z)) ≥ y0. Take k large enough
such that ky0 ≥ y0 and this just means that iterated k−th has the desired
imaginary coordinate then we are done.

From what we have discussed in this section we cannot be sure if the
behaviors between T and f are similar, either because of their invariant sets
or because of the nature of their fixed point.
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4.7.3 Elliptic case.

In the previous cases we were able to establish some relationship between
the dynamics of T and its related f , but we are going to consider a couple of
examples for the elliptic case in which we cannot establish some relationship
with the dynamics of T.

One way of wanting to establish some relationship between the dynamics
of T and f is to try to see if there is any relationship between the rotation
numbers of both functions. Let us consider the following example.

Example 4.3. Considerer T = Id with rotation number equals to 0 and
considerer the function f such that leaves the circles centered at a point z0

invariant, f : z′ 7→ f(z′) such that the arclenght between z′ and f(z′) is
equal to 1.

1
z

f(z)

z0

z′ f(z′)
1

C1

C2

Note that f |∂D = T |∂D and the invariants sets for f are the same for T
but on every circle C centered in z0 f has a different rotation number. So
the only thing we can conclude is that f and T are equal on the boundary.

Now let’s build an example where the rotation number is preserved but
the invariant sets are not preserved.

Example 4.4. Let T the rotation around the fixed point z0 in angle α and
let f the distorted rotation related to T such that for z the image under f is
a rotation in angle α and then we move the point to another circle centered
in z0 which is at a bounded distance.

α

z0

z
f(z)C1

C2
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Note that in this example the rotation number is preserved but the
invariant sets are not, again as in the previous example the only thing we
can conclude is that both functions are equal on the boundary.

4.8 Resume

Now we will make a brief summary of what we could conclude throughout
this section of the dynamic behaviors between f and Tf .

Hyperbolic: We prove Proposition 1 so if distor(f) < disp(Tf ) then
α ∈ ∂H the global attractor for Tf it is also the global attractor for f.

Also we construct an example where distor(f) ≥ disp(Tf ) and we con-
clude that f and Tf they did not share dynamic behavior.

Parabolic: We construct an example such that we cannot be sure if the
behaviors between Tf and f are similar, either because of their invariant
sets or because of the nature of their fixed point.

Elliptic: We gave two examples, the first one we conserve the invariant
sets of Tf but f did not preserve the rotation number of Tf . The second one,
we conserve the rotation number of Tf but f did not preserve the invariants
sets of Tf . Therefore we cannot ensure that f and Tf have the same dynamic
behavior.

The only thing we can be sure of in these three cases is something that
we already knew and that is that Tf and f are equal on the boundary ∂H.
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5 Cocycles

Let’s consider a continuous transformation R : Ω→ Ω where Ω is a compact
metric space, Let A : Ω → dIsom(H) a function thats takes value on the
space of distorted Möbius transformation. We writedH(·, ·), dΩ(·, ·) for the
distances in H and Ω respectively and we A(ω) = fω.

Definition 5.1. We say that A : Ω→ dI som(H) is continuous for the topol-
ogy of the uniform convergence on bounded sets when, given any bounded set
K ⊂ H, any ω0 ∈ Ω and ε > 0 there exists δ > 0 such that for every h ∈ K
we have

dΩ (ω0, ω) < δ ⇒ dH (A(ω) · h,A (ω0) · h) < ε

Whenever A is continuous for the topology of the uniform convergence
on bounded sets we will simply say that the pair (R,A) is a continuous
cocycle by distorted isometries of the fiber H over the base space Ω.

Remark 13. We can generate the previous topology by all BK(f, ε), where
BK(f, ε) is the set

{
g ∈ HΩ : supx∈K dH(f(x), g(x)) < ε

}
for a given bounded

set K and ε > 0 and f ∈ HΩ.

We will ask that the function A be continuous under the topology of the
uniform convergence on bounded sets.

Lemma 5.1. A is a measurable function.

Proof. Sketch: If A is continuous it is also measurable because the inverse
image of sets BK(f, ε) are open sets in the topology of Ω then the inverse
images of sets BK(f, ε) are measurable sets, therefore the function A is
measurable.

For ω ∈ Ω we write the following function that measures how far fω is
from Tω

G : Ω −→ R+
0

ω 7−→ εω := sup
h∈H

dH(fω(h), T (h)).

Remark 14. G is a measurable function because of the continuity of A un
der the topology of uniform convergence on bounded sets, since the inverse
image under G of open sets in R+

0 are measurable sets in Ω, therefore G is
a measurable function.

5.1 Skew product dynamical system.

Given a cocycle (R,A) we can construct the following dynamics

F : Ω×H −→ Ω×H
(ω, h) 7−→ (Rω,A(ω) · h),
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where A(ω) · h = fω(h) with fω a distorted Möbius transformation related
to T such that dH(T (h), fω(h)) < εω for all ω ∈ Ω.

In the sequell we will assume that there exists T ∈ Mob(H) such that
Tω = T for every ω ∈ Ω.

Lemma 5.2. Let Fn(ω, h) = (Rn(ω), fRn−1(ω) ◦· · · ◦ fω(h)). If disp(T ) >
dispisom(fω) for all ω ∈ Ω then limn→∞ fRn−1(ω) ◦ · · · ◦ fω(h) = b where
b ∈ ∂H is the global attractor.

Proof. Because for all ω ∈ Ω fω is a distorted Möbius transformation related
to the same Möbius transformation T, then we can choose supω dispisom(fω)
and apply lemma 1.

Theorem 5.3. Given ergodic fω : Ω → Ω be a measurable transformation
and let µ be a finite R-invariant ergodic measure in Ω, and b ∈ ∂H the global
attractor for T. If

disp(T ) >

∫
Ω
G(ω)dµ

then Ω× {b} is a.e-global attractor for the cocycle (R,A).

Proof. Let x0 ∈ H an arbitrary point. By lemma 4.23

Bx0,α(fω(x)) ≤ Bx0,α(x)− (disp(T )− εω)

Bx0,α(fRω(fω(x)) ≤ Bx0,α(x)− (2disp(T )− εω − εRω)

...

Bx0,α(fRn−1
ω
◦ · · · ◦ fω(x)) ≤ Bx0,α(x)− (ndisp(T )−

n∑
i=1

εRn−1ω)

= Bx0,α(x)− n(disp(T )− 1

n

n∑
i=1

εRn−1ω)

In the last inequality we take the limit when n→∞.

lim
n→∞

Bx0,α(fRn−1
ω
◦ · · · ◦ fω(x)) ≤ Bx0,α(x)− lim

n→∞
n(disp(T )− 1

n

n∑
i=1

εRn−1ω)

The Birkhoff Ergodic Theorem yields

lim
n→∞

1

n

n∑
i=1

εRn−1ω =

∫
Ω
G(ω)dµ.

Then n(disp(T )−
∫

ΩG(ω)dµ)→∞ when n→∞. Therefore

lim
n→∞

Bx0,α(fRn−1
ω
◦ · · · ◦ fω(x)) = −∞,

because lemma 4.22 and taking x = x0 we have α is a µ-a.e global atracttor.
Then Ω× {α} is a global atracttor for (R,A).
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Now we will give a more general version to the previous theorem, for
that we will suppose that for each ω we will have a hyperbolic Möbius
transformation Tω such that for ω1 6= ω2 we do not necessarily have that
disp(Tω1) = disp(Tω2), but for all ω ∈ Ω we have that α ∈ ∂H is the global
attractor for Tω.

Now lets define the following function which, given ω ∈ Ω, measures the
displacement of Tω.

D : Ω −→ R+
0

ω 7−→ disp(Tω),

Remark 15. D is a continous function and measureable function under the
topology of uniform convergence on bounded sets.

Theorem 5.4. Given fω : Ω→ Ω and Tω : Ω→ Ω be measurables funtions
and let µ be a finite R-invariant and ergodic in Ω. For all ω ∈ Ω let α ∈ ∂H
the global attractor for Tω. If∫

Ω
D(ω)dµ >

∫
Ω
G(ω)dµ

then Ω× {α} is a.e-global attractor for (R,A).

Proof. Let x0 ∈ H an arbitrary point. By lemma 4.23

Bx0,α(fω(x)) ≤ Bx0,α(x)− (disp(Tω)− εω)

Bx0,α(fRω(fω(x)) ≤ Bx0,α(x)− (disp(Tω) + disp(TRω)− εω − εRω)

...

Bx0,α(fRn−1
ω
◦ · · · ◦ fω(x)) ≤ Bx0,α(x)−

(
n∑
i=1

disp(TRn−1ω)−
n∑
i=1

εRn−1ω

)

= Bx0,α(x)− n

(
1

n

n∑
i=1

disp(TRn−1ω)− 1

n

n∑
i=1

εRn−1ω

)
In the last inequality we take the limit when n→∞.

lim
n→∞

Bx0,α(fRn−1
ω
◦· · ·◦fω(x)) ≤ Bx0,α(x)− lim

n→∞
n

(
1

n

n∑
i=1

disp(TRn−1ω)− 1

n

n∑
i=1

εRn−1ω

)
Because Birkhoff Ergodic Theorem we have

lim
n→∞

1

n

n∑
i=1

εRn−1ω =

∫
Ω
G(ω)dµ

lim
n→∞

1

n

n∑
i=1

disp(TRn−1ω) =

∫
Ω
D(ω)dµ
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Then n
(

1
n

∑n
i=1 disp(TRn−1ω)− 1

n

∑n
i=1 εRn−1ω

)
→ ∞ when n → ∞.

Therefore
lim
n→∞

Bx0,α(fRn−1
ω
◦ · · · ◦ fω(x)) = −∞,

because lemma 4.22 and taking x = x0 we have α is a µ-a.e global atracttor.
Then Ω× {α} is a global atracttor for (R,A).
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5.2 Properties of Distorted Möbius transformation.

Lemma 5.5. Let f a distorted Möbius transformation and x, y ∈ H then

dH(f(x), f(y))− dH(x, y) ≤ ε.

Proof. Recall that dH(T (x), T (y)) = dH(x, y) then

dH(f(x), f(y))− dH(x, y) ≤ dH(f(x), T (x)) + dH(T (x), f(y))− dH(x, y)

≤ dH(f(x), T (x)) + dH(T (x), T (y)) + dH(T (y), f(y))− dH(x, y)

= dH(f(x), T (x)) + dH(T (y), f(y))

≤ 2ε.

Taking ε = 2ε we are done.

Lemma 5.6. Let f a distorted and T the Möbius transformation related
then T−1 ◦ f = h with h a bounded displacement.

Proof. Given a point x0 is sufficient to show that h(x0) is at a bounded
distance from x0. So by definition f(x0) ∈ Bε(T (x0)) and using that T is
an isometry then T−1 preserves distances, in particular preserves balls so
T−1 ◦ f(x0) ∈ Bε(x0). Because x0 is an arbitrary point we can say that
T−1 ◦ f is a bounded function and taking T−1 ◦ f = h we are done.

x0

Tx0

T−1

ε

46



References

[1] N.-H. Lee, “Geometry: from isometries to special relativity,” 2020.
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