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Quantization of Edge Currents along Magnetic Interfaces:

A K-Theory Approach

Student: Esteban Gutiérrez
Advisor: Giuseppe de Nittis



.



Acknowledgments

I’d like to express my syncere gratitude to my advisor Dr. Giuseppe de Nittis for his con-
tinuous support and patience. His guidance helped me more than what I could have asked for.

Besides my advisor, I’d like to thank to Dr. Guo Chuan Thiang and Dr. Rafael Tiedra
for being part of the defense committee. Their suggestions where such a important part for
this work to get to its full potential.

I’d also like to thank to the teachers Dr. Claudio Fernandez and Dr. Gueorgui Raykov
for introducing me to Mathematical Physics, and to the Faculty of Mathematics of the Pon-
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Chaper 1: Introduction

This chapter contains both the main ideas of this work explained in a heuristic manner
and a formal formulation of the results obtained.

1.1 Main Ideas

In this work a full frame to study the propagation of topological currents along magnetic
interfaces in a 2-dimensional material subject to a orthogonal magnetic field is introduced.
By a magnetic interface we mean a thin region of the space that separates the material,
at least locally, into two parts subjected to different constant magnetic fields (see Figure
1.1), and the propagated topological current is a quantized charge current generated by the
difference between the magnetic fields at each side of the magnetic interface. In this way,
one can think on topological currents as a phenomenon that occur in the edge of certain
materials and can be described by the properties in the bulk (deep in the interior) of those,
making it a bulk-edge correspondence. In such frame, several examples are included together
with an extensive study to the simplest non trivial magnetic interface. Such case appear
naturally when the Iwatsuka magnetic field is considered, which was first introduced in
[Iwa] and consists of a magnetic field whose strenght is constant in one of the directions of
the material, let us say vertically, and admits horizontal limits1. The computation of the
topological current for the Iwatsuka magnetic field has been studied in a continuous setting
in [DGR] and more generally but in a discrette setting in [KS]. Such problem is stated in this
work through a K-theoretic framework, which is consistent with the fact that bulk-boundary
correspondences in condensed matter can be succesfully explained through the K-theory of
the C∗-algebras of observables involved (see [Hat, EG, KRS]).

1These are just the main hipothesis considered in [Iwa], however this simplifaction will be adopted and
actually simplified even more in this work.
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Figure 1.1: Coloured vectors represent different manetic fields applied to the same material.
Coloured segments represent the magnetic interfaces induced by the different magnetic fields.

1.2 Formulation and Results

The material will be represented with the discrete lattice Z2 and the magnetic field acting on
it will be described by its strength on every point of the material as a function B : Z2 → R.
Magnetic potentials associated to the magnetic field B will be defined and will induce the
magnetic translations as unitary operators SB,1, SB,2 on `2(Z). Our definition of the magnetic
translations is of course consistent with the one given in most literature (see e. g. [PS, DS])
and can also be regarded as a discrete version of its continuous analog (cf. [Ara, Theorem
3.2]). In turn, the Magnetic C∗-algebra AB consisting on the algebra of observables de-
scribing the kinematics of charged particles on the material will be defined as the the one
generated by the magnetic translations.

Section 2 contains several structural facts about magnetic C∗-algebras, some of which
are proving that such algebras: admit a crossed product structure, a differential struc-
ture and a well made integration theory; and most importanly, reassemble in a very rich
(non-commutative way) the Fourier theory of C(T), proving that the elements of magnetic
C∗-algebras admit a unique representation as a Cesàro sum of noncommutative polynomials
on the magnetic translations. In the same section, a very important commutative subalgebra
of AB is introduced, namely the Flux algebra FB. Such algebra depends uniquely on the
magnetic field B and is proven to enconde all the information needed to study the entire
algebra AB for the purposes of this work. Such property lead us to define the magnetic Hull
as the compact Hausdorff space ΩB such that FB ' C(ΩB), which exists in virtue of the
Gelfand-Neimark Theorem.

Section 3 sits the fundamental blocks of the machinery used to study the topological
currents propagated through arbitrary interfaces. The main result consists on the capability
to “separate” the magnetic C∗-algebra in two parts: one consisting of an algebra that repre-
sents the magnetic interfaces of the magnetic field, which will be called the interface algebra
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and denoted by IB; and other one which describes the material as its components associated
to the different constant magnetic fields of the material with no interactions whatsoever
(see Figure 1.2). Such algebra will be called the Bulk Algebra and denoted ABulk, and the
interactionless property will be builded upon taking orthogonal direct sums of C∗-algebras
describing the constant magnetic fields of each component2, i. e. ,

Abulk =
N⊕
j=1

Abj ,

where each Abj stands as the magnetic C∗-algebra associated to the constant magnetic field
B ≡ bj for j = 1, . . . , N .

Figure 1.2: Separation of the material of Figure 1.1 into three interactionless materials.

The “separation” argument is made through a short-exact sequence of C∗-algebras in the
form

0 −→ IB −→ AB −→ ABulk −→ 0 . (1.1)

This type of argument is usual when a bulk-edge correspondance is trying to be achieved
(cf. [PS, Corollary 5.5.2], [DS, Theorem 2] and throughout the entire work [Thi]), since it
implies the existence of a six-term exact sequence (see [Weg, Theorem 9.3.2]) of the form

K0(IB) −→ K0(AB) −→ K0(Abulk)

ind

x yexp

K1(Abulk) ←− K1(AB) ←− K1(IB) ,

(1.2)

2Fortunately, not every component is relevant. Actually, just the asymptotic behaviour of the magnetic
field B is important. This will be discussed in Section 3.1.
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inducing a fortiori a connection between the magnetic interface and the bulk algebra via the
index and exponential maps.
Section 3 also contains a full description of what is meant by studying topological currents.
In a nutshell, consider a Hamiltonian Ĥ ∈ AB which contains the full information of the
magnetic field B and H = {Hj}j=1,...,N ∈ ABulk its image through the exact-sequnce (1.1).
Let ∆ be an energy domain (open set) that sits inside a non-trivial gap of ∩Nj=1σ(Hj), JI(∆)

be the interface current carried by the eigenstates of Ĥ in ∆ and σI(∆) := eJI(∆) the
associated interface conductance, where e > 0 is the magnitude of the electron charge. Now
consider µ ∈ ∆ be a given Fermi energy and let σbulk(µ) = {σj(µ)}j=1,...,N denotes the set of
Hall conductances at energy µ for the “bulk system” described by the Hamiltonian H. The
constant σI(∆) and set σBulk(µ) have a meaningful physical interpretation as their name
suggests. In this work, they are introduced as the result between “topological maps” on
certain elements in the algebras I+ and ABulk respectively. The “topological property” of
such maps, is that they can lift into the groups K1(I) and K0(ABulk), which is where the
sequence (1.2), and particularly the exponential map, result of fundamental utility. In cer-
tain cases, it is possible to find a reasonable correspondence between σI(∆) and σbulk(µ) .
This will be the case when considering a Iwatsuka magnetic field, and consequently a bulk-
interface duality will be said to hold. This name is of course based on the fact that this can be
thought as a manifestation of the celebrated bulk-boundary correspondence [Hat, EG, KRS].

Finally, section 4 is dedicated to the particular case of considering the Iwatsuka magnetic
field. In such case one can do many explicit computations regarding the theory introduced
in the past sections. Among other things one can: determine explicitely the Flux algebra
and its magnetic Hull; describe the maps involved in the short-exact sequence (1.1) and
understand the evaluation map restricted to FB actually as an evaluation at ±∞; compute
every map and group involved in (1.2) explicitely (which results extremely satisfactory);
and finally as a consequence of the latter, proving the bulk-interface correspondence for the
Iwatsuka C∗-algebra through K-theory. Since the latter is in a way the main result of this
work, let us explain a little more about it.
When the Iwatsuka magnetic field is considered, the magnetic interface is (as one could
imagine) a line that separates the material in two parts, that isABulk = Ab−⊕Ab+ . Moreover,
once the Hall conductances σ±(µ) and the Interface conductance σI(∆) are computed, it is
rutinary to check that

σI(∆) = σb−(µ)− σb+(µ), (1.3)

which is an example of a bulk-interface duality.
Finally, let us remark that equation (1.3) is roughly the same result obtained in both [DGR]
and [KS], however such result is proved here using K-theory. When condensed matter
is consider, the use of K-Theory to state bulk-edge correspondences is pretty consistent
through the current literature, so the proof of (1.3) using such tools is also a extra, but
small, contribution.
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Chapter 2: Magnetic C∗-Algebras and
their properties

In this chapter the C∗-algebra of operators on `2(Z2) that describe the kinematics of
charged particles subjected to a given orthogonal magnetic field in the tight-binding ap-
proximation will be briefly described. This algebra will be called the magnetic C∗-algebra,
it was first introduced in [DS] and can be regarded as a generalization of the well known
noncommutative torus preserving most of its structure. For a brief introduction to the non-
commutative torus including the computation of its K-theory see appendix D.

2.1 Magnetic fields and potentials

In the tight-binding approximation the two-dimensional position space is Z2 and an orthogo-
nal magnetic field is any function B : Z2 → R. In order to introduce the notion of potentials
in the discrete setting let us first fix some notation. When working with magnetic potentials,
and magnetic translations later, the notation n := (n1, n2),m := (m1,m2) ∈ Z2 for arbitrary
points of Z2 results particularly useful. It will also be written e1 := (1, 0), e2 := (0, 1) for
the canonical linear basis of R2.

Definition 2.1.1 (Tight-binding vector potential). Let B : Z2 → R be a magnetic field. A
magnetic potential for B is a function

AB : Z2 × Z2 −→ R

satisfying:

1. AB(n,m) = 0 for n,m ∈ Z2 such that |n−m| 6= 1;
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2. AB(m,n) = −AB(n,m) for all n,m ∈ Z2; and

3. B(n) = C[AB](n) for all n ∈ Z2 where

C[AB](n) :=AB(n, n− e1) + AB(n− e1, n− e1 − e2)

+ AB(n− e1 − e2, n− e2) + AB(n− e2, n)

is the (counterclockwise) circulation of AB along the boundary of the unit cell of Z2

with right upper corner equals to n.

From [DS, Proposition 1] we know that every magnetic field B admit an infinite number
of vector potentials, and every two potentials AB and A′B associated with the same magnetic
field B are related by a gauge function G : Z2 → R according to

A′B(n,m) = AB(n,m) +G(n)−G(m), |n−m| = 1. (2.1)

The importance of the gauge function is that a pair of different magnetic potentials for
the same magnetic field will generate isomorphic algebras with isomorphism induced by the
gauge function. Finally, and as in most of the literature, the word gauge will also be used
to refer to different potentials.

The following examples represent two cases already studied together with the main ex-
ample of this work and will be used several times from now on.

Example 2.1.2 (Potentials for the constant magnetic field). A constant magnetic field of
strength b is described by the constant function Bb(n) = b for all n ∈ Z2. Among the
infinite number of vector potentials associated to the constant magnetic field Bb, there are
two of special utility in practical applications. The first one is the so-called Landau potential
defined by

A(n, n− ej) := δj,1n2b, for all n ∈ Z2. (2.2)

The second is the symmetric potential defined by

Asym(n, n− ej) := (δj,1n2 − δj,2n1)
b

2
, for all n ∈ Z2. (2.3)

A simple computation shows that C[A] = C[Asym] = Bb. Moreover, one can check that the
Landau and symmetric potentials are related by the gauge function Gb(n) := −n1n2

b
2

as in
equation (2.1), that is,

Asym(n, n− ej) = A(n, n− ej) +Gb(n)−Gb(n− ej).

/

Example 2.1.3 (Potentials for the Iwatsuka magnetic field). The Iwatsuka magnetic field
[Iwa] models systems with a magnetic field only depending on its first variable, that is
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B(n1, n2) = B(n1), together with some asymptotical behaviour. For the sake of simplicity
let us define the Iwatsuka magnetic field as

BI(n) := b−δ−(n) + b0δ0(n) + b+δ+(n), for all n ∈ Z2 (2.4)

where b−, b0, b+ ∈ R are real constants and the three functions δ±, δ0 are defined by

δ±(n1, n2) :=

{
1 if± n1 > 0

0 otherwise
, δ0(n1, n2) :=

{
1 if n1 = 0

0 otherwise
. (2.5)

As in the constant magnetic field case, there are Landau and symmetric like potentials. More
precisely let us define the Landau-Iwatsuka potential as

AI(n, n− ej) := δj,1n2BI(n), for all n ∈ Z2 (2.6)

and the symmetric Iwatsuka potential as

AI,sym(n, n− ej) = A
(0)
I,sym(n, n− ej) + ∆I,sym(n, n− ej) (2.7)

where

A
(0)
I,sym(n, n− ej) :=

(
δj,1
2
n2 −

δj,2
2
n1

)
BI(n), for all n ∈ Z2,

and

∆I,sym(n, n− ej) := δj,1
b0 − b−

2
n2δ

(1)
0 (n), for all n ∈ Z2.

In both cases easy but annoying computations lead us to C[AI] = C[AI,sym] = BI. Let us
explain a little about the symmetric case. The exact same computations as in the constant
magnetic field case provide

C[A
(0)
I,sym](n) = BI(n) for n1 6= 0,

however

C[A
(0)
I,sym](0, n2) = (b0 + b−)

1

2
,

so the term ∆I,sym is included to correct the mismatch.
This time, one can check that the relation between the symmetric Iwatsuka potential and
the Landau Iwatsuka potential is given by the gauge function GI(n) := −n1n2

2
BI(n) as in

equation (2.1). /

Example 2.1.4 (Potentials for the localized magnetic field). Let P0(Z2) be the collection
of finite subsets of Z2. For every Λ ∈ P0(Z2) let δΛ be the characteristic function defined by

δΛ(n) :=

{
1 if n ∈ Λ

0 otherwise
.
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A localized magnetic field of strength b ∈ R is defined by the function

BΛ(n) := bδΛ(n), for all n ∈ Z2. (2.8)

Observe that
BΛ =

∑
λ∈Λ

B{λ}

where B{λ} := bδ{λ} is the magnetic field localized on the singleton {λ} ∈ P0(Z2). This
is convenient since the case localized on one point has already been studied in [DS] and a
magnetic potential for such case has been introduced as the half-line potential defined by

A{λ}(n, n− ej) := bδj,1

+∞∑
t=0

δ{λ+te2}(n).

By linearity of the circulation one gets that

AΛ :=
∑
λ∈Λ

A{λ}

provides a vector potential for the localized magnetic field BΛ. Observe that AΛ is well
defined in view of the finiteness of the sum in λ. /

2.2 The magnetic translations

In this section the magnetic translations, which are the fundamental blocks of the magnetic
C∗-algebras, are defined. Let Sj and Nj, j = 1, 2, be the canonical shift operators and
position operators respectively defined on the Hilbert space `2(Z2) by

(Sjψ)(n) := ψ(n− ej), j = 1, 2, ψ ∈ `2(Z2),

and for suitable ψ ∈ `2(Z2)1

(Njψ)(n) := njψ(n), j = 1, 2.

Also, we will consider the vector of position operators X = (X1, X2).

Definition 2.2.1. Let B a magnetic field with associated vector potential AB. The magnetic
phases in the gauge AB are the unitary operators YAB ,j = eiAB(N,N−ej) , j = 1, 2, that is,

(YAB ,jψ)(n) := eiAB(n,n−ej) ψ(n), ψ ∈ `2(Z2).

1This obeys to the fact that the position operators on `2(Z2) are not bounded, however since in this work
we introduce the position operators just to compute bounded functions of those, there is no need to have
any discussion on the domain.
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The magnetic translations in the gauge AB are the operators defined by SAB ,j := YAB ,jSj,
or more explicitly as

(SAB ,jψ)(n) := eiAB(n,n−ej) ψ(n− ej), ψ ∈ `2(Z2).

Finally, the magnetic flux operator is defined by fB = eiB(N) , that is,

(fBψ)(n) := eiB(n) ψ(n), ψ ∈ `2(Z2).

Remarks 2.2.2. 1. The magnetic phases and flux are easily seen to be unitary operators.
It follows that the magnetic translations are also unitary operators, since they are a
composition of unitary operators. Moreover, one can check that their adjoints (and
inverses) are explicitely given by(

S∗AB ,jψ
)
(n) := eiAB(n,n+ej) ψ(n+ ej), ψ ∈ `2(Z2).

2. The magnetic flux does not depend on the choice of the magnetic potential. This
simple but fundamental observation will be of high importance several times later on
this work.

3. The connection between in magnetic translations and the magnetic flux is given by the
equation

SAB ,1SAB ,2S
∗
AB ,1

S∗AB ,2 = fB. (2.9)

no matter what magnetic potentials were chosen. This will introduce some sort of
universality in the magnetic C∗-algebra (see Section 2.5).

4. If two different magnetic potentials, let say AB and A′B, induce the same magnetic field
B, it has been mentioned that they must be connected by a gauge function G as in
equation (2.1). It follows by simple computations that

SA′B ,j = e−iG(N) SAB ,j eiG(N) , j = 1, 2,

which implies that the gauge function induces a unitary equivalence between the mag-
netic translations associated to different magnetic potentials but equal magnetic field.
This observation allow us to refer to the magnetic translations SAB ,j simply as SB,j
unless explicit computations were needed. /

Example 2.2.3 (Magnetic translations for a constant magnetic field). One can of course
introduce the magnetic translations in the constant magnetic field case with both the Landau
and symmetric magnetic potentials defined in 2.1.2. In both cases the magnetic translations
are not exceptionally hard to manipulate as operators, however it is remarkable that in the
Landau gauge SAb,2 = S2.
No matter the case, equation (2.9) tells us that

SAb,1SAb,2 = eib SAb,2SAb,1 (2.10)
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for every magnetic potential AB associated to the magnetic field B = Bb, since the flux
operator coincides with the multiplication by the constant phase eib . The importance of
equation (2.10) is that it proves that the magnetic translations satisfy the canonical com-
mutation relation of the generators of the noncommutative torus with angle θ = b/2π (see
appendix D, [GBVF, Chapter 12] or [Weg, Chapter 12.3]). /

Example 2.2.4 (Iwatsuka magnetic translations). As in the constant magnetic field case
one can introduce the magnetic translations associated to both the Landau and symmetric
Iwatsuka potentials, however this time the simplicity of the computations changes radically
between gauges and because of that from now just the Landau Iwatsuka potential will be
considered, and for the sake of notation let us fix the Iwatsuka magnetic translations as

SI,j = SAI,j, for j = 1, 2.

Observe that exactly as in the Landau gauge for the constant magnetic field case, we have
that SI,2 = S2, which is a relief because it eases the manipulation of the iwatsuka magnetic
translations. /

Example 2.2.5 (Magnetic translations for a localized field). The magnetic translations
associated to a localized magnetic field BΛ of the type (2.8) can be defined exactly as in
the previous examples by using the vector potential AΛ. Also in this case one obtains that
SAΛ,2 = S2. /

2.3 Construction of the magnetic C∗-algebra

Throughout this section consider SAB ,1 and SAB ,2 be the magnetic translations associated to
the magnetic field B through the magnetic potential AB.

Definition 2.3.1 (The tight-binding magnetic C∗-algebra). The magnetic C∗-algebra AAB
of the magnetic field B in the gauge AB is the unital C∗-subalgebra of B(`2(Z2)) generated
by SAB ,1 and SAB ,2, i. e. ,

AAB := C∗ (SAB ,1, SAB ,2) .

Remarks 2.3.2. 1. In more detail the C∗-algebra AAB is constructed by closing the
collection of the Laurent polynomials in SAB ,1 and SAB ,2 with respect to the operator
norm and then one would be tempted to describe the elements of AAB as a series on
the magnetic translations and their adjoints, however this is in general not true. The
missing elements can be thought as limits of sequences of elements that are already
infinite series. The problem of representing the elements as series will be broadly
discuss in 2.7.

2. As remarked in 2.2.2, the gauge function induces an unitary equivalence between mag-
netic translations. This can of course be lifted into the entire magnetic C∗-algebra,
proving that if AB and A′B are two magnetic potentials for the same magnetic field

AAB ' AA′B ,
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with isomorphism given by T 7→ e− iG(N) T e iG(N) . This observation allow us to re-
fer to the magnetic C∗-algebra AAB simply as AB unless we need to make explicit
computations regarding the magnetic translations. /

Example 2.3.3 (Noncommutative torus). In the case of a constant magnetic field of strength
b the associated magnetic C∗-algebra will be denoted simply with

Ab := C∗ (Sb,1, Sb,2)

where the the magnetic translations Sb,1 and Sb,2 are described in Example 2.2.3. As men-
tioned in 2.2.3, the magnetic translations Sb,1 and Sb,2 satisfy the commutation relation of the
generators of the noncommutative torus Aθ with θ = b/2π. It follows from the universality
of the noncommutative torus (see [Weg, Theorem 12.3.2]) that

Ab ' Aθ.

/

Example 2.3.4 (Iwatsuka C∗-Algebra). The Iwatsuka C∗-Algebra is defined as the magnetic
C∗-algebra associated to the Iwatsuka magnetic field BI in the Landau Iwatsuka Gauge, that
is,

AI := C∗ (SI,1, SI,2) .

/

Example 2.3.5. The magnetic C∗-algebra associated to a localized magnetic field will be
denoted with

AΛ := C∗ (SΛ,1, SΛ,2)

where the magnetic translations SΛ,1 and SΛ,2 are defined through the magnetic potential
AΛ described in Example 2.1.4. The special case Λ = {λ} has been exhaustive studied in
[DS]. /

2.4 Relevant ∗-subalgebras

Any magnetic C∗-algebraAB contains several relevant ∗-subalgebras. Let us start by defining
a Z2-action over `∞(Z2) by

(τmg)(n) = g(n−m), for n,m ∈ Z2.

Observe that, since the elements of `∞(Z2) can be regarded as elements of B(`2(Z2)) with
the identification g 7→ g(N), the action τ induces an action on the algebra M := {g(N) |
g ∈ `∞(Z2)}. Since this identification is so transparent, no difference will be made between
neither the elements g and g(N) nor the action τ and its induced action on M.
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The importance of the action τ for this work is contained in the simple but fundamental
relation

τm(g) = (SB,1)m1(SB,2)m2g(SB,2)−m2(SB,1)−m1 , for m = (m1,m2) and g ∈M, (2.11)

where we have used the notation U−n := (U−1)n whenever n ∈ N and U is unitary, and the
convention U0 = 1 is just the identity operator and it is important to remark that equation
(2.11) does not depend on the choice of the magnetic potential for the magnetic field B,
which sustains the notation SB,j.
Before defining the first and possibly the most relevant C∗-subalgebra of the magnetic C∗-
algebra for this work let us observe that because of equation (2.11) τmfB ∈ AB for any
m ∈ Z2, and consequently linear combinations and even limits of elements of the form
τm(fB) ∈ AB are also in AB.

Definition 2.4.1. The flux C∗-subalgebra of the magnetic C∗-algebra AB is defined as

FB := C∗(τm(fB),m ∈ Z2) ⊂ AB.

Remarks 2.4.2. Regarding the C∗-algebra FB the next remarks result of particular impor-
tance:

1. The flux C∗-subalgebra is generated by elements that commute with each other, hence
it is a commutative C∗-algebra. It follows from the Gelfand-Neimark theorem [BR,
Theorem 2.1.11A] that FB ' C(ΩB), where ΩB is a compact Hausdorff space. The
space ΩB will be of high importance later (see Section 2.6).

2. Since the generators of FB are elements of AB no matter what magnetic potential
has been chosen (because of equations (2.9) and (2.11)), it follows that the flux C∗-
subalgebra is also a C∗-subalgebra of AB for every choice of the magneti potentials.
This fact is not trivial and it will be proved later that FB encodes most of the infor-
mation of the magnetic C∗-algebra needed for this work. /

Example 2.4.3 (Flux algebra for the constant magnetic field). If the magnetic field is
constant, let us say B(n) = b for all n ∈ Z2, the magnetic flux is simply the constant
function fb := e i b . It follows that τm(fb) = fb for every m ∈ Z2 and then the flux algebra
associated is just Fb := C∗( e i b ) ' C. /

Example 2.4.4 (Flux algebra for the Iwatsuka C∗-algebra). The magnetic flux of the Iwat-
suka C∗-algebra is the function

fI := e iBI = e i b− δ− + e i b0 δ0 + e i b+ δ+ ,

where δ−, δ0 and δ+ are defined in Example 2.1.3. We claim that

FI := FBI
' c(Z) = {g ∈ `∞(Z) | the limits lim

n→±∞
gn exists}.
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First note that the generators of FI just depend on its first variable, so we can think of them
as functions on Z via the identification g 7→ g(·, 0). Also note that τm(fI) has left and right
limits (when n → −∞ and n → ∞ respectively), then since c(Z) is a C∗-algebra we have
the inclusion FI ⊂ c(Z).
For the other inclusion let us first make some spoilers related to some properties of the
Flux algebra FI. In lemma 4.1.1 it is proved that δ−, δ0 and δ+ are elements of FI, con-
sequently, because of the invariance of FI through the action τ , δj := τ(j,0)δ0 ∈ FI for
all j ∈ Z. Now let any g ∈ c(Z) with left and right limits a, b ∈ C. It follows that
g − (aδ− + bδ+) ∈ c0(Z) = {g ∈ `∞(Z) | lim

n→±∞
gn = 0}, and since c0(Z) is generated by

the projections δj (indentifying them as functions of one variable) the inclusion c(Z) ⊂ FI is
proved. /

Example 2.4.5 (Flux algebra for a localized magnetic field). In the case of a localized
magnetic field (2.8) one has

fΛ := e iBΛ = ( e i b − 1) δΛ + 1 ,

so in order to make this flux not trivial it is necessary to consider b /∈ 2πZ.
For the sake of simplicity let us start with the case Λ = {n} is a singleton in Z2. In such
case we claim that FΛ := FBΛ

= c(Z2) := {g ∈ `∞(Z2) | the limit lim
||n||→∞

gn exists}. On one

hand, and as in the past example, the generators of FΛ are in c(Z2) and c(Z2) is a C∗-algebra,
proving the inclusion FΛ ⊂ c(Z2). For the other inclusion let us point out that as in every
flux algebra, 1 ∈ FΛ and

( e i b − 1)−1(fΛ − 1) = δΛ ∈ FΛ.

Now, since FΛ is τ -invariant, τm−nδΛ = δm ∈ FΛ for every m ∈ Z2. Let g ∈ c(Z2) with limit
a ∈ C. It follows that g − a · 1 ∈ c0(Z) = {g ∈ `∞(Z2) | lim

||n||→∞
gn = 0}, and since c0(Z2) is

generated by the elements δm the inclusion c0(Z2) ⊂ FΛ is proved.
If Λ is not a singleton one can also show that it is always possible to build a projector
supported in a single point. Let λ0, λ ∈ Λ be two distinct points and γ0 := λ0 − λ. Then
λ0 ∈ γ0 + Λ and δΛ(1− δγ0+Λ) is a projection which projects on a subset Λ′ ⊂ Λ where the
strict inclusion is justified by the fact that λ0 /∈ Λ′. By iterating the procedure a sufficient
number of times one ends with a projection on a singleton, and using the same proof as in
the case |Λ| = 1 one can also conclude that FΛ = c(Z2). /

Before defining the next subalgebra let us consider a finite monomial on AB, that is, an
element of the form

Ux,y := (SAB ,1)x1(SAB ,2)y1 . . . (SAB ,1)xd(SAB ,2)yd (2.12)

with x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Zd and d ∈ N. In view of equation (2.11) the
monomial Ux,y can always be rearranged in the form

Ux,y = gx,y(SAB ,1)|x|(SAB ,2)|y| (2.13)
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where |x| := x1 + . . .+ xd, |y| := y1 + . . .+ yd and gx,y is a suitable element of FB. From its
very definition it follows that AB is linearly generated by the family of monomials (2.12), or
equivalently (2.13). This observation allows to define the next dense ∗-subalgebra of AB.

Definition 2.4.6. The ∗-subalgebra of noncommutative polynomials A0
B is defined

A0
B =

 ∑
(x,y)∈Λ

αx,yUx,y

∣∣∣∣∣∣ Λ ⊂ Z2d is a finite set and αx,y ∈ C

 , (2.14)

that is, the collection of finite linear combinations of the finite monomials of AB.

Remark 2.4.7. Let us point out that

U(1,−1),(1,−1) = SAB ,1SAB ,2S
∗
AB ,1

S∗AB ,2 = fB ∈ A0
B.

Moreover,

U(m1,1,−1,−m1),(m2,1,−1,−m2) = (SAB ,1)m1(SAB ,2)m2fB(SAB ,1)−m1(SAB ,2)−m2

= τm(fB) ∈ A0
B,

proving that the generators of FB are noncommutative polynomials. /

Finally, let us introduce the operator-valued Schwartz space S(Z2,FB) made of the rapidly
descending sequences g = {g(r,s)}(r,s)∈Z2 ⊂ FB such that

rk
(
g
)2

:= sup
(r,s)∈Z2

(
1 + r2 + s2

)k ‖g(r,s)‖2 <∞, (2.15)

for all k ∈ N0. It turns out that the system of seminorms (2.15) endows S(Z2,FB) with
the structure of a Fréchet space (see Appendix A). Now we are in position to define the last
∗-subalgebra of this section.

Definition 2.4.8. The smooth ∗-subalgebra A∞B is defined as

A∞B :=

Tg :=
∑

(r,s)∈Z2

g(r,s)(SB,1)r(SB,2)s

∣∣∣∣∣∣ g = {g(r,s)}n∈Z2 ∈ S(Z2,FB)

 . (2.16)

Remark 2.4.9. If we consider the set of seminorms on A∞B defined as

|||Tg|||k = rk(g),

it is easy to see that A∞B inherit the Fréchet space structure. This follows from the mere fact
that the map g 7→ Tg is a bijection. /

Before finishing this discussion let us summarize some information about the ∗-subalgebras
introduced in this section.

Proposition 2.4.10. It holds true that

A0
B,FB ⊂ A∞B ⊂ AB,

both A0
B and A∞B are dense in AB, and A0

B ∩ FB is dense in FB.
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2.5 Crossed Product Structure

In this section it is proved that the magnetic C∗-algebra admits an Iterated crossed product.
For a brief description of the crossed product of an arbitrary C∗-algebra by Z see Appendix
B which also contains an important application.

First consider the C∗-algebra

AB,j := FB oαj Z, for j = 1, 2,

where the actions αj are defined as αj := τej . By the definition of the crossed product, AB,j
is generated by the entire C∗-algebra FB and a unitary, let us say Uj, such that

αj(g) = UjgU
∗
j , for any g ∈ FB.

However, equation (2.11) tells us that for any g ∈ FB
αj(g) = τej(g) = SB,jgS

∗
B,j,

which implies that
AB,j = FB oαj Z ' C∗(FB, SB,j).

In a similar way let us define

AB,j,k := AB,j oβk Z, for {j, k} = {1, 2},

where the actions βk are defined as βk(gUj) = τek(g)f
(−1)k+1

B Uj
2. As before, AB,j,k is generated

by the whole C∗-algebra AB,j and an unitary Uk such that

βk(V ) = UkV U
∗
k , for any V ∈ AB,j.

However, for any g ∈ FB

βk(gUj) = τek(g)f
(−1)k+1

B Uj = SB,kgS
∗
B,kSB,kUjS

∗
B,k,

provided that f
(−1)k+1

B Uj = SB,kUjS
∗
B,k, but up to representation it has already been stated

that Uk = SB,j, which proves that

AB,j,k = AB,j oβk Z ' C∗(AB,j, SB,k) ' C∗(FB, SB,1, SB,2) = AB.

The next proposition is just a summary of the results already stated.

Proposition 2.5.1. It holds true that

AB ' (FB oα1 Z) oβ2 Z ' (FB oα2 Z) oβ1 Z.

Let us finish this section by noting that the Proposition 2.5.1 can be interpreted by saying
that FB encode all the information of the algebra AB. This fact has already been anticipated
in remark 2.4.2.

2The nature of the exponent of fB in the action is needed since the commutation relation between the

magnetic translations are SB,1SB,2 = fBSB,2SB,1 or SB,2SB,1 = f
(−1)
B SB,1SB,2.
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2.6 Magnetic hull

The first task of this section is to define the magnetic hull by following the construction
sketched in [BBD, Section 2.4]. Then we will construct traces on the magnetic algebra by
following the ideas of [Dav, VIII.3]. Finally, before getting into the magnetic hull, let us
point out that in this section the C∗-algebra FB will be regarded as an algebra of functions
instead of operators. This will clarify the use of certain Theorems canonically written in
terms of algebras of functions instead of operators.

Let B : Z2 → R be a magnetic field and fB ∈ `∞(Z2) be its magnetic flux. The natural
discrete topology of Z2 implies that `∞(Z2) = Cb(Z2), and the C∗-algebra Cb(Z2) carries the
Z2-action defined by (2.11). Since elements of Cb(Z2) are uniformly continuous one has that

lim
m→0
‖τm(g)− g‖∞ = lim

m→0

(
sup
n∈Z2

|g(n−m)− g(n)|
)

= 0 ,

for all g ∈ Cb(Z2). This means that the Z2-action m 7→ τm acts continuously on Cb(Z2). It
is worth recalling that the Gelfand-Nǎımark Theorem [GBVF, Theorem 1.4] provides the
isomorphism Cb(Z2) ' C(βZ2) where βZ2 is the Stone-Čech compactification of Z2 [GBVF,
Section 1.3]. In particular, one has a canonical inclusion Z2 ↪→ βZ2, which identifies the
lattice Z2 with an open and dense subset of βZ2.

As pointed out in Remarks 2.4.2, there exists a compact Hausdorff space ΩB such that
FB ' C(ΩB). Since FB is generated by a countable family, it follows that it is a separable
and in turn ΩB is second countable and metrizable as a separable complete metric space (see
[GBVF, Proposition 1.11] and [Arv, Section 2.2]). We will refer to the topological space ΩB

as the hull of the magnetic field B, or the magnetic hull for short.

Actually, if follows from the Gelfand-Neimark Theorem that ΩB is built as the Gelfand
spectrum of FB, namely the set of characters defined as the ∗-homomorphisms ω : FB → C.
As a consequence, Z2 acts by duality on ΩB, that is, for every m ∈ Z2 let τ ∗m : ΩB → ΩB

be the map defined as τ ∗m(ω)(g) := ω(τ−m(g)) for all g ∈ FB. It is straightforward to shows
that τ ∗m ∈ Homeo(ΩB) are homeomorphisms of ΩB and that the mapping m 7→ τ ∗m provides a
continuous Z2-action by homeomorphisms. As a result (ΩB, τ

∗,Z2) is a topological dynamical
system (see e. g. [Wal, Chapter 5]). In ΩB there is a remarkable point ω0, called the evaluation
at 0, defined by ω0(g) := g(0) for all g ∈ FB. Let ωm := τ ∗m(ω0) = ω0 ◦ τ−m be the m-
translated of ω0, which is of course the evaluation at m and Orb(ω0) := {ωm ∈ ΩB | m ∈ Z2}
the Z2-orbit of ω0. The next result provides a relevant property of the dynamical system
(ΩB, τ

∗,Z2).

Proposition 2.6.1. The Z2-orbit of ω0 is dense, i. e.

Orb(ω0) = ΩB .
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Proof. In view of the Gelfand-Nǎımark isomorphism Cb(Z2) ' C(βZ2), since the Gelfand
spectrum of Cb(Z2) can be identified with the Stone-Čech compactification βZ2. The in-
clusion  : FB ↪→ Cb(Z2) provides, by duality, a continuous map ′ : βZ2 → ΩB defined by
′(ω̃) := ω̃◦ where ω̃ ∈ βZ2 is a character of Cb(Z2). More precisely, ′(ω̃) is by definition the
restriction of the character ω̃ to the subalgebra FB. On the other hand, every character ω of
FB admits a (not necessarily unique) extension ω̃ to a character of Cb(Z2) [BR, Proposition
2.3.24]. As a result, it turns out that ′ is a continuous surjection. Therefore, if X ⊂ βZ2

is dense in βZ2 then ′(X) ⊂ ΩB is dense in ΩB. In view of the Riesz-Markov-Kakutani
representation Theorem [RS, Theorem IV.14], the Gelfand spectrum of Cb(Z2) consists of
the evaluations (Dirac measures) at the points of βZ2. Since Z2 can be identified with a
dense open subset of βZ2, it follows that the set of characters {ω̃m | m ∈ Z2}, defined by
ω̃m(f) := f(m) for f ∈ Cb(Z2), is dense in the Gelfand spectrum of Cb(Z2). On the other
hand, it holds true that ωm = ′(ω̃m), and consequently

′
(
{ω̃m | m ∈ Z2}

)
= Orb(ω0) .

The last equality proves the density of Orb(ω0).

Let g ∈ FB. Its Gelfand transform ĝ ∈ C(ΩB) is defined by the equation ĝ(ω) := ω(g)
for all ω ∈ ΩB. The density of the orbit of ω0 implies that the Gelfand transform is entirely
defined by the equation g(m) = ωm(g) = ĝ(τ ∗m(ω0)) for all m ∈ Z2.

Remark 2.6.2 (Topological transitivity). Proposition 2.6.1 can be rephrased by saying
that the dynamical system (ΩB, τ

∗,Z2) is topologically transitive [Wal, Definition 5.6]. As
a consequence, every invariant element of C(ΩB) is automatically constant [Wal, Theorem
5.14]. In our specific setting (ΩB compact and second countable) the notion of topological
transitivity for (ΩB, τ

∗,Z2) is equivalent to the following property: Whenever U and V are
nonempty open subsets of ΩB, then there exists a m ∈ Z2 such that τ ∗m(U) ∩ V 6= ∅ [Wal,
Theorem 5.8]. The latter, is the usual definition of topological transitivity in the context
of the general theory of topological dynamical systems (see e. g. [KSn, AC] and references
therein). It is also worth remembering that ΩB has no isolated points if and only if it is
infinite [KSn, AC, pg. 6]. /

The subsets Orb(ω0) and ∂ΩB := ΩB \Orb(ω0) are disjoint and τ ∗-invariant by construc-
tion. Moreover, ∂ΩB is nowhere dense [Wal, Theorem 5.8] and it is contained in the subset
of non-wandering points of the dynamical system [Wal, Theorem 5.6]. Let Mes1,τ∗(ΩB) be
the set of the normalized and τ ∗-invariant regular Borel measures3 of the dynamical system
(ΩB, τ

∗,Z2). It is well known that Mes1,τ∗(ΩB) is a non-empty, convex and compact set
(i. e. a Choquet simplex) whose extreme points are exactly the ergodic measures [Wal, Corol-
lary 6.9.1 & Theorem 6.10]. Let Erg(ΩB) be the subset of the ergodic probability measures
of (ΩB, τ

∗,Z2). It is worth recalling that ergodic measures P ∈ Erg(ΩB) are characterized
by the dichotomy P(X) = 1 or P(X) = 0 for every given τ ∗-invariant subset X ⊆ ΩB. A
measure P ∈ Erg(ΩB) such that P(∂ΩB) = 1 will be called a mesure at infinity.

3By the Riesz-Markov-Kakutani representation Theorem [RS, Theorem IV.14], Mes1,τ∗(ΩB) provides the
space of τ∗-invariant states of the Abelian C∗-algebra C(ΩB).
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Example 2.6.3 (Magnetic hull for a constant magnetic field). In the case of a constant
magnetic field of strength b we have that Fb = C (see Example 2.4.3). Therefore the
associated magnetic hull Ωb ' {ω0} is a singleton (or one point set) on which the τ ∗-action
is trivial. Finally, the unique normalized ergodic measure on Ωb is entirely specified by
P({ω0}) = 1. /

Example 2.6.4 (Iwatsuka magnetic hull). In the case of the Iwatsuka magnetic field one
has FI ' c(Z) (see 2.4.4) and consequently the Z2-action on FI reduces to a Z-action. It
follows that the Gelfand isomorphisms FI ' C(ΩI) is given by the Iwatsuka magnetic hull

ΩI ' ∪ {−∞} ∪ Z {+∞}, (2.17)

which is the two-point compactification of Z. This should be no surprise, since c(Z) '
C({−∞} ∪ Z ∪ {+∞}).
Just to make it explicit let us point out that the inclusion Z 3 n 7→ ω(n,0) ∈ ΩI is given by
the evaluation at (n, 0), and the two limit points {±∞} are identified with the evaluations
at infinity ω±∞ ∈ ΩI defined by

ω±∞
(
τm(fI)

)
:= e i b±

for every m ∈ Z2. From the construction it follows that Z ' Orb(ω0) and in turn {±∞} '
∂ΩI. Therefore, equation (2.17) provides a decomposition of ΩI in three invariant subsets.
Since Z2 acts on Orb(ω0) as a one dimensional shift it follows that Orb(ω0) is made by
wondering points [Wal, Definition 5.5]. As a consequence every ergodic measure P ∈ Erg(ΩI)
necessarily must satisfy P(Orb(ω0)) = 0 [Wal, Theorem 6.15]. This implies that the set
Erg(ΩI) = {P±∞} is made by two ergodic measures at infinity specified by the condition
P±∞(±∞) = 1. /

Example 2.6.5 (Magnetic hull for a localized magnetic field). In the case of a localized
magnetic field one has that FΛ = c(Z2) (see Example 2.4.5). It follows that in this case the
Gelfand isomorphisms FΛ ' C(ΩΛ) is given by the localized magnetic hull

ΩΛ ' Z2 ∪ {∞}, (2.18)

which is the one-point compactification of Z2. The inclusion Z2 3 n 7→ ωn ∈ ΩΛ is given
by the evaluations at n and the limit point {∞} is identified with the evaluation at infinity
ω∞ ∈ ΩΛ given by

ω∞
(
τm(fΛ)

)
:= 1

for every m ∈ Z2. From the construction it follows that Z2 ' Orb(ω0) and {∞} ' ∂ΩΛ

are the two invariant subsets of ΩΛ. Since Orb(ω0) is made of wondering points under the
action of Z2 it follows that Erg(ΩΛ) = {P∞} where the measure at infinity P∞ is specified
by P∞(∞) = 1. /

The ergodic measures of (ΩB, τ
∗,Z2) play a crucial role in the construction of the inte-

gration theory of the magnetic algebra AB developed in section 2.9.
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2.7 Fourier theory

Considering that the magnetic C∗-algebra has (hopefully) already proved to be a general-
ization of the noncommutative torus, it is nothing but natural to expect it to have a rich
Fourier Theory (for the Fourier Theory of the noncommutative torus see [PS, Chapter 3.3]).
Actually, the fact that the noncommutative torus has a very rich Fourier Theory can be
considered equally natural, since it is a generalization of the continuous functions on the
two-dimmensional Torus C(T2) (for the Fourier theory of C(T) see [Kat, Gra]). In this sec-
tion it will be showed that some of the results of the classical Fourier theory extend to the
magnetic C∗-algebra AB. Similar results can also be found in [Dav, Section VIII.2].

First let us fix notations. From now on the torus T will appear several times in this
work, and unless the opposite is mentioned, by the torus we will refer to T = R/2πZ and
θ := (θ1, θ2) will be a point of T2.
Consider the unitary operator Zθ := e−iθ·X = e−i(θ1X1+θ2X2) and define the T2-action on
B(`2(Z2)) by

ρθ(T ) := ZθTZ
∗
θ . (2.19)

Let us observe that this action is not continuous. For this consider the rotation operator
Rπ defined by (Rπψ)(n) = ψ(−n). Since ρθ(Rπ) = W2θRπ, it follows that ‖ρθ(Rπ)− Rπ‖ =
‖W2θ − 1‖ = 2 whenever one of θ1 or θ2 are irrational. Things go differently if the action of
T2 is restricted to AB.

Proposition 2.7.1. The formula (2.19) defines a continuous group action of T2 into the
magnetic C∗-algebra AB.

Proof. A direct computation shows that

ρθ(g) = g for all g ∈ FB, (2.20)

independently of θ = (θ1, θ2) ∈ T2, and

ρθ
(
(SAB ,1)r(SAB ,2)s

)
= e−i(rθ1+sθ2) (SAB ,1)r(SAB ,2)s (2.21)

for all (r, s) ∈ Z2. The relations (2.20) and (2.21) along with the definition (2.16) of A∞B
imply that ρθ(A∞B ) = A∞B for all θ ∈ T2. Finally, the density of A∞B and the fact that ρθ
is norm-preserving imply that ρθ(AB) = AB, namely ρθ ∈ Aut(AB) for all θ ∈ T2. Let us
prove now the continuity of the group action. Let Tg =

∑
(r,s)∈Z2 gr,s(SB,1)r(SB,2)s according

to (2.16). Then

‖ρθ(Tg)− Tg‖ 6
∑

(r,s)∈Z2

∣∣ e−i(rθ1+sθ2) − 1
∣∣‖gr,s‖ 6 2

∑
(r,s)∈Z2

‖gr,s‖

and from the dominated convergence Theorem (for series) it follows that

lim
θ→0
‖ρθ(Tg)− Tg‖ 6

∑
(r,s)∈Z2

lim
θ→0

∣∣ e−i(rθ1+sθ2) − 1
∣∣‖gr,s‖ = 0 (2.22)

19



for all Tg ∈ A∞B . Now, let T ∈ AB be a generic element and ε > 0. By density it exists a
Tg ∈ A∞B such that ‖T − Tg‖ < ε

2
. Moreover,

‖ρθ(T )− T‖ 6 ‖ρθ(Tg)− Tg‖+ ‖ρθ(T − Tg)− (T − Tg)‖
< ‖ρθ(Tg)− Tg‖+ ε.

Therefore, from (2.22) it follows that limθ→0 ‖ρθ(T ) − T‖ < ε, independently of ε > 0 and
for all T ∈ AB. This proves that the group action θ 7→ ρθ is continuous on AB.

Let
InvT2(AB) :=

{
T ∈ AB

∣∣ρθ(T ) = T, for all θ ∈ T2
}

be the set of invariant elements of AB. From (2.20) one gets that FB ⊆ InvT2(AB). The
next goal is to characterize InvT2(AB). For that let us denote with dµ(θ) := (2π)−2 dθ the
normalized Haar measure on T2 and consider the averaging

〈T 〉 :=

∫
T2

dµ(θ)ρθ(T ), T ∈ AB

where the integral is meant in the Bochner sense. From the invariance of the Haar measure
it follows that 〈T 〉 ∈ InvT2(AB) by construction. Moreover, 〈T 〉 = T if and only if T ∈
InvT2(AB). This means that every element of InvT2(AB) can be always represented as the
averaging of some element in AB. The next result characterizes the set of invariant elements.

Lemma 2.7.2. It holds true that

InvT2(AB) = FB.

Proof. Since we already know that FB ⊆ InvT2(AB) we only need to prove the opposite
inclusion. Since every element in InvT2(AB) can be represented as the averaging of some
element in AB it is enough to prove that 〈T 〉 ∈ FB for all T ∈ AB. Since the map T 7→ 〈T 〉
is a continuous, i. e. ‖〈T 〉‖ 6 ‖T‖ and FB is closed, it is sufficient to prove that the averaging
of the monomials (2.13) takes value in FB. Based on (2.20) and (2.21), a direct computation
shows that

〈g(SB,1)r(SB,2)s〉 = g(SB,1)r(SB,1)s
∫
T2

dµ(θ) e− i (rθ1+sθ2)

= gδr,0δs,0

(2.23)

for all g ∈ FB and for all (r, s) ∈ Z2. This completes the proof.

We are now in position to prove that every element of AB can be represented as a Fourier-
type series in the generating monomials (2.13). To make precise this statement, we need to
introduce some notation. Given a T ∈ AB let us define the FB-valued coefficients

T̂r,s : = 〈T (SB,2)−s(SB,1)−r〉

=

(∫
T2

dµ(θ) e i (rθ1+sθ2) ρθ(T )

)
(SB,2)−s(SB,1)−r.

(2.24)
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consider the family of boxes ΛN := [−N,N ]2 ∩ Z2 with N ∈ N, and the associated Cesàro
means

σN(T ) :=
∑

(r,s)∈ΛN

(
1− |r|

N + 1

)(
1− |s|

N + 1

)
T̂r,s(SB,1)r(SB,2)s. (2.25)

Theorem 2.7.3 (Fourier expansion - Cesàro mean). 4 For every element T ∈ AB it holds
true that

lim
N→∞

‖σN(T )− T‖ = 0.

Proof. By combining (2.24) and (2.25) one gets

σN(T ) =

∫
T2

dµ(θ)KN(θ)ρθ(T )

where

KN(θ) : =
∑

(r,s)∈ΛN

(
1− |r|

N + 1

)(
1− |s|

N + 1

)
ei(rθ1+sθ2)

= FN(θ1)FN(θ2)

and

FN(θj) :=
N∑

k=−N

(
1− |k|

N + 1

)
eikθj =

1

N + 1

sin
(
Nθj +

θj
2

)
sin
(
θj
2

)
2

is the Fejér kernel, with j = 1, 2 [Kat, Chapter I, Section 2.5] or [Gra, Chapter I, Section

3.1.3]. Since (2π)−1
∫ 2π

0
dθjFN(θj) = 1, and consequently

∫
T2 dµ(θ)KN(θ) = 1, one gets that

σN(T )− T =

∫
T2

dµ(θ)KN(θ)
[
ρθ(T )− T

]
.

Using the identity ρθ(T )− T = ρ(θ1,0)(ρ(0,θ2)(T )− T + T − ρ(−θ1,0)(T )) and the fact that the
T2-action is isometric one gets

‖σN(T )− T‖ 6
∫ 2π

0

dθ1

2π
FN(θ1)‖ρ(θ1,0)(T )− T‖

+

∫ 2π

0

dθ2

2π
FN(θ2)‖ρ(0,θ2)(T )− T‖.

Since the functions f1(θ1) := ‖ρ(θ1,0)(T ) − T‖ and f2(θ2) := ‖ρ(0,θ2)(T ) − T‖ are continuous
with f1(0) = 0 = f2(0) and the the Fejér kernel is a summability kernel [Kat, Chapter I,
Section 2.2] one obtains that the two integrals on the right go to zero when N → ∞. This
concludes the proof. �

Theorem 2.7.3 states that every element of T ∈ AB can be approximated by the sequence
σN(T ) ∈ A0

B obtained from the “Fourier” coefficients T̂r,s. It follows that two elements with
the same FB-valued coefficients are identical. Equivalently, one has that

4The proof of this theorem is adapted from [Wea, Theorem 5.5.7].
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Corollary 2.7.4. Let T ∈ AB. Then T = 0 if and only if T̂r,s = 0 for all (r, s) ∈ Z2.

Remark 2.7.5 (Cesàro vs. uniform convergence). By observing that

KN(θ) =
1

(N + 1)2

N∑
n1=0

N∑
n2=0

D(n1,n2)(θ),

where

D(n1,n2)(θ) :=
∑

(r,s)∈Λ(n1,n2)

ei(rθ1+sθ2) =
sin
(
n1θ1 + θ1

2

)
sin
(
n1θ2 + θ2

2

)
sin
(
θ1
2

)
sin
(
θ2
2

)
is the Dirichlet kernel of the rectangular domain Λ(n1,n2) := ([−n1, n1]× [−n2, n2])∩Z2, one
can rewrite (2.25) in the form

σN(T ) =
1

(N + 1)2

∑
(n1,n2)∈ΛN

S(n1,n2)(T ) (2.26)

where
S(n1,n2)(T ) : =

∑
(r,s)∈Λ(n1,n2)

T̂r,s(SB,1)r(SB,2)s

is the partial Fourier-type expansion of T . Therefore, Theorem 2.7.3 provides a justification
of the series representation

T
σ
= lim

(n1,n2)→∞
S(n1,n2)(T ) :=

∑
(r,s)∈Z2

T̂r,s(SB,1)r(SB,2)s

where the symbol
σ
= means that the limit must be understood in the sense of Cesàro, as

given by equation (2.26). This is the best that one can generally hope for a generic element
T ∈ AB. Indeed, let f ∈ C(T) be the Fejér-type function constructed as in [Kat, Chapter
II, Section 2.1]. Then, the sequence of the partial Fourier-type expansions of the element
f(SAB1 ) ∈ AB cannot be convergent in norm. /

In view of the lack of a Fourier series representation for the elements ofAB it may be useful
to characterize the collection of elements of AB with such property, that is, the elements
having an absolutely convergent Fourier series of FB-valued coefficients. More precisely, let
us introduce the space

Aa.c.
B :=

T ∈ AB
∣∣∣∣∣∣ ‖T‖`1 :=

∑
(r,s)∈Z2

‖T̂r,s‖ <∞


where the coefficients T̂r,s are defined by (2.24). Since A∞B ⊂ Aa.c.

B ⊂ AB it follows that Aa.c.
B

is dense in AB. The main properties of Aa.c.
B are described in the next result.

22



Proposition 2.7.6. The space Aa.c.
B , endowed with the norm ‖‖`1, is a Banach ∗-algebra

isomorphic to `1(Z2,FB). In particular every T ∈ Aa.c.
B coincides with its Fourier-type ex-

pansion, i. e.

T =
∑

(r,s)∈Z2

Tr,s(SB,1)r(SB,2)s

Proof. Every T ∈ Aa.c.
B defines an element {T̂r,s} ∈ `1(Z2,FB) by definition. Moreover, the

map T 7→ {T̂r,s} is injective in view of Corollary 2.7.4. The surjectivity follows by observing

that every {T̂r,s} ∈ `1(Z2,FB) defines an element

T := lim
N→∞

∑
(r,s)∈ΛN

T̂r,s(SB,1)r(SB,2)s ∈ Aa.c.
B .

with FB-valued coefficients {T̂r,s}. Finally, a straightforward computation as in [Kat, Chap-
ter I, Section 6.1] shows that Aa.c.

B is closed under the operations inherited by the ∗-algebraic
structure of AB.

2.8 Differential structure

As stated in proposition 2.7.1 , the map θ 7→ ρθ defines a strongly continuous T2-action on
the C∗-agebra AB, so one can think on the action ρθ as a continuous group of operators
on the space AB (see [BR, Definition 3.1.2]).This allows us to introduce the infinitesimal
generators ∂1 and ∂2 defined by

∂1(T ) := lim
θ1→0

ρ(θ1,0)(T )− T
θ1

∂2(T ) := lim
θ2→0

ρ(0,θ2)(T )− T
θ2

for suitable elements T ∈ AB [BR, Definition 3.1.5]. Indeed, ∂1 and ∂2 are unbounded linear
maps on AB, defined on dense domains D(∂1) and D(∂2), respectively [BR, Proposition
3.1.6]. Moreover, they are (symmetric) derivations [BR, Definition 3.2.21], in the sense that

∂j(T
∗) = ∂j(T )∗;

∂j(TR) = T ∂j(R) + ∂j(T ) R ,
T,R ∈ D(∂j) , j = 1, 2 . (2.27)

Since the subalgebra FB is invariant under the action αθ it follows that

∂1(g) = ∂2(g) = 0 , ∀ g ∈ FB . (2.28)

Moreover, a direct computation shows

∂1

(
(SB,1)r (SB,2)s

)
= − i r (SB,1)r (SB,2)s

∂2

(
(SB,1)r (SB,2)s

)
= − i s (SB,1)r (SB,2)s ,

∀ (r, s) ∈ Z2 . (2.29)
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In particular, one can check that

∂j
(
g (SB,1)r (SB,2)s

)
= i

[
g (SB,1)r (SB,2)s, Nj

]
, (2.30)

where [ , ] denotes the commutator. Indeed equation (2.30) is a special case of a more
general result [BR, Definition 3.2.55], which justifies the name of spatial derivation for ∂1

and ∂2.

From (2.28) and (2.29) it follows that

A0
B ⊂ A∞B ⊂ D(∂1) ∩ D(∂2) .

Moreover, the elements of A∞B support several iterated derivations. Let ∂aj := ∂j ◦ . . . ◦ ∂j
be the a-times iteration of the derivation ∂j. Since the group T2 is abelian, it follows that
∂1 ◦ ∂2 = ∂2 ◦ ∂1 whenever the product of the derivatives is well defined. It follows that
the expression ∂a1∂

b
2, for a, b ∈ N0, it is not ambiguous in suitable domains like A∞B . Let us

introduce the spaces

Ck(AB) := A0
B

‖ ‖k
,

obtained by closing the noncommutative polynomials with respect to the norm

‖T‖k :=
k∑
j=0

∑
a+b=j

‖∂a1∂b2(T )‖ .

A standard argument shows that T ∈ Ck(AB) if and only if ∂a1∂
b
2(T ) ∈ AB is well defined for

all a, b ∈ N0 such that a+ b 6 k, namely

Ck(AB) =
{
T ∈ AB

∣∣ θ 7→ ρθ(T ) is k-differentiable
}
.

The regularity of an element is reflected on the decay property of its FB-valued coefficients.
This is the content of the next result.

Lemma 2.8.1. Let T ∈ Ck(AB) then

sup
(r,s)∈Z2

(
1 + r2 + s2

)k ‖T̂r,s‖2 < ∞ (2.31)

where the T̂r,s are defined by (2.24). In particular

Ck(AB) ⊂ Aa.c.
B

for all k > 2.
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Proof. Let a, b ∈ N0 such that a + b 6 k. Then ∂a1∂
b
2(T ) ∈ AB and we can calculate the

FB-valued coefficients according to (2.24). An iterated integration by parts provides

̂∂a1∂b2(T )r,s =

(∫
T2

dµ(θ) e i (rθ1+sθ2) ρθ(∂
a
1∂

b
2(T ))

)
(SB,2)−s(SB,1)−r

= (− i )a+brasb
(∫

T2

dµ(θ) e i (rθ1+sθ2) ρθ(T )

)
(SB,2)−s(SB,1)−r

= (− i )a+brasb T̂r,s .

Since ‖ ̂∂a1∂b2(T )r,s‖ 6 ‖∂a1∂b2(T )‖ =: Ca,b for all (r, s) ∈ Z2, we can define C := maxa+b=k{Ca,b}.
It follows that r2as2b‖T̂r,s‖2 6 C2 for all a, b such that a+ b = k. Then, by using the formula
for the binomial expansion one gets

(r2 + s2)k‖T̂r,s‖2 6 2kC2 . (2.32)

From (2.32), a second application of the formula for the binomial expansion provides (2.31)
with bound given by 4kC2. From (2.32) one gets∑

(r,s)∈Z2

‖T̂r,s‖ 6 ‖T̂0,0‖ + 2kC2
∑

(r,s)∈Z2\(0,0)

1

(r2 + s2)
k
2

= ‖T̂0,0‖ + 2k+1C2

(
2

+∞∑
r=1

+∞∑
s=1

1

(r2 + s2)
k
2

+
∞∑
r=1

1

rk
+
∞∑
s=1

1

sk

)

= ‖T̂0,0‖ + 2k+2C2

(
+∞∑
r=1

+∞∑
s=1

1

(r2 + s2)
k
2

+
+∞∑
r=1

1

rk

)

≤ ‖T̂0,0‖ + 2
k
2

+2C2

((
+∞∑
r=1

1

r
k
2

)(
+∞∑
s=1

1

s
k
2

)
+

+∞∑
r=1

1

rk

)

where in the last inequality we used 2rs 6 r2 + s2. This concludes the proof.

Remark 2.8.2. The results provided in Lemma 2.8.1 are not optimal, in general. For
instance, in the case of a zero magnetic field described in Example 2.3.3 one can replace
(2.31) with (1 + r2 + s2)k‖T̂r,s‖2 → 0 when (r, s) → ∞ [Gra, Theorem 3.3.9]. Moreover,
the absolute convergence of the series of coefficients is generally guaranteed by a degree of
regularity weaker than k > 2 [Gra, Theorem 3.3.16]. However, for the purposes of this work
we will not need such a kind of generalization.

The space of the smooth elements is defined by

C∞(AB) :=
⋂
k∈N0

Ck(AB) .

For T ∈ C∞(AB) the map θ 7→ ρθ(a) turns out to be smooth. /
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Proposition 2.8.3. The dense subalgebra A∞B defined by (2.16) coincides with the algebra
of the smooth elements with respect to the T2-action, i. e.

A∞B = C∞(AB) .

Proof. Let T ∈ A∞B . Then the computation of the FB-valued coefficients of ∂a1∂
b
2(T ) provided

in the proof of Lemma 2.8.1 shows that ∂a1∂
b
2(T ) ∈ Aa.c.

B for all a, b ∈ N0. This implies that
A∞B ⊂ Ck(AB) for all k ∈ N0, and so A∞B ⊆ C∞(AB). On the other hand it is also true that
C∞(AB) ⊆ A∞B . In fact, if T ∈ C∞(AB) then (2.31) applies for all k ∈ N0, showing that
T ∈ A∞B . This concludes the proof.

The last result justifies the name of smooth algebra for A∞B . Let us recall that a pre-C∗-
algebra is a dense subalgebra of a C∗-algebra which is stable under holomorphic functional
calculus (see [GBVF, Definition 3.26]).

Proposition 2.8.4. The smooth algebra A∞B defined by (2.16) is a unital Fréchet pre-C∗-
algebra of AB.

Proof. Since T2 is a Lie group, the criterion established in [GBVF, Proposition 3.45] applies
proving the claim.

The Fréchet topology of the pre-C∗-algebra A∞B is provided by the system of norms
described in Proposition 2.4.9.

2.9 Integration Theory

Before constructing the integration theory of the magnetic C∗-algebra AB the next lemma
will be of high importance.

Lemma 2.9.1. Let G : FB −→ C(ΩB) be the Gelfand isomorphism described before. It
follows that every invariant measure P ∈ Mes1,τ∗(ΩB) defines a trace tP on FB through the
formula

tP(g) :=

∫
ΩB

dP(ω) G (g)(ω) , g ∈ FB .

The trace tP is Z2-invariant in the sense that

tP (τm(g)) = tP(g) , ∀ m = (m1,m2) ∈ Z2

where τm(g) := (SAB ,1)m1(SAB ,2)m2g(SAB ,2)−m2(SAB ,1)−m1
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Proof. The fact that tP define a trace is straightforward and follows from the properties of
the integral. Let g ∈ FB and observe that

tP(τm(g)) =

∫
ΩB

dP(ω) G (τm(g))(ω)

=

∫
ΩB

dP(ω) ω(τm(g))

=

∫
ΩB

dP(ω) τ ∗−m(ω)(g)

=

∫
ΩB

dP(ω) G (g)(τ ∗−m(ω))

=

∫
ΩB

dP(ω) G (g)(ω)

where in the last equality we have used the τ ∗-invariance of P ∈ Mes1,τ∗(ΩB).

We are now in position to construct the integration theory of the magnetic algebra AB.
Let P ∈ Mes1,τ∗(ΩB) be an invariant measure and define the map TP : AB → C by

TP(T ) := tP(T̂0,0) , T ∈ AB (2.33)

where the FB-valued coefficient T̂0,0 is defined by (2.24).

Proposition 2.9.2. The map TP : AB → C defined by (2.33) is a tracial state of the
C∗-algebra AB. Moreover, it holds true that:

(i) TP(∂j(T )) = 0 for all T ∈ C1(AB) and j = 1, 2;

(ii) TP(R∂j(T )) = −TP(T∂j(R)) for all T,R ∈ C1(AB) and j = 1, 2.

Proof. The map TP is evidently linear (composition of linear maps) and normalized, i. e. TP(1) =
1. The positivity follows by observing that

(T̂ ∗T )0,0 =

∫
T2

dµ(θ) ρθ(T
∗) ρθ(T ) > 0

and consequently TP(T ∗T ) = tP((T̂ ∗T )0,0) > 0 since tP is a trace state (hence positive) on
FB. Since TP is linear and positive then it is automatically continuous [BR, Proposition
2.3.11]. To prove the cyclic property of the trace let us consider two monomials Uj :=
gj (SAB ,1)rj(SAB ,2)sj with gj ∈ FB and j = 1, 2. Observe that

U1U2 = g1τ(r1,s1)(g2) (SB,1)r1(SB,2)s1(SB,1)r2(SB,2)s2

where τ(r1,s1)(g2) := (SB,1)r1(SB,2)s1g2(SB,1)−r1(SB,2)−s1 and by mimicking the computation
of (2.23) one gets

(Û1U2)0,0 = g1 τ(r1,s1)(g2) (SB,1)r1(SB,2)s1(SB,1)−r1(SB,2)−s1 δr1,−r2δs1,−s2 .
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A similar argument provides

(Û2U1)0,0 = τ(−r1,−s1)(g1) g2 (SB,1)−r1(SB,2)−s1(SB,1)r1(SB,2)s1 δr1,−r2δs1,−s2 .

An iterated application of the commutation relation (2.9) provides

(SB,1)r1(SB,2)s1(SB,1)−r1(SB,2)−s1 =: g(r1,s1) ∈ FB .

This implies

(Û1U2)0,0 = g(r1,s1) g1 τ(r1,s1)(g2) δr1,−r2δs1,−s2

and
(Û2U1)0,0 = τ(−r1,−s1)(g(r1,s1)) τ(−r1,−s1)(g1) g2 δr1,−r2δs1,−s2

= τ(−r1,−s1)((Û1U2)0,0) .

From the invariance property of Lemma 2.9.1 it follows that

tP((Û1U2)0,0) = tP((Û2U1)0,0)

and in turn
TP(U1U2) = TP(U2U1)

for all pair of monomials U1, U2. It turns out that TP satisfies the cyclic property of the
trace on the dense subalgebra A0

B of the noncommutative polynomials, and by continuity on
the whole algebra AB. Property (i) follows from the computation at the beginning of of the

proof of Lemma 2.8.1 which provides ∂̂j(T )0,0 = 0 for j = 1, 2. Property (ii) follows by the
application of property (i) along with the Leibniz’s rule (2.27).

The trace property of the map TP is guaranteed by the invariance property of the measure
P. The ergodicity of P plays a role for the physical interpretation of TP. For the next result we
need to introduce some notation. Let {Λi}i∈N ⊂ P0(Z2) be a sequence of bounded subsets
of cardinality |Λi|. The family {Λi}i∈N is a Følner sequence [Gre] if: (i) it is increasing,
i. e. Λi ⊆ Λi+1 for all i ∈ N; (ii) it is exhaustive, i. e. Λi ↗ Z2; (iii) it meets the Følner
condition. i. e.

lim
i→∞

|(m+ Λi)4Λi|
|Λi|

= 0 , ∀ m ∈ Z2 ,

where m+ Λi is the m-translated of Λi and 4 is the symmetric difference.

Let P ∈ Erg(ΩB) be an ergodic measure and {Λi}i∈N a Følner sequence. The Birkhoff’s
Ergodic Theorem [Wal, Lemma 6.13] assures that there exists a Borelian subset Y ⊆ ΩB

such that P(Y ) = 1 and

tP(g) = lim
i→∞

1

|Λi|
∑
m∈Λi

G (g)
(
τ ∗m(ω)

)
, ∀ ω ∈ Y , ∀ g ∈ FB ,
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where the isomorphism G and the mapping tP are defined in Lemma 2.9.1. By observing
that G (g) ◦ τ ∗m = G (τ−m(g)) and recalling the definition of the trace TP given by (2.33) one
gets

TP(T ) = lim
i→∞

1

|Λi|
∑
m∈Λi

G
(
τ−m

(
T̂0,0

))
(ω) , ∀ ω ∈ Y , ∀ T ∈ AB ,

where the FB-valued coefficient T̂0,0 is defined by (2.24). Finally, by observing that the
extraction of the FB-valued coefficient commutes with the translations one gets

TP(T ) = lim
i→∞

1

|Λi|
∑
m∈Λi

G
(
̂τ−m(T )0,0

)
(ω) , ∀ ω ∈ Y , ∀ T ∈ AB .

The latter formula becomes physically meaningful in the special case ΩB = {ω0} as for the
constant magnetic field (cf. Example 2.6.3).

Proposition 2.9.3 (Trace per unit volume). Assume that ΩB = {ω0} and let P be the
(ergodic) measure supported on {ω0}. Let {Λi}i∈N be a Følner sequence and for every Λi let
PΛi be the associated projection defined by (PΛiψ)(n) = δΛi(n)ψ(n) for all ψ ∈ `2(Z2). Then,
it holds true that

TP(T ) := lim
i→∞

1

|Λi|
Tr`2(Z2)

(
PΛi T PΛi

)
, ∀ T ∈ AB .

Proof. Let ψm ∈ `2(Z2) be the normalized vector defined by ψm(n) := δn,m. Then, it

holds true that ı(T̂0,0)(ω0) = 〈ψ0, Tψ0〉 for all T ∈ AB where ω0 can be identified with the

evaluation at 0 ∈ Z2. Indeed, from (2.25) one gets that ı(T̂0,0)(ω0) = 〈ψ0, σN(T )ψ0〉 for all
N ∈ N and the continuity of the scalar product concludes the argument. Therefore after
some straightforward computation one obtains∑

m∈Λi

ı
(
̂τ−m(T )0,0

)
(ω0) =

∑
m∈Λi

〈ψ0, τ−m(T )ψ0〉

=
∑
m∈Λi

〈ψm, Tψm〉 = Tr`2(Z2)

(
PΛi T PΛi

)
,

and this concludes the proof
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Chapter 3: Magnetic interfaces, Toeplitz
extensions and K-theory

In this chapter the fundamental blocks needed to study topological currents are intro-
duced. This includes giving a precise definition for the Interface and Bulk algebras, together
with their connection through K-theory.

3.1 Evaluation and Interface Algebras

In this section we will study a family of C∗-homomorphisms between the magnetic algebras
AB1 and AB2 associated the different magnetic fields. This family of homomorphisms will
be of central importance in the rest of the work.

Definition 3.1.1 (Evaluation homomorphisms). A C∗-homomorphism ev : AB1 → AB2

such that
ev
(
SB1,1

)
: = SB2,1

ev
(
SB1,2

)
: = SB2,2.

will be called an evaluation map from AB1 to AB2 .

Remarks 3.1.2. The last definition hides tons of information, some of which is remarked
here:

1. Note that nothing is said about the existence. The existence of such homomorphisms
is not trivial and will be the main focus of section 3.3. To clarify the existence problem
of the evaluation map, consider b1 6= b2 and observe that because of equation (3.1)

ev( e i b1 ) = e i b2 ,

however it is easily seen that any evaluation map must map the identity into the
identity, which lead to a contradiction.
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2. It follows from equation (2.9) that any evaluation map has the property that

ev(fB1) = fB2 . (3.1)

Moreover, using equations (2.11) it will also follow that

ev(τm(fB1)) = τm(fB2), for m ∈ Z2. (3.2)

3. Evaluation maps are gauge-invariant in the sense that, if ev : AB1 → AB2 is a evaluation
map and Γ : A′B1

→ AB1 is a gauge transformation, whereA′B1
is a magnetic C∗-algebra

associated to the magnetic field B in a different gauge than AB1 , it follows that

ev
(
Γ
(
S ′B1,1

))
= ev

(
SB1,1

)
= SB2,1a

ev
(
Γ
(
S ′B1,2

))
= ev

(
SB1,2

)
= SB2,2 ,

proving that ẽv := ev ◦ Γ is an evaluation map connecting A′B1
and AB2 . /

Equation (3.2) tel us that there must be certain correspondence between FB1 and FB2

as long as an evaluation map exists. This notion is precisely written in the next lemma.

Lemma 3.1.3. Let ev : AB1 → AB2 be an evaluation homomorphism. Then

ev|FB1
: FB1 −→ FB2

restricts to a surjective C∗-homomorphism.

Proof. Let F0
Bj
⊆ FBj , j = 1, 2, be the dense subalgebra generated by the finite polynomials

in the generators τγ(fBj). From (3.2) it follows that F0
B2
⊆ ev(F0

B1
) ⊂ FB2 . Since by

assumption ev is a C∗-homomorphism and F0
B1

is dense, one gets that

F0
B2
⊆ ev(F0

B1
) ⊆ ev(FB1) ⊆ ev

(
F0
B1

)
⊆ FB2 .

From the chain of inclusions above it follows that ev(FB1) is a C∗-subalgebra of FB2 [BR,
Proposition 2.3.1] which contains the dense set F0

B2
. This implies that: (i) the restriction

ev|FB1
is well defined, and (ii) ev(FB1) = FB2 , i. e. the surjectivity of the map.

Since ev|FB1
is a well defined C∗-homomorphism between FB1 and FB2 it follows that

Ker(ev|FB1
) ⊂ FB1 is a closed (two-sided) ideal.

Definition 3.1.4 (Interface algebra). Let ev : AB1 → AB2 be an evaluation homomorphism.
The interface algebra I ⊂ AB1 is the closed two-sided ideal generated in AB1 by Ker(ev|FB1

).

In other words I coincides with the C∗-subalgebra of AB1 generated by elements of the
type TgR with g ∈ Ker(ev|FB1

) and T,R ∈ AAB1
. This justifies the following notation

I := AB1Ker(ev|FB1
)AB1 .

Let K(H) be the closed ideal of compact operators on the separable Hilbert space H. It
is worth recalling that K(H) is an essential ideal in B(H) [Mur, Example 3.1.2] and C(T) be
the C∗-algebra of the continuous function on the Torus.
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Definition 3.1.5 (Localized and straight-line interfaces). Let I be the interface algebra
associated to a given evaluation homomorphism. We will say that the interface is localized
if I = K(`2(Z2)). The interface will be called straight-line if I ' C(S1) ⊗ K(`2(Z)) up to a
unitary transformation.

The motivation for the terminology introduced in Definition 3.1.5 will be clarified partially
in the next example and Section 4.1.

Example 3.1.6 (Interface algebra for a localized magnetic field). According to the notations
and results introduced in the examples 2.1.4, Example 2.2.5 and Example 2.4.5, let AΛ be
the magnetic algebra associated to a localized magnetic field BΛ of strenght b /∈ 2π iZ (in
order to make the algebra AΛ not trivial) and A0 be the algebra associated to a constant zero
magnetic field (see Example 2.3.3). Once more and for the sake of simplicity, let Λ = {n}
be a singleton in Z2. The map defined by ev(SΛ,j) = Sj, where Sj are the canonical shift
operators, extends to a C∗-homomorphism ev : AΛ → A0 (see the proof of Proposition
3.3.2). Therefore, from (3.2) one has that ev(fΛ) = 1, and in turn

ev(δn) = ev
(
( eib − 1)−1(fΛ − 1)

)
= 0 . (3.3)

This shows that δn ∈ I is an element of the interface algebra. Moreover, by acting
with the magnetic translations SΛ,j one obtains that also δm ∈ I for every m ∈ Z2. Now by
multiplying by the appropiate constants it follows that the elements of the form δm(S1)r(S2)s,
where r, s ∈ Z, are elements of the interface algebra for the localized magnetic field I,
and since those elements generate K(`2(Z2)) we have the inclusion K(`2(Z2)) ⊂ I. The
other inclusion is also true and its proof follows pretty much the same steps made to prove
Proposition 4.2.4, so just the main ideas are written here: First, one can prove that ev|F0

Λ

acts by taking limits of functions; then a density argument together with the continuity of
the evaluation map imply that ev|FΛ

acts also by taking limits (which is reasonable since
FΛ = c(Z2) as proved in 2.4.5); then if an element is in Ker(ev|FΛ

) it must be a function in
c0(Z2) = {g ∈ `∞ | lim

||n||→∞
g(n) = 0}; finally one can check that since c0(Z2) ⊂ K(`2(Z2))

(regarding the functions in c0(Z2) as multiplication operators), it follows that the ideal
generated by Ker(ev|FΛ

) in AΛ must also be contained in K(`2(Z2)), proving that I ⊂
K(`2(Z2)).
If |Λ| > 1 it is easy to see that for every m ∈ Λ we have that δm = δmδΛ. It follows from
equation (3.3) that

ev(δm) = ev(δmδΛ) = ev(δm)ev(δΛ) = 0,

so one can repeat the exact same proof as in the case |Λ| = 1 to prove that I = K(`2(Z2)).
In summary, a localized magnetic field always provides a localized interface in the sense of
Definition 3.1.5. /
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3.2 Toeplitz extensions by an interface

Let A,B and C three C∗-algebras fitting into the short exact sequence

0 −→ A α−→ B β−→ C −→ 0. (3.4)

In such a case we will say that B is the Toeplitz extension of A by C. For a simple and
complete review of the theory of extension of C∗-algebras we refer to [Weg, Chapter 3]. It is
worth pointing out that we are proposing the use of the expression Toeplitz extension in a
extremely generalized sense. Indeed the original notion of Toeplitz extension refers to a very
specific example of extension of C∗-algebras (see Appendix B for an applied example or [Mur,
Section 3.5], [Weg, Exercise 3.F] for more general structure). However, such a generalized
use of the name Toeplitz extension is becoming standard in condensed matter problems (see
e. g. [AM]) and we decided to adhere to this use.

The main aim of this section is to show that an evaluation homomorphism automatically
provides a Toeplitz extension.

Theorem 3.2.1. Every evaluation homomorphism ev : AB1 → AB2 fits into the short exact
sequence

0 −→ I ı−→ AB1

ev−→ AB2 −→ 0 (3.5)

where I is the related interface algebra and ı is the (natural) inclusion map.

Proof. The map ı is injective by definition. Therefore, to complete the proof we need to prove
that the evaluation homomorphism is surjective and that Ker(ev) = I. The surjectivity is a
consequence of Lemma 3.1.3 which ensures ev(A0

B1
) = A0

B2
(or equivalently ev(A∞B1

) = A∞B2
).

Then, as in the proof of Lemma 3.1.3, the chain of inclusions

A0
B2

= ev(A0
B1

) ⊆ ev(AB1) ⊆ ev(A0
B1

) ⊆ AB2

implies ev(AB1) = AB2 . The description of the kernel of ev is a consequence of Corollary
2.7.4 which guarantees that T ∈ Ker(ev) if and only if all the FB2-coefficients of ev(T ) are
zero. From the definition (2.24), the linearity of the integral and the fact that the evaluation
homomorphism ev commutes (by construction) with the family of automorphisms ρθ, it

follows that êv(T )r,s = ev(T̂r,s). Then T ∈ Ker(ev) if and only if ev(T̂r,s) = 0 for all

(r, s) ∈ Z2. This implies that T ∈ Ker(ev) if and only if σN(T ) ∈ I for every N ∈ N, where
σN(T ) is the Cesàro mean (2.25) which converges to T . Since I is a closed ideal it follows
that T ∈ Ker(ev) if and only if T ∈ I. �

By using the terminology introduced at the beginning of this section we will say that
AB1 is the Toeplitz extension of the interface I by AB2 .

Corollary 3.2.2. 1 ∈ I if and only if ev = 0.

Proof. Since I is an ideal one has that 1 ∈ I if and only if I = AB1 .
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Example 3.2.3 (Localized interface and discrete spectrum). In the case of a localized in-
terface I = K(`2(Z2)) (like in Example 3.1.6) the short exact sequence (3.5) provides the
isomorphism

AAB2
' AAB1

/K(`2(Z2)) .

This means that the elements of AAB1
are compact perturbations of elements of the (bulk)

algebra AAB2
. Since K(H) is an essential ideal in B(H) for any separable Hilbert space

H (see eg. [Mur, Example 3.1.2]), K(`2(Z2)) is an essential ideal of AAB1
and it follows

that the short exact sequence (3.5) is essential [Weg, Definition 3.2.1]. The isomorphism
above is useful to analyze the spectrum of elements a ∈ AAB1

. In fact it holds true that the
evaluation ev(a) ∈ AAB2

contains the information about the essential spectrum σess(a) while
the discrete spectrum σd(a) is generated by the part of a which belongs to the interface.
Usually, the discrete spectrum of a is located in the gaps of the spectrum of ev(a). /

Remark 3.2.4 (Split exact squences of C∗-algebras). Before continuing, let us briefly discuss
the three ways a short exact sequence can split1. Consider the exact sequence (3.4) and
suppose there is a function γ : C → B such that β ◦ γ = IdC. The three cases are the
following:

1. Since C∗-algebras are also C-modules, and actually vector spaces over C, the first way
in that the C∗-algebras could split would be γ being a linear transformation. In such
case one would have that both α(A) and γ(C) are vector spaces and

B = α(A)⊕ γ(C)

is the direct sum of the vector spaces α(A) and γ(C).

2. If now γ is actually a ∗-homomorphism, then both α(A) and γ(C) would be ∗-subalgebras
of B and

B = α(A) + γ(C)

is the Banach sum space between the ∗-algebras α(A) and γ(C).

3. Finally, if γ is a ∗-homomorphism and it occurs that γ(C) is an ideal in B it holds that

B = α(A)⊕ γ(C)

is the direct sum space of the ∗-algebras α(A) and γ(C). Let us remark that the main
difference between this case and the last one is the orthogonality between elements of
α(A) and γ(C).

1This discussion is based on [Weg, Chapter 3.1]
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In any case, the sequence (3.4) is said to be split exact but since they have different
properties it is important to also say if it splits as a sequence of C-modules or ∗-algebras.
Indeed, let us recall that if the second or third cases occur, then

0 −→ Kj(A)
α∗−→ Kj(B)

β∗−→ Kj(C) −→ 0, for j = 1, 2,

(see [Weg, Corollary 8.2.2]), but this does not hold in general if the splitting function γ is
just linear (a counter example for this is provided by the Toeplitz extension associated to
the Iwatsuka algebra discussed in Chapter 4). /

Example 3.2.5 (Toeplitz extension for a localized magnetic field). From Example 3.1.6 one
infers that a localized magnetic field provides the Toeplitz extension

0 −→ K
(
`2(Z2)

) ı−→ AΛ
ev−→ A0 −→ 0. (3.6)

Let us claim that the short exact sequence (3.6) splits as a sequence of C∗-algebras. In [DS,
Proposition 2] it is proved that when the algebra AΛ is generated by the magnetic potentials
in the Aharonov–Bohm gauge, it holds true that the difference

S ′Λ,j − Sj = (Y ′AΛ,j
− 1)Sj ∈ K(`2(Z2)), for j = 1, 2, (3.7)

where the apostrophe has been placed to state the difference with the gauge used until now
defined in 2.1.4. Also note that since the interface algebra IΛ = K(`2(Z2)) in at least one
gauge, it follows immediately that IΛ = K(`2(Z2)) for every gauge, since the algebra of
compact operators is invariant through the transformation T 7→ e−iG(N) T e−iG(N) for every
gauge function G and the evaluation map transforms into other evaluation map when the
gauge is changed (see 3.1.2). The reader could find useful to see the next exact sequence to
clarify the gauge equivalence of the problem:

0 −→ K
(
`2(Z2)

) ı−→ AΛ
ev−→ A0 −→ 0

Γ
y. Γ

y. a
sd

=
=
=

.

0 −→ K
(
`2(Z2)

) ı−→ A′Λ
ẽv−→ A0 −→ 0,

(3.8)

where A′Λ is the magnetic C∗-algebra associated to the localized magnetic field in the
Aharonov-Bohm gauge, Γ : A′Λ → AΛ is the gauge transformation and ẽv := Γ−1 ◦ ev is
the evaluation map from A′Λ into A0.
Now observe from equation (3.7) that Sj ∈ AΛ (in the Aharonov–Bohm gauge) for j = 1, 2,
and also that ev(Sj) = ev(S ′Λ,j) = Sj, leading us to consider the trivial lift γ = IdA0 . It is of
course trivial that γ is a ∗-homomorphism, so we conclude that the sequence (3.6) splits as
a sequence of C∗-algebras.
Finally let us note that γ(A0) = A0 can not be an ideal in A′Λ because it is unital, and

35



in such case, one would have that A0 ' AΛ (with equality in the Aharonov–Bohm gauge)
which is not true since A0 is commutative but AΛ is not. In summary

AΛ ' IΛ +A0 ' K(H) + C(T2),

where H is an arbitrary separable Hilbert space, the sums are Banach sums of ∗-algebras,
the first isomorphism is an equality in the Aharonov-Bohn gauge and the sum is not direct
(in the sense of C∗-algebras). /

Example 3.2.5 is somehow special since the Toeplitz extensions (3.5) considered in this
work, which connect the Iwatsuka C∗-algebra with the orthogonal sum of two noncommu-
tative torus, will be not split exact in general as a sequence of C∗-algebras. Nevertheless, it
will be possible to find a linear lift. This will be developed in 4.3.

3.3 Existence of Toeplitz Extensions and Dynamics

In the previous section we described the consequences of having an evaluation homomor-
phism between two magnetic algebras. In this section we will analyze the relation between
the existence of evaluation homomorphisms and the dynamical properties of the dynamical
systems generated by the magnetic hulls. As a result we will provide a generalized definition
of magnetic multi-interface based on purely dynamical properties of the magnetic hulls.

Let (ΩB1 , τ
∗,Z2) and (ΩB2 , τ

∗,Z2) be the two topological dynamical systems associated
to the magnetic fields B1 and B2. An equivariant map from ΩB2 to ΩB1 is a continuous
function φ∗ : ΩB2 → ΩB1 such that

φ∗ ◦ τ ∗γ = τ ∗γ ◦ φ∗, for all γ ∈ Z2.

Proposition 3.3.1. Every evaluation homomorphism ev : AAB1
→ AAB2

defines an injective
closed equivariant map φ∗ : ΩB2 ↪→ ΩB1.

Proof. Let us consider the Gelfand trasforms Gj : FBj → C(ΩBj), with j = 1, 2. The map
φ : C(ΩB1)→ C(ΩB2) defined by

φ := G2 ◦ ev|FB1
◦ G −1

1

is the composition of surjective C∗-homomorphisms, hence it is a surjective C∗-homomorphism.
By duality, φ induces a continuous map φ∗ : ΩB2 → ΩB1 defined by

φ∗(ω) := ω ◦ φ.

Indeed, if ω ∈ Ω2 is meant as a character of C(ΩB2), then φ∗(ω) is a character of C(ΩB1), hence
a point of Ω1. The surjectivity of φ implies the injectivity of φ∗. Indeed, φ∗(ω1) = φ∗(ω2)
implies that ω1(ĝ) = ω2(ĝ) for all ĝ ∈ C(ΩB2) which is exactly ω1 = ω2. Finally φ∗ is closed
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in view of the Closed Map Lemma [Lee, Lemma 4.25] since ΩB1 and ΩB2 are both compact
Hausdorff spaces.

Let us recall that a continuous closed injection between topological spaces is usually
called a (topological) embedding. Let φ∗ : ΩB2 ↪→ ΩB1 be the equivariant embedding of
Proposition (3.3.1). The subset Ω∗ := φ∗(ΩB2) is evidently a closed invariant subset of ΩB1

and (Ω∗, τ
∗,Z2) becomes a dynamical subsystem of (ΩB1 , τ

∗,Z2). Moreover

Ω∗ = φ∗
(

Orb(ω0)
)

= Orb(ω∗)

where ω∗ := φ∗(ω0) and ω0 ∈ ΩB2 is the evaluation at 0. In conclusion, Proposition (3.3.1)
states that every evaluation homomorphism identifies (up to isomorphisms) a dynamical
subsystem of the initial magnetic hull. However, in view of Proposition 2.6.1, the only
possibilities for a closed and invariant subset Ω∗ are Ω∗ ⊆ ∂ΩB1 or Ω∗ = ΩB1 . The latter
circumstance corresponds to the case of φ∗ being an isomorphism and, as a consequence of
Proposition 3.3.1 and the short exact sequence of Theorem 3.2.1, this is equivalent to the
isomorphism AB1 ' AB2 . This case will be called trivial as opposite to the non trivial case
in which φ∗ defines a proper dynamical subsystem of the initial dynamical system. The next
result provides a sort of converse of Proposition (3.3.1).

Proposition 3.3.2. Let AB be a magnetic algebra and (ΩB, τ
∗,Z2) the topological dynamical

system associated to its magnetic hull. Let Ω∗ ⊆ ∂ΩB be a proper invariant closed subset.
Assume that Ω∗ = Orb(ω∗) for some ω∗ ∈ ∂ΩB. Then, there is a magnetic algebra AB∗ with
magnetic hull Ω∗ and an evaluation homomorphism ev : AB → AB∗.

Proof. Let φ : C(ΩB) → C(Ω∗) be the surjective restriction C∗-homomorphism defined by

φ(ĝ) := ĝ|Ω∗ for all g ∈ C(ΩB). Let f̂B be the Gelfand transform of the generator fB of FB
and define the function fB∗ : Z2 → C by

fB∗(m) := f̂B(τ ∗m(ω∗)), m ∈ Z2.

The function fB∗ provides a magnetic flux with an associated (non unique) magnetic field
B∗ : Z2 → R. Let AB∗ be a suitable vector potential for B∗ and AAB∗ the associated
magnetic algebra. The surjective C∗-homomorphism φ and the Gelfand isomorphism provide
a surjective C∗-homomorphism ẽv : FB → FB∗ characterized by ẽv(fB) = fB∗ . It turns out
that the map ev : A∞B → A∞B∗ defined by

ev

 ∑
(r,s)∈Z2

gr,s(SB,1)r(SB,2)s

 =
∑

(r,s)∈Z2

ẽv(gr,s)(SB∗,1)r(SB∗,2)s

is a ∗-homomorphism of pre-C∗-algebras (Proposition 2.8.4). Therefore, the claim follows
from [GBVF, Lemma 3.41].
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Remark 3.3.3 (Non-uniqueness of the magnetic field). The magnetic algebra AAB∗ which
enters in Proposition 3.3.2 is non unique for two reasons. First of all AB∗ depends of the
election of a vector potential AB∗ for the magnetic field B∗ and this involves the election
of gauge. However, magnetic algebras related to different gauges are unitarily equivalent as
discussed in Section 2.3. The second source of ambiguity is more subtle and is related with
the determination of the magnetic field B∗ from the magnetic flux fB∗ . Indeed, the natural
candidate would be B∗ = −i log(fB∗) but the the logarithm is not univocally defined in the
complex plane. In particular, given a magnetic field B∗ compatible with the magnetic flux
fB∗ and a (not necessarily bounded) function ζ : Z2 → Z one gets that B′∗ := B∗ + 2πζ
provides the same magnetic flux. A way to solve this ambiguity is to fix the convention that
B∗ := Arg(fB∗) ∈ [0, 2π) is given by the principal argument of the flux fB∗ . This correspond
to a sort of minimal growth assumption for the magnetic field at infinity and we will use this
convention in the rest of this work. /

We are now in position to introduce a key definition for this work.

Definition 3.3.4 (Magnetic multi-interface). A system subjected to a magnetic field B :
Z2 → [0, 2π) and with the boundary of the magnetic hull given by a finite collection of
invariant points

∂ΩB = {ω∗,1, . . . , ω∗,N+1}

will be called a N-interface magnetic system. In this case the associated Toeplitz extension
is given by

0 −→ I ı−→ AB
ev−→ Abulk −→ 0 (3.9)

where AB is any magnetic algebra associated to the magnetic field B and the bulk algebra

Abulk := Ab1 ⊕ . . .⊕AbN+1
(3.10)

is given by the orthogonal direct sum of N + 1 magnetic algebras of constant magnetic fields
of strengths given by

bj := Arg(f̂B(ω∗,j)), for every j = 1, . . . , N + 1,

where f̂B is the Gelfand transform of the flux function fB as described in the proof of
Proposition 3.3.2. Finally the evaluation map and the interface algebra I are completely
specified by

ev(fB) :=
(

eib1 , . . . , eibN+1
)

as discussed in Section 3.1.

As showed in Example 2.6.5 and Example 3.1.6, a localized magnetic field provides an
example of a magnetic interface with order N = 0. On the other hand, Example 2.6.4 shows
the Iwatsuka magnetic field provides an example of magnetic interface of order N = 1. The
case of the Iwatsuka magnetic field will be discussed extensively in Section 4.
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3.4 K-theory of Magnetic C∗-Algebras

In this section we will discuss some aspects of the K-theory of magnetic interfaces. There
is a large literature concerning the K-theory for C∗-algebras. We will refer to the classic
monographs [Mur, Weg, Bla, GBVF] as well as [PS] for a stronger connection with the
condensed matter problems.

3.4.1 Six-Term Exact Sequence Regarding the Crossed Product
Structure

The study of the K-theory associated to C∗-algebras that are crossed product algebras by Z
was studied in [PV2] and the main results are summarized in Appendix B. Since magnetic
C∗-algebras are indeed iterated crossed product algebras by Z one is allowed to use these
techniques in order to compute their K-groups.

More precisely, let AB be a magnetic C∗-algebra and AB,j, αj and βj as defined in 2.5.
Since ABj = FB oαj Z, it follows that we can build the Pimsner-Voiculescu exact sequence
(see Appendix B for notations)

K0(FB)
1−αj,∗−→ K0(FB)

ı∗−→ K0(AB,j)

δ
x yε

K1(AB,j) ←−
ı∗

K1(FB) ←−
1−αj,∗

K1(FB).

(3.11)

In some cases, as for the Iwatsuka C∗-algebra, the last six-term exact sequence is builded
with maps that can be explicitely computed. This allows to compute the groups K0(AB,j)
and K1(AB,j). If this is the case for at least one choice of j ∈ {1, 2}, one can recall that
AB = AB,j oβk Z for k such that {j, k} = {1, 2}, and analogously the Pimsner-Voiculescu
six-term exact sequence

K0(AB,j)
1−βk,∗−→ K0(AB,j)

ı∗−→ K0(AB)

δ
x yε

K1(AB) ←−
ı∗

K1(AB,j) ←−
1−βk,∗

K1(AB,j).

(3.12)

can be used to compute the actual K-theory of the magnetic C∗-algebra AB.
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The main goal of this work is finding a correspondence between the bulk and interface
algebras. This correspondance must be understood in a K-theoretic level, and because of
that it is important to have as much information as possible regarding the K-groups of the
algebras in the exact sequence (3.9). When it is about the Iwatsuka algebra, the Toeplitz
extension can be used to determine the K-groups associated to such extension (see sections
3.4.2 and 4.4), however the methods developed in this section are way easier to apply and
capture the K-groups of the magnetic C∗-algebra AI with not much effort (see 4.4.1).

3.4.2 Six-Term Exact Sequence Associated to the Toeplitz Exten-
sion

Let us recall that to each Toeplitz extension of type (3.4) there is an associated six term
sequence in K-theory [Weg, Theorem 9.3.2]. Therefore, there is a six term sequence for
every magnetic Toeplitz extension of type (3.5) or (3.9). We will focus here on the latter
case concerning a magnetic multi-interface.

From the exact sequence (3.9) one obtains the six term sequence

K0(I)
ı∗−→ K0(AB)

ev∗−→ K0(Abulk)

ind

x yexp

K1(Abulk) ←−
ev∗

K1(AB) ←−
ı∗

K1(I)

(3.13)

where the canonical maps ind and exp are called index map and exponential map respectively.
The role of the six term sequence (3.13) is twofold: first of all it allows to reconstruct the
K-theory of AB from the knowledge of the K-theory of I and Abulk; secondly it defines how
the K-theory of AB intertwines the K-theories of I and Abulk through the maps ind and
exp. The latter aspect is known in condensed matter as bulk-boundary correspondence [PS].

The K-theory of the bulk algebra Abulk can be easily computed. Indeed the Abulk is an
orthogonal direct sum of noncommutative tori (see Example 2.3.3) and the K-theory of the
noncommutative torus is well-known (cf. Appendix D).

Proposition 3.4.1. Let Abulk be the bulk algebra (3.10) of an N-interface magnetic system.
Then

K0(Abulk) =
N+1⊕
j=1

K0(Abj) '
N+1⊕
j=1

Z2,

K1(Abulk) =
N+1⊕
j=1

K1(Abj) '
N+1⊕
j=1

Z2.
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The isomorphisms above are given by the K-theory of the noncommutative tori

K0(Abj) = Z[1]⊕ Z[Pθj ] ' Z2,

K1(Abj) = Z[Sbj ,1]⊕ Z[Sbj ,2] ' Z2,

where Sbj ,1 and Sbj ,2 are the magnetic translations which generates Abj and the projection
Pθj is described in Appendix D.

Proof. The first part of the claim follows from the additive property of the K-theory with
respect to the orthogonal direct sum of C∗-algebras [Weg, Exercise 6.E & Example 7.1.11(4)].
The second part is a consequence of the structure of the K-theory of the noncommutative
torus described in Appendix D.

The K-theory of the interface algebra requires a preliminary observation. In fact, if
one assumes that ev is not trivial one has that I is not unital (Corollary 3.2.2) and as a
consequence Kj(I), j = 0, 1, must be understood as the K-groups of the unitalization2 I+

of I [Weg, RLL]. The main case of interest for this work is when there exists a unitary
equivalence

I $' I0 ⊗K(Hred) (3.14)

where I0 is a unital and abelian C∗-algebra and K(Hred) is the C∗-algebra of compact
operators on the (reduced) separable Hilbert space Hred. In such case one has

Kj(I) ' Kj(I0), j = 0, 1,

because of the stability property of the K-theroy [Weg, Corollary 6.2.11 & Corollary 7.1.9].

Remark 3.4.2. The ansatz (3.14) imposes a quite strong condition on the geometry of the
interface. In the Iwatsuka magnetic field case this ansatz is satisfied and can be thought
as saying that the interface is a straight line separating the magnetic fields. To handle
more general geometries like corners, the ansatz (3.14) must be modified. A quite general
discussion for other geometry imperfections is discussed in [Thi]. In such paper the half-
plane and quarter-plane cases are modified in a way that the edges are allowed to have a
non trivial slope together with other imperfections.

Example 3.4.3 (Six term sequence for a localized magnetic field). The six-term exact
sequence associated to the Toeplitz extension (3.6) for a localized magnetic field can be
easily computed by observing that it is split exact as a sequence of C∗-algebras (cf. Remark
3.2.4 and Example 3.2.5). In this case the interface algebra has the form I ' C ⊗ K (see
Example 3.1.6) and in turn its K-theory is given by

K0(I) ' K0(C) ' Z, K1(I) ' K1(C) = 0.

2In our case I ⊂ B(`2(Z2)) is a concrete C∗-algebra, therefore its unitalization is given by I+ :=
{T + α1|T ∈ I, α ∈ C} .
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(cf. Appendix C). It follows from the split exactness of the Toeplitz extension together with
the exactnes of its induced six-term exact sequence in K-theory that

K0(AΛ) = K0(A0)⊕ Z[P{0}] ' Z3,

K1(AΛ) = K1(A0) ' Z2

where A0 is the magnetic algebra for a zero magnetic field (cf. Example 2.3.3) and P{0} is the
projection on the fundamental site (0, 0) ∈ Z2. This fact has already been proved in [DS,
Theorem 12]. /

The case of straight-line interface (Definition 3.1.5) will be relevant in the next section.
Its K-theory is described below.

Proposition 3.4.4 (K-theory for the straight-line interface). In the case of a straight-line
interface I ' C(S1)⊗K(`2(Z)) the K-theory is given by

K0(I) ' Z, K1(I) ' Z.

Proof. The result follows from the stability property of K-theory along with K0(C(S1)) '
Z[1] and K1(C(S1)) ' Z[u] where u(t) = e i t (see Appendix C).

3.5 Bulk and interface currents

Let AB be a magnetic algebra endowed with the trace TP associated to an ergodic measure
P ∈ Erg(ΩB) as discussed in Section 2.6. Given a differentiable projection P ∈ C1(AB), the
(generalized) transverse Hall conductance associated to P is defined by

σB,P(P ) :=
e2

h
ChB,P(P ) (3.15)

where e is the electron charge, h = 2π} is the Planck’s constant and the dimensionless part,
known as Chern number, is given by

ChB,P(P ) := i 2π TP
(
P
[
∂1(P ), ∂2(P )

])
. (3.16)

The projection P is usually obtained as the spectral projection into a gap of a self-adjoint
element (Hamiltonian) of AB and represents the ground state of the system as described by
the Fermi-Dirac distribution in the limit of the temperature T = 0 and chemical potential
(Fermi energy) sited into the gap. The quantity (3.15) enters in the (microscopic) Ohm’s
law

J⊥ = σB,P(P ) E (3.17)

which describes the transverse current density J⊥ generated in the material as a response
to the external electric perturbation E. The expression (3.17) is usually known as Kubo’s
formula and is obtained in the linear response approximation. There are countless derivations
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of the Kubo’s formula (3.17) in the literature. For our aims we will refer to [BES, SB] for
the case of a constant magnetic field and to [DL] for more general casees.

In the case of a constant magnetic field B of strength b there is a unique ergodic measure
(cf. Example 2.6.3) and the associated trace, simply denoted with T , is given by the trace per
unit volume as proved in Proposition 2.9.3. Therefore, it is appropriate to rewrite equations
(3.15) and (3.16) with the lighter notation

σb(P ) =
e2

h
Chb(P ) (3.18)

In particular, the map Chb can be obtained from the trilinear map ξb : C1(Ab)×3 → C,
defined by

ξb(T0, T1, T2) := i 2π T
[
T0

(
∂1(T1)∂2(T2)− ∂2(T1)∂1(T2)

)]
, (3.19)

according to Chb(P ) = ξb(P, P, P ). Formula (3.19) is crucial in the study of the topology
of the algebra Ab (which coincides with the noncommutative torus). In fact, as discussed
in [Con, Chapter 3], [GBVF, Chapter 12] or [PS, Chapter 5] among others, it turns out
that the map ξb is a cyclic 2-cocycle of the algebra C1(Ab) and therefore defines a class
[ξb] ∈ HC2(C1(Ab)) in the cyclic cohomology of C1(Ab). The class [ξb] plays a special role
in the canonical bilinear pairing

≺ , � : K0(Ab) × HC2(Ab) −→ C

between (even) K-theory and (even) cyclic cohomology, defined by(
[P ], [ϕ]

)
7−→ ≺ [P ], [ϕ] � := (tr4ϕ)(P, P, P )

where the projection P ∈ C1(Ab) ⊗MatN(C) is a suitable3 representative of the class [P ],
N ∈ N is a suitable integer4 and tr denotes the trace on MatN(C) [PS, Theorem 5.1.4]. In
the case N = 1, a comparison with equations (3.16) and (3.19) shows that

Chb(P ) = ≺ [P ], [ξb] � ∈ Z (3.20)

where the integrality of the pairing [P ] 7→≺ [P ], [ξb] � is the celebrated Index Theorem
for the even K-theory [Con, Section 3.3, Corollary 16]. Equation (3.20) along with (3.15)
provides the quantization (in units of e2h−1) of the transverse Hall conductance for a constant
magnetic field [TKNN, BES].

The conductance for the bulk algebra 3.10 can be defined (by linearity) from the case of
a constant magnetic field.

3The suitability of the projection follows from the need of it being at least once differentiable. In fact,
the pairing is initially defined on the K-Theory of the algebra C1(Ab) and then extended to the K-Theory
of the whole algebra Ab, which are canonically isomorphic.

4For a non-trivial magnetic field b(2π)−1 ∈ R \ Z it is always possible to fix N = 1 since the K-theory is
entirely realized inside the algebra Ab (cf. Appendix D).
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Definition 3.5.1 (Bulk transverse conductance). Let Abulk be the bulk algebra defined in
equation (3.10) and P := (P1, . . . , PN+1) a projection in C1(Abulk). The bulk transverse
conductance for the projection P is given by the collection

σbulk(P ) :=
{
σb1(P1), . . . , σbN+1

(PN+1)
}

where every σbj(Pj) is defined by (3.18).

Let us now consider the current associated with the interface algebra I. We will focus
on the case described by the ansatz (3.14) and we will assume that the unital and abelian
C∗-algebra I0 is endowed with a faithful (normalized) trace τ0 and a suitable (unbounded)
derivation δ0 which meet the compatibility condition τ0 ◦ δ0 = 0. In this way one can define
a faithful lower-semicontinuous trace TI on I through the prescription

TI(T ) := τ0 ⊗ TrHred

(
$(T )

)
, T ∈ DI

where the ideal DI ⊂ I is defined by DI := $−1(I0⊗L1(Hred)) and L1(Hred) is the ideal of
trace class operators on Hred). Similarly, one can endow I with the derivation ∂I given by

∂I(T ) := δ0 ⊗ IdK
(
$(T )

)
, T ∈ C1

I

where CkI := $−1(Ck(I0) ⊗ K(Hred)) for every k ∈ N. Therefore, such a derivation can be
extended to the unitalization I+ by the prescription ∂I(1) = 0. With these structures one
can define the map

WI(U) := i TI
(
(U∗ − 1) ∂I(U − 1)

)
= i TI (U∗∂I(U)) (3.21)

for every unitary operator U ∈ I+ such that U − 1 ∈ C1
I ∩DI . The map WI is known as the

(non-commutative) winding number of U .

Example 3.5.2 (Triviality of the winding number in the localized case). According to
Example (3.1.6) the structure of the interface algebra in the case of a localized magnetic
field is given by I ' C⊗K(`2(Z2)) and therefore it satisfies the ansatz (3.14). However, in
view of the simple structure of I0 = C one has that the only faithful (normalized) trace τ0

is the identity τ0(a) = a and the only derivation δ0 is the null-map δ0(a) = 0 for all a ∈ C.
As a consequence the associated trace on I coincides with the canonical trace of the Hilbert
space `2(Z2), while there is no non-trivial derivation compatible with the ansatz (3.14). In
view of that one has that WI = 0 identically in the case of a localized magnetic field. /

Definition 3.5.3 (Interface conductance). Let I be an interface algebra of type 3.14 en-
dowed with the derivation ∂I and the trace TI . Let U ∈ I+ be a unitary operator such that
U − 1 ∈ C1

I ∩DI . The interface conductance associated to the configuration U is defined by

σI(U) :=
e2

h
WI(U) . (3.22)
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The definition above is justified by the fact that σI provides the proportionality coefficient
for the current that flows along the interface (cf. [SKR] or [PS, Section 7.1]). To clarify
Definition 4.30 we need some intermediate concept.

Let us call magnetic Hamiltonians the self-adjoint elements of AB. Let Ĥ ∈ AB be a
magnetic Hamiltonian and H := ev(Ĥ) ∈ Abulk its image in the bulk algebra. By con-
struction the bulk Hamiltonian H = (H1, . . . , HN+1) is made by a N + 1-upla of suitable
self-adjoint elements of the constant magnetic field algebras Abj and its spectrum is given

by σ(H) =
⋃N+1
j=1 σ(Hj).

Definition 3.5.4 (Non-trivial bulk gap). The magnetic Hamiltonian Ĥ ∈ AB has a non-
trivial bulk gap if there is a compact set ∆ ∈ R such that

minσ(H) < min ∆ < max ∆ < maxσ(H)

and ∆ ∩ σ(H) = ∅.

According to the above definition ∆ lies inside a non-trivial spectral gap of the bulk
Hamiltonian H and for every chemical potential µ ∈ ∆ the Fermi projection

Pµ = (Pµ,1, . . . , Pµ,N+1) ∈ Abulk , Pµ,j := χ(−∞,µ)(Hj) ∈ Abj

is an element of the bulk algebra. If the magnetic Hamiltonian is smooth, i. e. Ĥ ∈ A∞I ,
then also H ∈ A∞bulk (the evaluation map preserves the regularity), and in turn Pµ ∈ A∞bulk

since A∞bulk is closed under holomorphic functional calculus. Let [Pµ] = [(Pµ,1, . . . , Pµ,N+1)] ∈
K0(Abulk) be the class of the Fermi projection in the K0-group of Abulk. As a first step let
us compute the image of [Pµ] inside K1(I) under the exponential map.

Proposition 3.5.5. Assume that the magnetic Hamiltonian Ĥ ∈ AB has a non-trivial bulk
gap detected by ∆. Let g : R→ [0, 1] be a non-decreasing (smooth) function such that g = 0
below ∆ and g = 1 above ∆ and consider the unitary operator

U∆ := e i 2πg(Ĥ) . (3.23)

Then U∆ ∈ I+ and
exp([Pµ]) = − [U∆] ∈ K1(I) .

Proof. The proof is similar to that of [PS, Proposition 4.3.1]. Since the evaluation map is a
homomorphism of C∗-algebras it commutes with the functional calculus and consequently

ev(g(Ĥ)) = g(H) = (g(H1), . . . , g(HN+1)) = 1 − Pµ

due to the fact that g is equal to 0 below the bulk gap and to 1 above the bulk gap and
therefore g(Hj) = 1− Pµ,j . As a consequence

ev
(

1− e i 2πg(Ĥ)
)

= 1− e i 2πg(H) = 0

45



showing that U∆ is a unitary element in I+. Since 1 − g(Ĥ) is a self-adjoint lift of Pµ one
can compute the exponential map as in [Weg, Definition 9.3.1 & Exercise 9.E] obtaining in
this way

exp([Pµ]) =
[

e− i 2π(1−g(Ĥ))
]

=
[

e− i 2πg(Ĥ)
]

= − [U∆]

where the additive notation5 for K1(I) has been used.

In the case Ĥ ∈ A∞B it follows from the construction that U∆ ∈ I+ ∩ A∞B acquires the
same regularity. It is worth noting that the element 1−U∆ can be constructed entirely from
the spectral subspace of Ĥ corresponding to the bulk insulating gap ∆. Indeed, the support
of the function e i 2πg − 1 is contained inside the region ∆ which lies in the insulating gap.

Remark 3.5.6 (Gap closing as a topological obstraction). The condition [U∆] 6= 0 (cf. Note
5) measures the obstruction to lift the Fermi projection Pµ ∈ Abulk to a true projection in
AAB ⊗MatN(C) (for some N large enough). From the construction emerges that this ob-

struction detects the presence of spectrum of Ĥ inside ∆ which is generated by the existence
of the magnetic interface. Since the election of ∆ inside the bulk gap is totally arbitrary, and
the Fermi projection does not depend on the specific µ inside the bulk gap, one gets that for
any given ∆ the related element 1− g(Ĥ) is a self-adjoint lift of the Fermi projection. This
implies immediately that the condition [U∆] 6= 0 guarantees the complete closure of the bulk
gap due to the presence of the magnetic interface. /

Let g as in the claim of Proposition 3.5.5. The derivative g′ is non-negative, supported
in ∆ and normalization in the sense that ‖g′‖L1 = 1. By construction the element g′(Ĥ)
satisfies the condition ev(g′(Ĥ)) = g′(ev(Ĥ)) = 0 and so g′(Ĥ) ∈ I is an element of the
interface algebra. Moreover g′(Ĥ) can be regarded as a density matrix which describes a
state of the system with energy distributed in the region ∆. If one interprets the operator
}−1∂I(Ĥ) as the velocity along the interface one deduces that

JI(∆) := − e
}
TI
(
g′(Ĥ) ∂I(Ĥ)

)
(3.24)

is the current density along the interface carried by the “extended states” in ∆ and, as a
consequence, σI = eJI provides the associated conductance (we are assuming that e > 0
is the magnitude of the electron charge). The connection between the latter formula and
Definition 3.5.3 is provided by the following result originally proved in [SKR].

Proposition 3.5.7. It holds true that

TI
(
g′(Ĥ) ∂I(Ĥ)

)
= − 1

2π
WI
(
U∆

)
.

5In terms of the additive notation of K1(I), the trivial element is [1] = 0 and −[U ] = [U∗] denotes the
inverse of [U ].
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Proof. The result can be obtained by adapting step by step the proof of [PS, Proposition
7.1.2]. Indeed the proof is purely algebraic and only uses the properties of the trace TI and
the derivation ∂I assumed by hypothesis at the beginning of this section.

By combining definition 3.24 (which is motivated by physics) with Proposition 3.5.7 one
gets that the interface conductance generated the “extended states” in ∆ is given by

σI(∆) :=
e2

h
WI(U∆) . (3.25)

This equation justifies the “abstract” Definition 3.5.3.

The relevance of Definition 3.5.3 lies in its topological interpretation. Consider the map
ηI : (C1(I) ∩DI)×2 → C, defined by

ηI(T0, T1) := i TI
(
T0 ∂I(T1)

)
. (3.26)

In view of the properties of TI and ∂I assumed by hypothesis ηI turns out to be a cyclic
1-cocycle and therefore defines a class [ηI ] ∈ HC1(I) in the cyclic cohomology of the C∗-
algebra I [Con, Chapter 3]. Let

≺ , � : K1(I) × HC1(I) −→ C

be the canonical bilinear pairing between (odd) K-theory and (odd) cyclic cohomology,
defined by (

[U ], [φ]
)
7−→ ≺ [U ], [φ] � := (tr4φ)

(
(U − 1)∗, U − 1

)
where the unitary U ∈ C1(I+) ⊗ MatN(C) is a suitable6 representative of the class [U ]
[Con, Section 3.3, Proposition 3]. Since every unitary U ∈ I+ (like U∆) defines an element
[U ] ∈ K1(I) in the K1-group of the interface algebra, one gets that

WI(U) = ≺ [U ], [ηI ] � (3.27)

only depends on the class [U ]. In particular, by combining Proposition 3.5.5 and equation
(3.27) one gets

σI(∆) :=
e2

h
≺ [U∆], [ηI ] � = −e

2

h
≺ exp([Pµ]), [ηI ] � . (3.28)

Equation (3.28) is the topological essence of the bulk-interface duality and will be used in
Sections 4.5 to prove equation (1.3), that is, a bulk-interface correspondance for the Iwatsuka
magnetic field (cf. Theorem 4.5.3).

6The suitability of the unitary follows from the need of it being at least once differentiable. In fact, the
pairing is initially defined on the K-Theory of the algebra C1(I+) and then extended to the K-Theory of
the whole algebra I+, which are canonically isomorphic.

47



Chapter 4: The Iwatsuka C∗-algebra

In this chapter most of what has been achieved for general magnetic C∗-algebras is
written down as explicitely as possible for the Iwatsuka magnetic field. This contains a full
description of the evaluation map and interface algebra, which builds a full understanding
of its Toeplitz extension, together with the explicit computation of every map and group
involved in its six-term exact sequence associated defined in (3.9).
Let us recall that the magnetic translations associated to the Iwatsuka magnetic field has
been described in Example 2.2.4 and the Iwatsuka C∗-algbera has been defined in Example
2.3.4.

4.1 Toeplitz extension and structure of the Iwatsuka

C∗-algebra

The simplest examples of a magnetic multi-interface system as described in Definition 3.3.4
is provided by the Iwatsuka magnetic BI defined by (2.4) with the condition

b− 6= b+. (4.1)

In fact, according to the content of Example 2.6.4 one has that the boundary of the Iwatsuka
magnetic hull ΩI can be represented as ∂ΩI = {ω−∞, ω+∞} with ω±∞ two distinct invariant
points. As a consequence the associated Toeplitz extension is given by

0 −→ I ı−→ AI
ev−→ Abulk −→ 0 (4.2)

with bulk algebra given by
Abulk := Ab− ⊕Ab+ (4.3)
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and evaluation map defined by

ev(SI,1) : = (Sb−,1, Sb+,1)

ev(SI,2) : = (Sb−,2, Sb+,2)

ev(fI) : =
(

eib− , eib+
) (4.4)

where SI,1 and SI,2 are the Iwatsuka magnetic translations and fI is the associated flux
operator as defined in Example 2.2.4.

In section 2.7 was proved that every element of a magnetic C∗-algebra can be expressed
as a limit of Cesàro like sums (see Theorem 2.7.3). The Iwatsuka C∗-algebra is no exception
to this fact, however we can also prove that AI contains several relevant projections. Let us
start by introducing the more operator-like notation

(P±ψ)(n) : = δ±(n)ψ(n)

(P0ψ)(n) : = δ0(n)ψ(n)
, ψ ∈ `2(Z2)

where the functions δ± and δ0 are defined in Example 2.1.3. It is of course true that Pl =
δl(N), where l ∈ {−, 0,+} and N = (N1, N2) is the vector of position operators on `2(Z2).
This notation is introduced mainly because the operators Pl are projections, and such kind
of operators are really important when working with K-theory, so writing them with the
letter P clarifies their importance and make this work consistent with most of the literature.

Lemma 4.1.1. Under the assumption (4.1) the projections P± and P0 are elements of AI.

Proof. The identity 1 and the flux operator fI defined in (2.4.4) are elements of AI. Let us
start with the case b0 6= b+ and b0 6= b−. A straightforward computation shows that

P0 =
(

eib− − eib0
)−1 (

eib+ − eib0
)−1 (

eib− − fI

) (
eib+ − fI

)
,

hence P0 ∈ AI. Similarly, one can check that

P± =
(

eib∓ − eib±
)−1 (

eib∓ − fI

)
(1− P0) .

Let us assume now b0 = b+ and consider the projection P> := P0 + P+. As above one can
check that

P> =
(

eib− − eib+
)−1 (

eib− 1− fI

)
P− =

(
eib+ − eib−

)−1 (
eib+ 1− fI

) (4.5)

are both elements of AI. Moreover, the equality

P0 = P> − SI,1P>S
∗
I,1 (4.6)

shows that also P0 ∈ AI. Finally P+ = P> − P0. The case b0 = b− is analogous.

For every j ∈ Z let us introduce the projection

(Pjψ)(n) := δ0(n− je1)ψ(n) ψ ∈ `2(Z2).

From the definition it follows that Pj is the translation of P0 along the vertical line located
at n1 = j. The projections Pj are mutually orthogonal.
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Corollary 4.1.2. Under the assumption (4.1) it holds true that Pj ∈ AI for all j ∈ Z.

Proof. From Lemma 4.1.1 we know that P0 ∈ AI. Moreover, a direct computation shows
that

Pj =

{
(SI,1)jP0(S∗I,1)j if j > 0

(S∗I,1)|j|P0(SI,1)|j| if j < 0 .
(4.7)

This completes the proof.

Finally let us observe that from (4.7) one gets the useful formula

PjSI,1 = SI,1Pj−1, j ∈ Z. (4.8)

4.2 Evaluation and Interface Algebra for the Iwatsuka

Magnetic Field

In this section the main features of the evaluation and interface algebras for the Iwatsuka
magnetic field are proved. The next result provides a first step for the understanding of the
evaluation map.

Lemma 4.2.1. Under the assumption (4.1) it holds true that

ev(P+) =(0, 1)

ev(P−) =(1, 0)
(4.9)

and
ev(Pj) = (0, 0), for all j ∈ Z. (4.10)

Proof. Let us start with the case b0 6= b+ and b0 6= b−. Then the result follows from the last
equation in (4.4), the formulas for P± and Pj in Lemma 4.1.1 and Corollary 4.1.2 along with
the fact that ev is a C∗-homomorphism. In the case b0 = b+ one obtains from (4.5) that
ev(P>) = (0, 1) and ev(P−) = (1, 0) . Moreover, from (4.6) one gets that

ev(P+) = (0, 1)− (0, Sb+,11S∗b+,1) = 0.

The case b0 = b− is similar.

Let Λ ⊂ Z be a finite subset and

PΛ :=
⊕
j∈Λ

Pj. (4.11)

the next result is a direct consequence of Lemma 4.2.1.
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Corollary 4.2.2. Under the assumption (4.1) it holds true that

ev(TPΛR) = 0

for all T,R ∈ AI and for all finite subset Λ ⊂ Z.

The next result characterizes the evaluation map when it is restricted to the flux algebra
FB and will be of extreme importance to give a proper description of the Interface algebra.
Recall from Example 2.4.4 that FB ' c(Z), where the identification is given by simply fixing
the second variable, so we are allowed to compute left and right limits for the elements of
the flux algebra.

Lemma 4.2.3. Let g ∈ FB. Then,

ev(g) =

(
lim

n1→−∞
g(n), lim

n1→∞
g(n)

)
, where n = (n1, n2) ∈ Z2. (4.12)

Proof. First let us define

L(g) =

(
lim

n1→−∞
g(n), lim

n1→∞
g(n)

)
, where n = (n1, n2) ∈ Z2,

and observe that L defines a ∗-homomorphism.
Recall that

τ(r,s)(fI) = (S1,I)
r (S2,I)

s fB (S2,I)
−s (S1,I)

−r,

and observe that

ev(τ(r,s)(fI)) = ev((S1,I)
r (S2,I)

s fI (S2,I)
−s (S1,I)

−r))
= (τ(r,s)fb− , τ(r,s)fb+)
= ( e i b− , e i b+ )
= L(τ(r,s)(fI)), for (r, s) ∈ Z2.

(4.13)

Since last equality holds after taking algebraic combinations it follows that ev|F0
I

= L|F0
I
,

where F0
I is the dense ∗-subalgebra of FI spanned by {τm(fI) | m ∈ Z2}, and hence since

this maps are continuous they must be equal in the entire flux algebra.

Proposition 4.2.4. The interface algebra I is the closed two-sided ideal of AI generated by
P0, i. e.

I = AIP0AI := span {TP0R|T,R ∈ AI} .

Proof. A comparison with Definition 3.1.4 shows the claim is equivalent to state that P0

generates Ker(ev|FI
). From Corollary 4.2.2 one gets that Pj ∈ Ker(ev|FI

) ⊂ FI for every j ∈
Z. From lemma 4.2.3 it follows that g ∈ Ker(ev|FI

) if and only if g vanishes when n1 → ±∞.
The proof is completed by observing that c0(Z) = {g ∈ `∞ | lim

n→±∞
g(n) = 0} is generated

by the projections {δj}j∈Z and then, up to representation, Ker(ev|FI
) = C∗(Pj | j ∈ Z).
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The Iwatsuka magnetic field is constant in one direction and therefore one can use the
magnetic Bloch-Floquet transform described in Appendix F to study the interface algebra.
Indeed, the Iwatsuka magnetic translations commute with the operator Vf := eif(N1) S2

defined through the function

f(m) :=

{
mb+ if m > 0

(m+ 1)b− − b0 if m < 0 .

Let UB : `2(Z2) → L2(S1) ⊗ `2(Z) be the associated magnetic Bloch-Floquet transform as
defined in Appendix F. The next result contains the main feature of the Iwatsuka interface
algebra.

Proposition 4.2.5. It holds true that UBIU−1
B = C(S1)⊗K(`2(Z)). In particular the Iwat-

suka interface algebra is a straight-line according to Definition 3.1.5.

Proof. A direct computation shows that UBPjU−1
B = 1 ⊗ πj where πj is the rank-one pro-

jection on `2(Z) defined by (πjφ)(m) := δm,jφ(m). Since UB(SI,2Pj)
nU−1

B = UB(SI,2)nPjU−1
B

is proportional to eink ⊗ πj up to a phase factor one gets that g ⊗ πj ∈ UBIU−1
B for every

g ∈ C(S1) and j ∈ Z. Acting with powers of UBSI,1U−1
B on the latter elements one gets that

also g⊗ πi,j ∈ UBIU−1
B where πi,j is the rank-one operator defined by (πi,jφ)(m) := δm,jφ(i).

The result follows by observing that the rank-one operators generates the compact operators.

Following the procedure described in Section 3.5 we can use Proposition 4.2.5 to equip I
with a derivation and a trace. The natural derivation on C(S1) is δ0 := − d

dk
. With this sign

convention a comparison with (2.29) provides

δ0 ⊗ IdK
(
UBTU−1

B

)
= ∂2(T ) = i [T,N2]

for differentiable elements T ∈ I. Therefore we obtain that the interface derivation is given
by ∂I := i [ · , N2]. Similarly the natural trace on C(S1) is given by τ0 :=

∫
S1 dk where dk is

the normalized Haar measure. Since τ0( e ink ) = δn,0 one gets that

τ0 ⊗ Tr`2(Z)

(
UBTU−1

B

)
= Tr`2(Z2)(Q0TQ0)

where the projection Q0 is given by (Q0ψ)(n,m) = δm,0ψ(n,m) and T ∈ I is any suitable
integrable elements. In this way one can define the interface trace as

TI(T ) := Tr`2(Z2)(Q0TQ0) =
∑
n∈Z

〈n, 0| T |n, 0〉 (4.14)

where the Dirac notation in the right-hand side turns out to be particularly useful.
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4.3 Splittings of the Toeplitz Extension

The Toeplitz extension for the Iwatsuka magnetic field admits a natural splitting of the linear
space structure which turns out to be useful in applications.

Let us start by recalling that Abulk is generated, as ∗-linear space, by the linear combina-
tions of monomials of the type (Srb−,1S

s
b−,2

, Spb+,1S
q
b+,2

) with r, s, p, q ∈ Z. Consider the linear
map  : Abulk → AI initially defined on the monomials by


(
Srb−,1S

s
b−,2, S

p
b+,1

Sqb+,2
)

:= P−S
r
I,1S

s
I,2P− + P+S

p
I,1S

q
I,2P+ (4.15)

and then extended linearly to Abulk. Such a map is well defined because both Abulk and
AI are spanned as Banach spaces by the families of respective monomials. From its very
definition it follows that ev◦ = IdAbulk

, namely  provides a splitting of the linear structures.
It follows that

AI = I + 
(
Abulk

)
as direct sum of linear spaces [Weg, Proposition 3.1.3].

It is worth noting that the linear map  defined by (4.15) cannot be extended to a
C∗-homomorphism. For instance, a direct computation shows that


(
1, Sb+,1

)

(
1, S∗b+,1

)
− 
(
1, 1
)

= P+

(
Sb+,1P+S

∗
b+,1
− 1
)
P+ = −P1

since Sb+,1P+S
∗
b+,1

= P+ − P1. On the other hand,


(
1, S∗b+,1

)

(
1, Sb+,1

)
− 
(
1, 1
)

= P+

(
S∗b+,1P+Sb+,1 − 1

)
P+ = 0

due to S∗b+,1P+Sb+,1 = P+ + P0.

Remark 4.3.1 (Failure of the C∗-splitting). A linear splitting is the best that we can do
since the existence of a lifting being a ∗-homomorphism implies that in the K0-level we have
the short exact sequence (see [Weg, Proposition 8.2.2] or [GBVF, Proposition 3.29])

0 −→ K0(I)
ı∗−→ K0(AI)

ev∗−→ K0(Abulk) −→ 0, (4.16)

but as will be proved in Proposition 4.4.3 and Remmark 4.4.5, K0(I) ' Z and ı∗ = 0
respectively, which contradicts the exactness of the sequence (4.16). /

4.4 K-theory of the Iwatsuka C∗-Algebra

In this section several aspects of the K-theory of the Iwatsuka C∗-algebra are studied. In
subsection 4.4.2 the six-term exact sequence associated to the Toeplitz extension (4.2) is
entirely described and in turn the K-theory of every concerned algebra is determined, in-
cluding the Iwatsuka C∗-algebra. On the other side, and as anticipated in Section 3.4, one
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can also use the iterated crossed structure of the Iwatsuka C∗-algebra to study its K-theory
in a much simpler way. This approach is followed in subsection 4.4.1 just as an example of
the use of the iterated crossed product structure of magnetic C∗- algebras (see Section 2.5)
and the methods developed in subsection 3.4.1.
The results obtained in both subsections 4.4.1 and 4.4.2 concerning the Iwatsuka C∗-algebra
are of course the same, however in subsection 4.4.2 the K-theory of the Interface algebra
and the important index and exponential maps are also determined.

4.4.1 Crossed-Product Approach

By adapting the notation of section 2.5 and choosing j = 1 and k = 2 we have that

AI ' AI,1 oβ2 Z , AI,1 := FI oα1 Z,

where α1 is defined by α1(g) := τ(1,0)(g) for every g ∈ FI and β2 is defined by β2(gSI,1) :=
τ(0,1)(g)f−1

I SI,1 for every g ∈ FI and r ∈ N0. From now on and for the sake of notation let
us just write α := α1 and β := β2.

In order to use the six-term exact sequence (3.11) it will be necessary to compute first the
K-theory of the flux algebra FI ' c(Z). Since the K-theory of c(Z) can be computed using
methods that are not relevant to this work it has been left as an Appendix (see Appendix
E). The important information about the K-theory of the flux algebra FB is listed here:

K0(FI) =

(⊕
j∈Z

Z[Pj]

)
⊕ Z[P−]⊕ Z[P+] ,

K1(FI) = 0 .

(4.17)

The K-theory of the first crossed product AI,1 can be then computed from the Pimsner-
Voiculescu exact sequence

K0(FI)
1−α∗−→ K0(FI)

ı∗−→ K0(AI,1)

δ
x yε

K1(AI,1) ←−
ı∗

K1(FI) ←−
1−α∗

K1(FI)

(4.18)

where the connecting maps ε and δ are described in Appendix B.

Proposition 4.4.1. Consider the six-term exact sequence (4.18). Then, it holds true that:

(i) The image and kernel of the map (1− α∗) : K0(FI)→ K0(FI) are given by

Im(1− α∗) =
⊕
j∈Z

Z[Pj] , Ker(1− α∗) = Z[1] .
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(ii) δ[SI,1] = −[1].

Consequently,
K0(AI,1) = Z[P−]⊕ Z[P+] , K1(AI,1) = Z[SI,1] .

Proof. By the definition of α one gets

(1− α∗)
(
[Pj]
)

= [Pj − S∗I,1PjSI,1] = [Pj]− [Pj−1] ,

(1− α∗)
(
[P−]

)
= [P− − S∗I,1P−SI,1] = [P−1] ,

(1− α∗)
(
[P+]

)
= [P+ − S∗I,1P+SI,1] = −[P0] .

It follows that the image of (1− α∗) is
⊕

j∈Z Z[Pj] and

(1− α∗)

(
n−[P−] + n+[P+] +

+M∑
j=−M

nj[Pj]

)
= 0

has a non-trivial solution if and only if n− = n0 = n+, and nj = 0 in all other cases. As
a consequence one has that the kernel of (1 − α∗) is generated by [P−] + [P0] + [P+] = [1].
For (ii) let us recall that the boundary map δ := κ−1

0 ◦ ind is the composition of the index
map ind : K1(AI,1)→ K0(FI⊗K) associated to the Toeplitz extension (B.1) and the inverse
of the stabilization isomorphism κ0 : K0(FI) → K0(FI ⊗ K) induced by the identification
g 7→ g⊗π0 (here π0 ∈ K is any fixed rank-one projection). The isometry V := SI,1⊗v which
generates the Toeplitz algebra Tα together with FI ⊗ 1 verifies the condition ψ(V ) = SI,1.
Therefore, V provides a lift of SI,1 by an isometry. Consider the unitary matrix

w(SI,1) :=

(
V P
0 V ∗

)
∈ Mat2(Tα1)

where P := 1−V V ∗. By construction w(SI,1) is a lift of diag(SI,1, S
∗
I,1) and [diag(SI,1, S

∗
I,1)] '

[1] as a class in K1(AI,1). As a consequence we can construct the index map according to
[Weg, Definition 8.1.1] and after an explicit computation one gets

ind
(
[SI,1]

)
= ϕ−1

∗ ([1− V ∗V ]− [1− V V ∗])
= ϕ−1

∗ ([0]− [P ]) = −[1⊗ π0]

where in the last equality we used the property ϕ(1⊗π0) = P . By using the isomorphism κ0,
one finally gets δ[SI,1] = −[1]. Since K1(FI) = 0, it follows that δ provides an isomorphism
between K1(AI,1) and Ker((1−α∗)). In view of (i) and (ii) one infers that K1(AI,1) ' Z[SI,1].
Again, K1(FI) = 0 implies the surjectivity of ı∗ : K0(FI) → K0(AI,1) and so K0(AI,1) '
K0(FI)/Im((1− α∗)) = Z[P−]⊕ Z[P+].
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For the K-theory of the second crossed product AI ' AI,1 oβ Z we need the Pimsner-
Voiculescu exact sequence

K0(AI,1)
1−β∗−→ K0(AI,1)

ı∗−→ K0(AI)

δ
x yε

K1(AI) ←−
ı∗

K1(AI,1) ←−
1−β∗

K1(AI,1)

(4.19)

Theorem 4.4.2 (K-theory of the Iwatsuka C∗-algebra). Consider the six-term exact se-
quence (4.19). Then, it holds true that

(i) Both maps (1− β∗) : Kj(AI,1)→ Kj(AI,1), with j = 1, 2, vanish;

(ii) The map δ verifies
δ
(
[P−SI,2 + P0 + P+]

)
= −[P−] ,

δ
(
[P− + P0 + P+SI,2]

)
= −[P+] ;

(iii) There exists N ∈ N and a projection PI ∈ AI ⊗MatN(C) such that

ε[PI] = [SI,1] .

Consequently,
K0(AI) = Z[P−]⊕ Z[P−]⊕ Z[PI]

K1(AI) = Z[VI,−]⊕ Z[VI,+]⊕ Z[SI,1]

where VI,± := 1 + P±(SI,2 − 1).

Proof. For (i) it is enough to note that β(Pl) = Pl for l ∈ Z ∪ {±} and

β−1
∗ [SI,1] = [S∗I,2SI,1SI,2] = [(S∗I,2fISI,2)SI,1] = [fI][SI,1] = [SI,1] ,

since [fI] = [1] in K1(AI,1). As a consequence 1 − β−1
∗ = 0. For (ii) let us observe that

the isometry V = SI,2 ⊗ v ∈ Tβ satisfies ψ((P+ ⊗ 1)V ) = P+SI,2. It follows that W :=
(P− ⊗ 1)V + (P0 + P+) ⊗ 1 is an isometry which provides a lift of P−SI,2 + P0 + P+ in Tβ.
The index map of the latter element can be computed as in the proof of Proposition 4.4.1
and after some computation one gets

ind
(
[P−SI,2 + P0 + P+]

)
= ϕ−1

∗ ([1−W ∗W ]− [1−WW ∗])

= ϕ−1
∗ ([0]− [P− ⊗ P ]) = −[P− ⊗ π0] .

where we used P := 1− V V ∗ and ϕ(P−⊗ π0) = P−⊗P . After recalling that δ := κ−1
0 ◦ ind,

with κ0 stabilization isomorphism, one gets the first equation in (ii). The derivation of the
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second equation is identical. Item (iii) follows from the fact that (1 − β∗) = 0 implies the
surjectivity of the map ε and so there must be a projection PI ∈ AI⊗MatN(C) and M ≤ N
such that

ε([PI]−M [1]) = [SI,1]

(see [Weg, Proposition 6.2.7]). Now, since [1] = [P−] + [P+] ∈ Im(ı∗) = ker ε it follows
that ε[PI] = [SI,1]. The exactness of the sequence (4.19) along with (1 − β∗) = 0 implies
Kj(AI) = ı∗(Kj(AI,1))⊕ ∂−1

j (Kj+1(AI,1)) with j = 0, 1 (mod. 2). This concludes the proof.
�

Observe that the proof for the existence of the element PI works as well for the case
ε(P ′I ) = [S∗I,1] = −[SI,1]. Any projection PI with the property

ε(PI) ∈ {[SI,1], [S∗I,1]}

will be called a Power-Rieffel-Iwatsuka projection or simply a PRI-projection. We can say
a little more about PI. From its very definition one has that exp[PI] = [(SI,1 − 1) ⊗ π0 + 1]
where exp is the actual exponential map associated with the Toeplitz exact sequence (B.1).

4.4.2 K-Theory Associated to the Toeplitz Extension

The six-term exact sequence associated with the Toeplitz extension for the Iwatsuka magnetic
field (4.2) is given by

K0(I)
ı∗−→ K0(AI)

ev∗−→ K0(Abulk)

ind

x yexp

K1(Abulk) ←−
ev∗

K1(AI) ←−
ı∗

K1(I)

(4.20)

The K-theory of the bulk algebra is described in Proposition 3.4.1 and is explicitly given by

K0(Abulk) = Z[(1, 0)]⊕ Z[(Pθ− , 0)]⊕ Z[(0, 1)]⊕ Z[(0, Pθ+)] ,

K1(Abulk) = Z[(Sb−,1, 1)]⊕ Z[(Sb−,2, 1)]⊕ Z[(1, Sb+,1)]⊕ Z[(1, Sb+,2)] ,

where Pθ± are the the Power-Rieffel projections of the C∗-algebrasAb± respectively (cf. Appendix
D).

The description of the K-theory of the interface algebra follows from Proposition 3.4.4
and Proposition 4.2.5.

Proposition 4.4.3. It holds true that

K0(I) = Z[P0] , K1(I) = Z[UI ] ,

where UI := P− + P0SI,2 + P+ = 1 + P0(SI,2 − 1) ∈ I+.
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Proof. Let us start with the K0-group. As proved in Appendix C the generator of K0(C(S1))
is the constant function 1. The group isomorphism K0(C(S1)) ' K0(C(S1) ⊗ K(`2(Z))) is
induced by the C∗-homomorphism µ : C(S1)→ C(S1)⊗K(`2(Z)) defined by µ : g 7→ g ⊗ π0

where π0 is any fixed rank-one the projection on `2(Z) [Weg, Corollary 6.2.11]. Con-
sider (π0φ)(m) := δm,0φ(m). The result follows by observing that U−1

B (1 ⊗ π0)UB = P0

where UB is the magnetic Bloch-Floquet transform used in Proposition 4.2.5. The argu-
ment for the K1-group follows a similar structure. We already know that the generator of
K1(C(S1)) is the exponential function u(t) = e i t (see Appendix C) and the isomorphism
K1(C(S1)) ' K1(C(S1)⊗K(`2(Z))) is induced by the same homomorphism µ defined above
[RLL, Proposition 8.2.8]. However, since the K1 is computed from the unitalization of the
related C∗-algebra one needs to promote e i k ⊗π0 to a unitary in (C(S1)⊗K(`2(Z)))+. This
can be done through the map

e i k ⊗ π0 7−→ e i k ⊗ π0 − 1⊗ π0 + 1⊗ 1

as described in [RLL, Proposition 8.1.6]. As a result one has that the generator of the K1-
group can be identified with the class of ( e i k − 1)⊗ π0 + 1⊗ 1. Finally, using the magnetic
Bloch-Floquet transform

U−1
B

(
( e i k − 1)⊗ π0 + 1⊗ 1

)
UB = VfP0 − P0 + 1

along with the identities VfP0 = S2P0 = SI,2P0 and 1 − P0 = P− + P+ provides the desired
result

We now have all the ingredients to study the vertical homomorphisms of the diagram
(4.20). Let us start with the index map.

Proposition 4.4.4. The image of the generators of K0(Abulk) under the map ind in diagram
(4.20) are given by

ind([(Sb−,2, 1)]) = ind([(1, Sb+,2)]) = 0 ,

ind([(Sb−,1, 1)]) = −ind([(1, Sb+,1)]) = [P0] .
(4.21)

Consequently the index map is surjective.

Proof. Let us construct the index map according to [Weg, Definition 8.1.1] for the set of
generators A ∈ {(Sb−,1, 1), (Sb−,2, 1), (1, Sb+,1), (1, Sb+,2)} ⊂ Abulk of the K1-group of Abulk.
Let  as in (4.15) and define the map

w(A) :=

(
(A) 1− (A)(A)∗

1− (A)∗(A) (A)∗

)
∈ Mat2(AI) .

A direct check shows that (A) ∈ AI is a partial isometry for every A in the generator set,
indeed

(Sb−,1, 1)(Sb−,1, 1)∗ = 1− P0 ,

(Sb−,2, 1)(Sb−,2, 1)∗ = 1− P0 ,

(1, Sb+,1)(1, Sb+,1)∗ = 1− (P0 + P1) ,

(1, Sb+,2)(1, Sb+,2)∗ = 1− P0 ,

(4.22)
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and, on the other hand,

(Sb−,1, 1)∗(Sb−,1, 1) = 1− (P0 + P−1) ,

(Sb−,2, 1)∗(Sb−,2, 1) = 1− P0 ,

(1, Sb+,1)∗(1, Sb+,1) = 1− P0 ,

(1, Sb+,2)∗(1, Sb+,2) = 1− P0 .

(4.23)

As a consequence one can check that w(A) is a unitary operator for every generator A.
Moreover ev(w(A)) = diag(A,A∗) showing that w(A) is a unitary lift of diag(A,A∗). Finally
[diag(A,A∗)] ' [1] as a class in the K1-group. With all these data we can compute the index
map of each generators according to ind([A]) := [w(A)P1w(A)∗]−[P1] where P1 := diag(1, 0).
An explicit computation provides

ind([A]) =

[(
(A)(A)∗ 0

0 1− (A)∗(A)

)]
−
[(

1 0
0 0

)]
=

[(
0 0
0 1− (A)∗(A)

)]
−
[(

1− (A)(A)∗ 0
0 0

)]
= [1− (A)∗(A)]− [1− (A)(A)∗]

where the second and third equality are understood in the sense of the K0-group. The
equations (4.21) follow from the latter formula along with the computations (4.22) and
(4.23) and the observation that, in view of (4.7), Pj is unitarily equivalent to P0 for every
j ∈ Z. The latter fact implies [Pj] = [Pk] for every pair j, k ∈ Z as elements of K0(AI).
Consequently, ind([Sb−,1, 1]) = [P0], and [P0] is the generators of K0(I). This shows that the
map ind is surjective.

Remark 4.4.5. As a consequence of Proposition 4.4.4 and the exactness of diagram 4.20
one infers that the map ı∗ : K0(I) → K0(AI) is just the zero map. This implies that
[ı∗([Pj])] = [Pj] = 0 as element of K0(AI). This fact is in agreement with the description
of K0(AI) in Theorem 4.4.2 and can be justified by the following direct argument: From
P0 = S∗I,1P+SI,1−P+ one gets [P0] = [S∗I,1P+SI,1]− [P+] = [P+]− [P+] = 0 and [P0] = [Pj] for
every j ∈ Z as justified at the end of the proof of Proposition 4.4.4. /

Now we are in position to study the exponential map of diagram (4.20).

Proposition 4.4.6. The map exp in diagram (4.20) is surjective. Moreover, it holds true
that

exp([(1, 0)]) = exp([(0, 1)]) = [1] = 0 ,

exp([(Pθ− , 0)]) = −exp([(0, Pθ+)]) = [UI ] ,
(4.24)

where the additive notation for the group K1(I) is used.

Proof. The surjectivity will be a consequence of from formulas (4.24) recalling that [UI ]
generates K1(I). The construction of the exponential map is described in [Weg, Definition
9.3.1 & Exercise 9.E]. The first step is to construct appropriate lifts of the representatives of
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the elements of the group K0(Abulk). Let us start with the two generators (1, 0) and (0, 1).
From Lemma 4.2.1 we get that suitable self-adjoint lifts are given by lift(1, 0) := P− and
lift(0, 1) := P+. Moreover, since P± are genuine projections one gets e− i 2πP± = 1 ∈ I+. As
a consequence, one gets the first equation in (4.24). For the second set of equations we need
to construct explicitly the element [q] introduced abstractly above. We will follows quite
closely the strategy in [PV2, pp. 114-116]. Let us start with the Power-Rieffel projection
(cf. Appendix D)

Pθ+ = S∗b+,1 d1 + d0 + d1 Sb+,1 ∈ Ab+
where d1 := g(S2) and d0 := f(S2) are self-adjoint elements of Ab+ ∩ AI in view of S2 =
Sb+,2 = SI,2. Consider the self-adjoint lift of (0, Pθ+) given by

Q+ = v∗+ d1 + d0P> + d1 v+ ,

where v+ := SI,1P> = Sb+,1P> and P> := P0 + P+. It is worth remembering that [di, P0] =
[di, P+] = 0 for i = 0, 1. A direct computation shows that

Q2
+ = Q+ − d2

1P0 = Q+ + (d2
0 − d0)LP0 . (4.25)

The first equality in (4.25) is justified by the relations

d1v+d1v+ = v+(S∗b+,1d1Sb+,1d1)v+ = 0 ,

d0P>d1v+ + d1v+d0P> = (d0d1 + d1Sb+,1d0S
∗
b+,1

)v+ = d1v+ ,

d2
0P> + v∗+d1d1v+ + d1v+v

∗
+d1 = P>(d2

0 + S∗b+,1d
2
1Sb+,1 + d2

1)P> − d2
1P0

= d0P> − d2
1P0

The second equality in (4.25) follows from (D.8) where L := L(d1) is the support projection
of d1 (in the von Neumann algebra generated by Ab+). An inductive argument, based on the
identities

Q+P0 = d0P1 + d1Sb+,1P0 , d1Sb+,1L = 0

and the commutation relations [L, di] = 0 = [L, P0], provides

QN
+ = Q+ + (dN0 − d0)LP0 = (Q+ − d0LP0) + (d0L)NP0 . (4.26)

Equation (4.26) facilitates the computation of the exponential of Q+. Indeed, one immedi-
ately gets

e− i 2πQ+ =
+∞∑
N=0

(− i 2π)N

N !
QN

+

= ( e− i 2π − 1)(Q+ − d0LP0) + e− i 2πd0L P0 + (1− P0)

= P− + e− i 2πd0L P0 + P+ .

(4.27)
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Before going forward let us make a similar computation for (Pθ− , 0). Consider the Power-
Rieffel projection1

Pθ− = S∗b−,1 d
′
1 + d′0 + d′1 Sb−,1 ∈ Ab−

and the lift
Q− = v∗− d′1 + d′0P− + d′1 v− ,

where v− := P−SI,1 = P−Sb−,1. This time, a direct computation provides

Q2
− = Q− − (S∗b−,1d

′
1Sb−,1)2P−1 = Q− + (d′0

2 − d′0)L′P−1 .

where now L′ := L′(S∗b−,1d
′
1Sb−,1) is the support projection of S∗b−,1d

′
1Sb−,1. After an induction

one gets

QN
− = Q− + (d′0

N − d′0)L′P−1 = (Q− − d′0L
′P−1) + (d′0L

′)NP−1 .

and the exponential of Q− is given by

e− i 2πQ− = e− i 2πd′0L
′
P−1 + (1− P−1) . (4.28)

Now that we have satisfactory representations for the exponentials of both e−2πiQ± , namely
equations (4.27) and (4.28), we can state the result by proving that [ e− i 2πd0L ] = [U∗I ] and
[ e− i 2πd′0L

′
P−1 + (1− P−1)] = [UI ] as elements of K1(I). For the sake of clarity, let us add

such facts in the next lemma.

Lemma 4.4.7. Consider the notation introduced in the last proof. Then it holds true that

[ e− i 2πd0L ] = [U∗I ] and [ e− i 2πd′0L
′
P−1 + (1− P−1)] = [UI ],

where the equalities must be understood in K1(I).

Proof. In lemma D.4 an homotopy of unitaries in C∗(SI,2) between e− i 2πd0L ∼ S∗b+,2 = S∗I,2
is explicitely found (up to representation). Let ut denote such homotopy and observe that
Ut := utP0 + (1 − P0) is also an homotopy of unitaries in I+ connecting e− i 2πd0L and U∗I ,
proving the first equality.
In a similar way, in lemma D.4 an homotopy of unitaries in C∗(SI,2) between e− i 2πd′0L

′

and SI,2 is found (up to representation). Let u′t be such homotopy and observe that U ′t :=
u′t(P−1)+(1−P−1) is also an homotopy of unitaries in I+. To finish the proof, let us consider
the operator V := SI,1P−1 + S∗I,1P0 + (1 − P−1 − P0). This is an unitary involution in I+,
i. e. r = V −1 = V ∗. Since K1(I) ' Z is torsion-free, this implies that [r] = [1] is the trivial
element of K1(I). As a consequence

[SI,2P−1 + (1− P−1)] = [V ] + [SI,2P−1 + (1− P−1)] + [V ]

= [V (SI,2P−1 + (1− P−1))V ]

= [ e i b0 SI,2P0 + (1− P0)]

= [SI,2P0 + (1− P0))]

1Observe that the set of self-adjoint operators {d0, d1} which defines Pθ+ is in principle different from the
set of self-adjoint operators {d′0, d′1} which defines Pθ− .
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where we used V P−1V = P0, rSI,2P−1V = fBSI,2P0 = e i b0 SI,2P0 and the fact that e i b0 SI,2

is connected to SI,2 by the homotopy [0, 1] 3 t 7→ e i (1−t)b0 SI,2.

Remark 4.4.8. The surjectivity of the exponential map can also be deduced directly by
the exactness of the diagram (4.20). Since Ker(exp) ' K0(AI) ' Z3 and K0(Abulk) ' Z4 it
follows that there is an element [q] ∈ K0(Abulk) such that exp([q]) = m[P− + SI,2P0 + P+] ∈
K1(I) for some m ∈ Z\0. In such case Zm ' ı∗(K1(I)) ⊂ K1(AI) ' Z3 which is not possible
unless m = ±1, and in both cases the exponential map turns out to be surjective. /

The surjectivity of the index map (Proposition 4.4.4) and of the exponential map (Propo-
sition 4.4.6) implies that the two maps ı∗ in the diagram (3.13) are just the zero maps. After
replacing ı∗ = 0 in (3.13) one obtains the short exact sequences

0 −→ K0(AI)
ev∗−→ K0(Abulk)

exp−→ K1(I) −→ 0 ,

0 −→ K1(AI)
ev∗−→ K1(Abulk)

ind−→ K0(I) −→ 0 .

As a result, one gets further information about the structure of the K-theory of the Iwatsuka
C∗-algebra.

Theorem 4.4.9 (K-theory of the Iwatsuka C∗-algebra II). It holds true that

K0(Abulk) = ev∗
(
K0(AI)

)
⊕ ψexp

(
K1(I)

)
,

K1(Abulk) = ev∗
(
K1(AI)

)
⊕ ψind

(
K0(I)

)
where ψexp and ψind are suitable lifts of the exponential map and of the index map, respec-
tively.

Proof. The two short exact sequences are of the form

0 −→ Z3 α−→ Z4 β−→ Z −→ 0

meaning that Z4 is an abelian extension of Z by Z3. The possible extensions are classified
by ExtZ(Z,Z3) = 0 [HS, Chapter III], meaning that only the trivial extension is possible.
This in particular ensures the existence of the lifts ψexp and ψind. �

Remark 4.4.10. We can provide a more precise presentation of K1(Abulk) by combining
Theorem 4.4.9 with the computation of the map ev∗ and Proposition 4.4.4. One gets that

ev∗
(
K1(AI)

)
= Z[(Sb−,2, 1)] + Z[(1, Sb+,2)] + Z[(Sb−,1, Sb+,1)] ,

ψind

(
K0(I)

)
= Z[(Sb−,1, 1)] ,

where [(Sb−,1, Sb+,1)] = [(Sb−,1, 1)] + [(1, Sb+,1)] in the sense of the K1-group and the (non-
unique) lift ψind has been chosen as ψind([P0]) := [(Sb−,1, 1)]. A similar analysis for K0(Abulk)
provides

ev∗
(
K0(AI)

)
= Z[(1, 0)] + Z[(0, 1)] + Z[(Pθ− , Pθ+)] ,

ψexp

(
K1(I)

)
= Z[(0, Pθ+)] ,
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where the (non-unique) lift ψexpo is defined by ψexpo([P−+SI,2P0 +P+]) := [(0, Pθ+)]. Finally,
we are in position to say something more about the Power-Rieffel-Iwatsuka projection PI ∈
AI⊗MatN(C) introduced short after Theorem 4.4.2. First consider PI ∈ AI⊗MatN(C) and
IM the identity matrix in MatM(Abulk) with M ≤ N , such that

ev∗([PI]− [IM ]) = [(Pθ− , Pθ+)] .

This relation is satisfied in view of the surjectivity of ev∗ and the standard picture of K0-
group [Weg, Proposition 6.2.7]. It follows that

ev∗([PI]) = [(Pθ− , Pθ+)] +M [1] .

Evidently [P−], [P+], [PI] are a set of generators for K0(AI). The fact that [PI] is the third
generator of K0(AI) can be used in the six-term exact sequence 4.19 which provides ε[PI] ∈
{±[SI,1]}, showing that PI is actually a PRI-projection. It is interesting to note that even
though neither [(Pθ− , 0)] nor [(0, Pθ+)] can be lifted into a projection, the existence of the
PRI-projection implies that the matrix diag((Pθ− , Pθ+), IM) ∈ MatM+1(Abulk), can actually
be lifted into a PRI-projection. /

4.5 Bulk-interface correspondence for the Iwatsuka C∗-

algebra

Let us start with a preliminary result which is a direct consequence of Proposition 4.4.6.

Lemma 4.5.1. Let P = (P−, P+) ∈ Abulk be a projection and [P ] ∈ K0(Abulk) the related
class in the K0-group. Let N± := Chb±(P±) ∈ Z be the Chern numbers of P± defined by
(3.20). Then,

exp([P ]) = (N− −N+)[UI ]

where [UI ] is the generator of K1(I) defined in Proposition 4.4.3.

Proof. In terms of the generators of K0(Abulk) one has that if [P ] ∈ K0(ABulk), then

[P ] = M− [(1, 0)] + M+ [(0, 1)] + N− [(Pθ− , 0)] + N+ [(0, Pθ+)]

for some M±, N± ∈ Z suitable integers. Now consider the maps ξ̂b− := ξb−⊕0, ξ̂b+ := 0⊕ ξb+
defined in suitable supspaces of ABulk (see sequation 3.19 and the domains there) and observe
that both ξ̂b− and ξ̂b+ are cyclic 2-cocycle. It follows from the canonical pairing between
HC2(ABulk) and K0(ABulk) that

≺ [P ], [ξ̂b− ] � = M− ≺ [1], [ξb− ] � +N− ≺ [Pθ− ], [ξb− ] � = N−Ch(Pθ−) = N− ,

≺ [P ], [ξ̂b+ ] � = M+ ≺ [1], [ξb+ ] � +N+ ≺ [Pθ+ ], [ξb+ ] � = N+Ch(Pθ+) = N+ .
(4.29)

Finally, by using that the map exp : K0(ABulk) → K1(I) is a group homomorphism along
with formulas (4.24), one gets the result.
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For the next result we need the winding number WI defined by (3.21). The derivation
and the trace on I, needed to build WI , are described at the end of Section 4.2

Lemma 4.5.2. Let UI ∈ I+ be the unitary operator defined in Proposition 4.4.3. Then, it
holds true that

WI(UI) = 1

Proof. An explicit computation provides

(U∗I − 1) ∂I(UI − 1) = iP0(S∗I,2 − 1)
[
P0(SI,2 − 1), N2

]
= iP0(S∗I,2 − 1)

[
SI,2, N2

]
= − iP0(S∗I,2 − 1)SI,2

= iP0(SI,2 − 1) .

By applying formula (4.14) one gets

TI
(
(U∗I − 1)∂I(UI − 1)

)
= − i TI(P0Q0) = − i

since Q0SI,2Q0 = 0. This completes the proof.

We are now in position to provide our main result, namely the proof of equation (1.3).

Theorem 4.5.3 (Bulk-Interface duality for the Iwatsuka magnetic field). Let Ĥ ∈ AI be
a magnetic Hamiltonian with non-trivial bulk gap detected by ∆ (cf. Definition 3.5.4). Let
g : R→ [0, 1] be a non-decreasing (smooth) function such that g = 0 below ∆ and g = 1 above

∆ and consider the unitary operator U∆ := e i 2πg(Ĥ) and the associated interface conductance
(cf. Definition 3.5.3)

σI(∆) :=
e2

h
WI(U∆) . (4.30)

Let H := ev(Ĥ) = (H−, H+) ∈ Abulk be the bulk Hamiltonian and for a given Fermi energy
inside the bulk gap µ ∈ ∆ let Pµ := (Pµ,−, Pµ,+) with Pµ,± := χ(−∞,µ](H±) be the associated
Fermi projections. Denote with N± := Ch(Pµ,±) ∈ Z the Chern numbers of such projectors.
Then it holds true that

σI(∆) =
e2

h
(N+ −N−) .

Proof. We can compute σI(∆) with the topological formula (3.28). From Lemma 4.5.1 and
the bilinearity of the canonical pairing between K1(I) an d HC1(I) one obtains

≺ exp([Pµ]), [ηI ] � = (N− −N+) ≺ [UI ], [ηI ] � .

Then, equation (3.27) and Lemma 4.5.2 provide

≺ exp([Pµ]), [ηI ] � = (N− −N+)WI(UI) = N− −N+ .

This concludes the proof. �
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Appendix

In this chapter a bunch of results that are used in this work, some of them more important
than others, are included.

A Discrete Schwartz space

Just because of the lack of references, the discrete Schwartz space over a C∗-algebra will be
defined and proved to be a Fréchet algebra.

Definition A.1 (Discrete Schwartz Space). Let A be a C∗-algebra. The n-dimensional
discrete Schwartz space over A is

S(Zn,A) = {a = {am}m∈Zn ⊂ A | ||a||k <∞ for all k ∈ N0},

where
||a||k = sup

m∈Zn
(1 + ||m||2)

k
2 ||am||.

In order to prove that the discrete Schwartz space is a Fréchet algebra it is important to
note that each || · ||k is indeed a norm, and that || · ||0 induces a banach space.

Lemma A.2. The space `∞(Zn,A) = {{am}m∈Zn | ||a||0 < ∞} is complete with the norm
|| · ||0.

Proof. It is easy to see that `∞(Zn,A) is a vector space and that || · ||0 is actually a norm.

We show completeness. Assume a(k) = {a(k)
m } is a Cauchy sequence in `∞(Zn,A), that is,

supm∈Zn ||a
(k)
m − a(l)

m || < ε for k, l ≥ N(ε). Thus, each {a(k)
m }k is a Cauchy sequence on A and

consequently it converges, say, to am. Set a = {am}m∈Zn and note that if k is big enough
then

||am|| ≤ ||am − a(k)
m ||+ ||a(k)

m || ≤ 1 + ||a(k)||0.
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Since the bound is uniform on m ∈ Zn, it follows that a ∈ `∞(Zn,A).
It remains to prove that a(k) → a. For all ε > 0 there exists N(ε) such that for k, l > N(ε)

we have ||a(k)
m − a(l)

m || < ε for all m ∈ Zn. We now let go l to infinity and we get the result.

Proposition A.3. S(Zn,A) is a Fréchet algebra when it is considered with the topology
induced by the family of seminorms {|| · ||k}k∈N0.

Proof. That S(Zn,A) is a vectorial space follows from the triangle inequality on the norms
|| · ||k. In order to see that it is closed under multiplication let a, b ∈ S(Zn,S) ⊂ `∞(Zn,S)
and note that

||ab||k = supm∈Zn(1 + ||m||2)
k
2 ||ambm||

≤ supm∈Zn(1 + ||m||2)
k
2 ||am|| · ||bm||

≤ ||a||0 supm∈Zn(1 + ||m||2)
k
2 ||bm||

= ||a||0||b||k.

Now we prove completeness. Assume a(k) = {a(k)
m }m∈Zn is a Cauchy sequence in S(Zn,S),

that is, a(k) is a Cauchy sequence for every || · ||l. Observe that a(k) being a Cauchy sequence

in the sense of the norm ||·||l is equivalent to that a(k)(l) = {(1+||m||) l2a(k)
m }m∈Zn is a Cauchy

sequence in the sense of the norm ||·||0. It follows from the completeness of `∞(Zn,A) proved
in the last lemma that there exist a(l) ∈ `∞(Zn,A) for every l ∈ N0 such that a(k)(l)→ a(l)
in the sense of the norm || · ||0. It follows by mere punctual convergence that

a(l) = {(1 + ||m||
l
2 )a(0)} (A.1)

and so a(k) → a(0) in the Fréchet topology. It remains to prove that a(0) ∈ S(Zn,A),
however it follows from the equality (A.1) that

||a(0)||k = ||a(k)||0 <∞

since a(k) ∈ `∞(Zn,A) for every k ∈ N0, which proves the completeness.
Finally, it is necessary to prove that joint multiplication is a continuous map. Since we have
already proved that S(Zn,A) is a Fréchet space it is enough to prove ([Wael] Chapter VII,
proposition I) that multiplication is separately continuous. Let a, b(k) ∈ S(Zn,A) such that
b(k) → b and note that for every l ∈ N0

||ab(k) − ab||l ≤ ||a||0||b(k) − b||l,

which proves right continuity. Since left continuity is analogous this ends the proof.
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B The Pimsner-Voiculescu exact sequence

In this section we will provide a brief overview on the Pimsner-Voiculescu six-term exact
sequence which is the main tool to compute the K-theory for crossed product C∗-algebras
by Z. For the interested reader we refer to the original work [PV2] and the monograph [Bla,
Chapter V].

Let A be a C∗-algebra, α ∈ Aut(A) an automorphism and A oα Z the crossed product
of A by Z, that is, the C∗-algebra generated by A together with a (abstract) unitary u and
the relation

α(a) = uau∗ , ∀ a ∈ A .

The first step of the construction is to define an appropriate short exact sequence of C∗-
algebras. This is done by considering the tensor product A ⊗ K, where K denotes the C∗-
algebra of compact operators on a separable Hilbert space, and the C∗-algebra Tα generated
in A ⊗ C∗(v) by A ⊗ 1 and V = u ⊗ v, where v is a non-unitary (abstract) isometry. It
is useful to think of elements of K as infinite matrices acting on `2(N2

0) with respect to its
canonical basis.
Let us consider the maps ϕ : A⊗K → Tα and ψ : Tα → Aoα Z such that

ϕ(a⊗ ej,k) := V j(a⊗ (1− vv∗))(V ∗)k = (αj(a)⊗ 1)V jP (V ∗)k

and
ψ(a⊗ 1) := a , ψ(V ) := u ,

where P is the (non-trivial) self-adjoint projection given by P := 1 − V V ∗ = 1 ⊗ (1 − vv∗)
and ej,k are the rank one operators which generates K.
Both maps φ and ψ can be proved to extend as ∗-homomorphism and fit in the short exact
sequence of C∗-algebras

0 −→ A⊗K ϕ−→ Tα
ψ−→ Aoα Z −→ 0. (B.1)

The Pimsner-Voiculescu (six-term) exact sequence is a cyclic sequence which connects
the K-theory of A and Aoα Z. Its is given by

K0(A)
1−α−1

∗−→ K0(A)
ı∗−→ K0(Aoα Z)

δ
x yε

K1(Aoα Z) ←−
ı∗

K1(A) ←−
1−α−1

∗

K1(A)

(B.2)

and it is worth pointing out that this is not exactly the standard six-term exact sequence
associated with the short exact sequence (B.1), although it is closely related. The maps ı∗ are
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induced by the canonical inclusion ı : A ↪→ AoαZ and the maps (1−α−1
∗ ) are induced by the

map (1−α−1) : A → A. For the vertical maps consider ind : K1(AoαZ)→ K0(A⊗K) and
exp : K0(Aoα Z)→ K1(A⊗K) to be the index and the exponential maps for the standard
six-term exact sequence in K-theory emerging from the short exact sequence (B.1) (cf. [Weg,
Theorem 9.3.2]), then ε := κ−1

0 ◦ ind and δ := κ−1
0 ◦ exp, where κ0 : Kj(A) → Kj(A ⊗ K),

with j = 0, 1, is the stabilization isomorphism induced by a 7→ a⊗ e0,0 for every a ∈ A.

C K-Theory of C(S)
It is a well known fact that K0(C(S)) = K1(C(S)) = Z. However, in chapter 4.4 we also
need to know what are the generators of these groups, and because of that we’ll need to
follow the construction of these groups in order to get such information.
First recall that for every C∗-algebra A we have isomorphisms θA : K1(A) → K0(SA) and
βA : K0(A) → K1(SA) ([Weg, Chapters 7 and 9]), where SA = A ⊗ C0(R) = {f ∈ C(S →
A) | f(1) = 0} is the suspension algebra asociated to A.
Now let A = C and observe that in such case

{0} = K1(C) ∼= K0(SC)
Z[1] = K0(C) ∼= K1(SC),

(C.1)

so K0(SC) = {0} and K1(SC) = Z[βC(1)]. Following chapter 9 of [Weg] it holds true that
βC(1) = [f1], where f1 : S→ C is given by

f1(z) = 1− (1− z) = z,

so βC(1) = IdS.
Now observe that SC ⊕ C ∼= C(S), where the isomorphism is given by f ⊕ λ 7→ f + λ for
f ∈ C(S→ A), f(1) = 0 and λ ∈ C. It follows from the last affirmation and (C.1) that

K0(C(S)) ∼= K0(SC⊕ C) ∼= K0(SC)⊕K0(C) ∼= Z[1]
K1(C(S)) ∼= K1(SC⊕ C) ∼= K1(SC)⊕K1(C) ∼= Z[IdS].

(C.2)

D Noncommutative Torus in a Nutshell

In this appendix the structure and K-theory of the noncommutative torus will be briefly
summarized. The importance of this appendix relies on the fact that the noncommutative
torus is isomorphic to the magnetic C∗-algebra associated to a constant magnetic field Ab
(see 2.3.3), and such algebra is of extreme importance in the sequence 3.9 because of the
definition of the bulk algebra Abulk (3.10). The K-theory for the noncommutative torus was
broadly studied in the 80’s and the results stated are mostly based on the original papers
[PV1, PV2, Rie] and the posterior monographs [Weg, Chapter 12.3] and [GBVF, Chapter 12].
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The noncommutative torus Aθ for θ ∈ [0, 1] is the universal C∗-algebra generated by the
(abstract) unitaries u, v with the commutation relation

uv = e2π i θ vu. (D.1)

The noncommutative torus has a crossed product structure, namely Aθ ' C(T)oρθ Z where

ρθ(f)(z) := f(z − θ), for f ∈ C(T),

and by the torus we mean T ' R/Z2. In this frame we can consider u(t) := e2π i t and v the
unitary such that ρθ(g) = vgv∗ to reassemble the definition of the noncommutative torus.
Finally, let us remark that since the action ρθ acts by rotating functions defined on T, Aθ is
usually called the Rotation Algebra.
The representation of Aθ as a crossed product has two great implications. First, its K-Theory
can be fitted in the Pimnser-Voiculescu exact sequence (see Appendix B), and second, most
of the terms involved in such exact sequence were already studied in the appendix C, recalling
S ' T. The six-term exact sequence in question is

K0(C(T))
1−ρ−1

θ,∗−→ K0(C(T))
ı∗−→ K0(C(T) oρθ Z)

δ
x yε

K1(C(T) oρθ Z ←−
ı∗

K1(C(T)) ←−
1−ρ−1

θ,∗

K1(C(T))

(D.2)

where the maps induced by 1− ρ−1
θ in the K-Theory level vanish because ρθ(f) is homotopi-

cally connected to f in C(T).
As a consequence of the exactness of the sequence D.2 we can extract the short exact se-
quences

0 −→ K0(C(T))
ı∗−→ K0(C(T) oρθ Z)

ε−→ K1(C(T)) −→ 0, (D.3)

0 −→ K1(C(T))
ı∗−→ K1(C(T) oρθ Z)

δ−→ K0(C(T)) −→ 0, (D.4)

and then conclude that Kj(C(T) oρθ Z) ' K0(C(T))⊕K1(C(T )) ' Z2.

D.1 Generators for the K1-group

The generators of K1(C(T) oρθ Z) can be easily found noting that the exact sequence D.4
actually implies that

K1(C(T) oρθ Z) = K1(C(T))⊕ δ−1(K0(C(T))) = Z[u]⊕ Zδ−1[1],

2In this appendix we change the torus representation mainly to use the same notation used in the original
papers [PV1, PV2, Rie].
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for what we have used K0(C(T)) = Z[1] and K1(C(T)) = Z[u] (cf. (C.2)).
Finally, it can be proved by a direct computation that δ[v] = [1] proving the next well known
result.

Proposition D.1. It holds true that

K1(Aθ) = Z[u]⊕ Z[v].

D.2 Generators for the K0-group

The construction of the generators of the K0-group depend strongly on the condition θ 6= 0,
because if θ = 0 the C∗-algebra Aθ is easily seen to be isomorphic to C(T2), which is pro-
jectionless. Due to this fact we will start studying this case, that is, finding generators for
K0(C(T2)).

The technique that we are about to use was left as an exercise in ([Weg, Exercise 8.b]).
First consider the exact sequence

0 −→ SC(T)
ı−→ C(T→ C(T))

ev−→ C(T) −→ 0,

where SA = {f ∈ C(T→ A) | f(1) = 0} is the suspension algebra of the C∗-algebra A, ı is
the identity map and ev(f) = f(1) is the evaluation at 1. It follows that in the K-Theory
level we have

K0(SC(T))
ı∗−→ K0(C(T→ C(T)))

ev∗−→ K0(C(T))

ind
x yexp

K1(C(T))
ev∗←− K1(C(T→ C(T)))

ı∗←− K1(C(T)).

(D.5)

Simple computations imply exp[1] = [1] and ind[u] = [0] making the maps ind and exp
vanish. Consequently we can extract the short exact sequence

0 −→ K0(SC(T))
ı∗−→ K0(C(T→ C(T)))

ev∗−→ K0(C(T)) −→ 0,

and hence
K0(C(T→ C(T))) = K0(SC(T))⊕ ev−1

∗ (K0(C(T))).

In order to conclude let’s observe that first, the map T : C(T→ C(T))→ C(T2) defined by

(Tf)(x, y) = f(x)(y), x, y ∈ T

is an isomorphism, and second, the Bott periodicity give us an isomorphism θC(T) : K1(C(T))→
K0(SC(T)) (see [Weg, Theorem 7.2.5]), so it would be enough to carefully follow the paths
to find generators for K0(C(T2)).
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Proposition D.2. It holds true that

K0(C(T2)) ' Z[1]⊕ Z[β],

where β ∈ Mat2(C(T)) is a projection (explicitely written in the proof).

Proof. Summarizing the relevant maps defined so far we have that

T∗ ◦ (θC(T) ⊕ ev−1
∗ ) : K1(C(T))⊕K0(C(T))→ K0(C(T2))

is an isomorphism, so

K0(C(T2)) = Z((T∗ ◦ ev−1
∗ ) [1] )⊕ Z((T∗ ◦ θC(T)) [u] ).

Observe that clearly T∗ (ev−1
∗ [1] ) = [1]. On the other side, following the proof of [Weg,

Theorem 7.2.5] we have
θC(T)[u] = [q]− [1],

where q is a loop of projections defined by qt = wtdiag(1, 0)w∗t , and wt is any homotopy of
unitaries between w0 = diag(1, 1) and w1 = diag(u, u∗). In particular let us consider

wt = diag(u, 1) rt diag(u∗, 1) r∗t

where

rt =

(
cos
(
π
2
t
)
− sin

(
π
2
t
)

sin
(
π
2
t
)

cos
(
π
2
t
) ) ,

and observe that wt is unitary for every t ∈ [0, 1], w0 = diag(1, 1) and w1 = diag(u, u∗).
Finally define the Bott projection as

β(s, t) = diag(1, 1)− qt(s),

where the evaluation on s of qt is made in its entries as a matrix (which is possible since
each entry is actually an element of C(T)) and observe

T∗ (θC(T)[u]) = −[β].

Last equality together with T∗ ◦ ev−1
∗ [1] = [1] imply that a couple of generators forK0(C(T2))

are [1] and −[β], proving that

K0(C(T2)) = Z[1]⊕ Z[β].

The case when θ 6= 0 can be developed in a rather different way. The original method for
the irrational case was studied in [PV1], [PV2] and [Rie], and consisted on: proving that Aθ

admits a particular trace state τ whose image is contained in Z ⊕ θZ; finding a projection,
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namely the Power-Rieffel projection pθ; and finally proving that τpθ = θ. Since every trace
state can be extended as a morphism in K0 and we already know that K0(Aθ) ' Z2 it
follows that since the domain and range of the surjective map τ∗ : K0(Aθ)→ Z⊕ θZ are free
groups, the elements [1], [pθ] must generate the entire K0-group. The method stated here
corresponds to a latter computation shown in [PV2, Appendix] which luckily doesn’t depend
on the irrationality of θ.
First note that because of the exactness of the sequence D.3 it follows that

K0(C(T) oρθ Z) = ı∗(K0(C(T)))⊕ δ−1(K1(C(T))) = ı∗[1]⊕ δ−1[u],

and then since ı∗[1] = [ı(1)] = [1], the only missing part is finding a lift for [u] ∈ K1(C(T)).
In order to find a lift for [u] ∈ K1(C(T)) let’s define the Power-Rieffel projection as an
element of the form

pθ = v∗g∗ + f + gv ∈ C(T) oρθ Z,

where f, g ∈ C(T) are chosen in a way such that pθ is actually a projection.
The existence of a Power-Rieffel projection is not trivial but it follows from the next elemen-
tary observations:

1. pθ is automatically self-adjoint when f is real valued, and

2. p2
θ = pθ is equivalent to

ρθ(g) · g = 0

g · (f + ρθ(f)) = g (D.6)

f = f 2 + |g|2 + |ρ−1
θ (g)|2.

Explicit choices for f, g ∈ C(T) can be found (see [GBVF, Proposition 2.4] and [Weg,
Exercise 12.M]) and it is also noted in [GBVF] that no matter the choice of these functions,
the Power-Rieffel projections define the same element in the K0(Aθ).
The final ingredient is the formula proved in [PV2, Appendix] that states

δ([pθ]) = [exp(2π i f4)],

where 4 is the left support projection of g. The proof of this fact is extremely similar to
the one of 4.4.6 and hence it will be omitted in this appendix.

Proposition D.3. It holds true that

K0(C(T) oρθ Z) = Z[1]⊕ Z[pθ].

Proof. As said before, the only fact remining is finding a lift for [u] ∈ K1(C(T)) and we
claim that δ[pθ] = [u]. Let δ ∈ (0, 1) such that θ + δ < 1,

f(t) =
t

δ
1[0,δ] + 1(δ,θ) +

(
− t
δ

+ 1 +
θ

δ

)
1[θ,θ+δ] and g(t) =

√
f(t)(1− f(t))1[0,δ],
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and observe that f, g satisfy the conditions given in (D.6), so we have a Power-Rieffel pro-
jection pθ.
Now note that in such case 4 = 1[0,δ], so we have that

δ[pθ] = [exp(2π i f4)] =

[
exp

(
2πi

t

δ
1[0,δ]

)]
.

Finally consider

us(t) = exp

(
2π i

t

δ + s(1− δ)
1[0,δ+s(1−δ)]

)
and observe that

1. u0(t) = exp
(
2π i t

δ
1[0,δ]

)
,

2. u1(t) = exp(2π i t) and

3. us ∈ C(T) is unitary for each s ∈ [0, 1],

so it follows that [
exp

(
2π i

t

δ
1[0,δ]

)]
= [exp(2π i t)] = [u]

and the proof is complete.

Before finishing this appendix, let us provide a presentation Pθb optimized for the aims
of this work. We will set

Pθb := S∗b,1 d1 + d0 + d1 Sb,1

where d1 := g(S2) and d0 := f(S2)3 are suitable self-adjoint elements of C∗(S2) ⊂ Ab. Here
we are using the coincidence S2 = Sb,2 between the ordinary shift and magnetic translation
in view of the election of the Landau gauge for the constant magnetic field. The requirement
for Pθb of being a projection is automatically satisfied if the following relations hold true:

((Sb,1)∗d1Sb,1)d1 = 0 ,

d1(d0 + Sb,1d0S
∗
b,1) = d1 ,

d2
0 + d2

1 + (S∗b,1d1Sb,1)2 = d0 .

(D.7)

The relations (D.7) provide a useful identity. Let L := L(d1) be the left support projection
of d1 (in the von Neumann algebra generated by Ab). This is by definition the smallest
projection such that Ld1 = d1 = d1L. It is immediate to conclude that L is mapped
into the characteristic function on the support of g ◦ e under the isomorphism used above,

3The functions f, g can be chosen to be as in the proof of Lemma D.3 with a little abuse of notation
taking advantage of the homeomorphism T ' S1.
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i. e.L 7→ χ[0,δ]. Combining L with the first relation in (D.7) one gets ((Sb,1)∗d1Sb,1)L = 0.
This relation combined with the third equation in (D.7) provides

d2
1 = L(d0 − d2

0) = (d0 − d2
0)L . (D.8)

Finally, and mainly to avoid writing a larger proof than needed for Proposition 4.4.6 by
getting advantage of the context of this appendix, let us state the next results.

Lemma D.4. The following statements are true:

1. The unitary operators e− i 2πd0L and S∗b,2 are homotopic equivalent in C∗(S2); and

2. The unitary operators e− i 2πd0L′ and Sb,2 are homotopic equivalent in C∗(S2).

Proof. The homotopy connecting the elements in the first statement was made, up to
representation, in the proof of the last lemma D.3. For the second statement consider
the representation on C(T) oρθ Z by taking the function f and g as in the proof of D.3
and observe that in such case it is enough to find an homotopy between the functions
x(t) := exp(− i 2π

(
1 + θ−t

δ

)
1[θ,θ+δ](t)) and u(t) = e i 2πt , where we used that in this repre-

sentation L′ 7→ 1[θ,θ+δ]. Such an homotopy is explicitly given by

[0, 1] 3 t 7−→ exp

(
− i 2π

(
(1− t)(θb − k + δ − 1)− tδk

δ

)
1[(1−t)θb,(1−t)(θb+δ−1)+1](k)

)
,

completing the proof.

E The K-theory of c(Z)
In this section the K-theory of c(Z) = {g ∈ `∞(Z) | the limits lim

n→±∞
g(n) exists } si com-

puted. Let us recall that the importance of this appendix rely in the isomorphism between
the latter an the flux algebra associated to the Iwatsuka magnetic field, that is, FI ' c(Z).

First consider the short exact sequence

0 −→ c0(Z)
ı−→ c(Z)

ev−→ C⊕ C −→ 0 (E.1)

where c0(Z) is the C∗-algebra of sequences vanishing at infinity, ı is the inclusion homomor-
phism and the evaluation homomorphism ev compute the left and right limits of elements
in c(Z). The sequence (E.1) is split exact in view of the ∗-homomorphism

C⊕ C 3 (`−, `+)
−→ c(`−,`+) ∈ c(Z)

where the element c(`−,`+) is specified by

c(`−,`+)(n) :=

{
`− if n < 0

`+ if n > 0 .
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Then, it follows that [Weg, Corollary 8.2.2]

Kj

(
c(Z)

)
' Kj

(
c0(Z)

)
⊕ Kj

(
C⊕ C

)
, j = 1, 2 .

The K-theory of C ⊕ C is easily calculated as K0(C ⊕ C) = Z ⊕ Z and K1(C ⊕ C) = 0.
The K-theory of c0(Z) is given by K0(c0(Z)) = Z⊕Z and K0(c0(Z)) = 0. The latter fact
follows from the isomorphism Kj(c0(Z)) ' Kj

top(Z) ' Kj
top(∗)⊕Z between the algebraic and

the topological K-theory [BSG, Theorem 5]. Another way of achieving the same result is to

consider the Pontryagin duality S1 = Ẑ and the isomorphism c0(Z) ' C∗r (S1) where C∗r (S1)
is the (reduced) group algebra of the circle [Dav, Proposition VII.1.1]. Therefore, one has
that K0(C∗r (S1)) ' Rep(S1) ' Z⊕Z and K0(C∗r (S1)) ' 0 where Rep(S1) denotes the complex
representation ring of S1 [BSG, Section 7]. The generators of Kj(c0(Z)) are the classes [δj],
j ∈ Z. After putting all the information together, we can describe the K-theory of FI as

K0

(
FI

)
'
⊕
j∈Z

Z[δj] ⊕ Z[δ−] ⊕ Z[δ+] , K1

(
FI

)
= 0 .

where δ− and δ+ are defined in equation (2.5).

F Magnetic Bloch-Floquet transform

Let AB be the magnetic C∗-algebra of the magnetic field B as in Definition 2.3.1. We are
interested in the case where the magnetic field is constant along every vertical line on Z2,
i. e.B(n1, n2) = B(n1) for every n := (n1, n2) ∈ Z2. The Iwatsuka magnetic field is of course
contained in such a class of examples. Observe that these magnetic fields admit Landau-type
potentials given by

AB(n, n− ej) = δj,1 n2 B(n1), n ∈ Z2,

and consequently the pair of magnetic translations which define AAB is

SB,1 := SAB ,1 = e iN2B(N1 S1 , SB,2 := SAB ,2 = S2 ,

where X1, X2 are the position operators on `2(Z2). Let Vh := e ih(N1) S2 ∈ B(`2(Z2)) for
a given function h : Z → R. The operator Vh is unitary and commutes with SB,2 by
construction. On the other hand one can compute that

Vh SB,1 V
∗
h = e ih(N1) e− iB(N1) e− ih(N1−1) SB,1 .

The commutation condition VhSB,jV
∗
h = SB,j is then guaranteed by

h(m) − h(m− 1) = B(m) , ∀ m ∈ Z . (F.1)

Note that equation (F.1) determines the function h up to a constant, that is, by fixing
h(0) = a one gets

h(m) := a + δm>0

m∑
j=1

B(j) − δm<0

|m|−1∑
j=0

B(−j) .
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The map j 7→ V j
h provides a unitary representation of Z on `2(Z2) which commutes with

the magnetic translations SB,j, and consequently with the magnetic algebra AB. This fact
can be used to define the magnetic Bloch-Floquet transform4 UB as follows:

(UBψ)t :=
∑
j∈Z

e− i j t V j
h ψ . t ∈ T = R/2πZ.

The map UB is initially defined on the dense domain ψ ∈ Cc(Z2) ⊂ `2(Z2) of the compactly
supported sequences. From its very definition one gets

(UB(Vh)
sψ)t = e i t s (UBψ)t . (F.2)

This equation expresses the fact that the transformed vectors (UBψ)t are generalized eigen-
vectors of Vh. The latter condition can be rewritten in the form

(UBψ)t(n1, n2 − s) = e i s(t−f(n1)) (UBψ)t(n1, n2).

and shows that (UBψ)t is entirely determined by a single value of n2, e. g. by its value on
the horizontal line n2 = 0. The latter observation allows to identify (UBψ)t, for every fixed
t ∈ T, as an element of the fiber space `2(Z) by fixing n2 = 0, i. e. by setting (UBψ)t(r) :=
(UBψ)t(r, 0) for every r ∈ Z. More precisely, one can show that UB defined in this way
provides a unitary equivalence5

UB : `2(Z2) −→ H :=

∫ ⊕
S1

dt `2(Z) ' `2(Z)⊗ L2(S1) , (F.3)

where dt is the normalized Haar measure of S1. In fact a standard computation shows
that UB is isometric on the dense domain Cc(Z2), hence extends to an isometry on `2(Z2).
Moreover, the inverse map U−1

B , defined by

(U−1
B φ)(r, s) :=

∫
S1

dt e− i s(k−f(m)) φt(r) , φ = {φt}t∈T ∈ H

satisfies U−1
B UB = 1 on Cc(Z2) and is isometric as well. Hence U−1

B must be injective and as
a consequence UB must be surjective and thus unitary.

Since the magnetic translations commute with the unitary Vh they can be decomposed
along the direct integral. Let us summarize the representation of the magnetic translations

4The theory of the Bloch-Floquet transform is described in full generality in the classic monograph [Kuc].
The results presented in this section are just an adaptation of the general theory to our specific case which
includes a magnetic field which is constant along one direction.

5For the general theory of direct integrals of Hilbert spaces we refer to the standard monograph [Dix2,
Part II, Chapter 1]. In particular, the isomorphism used in the right-hand side of equation (F.3) is proved
in the Corollary on [Dix2, p. 175].
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together with a general element of the Flux algebra through the magnetic Bloch-Flowuet
transform UB:

SB,1 7−→ Ŝ1 := UB SB,1 U
−1
B =

∫ ⊕
S1

dt S ' S ⊗ 1

SB,2 7−→ Ŝ2 := UB SB,2 U
−1
B =

∫ ⊕
S1

dt e i t e− ih(N) ' e− ih(N) ⊗ e i t

g 7−→ ĝ := UB g U
−1
B =

∫ ⊕
S1

dt g(N, 0) ' g(N, 0)⊗ 1, for g ∈ FB,

where S and X are the usual shift and position operator on `2(Z). As a consequence of
the formulas above one gets that the magnetic Bloch-Floquet transform maps AB into a
subalgebra of B(`2(Z))⊗ C(S1).
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