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After reading a lot of overheated puffery
about your new cook, you know what I’m craving?
A little perspective. That’s it. I’d like some
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Can you suggest a good wine to go with that?
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1. Introduction

Consider the full modular group Γ = SL2(Z) acting on the Poincaré upper-half plane H as a
group of fractional linear transformations. Our main interest throughout this thesis is a certain
construction of modular forms over Γ which is described explicitly as the image of the adjoint map
of some naturally occurring linear operators.

To be more precise, we recall that any modular form f is required to have a Fourier series
representation of type

f(z) =
∞∑
n=0

ane
2πinz .

This Fourier series determines the modular form f completely. If a0 = 0 one says that f is cuspidal.

We denote by Mk(Γ) (resp. Sk(Γ)) the set of modular (resp. cuspidal) forms of weight k over
Γ. These sets are finite dimensional C-vector spaces. The space Sk(Γ) is endowed with the scalar
product

〈f, g〉k :=

∫
F

f(z)g(z)Im(z)kdµ(z) ,

where F ⊆ H is any fundamental domain for the action of Γ on H. This is the Petersson scalar
product.

Now, for fixed l ∈ Z and g ∈Ml(Γ) one can define the C-linear map

Tg : Sk(Γ) → Sk+l(Γ)

h 7→ hg

where hg is the usual product of functions. Denote by T ∗g : Sk+l(Γ)→ Sk(Γ) its adjoint map, i.e. the
unique C-linear map which satisfies

〈Tg(h), f〉k+l = 〈h, T ∗g (f)〉k for any h ∈ Sk(Γ) and f ∈ Sk+l(Γ).

In [6] W. Kohnen showed the following theorem:

Theorem (Kohnen). Let k, l be even integers with k ≥ 6 and l ≥ 0. If

g(z) =
∞∑
n=1

bne
2πinz is in Sl(Γ),

then the image of any

f(z) =
∞∑
n=1

ane
2πinz in Sk+l(Γ)

under T ∗g is

T ∗g (f) =
Γ(k + l − 1)

Γ(k − 1)(4π)l

∞∑
m=1

mk−1

(
∞∑
q=1

am+qbq
(m+ q)k+l−1

)
e2πimz .
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Kohnen obtains in this way a cuspidal form whose Fourier coefficients involve the values at
s = k + l − 1 of the functions

Lf,g,m(s) =
∞∑
q=1

am+qbq
(m+ q)s

.

In general, to f and g as above one associates the Dirichlet series

Lf (s) =
∞∑
q=1

aq
qs

and Lg(s) =
∞∑
q=1

bq
qs

respectively. Then one defines the Rankin-Selberg convolution of Lf and Lg as

Lf ⊗ Lg(s) =
∞∑
q=1

aqbq
qs

.

The functions Lf,g,m are sometimes called shifted Rankin-Selberg convolutions.

The theorem given above has been generalized by several authors to other automorphic forms.
In particular, Choie, Kim and Knopp [2] have obtained an analogous result for Jacobi cusp forms.

In this thesis Kohnen’s result is generalized in two directions within the context of modular forms
over Γ. Namely:

i) We drop the cuspidal restriction on g, but we impose an extra condition on the weight of g. This
variation allows us to get new applications. For example, we get the identity

τ(m)

m11
= −240

∞∑
q=1

τ(q +m)σ3(q)

(q +m)11
for all m ≥ 1,

where τ is the Ramanujan function and σ3(q) =
∑

d/q
d>0

d3.

ii) We consider not only the product of functions for the definition of Tg, but the n-th Rankin-Cohen
bracket q

,
y(k,l)

n
: Sk(Γ)×Ml(Γ)→ Sk+l+2n(Γ)

for every integer n ≥ 0. This map is C-linear in each entry and for n = 0 it is the usual product of

functions. In general, the bracket
q
h, g

y(k,l)

n
involves not only h and g but also their derivatives. For

example
q
h, g

y(k,l)

1
= khDg − lgDh,

q
h, g

y(k,l)

2
=

k(k + 1)

2
hD2g − (k + 1)(l + 1)DhDg +

l(l + 1)

2
gD2h,

where 2πiDh = ∂h
∂z

. In this way one can define, for fixed l ∈ Z and g ∈Ml(Γ), the C-linear map

Tg,n : Sk(Γ) → Sk+l+2n(Γ)

h 7→
q
h, g

y(k,l)

n

Denote by T ∗g,n : Sk+l+2n(Γ)→ Sk(Γ) its adjoint map. We prove:
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Theorem (Chapter 2). Let k, l, n be integers with k, l even, k ≥ 6 and l, n ≥ 0. If

g(z) =
∞∑
p=0

bpe
2πipz in Ml(Γ)

satisfies:

(a) g is cuspidal, or
(b) g is not cuspidal and l < k − 3,

then the image of any

f(z) =
∞∑
p=1

ape
2πipz in Sk+l+2n(Γ)

under T ∗g,n is

T ∗g,n(f) =
Γ(k + l + 2n− 1)

Γ(k − 1)(4π)l+2n

∞∑
m=1

mk−1

(
∞∑
q=0

am+qbqε
(k,l,n)
m,q

(m+ q)k+l+2n−1

)
e2πimz ,

where

ε(k,l,n)
m,q =

q
e2πim(·), e2πiq(·)y(k,l)

n
(0) =

∑
r,s≥0
r+s=n

(−1)r
(
k + n− 1

s

)(
l + n− 1

r

)
mrqs.

In particular we obtain a cuspidal form whose Fourier coefficients involves special values of shifted
Rankin-Selberg convolutions “twisted” with certain combinatorial expressions.

In this thesis we also find integral representations for the operators T ∗g,n. Specifically, we prove:

Theorem (Chapter 3). Under the same hypothesis of the theorem above we have

T ∗g,n(f)(z) =
ik2k−2(k − 1)

π

∫
H
f(w)

s
1

(· − z)k
, g

{(k,l)

n

(w) Im(w)k+l+2ndµ(w)

and

T ∗g,n(f)(z) =
ik2k−3(k − 1)

π

∫
F

f(w)
q
hk(·,−z), g

y(k,l)

n
(w) Im(w)k+l+2ndµ(w) ,

where

hk(z1, z2) =
∑

a,b,c,d∈Z
ad−bc=1

(cz1 + d)−k
(
az1 + b

cz1 + d
+ z2

)−k
.

Notice that for g = 1 ∈M0(Γ) and n = 0 we recover the classical reproduction formulas

f(z) =
ik2k−2(k − 1)

π

∫
H
f(w)

1

(w − z)k
Im(w)kdµ(w)
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and

f(z) =
ik2k−3(k − 1)

π

∫
F

f(w)hk(w,−z)Im(w)kdµ(w) ,

valid for any f ∈ Sk(Γ) (see [4] and [10]). New partial integral reproduction formulas are also given.

This thesis is organized as follows: In Chapter 1 we recall the general definitions, properties and
examples of modular forms which are needed in this work. Everything here is part of the classical
theory of modular forms and we give no proofs since they can be found in many books (see for
example [1], [3], [5], [7] and [8]). In any case, in section 8 of Chapter 1 we recall the notion of
Rankin-Cohen brackets and for convenience we prove their basic properties (see also [9]).

Chapters 2 and 3 are devoted to prove our results. Theorem 5 is our generalization of Kohnen’s
statement and Theorems 6 and 7 are the integral representations mentioned above. In each case we
derive some applications of these results; Propositions 2 and 3 from Theorem 5 and Proposition 4
from the other two Theorems.
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2. List of symbols

Z the set of integer numbers.

C the set of complex numbers.

H the Poincaré upper-half plane {z ∈ C : Im(z) > 0}.

Γ the full modular group SL2(Z) =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
.

D∗ the pointed open disc {q ∈ C : 0 < |q| < 1}.

j(γ, z) the factor of automorphy cz + d for γ =

(
a b
c d

)
∈ Γ and z ∈ H.

∂f
∂z

the usual derivative of a function f : U → C where U ⊆ C is a domain.

Mk(Γ) the space of modular forms of weight k for Γ.

Sk(Γ) the space of cuspidal forms of weight k for Γ.

an = O(bn) the big O notation: there exist C > 0 and N ∈ N such that |an| ≤ C|bn| for all n ≥ N .

ζ(s) Riemann’s zeta function, which is ζ(s) =
∑∞

n=1
1
ns for s ∈ C with Re(s) > 1.

σk the arithmetic function σk(n) =
∑

d/n
d>0

dk for n ∈ N.

Γ(s) Euler’s gamma function, which is Γ(s) =
∫∞

0
e−tts−1dt for s ∈ C with Re(s) > 0.

Γ∞ the subgroup

{
±
(

1 n
0 1

)
: n ∈ Z

}
⊆ Γ.

F a fundamental domain for Γ.

F∞ a fundamental domain for Γ∞.

dµ(z) the hyperbolic measure dxdy
y2

where x = Re(z) and y = Im(z).





CHAPTER 1

Modular Forms and Cuspidal Forms for SL2(Z)

1. Basic definitions and properties

Throughout this thesis we denote the Poincaré upper-half plane by H and the full modular
group by Γ, i.e.

H = {z ∈ C : Im(z) > 0} and Γ = SL2(Z) =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
.

For any γ =

(
a b
c d

)
∈ Γ and z ∈ H we write

γz :=
az + b

cz + d
.

Simple calculations show that

Im(γz) =
Im(z)

|j(γ, z)|2
,

where j(γ, z) := cz + d. It is also easy to check the identities

γ1(γ2z) = (γ1γ2)z and Iz = z

for all γ1, γ2 ∈ Γ, z ∈ H, where I =

(
1 0
0 1

)
. Thus, Γ acts on H as a group of linear fractional

transformations (also called Möbius transformations).

Now, to any function f : H → C, k ∈ Z and γ ∈ Γ we associate the function f |k[γ] : H → C
defined as

f |k[γ](z) := j(γ, z)−kf(γz).

This gives, for any fixed k, a right action of Γ over the set of functions f : H→ C. Indeed, one has

f |k[γ1γ2] = (f |k[γ1])|k[γ2]

for all γ1, γ2 ∈ Γ and f |k[I] = f . Moreover

(f + αg)|k[γ] = f |k[γ] + αg|k[γ] and f |k[γ]g|l[γ] = (fg)|k+l[γ]

for any pair of functions f, g : H→ C, γ ∈ Γ, α ∈ C and k, l ∈ Z.

Definition: A function f : H→ C is called a modular form of weight k over Γ if:

(1) f is holomorphic in H,
(2) f |k[γ] = f , for all γ ∈ Γ and
(3) f admits an expansion of type

f(z) =
∞∑
n=0

ane
2πinz.

7
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In addition, if a0 = 0 in (3) then f is called a cuspidal form of weight k over Γ.
The set of modular (respectively cuspidal) forms of weight k over Γ is denoted by Mk(Γ) (respec-

tively Sk(Γ)).

Some remarks on this definition:

(a) Condition (2) above can be rephrased as

f

(
az + b

cz + d

)
= (cz + d)kf(z), for all γ =

(
a b
c d

)
∈ Γ and z ∈ H.

Since the full modular group is generated by the matrices T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
,

such condition is equivalent to the transformation formulas

f(z + 1) = f(z) and f

(
−1

z

)
= zkf(z).

Notice that every modular form over Γ is Z-periodic.

(b) For a better interpretation of condition (3) consider the function

V : H→ D∗ = {q ∈ C : 0 < |q| < 1} given by V (z) = e2πiz.

Then V is surjective, holomorphic and satisfies

V (z1) = V (z2)⇐⇒ z1 = z2 mod Z.
Moreover, V is locally a conformal transformation by the local existence of analytic branches
of the logarithm. In particular, we can take a right inverse function of V , say U , and consider
the map f̂ := f ◦U . This definition is independent of the choice of U because f is Z-periodic.
Moreover,

f̂ : D∗ → C
is holomorphic (for any q ∈ D∗ take a small open disc Bq ⊆ D∗ around q, small enough to

have Uq : Bq → H a local conformal inverse of V , in this way f̂ restricted to Bq is equal to

f ◦ Uq which is holomorphic at q). Thus we can write the power series of f̂ in terms of the
local variable q = e2πiz and get

f(z) = f̂(q) =
∞∑

n=−∞

anq
n =

∞∑
n=−∞

ane
2πinz.

Now, it should be clear that condition (3) in the definition above is equivalent to say that f̂
is analytic at q = 0, which is equivalent to the statement

lim
Im(z)→+∞

f(z) exists and is finite.

In that case we say that f is analytic at i∞. Following the same ideas we observe that f is
cuspidal if and only if f̂ vanishes at q = 0, which is equivalent to

lim
Im(z)→+∞

f(z) = 0 .

In that case we say that f vanishes at i∞.

Some further remarks:
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(a) Mk(Γ) is a C-vector space and Sk(Γ) is a subspace of Mk(Γ).

(b) Let f ∈ Mk(Γ). Since γ =

(
−1 0
0 −1

)
∈ Γ, we must have f(z) = (−1)kf(z). Therefore

Mk(Γ) = Sk(Γ) = {0} for k odd.

(c) If f ∈Mk(Γ) and g ∈Ml(Γ), then fg ∈Mk+l(Γ). Moreover, if one of them is cuspidal, then
fg is also cuspidal.

(d) The expression j(γ, z) is called factor of automorphy and satisfies the identities

j(γ1γ2, z) = j(γ1, γ2z)j(γ2, z) and j(γ, γ−1z) = j(γ−1, z)−1

for all γ, γ1, γ2 ∈ Γ. It is also related to γ by the equation

∂

∂z
(γz) =

1

j(γ, z)2

2. On the Fourier coefficients of a modular form

Let f ∈Mk(Γ) with

f(z) =
∞∑
n=0

ane
2πinz.

The complex numbers an are called the Fourier coefficients of f and it is not hard to prove that

an = O(nk/2)

whenever f is a cuspidal form. Using this fact and the existence of certain modular forms called
Eisenstein series (see below) one can also show the estimate

an = O(nk−1)

for any f in Mk(Γ). In any case, a better result can be found in [3] for cuspidal forms.

Theorem 1. For any f ∈ Sk(Γ) with Fourier coefficients (an)n≥1 and δ > 0 one has

an = O(nk/2+δ−1/4).

3. First examples: Eisenstein Series

Let k be an even integer with k ≥ 4. The k-th Eisenstein series for Γ is

Gk(z) :=
∑
m,n∈Z

(m,n) 6=(0,0)

1

(mz + n)k
, for z ∈ H.

This series converges absolutely and uniformly on any compact subset of H. Therefore, it defines a
holomorphic function on H. Moreover, it is easy to check that Gk|k[γ] = Gk, for all γ ∈ Γ. Some
standard extra work yields the Fourier expansion of Gk. Namely

Gk(z) = 2ζ(k)

(
1− 2k

Bk

∞∑
n=1

σk−1(n)e2πinz

)
,

where ζ is the Riemann’s zeta function

ζ(s) :=
∞∑
n=1

1

ns
,
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defined in this way for any s ∈ C with Re(s) > 1, Bk is the k-th Bernoulli number defined by the
equality

t

et − 1
=

∞∑
m=0

Bm

m!
tm,

and σk−1 is the arithmetic function

σk−1(n) :=
∑
d|n
0<d

dk−1.

All these properties show that Gk ∈Mk(Γ).
For convenience we also consider the k-th normalized Eisenstein series for Γ;

Ek(z) :=
1

2ζ(k)
Gk(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)e2πinz.

In this way we have a non-cuspidal modular form Ek ∈ Mk(Γ) with very simple rational Fourier
coefficients. The first few Ek are:

E4(z) = 1 + 240
∞∑
n=1

σ3(n)e2πinz,

E6(z) = 1− 504
∞∑
n=1

σ5(n)e2πinz,

E8(z) = 1 + 480
∞∑
n=1

σ7(n)e2πinz,

E10(z) = 1− 264
∞∑
n=1

σ9(n)e2πinz,

E12(z) = 1 +
65520

691

∞∑
n=1

σ11(n)e2πinz,

E14(z) = 1− 24
∞∑
n=1

σ13(n)e2πinz.

4. Another example: The discriminant cuspidal form ∆

We define the discriminant cuspidal form ∆ ∈ S12(Γ) as follows:

∆ :=
E3

4 − E2
6

1728
.

Another (equivalent) way of defining ∆ is by the infinite product formula

∆(z) = e2πiz

∞∏
n=1

(1− e2πinz)24.

As every cuspidal form, ∆ has a Fourier expansion

∆(z) =
∞∑
n=1

τ(n)e2πinz,
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which defines the Ramanujan function τ . The first few values of it are:

n τ(n)
1 1
2 −24
3 252
4 −1472
5 4830
6 −6048
7 −16744
8 84480
9 −113643
10 −115920
11 534612
12 −370944

5. A brief description of Mk(Γ) and Sk(Γ)

The Eisenstein series and the discriminant cuspidal form are all we need in order to describe
Mk(Γ) and Sk(Γ) as C-vector spaces. More precisely, we can give a basis for each one of these spaces
using only products of Ek (with k ≥ 4 even) and ∆. This should be clear from the following result.

Theorem 2. For all k ∈ Z, the C-vector spaces Mk(Γ) and Sk(Γ) are finite dimensional. More-
over:

(1) Mk(Γ) = {0}, for k < 0 or k = 2 or k odd.
(2) M0(Γ) = C (constant functions).
(3) Mk(Γ) = CEk, for k ∈ {4, 6, 8, 10, 14}.
(4) Sk(Γ) = {0}, for k < 12 or k = 14 or k odd.
(5) S12(Γ) = C∆.
(6) Mk(Γ) = CEk ⊕ Sk(Γ), for k ≥ 4 even.
(7) Sk(Γ) = ∆Mk−12(Γ).

In particular, the exact dimension of each space is the following:

dimCMk(Γ) =


0 for k < 0 or k = 2 or k odd,[
k
12

]
for k even, k ≥ 0, k = 2 (mod 12),[

k
12

]
+ 1 for k even, k ≥ 0, k 6= 2 (mod 12),

dimCSk(Γ) =


0 for k < 12 or k = 14 or k odd,[

k
12

]
− 1 for k even, k ≥ 12, k = 2 (mod 12),[
k
12

]
for k even, k ≥ 12, k 6= 2 (mod 12).

Remark: As a consequence of this theorem we get the following identities:

E2
4 = E8,

E4E6 = E10,

E4E10 = E14,

E6E8 = E14.
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Each one of these identities give a relation between the corresponding arithmetical functions σk,
merely by comparing the Fourier coefficients in both sides.

6. Fundamental domains

In many cases it is not necessary to work with the whole complex upper-half plane H when
studying modular forms. We can restrict ourselves to a smaller subset containing at least one point
in each orbit of the Γ-action on H (or of the action of a subgroup of Γ on H).

Definition: Let Γ′ be a subgroup of Γ. A measurable subset F of H is called a fundamental
domain for Γ′ if:

(1) There are no two points z1, z2 ∈ F related by Γ′ except in the trivial case, i.e.:

If z1, z2 ∈ F and γ′ ∈ Γ′ with γ′z1 = z2, then z1 = z2 and γ′ ∈ {±I} ∩ Γ′.

(2) For each point z ∈ H there exists z0 ∈ F and γ′ ∈ Γ′ such that γ′z0 = z.

Explicit examples of connected fundamental domains for Γ are

F =

{
z ∈ H : |z| > 1,−1

2
≤ Re(z) <

1

2

}
∪
{
e2πix : x ∈

[
π

2
,
2π

3

]}

and any image γF = {γz : z ∈ F} where γ ∈ Γ.

Similarly, explicit examples of connected fundamental domains for Γ∞ =

{
±
(

1 n
0 1

)
: n ∈ Z

}
are

F∞ = {z ∈ H : 0 ≤ Re(z) < 1}

and any F∞ + r where r ∈ R.
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Remark: If F is a fundamental domain for Γ, Γ′ is a subgroup of Γ and Λ is a complete set of
representatives for Γ′\Γ, then

F ′ =
⋃
γ∈Λ

γF

is a disjoint union and it is a fundamental domain for Γ′.

7. The Petersson scalar product and Poincaré series

Let us define

〈f, g〉k :=

∫
F

f(z)g(z)Im(z)kdµ(z),

where F ⊆ H is a fundamental domain for Γ, dµ(z) denotes the hyperbolic measure dµ(z) = dxdy
y2

,

with x = Re(z), y = Im(z), and f, g are modular forms in Mk(Γ) with at least one of them cuspidal
(in this way the integral above is absolutely convergent).

The Γ-invariance of the integrand implies that such a definition is independent of the choice of
the fundamental domain and yields a non-degenerate scalar product in Sk(Γ) called the Petersson
scalar product. The set Sk(Γ) with 〈 , 〉k is a finite-dimensional complex Hilbert space.

Now, for any m ≥ 0 and any even integer k ≥ 4 we introduce the m-th Poincaré series of
weight k over Γ:

Pk,m(z) :=
∑

γ∈Γ∞\Γ

j(γ, τ)−ke2πimγ(z).

This series is independent of the choice of coset representatives and it converges absolutely and
uniformly on compact subsets of H. Therefore, it defines an holomorphic function on H.

It is not difficult to check that Pk,m is a modular form in Mk(Γ) and that Pk,m is cuspidal for
m ≥ 1.

The following proposition relates Petersson scalar product with Poincaré series.

Proposition 1. For m ≥ 1, k ≥ 4 even and f ∈ Sk(Γ) with Fourier expansion

f(z) =
∞∑
n=1

ane
2πinz,

we have

〈f, Pk,m〉k =
Γ(k − 1)am
(4πm)k−1

.

Here and from now on Γ(s) denotes Euler’s gamma function

Γ(s) =

∫ ∞
0

ts−1e−tdt, for s ∈ C with Re(s) > 0.

Remarks:

(a) We often use that the hyperbolic measure is invariant under the action of Γ, that is∫
A

F (z)dµ(z) =

∫
γ−1A

F (γz)dµ(γz) =

∫
γ−1A

F (γz)dµ(z)

for any measurable set A ⊆ H, any measurable function F : A→ C and any γ ∈ Γ.
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(b) For convenience we recall here the existence of adjoint operators between finite dimensional
C-vector spaces endowed with a non-degenerate scalar product: if V and W are finite
dimensional C-vector spaces and 〈 , 〉V , 〈 , 〉W are non-degenerate scalar products in V and
W respectively, then for any C-linear operator T : V → W there exists a unique C-linear
operator T ∗ : W → V such that

〈T (v), w〉W = 〈v, T ∗(w)〉V , for any v ∈ V,w ∈ W.

In that case one says that T ∗ is the adjoint operator of T with respect to the scalar products
〈 , 〉V and 〈 , 〉W . In particular, for any C-linear operator T : Sk(Γ)→ Sl(Γ) there exists the
adjoint operator T ∗ : Sl(Γ) → Sk(Γ) with respect to the Petersson scalar product of each
space.

8. Rankin-Cohen brackets

In general it is not true that the derivative ∂f
∂z

of a modular form f in Mk(Γ) is again a modular
form. But in any case, it satisfies the functional equation

∂f

∂z
(γz) = ckj(γ, z)k+1f(z) + j(γ, z)k+2∂f

∂z
(z)

for any γ =

(
a b
c d

)
∈ Γ. We will see that a suitable combination of two modular forms and their

derivatives yields a third modular form.

Definition: For two holomorphic function f, g : U → C (where U ⊆ C is an open domain)
and k, l, n ∈ Z with n ≥ 0, we define the n-th Rankin-Cohen bracket of index (k, l) as

q
f, g

y(k,l)

n
:=

∑
r,s≥0
r+s=n

(−1)r
(
k + n− 1

s

)(
l + n− 1

r

)
DrfDsg.

Here Dr denotes the r-th normalized differential operator

Drf =
1

(2πi)r
∂rf

∂zr
,

(in particular D0f = f) and (
m

s

)
=


m(m−1)···(m−s+1)

s!
if s ≥ 1,

1 if s = 0.

Remarks:

(a) We have normalized the differential operator because, in this way, if f has a Fourier expan-
sion of type f(z) =

∑
ane

2πinz then Df =
∑
nane

2πinz.

(b) If m ≥ 0 and 0 ≤ s ≤ m, then
(
m
s

)
agrees with the usual combinatorial number m!

(m−s)!s! .

Here we have chosen a definition that makes sense even if m < s or m < 0. This may be
the case since in the above definition of the n-th Rankin-Cohen bracket one may have, for
example, k + n− 1 < 0.

(c)
(
m
s

)
∈ Z for any m, s ∈ Z with s ≥ 0.
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Examples:
q
f, g

y(k,l)

0
= fg,

q
f, g

y(k,l)

1
= kfDg − lgDf,

q
f, g

y(k,l)

2
=

k(k + 1)

2
fD2g − (k + 1)(l + 1)DfDg +

l(l + 1)

2
gD2f.

If f and g are modular forms over Γ, we take k as the weight of f and l as the weight of g in
order to get a new modular form. Indeed,

Theorem 3. If f ∈Mk(Γ) and g ∈Ml(Γ), then
q
f, g

y(k,l)

n
∈Mk+l+2n(Γ).

For the proof of this theorem we first establish some technical lemmas.

Lemma 1. Let k and r be integers with r ≥ 0. Define

λk,t,r =



(
k+r−1
r

)
r!(k + r) if t = 0,(

k+r−1
r−t

)
r!
t!

(k + r + t) +
(
k+r−1
r+1−t

)
r!

(t−1)!
if 1 ≤ t ≤ r,

1 if t = r + 1.

Then λk,t,r =
(
k+r
r+1−t

) (r+1)!
t!

.

Proof of Lemma 1. For t = 0 we have

λk,0,r = (k + r − 1) · · · k(k + r) =

(
k + r

r + 1− 0

)
(r + 1)!

0!
.

For t = r + 1 we have

λk,r+1,r = 1 =

(
k + r

r + 1− (r + 1)

)
(r + 1)!

(r + 1)!
.

Now, for 1 ≤ t ≤ r one has to consider the two different cases; 1 ≤ t ≤ r − 1 and t = r (because
the definition of

(
m
s

)
depends whether s > 0 or s = 0). Thus, for 1 ≤ t ≤ r − 1 we have

λk,t,r =
(k + r − 1) · · · (k + t)

(r − t)!
r!

t!
(k + r + t) +

(k + r − 1) · · · (k + t− 1)

(r + 1− t)!
r!

(t− 1)!

=
(k + r − 1) · · · (k + t)r!

(r − t)!(t− 1)!

(
k + r + t

t
+
k + t− 1

r + 1− t

)
=

(k + r − 1) · · · (k + t)r!

(r − t)!(t− 1)!

(
kr + k − kt+ r2 + r − rt+ tr + t− t2 + tk + t2 − t

t(r + 1− t)

)
=

(k + r − 1) · · · (k + t)r!

(r − t)!(t− 1)!

(
kr + k + r2 + r

t(r + 1− t)

)
=

(k + r − 1) · · · (k + t)r!

(r − t)!(t− 1)!

(
(k + r)(r + 1)

t(r + 1− t)

)
=

(k + r)(k + r − 1) · · · (k + t)(r + 1)!

(r + 1− t)!t!

=

(
k + r

r + 1− t

)
(r + 1)!

t!
.
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For t = r we have λk,r,r = (k + 2r) + (k + r − 1)r = (k + r)(r + 1) =
(
k+r
r+1−r

) (r+1)!
r!

.
In any case the desired equality holds. �

Lemma 2. Let f : H→ C be a holomorphic function, γ =

(
a b
c d

)
∈ Γ and r ∈ Z with r ≥ 0.

Then

∂r(f |k[γ])

∂zr
=

r∑
t=0

(
k + r − 1

r − t

)
r!

t!
(−c)r−t

(
∂tf

∂zt

)∣∣∣∣
k+r+t

[γ].

Proof of Lemma 2. We use induction on r.
For r = 0 we have f |k[γ] in each side of the equation and there is nothing to prove.
For r = 1 we just differentiate both sides of

f |k[γ](z) = j(γ, z)−kf(γz)

and get

∂(f |k[γ])

∂z
(z) = −kcj(γ, z)−k−1f(γz) + j(γ, z)−k−2∂f

∂z
(γz)

(
recall that ∂

∂z
(γz) = 1

j(γ,z)2

)
. This is exactly

∂(f |k[γ])

∂z
= k(−c)f |k+1[γ] +

(
∂f

∂z

)∣∣∣∣
k+2

[γ],

which is the desired equality.
Suppose next that we have

∂r(f |k[γ])

∂zr
=

r∑
t=0

(
k + r − 1

r − t

)
r!

t!
(−c)r−t

(
∂tf

∂zt

)∣∣∣∣
k+r+t

[γ].

Differentiating on both sides we get

∂r+1(f |k[γ])

∂zr+1
=

r∑
t=0

(
k + r − 1

r − t

)
r!

t!
(−c)r−t ∂

∂z

((
∂tf

∂zt

)∣∣∣∣
k+r+t

[γ]

)
.

Now we recall the case r = 1 computed above and obtain

∂

∂z

((
∂tf

∂zt

)∣∣∣∣
k+r+t

[γ]

)
= (k + r + t)(−c)

(
∂tf

∂zt

)∣∣∣∣
k+r+1+t

[γ] +

(
∂t+1f

∂zt+1

)∣∣∣∣
k+r+2+t

[γ].
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Thus

∂r+1(f |k[γ])

∂zr+1

=
r∑
t=0

(
k + r − 1

r − t

)
r!

t!
(−c)r−t

(
(k + r + t)(−c)

(
∂tf

∂zt

)∣∣∣∣
k+r+1+t

[γ] +

(
∂t+1f

∂zt+1

)∣∣∣∣
k+r+2+t

[γ]

)

=
r∑
t=0

(
k + r − 1

r − t

)
r!

t!
(−c)r+1−t(k + r + t)

(
∂tf

∂zt

)∣∣∣∣
k+r+1+t

[γ]+

r∑
t=0

(
k + r − 1

r − t

)
r!

t!
(−c)r−t

(
∂t+1f

∂zt+1

)∣∣∣∣
k+r+2+t

[γ]

=
r∑
t=0

(
k + r − 1

r − t

)
r!

t!
(−c)r+1−t(k + r + t)

(
∂tf

∂zt

)∣∣∣∣
k+r+1+t

[γ]+

r+1∑
t=1

(
k + r − 1

r + 1− t

)
r!

(t− 1)!
(−c)r+1−t

(
∂tf

∂zt

)∣∣∣∣
k+r+1+t

[γ]

=
r+1∑
t=0

λk,t,r(−c)r+1−t
(
∂tf

∂zt

)∣∣∣∣
k+r+1+t

[γ] ,

where λk,t,r is the number introduced in the previous Lemma.

By Lemma 1 we have λk,t,r =
(
k+r
r+1−t

) (r+1)!
t!

and this proves the equality in the case r + 1. �

Lemma 3. Let f, g : H→ C be two holomorphic functions and γ ∈ Γ. Then

q
f, g

y(k,l)

n

∣∣
k+l+2n

[γ] =
q
f |k[γ], g|l[γ]

y(k,l)

n
.

Proof of Lemma 3. By definition of the n-th Rankin-Cohen bracket we have

(2πi)n
q
f |k[γ] , g|l[γ]

y(k,l)

n
=

∑
r,s≥0
r+s=n

(−1)r
(
k + n− 1

s

)(
l + n− 1

r

)
∂r(f |k[γ])

∂zr
∂s(g|l[γ])

∂zs
.
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In this expression we use Lemma 2 with γ =

(
a b
c d

)
and get

(2πi)n
q
f |k[γ] , g|l[γ]

y(k,l)

n

=
∑
r,s≥0
r+s=n

r∑
p=0

s∑
q=0

(−1)r
(
k + n− 1

s

)(
l + n− 1

r

)(
k + r − 1

r − p

)(
l + s− 1

s− q

)
r!

p!

s!

q!

× (−c)r+s−p−q
(
∂pf

∂zp

)∣∣∣∣
k+r+p

[γ]

(
∂qg

∂zq

)∣∣∣∣
l+s+q

[γ]

=
∑
r,s≥0
r+s=n

r∑
p=0

s∑
q=0

(−1)r
(
k + n− 1

s

)(
l + n− 1

r

)(
k + r − 1

r − p

)(
l + s− 1

s− q

)
r!

p!

s!

q!
(−c)n−p−q

×
(
∂pf

∂zp
∂qg

∂zq

)∣∣∣∣
k+l+n+p+q

[γ]

=
∑
p,q≥0
p+q≤n

(−c)n−p−q
(
∂pf

∂zp
∂qg

∂zq

)∣∣∣∣
k+l+n+p+q

[γ]

n−q∑
r=p

(−1)r
(
k + n− 1

n− r

)(
l + n− 1

r

)(
k + r − 1

r − p

)

×
(
l + n− r − 1

n− r − q

)
r!

p!

(n− r)!
q!

.

But direct calculations show that(
α

β

)(
α− β
γ

)
β! =

(
α

β + γ

)
(β + γ)!

γ!

for any α, β, γ ∈ Z with β, γ ≥ 0. Thus(
k + n− 1

n− r

)(
k + r − 1

r − p

)
(n− r)! =

(
k + n− 1

n− p

)
(n− p)!
(r − p)!

,(
l + n− 1

r

)(
l + n− r − 1

n− r − q

)
r! =

(
l + n− 1

n− q

)
(n− q)!

(n− r − q)!
.

Hence, we get

(2πi)n
q
f |k[γ] , g|l[γ]

y(k,l)

n
=

∑
p,q≥0
p+q≤n

(−c)n−p−q
(
∂pf

∂zp
∂qg

∂zq

)∣∣∣∣
k+l+n+p+q

[γ]

(
k + n− 1

n− p

)(
l + n− 1

n− q

)

×(n− p)!(n− q)!
p!q!

n−q∑
r=p

(−1)r

(r − p)!(n− r − q)!
.

Now
n−q∑
r=p

(−1)r

(r − p)!(n− r − q)!
= (−1)p

n−q−p∑
r=0

(−1)r

r!(n− r − q − p)!
=

(−1)p

(n− q − p)!

n−q−p∑
r=0

(−1)r
(
n− q − p

r

)
and

n−q−p∑
r=0

(−1)r
(
n− q − p

r

)
=

 1 if p+ q = n,

(1− 1)n−p−q = 0 if p+ q < n,
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thus
n−q∑
r=p

(−1)r

(r − p)!(n− r − q)!
=

 (−1)p if p+ q = n,

0 if p+ q < n.

Hence

(2πi)n
q
f |k[γ] , g|l[γ]

y(k,l)

n

=
∑
p,q≥0
p+q=n

(−c)n−p−q
(
∂pf

∂zp
∂qg

∂zq

)∣∣∣∣
k+l+n+p+q

[γ]

(
k + n− 1

n− p

)(
l + n− 1

n− q

)
(n− p)!(n− q)!

p!q!
(−1)p

=
∑
p,q≥0
p+q=n

(
∂pf

∂zp
∂qg

∂zq

)∣∣∣∣
k+l+2n

[γ]

(
k + n− 1

q

)(
l + n− 1

p

)
(−1)p

=(2πi)n
q
f, g

y(k,l)

n

∣∣
k+l+2n

[γ] .

�

Proof of Theorem 3. Clearly
q
f, g

y(k,l)

n
is a holomorphic function on H ∪ {i∞} by the

definition of Rankin-Cohen bracket. The identity
q
f, g

y(k,l)

n

∣∣
k+l+2n

[γ] =
q
f |k[γ] , g|l[γ]

y(k,l)

n
=

q
f, g

y(k,l)

n

for any γ ∈ Γ follows from Lemma 3 and the fact that f |k[γ] = f and g|l[γ] = g. �

Some further remarks:

(a) The Rankin-Cohen brackets are C-linear in each entry.

(b) As we already showed,
q
f, g

y(k,l)

0
= fg. Thus the Rankin-Cohen brackets are a generaliza-

tion of the usual product of functions.

(c) If f ∈Mk(Γ), g ∈Ml(Γ) and n ≥ 1, then
q
f, g

y(k,l)

n
∈ Sk+l+2n(Γ).

(d)
q
f, g

y(k,l)

n
= (−1)n

q
g, f

y(l,k)

n
. Thus

q
f, f

y(k,k)

n
= 0, whenever n is odd.

(e) Suppose that {fn}n, {gn}n are any two sequences of holomorphic functions on a fixed domain
U ⊆ C and

∑
n fn,

∑
n gn converge absolutely and uniformly on compact subsets of U . Since

the Rankin-Cohen brackets are finite combinations of products and derivatives, one has
q ∑

n

fn,
∑
n

gn
y(k,l)

n
=
∑
n,m

q
fn, gm

y(k,l)

n
.

In particular, if g : U → C is holomorphic, then
q ∑

n

fn, g
y(k,l)

n
=
∑
n

q
fn, g

y(k,l)

n
.

Some examples:
q
E4, E6

y(4,6)

1
= −3456∆

q
E4, E4

y(4,4)

2
= −1435200∆
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9. On a theorem of W. Kohnen

Winfried Kohnen considered in [6] certain linear maps between spaces of cuspidal forms and
computed their adjoint maps. He obtained in this way some cusp forms whose Fourier coefficients
are essentially special values of certain Dirichlet series. Specifically, Kohnen showed the theorem
below.

Theorem 4 (Kohnen). Let k and l be even integers with k ≥ 6 and l ≥ 0. Fix

g(z) =
∞∑
m=1

bme
2πimz in Sl(Γ)

and define Tg : Sk(Γ) → Sk+l(Γ) by Tg(h) = hg. Denote by T ∗g : Sk+l(Γ) → Sk(Γ) its adjoint map.
Then the image of any

f(z) =
∞∑
m=1

ame
2πimz ∈ Sk+l(Γ)

under T ∗g is

T ∗g (f)(z) =
Γ(k + l − 1)

Γ(k − 1)(4π)l

∞∑
m=1

mk−1

(
∞∑
q=1

aq+mbq
(q +m)k+l−1

)
e2πimz.

After this result a natural question arises: What can be said if we change the linear map Tg and
consider not only the multiplication of cusp forms but other Rankin-Cohen brackets?

A complete answer to this question is given in the next chapter of this thesis. Furthermore, we
will see that the cuspidal condition on g can be dropped.



CHAPTER 2

A generalization of a theorem of Kohnen

1. Theorem 5: The statement

The following is our first result.

Theorem 5. Let k, l, n be integers with k, l even, k ≥ 6 and l, n ≥ 0. Fix

g(z) =
∞∑
m=0

bme
2πimz in Ml(Γ)

and suppose that either:

(a) g is cuspidal, or
(b) g is not cuspidal and l < k − 3.

Define Tg,n : Sk(Γ) → Sk+l+2n(Γ) by Tg,n(h) =
q
h, g

y(k,l)

n
. Denote by T ∗g,n : Sk+l+2n(Γ) → Sk(Γ) its

adjoint map. Then the image of any

f(z) =
∞∑
m=1

ame
2πimz in Sk+l+2n(Γ)

under T ∗g,n is

T ∗g,n(f)(z) =
Γ(k + l + 2n− 1)

Γ(k − 1)(4π)l+2n

∞∑
m=1

mk−1

(
∞∑
q=0

aq+mbqε
(k,l,n)
m,q

(q +m)k+l+2n−1

)
e2πimz ,

where

ε(k,l,n)
m,q =

q
e2πim(·), e2πiq(·)y(k,l)

n
(0) =

∑
r,s≥0
r+s=n

(−1)r
(
k + n− 1

s

)(
l + n− 1

r

)
mrqs

(in this last expression, and hereafter, we should consider q0 = 1 even if q = 0).

Remarks:

(a) If we choose hypothesis (a) and n = 0 in this Theorem, we obtain Kohnen’s result.

(b) ε
(k,l,n)
m,q ∈ Z for any m, q ∈ Z with m ≥ 1 and q ≥ 0 (recall that

(
m
s

)
∈ Z if m, s ∈ Z and s ≥ 0).

For the proof of Theorem 5 we first establish some lemmas.

2. Lemmas for the proof of Theorem 5

In this section we fix an integer m with m ≥ 1 and recall that for any z ∈ H we write x = Re(z)
and y = Im(z). Moreover, k, l, n, g and f are as in Theorem 5.

Lemma 4. For any γ ∈ Γ we have

f(γ−1z)
q
j(γ, ·)−ke2πimγ(·), g

y(k,l)

n
(γ−1z) Im(γ−1z)k+l+2n = f(z)

q
e2πim(·), g

y(k,l)

n
(z) Im(z)k+l+2n .

21
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Proof of Lemma 4. By Lemma 3 we have

q
j(γ, ·)−ke2πimγ(·), g

y(k,l)

n

∣∣
k+l+2n

[γ−1] =
q
j(γ, ·)−ke2πimγ(·)|k[γ−1] , g|l[γ−1]

y(k,l)

n
.

Using that g|l[γ−1] = g, this gives

j(γ−1, z)−k−l−2n
q
j(γ, ·)−ke2πimγ(·), g

y(k,l)

n
(γ−1z) =

q
j(γ−1, ·)−kj(γ, γ−1(·))−ke2πim(·), g

y(k,l)

n
(z) .

But

j(γ−1, ·)j(γ, γ−1(·)) = 1 ,

thus
q
j(γ, ·)−ke2πimγ(·), g

y(k,l)

n
(γ−1z) = j(γ−1, z)k+l+2n

q
e2πim(·), g

y(k,l)

n
(z) .

Combining this expression with the identities

f(γ−1z) = j(γ−1, z)k+l+2nf(z) and Im(γ−1z) =
Im(z)

|j(γ−1, z)|2
,

we get the desired equality. �

For convenience let us define

β =


l
2
− 1

8
if g satisfy hypothesis (a),

l − 1 if g satisfy hypothesis (b).

Then the Fourier coefficients of g satisfy bn = O(nβ) (see Section 2 of Chapter 1. In particular
for g cuspidal use Theorem 1 with δ = 1

8
).

Lemma 5. There exists a constant C > 0, depending on f and g, such that∫
F∞

∞∑
p=1
q=0

|apbqe2πiz(p+q+m)|Im(z)k+l+2ndµ(z)

≤ C
Γ(k + l + 2n− 1)

(2π)k+l+2n−1

(
∞∑
p=1

1

(p+m)(k+l+2n)/2−7/8
+

∞∑
p,q=1

1

(p+ q +m)(k+l+2n)/2−7/8−β

)
.

Moreover, for 1 ≤ s ≤ n one has∫
F∞

∞∑
p=1
q=0

|apbqe2πiz(p+q+m)|qsIm(z)k+l+2ndµ(z) ≤ C
Γ(k + l + 2n− 1)

(2π)k+l+2n−1

∞∑
p,q=1

1

(p+ q +m)(k+l)/2−7/8−β ,

and each one of these series converges.

As in Section 6 of Chapter 1, F∞ denotes any fundamental domain for Γ∞. Since the integrands
are Z-periodic functions, these integrals are well defined. That is, these integrals are independent of
the choice of F∞ . We choose

F∞ = {z ∈ H : 0 ≤ Re(z) < 1} .
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Proof of Lemma 5. Since the integrands are non-negative we can freely interchange the integral
and summation symbols.∫

F∞

∞∑
p=1
q=0

|apbqe2πiz(p+q+m)|Im(z)k+l+2ndµ(z) =
∞∑
p=1
q=0

|apbq|
∫
F∞

|e2πiz(p+q+m)|Im(z)k+l+2ndµ(z)

=
∞∑
p=1
q=0

|apbq|
∫ ∞

0

∫ 1

0

e−2πy(p+q+m)yk+l+2n−2dxdy

=
∞∑
p=1
q=0

|apbq|
∫ ∞

0

e−2πy(p+q+m)yk+l+2n−2dy.

A simple change of variables yields∫ ∞
0

e−2πy(p+q+m)yk+l+2n−2dy =
Γ(k + l + 2n− 1)

(2π(p+ q +m))k+l+2n−1
.

Thus
∞∑
p=1
q=0

|apbq|
∫ ∞

0

e−2πy(p+q+m)yk+l+2n−2dy =
Γ(k + l + 2n− 1)

(2π)k+l+2n−1

∞∑
p=1
q=0

|apbq|
(p+ q +m)k+l+2n−1

.

Now, by Theorem 1 with δ = 1
8

we have ap = O(p(k+l+2n)/2−1/8), and since bp = O(pβ), there exists a
constant C1 > 0 such that

|ap| ≤ C1p
(k+l+2n)/2−1/8 and |bp| ≤ C1p

β ,

for all p ≥ 1. This implies
∞∑
p=1
q=0

|apbq|
(p+ q +m)k+l+2n−1

=
∞∑
p=1

|apb0|
(p+m)k+l+2n−1

+
∞∑

p,q=1

|apbq|
(p+ q +m)k+l+2n−1

≤ |b0|C1

∞∑
p=1

p(k+l+2n)/2−1/8

(p+m)k+l+2n−1
+ C2

1

∞∑
p,q=1

p(k+l+2n)/2−1/8qβ

(p+ q +m)k+l+2n−1

≤ |b0|C1

∞∑
p=1

(p+m)(k+l+2n)/2−1/8

(p+m)k+l+2n−1
+ C2

1

∞∑
p,q=1

(p+ q +m)(k+l+2n)/2−1/8(p+ q +m)β

(p+ q +m)k+l+2n−1

= |b0|C1

∞∑
p=1

1

(p+m)(k+l+2n)/2−7/8
+ C2

1

∞∑
p,q=1

1

(p+ q +m)(k+l+2n)/2−7/8−β .

Hence∫
F∞

∞∑
p=1
q=0

|apbqe2πiz(p+q+m)|Im(z)k+l+2ndµ(z)

≤Γ(k + l + 2n− 1)

(2π)k+l+2n−1

(
|b0|C1

∞∑
p=1

1

(p+m)(k+l+2n)/2−7/8
+ C2

1

∞∑
p,q=1

1

(p+ q +m)(k+l+2n)/2−7/8−β

)
.
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Similarly, for every 1 ≤ s ≤ n we have

∫
F∞

∞∑
p=1
q=0

|apbqe2πiz(p+q+m)|qsIm(z)k+l+2ndµ(z) =
∞∑

p,q=1

|apbq|qs
∫
F∞

|e2πiz(p+q+m)|Im(z)k+l+2ndµ(z)

=
∞∑

p,q=1

|apbq|qs
∫ ∞

0

e−2πy(p+q+m)yk+l+2n−2dy

=
∞∑

p,q=1

|apbq|qs
Γ(k + l + 2n− 1)

(2π(p+ q +m))k+l+2n−1

=
Γ(k + l + 2n− 1)

(2π)k+l+2n−1

∞∑
p,q=1

|apbq|qs

(p+ q +m)k+l+2n−1

≤ C2
1

Γ(k + l + 2n− 1)

(2π)k+l+2n−1

∞∑
p,q=1

p(k+l+2n)/2−1/8qβ+n

(p+ q +m)k+l+2n−1

≤ C2
1

Γ(k + l + 2n− 1)

(2π)k+l+2n−1

∞∑
p,q=1

1

(p+ q +m)(k+l)/2−7/8−β .

(using that p, q ≤ p+ q+m). If we put C = max{|b0|C1, C
2
1}, we get the inequalities in the Lemma.

Finally we observe that each one of these series converges because

(k + l + 2n)/2− 7/8 ≥ 17/8 and (k + l + 2n)/2− 7/8− β ≥ (k + l)/2− 7/8− β > 2 .

This completes the proof of Lemma 5. �

Lemma 6. The integral∫
F

∑
γ∈Γ∞\Γ

|f(z)
q
j(γ, ·)−ke2πimγ(·), g

y(k,l)

n
(z) Im(z)k+l+2n|dµ(z)

converges.

As in Section 6 of Chapter 1, F denotes any fundamental domain for Γ. One can check that the
integrand is invariant under the action of Γ over the variable z thus, this integral is well defined.
Also, the inner sum is well-defined since it is independent of the choice of representatives for the
cosets in Γ∞\Γ.

Proof of Lemma 6. Using that the integrands are non-negative, we write∫
F

∑
γ∈Γ∞\Γ

|f(z)
q
j(γ, ·)−ke2πimγ(·), g

y(k,l)

n
(z) Im(z)k+l+2n|dµ(z)

=
∑

γ∈Γ∞\Γ

∫
F

|f(z)
q
j(γ, ·)−ke2πimγ(·), g

y(k,l)

n
(z) Im(z)k+l+2n|dµ(z) .
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Then, in each integral, we make the change of variables z = γ−1z′ and use lemma 4 in order to write
the last expression as ∑

γ∈Γ∞\Γ

∫
γF

|f(z)
q
e2πim(·), g

y(k,l)

n
(z) Im(z)k+l+2n|dµ(z)

=

∫
F∞

|f(z)
q
e2πim(·), g

y(k,l)

n
(z) Im(z)k+l+2n|dµ(z)

(here we have used that the disjoint union
⋃
γ∈Γ∞\Γ γF gives a fundamental domain for Γ∞).

Now, replacing f and g by their Fourier series, using the definition and properties of the n-th
Rankin-Cohen bracket, and applying the triangular inequality, we have∫

F∞

|f(z)
q
e2πim(·), g

y(k,l)

n
(z) Im(z)k+l+2n|dµ(z)

≤
∫
F∞

∑
r,s≥0
r+s=n

∞∑
p=1
q=0

∣∣∣∣(k + n− 1

s

)(
l + n− 1

r

)∣∣∣∣mr|apbqe2πiz(p+m+q)|qsIm(z)k+l+2ndµ(z)

=
∑
r,s≥0
r+s=n

∣∣∣∣(k + n− 1

s

)(
l + n− 1

r

)∣∣∣∣mr

∫
F∞

∞∑
p=1
q=0

|apbqe2πiz(p+m+q)|qsIm(z)k+l+2ndµ(z) .

The last expression is a sum of finitely many terms, indexed by r and s, and each one of these terms
is finite by lemma 5. �

Lemma 7. For any integer s with 0 ≤ s ≤ n, one has∫
F∞

f(z)e2πimzDsg(z) Im(z)k+l+2ndµ(z) =
Γ(k + l + 2n− 1)

(4π)k+l+2n−1

∞∑
q=0

aq+mbqq
s

(q +m)k+l+2n−1
.

Proof of Lemma 7. Replacing f and g by their Fourier series we have∫
F∞

f(z)e2πimzDsg(z) Im(z)k+l+2ndµ(z) =

∫
F∞

∞∑
p=1
q=0

apbqe
2πizpe2πiz(m+q)qsIm(z)k+l+2ndµ(z).

By Lemma 5 the last expression converges absolutely. Thus Fubini’s Theorem yields∫
F∞

f(z)e2πimzDsg(z) Im(z)k+l+2ndµ(z) =
∞∑
p=1
q=0

apbqq
s

∫
F∞

e2πizpe2πiz(m+q)Im(z)k+l+2ndµ(z).

But ∫
F∞

e2πizpe2πiz(m+q) Im(z)k+l+2ndµ(z) =

∫ ∞
0

∫ 1

0

e2πix(p−m−q)e−2πy(p+m+q)yk+l+2n−2dxdy

and ∫ 1

0

e2πix(p−m−q)dx =

 0 if p 6= q +m,

1 if p = q +m,

thus∫
F∞

e2πizpe2πiz(m+q) Im(z)k+l+2ndµ(z) =


0 if p 6= q +m,∫∞

0
e−4πy(m+q)yk+l+2n−2dy = Γ(k+l+2n−1)

(4π(m+q))k+l+2n−1 if p = q +m.
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Hence ∫
F∞

f(z)e2πimzDsg(z) Im(z)k+l+2ndµ(z) =
∞∑
q=0

aq+mbqq
s Γ(k + l + 2n− 1)

(4π(m+ q))k+l+2n−1

=
Γ(k + l + 2n− 1)

(4π)k+l+2n−1

∞∑
q=0

aq+mbqq
s

(q +m)k+l+2n−1
.

This completes the proof of Lemma 7. �

3. Proof of Theorem 5

Proof of Theorem 5. Let us write

T ∗g,n(f)(z) =
∞∑
m=1

cme
2πimz

and let Pk,m be the m-th Poincaré series of weight k for Γ (m ≥ 1). Then, by Proposition 1, we have

Γ(k − 1)cm
(4πm)k−1

= 〈T ∗g,n(f), Pk,m〉k .

But, by definition of the adjoint map,

〈T ∗g,n(f), Pk,m〉k = 〈f, Tg,n(Pk,m)〉k+l+2n .

Now,

〈f, Tg,n(Pk,m)〉k+l+2n = 〈f,
q
Pk,m, g

y(k,l)

n
〉k+l+2n

=

∫
F

f(z)
q
Pk,m, g

y(k,l)

n
(z) Im(z)k+l+2ndµ(z)

=

∫
F

f(z)

u

v
∑

γ∈Γ∞\Γ

j(γ, ·)−ke2πimγ(·), g

}

~

(k,l)

n

(z) Im(z)k+l+2ndµ(z)

=

∫
F

∑
γ∈Γ∞\Γ

f(z)
q
j(γ, ·)−ke2πimγ(·), g

y(k,l)

n
(z) Im(z)k+l+2ndµ(z).

By Lemma 6 the last expression converges absolutely. Thus, applying Fubini’s Theorem, it is equal
to ∑

γ∈Γ∞\Γ

∫
F

f(z)
q
j(γ, ·)−ke2πimγ(·), g

y(k,l)

n
(z) Im(z)k+l+2ndµ(z).

Now, in each integral, we make the change of variables z = γ−1z′ and use lemma 4 in order to get∑
γ∈Γ∞\Γ

∫
γF

f(z)
q
e2πim(·), g

y(k,l)

n
(z) Im(z)k+l+2ndµ(z) =

∫
F∞

f(z)
q
e2πim(·), g

y(k,l)

n
(z) Im(z)k+l+2ndµ(z)
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(recall that
⋃
γ∈Γ∞\Γ γF is a disjoint union and it gives a fundamental domain for Γ∞). Using the

definition of the n-th Rankin-Cohen bracket we get∫
F∞

f(z)
q
e2πim(·), g

y(k,l)

n
(z) Im(z)k+l+2ndµ(z)

=
∑
r,s≥0
r+s=n

(−1)r
(
k + n− 1

s

)(
l + n− 1

r

)
mr

∫
F∞

f(z)e2πimzDsg(z)Im(z)k+l+2ndµ(z).

Next we apply Lemma 7 to the integral in this expression and obtain∑
r,s≥0
r+s=n

(−1)r
(
k + n− 1

s

)(
l + n− 1

r

)
mrΓ(k + l + 2n− 1)

(4π)k+l+2n−1

∞∑
q=0

aq+mbqq
s

(q +m)k+l+2n−1

=
Γ(k + l + 2n− 1)

(4π)k+l+2n−1

∞∑
q=0

aq+mbq
(q +m)k+l+2n−1

∑
r,s≥0
r+s=n

(−1)r
(
k + n− 1

s

)(
l + n− 1

r

)
mrqs

=
Γ(k + l + 2n− 1)

(4π)k+l+2n−1

∞∑
q=0

aq+mbqε
(k,l,n)
m,q

(q +m)k+l+2n−1
.

Hence

cm =
(4πm)k−1

Γ(k − 1)

Γ(k + l + 2n− 1)

(4π)k+l+2n−1

∞∑
q=0

aq+mbqε
(k,l,n)
m,q

(q +m)k+l+2n−1

=
Γ(k + l + 2n− 1)

Γ(k − 1)(4π)l+2n
mk−1

∞∑
q=0

aq+mbqε
(k,l,n)
m,q

(q +m)k+l+2n−1
,

as desired. �

4. Applications of Theorem 5

In this section we give some applications of Theorem 5. Observe that even in the case n = 0
these results do not follow from Kohnen’s theorem.

Proposition 2. Let n be an integer with n ≥ 0, f ∈ S12+2n(Γ) with Fourier coefficients (am)m≥1

and σ3(m) =
∑

d/m
d>0

d3. Then

am
m11+n

= (−1)n+1 1440

(n+ 1)(n+ 2)(n+ 3)

∞∑
q=1

aq+mσ3(q)ε
(8,4,n)
m,q

(q +m)11+2n
, for all m ≥ 1.

Proof of Proposition 2. Choosing k = 8, l = 4 and g = E4 ∈ M4(Γ) in Theorem 5, we have
T ∗E4,n

(f) ∈ S8(Γ) = {0}. Thus

Γ(11 + 2n)

Γ(7)(4π)4+2n

∞∑
m=1

m7

(
∞∑
q=0

aq+mbqε
(8,4,n)
m,q

(q +m)11+2n

)
e2πimz = 0 ,

where (bq)q≥0 are the Fourier coefficients of E4. Since

E4(z) = 1 + 240
∞∑
n=1

σ3(n)e2πinz ,
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we have
amε

(8,4,n)
m,0

m11+2n
+ 240

∞∑
q=1

aq+mσ3(q)ε
(8,4,n)
m,q

(q +m)11+2n
= 0 , for all m ≥ 1.

Simple calculations yield ε
(8,4,n)
m,0 = (−1)n (n+3)(n+2)(n+1)

6
mn, thus

(−1)n
(n+ 3)(n+ 2)(n+ 1)

6

am
m11+n

= −240
∞∑
q=1

aq+mσ3(q)ε
(8,4,n)
m,q

(q +m)11+2n
, for all m ≥ 1.

This gives the desired equality. �

Examples:

(1) For n = 0 and f = ∆ one has

τ(m)

m11
= −240

∞∑
q=1

τ(q +m)σ3(q)

(q +m)11
, for all m ≥ 1.

(2) For n = 2 and f = ∆E4 one has

am
m13

= −24
∞∑
q=1

aq+mσ3(q)(36q2 − 45mq + 10m2)

(q +m)15
, for all m ≥ 1.

Proposition 3. Let n be an integer with n ≥ 0, f ∈ S16+2n(Γ) with Fourier coefficients (am)m≥1

and σ5(m) =
∑

d/m
d>0

d5. Then

am
m15+n

= (−1)n
60480

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)

∞∑
q=1

aq+mσ5(q)ε
(10,6,n)
m,q

(q +m)15+2n
, for all m ≥ 1.

Proof of Proposition 3. Choosing k = 10, l = 6 and g = E6 ∈ M6(Γ) in Theorem 5, we have
T ∗E6,n

(f) ∈ S10(Γ) = {0}. Thus

Γ(15 + 2n)

Γ(9)(4π)6+2n

∞∑
m=1

m9

(
∞∑
q=0

aq+mbqε
(10,6,n)
m,q

(q +m)15+2n

)
e2πimz = 0 ,

where (bq)q≥0 are the Fourier coefficients of E6. Since

E6(z) = 1− 504
∞∑
n=1

σ5(n)e2πinz ,

we have
amε

(10,6,n)
m,0

m15+2n
− 504

∞∑
q=1

aq+mσ5(q)ε
(10,6,n)
m,q

(q +m)15+2n
= 0 , for all m ≥ 1.

Simple calculations yield ε
(10,6,n)
m,0 = (−1)n (n+5)(n+4)(n+3)(n+2)(n+1)

120
mn, thus

(−1)n
(n+ 5)(n+ 4)(n+ 3)(n+ 2)(n+ 1)

120

am
m15+n

= 504
∞∑
q=1

aq+mσ5(q)ε
(10,6,n)
m,q

(q +m)15+2n
, for all m ≥ 1.
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This gives the desired equality. �

Examples:

(1) For n = 0 and f = ∆E4 one has

am
m15

= 504
∞∑
q=1

aq+mσ5(q)

(q +m)15
, for all m ≥ 1.

(2) For n = 1 and f = ∆E6 one has

am
m16

= −84
∞∑
q=1

aq+mσ5(q)(10q − 6m)

(q +m)17
, for all m ≥ 1.





CHAPTER 3

Integral representations for the operators T ∗g,n

In this chapter we present two integral representations for the linear operators T ∗g,n introduced in
Theorem 5.

1. Theorem 6: First integral representation

Theorem 6. Under the hypothesis of Theorem 5 we have

T ∗g,n(f)(z) =
ik2k−2(k − 1)

π

∫
H
f(w)

s
1

(· − z)k
, g

{(k,l)

n

(w) Im(w)k+l+2ndµ(w) .

Here and hereafter, if necessary, we write F (·) to empasize that F must be considered as a
function of the variable placed at “·”. In particular, in the above Theorem, the derivatives involved
in the Rankin-Cohen bracket must be taken with respect to that variable.

2. Lemmas for the proof of Theorem 6

In this section we fix z ∈ H and we suppose k, l, n, g and f as in Theorem 5.

Lemma 8. The series
∞∑
m=1

∫
F∞

∣∣mk−1f(w)
q
e2πim(·), g

y(k,l)

n
(w) Im(w)k+l+2ne2πimz

∣∣dµ(w)

converges.

Proof of Lemma 8. Clearly
∞∑
m=1

∫
F∞

∣∣mk−1f(w)
q
e2πim(·), g

y(k,l)

n
(w) Im(w)k+l+2ne2πimz

∣∣dµ(w)

=
∞∑
m=1

mk−1|e2πiz|m
∫
F∞

∣∣f(w)
q
e2πim(·), g

y(k,l)

n
(w) Im(w)k+l+2n

∣∣dµ(w) .

By definition of the n-th Rankin-Cohen bracket and applying the triangular inequality we get
∞∑
m=1

mk−1|e2πiz|m
∫
F∞

∣∣f(w)
q
e2πim(·), g

y(k,l)

n
(w) Im(w)k+l+2n

∣∣dµ(w)

≤
∞∑
m=1

mk−1|e2πiz|m
∑
r,s≥0
r+s=n

∣∣∣∣(k + n− 1

s

)(
l + n− 1

r

)∣∣∣∣mr

∫
F∞

∣∣f(w)e2πimwDsg(w) Im(w)k+l+2n
∣∣dµ(w) .

Now,∫
F∞

∣∣f(w)e2πimwDsg(w) Im(w)k+l+2n
∣∣dµ(w) ≤

∫
F∞

∞∑
p=1
q=0

∣∣apbqe2πiw(p+q+m)
∣∣qs Im(w)k+l+2ndµ(w) ,

31
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and by Lemma 5 there exists C > 0 such that

∫
F∞

∞∑
p=1
q=0

∣∣apbqe2πiw(p+q+m)
∣∣qs Im(w)k+l+2ndµ(w) ≤ C

for all m ≥ 1 and 0 ≤ s ≤ n (the bounds in Lemma 5 decrease with respect to m). Thus

∞∑
m=1

mk−1|e2πiz|m
∑
r,s≥0
r+s=n

∣∣∣∣(k + n− 1

s

)(
l + n− 1

r

)∣∣∣∣mr

∫
F∞

∣∣f(w)e2πimwDsg(w) Im(w)k+l+2n
∣∣dµ(w)

≤ C
∑
r,s≥0
r+s=n

∣∣∣∣(k + n− 1

s

)(
l + n− 1

r

)∣∣∣∣ ∞∑
m=1

mk−1+r|e2πiz|m ,

where the last expression is a sum of finitely many terms, indexed by r and s, and each one of these
terms is finite (using the ratio test for series and recalling that |e2πiz| < 1). This completes the proof
of Lemma 8. �

Lemma 9. Let r be an integer with r ≥ 0. There exists a constant C > 0, depending on f ,g,r
and z, such that

∫
H

∞∑
p=1
q=0

∣∣∣∣apbqe2πiw(p+q)

(w − z)k+r

∣∣∣∣ Im(w)k+l+2ndµ(w)

≤ C
Γ(k + l + 2n− 1)

(2π)k+l+2n−1

(
∞∑
p=1

1

p(k+l+2n)/2−7/8
+

∞∑
p,q=1

1

(p+ q)(k+l+2n)/2−7/8−β

)
.

Moreover, for 1 ≤ s ≤ n one has

∫
H

∞∑
p=1
q=0

∣∣∣∣apbqqse2πiw(p+q)

(w − z)k+r

∣∣∣∣ Im(w)k+l+2ndµ(w) ≤ C
Γ(k + l + 2n− 1)

(2π)k+l+2n−1

∞∑
p,q=1

1

(p+ q)(k+l)/2−7/8−β ,

and each one of these series converges.

Proof of Lemma 9. First we take C1 > 0 such that

|ap| ≤ C1p
(k+l+2n)/2−1/8 and |bp| ≤ C1p

β

for all p ≥ 1 (as before use Theorem 1 with δ = 1
8

for the Fourier coefficients of f and recall that

bp = O(pβ)). We also take C2 =
∫∞
−∞ |u − z|

−k−rdu, which is finite because k + r ≥ 6 and |u − z|
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never vanishes. Writing w = u+ iv with u, v ∈ R and v ≥ 0, we have∫
H

∞∑
p=1
q=0

∣∣∣∣apbqe2πiw(p+q)

(w − z)k+r

∣∣∣∣ Im(w)k+l+2ndµ(w)

=

∫
H

∞∑
p=1

∣∣∣∣ apb0e
2πiwp

(w − z)k+r

∣∣∣∣ Im(w)k+l+2ndµ(w) +

∫
H

∞∑
p=1
q=1

∣∣∣∣apbqe2πiw(p+q)

(w − z)k+r

∣∣∣∣ Im(w)k+l+2ndµ(w)

=|b0|
∞∑
p=1

|ap|
∫
H

e−2πvpvk+l+2n−2

|u+ iv − z|k+r
dudv +

∞∑
p,q=1

|apbq|
∫
H

e−2πv(p+q)vk+l+2n−2

|u+ iv − z|k+r
dudv .

Since |u+ iv − z| ≥ |u− z| (because v ≥ 0), the last expression is clearly less than or equal to

|b0|
∞∑
p=1

|ap|
∫
H

e−2πvpvk+l+2n−2

|u− z|k+r
dudv +

∞∑
p,q=1

|apbq|
∫
H

e−2πv(p+q)vk+l+2n−2

|u− z|k+r
dudv .

But ∫
H

e−2πv(p+q)vk+l+2n−2

|u− z|k+r
dudv =

∫ ∞
0

∫ ∞
−∞

e−2πv(p+q)vk+l+2n−2

|u− z|k+r
dudv

=

(∫ ∞
0

e−2πv(p+q)vk+l+2n−2dv

)(∫ ∞
−∞

1

|u− z|k+r
du

)
=

Γ(k + l + 2n− 1)

(2π(p+ q))k+l+2n−1
C2 ,

for any pair of integers p, q with p ≥ 1 and q ≥ 0. Thus

|b0|
∞∑
p=1

|ap|
∫
H

e−2πvpvk+l+2n−2

|u− z|k+r
dudv +

∞∑
p,q=1

|apbq|
∫
H

e−2πv(p+q)vk+l+2n−2

|u− z|k+r
dudv

=|b0|
∞∑
p=1

|ap|
Γ(k + l + 2n− 1)

(2πp)k+l+2n−1
C2 +

∞∑
p,q=1

|apbq|
Γ(k + l + 2n− 1)

(2π(p+ q))k+l+2n−1
C2

=
C2Γ(k + l + 2n− 1)

(2π)k+l+2n−1

(
|b0|

∞∑
p=1

|ap|
pk+l+2n−1

+
∞∑

p,q=1

|apbq|
(p+ q)k+l+2n−1

)

≤C2Γ(k + l + 2n− 1)

(2π)k+l+2n−1

(
|b0|C1

∞∑
p=1

p(k+l+2n)/2−1/8

pk+l+2n−1
+ C2

1

∞∑
p,q=1

p(k+l+2n)/2−1/8qβ

(p+ q)k+l+2n−1

)

≤C1C2Γ(k + l + 2n− 1)

(2π)k+l+2n−1

(
|b0|

∞∑
p=1

p(k+l+2n)/2−1/8

pk+l+2n−1
+ C1

∞∑
p,q=1

(p+ q)(k+l+2n)/2−1/8(p+ q)β

(p+ q)k+l+2n−1

)

=
C1C2Γ(k + l + 2n− 1)

(2π)k+l+2n−1

(
|b0|

∞∑
p=1

1

p(k+l+2n)/2−7/8
+ C1

∞∑
p,q=1

1

(p+ q)(k+l+2n)/2−7/8−β

)
.
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Similarly, we now observe that for 1 ≤ s ≤ n we have∫
H

∞∑
p=1
q=0

∣∣∣∣apbqqse2πiw(p+q)

(w − z)k+r

∣∣∣∣ Im(w)k+l+2ndµ(w) =

∫
H

∞∑
p,q=1

∣∣∣∣apbqqse2πiw(p+q)

(w − z)k+r

∣∣∣∣ Im(w)k+l+2ndµ(w)

=
∞∑

p,q=1

|apbq|qs
∫
H

e−2πv(p+q)vk+l+2n−2

|u+ iv − z|k+r
dudv

≤
∞∑

p,q=1

|apbq|qs
∫
H

e−2πv(p+q)vk+l+2n−2

|u− z|k+r
dudv

=
∞∑

p,q=1

|apbq|qs
Γ(k + l + 2n− 1)

(2π(p+ q))k+l+2n−1
C2

=
C2Γ(k + l + 2n− 1)

(2π)k+l+2n−1

∞∑
p,q=1

|apbq|qs

(p+ q)k+l+2n−1

≤ C2
1C2Γ(k + l + 2n− 1)

(2π)k+l+2n−1

∞∑
p,q=1

p(k+l+2n)/2−1/8qβ+s

(p+ q)k+l+2n−1

≤ C2
1C2Γ(k + l + 2n− 1)

(2π)k+l+2n−1

∞∑
p,q=1

(p+ q)(k+l+2n)/2−1/8(p+ q)β+s

(p+ q)k+l+2n−1

=
C2

1C2Γ(k + l + 2n− 1)

(2π)k+l+2n−1

∞∑
p,q=1

1

(p+ q)(k+l)/2−7/8−β .

If we now put C = max{C2
1C2, C1C2|b0|}, we get the inequalities in the Lemma. The statement

about convergence is obtained as in the proof of Lemma 5. �

Lemma 10. If F : H→ C is any holomorphic function and d is an integer, then

f(z − d)
q
F, g

y(k,l)

n
(z − d) Im(z − d)k+l+2n = f(z)

q
F ( · − d) , g

y(k,l)

n
(z) Im(z)k+l+2n .

Proof of Lemma 10. Since f is a modular form, it is Z-periodic. Thus f(z − d) = f(z).
Clearly Im(z − d) = Im(z). Hence, we only have to prove

q
F, g

y(k,l)

n
(z − d) =

q
F ( · − d) , g

y(k,l)

n
(z) .

Let Td =

(
1 −d
0 1

)
. Then Td ∈ Γ and by Lemma 3

q
F, g

y(k,l)

n
|k+l+2n[Td] =

q
F |k[Td] , g|l[Td]

y(k,l)

n
.

Since g|l[Td] = g and Tdz = z − d, we have

j(Td, z)
−k−l−2n

q
F, g

y(k,l)

n
(z − d) =

q
j(Td, ·)−kF ( · − d) , g

y(k,l)

n
(z) .

But

j(Td, · ) = 1 ,

thus q
F, g

y(k,l)

n
(z − d) =

q
F ( · − d) , g

y(k,l)

n
(z) .
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�

Lemma 11. The integral∫
F∞

∑
d∈Z

∣∣∣∣∣f(w)

s
1

(· − z + d)k
, g

{(k,l)

n

(w) Im(w)k+l+2n

∣∣∣∣∣ dµ(w)

converges.

As usual, one can check that the integrand is Z-periodic, so the integral is well defined (it is
independent of the choice of the fundamental domain F∞).

Proof of Lemma 11. Using that the integrand is non-negative, we write∫
F∞

∑
d∈Z

∣∣∣∣∣f(w)

s
1

(· − z + d)k
, g

{(k,l)

n

(w) Im(w)k+l+2n

∣∣∣∣∣ dµ(w)

=
∑
d∈Z

∫
F∞

∣∣∣∣∣f(w)

s
1

(· − z + d)k
, g

{(k,l)

n

(w) Im(w)k+l+2n

∣∣∣∣∣ dµ(w) .

Next, in each integral, we make the change of variables w′ = w + d and use Lemma 10 in order to
obtain

∑
d∈Z

∫
F∞

∣∣∣∣∣f(w)

s
1

(· − z + d)k
, g

{(k,l)

n

(w) Im(w)k+l+2n

∣∣∣∣∣ dµ(w)

=
∑
d∈Z

∫
F∞+d

∣∣∣∣∣f(w)

s
1

(· − z)k
, g

{(k,l)

n

(w) Im(w)k+l+2n

∣∣∣∣∣ dµ(w)

=

∫
H

∣∣∣∣∣f(w)

s
1

(· − z)k
, g

{(k,l)

n

(w) Im(w)k+l+2n

∣∣∣∣∣ dµ(w) .

Here we have used that
⋃
d∈Z F∞ + d = H. Now, by the triangular inequality and the definition of

the n-th Rankin-Cohen bracket, we get∫
H

∣∣∣∣∣f(w)

s
1

(· − z)k
, g

{(k,l)

n

(w) Im(w)k+l+2n

∣∣∣∣∣ dµ(w)

≤
∑
r,s≥0
r+s=n

∣∣∣∣(k + n− 1

s

)(
l + n− 1

r

)∣∣∣∣ ∫
H

∣∣∣∣f(w)Dr 1

(w − z)k
Dsg(w)

∣∣∣∣ Im(w)k+l+2ndµ(w) .

By simple calculations we have∣∣∣∣Dr 1

(w − z)k

∣∣∣∣ =

(
k + r − 1

r

)
r!

(2π)r

∣∣∣∣ 1

(w − z)k+r

∣∣∣∣ ,
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thus ∑
r,s≥0
r+s=n

∣∣∣∣(k + n− 1

s

)(
l + n− 1

r

)∣∣∣∣ ∫
H

∣∣∣∣f(w)Dr 1

(w − z)k
Dsg(w)

∣∣∣∣ Im(w)k+l+2ndµ(w)

=
∑
r,s≥0
r+s=n

∣∣∣∣(k + n− 1

s

)(
l + n− 1

r

)∣∣∣∣ (k + r − 1

r

)
r!

(2π)r

∫
H

∣∣∣∣f(w)Dsg(w)

(w − z)k+r

∣∣∣∣ Im(w)k+l+2ndµ(w)

But ∫
H

∣∣∣∣f(w)Dsg(w)

(w − z)k+r

∣∣∣∣ Im(w)k+l+2ndµ(w) ≤
∫
H

∞∑
p=1
q=0

∣∣∣∣apbqqse2πiw(p+q)

(w − z)k+r

∣∣∣∣ Im(w)k+l+2ndµ(w) ,

(recall that (ap)p≥1 and (bq)q≥0 are the Fourier coefficients of f and g respectively) and by Lemma 9
this expression is finite. Thus, above we have a sum of finitely many terms, indexed by r and s, and
each one of them is finite. This proves Lemma 11. �

3. Proof of Theorem 6

As in the proof of Theorem 5 we let

T ∗g,n(f)(z) =
∞∑
m=1

cme
2πimz .

In the first part of Section 3, Chapter 2, we proved that

Γ(k − 1)cm
(4πm)k−1

=

∫
F∞

f(w)
q
e2πim(·), g

y(k,l)

n
(w) Im(w)k+l+2ndµ(w) .

Thus

T ∗g,n(f)(z) =
(4π)k−1

Γ(k − 1)

∞∑
m=1

mk−1

(∫
F∞

f(w)
q
e2πim(·), g

y(k,l)

n
(w) Im(w)k+l+2ndµ(w)

)
e2πimz

=
(4π)k−1

Γ(k − 1)

∞∑
m=1

∫
F∞

mk−1f(w)
q
e2πim(·), g

y(k,l)

n
(w) Im(w)k+l+2ne2πimzdµ(w) .

By Lemma 8 this last expression converges absolutely. Thus, by Fubini’s theorem

T ∗g,n(f)(z) =
(4π)k−1

Γ(k − 1)

∫
F∞

∞∑
m=1

mk−1f(w)
q
e2πim(·), g

y(k,l)

n
(w) Im(w)k+l+2ne2πimzdµ(w)

=
(4π)k−1

Γ(k − 1)

∫
F∞

f(w)

t
∞∑
m=1

mk−1e2πim( · −z) , g

|(k,l)

n

(w) Im(w)k+l+2ndµ(w) .

Now, we use the identity

∞∑
m=1

mκ−1e2πimξ =
(κ− 1)!

(−2πi)κ

∑
d∈Z

1

(ξ + d)κ
for ξ ∈ H, κ ∈ Z, κ ≥ 2 ,
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(which is a consequence of the Poisson summation formula) with ξ = w−z and κ = k in the previous
equation and obtain

T ∗g,n(f)(z) =
(4π)k−1(k − 1)!

Γ(k − 1)(−2πi)k

∫
F∞

f(w)

t ∑
d∈Z

1

(· − z + d)k
, g

|(k,l)

n

(w) Im(w)k+l+2ndµ(w)

=
ik2k−2(k − 1)

π

∫
F∞

∑
d∈Z

f(w)

s
1

(· − z + d)k
, g

{(k,l)

n

(w) Im(w)k+l+2ndµ(w) .

By Lemma 11 this integral converges absolutely, so we can apply Fubini’s theorem again.∫
F∞

∑
d∈Z

f(w)

s
1

(· − z + d)k
, g

{(k,l)

n

(w) Im(w)k+l+2ndµ(w)

=
∑
d∈Z

∫
F∞

f(w)

s
1

(· − z + d)k
, g

{(k,l)

n

(w) Im(w)k+l+2ndµ(w) .

Next, en each integral we make the change of variables w′ = w + d and use Lemma 10 in order to
write the last series as

∑
d∈Z

∫
F∞+d

f(w)

s
1

(· − z)k
, g

{(k,l)

n

(w) Im(w)k+l+2ndµ(w)

=

∫
H
f(w)

s
1

(· − z)k
, g

{(k,l)

n

(w) Im(w)k+l+2ndµ(w)

(recall that
⋃
d∈Z F∞ + d = H). This completes the proof of Theorem 6. �

4. Theorem 7: Second integral representation

For an even integer k ≥ 4 let us define

hk(z1, z2) :=
∑
γ∈Γ

j(γ, z1)−k(γz1 + z2)−k =
∑

a,b,c,d∈Z
ad−bc=1

(cz1z2 + az1 + dz2 + b)−k , where z1, z2 ∈ H.

Then hk is a holomorphic function in each variable and it is symmetric, i.e. h(z1, z2) = h(z2, z1).
Moreover, hk(z1, z2) is a cuspidal form over Γ in each variable (see Lemmas 13 and 14 below). Don
Zagier considered this function in [10], where he obtained integral representations for certain opera-
tors called Hecke operators.

Our second integral representation for the operators T ∗g,n also involves the function hk.

Theorem 7. Under the hypothesis of Theorem 5 we also have

T ∗g,n(f)(z) =
ik2k−3(k − 1)

π

∫
F

f(w)Jhk(·,−z), gK(k,l)
n (w) Im(w)k+l+2ndµ(w) .



38 3. INTEGRAL REPRESENTATIONS FOR THE OPERATORS T ∗g,n

5. Basic properties of hk

Lemma 12. For any x, y ∈ R with y > 0∑
d∈Z

1

|x+ d+ iy|k
≤
∑
d∈Z

1

|d+ iy|k
+

1

yk
.

Proof of Lemma 12. Let % = x −max{l ∈ Z : l ≤ x} (i.e. the fractional part of x). Then
% ∈ [0, 1[ and x = l0 + % where l0 ∈ Z. Hence∑

d∈Z

1

|x+ d+ iy|k
=

∑
d∈Z

1

|l0 + %+ d+ iy|k

=
∑
d∈Z

1

|%+ d+ iy|k

=
∞∑
d=0

1

|%+ d+ iy|k
+
−∞∑
d=−1

1

|%+ d+ iy|k
.

Since |%+ d+ iy| ≥ |d+ iy| for all d ≥ 0 we obtain
∞∑
d=0

1

|%+ d+ iy|k
≤

∞∑
d=0

1

|d+ iy|k
.

For d < 0 we have |%+ d+ iy| ≥ |d+ 1 + iy|, thus

−∞∑
d=−1

1

|%+ d+ iy|k
≤
−∞∑
d=0

1

|d+ iy|k
.

Hence ∑
d∈Z

1

|x+ d+ iy|k
≤

∞∑
d=0

1

|d+ iy|k
+
−∞∑
d=0

1

|d+ iy|k
=
∑
d∈Z

1

|d+ iy|k
+

1

yk
.

�

Lemma 13. For any fixed z2 ∈ H, the series∑
γ∈Γ

j(γ, z1)−k(γz1 + z2)−k

converges absolutely and uniformly on any compact subset of H.

Proof of Lemma 13. We have∑
γ∈Γ

|j(γ, z1)|−k|γz1 + z2|−k =
∑

γ∈Γ∞\Γ

|j(γ, z1)|−k
∑
α∈Γ∞

1

|αγ(z1) + z2|k

= 2
∑

γ∈Γ∞\Γ

|j(γ, z1)|−k
∑
d∈Z

1

|γ(z1) + d+ z2|k
,

since every translation appears twice in Γ∞. Now,

|γ(z1) + d+ z2| = |Re(γ(z1) + z2) + d+ iIm(γ(z1) + z2)| ≥ |Re(γ(z1) + z2) + d+ iIm(z2)|
and by Lemma 12∑

d∈Z

1

|Re(γ(z1) + z2) + d+ iIm(z2)|k
≤
∑
d∈Z

1

|d+ iIm(z2)|k
+

1

Im(z2)k
.
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Thus ∑
d∈Z

1

|γ(z1) + d+ z2|k
≤
∑
d∈Z

1

|d+ iIm(z2)|k
+

1

Im(z2)k
.

Since k ≥ 4 this last series converges. Hence, there exists D > 0 (depending only on z2) such that∑
γ∈Γ

|j(γ, z1)|−k|γz1 + z2|−k ≤ 2D
∑

γ∈Γ∞\Γ

|j(γ, z1)|−k .

One observes that for

(
a1 b1

c1 d1

)
and

(
a2 b2

c2 d2

)
in Γ,

Γ∞

(
a1 b1

c1 d1

)
= Γ∞

(
a2 b2

c2 d2

)
⇐⇒ (c1, d1) = ±(c2, d2) .

Thus ∑
γ∈Γ∞\Γ

|j(γ, z1)|−k ≤
∑
c,d∈Z

(c,d) 6=(0,0)

1

|cz + d|k

and this last series converges uniformly on any compact subset of H (as in the case of the k-th
Eisenstein series). �

Lemma 14. hk is symmetric and it is a cuspidal form of weight k over Γ in each variable.

Proof of Lemma 14. By Lemma 13 hk is a well defined complex-valued function on H × H.
The symmetry follows immediately from the definition

hk(z1, z2) =
∑

ad−bc=1

(cz1z2 + az1 + dz2 + b)−k .

Now, fix z2 ∈ H. By Lemma 13, hk(z1, z2) is a holomorphic function of z1 on H. For α ∈ Γ we have

hk(αz1, z2) =
∑
γ∈Γ

j(γ, αz1)−k(γαz1 + z2)−k .

Since

j(γα, z1) = j(γ, αz1)j(α, z1) ,

we obtain

hk(αz1, z2) = j(α, z1)k
∑
γ∈Γ

j(γα, z1)−k(γαz1 + z2)−k = j(α, z1)khk(z1, z2) .

Moreover, using that hk is symmetric we have

lim
Im(z1)→+∞

hk(z1, z2) = lim
Im(z1)→+∞

hk(z2, z1) = lim
Im(z1)→+∞

∑
γ∈Γ

j(γ, z2)−k(γz2 + z1)−k = 0 ,

thus hk(z1, z2) vanishes at i∞ with respect to z1. All these properties yield that hk is a cuspidal form
over Γ in the first variable. Since hk is symmetric, the same result holds for the second variable. �
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6. Proof of Theorem 7

By Theorem 6 we have

T ∗g,n(f)(z) =
ik2k−2(k − 1)

π

∫
H
f(w)

s
1

(· − z)k
, g

{(k,l)

n

(w) Im(w)k+l+2ndµ(w) .

Thus

T ∗g,n(f)(z) =
ik2k−2(k − 1)

π

1

2

∑
γ∈Γ

∫
γF

f(w)

s
1

(· − z)k
, g

{(k,l)

n

(w) Im(w)k+l+2ndµ(w)

=
ik2k−3(k − 1)

π

∑
γ∈Γ

∫
γF

f(w)

s
1

(· − z)k
, g

{(k,l)

n

(w) Im(w)k+l+2ndµ(w) ,

where the factor 1
2

appears because γF = (−γ)F for every γ ∈ Γ. Now, in each integral we make
the change of variables w = γw′ and we use the invariance of the hyperbolic measure, so that

∑
γ∈Γ

∫
γF

f(w)

s
1

(· − z)k
, g

{(k,l)

n

(w) Im(w)k+l+2ndµ(w)

=
∑
γ∈Γ

∫
F

f(γw)

s
1

(· − z)k
, g

{(k,l)

n

(γw) Im(γw)k+l+2ndµ(w) .

Since

∑
γ∈Γ

∫
F

∣∣∣∣∣f(γw)

s
1

(· − z)k
, g

{(k,l)

n

(γw) Im(γw)k+l+2n

∣∣∣∣∣ dµ(w)

=
∑
γ∈Γ

∫
γF

∣∣∣∣∣f(w)

s
1

(· − z)k
, g

{(k,l)

n

(w) Im(w)k+l+2n

∣∣∣∣∣ dµ(w)

=2

∫
H

∣∣∣∣∣f(w)

s
1

(· − z)k
, g

{(k,l)

n

(w) Im(w)k+l+2n

∣∣∣∣∣ dµ(w)

the expression above converges absolutely (this integral appears in the proof of Lemma 11). Thus,
by Fubini’s theorem

∑
γ∈Γ

∫
F

f(γw)

s
1

(· − z)k
, g

{(k,l)

n

(γw) Im(γw)k+l+2ndµ(w)

=

∫
F

∑
γ∈Γ

f(γw)

s
1

(· − z)k
, g

{(k,l)

n

(γw) Im(γw)k+l+2ndµ(w) .
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On the other hand,

f(γw)

s
1

(· − z)k
, g

{(k,l)

n

(γw) Im(γw)k+l+2n

=j(γ, w)k+l+2nf(w)

s
1

(· − z)k
, g

{(k,l)

n

(γw)
Im(w)k+l+2n

|j(γ, w)|2(k+l+2n)

=f(w)j(γ, w)−(k+l+2n)

s
1

(· − z)k
, g

{(k,l)

n

(γw) Im(w)k+l+2n

=f(w)

s
1

(· − z)k
, g

{(k,l)

n

∣∣∣∣∣
k+l+2n

[γ](w) Im(w)k+l+2n

=f(w)

s
1

(· − z)k

∣∣∣∣
k

[γ] , g|l[γ]

{(k,l)

n

(w) Im(w)k+l+2n

=f(w)

s
j(γ, ·)−k 1

(γ(·)− z)k
, g

{(k,l)

n

(w) Im(w)k+l+2n .

Hence ∫
F

∑
γ∈Γ

f(γw)

s
1

(· − z)k
, g

{(k,l)

n

(γw) Im(γw)k+l+2ndµ(w)

=

∫
F

∑
γ∈Γ

f(w)

s
j(γ, ·)−k 1

(γ(·)− z)k
, g

{(k,l)

n

(w) Im(w)k+l+2ndµ(w)

=

∫
F

f(w)

t ∑
γ∈Γ

j(γ, ·)−k 1

(γ(·)− z)k
, g

|(k,l)

n

(w) Im(w)k+l+2ndµ(w)

=

∫
F

f(w)Jhk(·,−z), gK(k,l)
n (w) Im(w)k+l+2ndµ(w) .

This completes the proof of Theorem 7. �

7. Applications of Theorems 6 and 7

Proposition 4 (Integral reproduction formulas for cuspidal forms). Let k be an integer and
f ∈ Sk(Γ). Then

f(z) =
ik2k−2(k − 1)

π

∫
H
f(w)

1

(w − z)k
Im(w)kdµ(w)

and

f(z) =
ik2k−3(k − 1)

π

∫
F

f(w)hk(w,−z)Im(w)kdµ(w).

Proof of Proposition 4. We can assume k ≥ 12 even, otherwise Sk(Γ) = {0} and the identities
hold trivially.
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For k ≥ 12 even, we choose l = n = 0 and g = 1 ∈M0(Γ) in Theorem 6 (resp. Theorem 7). Since
T1 : Sk(Γ) → Sk(Γ) is the identity function, we have T ∗1 (f) = f for any f ∈ Sk(Γ) and we get the
desired equations. �

Proposition 5 (Partial integral reproduction formulas for cuspidal forms). Let k, l, n be integers
with k ≥ 12, l, n ≥ 0 and g ∈Ml. Suppose that either:

(a) g is cuspidal, or
(b) g is not cuspidal and l < k − 3.

Then there exists an orthonormal basis {f1, ..., fd} of Sk(Γ) such that∥∥∥qfi, gy(k,l)

n

∥∥∥2

k+l+2n
fi(z) =

ik2k−2(k − 1)

π

∫
H

q
fi, g

y(k,l)

n
(w)

s
1

(· − z)k
, g

{(k,l)

n

(w) Im(w)k+l+2ndµ(w)

and∥∥∥qfi, gy(k,l)

n

∥∥∥2

k+l+2n
fi(z) =

ik2k−3(k − 1)

π

∫
F

q
fi, g

y(k,l)

n
(w)

q
hk(·,−z), g

y(k,l)

n
(w) Im(w)k+l+2ndµ(w)

for any i ∈ {1, ..., d}.

Proof of Proposition 5. Since T ∗g,nTg,n : Sk(Γ) → Sk(Γ) is self-adjoint, there exists an or-
thonormal basis {f1, ..., fd} of Sk(Γ) where each fi is an eigenvector of T ∗g,nTg,n. Write

T ∗g,nTg,n(fi) = λifi, for i ∈ {1, ..., d}.
Then

〈λifi, fi〉k = 〈T ∗g,nTg,n(fi), fi〉 = 〈Tg,n(fi), Tg,n(fi)〉k+l+2n ,

thus

λi =
〈Tg,n(fi), Tg,n(fi)〉k+l+2n

〈fi, fi〉k
=
∥∥∥qfi, gy(k,l)

n

∥∥∥2

k+l+2n
.

Hence

T ∗g,n(
q
fi, g

y(k,l)

n
) = T ∗g,nTg,n(fi) =

∥∥∥qfi, gy(k,l)

n

∥∥∥2

k+l+2n
fi .

But by Theorems 6 and 7 we have

T ∗g,n(
q
fi, g

y(k,l)

n
) =

ik2k−2(k − 1)

π

∫
H

q
fi, g

y(k,l)

n
(w)

s
1

(· − z)k
, g

{(k,l)

n

(w) Im(w)k+l+2ndµ(w)

=
ik2k−3(k − 1)

π

∫
F

q
fi, g

y(k,l)

n
(w)

q
hk(·,−z), g

y(k,l)

n
(w) Im(w)k+l+2ndµ(w)

This completes the proof of Proposition 5. �

Example: Choose k = 12, l = 4 and g = E4. Since
{

∆
‖∆‖12

}
is the only orthonormal basis of

S12(Γ), we have for all n ≥ 0 that
∥∥∥q∆, E4

y(12,4)

n

∥∥∥
16+2n

‖∆‖12


2

∆(z) =
2109

π

∫
H

q
∆, E4

y(12,4)

n
(w)

s
1

(· − z)12
, E4

{(12,4)

n

(w) Im(w)16+2ndµ(w) .



Bibliography

[1] T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory (second edition), Graduate Texts
in Mathematics 41, Springer-Verlag, 1990.

[2] Y. J. Choie, H. Kim, M. Knopp, Construction of Jacobi forms, Math. Z. 219, 71-76, 1995.
[3] H. Iwaniec, Topics in Classical Automorphic Forms, Graduate Studies in Mathematics, Volume 17, American

Mathematical Society, 1997.
[4] H. Klingen, Introductory lectures on Siegel modular forms, Cambridge Studies in Advance Mathematics 20,

Cambridge University Press, 1990.
[5] N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Graduate Texts in Mathematics 97, Springer-

Verlag New York, 1984.
[6] W. Kohnen, Cusp forms and special values of certain Dirichlet series, Math. Z. 207, 657-660, 1991.
[7] S. Lang, Introduction to Modular Forms, Grundlehren der mathematischenWissenschaften 222, Springer-Verlag

Berlin Heidelberg, 1976.
[8] T. Miyake, Modular Forms, Springer Monographs in Mathematics, Springer-Verlag Berlin Heidelberg, 1989.
[9] D. Zagier, Modular forms and differential operators, Proc. Indian Acad. Sci. (Math. Sci.), Vol. 104, No. 1,

57-75, February 1994.
[10] D. Zagier, The Eichler-Selberg Trace Formula on SL2(Z), appendix in Introduction to Modular Forms of S.

Lang, Grundlehren der mathematischen Wissenschaften 222, Springer-Verlag Berlin Heidelberg, 1976.

43


