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Abstract

Modeling spatial and spatio-temporal data is a challenging task in statistics. In many

applications, the observed data can be modeled using Gaussian, skew-Gaussian or even

restricted random field models. However, in several fields, such as population genetics,

epidemiology, aquaculture, among others, the data of interest are often count data, and

therefore the mentioned models are not suitable for the analysis of this type of data.

Consequently, there is a need for spatial and spatio-temporal models that are able to

properly describe data coming from counting processes. Commonly two approaches are

used to model this type of data: generalized linear mixed models (GLMMs) with Gaussian

random field (GRF) effects, and copula models. Unfortunately, these approaches do not

give an explicit characterization of the count random field such us their q-dimensional

distribution or correlation function. It is important to stress that GLMMs models induces

a discontinuity in the path. Therefore, the correlation function is not continuous at

the origin and samples located nearby are more dissimilar than in the continuous case.

Moreover, there are cases in which the copula representation for discrete distributions is

not unique, so it is unidentifiable. Hence, to deal with the latter mentioned issues, we

propose a novel approach to model spatial and spatio-temporal count data in an efficient

and accurate manner. Briefly, starting from independent copies of a “parent” GRF, a set

of transformations can be applied, and the result is a non-Gaussian random field. This

approach is based on the characterization of count random fields that inherit some of the

well-known geometric properties from GRFs. For instance, if one chooses an isotropic

correlation function defined in the parent GFR, then the count random fields have an

ix
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isotropic correlation function. Firstly, we define a general class of count random fields.

Then, three particular count random fields are studied. The first one is a Poisson random

field, the second one is a count random field that considers excess zeros and the last

one is a count random field that considers over-dispersion. Additionally, a simulation

study will be developed to assess the performance of the proposed models. In that way,

we are going to evaluate them through several simulation scenarios, making variations

in the parameters. The results show accurate estimations of the parameters for different

scenarios. Additionally, we assess the performance of the optimal linear prediction of the

proposed models and it is compared with GLMMs and copula models. The results show

that the proposed models have a better performance than GLMMs models and a quite

similar performance with copula models. Finally, we analyze two real data applications.

The first one considers a zero inflated version of the proposed Poisson random field to deal

with excess zeros and the second one considers an over-dispersed count random field.



Introduction

Spatial or spatio-temporal count data are routinely collected in many earth and social

sciences, such as ecology, epidemiology, demography, agriculture and geography. For

instance, in ecological sciences, an important goal is to estimate and predict the temporal

evolution of species distribution (in terms of abundance) in a region (Wang et al., 2015;

Quiroz and Prates, 2018).

The analysis of spatial and spatio-temporal count data requires the development of

statistical models for geo-referenced count data that take into account the spatial and

spatio-temporal dependence. Random fields or stochastic processes are useful models

when dealing with geo-referenced spatial or spatio-temporal data (Stein, 1999; Cressie

and Wikle, 2011; Banerjee et al., 2014). In particular, the Gaussian random field is widely

used due to its attractive properties and mathematical tractability (Gelfand and Schliep,

2016). Gaussianity is clearly a restrictive assumption when dealing with counting data.

However, many models of current use for spatial count data employ Gaussian random

fields as building blocks.

The first example is the hierarchical model approach proposed by Diggle et al. (1998),

which can be viewed as a generalized linear mixed model (Diggle and Ribeiro, 2007;

Diggle and Giorgi, 2019). Under this framework, non-Gaussian models for spatial data

can be specified using a link function and a latent Gaussian random field through a

conditional independence assumption. In particular, the Poisson Log-Gaussian random

field (Poisson LG hereafter) has been widely applied for modeling count spatial data (see

for instance Christensen and Waagepetersen, 2002; Guillot et al., 2009; De Oliveira, 2013,

xi
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for interesting applications and in-depth study of its properties). Similar models, that

can be defined hierarchically in terms of the specification of the first two moments and a

correlation function have been proposed in Monestiez et al. (2006) and De Oliveira (2014).

It is important to stress that the conditional independence assumption underlying these

kind of models leads to (a) random fields with marginal distributions that are not Poisson

and (b) random fields with a “forced” nugget effects that implies no mean square

continuity.
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Figure (1) A realization of a Poisson LG random field where the LG random field is

given by eµ+
√
σ2G(s) with G a standard Gaussian random field with parameters µ = 0.5

and σ2 = 0.05 (a) and its associated histogram (c). A realization of our proposed Poisson

random field with λ = e0.5+0.05/2 (b) and its associated histogram (d). In both cases the

underlying isotropic correlation is ρ(r) = (1− r/0.5)4
+.



Introduction xiii

To illustrate this situation, Figure 1 (a) shows a realization on the unit square of a Poisson

LG random field, assuming eµ+
√
σ2G(s) as an LG random field, where G is the standard

Gaussian random field with isotropic correlation ρ(r) = (1 − r/0.5)4
+ belonging to the

Generalized Wendland family (Bevilacqua et al., 2019), µ = 0.5, σ2 = 0.05, r is the

spatial distance and (·)+ denotes the positive part. In this case, the mean of the Poisson LG

field is given by λ = e0.5+0.05/2. The associated histogram is shown in 1 (d). Additionally,

Figure 1 (b) shows a realization and the associated histogram of our proposed random

field (see Equation (2.2)), with the same mean and underlying correlation function of the

Poisson LG model. A quick analysis of both figures reveal a “whitening” effect on the

Poisson LG random field’s paths because of the “forced” discontinuity at the origin of the

correlation function of the Poisson LG (see Section 2.2.1). This potential problem, which

has also been highlighted by De Oliveira (2013), indicates that the Poisson LG random

field may impose severe restrictions on the correlation structure and may be inadequate to

model spatial count data mostly consisting of small counts.

The second example is the Poisson spatial model obtained using Gaussian copula

(Kazianka and Pilz, 2010; Masarotto and Varin, 2012; Joe, 2014), which is referred

to as the Poisson GC random field hereafter. This approach has some potential

benefits with respect to the hierarchical models (see Han and De Oliveira, 2016, for a

comparison between these two approaches). For instance, the resulting random field has

Poisson marginals and can be mean square continuous or not depending on if the latent

Gaussian random field is mean square continuous or not. In addition to some criticisms

concerning the lack of uniqueness of the copula when applied to discrete data (Genest

and Neslehova, 2007; Trivedi and Zimmer, 2017), in this approach it is not clear what the

underlying physical mechanism generating the data is, making it less interesting from an

interpretability perspective.

Our proposal tries to solve the drawbacks of the Poisson LG and of the Poisson

GC approaches by specifying a new class of spatial counting random fields based on

the Poisson counting process (Cox, 1970; Mainardi et al., 2007; Ross, 2008) applied

to the spatial setting. Specifically, we first consider a random field with exponential
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marginal distributions obtained as a rescaled sum of two independent copies of an

underlying standard Gaussian random field. Then, by considering independent copies

of the exponential random field as ’inter-arrival times’ in the counting renewal processes

framework, we obtain a (non-)stationary random field with Poisson marginal distributions.

As a consequence, the proposed model can be viewed as a spatial generalization of the

Poisson process.

For the novel Poisson random field, we provide the covariance function and analytic

expressions for the bivariate distribution in terms of the regularized incomplete Gamma

and confluent hypergeometric functions (Gradshteyn and Ryzhik, 2007). It turns out that

the dependence of the proposed Poisson random field is indexed by the correlation function

of the underlying Gaussian random field and by the mean parameter. It is important

to stress that our theoretical results are inspired by the two-dimensional renewal theory

described in Hunter (1974). We propose two additional random fields that can deal with the

excessive number of zeros and over-dispersion in the data. Specifically, using a Bernoulli

random field we develop a zero inflated version of the proposed Poisson random field;

and in order to deal with over-dispersed data, we propose a random field version of

the Poisson-Erlang mixture model, i.e., a mixture of Poisson random fields with Erlang

random field mixing weights.

The Poisson random field estimation is conducted using the weighted pairwise likelihood

(wpl) method (Lindsay, 1988; Varin et al., 2011; Bevilacqua and Gaetan, 2015) to

exploit the results obtained about the bivariate distribution. In particular, in an extensive

simulation study, we explore the efficiency of the wpl method when estimating the

parameters of the proposed Poisson random field. We also explore the statistical efficiency

of a Gaussian misspecified version of the wpl method (Gouriéroux et al., 2017; Bevilacqua

et al., 2020), which is also called Gaussian quasi-likelihood in some literature (Masuda,

2013). The findings show that the misspecified wpl leads to a less efficient estimator, in

particular for low counts. However, the method has some computational benefits. This

method is also used to the zero inflated Poisson random fields and the Poisson-Erlang

mixture random field and the results are similar.
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In addition, we compare the performance of the optimal linear predictor under the

Poisson and zero inflated Poisson proposed models with the optimal predictors obtained

using the GC and LG models. The proposed over-dispersed model was compared with

the Negative Binomal GC and Negative Binomal LG models. Finally, in the real data

application, we consider a zero inflated Poisson random field to deal with excess zeros

in the reindeer pellet-group counts data using the LG and GC models as benchmarks;

and to deal with the over-dispersion in the weed counts from the Bjertorp farm, we

consider a Poisson-Erlang mixture random field using the Negative Binomial LG and

Negative Binomial GC models as benchmarks . The proposed methods in this thesis

are implemented in the R (R Core Team, 2020) package GeoModels (Bevilacqua et al.,

2019).

The manuscript is organized as follows: Chapter 1 provides background material

of spatial modeling, spatio-temporal modeling and renewal theory. Chapter 2,3 and

4 provides the details of Poisson, zero inflated Poisson, and Poisson-Erlang mixture

random fields, respectively. Chapter 5 contains applications with excess of zeros and

over dispersed spatial count data. Chapter 2,3 and Section 1 of Chapter 5 form part of a

submitted paper, while Chapter 4 and Section 2 of Chapter 5 are part of a working paper.
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Chapter 1

Theoretical background

In this chapter we review few basic concepts of spatial and spatio-temporal processes such

as stationarity, covariance functions, isotropy, geometric properties and kriging, among

others. Additionally, we review concepts of renewal processes, particularly, the Poisson

process.

1.1 Spatial and Spatio-temporal modeling

1.1.1 Spatial and Spatio-temporal processes

Spatial processes

A spatial process or spatial stochastic process Q, which can be written as Q = {Q(s), s ∈
A}, is a collection of random variables Q(s) at location s, and A is a set that indexes

all possible spatial locations of interest. Furthermore, A is a subset of the d-dimensional

Euclidean space Rd, i.e., A ⊆ Rd. If d = 1, Q is called stochastic (random) process.

Otherwise, if d ≥ 2, Q is called random field (RF). A formal definition for a spatial

stochastic process is given bellow.

Definition 1.1.1. Let (Ω,F , P ) be a probability space and A ⊆ Rd an arbitrary set.

1
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For each s ∈ A the real valued function Q(s, ·) : Ω → R, ω 7→ (s, ω) is a random

variable. Thus, any collection of random variables Q = {Q(s, ·), s ∈ A ⊆ Rd} defined

on (Ω,F , P ) is a stochastic process with index set A.

Hereafter we call spatial process, stochastic process or random field interchangeably.

If we fix any event ω ∈ Ω, then {Q(s, ω), s ∈ A ⊆ Rd} is a realization or sample path

of the random field Q. Formally,

Definition 1.1.2. A sample path of a stochastic process Q is a mapping Q : A → R,

s 7→ Q(s, ω) which to every event ω ∈ Ω corresponds a sample path or realization of

stochastic process Q.

Let {s1, . . . , sn} ⊂ A be a finite set of spatial locations with n ∈ N, then the finite

dimensional joint distribution of the stochastic process {Q(s), s ∈ A} is defined as

Fs1,s2,...,sn(q1, . . . , qn) = Pr(Q(s1) ≤ q1, . . . , Q(sn) ≤ qn).

A random field can be defined through its finite dimensional joint distribution if it has

the properties of permutation invariance and projection invariance. In fact, the following

theorem of Kolmogorov supports this statement.

Theorem 1.1.1 (Kolmogorov Consistency Theorem). Assume that for each n ∈ N and for

each set of indexing points {s1, . . . , sn}, we define a finite dimensional joint distribution

Fs1,s2,...,sn . If the collection of all such Fs1,s2,...,sn satisfy

1. Projection invariance. For all n ∈ N and all s1, . . . , sn ∈ A it holds that

Fs1,s2,...,sn,sn+1(q1, q2, . . . , qn, qn+1)→ Fs1,s2,...,sn(q1, q2, . . . , qn) as qn+1 →∞.

2. Permutation invariance. Let π : {1, . . . , n} → {1, . . . , n} be a permutation of a

subset of {1, . . . , n} . Then, for all n ∈ N and all s1, . . . , sn ∈ A,

Fs1,s2,...,sn(q1, q2, . . . , qn) = Fsπ(1),sπ(2),...,sπ(n)(qπ(1), qπ(2), . . . , qπ(n))
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Then, there exists a probability space (Ω,F , P ) and a stochastic process {Q(s), s ∈
A} whose finite dimensional joint distributions are given by the collection of all such

Fs1,s2,...,sn .

Thus, using the multivariate normal distribution we can define an important random field

as follows.

Definition 1.1.3. G = {G(s), s ∈ A} is called Gaussian process or Gaussian random

field if for all n and admissible s1, . . . , sn, the joint distribution of G(s1), . . . , G(sn) is

multivariate normal.

Finally, we define a second order random field as shown below.

Definition 1.1.4. A stochastic process {Q(s), s ∈ A} is said to be a second order process

(random field) if for all s ∈ A, E(Q(s)2) <∞.

Therefore, a Gaussian random field is a second order random field and it is characterized

in terms of its mean vector and covariance matrix, i.e., its first and second moments.

Spatio-temporal processes

A spatio-temporal process is a generalization of a spatial process, where every

spatio-temporal location (index) can be seen as a point on Rd × R, i.e., the collection

of random variables varies in both the spatial and temporal domains. Formally, Rd ×R =

Rd+1, i.e., time can be considered as an additional coordinate. Moreover, some results on

spatial covariance functions, kriging, among others apply to space–time process as well.

But from a physical viewpoint, this is insufficient because time differs intrinsically from

space. Hereafter we set the space-time domain as Rd × R and a spatio-temporal process

will be called spatio-temporal random field. A formal definition is given as follows.

Definition 1.1.5. Let (Ω,F , P ) be a probability space, A ⊆ Rd a finite domain in space

and T ⊆ R a finite domain in time. For each s ∈ A and t ∈ T the real valued function

Q(s, t, ·) : Ω → R, ω 7→ (s, t, ω) is a random variable. Thus, any collection of random
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variables Q = {Q(s, t, ·), (s, t) ∈ A × T ⊆ Rd × R} is a spatio-temporal random field

with spatio-temporal domain A× T .

As in the case of spatial random fields, the spatio-temporal Gaussian random field can

be defined as follows.

Definition 1.1.6. A spatio-temporal random field {G(s, t), (s, t) ∈ A × T ⊆ Rd ×
R} is said to be Gaussian if the random vector (G(s1, t1), . . . , G(sn, tn))>, for any

set of spatio-temporal locations {(s1, t1), . . . , (sn, tn)}, follows a multivariate normal

distribution.

Moreover, a second order spatio-temporal random field is defined as follows.

Definition 1.1.7. A spatio-temporal random field {Q(s, t), (s, t) ∈ A× T} is said to be a

second order random field if for all (s, t) ∈ A× T , E(Q(s, t)2) <∞.

1.1.2 Stationarity and Isotropy

On the one hand, stationarity in spatial (spatio-temporal) process intuitively means

shift-invariance on space (space-time) of the random field’s probabilistic properties. On

the other hand, isotropy means invariance under rotations of the random field. The

most common definitions of stationarity are strict stationarity and weak stationarity, but

Matheron (1965) introduced a weaker concept called intrinsic stationarity. The different

kinds of stationarity are defined as follow.

Definition 1.1.8. A spatial process {Q(s), s ∈ A} is said strictly stationary if for all

s1, . . . , sn and any h ∈ Rd, the joint distribution of Q(s1), . . . , Q(sn) is identical with the

joint distribution of Q(s1 + h), . . . , Q(sn + h), i.e.,

Pr(Q(s1) ≤ q1, . . . , Q(sn) ≤ qn) = Pr(Q(s1 + h) ≤ q1, . . . , Q(sn + h) ≤ qn),

where q1, . . . , qn ∈ R.
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Definition 1.1.9. A spatio-temporal random field {Q(s, t), (s, t) ∈ A × T} is strictly

stationary if its probability distribution is translation invariant. In other words, if, in the

case of any two given vectors, h ∈ A and u ∈ T :

(Q(s1, t1), Q(s2, t2), . . . , Q(sn, tn))>

and

(Q(s1 + h, t1 + u), Q(s2 + h, t2 + u), . . . , Q(sn + h, tn + u))>

have the same multivariate distribution function.

Definition 1.1.10. A second order process {Q(s), s ∈ A} is weakly stationary if:

E(Q(s)) = µ ∀ s,

and

∀ i, j ∈ N, Cov(Q(si), Q(sj)) = C(sj − si) = C(h).

If Q(s, t) is a second order spatio-temporal random field, then we define weak

stationarity as follows.

Definition 1.1.11. A spatio-temporal random field Q(s, t) is weakly stationary if:

E(Q(s, t)) = µ(s, t) = µ, ∀(s, t) ∈ R2 ×R,

and

Cov(Q(si, ti), Q(si, ti)) = C(sj − si, tj − ti), ∀(s, t) ∈ R2 ×R

C(h) and C(h, u) are called the covariance function of {Q(s), s ∈ A} and

{Q(s, t), (s, t) ∈ Rd × R}, respectively. Moreover, for a weakly stationary process, the

correlation in the spatial and spatio-temporal case is defined as:

Corr(Q(si), Q(sj)) =
C(h)

C(0)
= ρ(h),

Corr(Q(si, ti), Q(sj, tj)) =
C(h, t)

C(0, 0)
= ρ(h, t),

respectively, where C(0) = Var(Q(s)) and C(0, 0) = Var(Q(s, t)). The next section

shows the definition of a valid covariance function and some of its properties.
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Definition 1.1.12. The spatio-temporal random field Q(s, t) is said to have a spatially

stationary covariance function if, for any two pairs (si, ti) and (sj, tj) on Rd × R, the

covariance function C((si, ti), (sj, tj)) only depends on the distance between the locations

(si − sj) and the times ti and tj .

Definition 1.1.13. The spatio-temporal random field Q(s, t) is said to have a temporally

stationary covariance function if, for any two pairs (si, ti) and (sj, tj) on Rd × R, the

covariance function C((si, ti), (sj, tj)) only depends on the distance between the times

(ti − tj) and the spatial locations si and sj .

Definition 1.1.14. If the spatio-temporal random field Q(s, t) has a stationary covariance

function in both spatial and temporal terms, then it is said to have a stationary covariance

function. In this case, the covariance function can be expressed as

C((si, ti), (sj, tj)) = C(h, u),

h = si − sj and u = ti − tj being the distances in space and time, respectively.

Strict stationarity implies weak stationarity when the random field is a second order

random field. In general the reverse is not true, but for Gaussian random fields, weak

stationarity implies strict stationarity.

In the cases that the assumptions of stationarity may not be satisfied or the covariance

function does not exist, Matheron (1965) introduced a weaker concept of stationarity. The

hypothesis is that the increments of the process are weakly stationary.

Definition 1.1.15. A random field {Q(s), s ∈ A} is intrinsic stationary if the increment

process Q(s + h)−Q(s) is weakly stationary for any fixed h ∈ Rd, i.e.,:

E(Q(s + h)−Q(s)) = 0

and

Var(Q(s + h)−Q(s)) = 2γ(h).
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If the random field is a second-order spatio-temporal random field, then it is intrinsic

stationary if the increment process Q(s + h, t + u) − Q(s, t) is weakly stationary in

space-time for any fixed (h, t) ∈ Rd ×R, i.e.,

E(Q(s + h, t+ u)−Q(s, t)) = 0

and

Var(Q(s + h, t+ u)−Q(s, t)) = 2γ(h, u).

The function 2γ(h) (2γ(h, u)) is called variogram and γ(h) (γ(h, u)) is called

semi-variogram or semi-variance. Moreover, if the random field is weakly stationary,

then γ(h) = C(0)− C(h) for a spatial random field and γ(h, u) = C(0, 0)− C(h, u) for

a spatio-temporal random field . Thus, a weakly stationary random field with covariance

function C(·) is intrinsic stationary with variogram 2γ(h) = 2(C(0)−C(h)) or 2γ(h, u) =

2(C(0, 0)−C(h, u)) in the spatio-temporal case. However, the converse is not true, but it

holds in the case when the semi-variogram is bounden.

Definition 1.1.16. A spatio-temporal random field Q(s, t) is said to have an intrinsically

stationary semi-variogram in space if, for any pair of spatio-temporal locations (si, ti) and

(si, ti) onRd×R, the semi-variogram γ((si, ti), (sj, tj)) only depends on h = si− sj and

the times ti and tj .

Definition 1.1.17. A spatio-temporal random field Q(s, t) is said to have an intrinsically

stationary semi-variogram in time if, for any pair of spatio-temporal locations (si, ti) and

(si, ti) on Rd ×R, the semi-variogram γ((si, ti), (sj, tj))only depends on u = ti − tj and

the spatial locations si and sj .

Definition 1.1.18. If the spatio-temporal random field Q(s, t) has an intrinsically

stationary semi-variogram in both space and time, then it is said to have an intrinsically

stationary semi-variogram. In this case, the semivariogram can be expressed as

γ((si, ti), (sj, tj)) = γ(h, u),
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h = si − sj and u = ti − tj representing the distance in space and time,

respectively. The constraints γ(·, u) and γ(h, ·) are called purely spatial and purely

temporal semi-variograms, respectively.

As we outlined at the beginning of the section, an isotropic random field is invariant

under rotations. Thus, we can define it as follows.

Definition 1.1.19. The random field {Q(s), s ∈ Rd} is isotropic if, for all R rotation of

Rd, the random field {Q(Rs), Rs ∈ Rd} has the same distribution than Q(s), i.e.,

Pr(Q(Rs1) ≤ q1, . . . , Q(Rsn) ≤ qn) = Pr(Q(s1) ≤ q1, . . . , Q(sn) ≤ qn),

where q1, . . . , qn ∈ R.

Nevertheless, if {Q(s), s ∈ Rd} is a weakly stationary random field, then isotropy

implies that the covariance function is invariant under rotations and depends only on the

Euclidean distance || · ||. The covariance is called isotropic covariance and it is defined as

follows.

Definition 1.1.20. A weakly stationary random field {Q(s), s ∈ Rd} has isotropic

covariance if:

∀ i, j ∈ N, Cov(Q(si), Q(sj)) = C(||sj − si||) = C(||h||).

Isotropy can be defined for spatio-temporal covariance functions as follows.

Definition 1.1.21. A stationary spatio-temporal random field Q(s, t) has a spatially

isotropic covariance function if

C(h, u) = C(‖h‖, u), ∀(s, t) ∈ Rd ×R.

Definition 1.1.22. A stationary spatio-temporal random field Q(s, t) has a temporally

isotropic (or symmetric) covariance function if

C(h, u) = C(h, |u|), ∀(s, t) ∈ Rd ×R.
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Definition 1.1.23. A stationary spatio-temporal random field Q(s, t) has a isotropic

covariance function in space and time if

C(h, u) = C(‖h‖, |u|), ∀(s, t) ∈ Rd ×R.

Even though the isotropy assumption could be violated in real data applications,

the isotropic random fields form the basic building blocks for more sophisticated,

anisotropic and nonstationary random field models. For instance, Zimmerman (1993)

proposed geometrically anisotropic models which are built up from isotropic random

fields, and Sampson and Guttorp (1992) developed nonstationary covariance models using

deformation of the geographic coordinate space in order to obtain a new one where the

covariance is isotropic.

1.1.3 Separability, full symmetry and compactly supported

Separability and full symmetry are interesting concepts in spatio-temporal modeling. The

first one, permits more efficient inferences in terms of computing and the other one is

motivated by atmospheric, environmental and geophysical processes (Gneiting, 2002c;

Huang and Hsu, 2004; Stein, 2005).

Definition 1.1.24. A spatio-temporal random field Q(s, t) has a separable covariance

function if there is a purely spatial covariance function Cs(si, sj) and a purely temporal

covariance function Ct(ti, tj) such that

C((si, ti), (sj, tj)) = Cs(si, sj)Ct(ti, tj)

for any pair of spatio-temporal locations (si, ti) and (sj, tj) ∈ Rd ×R. If this breakdown

is not possible, the covariance function will be called non-separable.

Definition 1.1.25. A spatio-temporal random field Q(s, t) has fully symmetric covariance

function if

C((si, ti), (sj, tj)) = C((si, tj), (sj, ti))
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for any pair of spatio-temporal locations (si, ti) and (sj, tj) ∈ Rd × R. If Q(s, t) is

stationary, then fully symmetry condition reduces to

C(h, u) = C(h,−u) = C(−h, u) = C(−h,−u), ∀(h, u) ∈ Rd ×R.

If the covariance function of a stationary spatio-temportal random field is isotropic in

space and time, then it is fully symmetric. Note that separability is a particular case of full

symmetry and, as such, any test to verify full symmetry can be used to reject separability.

Moreover, under starionarity, verifying full symmetry comes down to confirming that

C(h, u) = C(h,−u) or C(−h, u) = C(−h,−u).

Unlike spatio-temporal covariance function, separability does not make sense for

semi-variograms because the product of semiv-ariograms does not assure a valid

semi-variogram. On the other hand, the property of fully symmetry does not have this

problem and it can be defined as follows.

Definition 1.1.26. A spatio-temporal random field Q(s, t) has fully symmetric variogram

structure if

Var(Q(si, ti)−Q(sj, t2)) = Var(Q(si, tj)−Q(sj, ti))

for all locations (si, ti) and (sj, tj) on Rd ×R.

Finally, we define the compactly supported covariance functions for spatio-temporal

random fields.

Definition 1.1.27. A spatio-temporal rf has a compactly supported covariance function if,

for any pair of spatio-temporal locations (si, ti) and (sj, tj) ∈ Rd × R, the covariance

function C((si, ti), (sj, tj)) tends towards zero when the spatial and/or temporal distance

is sufficiently large.

Spatio-temporal random fields with a compactly supported covariance functions are

attractive from a computing viewpoint, because they allow a computationally efficient

estimation and prediction (Gneiting, 2002a; Bevilacqua et al., 2019).



CHAPTER 1. THEORETICAL BACKGROUND 11

1.1.4 Properties of covariance functions

Spatial covarince functions

The covariance functions and variograms are important for the analysis of spatial data.

They allow us to study how spatial dependence varies with distance and play an important

role in spatial prediction. Both covariance function and variogram may not be defined

arbitrary, i.e., not just any function can be a valid covariance function or variogram.

Therefore, to be a valid covariance function or variogram, they need to be positive

semi-definite and conditionally negative definite, respectively.

Definition 1.1.28. Let {Q(s), s ∈ A} be a weakly stationary random field with covariance

matrix C = {C(si, sj)}ni,j . Then, C is positive semi-definite if:

n∑
i

n∑
j

aiajC(si, sj) ≥ 0 (1.1)

for any set of s1, . . . , sn and for all a1, . . . , an ∈ R.

Since a second order random field is fully characterized by its moments, a necessary

condition for their existence is that C is positive semi-definite. Therefore, positive

semi-definiteness is a necessary and sufficient condition for the existence of a random field

with finite second moments. In particular, this result holds for Gaussian random fields.

On the other hand, if a spatial process is weakly stationary, necessary and sufficient

conditions for a valid covariance function is provided by Bochner’s theorem (1933).

Theorem 1.1.2. (Bochner’s Theorem). Let {Q(s), s ∈ A} be a weakly stationary random

field with A = Rd. Then C(h) is positive semi-definite if and only if it can be represented

as:

C(h) =

∫
eiω

ThdF (ω), (1.2)

where F is a positive, symmetric, and finite measure and is called the spectral measure

of C(h). If F is absolutely continuous with respect to Lebesgue measure, i.e., dF (ω) =

f(ω)dω, then f(ω) is called the spectral density.
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Analogously, Schoenberg (1938) and later Yaglom (1987) showed that a valid isotropic

covariance function can be characterized by the following theorem.

Theorem 1.1.3. For any d ≥ 2, a function C(h) is a continuous isotropic covariance

function of a weakly stationary random field on Rd if and only if it can be represented as:

C(h) = 2
d−2
2 Γ

(
d

2

)∫ ∞
0

(ω||h||)−
d−2
2 J d−2

2
(ω||h||)dG(ω), (1.3)

where Jk is the Bessel function of the first kind of order k and the measure G(·) is

nondecreasing bounded in R+ and G(0) = 0.

A valid variogram must be conditionally negative definite. It is defined as follows.

Definition 1.1.29. Let {Q(s), s ∈ A} be a intrinsic stationary random field with variogram

2γ. Let s1, . . . , sn be a set of locations and a1, . . . , an a set of real numbers such that
n∑
i

ai = 0. Then, a variogram is conditionally negative definite if:

n∑
i

n∑
j

aiajγ(si − sj) ≤ 0. (1.4)

Note that if the random field is weakly stationary then C(h) or γ(h) can be used

interchangeably for inference or prediction. Aditionally, Proposition 1.1.1 shows some

properties of covariance funcion and semi-variogram.

Proposition 1.1.1. Let {Q(s), s ∈ A} be a weakly stationary random field with covariance

function C(h) and semi-variogram γ(h). Then, for C(h) the following properties hold:

(i) ∀ h ∈ A, C(0) ≥ 0.

(ii) ∀ h ∈ A, |C(h)| ≤ C(0) = Var(Q(s)).

(iii) C(h) = C(−h).

(iv) If Ci(h) is a valid covariance functions for i = 1, . . . , k, then, if bi ≥ 0, ∀j,
k∑
j=1

biCj(h) is a valid covariance function.
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(v) If Ci(h) is a valid covariance function for i = 1, . . . , k, then
k∏
i=1

Ci(h) is a valid

covariance function.

(vi) A valid covariance function in Rd,it is also a valid covariance function in Rp, with

p ≤ d.

(vii) If C is continuous at the origin, then C is everywhere uniformly continuous.

Analogous for γ(h) the following properties hold:

(i) γ(0) = 0.

(ii) ∀ h ∈ A, γ(h) = γ(−h).

(iii) ∀ h ∈ A, γ(h) ≥ 0.

(iv) If γi(h) is a valid semi-variograms for i = 1, . . . , k, then, if bi ≥ 0, ∀j,
k∑
i=1

biγj(h)

is a valid variogram.

(v) If γ is continuous at 0, then γ is continuous at every site s where γ is locally bounded.

(vi) If γ is bounded in a neighborhood of 0, ∃ a and b ≥ 0 such that for any h ∈ A,

γ(h) ≤ a||h||2+b.

(vii) If T is a linear transformation in Rd and γ a valid semi-variogram, then γ(Th) is

too.

Note that for a weakly stationary random field, the semi-variogram has a sill at height

C(0) as ‖h‖ → ∞. It holds because if C(h) → 0 as ‖h‖ → ∞, then γ(h) → C(0) as

‖h‖ → ∞. Moreover, the distance at which the semi-variogram reaches its sill is called

the range and it is called practical range when 95% of the value of the sill is reached.

It is important to point out that the semi-variogram could be discontinous at the origin,

i.e., for any h 6= 0 ∈ A, γ(h) ≥ C(0) > 0. This phenomenon is called nugget effect, and

represents the effect of measurement error and micro-scale variability.
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Spatio-temporal covariance functions

The spatio-temporal covariance functions play an important roll for the analysis of

spatio-temporal data. Therefore, we are interested in valid covariance functions onRd×R.

Definition 1.1.30. Let {Q(s, t), (s, t) ∈ Rd × R} be a second order spatio-temporal

random field with covariance function C((si, ti), (sj, tj)). A necessary and sufficient

condition for a real-valued function C((si, ti), (sj, tj)) defined on Rd × R to be a valid

covariance function is for it to be symmetric, C((si, ti), (sj, tj)) = C((sj, tj), (si, ti)), and

positive semi-definite, that is,
n∑
i

n∑
j

aiajC((si, ti), (sj, tj)) ≥ 0 (1.5)

for any n ∈ N, and for any (si, ti) ∈ Rd ×R and a1, . . . , an ∈ R.

If {Q(s, t) is stationary then the following definition is obtained.

Definition 1.1.31. Let {Q(s, t), (s, t) ∈ Rd ×R} be a stationary spatio-temporal random

field with covariance function C(h, u)). A necessary and sufficient condition for a

real-valued function C(h, u)) defined on Rd × R to be a stationary covariance function

is it to be an even function (C(h, u) = C(−h,−u)) and positive semi-definite, that is,
n∑
i

n∑
j

aiajC(hi, ui) ≥ 0 (1.6)

for any n ∈ N, and for any (hi, ui) ∈ Rd ×R and a1, . . . , an ∈ R

Moreover, Bochner’s theorem allows us to characterize the stationary space-time

covariance functions as follow.

Theorem 1.1.4 (Bochner’s Theorem). A function C(h, u) remains defined on Rd×R and

is a stationary covariance function if, and only if, it has the following form:

C(h, u) =

∫ ∫
ei(w

>h+vu)dF (w, v), (h, u) ∈ Rd ×R, (1.7)

where the function F is a non-negative finite measure defined on Rd ×R, which is known

as a spectral measure.
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If C is integrable, then the spectral measure F is absolutely continuous and the

representation (1.7) can be written as follows

C(h, u) =

∫ ∫
ei(w

>h+vu)f(w, v)dwdv, (h, u) ∈ Rd ×R,

where f is a non-negative, continuous and integrable function that is known as a spectral

density function. Note that the covariance function and the spectral density function form

a pair of Fourier transforms, and

f(w, v) = (2π)−(d+1)

∫ ∫
e−i(w

>h+vu)C(h, u)dhdu.

If the spatio-temporal covariance function is fully symmetric, then Theorem 1.1.4 can be

can be specialized as follows

Theorem 1.1.5. Let C(h, u) be a continuous function defined on Rd ×R, then C(h, u) is

a fully symmetric stationary covariance function if, and only if, it is of the form:

C(h, u) =

∫ ∫
cos(w>h) cos(vu)dF (w, v), (h, u) ∈ Rd ×R, (1.8)

where the function F is a non-negative finite measure defined on Rd ×R, which is known

as a spectral distribution function. If the spectral density function f also exists, then f is

fully symmetric, that is:

f(w, v) = f(w,−v) = f(−w, v) = f(−w,−v), ∀(w, v) ∈ Rd ×R.

Following the definition 1.1.24 we can state that a stationary spatio-temporal covariance

function C(h, u) was separable if there were two stationary covariance functions Cs(h)

and Ct(u) that are purely spatial and purely temporal, respectively, such that

C(h, u) = Cs(h)Ct(u), ∀(h, u) ∈ Rd ×R.

Moreover, applying Theorem 1.1.4 we can obtain that the spectral measure of a stationary

separable covariance function can be written as the product of a spectral measure on the

spatial domain and a spectral measure on the temporal domain. If the spectral density
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function exists, then it also can be expressed as the product of spectral density functions

on the respective domains.

Although separable spatio-temporal covariance functions have some advantages, there

are some cases that they may not represent a physical phenomena. This is why

non-separable spatio-temporal covariance functions have been sought. Cressie and

Huang (1999) provide a characterization of the class of stationary spatio-temporal

covariance functions under the additional hypothesis of integrability. Then, they use this

characterization to construct non-separable stationary space-time covariance. The main

result of their research is given by the following theorem.

Theorem 1.1.6. Let C(h, u) be a stationary spatio-temporal covariance function.

Suppose that C(h, u) is continuous and integrable. Then, C(h, u) is a positive

semi-definite continous spatio-temporal stationary covariance function on Rd ×R if, and

only if, it has the following form:

C(h, u) =

∫
eiw

>hρ(w, u)k(w)dw, (h, u) ∈ Rd ×R

where for each w ∈ Rd, ρ(·, u) is a continuous correlation function,
∫
ρ(w, u)du < ∞,

k(w) > 0 and
∫
k(w)dw <∞.

For instance, if we set ρ(w, u) = exp(‖w‖2u2/4) and k(w) = exp(−σ2‖w‖2/4), σ2 >

0. Then, a three-paremeter non-separable spatio-temporal stationaty covariance function

on Rd ×R is given as,

C(h, u) =
σ2

(a2u2 + 1)d/2
exp

(
− b2‖h‖
a2u2 + 1

)
,

where a > 0 is the scaling parameter of time, b > 0 is the scaling parameter of space, and

σ2 = C(0, 0).

Later on, Gneiting (2002b) proposed a method that is based on this construction, but does

not depend on Fourier inversion, and De Iaco et al. (2002) and Ma (2005) constructed

fully symmetric stationary space-time covariance functions by mixtures of separable

covariances.
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Finally, we generalize some properties of the spatial covariance function to the

spatio-temporal case.

Proposition 1.1.2. Let {Q(h, u), (h, u) ∈ Rd × R} be a stationary random field with

covariance function C(h, u). Then, for C(h, u) the following properties hold:

(i) If C1(h, u) is a covariance function defined on Rd ×R and b > 0, then

C(h, u) = bC1(h, u)

is also a covariance function defined on Rd ×R.

(ii) Let C1(h, u) and C2(h, u) be two covariance functions defined on Rd ×R,then

C(h, u) = C1(h, u) + C2(h, u)

is a covariance function defined on Rd ×R.

(iii) Let C1(h, u) and C2(h, u) be two covariance functions defined on Rd ×R,then

C(h, u) = C1(h, u)C2(h, u)

is a covariance function defined on Rd ×R.

(iv) In the case of a stationary spatial covariance function Cs(h) defined on Rd, and a

stationary temporal covariance function Ct(u) defined on R, the functions

C(h, u) = Cs(h + θu),

C(h, u) = Ct(u+ θ>h),

with θ ∈ Rd, are stationary covariance functions on Rd ×R.

(v) In the spatio-temporal case, the nugget effect can be exclusively spatial, exclusively

temporal, or spatio-temporal and will therefore be given by

C(h, u) = a1(0,0)(h, u) + b1(0)(h) + c1(0)(u), (1.9)

where a, b, c are non-negative constants and 1A(·) is an indicator function.

(vi) The product and sum of continuous spatio-temporal covariance functions with a

nugget effect of the type (1.9), yield valid covariance models.
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1.1.5 Isotropic parametric models

We now introduce the family of isotropic parametric covariance models and describe some

members of this family. We can define a general form of an isotropic parametric covariance

function by:

C(h,ψ) =

{
C(0)ρ(‖h‖,ψ), ‖h‖ > 0

C(0) + τ 2, ‖h‖ = 0
, (1.10)

where τ 2 represents the nugget effect and ρ(‖h‖,ψ) is a parametric correlation function

which depends on the parameter vector ψ ∈ Ψ ⊆ Rp. From the extensive list of

correlation models in the literature, some of the most popular are the following:

• The powered exponential family (Diggle et al., 1998, among others) is defined by:

ρ(‖h‖, α, p) = exp

(
−
(
‖h‖
α

)p)
, 0 < p ≤ 2, (1.11)

where α > 0 is a spatial scale parameter. If p = 1, the exponential correlation model

is obtained, while the Gaussian correlation model arises when p = 2. Moreover, the

sample paths of a Gaussian random field are infinitely differentiable when p = 2

and not differentiable at all when p < 2.

• The Matérn correlation model (Matèrn, 1986) is defined by:

Mυ,α(‖h‖) =
21−υ

Γ(υ)

(
‖h‖
α

)υ
Kυ
(
‖h‖
α

)
, ‖h‖ ≥ 0, (1.12)

where,Kυ is a modified Bessel function of the second kind of order υ > 0 and α > 0

(range) a spatial scale parameter. If υ = 1/2, the exponential correlation model is

obtained, while the Gaussian correlation model arises when υ → ∞. Moreover,

for a positive integer k, the sample paths of a Gaussian random field are k times

differentiable if and only if υ > k.
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• The compactly supported Generalized Wendland correlation model (Gneiting,

2002a) is defined by:

GWζ,δ,α(‖h‖) =


1

B(2ζ, δ + 1)

1∫
‖h‖/α

u

(
u2 − ‖h‖

2

α2

)ζ−1

(1− u)δ du ‖h‖ < α,

0 otherwise

,

(1.13)

where B(·, ·) is the beta function, ζ ≥ 0, δ > (d+ 1)/2 + ζ and α > 0 is the spatial

compact support. The integral in Equation (1.13) has a closed form solution when ζ

is a positive integer. For instance, if ζ = 0 the correlation model is GW0,δ,α(h) =

(1 − ||h||/α)δ+ where (·)+ denotes the positive part, defined as Askey function.

Moreover, for a positive integer k, the sample paths of a Gaussian random field are

k times differentiable if and only if ζ > k − 1/2.

Matérn and Generalized Wendland correlation models are more flexible than the

powered exponential family. Additionally, Generalized Wendland correlation model is

compactly supported. Thus, the covariance matrix is sparse and sparse matrix algorithms

can then be used to evaluate efficiently an approximate likelihood (Bevilacqua et al., 2019).

Hence, compactly supported is an interesting feature from a computational point of view

because it reduces the computational burden.

1.1.6 Continuity of the sample paths

Continuity of the sample paths is a basic geometrical property of a random field and it has

implications for the smoothness of random field realizations. We look at three types of

continuity, continuity in probability, almost surely continuity and mean square continuity.

Definition 1.1.32. Let {Q(s), s ∈ A} be a random field with A = Rd.

1. A random field Q(s) has continuous sample path with probability one in A if for all

ω ∈ Ω and every s0 for which ‖s0 − s‖ → 0 as s→ s0, then

Pr(ω : |Q(s0, ω)−Q(s, ω)| → 0 as s→ s0) = 1 for all s ∈ A.
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2. A random field Q(s) is almost surely continuous in A if for almost all ω ∈ Ω and

every s0 for which ‖s0 − s‖ → 0 as s→ s0, then

Pr(ω : |Q(s0, ω)−Q(s, ω)| → 0 as s→ s0) = 1 for all s ∈ A

3. A random field Q(s) is mean square continuous in A if for every s0 for which ‖s0−
s|| → 0 as s→ s0, then

E{[Q(s)−Q(s0)]2} → 0 as s→ s0 for all s ∈ A

In general, one form of continuity does not imply the other. However, if a random field

is a bounded process, then almost surely continuity implies mean square continuity.

Under some assumptions there is a relationship between mean square continuity and the

convariance function of a random field. In fact, Stein (1999) shows that, for a weakly

stationary random field, mean square continuity is equivalent to the covariance function

C(h) being continuous at 0, i.e.,

lim
h→0

C(h) = C(0).

Therefore, the nugget effect, which is noted by τ 2, implies non mean square continuity

because C(h)→ τ 2 as h→ 0. Hence, the path of random field is not smooth.

1.1.7 Modeling spatial and spatio-temporal data

Modeling spatial data

The classical spatial random field model is specified by:

Y (s) = µ(s) +Q(s), (1.14)

where µ(s) is a deterministic and continuous function and represents the mean of the

response Y (s). A common specification of µ(s) is the parametric form g(X(s)>β), where

g(·) is a continuous function, X(s) is a p-dimensional vector of explanatory variables at
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location s and β is a p-dimensional vector of parameters. Moreover, Q(s) is a zero-mean

random field with a parametric covariance.

In addition, for capturing the micro-scale spatial variation and measurement error that

may occur in the data collection process, i.e., nugget effect, we can incorporate an error

component e(s) to model (1.14). This error component typically has no spatial structure

and can be assumed as a zero-mean pure error process with variance equal to τ 2. Hence,

the model (1.14) can be rewritten as follows:

Y (s) = µ(s) +Q(s) + e(s). (1.15)

A typical assumption for Q(s) is Gaussianity, i.e., considering Gaussian random fields.

However, in some cases, the observed data cannot be modeled using a Gaussian random

field, because it is discrete. In fact, in environmental analysis, population genetics,

epidemiology and aquaculture, among other fields, the observed data are in general count

data. To solve this issue, non-Gaussian data with spatial dependence are analysed using

generalized linear mixed models (GLMM), where the spatial dependence is captured by

a Gaussian randon field effect (see Breslow and Clayton, 1993). Later on, Diggle et al.

(1998) proposed hierarchical models by assuming that, Q(s) is a Gaussian random field

and conditional on Q(s), the Y (si) are mutually independent with a distribution belonging

to the exponential family, conditional means E[Y (s|Q(s))] = g(Q(s)) and conditional

variances τ 2.

It is important to stress that this type of model induces a discontinuity in the path (De

Oliveira, 2013). Consequently, samples located nearby are more dissimilar in value than

in the case when the correlation function is continuous at the origin (Morgan, 2005).

In contrast to hierarchical models, Gaussian copula models allow us to model specific

marginal distributions taking into account specific correlation structures. For example,

Han and De Oliveira (2016) described a class of random field models for geo-statistical

count data based on Gaussian copulas. Similarly, Kazianka and Pilz (2010) proposed

geo-statistical copula-based models that are able to deal with random fields having discrete

marginal distributions. Unfortunately, there are cases in which the copula representation
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for discrete distributions is not unique, so it is unidentifiable (Genest and Neslehova,

2007).

Modeling spatio-temporal data

We can generalize the classical spatial random field model to spatio-temporal case by

Y (s, t) = µ(s, t) +Q(s, t), (1.16)

where (s, t) ∈ Rd × R, µ(s, t) is a deterministic space–time trend function and Q(s, t) a

zero-mean spatio-temporal random field.

Even if spatio-temporal random fields are defined on Rd × R, there are others domains

of interest in real data. For instance, the time domain can be considered discrete, i.e.,

(s, t) ∈ Rd × Z. Storvik et al. (2002) proposed time autoregressive Gaussian models

to consider a discrete time domain, and Stein (2005) used a temporal Markov structure.

On the other hand, the global curvature of the earth is a feature that must be taken into

account in applications related with atmospheric and geophysical data. Therefore, the

space domain has to considered on a sphere, i.e., the domain could be Sd × R or Sd × Z.

Parametric covariance models on global spatial or spatio-temporal domains are proposed

by Gneiting (1999), Stein (2005) and more recently by Jeong and Jun (2015), Porcu et al.

(2016) and Berg and Porcu (2017).

The deterministic space–time trend function µ(s, t), can be parametrized through a

continuous function of X(s, t)>β, where X(s, t) is a p-dimensional vector of explanatory

variables at spatio-temporal location (s, t) and β is a p-dimensional vector of parameters.

The simplest case occurs when µ(s, t) is decomposed as the sum of a purely spatial and a

purely temporal trend component. Temporal trends are often periodic and can be modeled

with trigonometric functions or non-parametric alternatives.

The spatio-temporal random fiel Q(s, t) is usually assumed weakly stationary and

isotropic, but non-stationary and anisotropic models can be considered. (see Porcu et al.,

2006; Schlather, 2010, for instance).
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Similar to the spatial case, the nugget effect can be modeled by an error component

e(s, t) with covariance function of the type (1.9), that is

Ce(h, u) = τ 2
st1(0,0)(h, u) + τ 2

s 10(h) + τ 2
t 10(u), (1.17)

where τ 2
st, τ

2
s , τ

2
t are non-negative constants and represent the spatio-temporal, the purely

spatial and a purely temporal nugget, respectively. Then, the spatio-temporal model can

be written as follows

Y (s, t) = µ(s, t) +Q(s, t) + e(s, t). (1.18)

Finally, for the non-Gaussian space-random field, the models based on the hierarchical

and copula approach, which are described in Section 1.1.7, can be used if we consider a

space-time domain instead of a spatial domain.

1.1.8 Kriging

One of the primary goals of spatial and spatio-temporal statistics modeling is to make

predictions at spatial locations without observations. Kriging aims to predict the value

of a random field at one or more non-observed points from a observed data at n spatial

locations, and provides the best linear unbiased predictor (BLUP).

Let {Y (s), s ∈ A ⊂ Rd)} be a random field with the following model assumption :

Y (s) = µ(s) +Q(s),

where µ(s) is a deterministic function and {Q(s), s ∈ A ⊂ Rd)} is a zero-mean

weakly stationary random field. Let s1, . . . , sn be n known spatial locations and Y =

(Y (s1), . . . , Y (sn))> a vector of observed data at the spatial locations, and Ŷ (s0) a

predictor at a spatial location s0. Then, the kriging predictor minimizes the mean-squared

prediction error, E[(Y (s0)− Ŷ (s0))2], and satisfies the following properties:

• Ŷ (s0) =
n∑
i=1

λiY (si).

• E[Ŷ (s0)] = E[Y (s0)] = µ(s0).
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Hence, we must find λ1, . . . , λ1 that minimizesE[(Y (s0)−Ŷ (s0))2] such as
n∑
i=1

λi = 1. If

Q(s) is a Gaussian random field, Ŷ (s0) is exactly the conditional expectation E[Y (s0)|Y ],

i.e., the optimal predictor (in the mean square sense). Therefore, the kriging predictor

matches the optimal predictor.

Kriging also makes assumptions about the mean of the random field. Depending on this

assumption, numerous variants of kriging are available. We describe the cases when µ,

which is unknown, is constant (ordinary kriging) or not (universal kriging).

1. Ordinari Kriging (OK).

Let µ(s) = µ be a unknown constant andC = [C(si−sj)]ni,j=1 the known covariance

matrix of the random fieldQ(s). Note that in this case the unbiased property implies

that
n∑
i=1

= 1. Then, the kriging predictor Ŷ (s0)OK is:

Ŷ (s0)OK = µ̂+ c>C−1(Y − 1µ̂),

where c = [C(s0 − si)]
n
i=1, and the ordinary kriging variance is

σ2(s0)OK = C(0)−
(
c+ 1

(1− 1>C−1c)

1>C−11

)>
C−1c+

1− 1>C−1c

1>C−11
.

2. Universal Kriging (UK).

Let µ(s) = X(s)>β be a unknown deterministic function where X(s) and is β

are p-dimensional vectors, X = [X(si)] a n × p matrix and C = [C(si − sj)]
n
i,j=1

the known covariance matrix of the random field Q(s). Note that, in this case, the

unbiased property implies that λ>X = X(s0). Then, the kriging predictor Ŷ (s0)UK

is:

Ŷ (s0)OK = X(s0)>β̂ + c>C−1(Y −X(s0)>β̂),

where c = [C(s0 − si)]
n
i=1, and the universal kriging variance is

σ2(s0)UK = C(0)−c>C−1c+(X(s0)−X>C−1c)>(X>C−1X)−1(X(s0)−X>C−1c).

The term, C(0)− c>C−1c, corresponds to the mean squared error of the BLUP, and

the last term is the penalty for having to estimate β.
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1.2 Renewal processes

Renewal processes play an important roll in many areas such as system analysis in

queueing theory, physical modeling, seismology, among others. Firstly, we introduce the

concept of counting process by the following definition.

Definition 1.2.1. A stochastic process {N(t), t ≥ 0} is called a counting process if N(t)

represents the total number of events that have occurred up to time t.

Thus a formal definition of a renewal process is given as follows.

Definition 1.2.2. Let {Xn, n = 1, 2, . . .} be a sequence of independently and identically

distributed non-negative random variables with distribution function F (·). We call these

inter-arrival times or waiting times. Letting

S0 = 0, Sn =
n∑
i=1

Xi, n ≥ 1,

it follows that Sn is the time of the nth event and we call them renewal times. Thus, the

counting process {N(t), t ≥ 0} defined by

N(t) :=


0 if 0 ≤ t < S1

max
n≥1
{Sn ≤ t} if S1 ≤ t

, (1.19)

is called a renewal process.

Note that N(t) ≥ n if only if Sn ≤ t, then the probability mass function of N(t) can be

obtained as follows:

Pr(N(t) = n) = Pr(N(t) ≥ n)− Pr(N(t) ≥ n+ 1)

= Pr(Sn ≤ t)− Pr(Sn+1 ≤ t)

= Fn(t)− Fn+1(t)

where Fn(t) are the n-fold convolution of the cumulative distribution functions F of the

interarrival times.
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Definition 1.2.3 (Renewal function). For a renewal process {N(t); t ≥ 0},

m(t) = E(N(t))

is called as a renewal function. Moreover, it can be shown that

m(t) =
∞∑
n=1

Fn(t).

Now, we introduce the definition of bivariate renewal process given by Hunter (1974).

Definition 1.2.4. Let {(Xn, Yn), n = 1, 2, . . .} be a sequence of independently and

identically distributed non-negative random variables with common joint distribution

function F (x, y) = Pr(Xn ≤ x, Yn ≤ y). Let

Sn = (S(1)
n , S(2)

n ) =

(
n∑
i=1

Xi,
n∑
i=1

Yi

)
.

Define

N(t1) :=


0 if 0 ≤ t1 < S

(1)
1

max
n≥1
{S(1)

n ≤ t1} if S
(1)
1 ≤ t1

, N(t2) :=


0 if 0 ≤ t2 < S

(2)
1

max
n≥1
{S(2)

n ≤ t2} if S
(2)
1 ≤ t2

.

Then, the random pair (N(t1), N(t2)) is called the bivariate renewal process.

The joint distribution of (N(t1), N(t2)) is given by (Hunter, 1974):

Pr(N(t1) = n,N(t2) = m) =



[F0 − F 1 − F 2 + F ] ∗ ∗Fn(λ(si), λ(sj)) if n = m

[F 1
r − F 1

r+1 − F 1
r−1 ∗ ∗F + F 1

r ∗ ∗F ] ∗ ∗Fm(t1, t2) if n > m,

n = m+ r

[F 2
r − F 2

r+1 − F 2
r−1 ∗ ∗F + F 2

r ∗ ∗F ] ∗ ∗Fn(t1, t2) if n < m,

m = n+ r

,

where ∗∗ is the double convolution, F 1 and F 2 are the probability mass function of N(t1)

and N(t2), respectively, and Fn is the n-fold bivariate convolution of F .
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The moments of (N(t1), N(t2)) for low orders are given by:

E[N(t1)] =
∞∑
i=1

F 1
i (t1),

E[N(t2)] =
∞∑
j=1

F 2
j (t2),

E[N(t1)N(t2)] =

(
F0 +

∞∑
i=1

F 1
i (t1) +

∞∑
j=1

F 2
j (t2)

)
∗ ∗

(
∞∑
r=1

Fr(t1, t2)

)

Cov(N(t1), N(t2)) =

(
F0 +

∞∑
i=1

F 1
i (t1) +

∞∑
j=1

F 2
j (t2)

)
∗ ∗

(
∞∑
r=1

Fr(t1, t2)

)
−
∞∑
i=1

F 1
i (t1)

∞∑
j=1

F 2
j (t2),

where F0 = 1. Finally, we show an interesting result concerning the independence of the

renewal processes N(t1) and N(t2).

Theorem 1.2.1. The following conditions are equivalent.

(i) X1 and Y1 are independent.

(ii) Cov(N(t1), N(t2)) = 0 for all t1 ≥ 0, t2 ≥ 0.

(iii) N(t1) and N(t2) are independent for all t1 ≥ 0, t2 ≥ 0.

1.2.1 Poisson process

The Poisson process is a particular case of a renewal process, where inter-arrival times are

exponential random variables with some parameter. Moreover, a Poisson process can be

homogeneous or non-homogeneous.

Definition 1.2.5 (Homogeneous Poisson process). Let {N(t), t ≥ 0} be a renewal process.

If inter-arrival times are exponential random variables with parameter λ, then {N(t), t ≥
0} is a homogeneous Poisson process with rate (or intensity) λ, λ > 0.

Another definition can be given using an axiomatic way as follows:
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Definition 1.2.6. A counting process {N(t), t ≥ 0} is said to be a homogeneous Poisson

process with rate (or intensity) λ, λ > 0, if:

(i) N(0) = 0.

(ii) The process has independent increments.

(iii) The number of events in any interval is Poisson distributed such that the probability

that k events will occur in the time interval (s, s+ t] will be

Pr(N(s+ t)−N(s) = k) = Pr(N(t) = k) =
e−λt(λt)k

k!
,

and

E[N(s+ t)−N(s)] = E[N(t)] = λt,

Var(N(s+ t)−N(s)) = Var(N(t)) = λt.

Note that in this case the renewal times have Erlang distribution with cumulative

distribution function given by:

Fn(t) = 1−
n−1∑
k=0

e−λt(λt)k

k!
, t > 0

Moreover, the renewal function is linear in time:

m(t) = λt.

Definition 1.2.7 (Non-Homogeneous Poisson process). A counting process {N(t), t ≥ 0}
is said to be a non-homogeneous Poisson process with rate (or intensity) λ(t), t > 0, if:

(i) N(0) = 0.

(ii) The process has independent increments.
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(iii) The number of events in any interval is Poisson distributed such that the probability

that k events will occur in the time interval (s, s+ t] will be

Pr(N(s+ t)−N(s) = k) = Pr(N(t) = k) =

e
−
s+t∫
s
λ(y)dy

(
s+t∫
s

λ(y)dy

)k
k!

,

and

E[N(s+ t)−N(s)] = =

s+t∫
s

λ(y)dy,

Var(N(s+ t)−N(s)) = =

s+t∫
s

λ(y)dy.

The probability mass function of N(t) is

Pr(N(t) = k) =

e
−

t∫
0

λ(y)dy
(

t∫
0

λ(y)dy

)k
k!

,

and the renewal function is

m(t) =

t∫
0

λ(y)dy.
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Chapter 2

A new class of counting random fields

2.1 A random field with exponential marginal

distributions

To make the manuscript self-contained, we start by introducing some notation in this

section. For the rest of the thesis, given a second order real-valued random field

Q = {Q(s), s ∈ A ⊆ Rd}, we denote by fQ(s) and FQ(s) the marginal probability

density function (pdf) and cumulative distribution function (cdf) of Q(s), respectively.

Moreover, for any set of distinct points (s1, . . . , sn)>, n ∈ N and si ∈ A, we denote

the correlation function by ρQ(si, sj) = Corr(Q(si), Q(sj)). In the stationary case, the

notation adopted is ρQ(h) = Corr(Q(si), Q(sj)), where h = si − sj is the lag separation

vector. Finally, fQij denotes the pdf of the bivariate random vectorQij = (Q(si), Q(sj))
>,

i 6= j. If the random field Q is a discrete-valued random field, then Pr(Q(s) = l) and

Pr(Q(si) = n,Q(sj) = m), l,m, n ∈ N will denote the marginal and bivariate discrete

probability functions, respectively.

Let G = {G(s), s ∈ A} be a zero mean and unit variance weakly stationary Gaussian

random field with correlation function ρG(h). Henceforth, we call G the Gaussian

underlying random field, and with some abuse of notation, we set ρ(h) := ρG(h), denoting

31
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this as the underlying correlation function. LetG1, G2 be two independent copies ofG and

let us define the random field W = {W (s), s ∈ A} as follows:

W (s) :=
1

2λ(s)

2∑
k=1

G2
k(s), (2.1)

where λ(s) > 0 is a non-random function. W is a stationary random field with a

marginal exponential distribution, with parameter λ(s) denoted by W (s) ∼ Exp(λ(s))

with E(W (s)) = 1/λ(s), Var(W (s)) = 1/λ2(s), and it can be easily observed that

ρW (h) = ρ2(h).

The associated multivariate exponential density was discussed earlier by

Krishnamoorthy and Parthasarathy (1951), and its properties have been studied

since then by several authors (Krishnaiah and Rao, 1961; Royen, 2004). However,

likelihood-based methods for exponential random fields can be troublesome since the

analytical expressions of the multivariate density can be derived only in some special

cases. For example, when d = 1 and the underlying correlation function is exponential

and the multivariate pdf is given by (Bevilacqua et al., 2020):

fW (w1, . . . , wn) = exp

[
− w1λ1

(1− ρ2
1,2)
− wnλn

(1− ρ2
n−1,n)

−
n−1∑
i=2

(1− ρ2
i−1,iρ

2
i,i+1)λiwi

(1− ρ2
i−1,i)(1− ρ2

i,i+1)

]

×
n−1∏
i=1

I0

(
2ρi,i+1

√
wiλiwi+1λi+1

(1− ρ2
i,i+1)

)
×

(
n−1∏
i=1

(1− ρ2
i,i+1)

)−1

,

with ρij := exp{−|si − sj|/φ}, λi = λ(si), φ > 0 and Ia(x) being the modified Bessel

function of the first kind of order a. Regardless of the dimension of the space A and

the type of correlation function, the bivariate exponential pdf is given by (Kibble, 1941;

Vere-Jones, 1997):

fWij
(wi, wj) =

e
−

(λ(si)wi+λ(sj)wj)

(1−ρ2(h))

(1− ρ2(h))
I0

(
2
√
ρ2(h)λ(si)λ(sj)wiwj

(1− ρ2(h))

)
.

The exponential random field W will be used next for defining a new random field with

Poisson marginal distributions.
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2.2 Spatial Poisson random fields

Our proposal relies on considering an infinite sequence of independent copies Y1, Y2 . . .,

of Y = {Y (s), s ∈ A}, a positive continuous random field. First, we define a new class of

counting random fields, Nt := {Nt(s), s ∈ A}, t ≥ 0, as follows:

Nt(s) :=


0 if 0 ≤ t < S1(s)

max
n≥1
{Sn(s) ≤ t} if S1(s) ≤ t

, (2.2)

where Sn(s) =
∑n

i=1 Yi(s) is the n-fold convolution of Y . This model can be viewed

as a spatial generalization of the renewal counting processes (Cox, 1970; Mainardi et al.,

2007), where we consider independent copies of a positive random field as “inter-arrival

times” instead of an independent and identically distributed sequence of positive random

variables.

For each s ∈ A, and using the classical results from the renewal counting processes

theory, the marginal discrete probability function of N is given by:

Pr(Nt(s) = n) = FSn(s)(t)− FSn+1(s)(t). (2.3)

In addition, the marginal mean (the so-called renewal function) and the variance of Nt are

given, respectively, by:

E(Nt(s)) =
∞∑
i=1

FSi(s)(t), Var(Nt(s)) =

(
2
∞∑
i=1

iFSi(s)(t)− E(Nt(s))

)
−(E(Nt(s)))

2.

Different elections of the positive random field Y lead to counting random fields with

specific marginal distributions.

In this thesis, we assume that Y ≡ W , where W is the positive random field defined

in (2.1), with Exp(λ(s)) marginal distribution and cdf given by FY (s)(x) = 1 − e−λ(s)x,

x > 0. In this case, Sn(s) ∼ Gamma(n, λ(s)) with n ∈ N is an Erlang distribution, with

cdf given by:

FSn(s)(x) = 1−
n−1∑
k=0

e−λ(s)x(λ(s)x)k

k!
, x > 0
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and from (2.3), we can obtain the marginal distribution of Nt as:

Pr(Nt(s) = n) = e−tλ(s)[tλ(s)]n/n!, n = 0, 1, 2, . . . . (2.4)

with E(Nt(s)) = Var(Nt(s)) = tλ(s). Then, Nt(s) ∼ Poisson(tλ(s)) is the random

number of renewals occurring in the temporal interval (0, t] and spatial location s.

Additionally, tλ(s) is the expected number of arrivals in an interval of length t for each

location site s. Hereafter and without loss of generality, t is set to one, and Nt is denoted

as N . We will call N a Poisson random field with underlying correlation ρ(h) because N

is marginally Poisson distributed and the dependence is indexed by a correlation function.

Note that, when the spatially varying mean (and variance) λ(s) is not constant then N is

not stationary. A typical parametric specification for the mean is given by λ(s) = eX(s)>β,

where X(s) ∈ Rk is a vector of covariates and β ∈ Rk even though other types of

parametric and non-parametric specifications can be used.

It is important to note that although the proposed Poisson random field is defined on

the d-dimensional Euclidean space A, the proposed method can be easily adapted to other

spaces, such as the space-time space or the spherical spaces. The key for this extension

is the specification of a suitable underlying correlation function ρ(h). For instance, a

correlation function defined on the space-time setting, i.e., A ⊆ Rd×R (Gneiting, 2002c)

or on the sphere of arbitrary radius i.e, A ⊆ S2 = {s ∈ R3, ||s|| = M}, M > 0

(Gneiting, 2013; Porcu et al., 2016). In the case of lattice or areal data, a suitable precision

matrix with an appropriate neighbourhood structure should be specified for the underlying

Gaussian Markov random field (Rue and Held, 2005).

To close this section we provide a closed expression for the joint probability generating

function (jpgf ) of a pair (N(si), N(sj)) from a N Poison random. In fact, the jpgf is

defined as follow:

P(λ(si), λ(sj); c1, c2) =
∞∑
n=0

∞∑
m=0

Pr(N(si) = n,N(sj) = m)cn1c
m
2 .

Moreover, Theorem 2.2.1 provides an expression for the jpgf which depends on a

confluent hypergeometric function of two variables or Humbert series (Gradshteyn and
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Ryzhik, 2014) defined as:

Φ3(α, β;x, y) =
∞∑
m,n

(α)m
(β)m+nm!n!

xmyn,

where (·)` is the Pochhammer symbol (Abramowitz and Stegun, 1965).

Theorem 2.2.1. Let N be a Poisson random field with underlying correlation ρ = ρ(h)

and mean E(N(sk)) = λ(sk) = λk. Then the jpgf, P(λ(si), λ(sj); c1, c2), is given by:

P(λi, λj ; c1, c2) = exp

{
− λi

(1− ρ2)
− λj

(1− ρ2)

}
×[

Φ3

(
1, 1;

(
−(1− c2) +

1

(1− ρ2)

)
λj ,−

(
1− c1c2

(1− ρ2)
− 1

(1− ρ2)2

)
λiλj

)
−Φ3

(
1, 1;

(
− c1c2 − c1

[(1− c1)(1− ρ2)− 1]
+

1

(1− ρ2)

)
λj ,−

(
1− c1c2

(1− ρ2)
− 1

(1− ρ2)2

)
λiλj

)]
+ exp

{
− (1− c1)λi −

(
c1c2 − c1

[(1− c1)(1− ρ2)− 1]

)
λj

}
,

Proof. See the Appendix.

Hunter (1974) obtained the bivariate Laplace transform of the jpgf, but not an explicit

expression for the jpgf, even though he mentioned that it can be obtained theoretically

by inverting his proposed expression. Thus, Theorem 2.2.1 becomes an important

contribution to Hunter (1974) by giving a closed expression for the jpgf.

2.2.1 Correlation function

The following result, which can be obtained from the pioneering work of Hunter (1974),

provides the correlation function ρN(si, sj) of the non-stationary Poisson random field

with underlying correlation ρ(h) depending on the regularized lower incomplete gamma

function:

γ∗(a, x) =
γ(a, x)

Γ(a)
=

1

Γ(a)

x∫
0

ta−1e−tdt (2.5)
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where γ(·, ·) is the lower incomplete gamma function and Γ(·) is the Gamma function.

Additionally, we define the function γ? (a, x, x′) = γ∗ (a, x) γ∗ (a, x′), which considers

the product of two regularized lower incomplete gamma function sharing a common

parameter.

Theorem 2.2.2. Let N be a non-stationary Poisson random field with underlying

correlation ρ(h). Then,

ρN(si, sj) =
ρ2(h)(1− ρ2(h))√

λ(si)λ(sj)

∞∑
r=0

γ∗
(
r + 1,

λ(si)

1− ρ2(h)
,

λ(sj)

1− ρ2(h)

)
,

with h = si − sj.

Proof. For details, refer to Hunter (1974), section 5.2 (pages 38-39).

Corollary 2.2.1. In Theorem 2.2.2, when λ(s) = λ, the Poisson random field is weakly

stationary with the correlation function given by:

ρN(h, λ) = ρ2(h) [1− exp (−z(h, λ)) (I0 (z(h, λ)) + I1 (z(h, λ)))] , (2.6)

where z(h, λ) = 2λ(1− ρ2(h))−1.

Proof. See the Appendix.

Note that ρN(h) is well defined at the origin since ρN(h) = 1, as h → 0, implying that

the Poisson random field is weakly stationary and mean square continuous. Additionally,

if ρ(h) = 0, then ρN(h) = 0 and if λ → ∞ then ρN(h) = ρ2(h), i.e., it converges to the

correlation function of an exponential random field.

Following the graphical example given in Figure 1, we now compare the correlation

functions of the proposed Poisson random field with the correlation of the Poisson LG

random field, which is defined hierarchically by first considering a LG random field Z =

{Z(s), s ∈ A} defined as Z(s) = eµ+
√
σ2G(s), whereG is a standard Gaussian random field

with correlation ρ(h), and then assuming Y (s) | Z(s) ∼ Poisson(Z(s)) with Y (si) ⊥⊥
Y (sj) | Z for i 6= j. In this case, the first two moments of Y (s) are given by E(Y (s)) =
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eµ+0.5σ2 and Var(Y (s)) = E(Y (s))(1 + E(Y (s))(eσ
2 − 1)). Consequently, and following

Aitchison and Ho (1989), the correlation function is given by:

ρY (h, µ, σ2) =
eσ

2ρ(h) − 1

eσ2 − 1 + E(Y (s))−1
.

This correlation is discontinuous at the origin and the nugget effect is given by:

E(Y (s))−1

E(Y (s))−1 + eσ2 − 1
> 0.

It is apparent that the marginal mean E(Y (s)) has a strong impact on the nugget effect.

Figure 2.1 (a) depicts the correlation functions ρY (h, 0.5, 0.05), ρY (h, 2.5, 0.1), and

ρY (h, 4.5, 0.2), which correspond to Poisson LG random fields with mean E(Y (s)) =

1.69, 12.81, and, 99.48, respectively. As underlying correlation model we assume ρ(h) =

(1 − ||h||/0.5)4)+. It can be appreciated that for large mean values, the nugget effect

is negligible. However, for small mean values, the nugget effect can be huge, and it is

the cause of the “whitening” effect observed in Figure 1 (a). This fact has been also

highlighted in De Oliveira (2013), which indicates that the Poisson LG random field may

impose severe restrictions on the correlation structures, which is inadequate for spatial

count data models consisting primarily of small counts.

Figure 2.1 (b) depicts the correlation function ρN(h, λ) of the proposed Poisson random

field using the same means and underlying correlation function of the Poisson LG random

field. It can be appreciated that the correlation is well defined at the origin and covers the

entire range between 0 and 1, irrespective of the mean values.

Finally, Figure 2.1 (c) depicts the correlation function of the Poisson GC random field

(Han and De Oliveira, 2016) C = {C(s), s ∈ A} defined as C(s) = F−1
s (Φ(G(s)), λ),

where Φ(·) is the cdf of the standard Gaussian distribution and F−1
s (·, λ) is the quantile

function of the Poisson distribution and G is a standard Gaussian random field with

correlation ρ(h). The correlation function in this case is given by

ρC(h, λ) =

∫ ∞
−∞

∫ ∞
−∞

λ−1F−1
si

(Φ(zi), λ)F−1
sj

(Φ(zj), λ)φ2(zi, zj, ρ(h))dzidzj − λ
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where φ2 is the pdf of the bivariate standard Gaussian distribution. It is apparent that the

Poisson GC correlation ρC(h, λ) is much stronger than ρN(h, λ), and it does not seem to

be affected by the different mean values.
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Figure (2.1) From left to right: (a) correlation functions ρY (h, µ, σ2) of the Poisson LG

random field with µ = 0.5, σ2 = 0.05 and µ = 2.5, σ2 = 0.1, and µ = 4.5, σ2 = 0.2; (b)

correlation function ρN(h, λ) of our proposed Poisson random field for λ = 1.69, 12.81,

and, 99.48; (c) correlation function ρC(h, λ) of the Poisson GC random field for λ = 1.69,

12.81, and, 99.48. The black line in the Figures depicts the underlying correlation model

given by ρ(h) = (1− ||h||/0.5)4
+.

It is important to stress that Poisson and Poisson GC random fields that are
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not mean-square continuous can be obtained by introducing a nugget effect, i.e., a

discontinuity at the origin of ρN(h). This can be achieved by replacing the underlying

correlation function ρ(h) with ρ∗(h) = ρ(h)(1 − τ 2) + τ 210(||h||), where 0 ≤ τ 2 < 1

represents the underlying nugget effect.

2.2.2 Bivariate distribution

In this section, we provide the bivariate distribution of the Poisson random field. This

distribution can be written in terms of an infinite series depending on the regularized lower

incomplete Gamma function defined in (2.5) and the regularized hypergeometric confluent

function (Gradshteyn and Ryzhik, 2014), defined as:

1F̃1(a; b;x) =
1F1(a; b;x)

Γ(b)
=
∞∑
k=0

(a)kx
k

Γ(b+ k)k!
,

where 1F1 is the standard hypergeometric confluent function.

For the sake of simplicity, we analyse the following cases separately: (a) n = m = 0,

(b) n = 0,m ≥ 1 and m = 0, n ≥ 1, (c) n = m = 1, 2 . . ., and (d) n,m ≥ 1, n 6= m.

Moreover, we set pnm = Pr(N(si) = n,N(sj) = m) , λi = λ(si), λj = λ(sj) and

ρ = ρ(h) for notational convenience. We additionally define the function S as follows:

S ( a ;b
c , x, x

′) = 1F̃1(a; b;x)γ∗ (c, x′) .

Theorem 2.2.3. Let N be a Poisson random field with underlying correlation ρ and mean

E(N(sk)) = λk. Then the bivariate distribution pnm is given by:

(a) Case n = m = 0:

p00 = −1 + e−λi + e−λj + (1− ρ2)
∞∑
k=0

ρ2kγ?
(
k + 1,

λi
1− ρ2

,
λj

1− ρ2

)
.

(b) Cases n ≥ 1,m = 0 and m ≥ 1, n = 0, pn0 = g(n, λi, λj, ρ) and p0m =

g(m,λj, λi, ρ), respectively, where

g(b, x, y, ρ) =
xb

b!
e−x − xbe−

x
1−ρ2

∞∑
`=0

(
ρ2x

1− ρ2

)`
S
(
b ;b+`+1

`+1 ,
ρ2x

1− ρ2
,

y

1− ρ2

)
.
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(c) Case n = m ≥ 1:

pnn =− (1− ρ2)n
∞∑
k=0

ρ2k(n)k
k!

γ?
(
n+ k,

λi
1− ρ2

,
λj

1− ρ2

)

+

(
1− ρ2

ρ2

)n ∞∑
k=0

1∑
`=0

(n)k
k!

e−λ(si)(1−`)−λ(sj)`γ?
(
n+ k,

ρ2(1−`)λi
1− ρ2

,
ρ2`λj
1− ρ2

)
+ (1− ρ2)n+1

∞∑
k=0

∞∑
`=0

ρ2k+2`(n)`
`!

γ?
(
n+ `+ k + 1,

λi
1− ρ2

,
λj

1− ρ2

)
.

(d) Cases n ≥ 2,m ≥ 1 with n > m, and m ≥ 2, n ≥ 1 with m > n, pnm =

h(n,m, λi, λj, ρ) and pnm = h(m,n, λj, λi, ρ), respectively, where

h(a, b, x, y, ρ) =xme
− x

1−ρ2

[
∞∑
`=0

(b)`
`!

(
ρ2x

1− ρ2

)`
S
(
a−b+1 ;a+`+1

b+` ,
ρ2x

1− ρ2
,

y

1− ρ2

)

−
∞∑
k=0

∞∑
`=0

(b)`
`!

(
ρ2x

1− ρ2

)k+`

S
(
a−b ;a+k+`+1

b+k+`+1 ,
ρ2x

1− ρ2
,

y

1− ρ2

)]
.

Proof. See the Appendix.

The evaluation of the bivariate distribution can be troublesome at first sight. However, it

can be performed by truncating the series and taking into account that efficient numerical

computation of the regularized lower incomplete Gamma and hypergeometric confluent

functions can be found in different libraries such as the GNU scientific library (Gough,

2009) and the most important statistical softwares including R, MATLAB and Python.

In particular, the R package Geomodels (Bevilacqua et al., 2019) uses the Python

implementations in the SciPy library (Virtanen et al., 2020).

The bivariate distribution can be written as the product of two independent Poisson

distributions when ρN(h) = 0. This result, provided by Hunter (1974) in Theorem 3.6,

establishes that the independence of two renewal counting processes is equivalent to a

zero correlation between them. As outlined in Section 2.2.1, ρ(h) = 0 implies ρN(h) = 0.
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Consequently, pairwise independence at the level of the underlying Gaussian random field

implies pairwise independence for the Poisson random field.

We now compare the type of bivariate dependence induced by the proposed model and

the GC one when λ = 5.
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Figure (2.2) For each row (from left to right): bivariate Poisson GC distribution, our

proposed bivariate Poisson distribution and the difference between them. The first, second

and third row are obtained setting ρ(h) = 0.1, 0.5, 0.9 for the underlying correlation.
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Figure (2.2) (from left to right) presents the bivariate GC distribution, the bivariate

Poisson distribution in Theorem 2.2.3 and a coloured image representing the differences

between them. Note that a positive value of that difference implies that the probabilities

associated with the bivariate distribution in Theorem 2.2.3 are greater than the probabilities

of the bivariate GC one. Only the probabilities Pr(N(si) = n,N(sj) = m) for

n,m = 0, 1, . . . , 12 are considered in the plots. The first, second and third rows consider

increasing levels of underlying correlations ρ(h) = 0.1, 0.5, 0.9.

The higher the correlation, the more significant the difference between the bivariate

distributions. In addition, it can be observed that the probabilities of the GC distribution

are the largest along the diagonal. This is not surprising since the Poisson GC model

inherits the type of dependence of the underlying Gaussian random field. On the contrary,

the proposed bivariate distribution tends to assign more probabilities outside the main

diagonal with respect to the GC case.

2.3 Estimation and prediction

In this section, we start by describing the weighted pairwise likelihood (wpl) estimation

method; then, we focus on the optimal linear prediction.

2.3.1 Weighted pairwise likelihood estimation

Composite likelihood is a general class of objective functions that combine

low-dimensional terms based on the likelihood of marginal or conditional events to

construct a pseudo likelihood (Lindsay, 1988; Varin et al., 2011). A particular case of

the composite likelihood class is the pairwise likelihood (see for example Heagerty and

Lele, 1998; Bevilacqua and Gaetan, 2015; Alegrı́a et al., 2017; Bevilacqua et al., 2020,

for application of pairwise likelihood in the spatial setting) that combines the bivariate

distributions of all possible distinct pairs of observations. Let N = (n1, n2, . . . , nl)
>

be a realization of the Poisson random field N observed at distinct spatial locations
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s1, s2, . . . , sl, si ∈ A and let θ = (β>,α>) be the vector of unknown parameters where

α is the vector parameter associated with the underlying correlation model and β the

regression parameters. The pairwise likelihood function is defined as follows:

pl(θ) :=
l−1∑
i=1

l∑
j=i+1

log(Pr(N(si) = ni, N(sj) = nj))ζij,

where Pr(N(si) = ni, N(sj) = nj) is the bivariate density given in Theorem 2.2.3 and ζij
is a non-negative suitable weight. The choice of cut-off weights, namely,

ζij =

1 ‖ si − sj ‖≤ ξ

0 otherwise
, (2.7)

for a positive value of ξ, can be motivated by its simplicity and by observing that the

dependence between observations that are distant is weak (Joe and Lee, 2009; Bevilacqua

and Gaetan, 2015).

The maximum weighted pairwise likelihood (wpl) estimator is given by:

θ̂ := argmaxθ pl(θ).

Under some mixing conditions of the Poisson random field (Bevilacqua et al., 2012;

Bevilacqua and Gaetan, 2015), it can be shown that, in the case of increasing domain

asymptotic, θ̂ is consistent and asymptotically Gaussian distributed, with the covariance

matrix given by G−1
n (θ), i.e., the inverse of the Godambe information Gn(θ) :=

Hn(θ)Jn(θ)−1Hn(θ), where Hn(θ) := E[−∇2 pl(θ)] and Jn(θ) := Var[∇ pl(θ)]. The

standard error estimation can be obtained from the square root diagonal elements of

G−1
n (θ̂).

It is important to stress that the computation of the standard errors requires the evaluation

of the matrices Hn(θ̂) and Jn(θ̂). However, the evaluation of Jn(θ̂) is computationally

unfeasible for large datasets, and in this case, subsampling techniques can be used, as in

Heagerty and Lele (1998) and Bevilacqua et al. (2012). A straightforward and more robust

alternative is the parametric bootstrap estimation of G−1
n (θ) (Bai et al., 2014).
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Another critical issue related to large datasets is that the computation of the wpl estimator

can be computationally demanding due to the computational complexity associated with

the bivariate Poisson distribution given in Theorem 2.2.3. An estimator that requires a

smaller computational burden can be obtained by considering a misspecifiedwpl (Masuda,

2013; Gouriéroux et al., 2017; Bevilacqua et al., 2020). Specifically, suppose that in

the estimation procedure, we assume a non-stationary Gaussian random field with mean

and variance equal to λ(s) and correlation ρN(si, sj) given in Theorem 2.2.2. In that

case, a misspecified Gaussian wpl only requires the computation of the Gaussian bivariate

distribution.

Gaussian misspecification is a useful inferential tool when the likelihood computation

cannot be calculated for some reason, but the first two moments and the correlation are

known. Note that the misspecified Gaussian random field matches the mean, variance,

and correlation function of the Poisson random field. Additionally, standard maximum

likelihood estimation can be performed under the Gaussian misspecification setting.

2.3.2 Optimal linear prediction

The random field’s optimal predictor concerning the mean squared error criterion requires

the knowledge of the finite-dimensional distribution, which is not available for the Poisson

random field. As in the estimation step, once again, the Gaussian misspecification allows

to build an optimal linear predictor based on the correlation of the Poisson random field

given in Theorem 2.2.2. Specifically, if the goal is the prediction of N at s0 given the

vector of spatial observations N observed at s1, s2, . . . , sl, then the optimal linear Gaussian

prediction is given by:

N̂(s0) = λ(s0) + c>Σ−1(N − λ) (2.8)

where λ = (λ(s1), . . . , λ(sl))
>, c = [

√
λ(s0)λ(si)ρN(s0, si)]

l
i=1 and Σ =

√
λλ> �

[ρN(si, sj)]
l
i,j=1 is the variance-covariance matrix (� the matrix Schur product). In

practice, the mean and covariance matrix are not known and must be estimated. The
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associated mean squared error is:

MSE(N̂(s0)) = λ(s0)− c>Σ−1c.

Note that this kind of prediction does not guarantee the positivity and discreteness of the

prediction. However, in general, optimal linear prediction can be a useful approximation

of the optimal predictor, as was shown, for example, in De Oliveira (2006) and recently in

Bevilacqua et al. (2020).

2.4 Simulation studies

In this section, we focus on two simulation studies. The first one analyses the performance

of the wpl method when estimating the Poisson random field under the spatial and

spatio-temporal settings. The second one analyses the Poisson optimal linear predictor’s

performance, comparing our approach with the Poisson GC and Poisson LG models.

2.4.1 Performance of the weighted pairwise likelihood estimation

In this study, we consider 1000 realizations from a stationary spatial Poisson random field

observed at si ∈ [0, 1]2, i = 1, . . . , l, l = 441. Specifically, we considered a regular grid

with increments of size 0.05 over the unit square [0, 1]2. The grid points were perturbed,

adding a uniform random value over [−0.015, 0.015] to each coordinate. A perturbed

grid allows us to obtain more stable estimates since different sets of small distances are

available and very close location points are avoided.

For the Poisson random field we, consider λ(s) = eβ with β = log(2), log(5), log(10),

log(20), and an underlying isotropic correlation model ρ(h) = (1 − ||h||/α)4
+ with α =

0.2. As outlined in Section 1.1.5, the use of a compactly supported correlation function

simplifies the computation of the bivariate Poisson distribution proposed in Theorem 2.2.3.

We study the performance of the Poisson wpl, the misspecified Gaussian wpl and

the misspecified Gaussian maximum likelihood (ML) estimation methods. In the
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(misspecified) wpl estimation, we consider a cut-off weight function, as in (2.7), with

ξ = 0.1.

Poisson wpl Gaussian wpl Gaussian ML

Bias MSE Bias MSE Bias MSE

β = log(2) -0.00251 0.00151 -0.00348 0.00161 -0.00366 0.00165

α = 0.2 -0.00663 0.00113 -0.00828 0.00208 -0.00748 0.00203

β = log(5) -0.00113 0.00065 -0.00147 0.00068 -0.00161 0.00068

α = 0.2 -0.00435 0.00098 -0.00422 0.00149 -0.00344 0.00145

β = log(10) 0.00052 0.00033 0.00031 0.00033 0.00014 0.00033

α = 0.2 -0.00261 0.00096 -0.00336 0.00120 -0.00296 0.00115

β = log(20) -0.00026 0.00018 -0.00039 0.00019 -0.00037 0.00018

α = 0.2 -0.00449 0.00094 -0.00499 0.00099 -0.00402 0.00095

Table (2.1) Bias and MSE associated with Poisson wpl, misspecified Gaussian wpl and

misspecified Gaussian ML when the true random field is Poisson with λ(s) = eβ and

ρ(h) = (1− ||h||/α)4
+.

Table 2.1 shows the bias and mean squared error associated with β and α through the

four scenarios and three estimation methods. As expected, the misspecified Gaussian ML

performs slightly better than the misspecified Gaussian wpl. More importantly, it can be

recognized that the Poisson wpl shows the best performance, particularly when estimating

the spatial dependence parameter. This fact is more evident for low counts i.e., when β is

decreasing. However, when increasing the mean, the performances of the three methods

of estimation tend to be considerably similar, in particular when the mean of the Poisson

random field is 20.

To summarize, the Poisson wpl is the best method for estimating the Poisson random

field when the mean is small (lower than 20 as a rule of thumb in our experiments). For

large counts, the misspecified Gaussian wpl or ML methods show approximately the same

performance as the Poisson wpl method.

We also study the proposed methods’ performance when estimating a non-stationary

version of the Poisson random field. Under the previous simulation setting we changed
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the constant mean by considering a regression model, that is, λ(s) = exp{β + β1u1(s) +

β2u2(s)} with β = 1.5, β1 = −0.2 and β2 = 0.3, where u1(s) and u2(s) are independent

realizations from a (0, 1) uniform random variable. Table 2.2 shows the bias and MSE

associated with β, β1, β2 and α for the three methods of estimation, and Figure 2.3 plots

the associated centred box-plots.

Additionally, in this case, the Poisson wpl method shows the best MSE for each

estimation. Notice that all three methods of estimations show approximately the same

performance as in the stationary case.

Poisson wpl Gaussian wpl Gaussian ML

Bias MSE Bias MSE Bias MSE

β = 1.5 -0.00263 0.00419 -0.00359 0.00445 -0.00320 0.00428

β1 = −0.2 0.00189 0.00618 0.00148 0.00665 0.00046 0.00627

β2 = 0.3 0.00185 0.00608 0.00202 0.00661 0.00182 0.00621

α = 0.2 -0.00148 0.00091 -0.00030 0.00124 0.00096 0.00122

Table (2.2) Bias and MSE associated with the Poisson wpl, misspecified Gaussian wpl

and misspecified Gaussian ML when estimating a non-stationary Poisson random field

with λ(s) = exp{β + β1u1(s) + β2u2(s)} and ρ(h) = (1− ||h||/α)4
+.

Finally, we consider a simulation scheme under a spatio-temporal setting. Specifically,

we consider 1000 simulations from a non-stationary space-time Poisson random field

observed at si ∈ [0, 1]2, i = 1, . . . , l, l = 40 spatial location sites, uniformly distributed

within the unit square and t∗1 = 0, t∗2 = 0.25, . . . t∗25 = 6, 25 time points. We consider

a regression model for the spatio-temporal mean λ(s, t∗) = exp{β + β1u1(s, t∗) +

β2u2(s, t∗)}, where uk(s, t∗), k = 1, 2 are independent realizations from a (0, 1) uniform

random variable. We set β = 1.5, β1 = −0.2 and β2 = 0.3 as in the previous simulation

scheme.

Additionally, as the underlying space-time correlation, we use a simple isotropic and

temporal symmetric space-time Wendland separable model ρ(h, t?) = (1−||h||/αs)
4
+(1−

|t?|/αt∗)4
+ with αs = 0.2 and αt∗ = 1, where t? = t∗i − t∗j with i, j ∈ {1, 2, . . . , 25}.
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Figure (2.3) Centred box-plots of estimates under the Poisson wpl (P), misspecified

Gaussian wpl (PG), and misspecified Gaussian ML (MG) when estimating a

non-stationary Poisson random field with λ(s) = exp{β + β1u1(s) + β2u2(s)}, β = 0.5,

β1 = −0.2, β2 = 0.3 and ρ(h) = (1− ||h||/α)4
+ with α = 0.2.

Finally, for the misspecified wpl estimation, we consider a cut-off weight function as in

(2.7) extended to the space time case, with ξs = 0.2 and ξt∗ = 0.5.

The results concerning this simulation study are shown in Table 2.3, including the bias

and MSE associated with β, β1, β2 and αs, αt∗ for the three estimation methods. In

addition, Figure 2.4 shows the associated box plots. As it can be observed, the Poisson

wpl approach outperforms the misspecified Gaussian wpl and ML as expected for each

parameter.

We want to highlight that all of the estimation methods showed similar behaviours as in

the purely spatial case.
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Poisson wpl Gaussian wpl Gaussian ML

Bias MSE Bias MSE Bias MSE

β = 1.5 -0.00058 0.00166 -0.00120 0.00180 -0.00110 0.00167

β1 = −0.2 -0.00079 0.00257 -0.00056 0.00274 -0.00102 0.00249

β2 = 0.3 0.00036 0.00284 0.00070 0.00302 0.00062 0.00267

αs = 0.2 -0.01057 0.00464 -0.01323 0.00630 -0.01343 0.00629

αt∗ = 1 -0.00124 0.01846 0.00165 0.02534 0.00032 0.02415

Table (2.3) Bias and MSE associated with the Poisson wpl, misspecified Gaussian wpl

and misspecified Gaussian ML when estimating a non-stationary spatio-temporal Poisson

random field with λ(s, t∗) = exp{β + β1u1(s, t∗) + β2u2(s, t∗)} and ρ(h, t?) = (1 −
||h||/αs)

4
+(1− |t?|/αt∗)4

+.
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Figure (2.4) Centred box-plots of estimates under the Poisson wpl (P), misspecified

Gaussian wpl (PG), and misspecified Gaussian ML (MG) when estimating a

non-stationary space-time Poisson random field with λ(s, t∗) = exp{β + β1u1(s, t∗) +

β2u2(s, t∗)} with β = 0.5, β1 = −0.2 and β2 = 0.3 and ρ(h, t?) = (1 − ||h||/αs)
4
+(1 −

|t?|/αt∗)4
+ with αs = 0.2, αt∗ = 1.
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2.4.2 Performance of the optimal linear prediction

In this section, we compare the performance of the optimal linear predictor of the proposed

Poisson random field with the optimal predictors based on the Poisson GC and Poisson LG

approaches. To compare the prediction performance of the three approaches, we consider

the following steps:

1. Set j = 1. Repeat until j = 100.

2. Simulate the j-th spatial dataset from the proposed Poisson random field by

considering 300 location sites uniformly distributed on the unit square.

3. Set k = 1. Repeat until k = 50.

4. Randomly split the j-th dataset by using 80% of the data for estimation and 20% as

the validation dataset.

5. Estimate using wpl under our model and using ML for the Poisson GC and Poisson

LG models.

6. Compute the optimal linear predictor (2.8) and the optimal predictor for the Poisson

GC and Poisson LG models at the coordinates associated with the validation dataset,

given the estimates obtained at the previous step.

7. Compute, for each model, RMSEk and MAEk.

8. k = k + 1.

9. Compute, for each model RMSEj =
50∑
k=1

RMSEk/50 and MAEj =
50∑
k=1

MAEk/50.

10. j = j + 1.

11. Compute, for each model RMSE =
100∑
j=1

RMSEj/100 and MAE =
100∑
j=1

MAEj/100 .
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This numerical experiment has been replicated by simulating (at step 2) from a Poisson

GC random field. The simulation settings have been chosen such that the means (and

variances) are the same for both models. Specifically, we consider three scenarios with

increasing mean, that is 1.69 (scenario 1), 12.81 (scenario 2) and 99.48 (scenario 3).

This election generates a Poisson marginal distribution with low, medium and large

counts, respectively. Additionally, as the underlying correlation model, we consider

ρ(h) = e−3||h||/α, with α = 0.15 for the Poisson GC model and α = 0.35 for the Poisson

model. This specific setting allows us to obtain similar correlations in both cases.

For the wpl estimation of our Poisson model, we set ξ = 0.05 in (2.7). For

the Poisson GC and Poisson LG, we use the maximum likelihood estimation method

implemented in the R (R Core Team, 2020) packages gcKrig (Han and Oliveira, 2018)

and spaMM (Rousset and Ferdy, 2014). The gcKrig package implements a variant of the

sequential importance sampling algorithm and it is used to approximate the Poisson GC

likelihood (see Masarotto and Varin, 2017; Han and Oliveira, 2018, for the computational

details). The Poisson LG maximum likelihood estimation is computed using Laplace

approximations through the spaMM package (Rousset and Ferdy, 2014). Finally, the

Poisson GC model’s optimal prediction, which involves the evaluation of an n-dimensional

integral, is approximated using a variant of the sequential importance sampling algorithm,

as in the estimation step.

Table 2.4 summarizes the results of our experiment, showing the RMSE and MAE for

each model under the different scenarios and types of model generation. As expected, the

prediction using the Poisson LG is the worst in all scenarios. The performance predictions

in terms of RMSE and MAE of our Poisson and Poisson GC models are quite similar in

all scenarios, with a slight preference for the Poisson GC prediction in some of them. This

is not surprising since, under the GC model, the optimal predictor is computed. However,

the proposed optimal linear predictor is general very competitive.

In addition, it is important to note that the computations of the ML estimates and the

optimal prediction for the Poisson GC model are computationally very intensive, even for

a relatively small dataset. To explain, in the previous example (300 location sites) the
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Scenario 1 Scenario 2 Scenario 3

P PGC P PGC P PGC

RMSEP 1.101410 1.060940 2.792362 2.806396 7.479191 7.751566

RMSEPGC 1.102478 1.048888 2.792176 2.786705 7.474412 7.739166

RMSEPLG 1.182258 1.155893 3.087286 3.135605 8.437809 8.720756

MAEP 0.839773 0.839212 2.155351 2.217256 5.852510 6.127105

MAEPGC 0.837037 0.825414 2.152248 2.200265 5.847146 6.117363

MAEPLG 0.930753 0.924698 2.453938 2.510324 6.739108 6.981031

Table (2.4) Empirical mean of RMSE and MAE associated with the optimal linear

predictor of the proposed Poisson random field (P), the optimal predictor based on the

Poisson GC (PGC) and Poisson LG (PLG) approaches when the datasets are simulated

from the P and PGC models under three scenarios, namely, Scenario 1 (low counts),

Scenario 2 (medium counts) and Scenario 3 (large counts).

time in seconds (measured using the R function system.time in a computer laptop

with a 2.4 GHz processor and 8 GB of memory) to estimate, using 80% of the data,

and to predict, using 20% of the data, require approximately 2.453 seconds and 10.125

seconds, respectively, for the GC model using the package gcKrig. On the other hand,

the computations of the wpl estimates and of the Poisson optimal linear prediction require

0.685 seconds and 0.125 seconds, respectively, using the package GeoModels. As a

consequence the proposed methods of estimation and prediction are clearly more scalable.



Chapter 3

Modeling zero inflated Poisson spatial
data

3.1 A random field with Bernoulli marginal distribution

A Bernoulli random field B = {B(s), s ∈ A} is defined by thresholding a weakly

stationary Gaussian random field G = {G(s), s ∈ A} (see for example Heagerty and

Lele, 1998) with E(G(s)) = µ(s) and covariance function Cov(G(s1), G(s2)) = α2ρ(h)

with h = s1 − s2 ∈ A, that is:

B(s) = 1(c,+∞)(G(s) + ε(s)). (3.1)

Here ρ(h) is a correlation function, µ(s) is a deterministic function, for instance µ(s) =

X>(s)β, and ε(s) ∼ N(0, τ 2) is an optional white noise independent of G. With this

definition the marginal distribution of B(s) is given by the probit model

Pr(B(s) = 1) = 1− Pr(B(s) = 0) = Φ

(
µ(s)− c

σ

)
, (3.2)

where Φ is the univariate standard Gaussian cdf and σ2 = Var(G(s) + ε(s)) = τ 2 + α2.

In the geostatistical terminology such random field is called Gaussian excursion set or

truncated Gaussian random function (see for example Lantuèjoul, 2002).

53



54 CHAPTER 3. MODELING ZERO INFLATED POISSON SPATIAL DATA

Moreover, given two different locations si and sj , we can set pk = Pr(B(sk) = 1),

k = i, j and we denote the joint probability of success as

p11 = Pr(B(si) = 1, B(sj) = 1) = Φ2

(
µ(si)− c

σ
,
µ(sj)− c

σ
; ρ(h)

)
,

where Φ2(·, ·, ρ(h)) is the bivariate standard Gaussian cdf with correlation ρ(h). Then the

bivariate distribution of B can be written as:

Pr(B(si) = u,B(sj) = v) = (1 + p11 − pi − pj)(1−u)(1−v)puv11

(pi − p11)u(1−v)(pj − p11)v(1−u), (3.3)

for u, v ∈ {0, 1}. It is easy to see that the covariance function for the Bernoulli random

field is:

Cov(B(si), B(sj)) = Pr(B(s1) = 1, B(s2) = 1)− Pr(B(si) = 1) Pr(B(sj) = 1)

= p11 − pipj.

Then, the correlation function ρB(si, sj) of the non-stationary Bernoulli random field with

underlying correlation ρ(h) is given by:

ρB(si, sj) =
p11 − pipj√

pipj(1− pi)(1− pj)
.

Finally, if µ(si) = µ(sj) = µ and therefore pi = pj = p with p = Φ(µ), then the Bernoulli

random field is weakly stationary with correlation function given by:

ρB(h) =
p11 − p2

p(1− p)
.

3.2 Spatial zero inflated Poisson random fields

We extend the proposed Poisson random field to a zero inflated Poisson (ZIP) random

field to deal with excess zeros in data. Specifically, let B = {B(s), s ∈ A}, be a Bernoulli

random field such that B(s) = 1(−∞,0)(G(s)) where G is a Gaussian random field with
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E(G(s)) = θ(s), unit variance and correlation function ρ∗(h). The marginal probability

of having an excess zero is then given by:

p(s) := Pr(B(s) = 0) = Φ(θ(s)),

where Φ is the univariate standard Gaussian cdf.

Let N be a Poisson random field with E(N(s)) = λ(s) and underlying correlation ρ(h).

If B and N are independent, our proposed ZIP random field is given by the random field

N∗ := {N∗(s), s ∈ A} defined as:

N∗(s) = B(s)N(s). (3.4)

The marginal distribution is given by

Pr(N∗(s) = n∗(s)) =


p(s) + (1− p(s))e−λ(s) if n∗(s) = 0

(1− p(s))λ(s)n
∗(s)e−λ(s)

n∗(s)!
if n∗(s) = 1, 2, . . .

, (3.5)

with E(N∗(s)) = (1−p(s))λ(s) and Var(N∗(s)) = E(N∗(s))[1+ p(s)
1−p(s)E(N∗(s))]. Note

that the ZIP random field is over-dispersed and when p(s) → 0 then the Poisson random

field is obtained as special case.

We exemplify this feature by generating a realization of a stationary ZIP random field

for an increasing probability of excess zeros. Specifically, Figure 3.1 shows the realization

and the associated histogram for a ZIP random field with probability of excess zeros

p(s) = Φ(−2),Φ(−1),Φ(0),Φ(1), respectively. All the cases consider λ(s) = 5 and an

underlying correlation model given by ρ(h) = (1 − ||h||/0.2)4
+. Note that the histogram

of the ZIP random field with the smallest probability of excess zeros, as we expected, is

quite similar to a Poisson one. Hence, the case when p(s) = Φ(−2) will not be considered

in the numerical examples.
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Figure (3.1) From the top to the bottom. A realization (column a) of a ZIP random

field with p(s) = Φ(−2),Φ(−1),Φ(0),Φ(1) and its associated histogram (column b),

respectively. In all cases λ(s) = 5 and ρ(h) = (1− ||h||/0.2)4)+.
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3.2.1 Correlation function

LetN be a Poisson random field with underlying correlation ρ(h) andE(N(si)) = λi. Let

B be a Bernoulli random field with underlying correlation ρ∗(h) and Pr(B(si) = 0) =

Φ(θ(si)). Setting pi = Pr(B(si) = 0), pj = Pr(B(sj) = 0) and p∗kl = Pr(B(si) =

k,B(sj) = l) for k, l ∈ {0, 1}. If B and N are independent, then the covariance of the

ZIP random field N∗ is given by (see proof of Theorem 3.2.1):

Cov(N∗(si), N
∗(sj)) = p∗11 Cov(N(si), N(sj)) + λiλj Cov(B(si), B(sj)),

where p∗11 = 1 − (p∗01 + p∗10 + p∗00) with p∗01 = pi − p∗00, p∗10 = pj − p∗00, p∗00 =

Φ2(θ(si), θ(sj)); ρ
∗(h)) and Φ2(·, ·, ρ∗(h)) is a bivariate standard Gaussian cdf with

correlation ρ∗(h).

Theorem 3.2.1. Let N∗ be a non-stationary zero inflated Poisson random field with

underlying correlations ρ∗(h) and ρ(h). Then:

ρN∗(si, sj) =
p∗11ρN(si, sj)√

(1− pi)(1− pj)(1 + piλi)(1 + pjλj)
+

√
λiλjpipjρB(si, sj)√

(1 + piλi)(1 + pjλj)
,

with h = si − sj.

Proof. See the Appendix.

Corollary 3.2.1. In Theorem 3.2.1, when λ(s) = λ and pi = pj = p = Φ(θ), the zero

inflated Poisson random field is weakly stationary with correlation function given by:

ρN∗(h, λ, θ) =
p∗11ρN(h)

(1− p)(1 + pλ)
+
pλρB(h)

1 + pλ
.

Proof. See the Appendix.

The latent correlation functions involved in B and N (ρ∗(h) and ρ(h) respectively) can

be assumed equal in order to simplify the inference. Note that ρN∗(h) is well defined

at the origin since ρN(h) = 1, ρB(h) = 1 and p∗11 = 1 − p, as h → 0, implying that

the zero inflated Poisson random field is weakly stationary and mean square continuous.
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Additionally, if ρ(h) = 0, then ρN∗(h) = 0 and if p → 0 then ρN∗(h) = ρN(h), i.e., it

converges to the correlation function of a Poisson random field.

Figure 3.2 illustrates the effect of excess of zeros in the correlation function of the

zero inflated Poisson random field. We set θ = −2,−1, 0, 1, λ = 5 and an underlying

correlation model given by ρ(h) = (1− ||h||/0.5)4)+.

0.0 0.1 0.2 0.3 0.4 0.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ρ

ρN*(5,−2)

ρN*(5,−1)

ρN*(5,0)

ρN*(5,1)

Figure (3.2) Correlation functions ρN∗(h, λ, θ) of the ZIP random field with θ =

−2,−1, 0, 1, λ = 5 and ρ(h) = (1− ||h||/α)4
+ with α = 0.5.

Furthermore, a not mean-square continuous version of the ZIP random field can be

obtained by introducing a nugget effect for B and other for N . Specifically, by replacing

ρ∗(h) and ρ(h) with ρ?(h) and ρ??(h) respectively:

ρ?(h) =(1− τ 2
2 )ρ∗(h) + τ 2

210(||h||),

ρ??(h) =(1− τ 2
1 )ρ(h) + τ 2

110(||h||),

where 0 ≤ τ 2
1 , τ

2
2 < 1, represents the underlying nugget effects.



CHAPTER 3. MODELING ZERO INFLATED POISSON SPATIAL DATA 59

3.2.2 Bivariate distribution

The bivariate distribution of the zero inflated Poisson random field can be written in terms

of the marginal and bivariate distributions of the underlying Bernoulli and Poisson random

fields. Therefore, similar to the case of Poisson random fields, we analyze the following

cases separately: (a) n = m = 0, (b) n = 0,m > 0, (c) m = 0, n > 0 and (d) n > 0,m >

0.

Moreover, we set pnm = Pr(N(si) = n,N(sj) = m) , λi = λ(si) ,λj = λ(sj), p(si) =

pi and p(sj) = pj . Thus, the bivariate distribution is given by the following result.

Theorem 3.2.2. Let N∗ be a zero inflated Poisson random field with underlying

correlation ρ(h) and mean E(N∗(sk)) = (1 − pk)λk. Then the bivariate distribution

Pr(N∗(si) = n,N∗(sj) = m) is given by:

(a) Case n = m = 0:

Pr(N∗(si) = 0, N∗(sj) = 0) =p∗00 + p∗01 Pr(N(sj) = 0)+

p∗10 Pr(N(si) = 0) + p∗11p00.

(b) Case n = 0, m > 0:

Pr(N∗(si) = 0, N∗(sj) = m) = p∗01 Pr(N(sj) = m) + p∗11p0m.

(c) Case n > 0, m = 0:

Pr(N∗(si) = n,N∗(sj) = 0) = p∗10 Pr(N(si) = n) + p∗11pn0.

(d) Case n > 0, m > 0:

Pr(N∗(si) = n,N∗(sj) = m) = p∗11pnm.

Proof. See the Appendix.

It is important to point out that if ρN∗(h) = 0 then the bivariate distribution can be

written as the product of two independent zero inflated Poisson distributions. Therefore,
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since ρ(h) = 0 implies ρN∗(h) = 0, pairwise independence of the underlying Gaussian

random field implies pairwise independence of the zero inflated Poisson random field.

We now compare the type of bivariate dependence induced by the proposed model and

the GC one when λ = 5 and θ = −1.
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Figure (3.3) For each row (from left to right): bivariate ZIP GC distribution, our

proposed bivariate ZIP distribution and the difference between them. The first, second

and third row are obtained setting ρ(h) = 0.1, 0.5, 0.9 for the underlying correlation.
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Figure (3.3) (from left to right) presents the bivariate GC distribution, the bivariate

zero inflated Poisson distribution in Theorem 3.2.2 and a coloured image representing the

differences between them. As in the previous chapter, a positive value of the difference

implies that the probabilities associated with the bivariate distribution in Theorem 3.2.2 are

greater than the probabilities of the bivariate GC one. Only the probabilities Pr(N(si) =

n,N(sj) = m) for n,m = 0, 1, . . . , 10 are considered in the plots. The first, second and

third rows consider increasing levels of underlying correlations ρ(h) = 0.1, 0.5, 0.9.

Similar to the Poisson case, the underlying correlation increases as the difference

between the bivariate distributions becomes larger. Note that the probability of the

bivariate GC distribution at the pair (0, 0) is larger than the bivariate distribution in

Theorem 3.3. Moreover, the bivariate probabilities of the bivariate GC distribution at

the pairs (n, 0) and (0,m) are bigger as well as n and m are closest to zero. On the other

hand, the probabilities of the proposed bivariate distribution tend to be larger along the

main diagonal and, when n and m are furthest from zero.

3.3 Simulation studies

3.3.1 Performance of the weighted pairwise likelihood estimation

We set up the simulations as in the previous chapter, i.e., considering 1000 realizations

from a stationary spatial zero inflated Poisson random field observed at si ∈ [0, 1]2, i =

1, . . . , l, l = 441 . The grid for the spatial locations is the same perturbed regular grid that

we presented in Section 2.4.1.

For the zero inflated Poisson random field we first assume a constant increasing mean

and success probability that is λ(s) = eβ with β = log(5), log(20), p(s) = Φ(θ) with

θ = −1, 0, 1 and an underlying isotropic correlation model ρ(h) = (1 − ||h||/α)4
+ with

α = 0.2. As outlined in Section 1.1.5, the use of a compactly supported correlation

function clearly simplify the computation of the bivariate zero inflated Poisson distribution

in Theorem 3.2.2.
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The misspecified wpl is obtained when the Poisson random field in 3.4 is replaced with

a Gaussian random field with mean and variance equal to λ(s) and ρN(h) as correlation

function, i.e., N∗(s) = B(s)G(s) with E(G(s)) = Var(G(s)) = λ(s) and ρG(h) =

ρN(h). Thus, the bivariate distribution for the misspecified zero inflated Poisson is given

by the following theorem.

Theorem 3.3.1. Let N∗ be a misspecified zero inflated Poisson random field with

underlying correlation ρ(h) and mean E(N∗(sk)) = (1 − pk)λk. Then the bivariate

distribution fN∗(si),N∗(sj)(n,m) is given by:

(a) Case n = m = 0:

fN∗(si),N∗(sj)(0, 0) =p∗00 + p∗01fG(si)(0) + p∗10fG(sj)(0) + p∗11fG(si),G(sj)(0, 0).

(b) Case n = 0, m > 0:

fN∗(si),N∗(sj)(0,m) = p∗01fG(sj)(m) + p∗11fG(si),G(sj)(0,m).

(c) Case n > 0, m = 0:

fN∗(si),N∗(sj)(n, 0) = p∗10fG(si)(n) + p∗11fG(si),G(sj)(n, 0).

(d) Case n > 0, m > 0:

fN∗(si),N∗(sj)(n,m) = p∗11fG(si),G(sj)(n,m).

Proof. See the Appendix.

We study the performance of the zero inflated Poisson wpl and the misspecified wpl. In

the (misspecified) wpl estimation we consider a cut-off weight function as in (2.7) with

ξ = 0.1.

As we can observe in Table 3.1, the ZIP wlp shows the best performance throughout the

six proposed scenarios, specially at the estimation of the spatial dependence parameter.

Note that the performance of the two methods is quite similar for large number of zeros,

i.e., θ = 1. Moreover, the performance similarity gap decreases for a large β.
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ZIP wpl MZIP wpl

Bias MSE Bias MSE

β = log(5) -0.001589 0.001305 -0.006626 0.001398

θ = 0 -0.001195 0.009364 -0.011589 0.009651

α = 0.2 -0.003197 0.000675 -0.001500 0.000746

β = log(5) -0.003955 0.003612 -0.009775 0.003984

θ = 1 0.002750 0.011497 -0.002673 0.011572

α = 0.2 -0.004372 0.001347 -0.003432 0.001380

β = log(5) -0.000839 0.000763 -0.005567 0.000813

θ = −1 -0.007386 0.011877 -0.037222 0.014200

α = 0.2 -0.005195 0.000710 -0.000850 0.000816

β = log(20) -0.000201 0.000311 -0.000309 0.000312

θ = 0 -0.001863 0.009799 -0.001869 0.009800

α = 0.2 -0.002982 0.000644 -0.003021 0.000653

β = log(20) 0.000840 0.000885 0.000616 0.000896

θ = 1 0.005714 0.011995 0.005707 0.011996

α = 0.2 -0.004833 0.001338 -0.004760 0.001350

β = log(20) -0.000653 0.000205 -0.000763 0.000206

θ = −1 -0.003308 0.012204 -0.003329 0.012207

α = 0.2 -0.004732 0.000618 -0.004894 0.000649

Table (3.1) Bias and MSE associated with ZIP wpl and misspecified ZIP (MZIP) wpl

when the true random field is ZIP with λ(s) = eβ , p = Φ(θ) and ρ(h) = (1− ||h||/α)4
+.

We also study the performance of the proposed methods when estimating a non

stationary version of the ZIP random field. Under the previous simulation setting we

change the constant mean of the ZIP random field by considering a regression model that

is λ(s) = exp{β+β1u1(s)+β2u2(s)} with β = 2.0, β1 = 0.8 and β2 = −1.2 where u1(s)

and u2(s) are independent realizations from a standard uniform random variable, and we

set the success probability p(s) = Φ(θ) with θ = 1. Table 3.2 shows the bias and mean
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squared error associated with β, β1, β2, θ and α for the two estimation methods and Figure

3.4 shows the associated centred box-plots. Overall, the ZIPwpl method shows the highest

statistical efficiency. Moreover, the smallest MSE belongs to it for each estimation.

ZIP wpl MZIP wpl

Bias MSE Bias MSE

β = 2 0.004371 0.019139 -0.000514 0.020694

β1 = 0.8 -0.007326 0.034080 -0.004460 0.036361

β2 = −1.2 -0.009287 0.031906 -0.014940 0.034470

θ = 1 0.003800 0.012842 0.000748 0.012874

α = 0.2 -0.005598 0.001483 -0.005108 0.001485

Table (3.2) Bias and MSE associated with ZIP wpl and misspecified ZIP (MZIP) wpl

when estimating a non-stationary ZIP random field with λ(s) = exp{β + β1u1(s) +

β2u2(s)}, p = Φ(θ) and ρ(h) = (1− ||h||/α)4
+.

ZIP MZIP ZIP MZIP ZIP MZIP ZIP MZIP ZIP MZIP
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Figure (3.4) Centred box-plots of estimates under ZIP wpl (ZIP) and misspecified ZIP

(MZIP) wpl when estimating a non-stationary Poisson random field with λ(s) = exp{β +

β1u1(s) + β2u2(s)}, β = 2, β1 = 0.8, β2 = −1.2, p = Φ(θ), θ = 1 and ρ(h) =

(1− ||h||/α)4
+ with α = 0.2.

Finally, we consider a simulation scheme under the spatio-temporal setting. Specifically,
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we consider 1000 realizations from a non stationary space-time ZIP random field observed

at si ∈ [0, 1]2, i = 1, . . . , l, l = 40 spatial location sites uniformly distributed in the unit

square and t∗1 = 0, t∗2 = 0.25, . . . t∗25 = 6, 25 temporal instants. We consider a regression

model for the spatio-temporal mean λ(s, t∗) = exp{β + β1u1(s, t∗) + β2u2(s, t∗)}, where

uk(s, t
∗), k = 1, 2 are independent realizations from a standard uniform random variable,

and a spatio-temporal success probability p(s, t∗) = Φ(θ). As in the previous simulation,

we set β = 2.0, β1 = 0.8, β2 = −1.2 and θ = 1 . Additionally, as underlying

space-time correlation we use a simple isotropic and temporal symmetric space-time

Wendland separable model ρ(h, t?) = (1 − ||h||/αs)
4
+(1 − |t?|/αt∗)4

+ with αs = 0.2

and αt∗ = 1, where t? = t∗i − t∗j with i, j ∈ {1, 2, . . . , 25}. Finally, in the (misspecified)

wpl estimation we consider a cut-off weight function as in (2.7) extended to the space time

case with ξs = 0.2 and ξt∗ = 0.25.

The results are depicted in Table 3.3 where bias and mean squared error associated with

β, β1, β2, θ and αs, αt∗ for the two methods of estimation are shown. In addition, Figure

3.5 shows the associated box-plots.

ZIP wpl MZIP wpl

Bias MSE Bias MSE

β = 2 0.004617 0.007276 0.001995 0.007567

β1 = 0.8 -0.009988 0.012907 -0.008197 0.013298

β2 = −1.2 -0.001096 0.013481 -0.006318 0.014104

θ = 1 0.001253 0.003983 -0.001686 0.003994

αs = 0.2 -0.006759 0.003840 -0.006509 0.003865

αt∗ = 1 0.002967 0.024062 0.006996 0.024988

Table (3.3) Bias and MSE associated with ZIP wpl and misspecified ZIP (MZIP) wpl

when estimating a non-stationary ZIP random field with λ(s, t∗) = exp{β + β1u1(s, t∗) +

β2u2(s, t∗)}, p(s, t∗) = Φ(θ) and ρ(h) = (1− ||h||/α)4
+.
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Figure (3.5) Centred box-plots of estimates under ZIP wpl (ZIP) and misspecified ZIP

wpl (MZIP) when estimating a non-stationary Poisson random field with λ(s, t∗) =

exp{β + β1u1(s, t∗) + β2u2(s, t∗)}, β = 2, β1 = 0.8, β2 = −1.2, p(s, t∗) = Φ(θ),

θ = 1 and ρ(h, t?) = (1− ||h||/αs)
4
+(1− |t?|/αt∗)4

+ with αs = 0.2, αt∗ = 1.

3.3.2 Performance of the optimal linear prediction

In this section, we compare the performance of the optimal linear predictor of the proposed

ZIP random field with the optimal predictors based on the ZIP GC and ZIP LG approaches.

We propose the following optimal linear predictor for the ZIP random field:

N̂∗(s0) = (1− p)λ(s0) + c>Σ−1(N∗ − (1− p)λ), (3.6)
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where

λ =(λ(s1), . . . , λ(sl))
>,

c =[(1− p)
√
λ(s0)λ(si)(1 + pλ(s0))(1 + pλ(si))ρN∗(s0, si)]

l
i=1 and

Σ =[(1− p)
√
λ(si)λ(sj)(1 + pλ(si))(1 + pλ(sj))ρN∗(si, sj)]

l
i,j=1

is the variance-covariance matrix. The associated mean squared error is:

MSE(N̂∗(s0)) = (1− p)λ(s0)(1 + pλ(s0))− c>Σ−1c.

The simulation configuration is given by the following steps:

1. Set j = 1. Repeat until j = 100.

2. Simulate the j-th spatial dataset from the proposed ZIP random field by considering

300 location sites uniformly distributed on the unit square.

3. Set k = 1. Repeat until k = 50.

4. Randomly split the j-th dataset by using 80% of the data for estimation and 20% as

the validation dataset.

5. Estimate using wpl under our model and using ML for the ZIP GC and ZIP LG

models.

6. Compute the optimal linear predictor (3.6) and the optimal predictor for the ZIP GC

and ZIP LG models at the coordinates associated with the validation dataset, given

the estimates obtained at the previous step.

7. Compute, for each model, RMSEk and MAEk.

8. k = k + 1.

9. Compute, for each model RMSEj =
50∑
k=1

RMSEk/50 and MAEj =
50∑
k=1

MAEk/50.
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10. j = j + 1.

11. Compute, for each model RMSE =
100∑
j=1

RMSEj/100 and MAE =
100∑
j=1

MAEj/100 .

This numerical experiment has been replicated by simulating (at step 2) from a ZIP

GC random field. The simulation settings have been chosen such that the means (and

variances) are the same for both models. Specifically, we consider three scenarios with

λ = 5 and increasing probability of excess zeros, that is θ = −1 (scenario 1), θ = 0

(scenario 2) and θ = 1 (scenario 3). This election generates a ZIP marginal distribution

with low, medium and large zeros, respectively. Additionally, as the underlying correlation

model, we consider ρ(h) = e−3||h||/α, with α = 0.2 for the ZIP GC model and α = 0.4 for

the ZIP model. This specific setting allows us to obtain similar correlations in both cases.

For the wpl estimation of our ZIP model, we set ξ = 0.05 in (2.7). For the ZIP GC and

ZIP LG, we use the ML estimation method implemented in the R (R Core Team, 2020)

packages gcKrig (Han and Oliveira, 2018) and INLA (Rue et al., 2009; Lindgren et al.,

2011; Martins et al., 2013). The gcKrig package implements a variant of the sequential

importance sampling algorithm and it is used to approximate the Poisson GC likelihood

(see Masarotto and Varin, 2017; Han and Oliveira, 2018, for the computational details).

The ZIP LG estimation exploits the integrated nested Laplace approximation, under a

Bayesian framework, considering the default settings for the prior probability distribution

of the parameters. Finally, the ZIP GC model’s optimal prediction, which involves the

evaluation of an n-dimensional integral, is approximated using a variant of the sequential

importance sampling algorithm, as in the estimation step.

The results of the experiment are presented in Table 3.4. We can observe that the

prediction using the ZIP LG is the worst in all scenarios. On the other hand, the

performance predictions of our ZIP and ZIP GC models are quite similar in all scenarios.

However, as in the Poisson case, the proposed optimal linear predictor is very competitive.

Finally, we compare the computations of the estimates and prediction between the

proposed ZIP and the ZIP GC model. We use the same system configuration presented

in Section 2.4.2. On the one hand, for the GC model, the time to estimate and predict
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Scenario 1 Scenario 2 Scenario 3

ZIP ZIP GC ZIP ZIP GC ZIP ZIP GC

RMSEZIP 2.152476 2.026175 2.268950 2.292984 1.594206 1.730472

RMSEZIPGC 2.166845 1.968744 2.295804 2.234183 1.607570 1.707594

RMSEZIPLG 3.257610 2.426053 3.656097 3.629683 3.338754 4.236931

MAEZIP 1.637398 1.620287 1.662866 1.878494 0.855923 1.063258

MAEZIPGC 1.637634 1.564363 1.660078 1.751010 0.815557 0.983061

MAEZIPLG 2.237918 1.949775 3.059709 3.169689 2.234141 3.793925

Table (3.4) Empirical mean of RMSE and MAE associated with the optimal linear

predictor of the proposed ZIP random field (ZIP), the optimal predictor based on the ZIP

GC (ZIPGC) and ZIP LG (ZIPLG) approaches when the datasets are simulated from the

ZIP and ZIPGC models under three scenarios, namely, Scenario 1 (low zeros), Scenario 2

(medium zeros) and Scenario 3 (large zeros).

was 8.512 seconds and 52.489 seconds, respectively. On the other hand, for the proposed

ZIP model, the computations for estimation and prediction required 3.524 seconds and

0.215 seconds, respectively. Therefore, the proposed estimation and prediction methods

are more scalable than the ones proposed by GC approach.
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Chapter 4

Modeling over-dispersed spatial data

4.1 A random field with Erlang marginal distribution

Let G1, G2, . . . be a infinite sequence of a zero mean and unit variance weakly stationary

Gaussian random field with correlation function ρ(h). A random field Λ = {Λ(s), s ∈ A}
defined as:

Λ(s) :=
µ(s)

2κ

2κ∑
k=1

G2
k(s), (4.1)

where µ(s) > 0 is a non-random function, is a random field with marginal Erlang

distribution denoted by Λ(s) ∼ Erlang

(
κ,

κ

µ(s)

)
, where κ is the shape parameter

and κ/µ(s) is the rate parameter. Thus, the mean and variance of the random field are

E(Λ(s)) = µ(s) and Var(Λ(s)) =
µ(s)2

κ
, respectively. The covariance function is:

Cov(Λ(si),Λ(sj)) =
µ(si)µ(sj)

κ
ρ2(h),

and the correlation function is ρΛ(h) = ρ2(h).

Moreover, setting λ(si) = λi and λ(sj) = λj , the bivariate Erlang pdf is given by

71
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(Kibble, 1941; Vere-Jones, 1997; Bevilacqua et al., 2020):

fΛij(λi, λj) =
κκ+1(µ(si)µ(sj))

−κ+1
2

(1− ρ(h)2)Γ(κ)

(
λiλj
ρ(h)2

)κ−1
2

× e
− κ

(1−ρ(h)2)

(
λi
µ(si)

+
λj
µ(sj)

)
Iκ−1

(
2κρ(h)

1− ρ(h)2

√
λiλj

µ(si)µ(sj)

)
(4.2)

An interesting result highlighted by Bevilacqua et al. (2020) shows that pairwise

independence of the underling Gaussian random field implies pairwise independence of

the Erlang random field. Moreover, when ρΛ(h) = 0 the bivariate distribution in 4.2 can

be written as the product of two independent Erlang distributions. This result will be useful

for the next section.

4.2 Spatial Poisson-Erlang mixture random fields

In this section, we propose to extent the Mixed Poisson models into Mixed Poisson random

fields. We use the hierarchical specification of the Mixed Poisson models as starting point,

and we extent it for random fields which have Mixed Poisson distribution marginals.

Let Y = {Y (s), s ∈ A} be a positive continuous random field. A Mixed Poisson random

field is defined as

M := {M(s), s ∈ A}, (4.3)

such that, hierarchically

• M(s)|Y (s) ∼ Poisson(Y (s)),

• Cov(M(si),M(sj)|Y (si), Y (sj)) = ρN(si, sj).

By abuse of notation, we can denote M |Y as a Poisson random field defined in 2.2 with

E(M(s)|Y (s)) = Var(M(s)|Y (s)) = Y (s) and correlation function given by Theorem

2.2.2. Moreover, we set ρ(h) as the underlying correlation function of Y and M |Y , i.e.,

the random fields Y and M |Y have the same “parent” Gaussian random field.
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Note that the marginal probability distribution of the proposed Mixed Poisson random

field is a Mixed Poisson distribution given by (Titterington et al., 1985; Lindsay, 1995;

McLachlan and Peel, 2004):

Pr(M(s) = m) =

∫
R+

Pr(N(s) = m|y(s))fY (s)(y(s))dy(s). (4.4)

with E(M(s)) = E(Y (s)), Var(M(s)) = Var(Y (s)) + E(Y (s)). Note that this type of

model can handle over-dispersion.

Under this framework, a wide range of over-dispersed random fields can be obtained. In

this work, we consider Y ≡ Λ, i.e., the positive random field is set as an Erlang random

field defined in 4.1 . Therefore, the marginal probability distribution in 4.4 is given by:

Pr(M(s) = m) =
Γ(κ+m)

m!Γ(κ)

(
µ(s)

κ+ µ(s)

)m(
κ

κ+ µ(s)

)κ
,

which belongs to a marginal probability distribution of a Negative Binomial random

variable with

E(M(s)) = µ(s) ,

Var(M(s)) = µ(s)

(
1 +

µ(s)

κ

)
.

We call κ as a shape parameter and it will control the over-dispersion of the random field.

Hereafter M will be called as a Poisson-Erlang mixture random field with underlying

correlation function ρ(h). Note that the Poisson random field is a particular case of this

class of random fields when κ → ∞, and the highest over-dispersion is achieved when

κ = 1.

We exemplify this feature by generating a realization of a stationary Poisson-Erlang

mixture random field for an increasing over-dispersion. Specifically, Figure 4.1 shows

the realization and the associated histogram for a Poisson-Erlang mixture random field

with shape parameter κ = 1, 5, 100, respectively. All the cases consider µ(s) = 5 and an

underlying correlation model given by ρ(h) = (1−||h||/0.2)4
+. Note that the histogram of

the Poisson-Erlang mixture random field with the highest shape parameter, as we expected,
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is quite similar to a Poisson one. Hence, the case when κ(s) = 100 will not be considered

in the numerical examples.
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Figure (4.1) From the top to the bottom. A realization (column a) of a Poisson-Erlang

mixture random field with κ = 1, 5, 100 and its associated histogram (column b),

respectively. In all cases µ(s) = 5 and ρ(h) = (1− ||h||/0.2)4
+.

Note that if µ(s) depend on s then M is not stationary. A parametric specification for the

mean is given by µ(s) = eX(s)>β, where X(s) ∈ Rk is a vector of covariates and β ∈ Rk.
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4.2.1 Correlation function

The following result provides the correlation function ρM(si, sj) of the non-stationary

Poisson-Erlang mixture random field with underlying correlation ρ(h) depending on the

regularized Gauss hypergeometric function (Olver et al., 2010) defined by:

2F̃1(a, b; c;x) =
∞∑
k=0

(a)k(b)kx
k

Γ(c+ k)k!
, |x| < 1, (4.5)

and by analytic continuation elsewhere. Moreover, we set ν(si) = κ/µ(si) and ν(sj) =

κ/µ(sj). Furthermore, the functionH is defined as follows:

H ( a ,bc , x, x
′) = 2F̃1(a, b; c;x)2F̃1(a, b; c;x′).

Theorem 4.2.1. Let M be a non-stationary Poisson-Erlang mixture random field with

underlying correlation ρ(h). Then:

ρM(si, sj) =ρ2(h)

√
ν(si)ν(sj)

(1 + ν(si))(1 + ν(sj))

+
ρ(h)2(1− ρ(h)2)κ+1(ν(si)ν(sj))

κ−1/2

Γ(κ)((ν(si) + 1)(ν(sj) + 1))κ+1/2
√
µ(si)µ(sj)

×

∞∑
r=0

∞∑
`=0

ρ(h)2`(ν(si)ν(sj))
`Γ(r + κ+ `+ 1)2

`!Γ(`+ κ)((ν(si) + 1)(ν(sj) + 1))r+`
H
(

1 ,1−κ−`
r+2 ,− 1

ν(si)
,− 1

ν(sj)

)
with h = si − sj.

Proof. See the Appendix.

Corollary 4.2.1. In Theorem 4.2.1, when µ(s) = µ and ν(s) = κ/µ, the Poisson-Erlang

mixture random field is weakly stationary with correlation function given by:

ρM(h) = ρ(h)2

{
1− ν(ν(1− ρ(h)2))

1
2 (2 + ν(1− ρ(h)2))

κ

(1 + ν) (4 + ν(1− ρ(h)2))κ+ 1
2

×[
2F̃1

(
1− κ

2
,−κ

2
; 1;

4

(2 + ν(1− ρ(h)2))2

)
+

κ+ 1

2 + ν(1− ρ(h)2)
2F̃1

(
2− κ

2
,
1− κ

2
; 2;

4

(2 + ν(1− ρ(h)2))2

)]}
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Proof. See the Appendix.

Notice that if h = 0 then ρM(h) = 1, i.e., ρM(h) is well defined at the origin.

Consequently, the Poisson-Erlang mixture random field is weakly stationary and mean

square continuous. Moreover, if ρ(h) = 0, then ρM(h) = 0 and if κ → ∞ then

ρM(h) = ρN(h), i.e., it converges to the correlation function of a Poisson random field.

The last implication can be observed in Figure 4.2, since the red and black dot-dashed line

overlap.

The effect of over-dispersion in the correlation function of Poisson-Erlang mixture

random field is illustrated by the Figure 4.2. We set κ = 1, 5, 100, µ = 5 and an underlying

correlation model given by ρ(h) = (1− ||h||/0.5)4)+.
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Figure (4.2) Correlation function ρM(h, µ, κ) of the Poisson-Erlang mixture random

field with κ = 1, 5, 100, µ = 5, ρN(h, 5) and ρ(h) = (1− ||h||/α)4
+ with α = 0.5.

Finally, a Poisson-Erlang mixture random field that is not mean-square continuous can

be obtained by introducing a nugget effect, i.e., a discontinuity at the origin of ρM(h).

This can be achieved by replacing the underlying correlation function ρ(h) with ρ∗(h) =

ρ(h)(1− τ 2) + τ 210(||h||), where 0 ≤ τ 2 < 1 represents the underlying nugget effect.
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4.2.2 Bivariate distribution

The following result provides the bivariate distribution of the Poisson-Erlang mixture

random field. This distribution can be written in terms of an infinite series depending

on the regularized Gauss hypergeometric function defined in (4.5).

We analyse the following cases separately: (a) n = m = 0, (b) n = 0,m ≥ 1 and

m = 0, n ≥ 1, (c) n = m = 1, 2 . . ., and (d) n,m ≥ 1, n 6= m. Moreover, we set

p̃nm = Pr(M(si) = n,M(sj) = m) , µi = µ(si), µi = µ(si), νi = ν(si), νj = ν(sj) and

ρ = ρ(h). We additionally define the function H̃ as follows:

H̃
(
a ,a′

b
c ,c′

, x, x′
)

= 2F̃1(a, b; c;x)2F̃1(a′, b; c′;x′).

Theorem 4.2.2. Let M be a Poisson-Erlang mixture random field with underlying

correlation ρ, mean E(M(sk)) = µk and variance Var(M(sk)) = µk(1 + 1/νk). Then the

bivariate distribution p̃nm is given by:

(a) Case n = m = 0:

p̃00 =− 1 +

(
νi

1 + νi

)κ
+

(
νj

1 + νj

)κ
+
∞∑
k=0

∞∑
`=0

(νiνj)
`+κ−1ρ2k+2`(1− ρ2)κ+1Γ(k + `+ κ+ 1)2

`!Γ(κ)Γ(`+ κ)((1 + νi)(1 + νj))k+`+κ
H
(

1 ,1−`−κ
k+2 ,− 1

νi
,− 1

νj

)
.

(b) Cases n ≥ 1,m = 0 and m ≥ 1, n = 0:

p̃n0 = g̃(n, νi, νj, κ, ρ), p̃0m = g̃(m, νi, νj, κ, ρ),

respectively, where

g̃(b, x, y, a, ρ) =
(a)bx

a

b!(1 + x)b+a

− (1− ρ2)a+b

(1 + x− ρ2)byΓ(a)

(
xy

(1 + x)(1 + y)

)a
×
∞∑
`=0

∞∑
`1=0

(xy)`1ρ2`+2`1(`1 + a)`+b(`1 + 1)`+a
((1 + x)(1 + y))`+`1

H̃
(

b, 1
1−`1−a
`+b+1, `+2

,− ρ2

1 + x− ρ2
,−1

y

)
.
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(c) Case n = m ≥ 1:

p̃nn =(1− ρ2)n+κ

∞∑
k=0

∞∑
`1=0

(n)k(νiνj)
`1+κρ2k+2`1(`1 + κ)n+k(κ)n+k+`1

k!`1!((νi + 1)(νj + 1))n+k+`1+κ

×
[
−(1 + νi)(1 + νj)

νiνj
H
(

1 ,1−`1−κ
r+k+1 ,−

1

νi
,− 1

νj

)
+

(1 + νi)(1 + νj)

(1 + νi − ρ2)νj
H
(

1 ,1−`1−κ
r+k+1 ,−

ρ2

1 + νi − ρ2
,− 1

νj

)
+

(1 + νi)(1 + νj)

νi(1 + νj − ρ2)
H
(

1 ,1−`1−κ
r+k+1 ,−

1

νi
,− ρ2

1 + νj − ρ2

)]
+ (1− ρ2)n+κ+1

∞∑
k=0

∞∑
`=0

∞∑
`1=0

(n)`(νiνj)
`1+κ−1ρ2k+2`+2`1(`1 + κ)n+`+k+1(κ)n+`+k+`1+1

`!`1!((νi + 1)(νj + 1))n+`+k+`1+κ

×H
(

1 ,1−`1−κ
r+k+`+2 ,−

1

νi
,− 1

νj

)
.

(d) Cases n ≥ 2,m ≥ 1 with n > m, and m ≥ 2, n ≥ 1 with m > n,

p̃nm = h̃(n,m, νi, νj, κ, ρ), p̃nm = h̃(m,n, νj, νi, κ, ρ),

respectively, where

h̃(b, c, x, y, a, ρ) =
(1− ρ2)b+a(xy)a

(1 + x− ρ2)b−c−1y
×

∞∑
`=0

∞∑
`1=0

(xy)`1ρ2`+2`1(c)`(`1 + a)b+`(a)c+`+`1
`!`1!((x+ 1)(y + 1))c+`+`1+a−1

H̃
(

b−c+1, 1
1−`1−a
`+b+1, `+c+1

,− ρ2

1 + x− ρ2
,−1

y

)
− (1− ρ2)b+a(xy)a

(1 + x− ρ2)b−cy
×

∞∑
k=0

∞∑
`=0

∞∑
`1=0

(xy)`1ρ2k+2`+2`1(c)`(`1 + a)b+k+`(a)c+k+`+`1+1

`!`1!((x+ 1)(y + 1))c+k+`+`1+a

× H̃
(

b−c, 1
1−`1−a
`+k+b+1, `+k+c+2

,− ρ2

1 + x− ρ2
,−1

y

)
.

Proof. See the appendix.

Similarly to the Poisson case, the bivariate distribution can be written as the product of

two independent Negative Binomial distributions when ρ(h)M = 0. If ρ(h)M = 0 then
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ρ(h)N = 0 and ρ(h)Λ = 0. Therefore, the Erlang and Poisson bivariate distributions can

be written as the product of two independent Erlang and Poisson distributions, respectively.

Using the law of total probability on the Poisson-Erlang mixture random field, it can be

shown that its bivariate distribution can be written as the product of two independent

Negative Binomial distributions.

Moreover, one of the results from the section 4.2.1 establishes that ρ(h) = 0 implies

ρ(h)M = 0. Then, pairwise independence of the underlying Gaussian random field implies

pairwise independence of the Poisson-Erlang mixture random field.

We also compare the type of bivariate dependence induced by the proposed model and

the GC one when µ = 5 and κ = 5. Figure (4.3) (from left to right) presents the bivariate

GC distribution, the bivariate Poisson-Erlang mixture distribution in Theorem 4.2.2 and a

coloured image representing the differences between them. As in the previous chapter, a

positive value of the difference implies that the probabilities associated with the bivariate

distribution in Theorem 4.2.2 are greater than the probabilities of the bivariate GC one.

Only the probabilities Pr(M(si) = n,M(sj) = m) for n,m = 0, 1, . . . , 12 are considered

in the plots. The first, second and third rows consider increasing levels of underlying

correlations ρ(h) = 0.1, 0.5, 0.9.

Similar to the Poisson and zero inflated Poisson cases, the larger of the difference

between the bivariate distributions, the greater of the underlying correlation. Moreover,

the bivariate probabilities of the bivariate GC distribution at the pairs (n, 0) and (0,m)

are bigger as well as n and m are closest to zero. Furthermore, the probabilities of the

proposed bivariate distribution tend to be smaller along the diagonal and larger outside it.
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Figure (4.3) For each row (from left to right): bivariate Negative Binomial GC

distribution, our proposed bivariate Poisson-Erlang mixture distribution and the difference

between them. The first, second and third row are obtained setting ρ(h) = 0.1, 0.5, 0.9 for

the underlying correlation.
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4.3 Simulation studies

4.3.1 Performance of the weighted pairwise likelihood estimation

In this case the estimation procedure may require more effort than in previous models.

Note that, since the shape parameter κ is an integer, the optimization problem belongs

to a general class of optimization problems called mixed-integer nonlinear programming.

This type of problem cannot be solved in a simple easy way. However, if the κ parameter

is fixed, the estimation problem can be performed using nonlinear optimization as in the

previous models.

Therefore, we set κ as a know parameter and assess the performance of the weighted

pairwise likelihood estimation. Nevertheless, the shape parameter κ can be estimated

using a grid of admissible values or by using the floor and ceiling of the moment estimator,

and choosing the integer that reaches the highest value of the logarithm of the weighted

pairwise likelihood.

We first consider 1000 realizations from a stationary spatial Poisson-Erlang mixture

random field observed at si ∈ [0, 1]2, i = 1, . . . , l, l = 225 . Specifically, we have

considered a regular grid with increments 0.07 over [0, 1]2. Then the grid points have been

perturbed, adding a uniform random value on [−0.02, 0.02] to each coordinate. The use of

perturbed grid helps to get more stable estimates because different sets of small distances

are available and too close location points are avoided.

For the Poisson-Erlang mixture random field we first assume a constant mean and

increasing shape that is µ(s) = eβ with β = log(5), κ = 1, 5 and an underlying isotropic

correlation model ρ(h) = (1−||h||/α)4
+ with α = 0.2. As discussed in previous chapters,

the use of a compactly supported correlation function clearly simplify the computation of

the bivariate Poisson-Erlang mixture distribution in Theorem 4.2.2.

The misspecified wpl is obtained when the Poisson-Erlang mixture random field in 4.3

is replaced with a Gaussian random field with mean equal to µ(s) and variance equal to

µ(s)(1 + µ(s)/κ) and ρM(h) as correlation function.
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We study the performance of the Poisson-Erlang wpl and the misspecified wpl. In the

(misspecified) wpl estimation we consider a cut-off weight function as in (2.7) with ξ =

0.1.

PEM wpl MPEM wpl

Bias MSE Bias MSE

κ = 1
β = log(5) -0.006072 0.006029 -0.012227 0.008489

α = 0.2 -0.026533 0.007898 -0.033060 0.008901

κ = 5
β = log(5) -0.003236 0.001955 -0.003694 0.002563

α = 0.2 -0.015549 0.006535 -0.017601 0.006875

Table (4.1) Bias and MSE associated with Poisson-Erlang wpl and misspecified PEM

(MPEM) wpl when the true random field is Poisson-Erlang mixture with κ = 1, 5, µ(s) =

eβ , and ρ(h) = (1− ||h||/α)4
+.

Table 4.1 shows that the PEM wlp performs better throughout all the proposed scenarios.

Moreover, for the maximum over-dispersion (κ = 1) the estimation of the spatial

dependence parameter clearly shows the best performance.

We also study the performance of the proposed methods when estimating a non

stationary version of the Poisson-Erlang mixture random field. Under the previous

simulation settings we change the constant mean of the Poison-Erlang mixture random

field by considering a regression model that is µ(s) = exp{β + β1u1(s)} with β = 1

and β1 = −0.5 where u1(s) are independent realizations from a standard uniform random

variable, and we set κ = 1. Table 4.2 shows the bias and mean squared error associated

with β, β1, and α when κ is set to 1 for the two methods of estimation and Figure 4.4 show

the associated centred box-plots. Once again, the Poisson-Erlang mixture wpl method

shows the best statistical efficiency.
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PEM wpl MPEM wpl

Bias MSE Bias MSE

β = 1.5 -0.013716 0.022232 -0.025370 0.029153

β1 = −0.5 0.010838 0.072491 0.011591 0.094542

α = 0.2 -0.031100 0.008749 -0.032777 0.009544

Table (4.2) Bias and MSE associated with PEM wpl and misspecified PEM (MPEM)

wpl when estimating a non-stationary PEM random field with µ(s) = exp{β + β1u1(s) +

β2u2(s)}, κ = 1 and ρ(h) = (1− ||h||/α)4
+.

PEM MPEM PEM MPEM PEM MPEM
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Figure (4.4) Centred box-plots of estimates under PEM wpl (PEM) and misspecified

PEM (MPEM) wpl when estimating a non-stationary Poisson random field with µ(s) =

exp{β + β1u1(s)}, β = 1.5, β1 = −0.5, κ = 1 and ρ(h) = (1− ||h||/α)4
+ with α = 0.2.

Finally, we consider a simulation under the spatio-temporal setting. Specifically, we

consider 1000 simulations from a non stationary space-time Poisson-Erlang mixture
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random field observed at si ∈ [0, 1]2, i = 1, . . . , l, l = 35 spatial location sites uniformly

distributed in the unit square and t∗1 = 0, t∗2 = 0.25, . . . t∗21 = 5, 21 temporal instants. We

consider a regression model for the spatio-temporal mean µ(s, t∗) = exp{β+β1u1(s, t∗)},
where u1(s, t∗) are independent realizations from a standard uniform random variable, and

a shape κ. As in the previous simulation, we set β = 1.5, β1 = −0.5, and κ = 1 .

Additionally, as underlying space-time correlation we use a simple isotropic and temporal

symmetric space-time Wendland separable model ρ(h, t?) = (1−||h||/αs)
4
+(1−|t?|/αt∗)4

+

with αs = 0.2 and αt∗ = 1, where t? = t∗i − t∗j with i, j ∈ {1, 2, . . . , 25}. Finally, in the

(misspecified) wpl estimation we consider a cut-off weight function as in (2.7) extended

to the space-time case with ξs = 0.2 and ξt∗ = 0.25.

The results are depicted in Table 4.3 where bias and mean squared error associated with

β, β1, β2, κ and αs, αt∗ for the two methods of estimation are shown. In addition, Figure

4.5 shows the associated boxplots.

PEM wpl MPEM wpl

Bias MSE Bias MSE

β = 1.5 -0.001869 0.008601 -0.004756 0.012292

β1 = −0.5 -0.001181 0.025096 -0.001109 0.036370

αs = 0.2 -0.009451 0.005781 -0.010931 0.007256

αt = 1 -0.018836 0.039714 -0.018692 0.044585

Table (4.3) Bias and MSE associated with PEM wpl and misspecified PEM (MPEM) wpl

when estimating a non-stationary PEM random field with µ(s, t∗) = exp{β+β1u1(s, t∗)},
κ = 1 and ρ(h) = (1− ||h||/α)4

+.
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Figure (4.5) Centred box-plots of estimates under PEM wpl (PEM) and misspecified

PEM wpl (MPEM) when estimating a non-stationary Poisson random field with µ(s, t∗) =

exp{β + β1u1(s, t∗)}, β = 1.5, β1 = −0.5, κ = 1 and ρ(h, t?) = (1 − ||h||/αs)
4
+(1 −

|t?|/αt∗)4
+ with αs = 0.2, αt∗ = 1.

4.3.2 Performance of the optimal linear prediction

In this section, we compare the performance of the optimal linear predictor of the proposed

Poisson-Erlang mixture random field with the optimal predictors based on the Negative

Binomial GC and Negative Binomial LG approaches. We propose the following optimal

linear predictor for the Poisson-Erlang mixture random field:

M̂(s0) = µ(s0) + c>Σ−1(M − µ), (4.6)

whereµ = (µ(s1), . . . , µ(sl))
>, c = [

√
µ(s0)µ(si)(1 + µ(s0)/κ)(1 + µ(si)/κ)ρM(s0, si)]

l
i=1

and Σ = [
√
µ(si)µ(sj)(1 + λ(si)/κ)(1 + µ(sj)/κ)ρM(si, sj)]

l
i,j=1 is the
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variance-covariance matrix. The associated mean squared error is:

MSE(M̂(s0)) = µ(s0)(1 + λ(s0)/κ)− c>Σ−1c.

We consider a simulation setup similar to the one presented in Section 2.4.2. The steps

are the following :

1. Set j = 1. Repeat until j = 100.

2. Simulate the j-th spatial dataset from the proposed PEM random field by

considering 300 location sites uniformly distributed on the unit square.

3. Set k = 1. Repeat until k = 20.

4. Randomly split the j-th dataset by using 80% of the data for estimation and 20% as

the validation dataset.

5. Estimate using wpl under our model and using ML for the Negative Binomial GC

and Negative Binomial LG models.

6. Compute the optimal linear predictor (4.6) and the optimal predictor for the Negative

Binomial GC and Negative Binomial LG models at the coordinates associated with

the validation dataset, given the estimates obtained at the previous step.

7. Compute, for each model, RMSEk and MAEk.

8. k = k + 1.

9. Compute, for each model RMSEj =
20∑
k=1

RMSEk/20 and MAEj =
20∑
k=1

MAEk/20.

10. j = j + 1.

11. Compute, for each model RMSE =
100∑
j=1

RMSEj/100 and MAE =
100∑
j=1

MAEj/100 .
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This numerical experiment has been replicated by simulating random draws (at step 2)

from a Negative Binomial GC random field. The simulation settings have been chosen

such that the means (and variances) were the same for both models. Specifically, we

consider two scenarios with µ = 5 and increasing shape, that is κ = 1 (scenario 1) and

κ = 5 (scenario 2). This election generates a Negative Binomial marginal distribution

with large and medium over-dispersion, respectively. Additionally, as the underlying

correlation model, we consider ρ(h) = e−3||h||/α, with α = 0.25 for the Negative Binomial

GC model and α = 0.45 for the Poisson-Erlang mixture model. This specific setting

allows us to obtain similar correlations in both cases.

For the wpl estimation of our Poisson-Erlang mixture model, we set ξ = 0.1 in (2.7).

For the Negative Binomial GC and Negative Binomial LG, we use the ML estimation

method implemented in the R (R Core Team, 2020) packages gcKrig (Han and Oliveira,

2018) and spaMM (Rousset and Ferdy, 2014). The gcKrig package implements a

variant of the sequential importance sampling algorithm and it is used to approximate the

Negative Binomial GC likelihood (see Masarotto and Varin, 2017; Han and Oliveira, 2018,

for the computational details). The Negative Binomial LG estimation exploits Laplace

approximations for the likelihood. Finally, Negative Binomial GC model’s optimal

prediction, which involves the evaluation of an n-dimensional integral, is approximated

using a variant of the sequential importance sampling algorithm, as in the estimation step.

Table 4.4 summarizes the results of our experiment, showing the RMSE and MAE for

each model under the different scenarios and types of model generation. Note that the

prediction using the Negative Binomial LG is the worst in all scenarios. The performance

predictions in terms of RMSE and MAE of our models and Negative Binomial GC models

are quite similar in all scenarios, with a slight preference for the Negative Binomial GC

prediction in some of them. However, as in the Poisson case, the proposed optimal linear

predictor is very competitive.

Finally, as in the previous chapters, the computations of the ML estimates and

the optimal prediction for the Negative Binomial GC model are computationally very

intensive. Although the computations of the wpl estimates are also computationally very
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Scenario 1 Scenario 2

PEM NB GC PEM NB GC

RMSEPEM 3.825707 3.760064 2.304298 2.090512

RMSENBGC 3.826071 3.719257 2.303032 2.083224

RMSENBLG 4.538499 4.464333 2.610666 2.480698

MAEPEM 2.721068 2.621559 1.735116 1.595893

MAENBGC 2.728842 2.585248 1.735787 1.589779

MAENBLG 3.227349 3.085764 2.020598 1.916848

Table (4.4) Empirical mean of RMSE and MAE associated with the optimal linear

predictor of the proposed PEM random field (PEM), the optimal predictor based on the

NB GC (NBGC) and NB LG (NBLG) approaches when the datasets are simulated from

the PEM and Negative Binomial (NB) GC models under three scenarios, namely, Scenario

1 (κ = 1) and Scenario 2 (κ = 5).

intensive, but using the misspecified wpl estimates we can deal with this issue. As in the

previous chapter, we use the system configuration presented in Section 2.4.2 to measure

the time in seconds for the estimation and prediction procedures. On the one hand, the

GC model require approximately 4.022 seconds for the estimation and 38.668 seconds

for the prediction. On the other hand, the computations of the misspecified wpl estimates

and of the Poisson-Erlang mixture optimal linear prediction require 0.104 seconds and

0.012 seconds, respectively. Even if the computations of the proposed wpl estimation are

intensives, the proposed method of estimation with the misspecified wlp and prediction are

scalable.



Chapter 5

Applications to real data

5.1 Application to the reindeer pellet-group survey in

Sweden

The faecal pellet count technique is one of the most popular tools for estimating an animal

species’ abundance. Specifically, this technique uses the number of observed droppings

combined with their decay time and the target animal species’ defecation rate. With these

ingredients, it is possible to obtain an accurate density estimation of an animal population.

This method was proposed by Bennett et al. (1940) and has been improved by several

authors since then (see for instance Etten and Bennett, 1965; Mayle et al., 1999; Krebs

et al., 2001, among others).

The study motivating our research is a reindeer pellet-group survey conducted in the

northern forest area of Sweden and previously analysed by Lee et al. (2016). The goal of

this survey was to assess the impact of newly established wind farms on reindeer habitat

selection. This choice is crucial for the reindeer since it involves trade-offs between

fulfilling necessities for feeding, mating, parental care, and risk mitigation of predation

(Sivertsen et al., 2016).

Survey data were collected over the years 2009–2010 and present a large number of

89
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zero counts. This situation frequently occurs when spatial species count data are collected

because the survey is conducted using a point transect design (Buckland et al., 2001).

This design considers a set of K points as systematically spaced points along lines located

throughout the survey region, where K should be at least 20 for obtaining robust estimates

of the abundance. In our case, the study area was 250 km2, which is the distance between

each transect of 300 m. On each transect, the distance between each plot 100 m. Figure

5.1, taken from Buckland et al. (2001), presents two examples of point transect surveys in

which the points are systematically spaced along lines.

Figure (5.1) Examples of point transect survey design

As mentioned before, the pellet-group survey is a technique that provides a general idea

of species distribution over a specific geographic area. To assess the impact of newly

established wind farms on reindeer habitat, a reindeer pellet-group survey was conducted

on Storliden Mountain in the northern forest area of Sweden (Lee et al., 2016). The dataset,

which corresponds to the year 2009, has 357 geo-referenced data y(si), i = 1, 2, . . . , 357

and it consists of pellet-group counts where, a pellet-group is defined as a cluster of 20 or

more pellets.

The dataset possesses two challenging features. The first one is that 73.67% of the counts

are zeros because the animal might move as it defecates, and some plots present zero

pellet-group counts (see Figure 5.2). The second one is that the empirical semi-variogram

(see Figure 5.3) exhibits both spatial correlation and a nugget effect.
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Figure (5.2) Spatial location of reindeer pellet-group survey data.
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Figure (5.3) Empirical semi-variogram of reindeer pellet-group survey data

For analysing the reindeer pellet-group survey data, we consider the proposed ZIP

random field and we compare it with the ZIP Gaussian copula (ZIP GC) using the

R package gcKrig (Han and Oliveira, 2018). In addition, we consider the ZIP
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Log-Gaussian (ZIP LG) random field as implemented in the R package INLA (Rue et al.,

2009; Lindgren et al., 2011; Martins et al., 2013) which exploits the integrated nested

Laplace approximation, under a Bayesian framework, in the estimation step.

Following the results of Lee et al. (2016), we include the following three covariates:

Northwest slopes (NS), Elevation (Eln) and Distance to power lines (DPL). In particular

we specify λ(s) as:

λ(s) = exp(β0 + βNSNS(s) + βElnEln(s) + βDPLDPL(s)).

The parametrization for the marginal mean and variance are slightly different for

the three models. Specifically, assuming a constant probability of excess of zero

counts p, the marginal mean and variance specifications are given by E(Y (s)) =

λ(s)(1 − p) and Var(Y (s)) = E(Y (s))

[
1 +

p

1− p
E(Y (s))

]
for the proposed model,

E(Y (s)) = λ(s) and Var(Y (s)) = E(Y (s)) [1 + θGCE(Y (s))] for the GC model,

E(Y (s)) = λ(s) exp(0.5σ2)(1 − p) and Var(Y (s)) = E(Y (s))

[
1 +

p

1− p
E(Y (s))

]
+

E(Y (s))2 [exp(σ2)− 1] for the LG model.

Here, p is specified as Φ(θ), with θ ∈ R, as θGC
1+θGC

, with θGC > 0, and as exp(θLG)
1+exp(θLG)

, with

θLG ∈ R, respectively, so θ, θGC , θLG can be interpreted as over-dispersion parameters. It

is important to remark that β0 can not be compared between the different approaches, but

βNS , βEln and βDPL can be compared.

We assume an underlying exponential correlation model with nugget effect ρ(h) = (1−
τ 2)e−||h||/α + τ 210(||h||) for the ZIP GC and ZIP LG random fields. On the other hand for

the proposed ZIP model we specify ρ1(h) = (1 − τ 2
2 )e−||h||/α + τ 2

210(||h||) and ρ2(h) =

(1−τ 2
1 )e−||h||/α+τ 2

110(||h||) that is two different underlying correlation models forB and

N sharing a common exponential correlation model and different nugget effects τ 2
1 , τ

2
2 .

We use maximum wpl estimation with ξ = 150 in (2.7) for our ZIP random field. For

the ZIP GC model we perform maximum likelihood estimation as explained in Section

2.4.2, and for ZIP LG model, we perform approximate Bayesian inference using the INLA

approach (Rue et al., 2009).

Table 5.1 summarizes the results of the estimates, including their standard error for the
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three models. In the case of our ZIP random field, standard errors were computed by using

parametric bootstrap (Efron and Tibshirani, 1986). For the Poisson LG model the reported

estimates are the means of the posterior distributions with associated standard error.

Note that if βDPL is a positive value, then the counts of pellet-groups increase at larger

distances from the power lines, i.e., there is a greater reindeer population far from the

wind farms. The estimation of the regression parameters are quite similar for our ZIP

and the ZIP GC models with lower standard error estimations for the GC model. On the

other hand our ZIP model shows the smallest standard error estimation of the spatial scale

parameter α. Finally, the estimates of p, the excess of zero counts, which depend on θ,θGC
and θLG for the ZIP , ZIP GC and ZIP LG random fields, are given by 0.481, 0.477, 0.573,

respectively.

Finally, we want to assess the predictive performances of the three models. To do so, we

randomly choose 80% of the spatial locations (i.e., 286 location sites) for the parameter

estimation and use the remaining 20% (i.e., 71 location sites) for the predictions. We

repeat this procedure a 100 times, recording the RMSE each time. Specifically, for each

j-th left-out sample (yj(s1), yj(s2), . . . , yj(s71)), we compute

RMSEj =

(
1

71

71∑
i=1

(yj(si)− Ŷj(si))2

)1/2

,

where Ŷj(si) is the optimal linear predictor for our ZIP random field (computed using the

correlation given in Corollary 2.2.1), the optimal predictor for the ZIP GC random field

and the mean of the posterior predictive distribution for the ZIP LG random field. Finally,

we report in Table 5.1, the empirical mean of the RMSE obtained for each left-out sample,

i.e., RMSE =
100∑
j=1

RMSEj/100. The ZIP and ZIP GC random fields’ clearly outperform

the ZIP LG random field in terms of prediction performance. In particular the proposed

ZIP random field provides the smallest RMSE.
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ZIP ZIP GC ZIP LG

β0 -23.423890 -19.096181 -17.905000

(6.473000) (2.308969) (9.514000)

βNS -0.534781 -0.464979 -0.826000

(0.469695) (0.364517) (0.388000)

βEln 0.005203 0.003836 0.010000

(0.004136) (0.002988) (0.005000)

βDPL 2.594934 2.060382 1.622000

(0.742912) (0.265003) (1.177000)

θ -0.048763

(1.048744)

θGC 0.912081

(0.261074)

θLG 0.293000

(0.098000)

α 339.132404 298.926862 685.922925

(92.981918) (186.990640) (354.614010)

τ 2
1 0.868296

(0.263721)

τ 2
2 0.623987

(0.308045)

τ 2 0.714227 0.084655

(0.128536) (0.022749)

σ2 0.735290

(0.396332)

RMSE 0.797449 0.801876 0.835611

Table (5.1) Parameter estimates for the reindeer pellet-group survey data obtained under

the ZIP, ZIP GC and ZIP LG random fields. The associated standard errors are in

parenthesis. The last row shows the associated empirical mean of the RMSE for each

model.
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5.2 Application to weed from the Bjertorp farm in

Sweden

One of the problems in agricultural fields is the infestations of weeds. Farmers are

interested in killing them by varying the amount or type of herbicide depending on

the intensity of the weed (Webster, 2010). Therefore, accurately characterizing and

mapping the spatial distribution of weeds is a useful tool for farmers. Thus, spatial or

spatio-temporal models are used to analyse counts of weed (see Donald, 1994; Cardina

et al., 1995; Johnson et al., 1996).

The study, which motivates our research, belongs to the Bjertorp farm in the South-West

of Sweden and previously analysed by Guillot et al. (2009) and De Oliveira (2013). The

dataset consists of weed counts, y(si), in frames of 0.5 by 0.75 m at 89 sampling locations,

s1, . . . , s89 on a regular grid (see Figure 5.4). There are not covariates and no spatial trend,

thus the mean and variance can be assumed constant.

The dataset possess two challenging features. The first one is that the sample variance

(3211.562) is larger than the sample mean (76.40449), i.e., there is evidence that the

dataset is over-dispersed. The second one is that the empirical semi-variogram (see Figure

5.5) exhibits spatial correlation.

For analysing the weed data, we consider the proposed PEM random field and we

compare it with the Negative Binomial Gaussian copula (NB GC) using the R package

gcKrig (Han and Oliveira, 2018). In addition, we consider the Negative Binomial

Log-Gaussian (NB LG) random field as implemented in the R package spaMM (Rousset

and Ferdy, 2014).

The parametrization for the marginal mean and variance are slightly different for the

three models. Specifically, setting µ = exp{β0}, the marginal mean and variance

specifications are given by E(Y (s)) = µ and Var(Y (s)) = E(Y (s))

[
1 +

E(Y (s))

κ

]
for the proposed model, E(Y (s)) = µ and Var(Y (s)) = E(Y (s)) [1 + θE(Y (s))]

for the GC model where θ ∈ R+/{0}, E(Y (s)) = µ exp(0.5σ2) and Var(Y (s)) =
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Figure (5.4) Spatial location of weed.
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Figure (5.5) Empirical semi-variogram of weed data

E(Y (s))

[
1 +

E(Y (s))

κ

]
+ E(Y (s))2 [exp(σ2)− 1] for the LG model.

Now we have to set the shape parameter κ. Following the procedure outlined in Section

4.3.1, two possible candidates are the floor (κ̂f ) and ceiling (κ̂c) of the moment estimator
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of κ. We compute them as follow:

κ̂f =


(

1

89

89∑
i=1

y(si)

)2

1

89

89∑
i=1

(
y(si)−

1

89

89∑
i=1

y(si)

)2

− 1

89

89∑
i=1

y(si)

 = b1.86c = 1,

κ̂c =


(

1

89

89∑
i=1

y(si)

)2

1

89

89∑
i=1

(
y(si)−

1

89

89∑
i=1

y(si)

)2

− 1

89

89∑
i=1

y(si)

 = d1.86e = 2.

We assume an underlying exponential correlation model without nugget effect ρ(h) =

e−||h||/α for the three models. However, the parametrization used by the R package spaMM

is ρ(h) = e−||h||α
∗ , i.e., the range considered in the other formulation is the reciprocal of

α∗.

We use maximum wpl estimation with ξ = 60 in (2.7) for our PEM random field with

the two different settings of κ. The maximum log-composite-likelihood value is−1630.17

when κ = 1 and −1617.75 when κ = 2 . Then, we prefer the model with κ = 2.

Similarly, we perform maximum likelihood estimation for Negative Binomial LG model

with κ = 1, 2. The maximum log-likelihood value is −475.4877 when κ = 1 and

−467.7218 when κ = 2. Then, we prefer the model with κ = 2. For the Negative

Binomial GC and Negative Binomial LG models we perform ML estimation as explained

in Section 4.3.2.

Table 5.2 summarizes the final results of the estimates, including their standard error for

the three models. In the case of our PEM random field, standard errors were computed by

using parametric bootstrap as in the previous section.

Finally, we want to assess the predictive performances of the three models. To do so,

we randomly choose 80% of the spatial locations (i.e., 71 location sites) for the parameter

estimation and use the remaining 20% (i.e., 18 location sites) for the predictions. We

repeat this procedure a 100 times, recording the RMSE each time. Specifically, for each
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PEM PEM GC PEM LG

β0 4.343 4.3939 4.207

(0.1253) ( 0.2004) (0.2521)

θ 0.6488

(0.1432)

α 81.141 57.5346 110.769

(11.5231 ) (17.4152)

σ2 0.3604

RMSE 50.40589 50.69107 52.93922

Table (5.2) Parameter estimates for the weed data obtained under the PEM, Negative

Binomial GC and Negative Binomial LG random fields. The associated standard errors

are in parenthesis. The last row shows the associated empirical mean of the RMSE for

each model.

j-th left-out sample (yj(s1), yj(s2), . . . , yj(s18)), we compute

RMSEj =

(
1

18

18∑
i=1

(yj(si)− Ŷj(si))2

)1/2

,

where Ŷj(si) is the optimal linear predictor for our PEM random field (computed using

the correlation given in Corollary 4.2.1), the optimal predictor for the Negative Binomial

GC random field and the Negative Binomial LG random field. Finally, we report in Table

5.2, the empirical mean of the RMSE obtained for each left-out sample, i.e., RMSE =
100∑
j=1

RMSEj/100. The PEM and Negative Binomial GC random fields’ clearly outperform

the Negative Binomial LG random field in terms of prediction performance. In particular

the proposed PEM random field provides the smallest RMSE.



Chapter 6

Conclusions and discussion

This project has introduced a model based on a Poisson random field, i.e., a random

field with Poisson marginal distributions, for regression and dependence analysis when

addressing point-referenced count data defined on a spatial Euclidean space. However, the

proposed methodology can be easily adapted to other types of data, such as space-time

(Gneiting, 2013), areal (Rue and Held, 2005) or spherical data (Gneiting, 2013).

Our model can be viewed as a spatial generalization of the standard Poisson process since

it is obtained by considering sequences of independent copies of a random field with an

exponential marginal distribution of inter-arrival times in the counting renewal processes

framework. The resulting (non-)stationary random field is marginally Poisson distributed

and the dependence is indexed by a correlation function as in the Gaussian case.

They key features of the proposed Poisson random field with respect to the well-known

hierarchical Poisson Log-Gaussian random field are that its marginal distribution is

Poisson distributed and it can be mean square continuous or not. The Poisson Gaussian

copula approach shares these good features with our model. However, the generating

mechanisms (i.e the Poisson process), underlying our model makes it more appealing from

interpretability viewpoint.

In our proposal, a possible limitation is that inference based on full likelihood cannot

be performed due to the lack of amenable expressions of the associated multivariate
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distributions. Nevertheless, the simulations studies we conducted showed that our

approach based on a weighted pairwise likelihood estimation seems to be an effective

solution for estimating the unknown parameters involved in the Poisson, zero inflated

Poisson and Poisson-Erlang mixture random field. Another potential limitation is that

the optimal predictor that minimizes the mean square prediction error is not available.

However, our numerical experiments show that our solution based on optimal linear

predictor performs very well if compared with the optimal predictors of the Poisson

Gaussian copula and Poisson Log Gaussian models.

A well-known restriction of the Poisson distribution is equidispersion. Unfortunately,

this situation is not always observed in real spatial data. The class of random fields

proposed in (2.2) can be used to obtain random fields with flexible marginal models

that take into account over or under dispersion. In this case, a possible solution is to

consider random fields with a more flexible marginal distribution than the exponential

marginal distribution, such as the Gamma or Weibull random fields (Bevilacqua et al.,

2020). Another alternative for obtaining over-dispersed random fields is considering scale

mixtures of Poisson random fields. We use the last alternative to obtain a Poisson-Erlang

mixture random field which has Negative Binomial marginals. Even if the computation

of the bivariate has a high comtutational cost, it is not the case of the prediction. There

are alternatives that allows us to deal with this problem. For instance, we can use the

misspecified wlp or compactly supported correlation functions. In literature, another way

to model over-dispersion is using compound random variables. In a future work, we could

generalize it to space (space-time) with the results of this thesis.

We can enrich the proposed new class of counting random fields (see equation 2.2) if

we consider positive random fields other than exponential. For instance, if the positive

random field is an Erlang random field then the resulting random field is under-dispersed.

In many fields, the data counts may display a feature of excess zeros and be spatially

correlated. To deal with this kind of situations, we propose a random field that can handle

spatial (spatio-temporal) data with excess of zeros. Our simulation studies reveal that the

proposed zero inflated Poisson random field is suitable for modeling excess of zeros in
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spatial counts. Moreover, the proposed model performs very well if compared with zero

inflated Poisson gaussian copula and zero inflated Poisson Log Gaussian models.

Even if Poisson models do not appear commonly in real data, they can be used as

building blocks. In fact, we use the proposed Poisson random field to develop random

fields with over dispersion and excess of zeros.

Finally, the application of our model to the reindeer pellet-group survey data in Sweden

shows that our approach can be easily adapted to handle spatial count data with an

excessive number of zeros. Moreover, the application to the weed counts from the Bjertorp

farm shows a good performance of the Poisson-Erlang mixture random field. The results

show that the proposed models are good candidates to model real data and an alternative

to Gaussian copula models, without forgetting that are they are less computationally

expensive.
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Appendix A

Proofs of Theorems and Corollaries

A.1 Proofs of Chapter 2

Proof of Corollary 2.2.1. Using Theorem 2.2.2, the correlation function of N when

λ(si) = λ(sj) = λ has the following expression

ρ
N

(h) =
ρ2(h)(1− ρ2(h))

λ

∞∑
r=1

γ
(
r,

λ

1− ρ2(h)

)
Γ(r)


2

,

where ρ(h) is the underlying correlation model. The last expression is equivalent to

ρ
N

(h) =
ρ2(h)(1− ρ2(h))

λ

∞∑
r=0

γ
(
r + 1,

λ

1− ρ2(h)

)
Γ(r + 1)


2

=
ρ2(h)(1− ρ2(h))

λ

∞∑
r=0

γ
(
r + 1,

λ

1− ρ2(h)

)
r!


2

=
ρ2(h)λ

1− ρ2(h)
2F2

(
(1, 1.5), (2, 3);− 4λ

1− ρ2(h)

)
.
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The last equality follows from the identity (Brychkov, 2008, p. 460):
∞∑
k=0

1

k(ν)k
γν + k, z =

z2ν

ν2 2F2

((
ν, ν +

1

2

)
, (ν + 1, 2ν + 1);−4z

)
.

Here 2F2 is special case of the generalized hypergeometric function. Now, let z =
4λ

1− ρ2(h)
. Then,

ρ
N

(h) =
ρ2(h)λ

1− ρ2(h)
2F2 ((1, 1.5), (2, 3);−z) .

Using the identity (Ng and Geller, 1970, A10b):

2z2F2

((
1, ν +

1

2

)
, (2, 2ν + 1) ; 2z

)
=

1(
ν − 1

2

) [(2

z

)ν
z exp(z)Γ(ν + 1){Iν−1(z)− Iν(z)} − 2ν

]
,

ρ
N

(h) can be written as follow:

ρ
N

(h) =
ρ2(h)λ

1− ρ2(h)

4
[
1− exp

(
− z

2

) (
I0

(
z
2

)
+ I1

(
z
2

))]
z

= ρ2(h)
[
1− exp

(
−z

2

)(
I0

(z
2

)
+ I1

(z
2

))]
Proof of Theorem 2.2.1. Using results of Hunter (1974), the bivariate Laplace

transformation of the join probability generating function (jpgf ) is

P◦(p, q; c1, c2) =
ρ2(1− c1)(1− c2)

[1− c1c2 + p+ q + (1− ρ2)pq][1− c1 + p][1− c2 + q]
+

1

[1− c1 + p][1− c2 + q]

The inverse Laplace transform is given by

P(λ(si), λ(sj); c1, c2) = L−1

(
ρ2(1− c1)(1− c2)

[1− c1c2 + p+ q + (1− ρ2)pq][1− c1 + p][1− c2 + q]

+
1

[1− c1 + p][1− c2 + q]

)
= L−1

(
ρ2(1− c1)(1− c2)

[1− c1 − c2 + p+ q + (1− ρ2)pq][1− c1 + p][1− c2 + q]

)
+ L−1

(
1

[1− c1 + p][1− c2 + q]

)
.
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Note that

L−1

(
1

[1− c1 + p][1− c2 + q]

)
= L−1

(
1

[(1− c1) + p] [(1− c2) + q]

)
= exp {−(1− c1)λ(si)− (1− c2)λ(sj)} .

L−1
p,q

(
ρ2(1− c1)(1− c2)

[1− c1c2 + p+ q + (1− ρ2)pq][1− c1 + p][1− c2 + q]

)
= ρ2(1− c1)(1− c2)× L−1

q

(
1

[1− c2 + q]
L−1
p

(
1

[1− c1c2 + p+ q + (1− ρ2)pq][1− c1 + p]

))
=
ρ2(1− c1)(1− c2)

(1− ρ2)
×

L−1
q


1

[(1− c2) + q]

1[
1

(1− ρ2)
+ q

]L−1
p


1

1− c1c2 + q

(1− ρ2)[
1

(1− ρ2)
+ q

] + p

 [(1− c1) + p]




=
ρ2(1− c1)(1− c2)

(1− ρ2)
×

L−1
q


1

[(1− c2) + q]

1[
1

(1− ρ2)
+ q

]



exp

−


1− c1c2 + q

(1− ρ2)[
1

(1− ρ2)
+ q

]
λ(si)

− exp {− (1− c1)λ(si)}

[1− c1]−


1− c1c2 + q

(1− ρ2)[
1

(1− ρ2)
+ q

]





= ρ2(1− c1)(1− c2)×
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L−1
q


1

[(1− s2) + q]



exp

−


1− c1c2 + q

(1− ρ2)[
1

(1− ρ2)
+ q

]
λ(si)

− exp {− (1− c1)λ(si)}

c1c2 − c1 + [(1− c1)(1− ρ2)− 1]q




=

ρ2(1− c1)(1− c2)

[(1− c1)(1− ρ2)− 1]

× L−1
q

 1

[(1− c2) + q]

1
c1c2 − c1

[(1− c1)(1− ρ2)− 1]
+ q

exp

−


1− c1c2 + q

(1− ρ2)[
1

(1− ρ2)
+ q

]
λ(si)




− ρ2(1− c1)(1− c2)

[(1− c1)(1− ρ2)− 1]

× L−1
q

 1

[(1− c2) + q]

1
c1c2 − c1

[(1− c1)(1− ρ2)− 1]
+ q

exp {− (1− c1)λ(si)}


= exp

{
− λ(si)

(1− ρ2)
− λ(sj)

(1− ρ2)

}

× L−1
q

 1

1− c2 −
1

(1− ρ2)
+ q

exp

−


1− c1c2

(1− ρ2)ab
− 1

(1− ρ2)2

q

λ(si)




− exp

{
− λ(si)

(1− ρ2)
− λ(sj)

(1− ρ2)

}

× L−1
q

 1
c1c2 − c1

[(1− c1)(1− ρ2)− 1]
− 1

(1− ρ2)
+ q

exp

−


1− c1c2

(1− ρ2)
− 1

(1− ρ2)2

q

λ(si)
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− ρ(1− c1)(1− c2)

[(1− c1)(1− ρ2)− 1]
× exp {− (1− c1)λ(si)} × L−1

q

 1

[1− c2 + q]

1
c1c2 − c1

[(1− c1)(1− ρ2)− 1]
+ q


= exp

{
− λ(si)

(1− ρ2)
− λ(sj)

(1− ρ2)

}
× Φ3

(
1, 1;

(
−(1− c2) +

1

(1− ρ2)

)
λ(sj),−

(
1− c1c2

(1− ρ2)
− 1

(1− ρ2)2

)
λ(si)λ(sj)

)
− exp

{
− λ(si)

(1− ρ2)
− λ(sj)

(1− ρ2)

}
× Φ3

(
1, 1;

(
− c1c2 − c1

[(1− c1)(1− ρ2)− 1]
+

1

(1− ρ2)

)
λ(sj),−

(
1− c1c2

(1− ρ2)
− 1

(1− ρ2)2

)
λ(si)λ(sj)

)
− exp {− (1− c1)λ(si)− (1− c2)λ(sj)}+ exp

{
− (1− c1)λ(si)−

(
c1c2 − c1

[(1− c1)(1− ρ2)− 1]

)
λ(sj)

}
.

Therefore, P(λ(si), λ(sj); c1, c2), denoted by Pij , is as follows:

Pij = exp

{
− λ(si)

(1− ρ2)
− λ(sj)

(1− ρ2)

}
× Φ3

(
1, 1;

(
−(1− c2) +

1

(1− ρ2)

)
λ(sj),−

(
1− c1c2

(1− ρ2)
− 1

(1− ρ2)2

)
λ(si)λ(sj)

)
− exp

{
− λ(si)

(1− ρ2)
− λ(sj)

(1− ρ2)

}
× Φ3

(
1, 1;

(
− c1c2 − c1

[(1− c1)(1− ρ2)− 1]
+

1

(1− ρ2)

)
λ(sj),−

(
1− c1c2

(1− ρ2)
− 1

(1− ρ2)2

)
λ(si)λ(sj)

)
− exp {− (1− c1)λ(si)− (1− c2)λ(sj)}

+ exp

{
− (1− c1)λ(si)−

(
c1c2 − c1

[(1− c1)(1− ρ2)− 1]

)
λ(sj)

}
+ exp {−(1− c1)λ(si)− (1− c2)λ(sj)}

= exp

{
− λ(si)

(1− ρ2)
− λ(sj)

(1− ρ2)

}
× Φ3

(
1, 1;

(
−(1− c2) +

1

(1− ρ2)

)
λ(sj),−

(
1− c1c2

(1− ρ2)
− 1

(1− ρ2)2

)
λ(si)λ(sj)

)
− exp

{
− λ(si)

(1− ρ2)
− λ(sj)

(1− ρ2)

}
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× Φ3

(
1, 1;

(
− c1c2 − c1

[(1− c1)(1− ρ2)− 1]
+

1

(1− ρ2)

)
λ(sj),−

(
1− c1c2

(1− ρ2)
− 1

(1− ρ2)2

)
λ(si)λ(sj)

)
+ exp

{
− (1− c1)λ(si)−

(
c1c2 − c1

[(1− c1)(1− ρ2)− 1]

)
λ(sj)

}
Proof of Theorem 2.2.3.

Consider two bivariate independent non-negative random variables random variable

(A1, A2)> and (B1, B2)> with cdf F (·, ·) andG(·, ·), and pdf f(·, ·) and g(·, ·) respectively.

Following Hunter (1974), we define the cdf of (Z1, Z2)> = (A1, A2)>+(B1, B2)> as their

double convolution as :

[F ∗ ∗G](a, b) =

∫ a

0

∫ b

0

F (a− u, b− v)dG(u, v) = Pr(Z1 ≤ a, Z2 ≤ b) (A.1)

and we define F0(a, b) = 1, F1(a, b) = F (a, b) and Fn+1(a, b) = [F1 ∗ ∗Fn](a, b).

Moreover, F 1(a, b) = lim
b→∞

F (a, b) = F (a,∞) = F (a) = F 1(a), F 2(a, b) =

lim
a→∞

F (a, b) = F (∞, b) = F (b) = F 2(b), F 1
n(a, b) = lim

b→∞
Fn(a, b) = Fn(a,∞) =

Fn(a) = F 1
n(a) and F 2

n(a, b) = lim
a→∞

Fn(a, b) = Fn(∞, b) = Fn(b) = F 2
n(b).

The general expression for the bivariate pdf of N is given by Theorem. 3.1 of Hunter
(1974) as follow:

Pr(N(si) = n,N(sj) = m) =



[F0 − F 1 − F 2 + F ] ∗ ∗Fn(λ(si), λ(sj)) if n = m

[F 1
r − F 1

r+1 − F 1
r−1 ∗ ∗F + F 1

r ∗ ∗F ] ∗ ∗Fm(λ(si), λ(sj)) if n > m,

n = m+ r

[F 2
r − F 2

r+1 − F 2
r−1 ∗ ∗F + F 2

r ∗ ∗F ] ∗ ∗Fn(λ(si), λ(sj)) if n < m,

m = n+ r

(A.2)

where, following our notation, Fn(a, b) is the n-fold bivariate convolution of

(Y (si), Y (sj))
> ,that is,

Fn(a, b) = Pr

(
n∑
k=1

Yk(si) ≤ a,

n∑
k=1

Yk(sj) ≤ b

)
= Pr(Sn(si) ≤ a, Sn(sj) ≤ b) = FSn;ij(a, b)
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Let Y (si) and Y (sj) a pair observations from Y . Then the following results hold

F 1(λ(si)) = 1− exp{−λ(si)}

F 2(λ(sj)) = 1− exp{−λ(sj)}

F (λ(si), λ(sj)) =

λ(si)∫
0

λ(sj)∫
0

1

1− ρ2
exp

{
− 1

1− ρ2
(u+ v)

}
I0

(
2ρ

1− ρ2

√
uv

)
dvdu

F 1
n(λ(si)) = γ∗(n, λ(si))

F 2
n(λ(si)) = γ∗(n, λ(sj))

Fn(λ(si), λ(sj)) =

λ(si)∫
0

λ(sj)∫
0

1

(1− ρ2)Γ(n)

(
t1t2
ρ2

)n−1
2

exp

{
−(t1 + t2)

1− ρ2

}
In−1

(
2ρ

1− ρ2

√
t1t2

)
dt2dt1

(A.3)

Let pn,m denote Pr(N(si) = n,N(sj) = m) and, plug in A.1 and A.3 on A.2 the

following results are obtained:

If n = m = 0

p0,0 = [F0 − F1 − F2 + F](λ(si), λ(sj))

= −1 + exp{−λ(si)}+ exp{−λ(sj)}

+

λ(si)∫
0

λ(sj)∫
0

1

1− ρ2
exp

{
− u+ v

1− ρ2

}
I0

(
2ρ

1− ρ2

√
uv

)
dvdu

= 1 + exp{−λ(si)}+ exp{−λ(sj)}

+ (1− ρ2)
∞∑
k=0

ρ2k

(k!)2
γ

(
k + 1,

λ(si)

1− ρ2

)
γ

(
k + 1,

λ(sj)

1− ρ2

)
= −1 + exp{−λ(si)}+ exp{−λ(sj)}

+ (1− ρ2)
∞∑
k=0

ρ2kγ∗
(
k + 1,

λ(si)

1− ρ2

)
γ∗
(
k + 1,

λ(sj)

1− ρ2

)
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= −1 + exp{−λ(si)}+ exp{−λ(sj)}+ (1− ρ2)
∞∑
k=0

ρ2kγ?
(
k + 1,

λ(si)

1− ρ2
,
λ(sj)

1− ρ2

)

If n = m ≥ 1

pn,n = [F0 − F1 − F2 + F] ∗ ∗Fn(λ(si), λ(sj))

=

λ(si)∫
0

λ(sj)∫
0

[
− 1 + exp{−(λ(si)− t1)}+ exp{−(λ(sj)− t2)}

+

λ(si)−t1∫
0

λ(sj)−t2∫
0

1

1− ρ2
exp

{
− u+ v

1− ρ2

}
I0

(
2ρ

1− ρ2

√
uv

)
dvdu

×
[

1

(1− ρ2)(n− 1)!

(
t1t2
ρ2

)n−1
2

exp

{
−t1 + t2

1− ρ2

}
In−1

(
2ρ

1− ρ2

√
t1t2

)]
dt2dt1

= −(1− ρ2)n

Γ(n)

∞∑
k=0

ρ2kΓ(n+ k)

Γ(k + 1)

γ

(
n+ k,

λ(si)

1− ρ2

)
Γ(n+ k)

γ

(
n+ k,

λ(sj)

1− ρ2

)
Γ(n+ k)

+
(1− ρ2)n exp{−λ(si)}

Γ(n)ρ2n

∞∑
k=0

Γ(n+ k)

Γ(k + 1)

γ

(
n+ k,

ρ2λ(si)

1− ρ2

)
Γ(n+ k)

γ

(
n+ k,

λ(sj)

1− ρ2

)
Γ(n+ k)

+
(1− ρ2)n exp{−λ(sj)}

Γ(n)ρ2n

∞∑
k=0

Γ(n+ k)

Γ(k + 1)

γ

(
n+ k,

λ(si)

1− ρ2

)
Γ(k + 1)

γ

(
n+ k,

ρ2λ(sj)

1− ρ2

)
Γ(k + 1

+

λ(si)∫
0

λ(sj)∫
0

[
(1− ρ2)

∞∑
k=0

ρ2k

(k!)2
γ

(
k + 1,

λ(si)− t1
1− ρ2

)
γ

(
k + 1,

λ(sj)− t2
1− ρ2

)]
×

[
1

(1− ρ2)(n− 1)!

(
t1t2
ρ2

)n−1
2

exp

{
−t1 + t2

1− ρ2

}
In−1

(
2ρ

1− ρ2

√
t1t2

)]
dt2dt1

= −(1− ρ2)n

Γ(n)

∞∑
k=0

ρ2kΓ(n+ k)

Γ(k + 1)
γ∗
(
n+ k,

λ(si)

1− ρ2

)
γ∗
(
n+ k,

λ(sj)

1− ρ2

)
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+
(1− ρ2)n exp{−λ(si)}

Γ(n)ρ2n

∞∑
k=0

Γ(n+ k)

Γ(k + 1)
γ∗
(
n+ k,

ρ2λ(si)

1− ρ2

)
γ∗
(
n+ k,

λ(sj)

1− ρ2

)
+

(1− ρ2)n exp{−λ(sj)}
Γ(n)ρ2n

∞∑
k=0

Γ(n+ k)

Γ(k + 1)
γ∗
(
n+ k,

λ(si)

1− ρ2

)
γ∗
(
n+ k,

ρ2λ(sj)

1− ρ2

)

+

λ(si)∫
0

λ(sj)∫
0

[
(1− ρ2)

∞∑
k=0

ρ2k

(k!)2
γ

(
k + 1,

λ(si)− t1
1− ρ2

)
γ

(
k + 1,

λ(sj)− t2
1− ρ2

)]
×

[
1

(1− ρ2)(n− 1)!

(
t1t2
ρ2

)n−1
2

exp

{
−t1 + t2

1− ρ2

}
In−1

(
2ρ

1− ρ2

√
t1t2

)]
dt2dt1

= −(1− ρ2)n

Γ(n)

∞∑
k=0

ρ2kΓ(n+ k)

Γ(k + 1)
γ∗
(
n+ k,

λ(si)

1− ρ2

)
γ∗
(
n+ k,

λ(sj)

1− ρ2

)
+

(1− ρ2)n exp{−λ(si)}
Γ(n)ρ2n

∞∑
k=0

Γ(n+ k)

Γ(k + 1)
γ∗
(
n+ k,

ρ2λ(si)

1− ρ2

)
γ∗
(
n+ k,

λ(sj)

1− ρ2

)
+

(1− ρ2)n exp{−λ(sj)}
Γ(n)ρ2n

∞∑
k=0

Γ(n+ k)

Γ(k + 1)
γ∗
(
n+ k,

λ(si)

1− ρ2

)
γ∗
(
n+ k,

ρ2λ(sj)

1− ρ2

)
+
∞∑
k=0

∞∑
`=0

ρ2k+2`

(1− ρ2)2`+n−1

1

(k!)2(n− 1)!`!Γ(n+ `)
×

λ(si)∫
0

t`+n−1
1 exp

{
− t1

1− ρ2

}
γ

(
k + 1,

λ(si)− t1
1− ρ2

)
×

λ(sj)∫
0

t`+n−1
2 exp

{
− t2

1− ρ2

}
γ

(
k + 1,

λ(sj)− t2
1− ρ2

)

= −(1− ρ2)n

Γ(n)

∞∑
k=0

ρ2kΓ(n+ k)

Γ(k + 1)
γ∗
(
n+ k,

λ(si)

1− ρ2

)
γ∗
(
n+ k,

λ(sj)

1− ρ2

)
+

(1− ρ2)n exp{−λ(si)}
Γ(n)ρ2n

∞∑
k=0

Γ(n+ k)

Γ(k + 1)
γ∗
(
n+ k,

ρ2λ(si)

1− ρ2

)
γ∗
(
n+ k,

λ(sj)

1− ρ2

)
+

(1− ρ2)n exp{−λ(sj)}
Γ(n)ρ2n

∞∑
k=0

Γ(n+ k)

Γ(k + 1)
γ∗
(
n+ k,

λ(si)

1− ρ2

)
γ∗
(
n+ k,

ρ2λ(sj)

1− ρ2

)
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+
(1− ρ2)n+1

Γ(n)
×

∞∑
k=0

∞∑
`=0

Γ(n+ `)ρ2k+2`

Γ(`+ 1)
γ∗
(
n+ `+ k + 1,

λ(si)

1− ρ2

)
γ∗
(
n+ `+ k + 1,

λ(sj)

1− ρ2

)
= −(1− ρ2)n

Γ(n)

∞∑
k=0

ρ2kΓ(n+ k)

Γ(k + 1)
γ?
(
n+ k,

λ(si)

1− ρ2
,
λ(sj)

1− ρ2

)
+

(1− ρ2)n exp{−λ(si)}
Γ(n)ρ2n

∞∑
k=0

Γ(n+ k)

Γ(k + 1)
γ?
(
n+ k,

ρ2λ(si)

1− ρ2
,
λ(sj)

1− ρ2

)
+

(1− ρ2)n exp{−λ(sj)}
Γ(n)ρ2n

∞∑
k=0

Γ(n+ k)

Γ(k + 1)
γ?
(
n+ k,

λ(si)

1− ρ2
,
ρ2λ(sj)

1− ρ2

)
+

(1− ρ2)n+1

Γ(n)

∞∑
k=0

∞∑
`=0

Γ(n+ `)ρ2k+2`

Γ(`+ 1)
γ?
(
n+ `+ k + 1,

λ(si)

1− ρ2
,
λ(sj)

1− ρ2

)
= −(1− ρ2)n

Γ(n)

∞∑
k=0

ρ2kΓ(n+ k)

Γ(k + 1)
γ?
(
n+ k,

λ(si)

1− ρ2
,
λ(sj)

1− ρ2

)

+
(1− ρ2)n

Γ(n)ρ2n

∞∑
k=0

1∑
`=0

Γ(n+ k)

Γ(k + 1)
e−λ(si)(1−`)−λ(sj)`γ?

(
n+ k,

ρ2(1−`)λ(si)

1− ρ2
,
ρ2`λ(sj)

1− ρ2

)
+

(1− ρ2)n+1

Γ(n)

∞∑
k=0

∞∑
`=0

Γ(n+ `)ρ2k+2`

Γ(`+ 1)
γ?
(
n+ `+ k + 1,

λ(si)

1− ρ2
,
λ(sj)

1− ρ2

)
= −(1− ρ2)n

∞∑
k=0

ρ2k(n)k
k!

γ?
(
n+ k,

λ(si)

1− ρ2
,
λ(sj)

1− ρ2

)

+

(
1− ρ2

ρ2

)n ∞∑
k=0

1∑
`=0

(n)k
k!

e−λ(si)(1−`)−λ(sj)`γ?
(
n+ k,

ρ2(1−`)λ(si)

1− ρ2
,
ρ2`λ(sj)

1− ρ2

)
+ (1− ρ2)n+1

∞∑
k=0

∞∑
`=0

ρ2k+2`(n)`
`!

γ?
(
n+ `+ k + 1,

λ(si)

1− ρ2
,
λ(sj)

1− ρ2

)
If n ≥ 1 and m = 0

pn,0 = [F1
n − F1

n+1 − F1
n−1 ∗ ∗F + F1

n ∗ ∗F](λ(si), λ(sj))

=
1

n!
λ(si)

n exp{−λ(si)}
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−
λ(si)∫
0

λ(sj)∫
0

γ(n− 1, λ(si)− u)

(n− 2)!

1

1− ρ2
exp

{
− u+ v

1− ρ2

}
I0

(
2ρ

1− ρ2

√
uv

)
dvdu

+

λ(si)∫
0

λ(sj)∫
0

γ(n, λ(si)− u)

(n− 1)!

1

1− ρ2
exp

{
− u+ v

1− ρ2

}
I0

(
2ρ

1− ρ2

√
uv

)
dvdu

=
1

n!
λ(si)

n exp{−λ(si)}+
1

1− ρ2
×

λ(si)∫
0

λ(sj)∫
0

(
γ(n, λ(si)− u)

(n− 1)!
− γ(n− 1, λ(si)− u)

(n− 2)!

)
exp

{
− u+ v

1− ρ2

}
I0

(
2ρ
√
uv

1− ρ2

)
dvdu

=
1

n!
λ(si)

n exp{−λ(si)} −
1

(n− 1)!1− ρ2
×

λ(si)∫
0

λ(sj)∫
0

(λ(si)− u)n−1 exp{−λ(si)− u} exp

{
− u+ v

1− ρ2

}
I0

(
2ρ

1− ρ2

√
uv

)
dvdu

=
1

n!
λ(si)

n exp{−λ(si)} −
exp{−λ(si)}

(n− 1)!1− ρ2
×

∞∑
`=0

(
ρ

1− ρ2

)2`
1

`!2

λ(si)∫
0

(λ(si)− u)n−1u` exp

{
− ρ2u

1− ρ2

}
du

λ(sj)∫
0

v` exp

{
− v

1− ρ2

}
dv

=
1

n!
λ(si)

n exp{−λ(si)} −
exp{−λ(si)}

(n− 1)!
×

∞∑
`=0

(
ρ2

1− ρ2

)`
λ(si)

n+`

`!2
Γ(n)Γ(`+ 1)

Γ(n+ `+ 1)
exp

{
−ρ

2λ(si)

1− ρ2

}
1F1

(
n;n+ `+ 1;

ρ2λ(si)

1− ρ2

)
γ

(
`+ 1;

λ(sj)

1− ρ2

)
=

1

n!
λ(si)

n exp{−λ(si)} − λ(si)
n exp

{
− λ(si)

1− ρ2

}
×

∞∑
`=0

(
ρ2λ(si)

1− ρ2

)`
1F̃1

(
n;n+ `+ 1;

ρ2λ(si)

1− ρ2

)
γ∗
(
`+ 1;

λ(sj)

1− ρ2

)
=

1

n!
λ(si)

n exp{−λ(si)}
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− λ(si)
n exp

{
− λ(si)

1− ρ2

} ∞∑
`=0

(
ρ2λ(si)

1− ρ2

)`
S
(
n ;n+`+1

`+1 ,
ρ2λ(si)

1− ρ2
,
λ(sj)

1− ρ2

)

If n > m, n ≥ 2 and m ≥ 1

pn,m = [F1
r − F1

r+1 − F1
r−1 ∗ ∗F + F1

r ∗ ∗F] ∗ ∗Fm(λ(si), λ(sj))

=

λ(si)∫
0

λ(sj)∫
0

[
1

r!
(λ(si)− t1)r exp{−λ(si)− t1}

−
λ(si)−t1∫

0

λ(sj)−t2∫
0

γ(r − 1, λ(si)− t1 − u)

(r − 2)!(1− ρ2)
exp

{
− u+ v

1− ρ2

}
I0

(
2ρ

1− ρ2

√
uv

)
dvdu

+

λ(si)−t1∫
0

λ(sj)−t2∫
0

γ(r, λ(si)− t1 − u)

(r − 1)!(1− ρ2)
exp

{
− u+ v

1− ρ2

}
I0

(
2ρ

1− ρ2

√
uv

)
dvdu

]
×

[
1

(1− ρ2)(m− 1)!

(
t1t2
ρ2

)m−1
2

exp

{
−t1 + t2

1− ρ2

}
Im−1

(
2ρ

1− ρ2

√
t1t2

)]
dt2dt1

=

λ(si)∫
0

λ(sj)∫
0

[
1

r!
(λ(si)− t1)r exp{−λ(si)− t1}

+

λ(si)−t1∫
0

λ(sj)−t2∫
0

(
γ(r, λ(si)− t1 − u)

(r − 1)!
− γ(r − 1, λ(si)− t1 − u)

(r − 2)!

)
1

1− ρ2
exp

{
− u+ v

1− ρ2

}
I0

(
2ρ

1− ρ2

√
uv

)
dvdu

]
×[

1

(1− ρ2)(m− 1)!

(
t1t2
ρ2

)m−1
2

exp

{
−t1 + t2

1− ρ2

}
Im−1

(
2ρ

1− ρ2

√
t1t2

)]
dt2dt1

=

λ(si)∫
0

λ(sj)∫
0

[
1

r!
(λ(si)− t1)r exp{−λ(si)− t1}
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−
λ(si)−t1∫

0

λ(sj)−t2∫
0

(λ(si)− t1 − u))r−1

(r − 1)!
exp{−λ(si)− t1 − u}

1

1− ρ2
exp

{
− u+ v

1− ρ2

}
I0

(
2ρ

1− ρ2

√
uv

)
dvdu

]
×[

1

(1− ρ2)(m− 1)!

(
t1t2
ρ2

)m−1
2

exp

{
−t1 + t2

1− ρ2

}
Im−1

(
2ρ

1− ρ2

√
t1t2

)]
dt2dt1

=

λ(si)∫
0

λ(sj)∫
0

1

r!
(λ(si)− t1)r exp{−λ(si)− t1}[

1

(1− ρ2)(m− 1)!

(
t1t2
ρ2

)m−1
2

exp

{
−t1 + t2

1− ρ2

}
Im−1

(
2ρ

1− ρ2

√
t1t2

)]
dt2dt1

−
λ(si)∫
0

λ(sj)∫
0

[ λ(si)−t1∫
0

λ(sj)−t2∫
0

(λ(si)− t1 − u))r−1

(r − 1)!
exp{−λ(si)− t1 − u}

1

1− ρ2
exp

{
− u+ v

1− ρ2

}
I0

(
2ρ

1− ρ2

√
uv

)
dvdu

]
×[

1

(1− ρ2)(m− 1)!

(
t1t2
ρ2

)m−1
2

exp

{
−t1 + t2

1− ρ2

}
Im−1

(
2ρ

1− ρ2

√
t1t2

)]
dt2dt1

=
∞∑
`=0

exp{−λ(si)}ρ2`

`!r!(m− 1)!Γ(r +m)(1− ρ2)2`+m
×

λ(si)∫
0

t`+m−1
1 (λ(si)− t1)r exp

{
− ρ2t1

1− ρ2

}
dt1

λ(sj)∫
0

t`+m−1
2 exp

{
− t2

1− ρ2

}
dt2

−
∞∑
k=0

∞∑
`=0

exp
{
− λ(si)

1−ρ2

}
ρ2k+2`

k!`!(r + k)!(m− 1)!Γ(m+ `)(1− ρ2)k+m+2`
×

λ(si)∫
0

(λ(si)− t1)r+ktm+`−1
1 1F1

(
r; r + k + 1;

ρ2(λ(si)− t1)

1− ρ2

)
dt1
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λ(sj)∫
0

tm+`−1
2 exp

{
− t2

1− ρ2

}
γ

(
k + 1,

λ(sj)− t2
1− ρ2

)
dt2

= λ(si)
m+r exp

{
− λ(si)

1− ρ2

}
×[

∞∑
`=0

Γ(m+ `)

`!(m− 1)!

(
ρ2λ(si)

1− ρ2

)`
×

1F̃1

(
r + 1;m+ `+ r + 1;

ρ2λ(si)

1− ρ2

)
γ∗
(
m+ `,

λ(sj)

1− ρ2

)
−

∞∑
k=0

∞∑
`=0

Γ(m+ `)

`!(m− 1)!

(
ρ2λ(si)

1− ρ2

)k+`

×

1F̃1

(
r; 1 + k + `+ r +m;

ρ2λ(si)

1− ρ2

)
γ∗
(
m+ `+ k + 1,

λ(sj)

1− ρ2

)]

= λ(si)
n exp

{
− λ(si)

1− ρ2

}
×[

∞∑
`=0

(m)`
`!

(
ρ2λ(si)

1− ρ2

)`
S
(
n−m+1 ;n+`+1

m+` ,
ρ2λ(si)

1− ρ2
,
λ(sj)

1− ρ2

)
−

∞∑
k=0

∞∑
`=0

(m)`
`!

(
ρ2λ(si)

1− ρ2

)k+`

S
(
n−m ;n+k+`+1

m+k+`+1 ,
ρ2λ(si)

1− ρ2
,
λ(sj)

1− ρ2

)]
The cases m ≥ 1, n = 0 and m > n,m ≥ 2, n ≥ 1 are analogous to cases n ≥ 1,m = 0

and n > m, n ≥ 2,m ≥ 1 respectively. Then the result holds.

A.2 Proofs of Chapter 3

Proof of Theorem 3.2.1. Note that the covariance of the ZIP random field N∗ can be

written as follows:

Cov(N∗(si), N
∗(sj)) = E[N∗(si)N

∗(sj)]− E[N∗(si)]E[N∗(sj)]

= E[N(si)B(si)N(sj)B(sj)]− E[N(si)B(si)]E[N(sj)B(sj)]

= E[B(si)B(sj)]E[N(si)N(sj)]− E[B(si)]E[N(si)]E[B(sj)]E[N(sj)]
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= p∗11E[N(si)N(sj)]− Pr(B(si) = 1)E[N(si)] Pr(B(sj) = 1)E[N(sj)]

= p∗11E[N(si)N(sj)]− Pr(B(si) = 1)λi Pr(B(sj) = 1)λj

= p∗11[Cov(N(si), N(sj)) + λiλj]− Pr(B(si) = 1) Pr(B(sj) = 1)λiλj

= p∗11 Cov(N(si), N(sj)) + λiλj[p
∗
11 − Pr(B(si) = 1) Pr(B(sj) = 1)]

= p∗11 Cov(N(si), N(sj)) + λiλj Cov(B(si), B(sj))

Using this result and Var(N∗(sk)) = (1 − pk)λk[1 + pkλk], k = i, j, the correlation of

the ZIP random field can be written as follows:

ρN∗(si, si) =
p∗11 Cov(N(si), N(sj)) + λiλj Cov(B(si), B(sj))√

(1− pi)λi[1 + piλi](1− pj)λj[1 + pjλj]

=
p∗11 Cov(N(si), N(sj))√

(1− pi)λi[1 + piλi](1− pj)λj[1 + pjλj]
+

λiλj Cov(B(si), B(sj))√
(1− pi)λi[1 + piλi](1− pj)λj[1 + pjλj]

=
p∗11√

(1− pi)[1 + piλi](1− pj)[1 + pjλj]

Cov(N(si), N(sj))√
λiλj

+

λiλj
√
pipj√

λi[1 + piλi]λj[1 + pjλj]

Cov(B(si), B(sj))√
pipj(1− pi)(1− pj)

=
p∗11ρN(si, sj)√

(1− pi)(1− pj)(1 + piλi)(1 + pjλj)
+

√
λiλjpipjρB(si, sj)√

(1 + piλi)(1 + pjλj)

Proof of Corollary 3.2.1. If the ZIP random field is s weakly stationary then

the underlying correlations functions are stationary. Then ρN(si, sj) = ρN(h) and

ρB(si, sj) = ρB(h). Moreover, λ(s) = λ and pi = pj = p = Φ(θ). Thus, using these in

the theorem 3.2.1 and making algebra the result holds, that is,

ρN∗(h, λ, θ) =
p∗11ρN(h)

(1− p)(1 + pλ)
+
pλρB(h)

1 + pλ
.

Proof of Theorem 3.2.2. Using the law of total probability ,the substitution theorem of
conditional probabilities and the independence of N and B in Pr(N∗(si) = n,N∗(sj) =
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m), the bivariate distribution of de ZIP random field N∗ can be obtained as follows:

Pr(N∗(si) = n,N∗(sj) = m) = Pr(B(si)N(si) = n,B(sj)N(sj) = m)

= Pr(B(si) = 0, B(sj) = 0) Pr(B(si)N(si) = n,B(sj)N(sj) = m|B(si) = 0, B(sj) = 0)

+ Pr(B(si) = 0, B(sj) = 1) Pr(B(si)N(si) = n,B(sj)N(sj) = m|B(si) = 0, B(sj) = 1)

+ Pr(B(si) = 1, B(sj) = 0) Pr(B(si)N(si) = n,B(sj)N(sj) = m|B(si) = 1, B(sj) = 0)

+ Pr(B(si) = 1, B(sj) = 1) Pr(B(si)N(si) = n,B(sj)N(sj) = m|B(si) = 1, B(sj) = 1)

= p∗00 Pr(B(si)N(si) = n,B(sj)N(sj) = m|B(si) = 0, B(sj) = 0)

+ p∗01 Pr(B(si)N(si) = n,B(sj)N(sj) = m|B(si) = 0, B(sj) = 1)

+ p∗10 Pr(B(si)N(si) = n,B(sj)N(sj) = m|B(si) = 1, B(sj) = 0)

+ p∗11 Pr(B(si)N(si) = n,B(sj)N(sj) = m|B(si) = 1, B(sj) = 1).

If n = m = 0,

Pr(N∗(si) = 0, N∗(sj) = 0) = p∗00 + p∗01 Pr(N(sj) = 0)

+ p∗10 Pr(N(si) = 0) + p∗11 Pr(N(si) = 0, N(sj) = 0)

= p∗00 + p∗01 Pr(N(sj) = 0) + p∗10 Pr(N(si) = 0) + p∗11p00

If n = 0 and m > 0,

Pr(N∗(si) = 0, N∗(sj) = m) = p∗01 Pr(N(sj) = m) + p∗11 Pr(N(si) = 0, N(sj) = m)

= p∗01 Pr(N(sj) = m) + p∗11p0m

If n > 0 and m = 0,

Pr(N∗(si) = n,N∗(sj) = 0) = p∗10 Pr(N(si) = n) + p∗11 Pr(N(si) = n,N(sj) = 0)

= p∗10 Pr(N(si) = n) + p∗11pn0

If n > 0 and m > 0,

Pr(N∗(si) = n,N∗(sj) = m) = p∗11 Pr(N(si) = n,N(sj) = m)

= p∗11pnm
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Proof of Theorem 3.3.1. Let ψ
N∗(si),N∗(sj)

(ti, tj) be the characteristic function for

(N∗(si), N
∗(sj))

>, then the bivariate density function of N∗(s) is defined as follows:

fN∗(si),N∗(sj)(n,m) =

∫
R

∫
R

1

(2π)2
exp{−i(tin+ tjm)}ψ

N∗(si),N∗(sj)
(ti, tj)dtidtj.

Now, note that ψ
N∗(si),N∗(sj)

(ti, tj) can be written as:

ψ
N∗(si),N

∗(sj)
(ti, tj) =E[exp{i(tiN∗(si) + tjN

∗(sj))}]

=E[exp{i(tiB(si)G(si) + tjB(sj)G(sj))}]

=E[exp{i(tiB(si)G(si) + tjB(sj)G(sj))}|B(si) = 1, B(sj) = 1]P (B(si) = 1, B(sj) = 1)

+ E[exp{i(tiB(si)G(si) + tjB(sj)G(sj))}|B(si) = 1, B(sj) = 0]P (B(si) = 1, B(sj) = 0)

+ E[exp{i(tiB(si)G(si) + tjB(sj)G(sj))}|B(si) = 0, B(sj) = 1]P (B(si) = 0, B(sj) = 1)

+ E[exp{i(tiB(si)G(si) + tjB(sj)G(sj))}|B(si) = 0, B(sj) = 0]P (B(si) = 0, B(sj) = 0)

=E[exp{i(tiG(si) + tjG(sj))}]p∗11
+ E[exp{i(tiG(si)}]p∗10
+ E[exp{i(tjG(sj))}]p∗01 + p∗00

=p∗11ψG(si),G(sj)
(ti, tj) + p∗10ψG(si)

(ti) + p∗01ψG(sj)
(tj) + p∗00

Then,

fN∗(si),N∗(sj)(n,m) =

∫
R

∫
R

1

(2π)2
exp{−i(tin+ tjm)}[p∗11ψG(si)G(sj)

(ti, tj) + p∗10ψG(si)
(ti)]dtidtj

+

∫
R

∫
R

1

(2π)2
exp{−i(tin+ tjm)}[p∗01ψG(sj)

(tj) + p∗00]dtidtj

=p∗11fG(si),G(sj)(n,m) + p∗10fG(si)(n)

∫
R

1

2π
exp{−i(tjm)}dtj

+ p∗01fG(sj)(m)

∫
R

1

2π
exp{−i(tin)}dti

+ p∗00

∫
R

1

2π
exp{−i(tin)}dti

∫
R

1

2π
exp{−i(tjm)}dtj
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Note that ψ
δ0

(t) = 1 is the characteristic function of the degenerate distribution at 0.

Moreover, fδ0(y) =

∫
R

1

2π
exp{−i(ty)}dtj = 1 if y = 0 and fδ0(y) = 0 if y 6= 0. Thus,

we obtain that:

fN∗(si),N∗(sj)(n,m) =p∗11fG(si),G(sj)(n,m) + p∗10fG(si)(n)fδ0(m)

+ p∗01fG(sj)(m)fδ0(m) + p∗00fδ0(n)fδ0(m)

Finally,

If n = 0 and m = 0

fN∗(si),N∗(sj)(0, 0) =p∗11fG(si),G(sj)(0, 0) + p∗10fG(si)(0) + p∗01fG(sj)(0) + p∗00

If n = 0 and m > 0

fN∗(si),N∗(sj)(0,m) =p∗11fG(si),G(sj)(0,m) + p∗01fG(sj)(m)

If n > 0 and m = 0

fN∗(si),N∗(sj)(n, 0) =p∗11fG(si),G(sj)(n, 0) + p∗10fG(si)(n)

If n > 0 and m > 0

fN∗(si),N∗(sj)(yi, yj) =p∗11fG(si),G(sj)(n,m)

A.3 Proofs of Chapter 4

Proof of Theorem 4.2.1 For the simplicity of notation, let ν(si) = νi, ν(sj) = νj , λ(si) =

λi, λ(sj) = λj and ρ(h) = ρ. Note that the covariance can be written as follows:

Cov(M(si),M(sj)) =E[Cov(N(si), N(sj)|Λ(si),Λ(sj))]
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+ Cov(E[N(si)|Λ(si)],E[N(sj)|Λ(sj)])

=E[Cov(N(si), N(sj)|Λ(si),Λ(sj))] + Cov(Λ(si),Λ(sj))

=E

[
ρ2(1− ρ2)

∞∑
r=0

1

Γ(r + 1)2
γ

(
r + 1,

Λ(si)

1− ρ2

)
γ

(
r + 1,

Λ(sj)

1− ρ2

)]
+ ρ2 κ

νiνj

=
∞∑
r=0

ρ2(1− ρ2)

Γ(r + 1)2
E

[
γ

(
r + 1,

Λ(si)

1− ρ2

)
γ

(
r + 1,

Λ(sj)

1− ρ2

)]
+ ρ2 κ

νiνj
(A.4)

Now, E
[
γ

(
r + 1,

Λ(si)

1− ρ2

)
γ

(
r + 1,

Λ(sj)

1− ρ2

)]
, which is denoted by I, is calculated

as follows.

I =

∞∫
0

∞∫
0

γ

(
r + 1,

λi
1− ρ2

)
γ

(
r + 1,

λj
1− ρ2

)
νiνj

(1− ρ2)Γ(κ)

(
νiνjλiλj
ρ2

)κ−1
2

× exp

{
−νiλi + νjλj

1− ρ2

}
Iκ−1

(
2ρ

1− ρ2

√
νiνjλiλj

)
dλidλj

=

∞∫
0

∞∫
0

exp

{
− λi

1− ρ2

} ∞∑
k1=0

Γ(r + 1)

Γ(r + k1 + 2)

(
λi

1− ρ2

)k1+r+1

× exp

{
− λj

1− ρ2

} ∞∑
k2=0

Γ(r + 1)

Γ(r + k2 + 2)

(
λj

1− ρ2

)k2+r+1

× (νiνj)
κ+1
2

(1− ρ2)Γ(κ)

(
λiλj
ρ2

)κ−1
2

exp

{
−νiλi + νjλj

1− ρ2

}
×
∞∑
`=0

1

`!Γ(`+ κ)

(
ρ

1− ρ2

√
νiνjλiλj

)2`+κ−1

dλidλj

=
∞∑
`=0

∞∑
k1=0

∞∑
k2=0

Γ(r + 1)2(νiνj)
`+κρ2`

Γ(r + k1 + 2)Γ(r + k2 + 2)Γ(κ)`!Γ(`+ κ)(1− ρ2)k1+k2+2r+2`+2+κ

×
∞∫

0

λk1+r+`+κ
i exp

{
−(1 + νi)λi

1− ρ2

}
dλi

∞∫
0

λk2+r+`+κ
j exp

{
−(1 + νj)λj

1− ρ2

}
dλj
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=
∞∑
`=0

Γ(r + 1)2(νiνj)
`+κρ2`((1 + νi)(1 + νj))

−(r+`+κ+1)

Γ(κ)`!Γ(`+ κ)(1− ρ2)−κ

×
∞∑
k1=0

Γ(k1 + r + `+ κ+ 1)

Γ(r + k1 + 2)
(1 + νi)

−k1
∞∑
k2=0

Γ(k2 + r + `+ κ+ 1)

Γ(r + k2 + 2)
(1 + νj)

−k2

=
∞∑
`=0

Γ(r + 1)2(νiνj)
`+κρ2`

Γ(κ)`!Γ(`+ κ)(1− ρ2)−κ((1 + νi)(1 + νj))r+`+κ+1

×
(

Γ(r + `+ κ+ 1)

Γ(r + 2)

)2

2F1

(
1, r + `+ κ+ 1; r + 2;

1

νi + 1

)
× 2F1

(
1, r + `+ κ+ 1; r + 2;

1

νj + 1

)
=
∞∑
`=0

Γ(r + 1)2(νiνj)
`+κ−1ρ2`

Γ(κ)`!Γ(`+ κ)(1− ρ2)−κ((1 + νi)(1 + νj))r+`+κ

×
(

Γ(r + `+ κ+ 1)

Γ(r + 2)

)2

2F1

(
1, 1− `− κ; r + 2;− 1

νi

)
2F1

(
1, 1− `− κ; r + 2;− 1

νj

)
=
∞∑
`=0

Γ(r + 1)2(νiνj)
`+κ−1ρ2`Γ(r + `+ κ+ 1)2

Γ(κ)`!Γ(`+ κ)(1− ρ2)−κ((1 + νi)(1 + νj))r+`+κ
H
(

1 ,1−κ−`
r+2 ,− 1

νi
,− 1

νj

)

Plugging in this on A.4, dividing the result by
√

Var(M(si)) Var(M(sj)) and doing

some algebra, the result holds.

Proof of Corollary 4.2.1. Let ρ(h) = ρ. Note that the stationary covariance function

can be written as follows:

Cov(M(si),M(sj)) =E[Cov(N(si), N(sj)|Λ(s))] + Cov(E[N(si)|Λ(si)],E[N(sj)|Λ(sj)])

=E[Cov(N(si), N(sj)|Λ(s))] + Cov(Λ(si),Λ(sj))

=E

[
Λ(s)ρ2

(
1− exp

{
− 2Λ(s)

1− ρ2

}(
I0

(
2Λ(s)

1− ρ2

)
+ I1

(
2Λ(s)

1− ρ2

)))]
+ ρ2 κ

ν2

=ρ2κ

ν
− ρ2E

[
Λ(s) exp

{
− 2Λ(s)

1− ρ2

}
I0

(
2Λ(s)

1− ρ2

)]
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− ρ2E

[
Λ(s) exp

{
− 2Λ(s)

1− ρ2

}
I1

(
2Λ(s)

1− ρ2

)]
+ ρ2 κ

ν2
(A.5)

Then,

I1 = E

[
Λ(s) exp

{
− 2Λ(s)

1− ρ2

}
I0

(
2Λ(s)

1− ρ2

)]
and

I2 = E

[
Λ(s) exp

{
− 2Λ(s)

1− ρ2

}
I1

(
2Λ(s)

1− ρ2

)]
are calculated as follow:

I1 =

∞∫
0

λ exp

{
− 2λ

1− ρ2

} ∞∑
m=0

1

m!Γ(m+ 1)

(
λ

1− ρ2

)2m
νκλκ−1

Γ(κ)
exp {−νλ} dλ

=
∞∑
m=0

νκ

m!2(1− ρ2)2mΓ(κ)

∞∫
0

λ2m+κ exp

{
−
(

2

1− ρ2
+ ν

)
λ

}
dλ

=
∞∑
m=0

νκ

m!2(1− ρ2)2mΓ(κ)

(
2

1− ρ2
+ ν

)−(2m+κ+1)

Γ(2m+ κ+ 1)

=
νκ

Γ(κ)

(
2

1− ρ2
+ ν

)−(κ+1) ∞∑
m=0

(
1

2 + ν(1− ρ2)

)2m
Γ(2m+ κ+ 1)

m!2

=νκκ

(
1− ρ2

2 + ν(1− ρ2)

)κ+1

2F1

(
κ+ 1

2
,
κ+ 2

2
; 1;

4

(2 + ν(1− ρ2))2

)
=κ

(
1− ρ2

ν

) 1
2 (2 + ν(1− ρ2))

κ

(4 + ν(1− ρ2))κ+ 1
2

2F1

(
1− κ

2
,−κ

2
; 1;

4

(2 + ν(1− ρ2))2

)

I2 =

∞∫
0

λ exp

{
− 2λ

1− ρ2

} ∞∑
m=0

1

m!Γ(m+ 2)

(
λ

1− ρ2

)2m+1
νκλκ−1

Γ(κ)
exp {−νλ} dλ

=
∞∑
m=0

νκ

m!Γ(m+ 2)(1− ρ2)2m+1Γ(κ)

∞∫
0

λ2m+κ+1 exp

{
−
(

2

1− ρ2
+ ν

)
λ

}
dλ

=
∞∑
m=0

νκ

m!Γ(m+ 2)(1− ρ2)2m+1Γ(κ)

(
2 + ν(1− ρ2)

1− ρ2

)−(2m+κ+2)

Γ(2m+ κ+ 2)
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=
νκ(2 + ν(1− ρ2))−(κ+2)

Γ(κ)(1− ρ2)−(κ+1)

∞∑
m=0

Γ(2m+ κ+ 2)

m!Γ(m+ 2)

(
2 + ν(1− ρ2)

)−2m

=
νκ(2 + ν(1− ρ2))−(κ+2)

Γ(κ)(1− ρ2)−(κ+1)
Γ(κ+ 2)2F1

(
κ+ 2

2
,
κ+ 3

2
; 2;

4

(2 + ν(1− ρ2))2

)
=κ(κ+ 1)

(
1− ρ2

ν

) 1
2 (2 + ν(1− ρ2))

κ−1

(4 + ν(1− ρ2))κ+ 1
2

2F1

(
2− κ

2
,
1− κ

2
; 2;

4

(2 + ν(1− ρ2))2

)

Plugging in I1 and I2 on A.5, dividing the result by Var(M(s)) and doing some algebra,

the result holds.

Proof of Theorem 4.2.2. Note that bivariate distribution can be obtained as follows

p̃nm =

∞∫
0

∞∫
0

Pr(N(si) = n,N(sj) = m|λiλj)fΛij(λi, λj)dλiλj

Then, using theorem 2.2.3 and 4.2 the following results are obtained:

If n = m = 0:

p̃00 =

∞∫
0

∞∫
0

[−1 + exp{−λi}+ exp{−λj}] fΛij(λi, λj)dλiλj

+

∞∫
0

∞∫
0

∞∑
k=0

(1− ρ2)ρ2k

Γ(k + 1)2
γ

(
k + 1,

λi
1− ρ2

)
γ

(
k + 1,

λi
1− ρ2

)
fΛij(λi, λj)dλiλj

=−
∞∫

0

∞∫
0

fΛij(λi, λj)dλiλj

+

∞∫
0

∞∫
0

exp{−λi}fΛij(λi, λj)dλiλj

+

∞∫
0

∞∫
0

exp{−λj}fΛij(λi, λj)dλiλj
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+

∞∫
0

∞∫
0

∞∑
k=0

(1− ρ2)ρ2k

Γ(k + 1)2
γ

(
k + 1,

λi
1− ρ2

)
γ

(
k + 1,

λi
1− ρ2

)
fΛij(λi, λj)dλiλj

Note that the double integral of the first term is equal to 1. The double integral of the

second term, noted by I1, is obtained as follow:

I1 =

∞∫
0

∞∫
0

exp{−λi}
νiνj

(1− ρ2)Γ(κ)

(
νiνjλiλj
ρ2

)κ−1
2

× exp

{
−νiλi + νjλj

1− ρ2

}
Iκ−1

(
2ρ

1− ρ2

√
νiνjλiλj

)
dλidλj

=

∞∫
0

∞∫
0

(νiνj)
κ+1
2

(1− ρ2)Γ(κ)

(
λiλj
ρ2

)κ−1
2

exp

{
−(1 + νi − ρ2)λi

1− ρ2
− νjλj

1− ρ2

}

×
∞∑
`=0

1

`!Γ(κ+ `)

(
ρ

1− ρ2

√
νiνjλiλj

)2`+κ−1

dλidλj

=
∞∑
`=0

(νiνj)
`+κρ2`

Γ(κ)`!Γ(κ+ `)(1− ρ2)2`+κ

∞∫
0

λ`+κ−1
i exp

{
−(1 + νi − ρ2)λi

1− ρ2

}
dλi

∞∫
0

λ`+κ−1
j exp

{
− νjλj

1− ρ2

}
dλj

=
∞∑
`=0

ρ2`Γ(`+κ)

Γ(κ)`!(1− ρ2)−κ

(
νi

1 + νi − ρ2

)`+κ
=

(
νi

1 + νi

)κ
The double integral of the third term, noted by I2, is calculated as the previous one. The

result is:

I2 =

(
νj

1 + νj

)κ
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The double integral of the last term, noted by I3, is obtained as follows:

I3 =

∞∫
0

∞∫
0

γ

(
k + 1,

λi
1− ρ2

)
γ

(
k + 1,

λj
1− ρ2

)
νiνj

(1− ρ2)Γ(κ)

(
νiνjλiλj
ρ2

)κ−1
2

× exp

{
−νiλi + νjλj

1− ρ2

}
Iκ−1

(
2ρ

1− ρ2

√
νiνjλiλj

)
dλidλj

=
∞∑
`=0

∞∑
k1=0

∞∑
k2=0

Γ(k + 1)2(νiνj)
`+κρ2`

Γ(k + k1 + 2)Γ(k + k2 + 2)Γ(κ)`!Γ(`+ κ)(1− ρ2)k1+k2+2k+2`+2+κ

×
∞∫

0

λk1+k+`+κ
i exp

{
−(1 + νi)λi

1− ρ2

}
dλi

∞∫
0

λk2+k+`+κ
j exp

{
−(1 + νj)λj

1− ρ2

}
dλj

=
∞∑
`=0

Γ(k + 1)2(νiνj)
`+κρ2`((1 + νi)(1 + νj))

−(k+`+κ+1)

Γ(κ)`!Γ(`+ κ)(1− ρ2)−κ

×
∞∑
k1=0

Γ(k1 + k + `+ κ+ 1)

Γ(k + k1 + 2)
(1 + νi)

−k1
∞∑
k2=0

Γ(k2 + k + `+ κ+ 1)

Γ(k + k2 + 2)
(1 + νj)

−k2

=
∞∑
`=0

Γ(k + 1)2(νiνj)
`+κ−1ρ2`

Γ(κ)`!Γ(`+ κ)(1− ρ2)−κ((1 + νi)(1 + νj))k+`+κ

×
(

Γ(k + `+ κ+ 1)

Γ(k + 2)

)2

2F1

(
1, 1− `− κ; k + 2;− 1

νi

)
2F1

(
1, 1− `− κ; k + 2;− 1

νj

)
=
∞∑
`=0

Γ(r + 1)2(νiνj)
`+κ−1ρ2`Γ(k + `+ κ+ 1)2

Γ(κ)`!Γ(`+ κ)(1− ρ2)−κ((1 + νi)(1 + νj))r+`+κ
×H

(
1 ,1−κ−`

k+2 ,− 1

ν)

,− 1

νj

)
Thus, plugging in I1, I2 and I3 on p̃00 and doing some algebra, the result holds.

If n ≥ 1,m = 0:

p̃n0 =

∞∫
0

∞∫
0

λni
n!

exp{−λi}fΛij(λi, λj)dλidλj

−
∞∫

0

∞∫
0

exp

{
− λi

1− ρ2

} ∞∑
`=0

(
ρ2

1− ρ2

)`
λ`+ni

Γ(`+ n+ 1)Γ(`+ 1)
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× 1F1

(
n, `+ n+ 1;

ρ2λi
1− ρ2

)
γ

(
`+ 1,

λi
1− ρ2

)
fΛij(λi, λj)dλidλj

=
1

n!

∞∫
0

∞∫
0

λni exp{−λi}fΛij(λi, λj)dλidλj

−
∞∑
`=0

(
ρ2

1− ρ2

)`
1

Γ(`+ n+ 1)Γ(`+ 1)

×
∞∫

0

∞∫
0

exp

{
− λi

1− ρ2

}
λ`+ni 1F1

(
n, `+ n+ 1;

ρ2λi
1− ρ2

)
γ

(
`+ 1,

λi
1− ρ2

)
fΛij(λi, λj)dλidλj

The double integral of the first term, noted by I1, is obtained as follows:

I1 =

∞∫
0

∞∫
0

λni exp{−λi}νiνj
(1− ρ2)Γ(κ)

(
νiνjλiλj
ρ2

)κ−1
2

exp

{
−νiλi + νjλj

1− ρ2

}
Iκ−1

(
2ρ

1− ρ2

√
νiνjλiλj

)
dλidλj

=
∞∑
k=0

(νiνj)
k+κρ2k

Γ(κ)k!Γ(k + κ)(1− ρ2)2k+κ

×
∞∫

0

λn+k+κ−1
i exp

{
−(1− ρ2 + νi)λi

1− ρ2

}
dλi

∞∫
0

λk+κ−1
j exp

{
− νiλj

1− ρ2

}
dλj

=
∞∑
k=0

νk+κ
i ρ2k(1− ρ2 + νi)

−(n+k+κ)Γ(n+ k + κ)

Γ(κ)k!(1− ρ2)−(n+κ)

=
νκi (1− ρ2 + νi)

−(n+κ)

Γ(κ)(1− ρ2)−(n+κ)

∞∑
k=0

νki ρ
2k(1− ρ2 + νi)

−kΓ(n+ k + κ)

k!

=
νκi (1− ρ2 + νi)

−(n+κ)

Γ(κ)(1− ρ2)−(n+κ)

(
1− ρ2νi

1− ρ2 + νi

)−(n+κ)

Γ(n+ κ)

=
(κ)nν

κ
i

(1 + νi)n+κ

The double integral of the second term, noted by I2, is obtained as follows:
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I2 =

∞∫
0

∞∫
0

exp

{
− λi

1− ρ2

}
λ`+ni 1F1

(
n, `+ n+ 1;

ρ2λi
1− ρ2

)
γ

(
`+ 1,

λi
1− ρ2

)

× νiνj
(1− ρ2)Γ(κ)

(
νiνjλiλj
ρ2

)κ−1
2

exp

{
−νiλi + νjλj

1− ρ2

}
Iκ−1

(
2ρ

1− ρ2

√
νiνjλiλj

)
dλidλj

=
∞∑
`1=0

∞∑
k1=0

∞∑
k2=0

Γ(n+ k1)Γ(`+ n+ 1)Γ(`+ 1)(νiνj)
`1+κρ2k1+2`1

Γ(κ)Γ(`+ n+ k1 + 1)Γ(n)k1!Γ(`+ k2 + 2)`1!Γ(`1 + κ)(1− ρ2)k1+`+k2+2`1+κ+1

∞∫
0

λ`+n+k1+`1+κ−1
i exp

{
−(νi + 1)λi

1− ρ2

}
dλi

∞∫
0

λ`+k2+`1+κ
j exp

{
−(νj + 1)λj

1− ρ2

}
dλj

=
∞∑
`1=0

Γ(`+ n+ 1)Γ(`+ 1)(νiνj)
`1+κρ2`1(1− ρ2)`+κ+n

Γ(κ)`1!Γ(`1 + κ)(νi + 1)`+n+`1+κ(νj + 1)`+`1+κ+1

Γ(`+ n+ `1 + κ)Γ(`+ `1 + κ+ 1)

Γ(`+ n+ 1)Γ(`+ 2)

× 2F1

(
n, `+ n+ `1 + κ; `+ n+ 1;

ρ2

νi + 1

)
2F1

(
1, `+ `1 + κ+ 1; `+ 2;

1

νi + 1

)
=
∞∑
`1=0

Γ(`+ n+ 1)Γ(`+ 1)(νiνj)
`1+κρ2`1(`1 + κ)`+n(`1 + 1)`+κ

Γ(κ)`1!Γ(`1 + κ)(νi + 1)`+n+`1+κ(νj + 1)`+`1+κ+1(1− ρ2)−(`+κ+n)

×
(

1− νi − ρ2

νi + 1

)−n(
νj

νj + 1

)−1

H̃
(

n, 1
1−`1−κ
`+n+1, `+2

,− ρ2

1 + νi − ρ2
,− 1

νj

)
Thus, plugging in I1 and I2 on p̃n0 and doing some algebra, the result holds. Moreover,

the case m ≥ 1, n = 0 is analogous to n ≥ 1,m = 0.

If n = m ≥ 1:

p̃nn =

∞∫
0

∞∫
0

−1− ρ2

Γ(n)

∞∑
k=0

ρ2k

k!Γ(n+ k)
γ

(
n+ k,

λi
1− ρ2

)
γ

(
n+ k,

λj
1− ρ2

)
fΛij(λi, λj)dλidλj

+

∞∫
0

∞∫
0

(1− ρ2)n exp{−λi}
Γ(n)ρ2n

×
∞∑
k=0

1

k!Γ(n+ k)
γ

(
n+ k,

ρ2λi
1− ρ2

)
γ

(
n+ k,

λj
1− ρ2

)
fΛij(λi, λj)dλidλj
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+

∞∫
0

∞∫
0

(1− ρ2)n exp{−λj}
Γ(n)ρ2n

×
∞∑
k=0

1

k!Γ(n+ k)
γ

(
n+ k,

λi
1− ρ2

)
γ

(
n+ k,

ρ2λj
1− ρ2

)
fΛij(λi, λj)dλidλj

+

∞∫
0

∞∫
0

(1− ρ2)n+1

Γ(n)

∞∑
k=0

∞∑
`=0

Γ(n+ `)ρ2k+2`

`!Γ(n+ `+ k + 1)2
γ

(
n+ `+ k + 1,

λi
1− ρ2

)

× γ
(
n+ `+ k + 1,

λi
1− ρ2

)
fΛij(λj, λj)dλidλj

=− 1− ρ2

Γ(n)

∞∑
k=0

ρ2k

k!Γ(n+ k)

∞∫
0

∞∫
0

γ

(
n+ k,

λi
1− ρ2

)
γ

(
n+ k,

λj
1− ρ2

)
fΛij(λi, λj)dλidλj

+
(1− ρ2)n

Γ(n)ρ2n

∞∑
k=0

1

k!Γ(n+ k)

×
∞∫

0

∞∫
0

exp{−λi}γ
(
n+ k,

ρ2λi
1− ρ2

)
γ

(
n+ k,

λj
1− ρ2

)
fΛij(λi, λj)dλidλj

+
(1− ρ2)n

Γ(n)ρ2n

∞∑
k=0

1

k!Γ(n+ k)

×
∞∫

0

∞∫
0

exp{−λj}γ
(
n+ k,

λi
1− ρ2

)
γ

(
n+ k,

ρ2λj
1− ρ2

)
fΛij(λi, λj)dλidλj

+
(1− ρ2)n+1

Γ(n)

∞∑
k=0

∞∑
`=0

Γ(n+ `)ρ2k+2`

`!Γ(n+ `+ k + 1)2

×
∞∫

0

∞∫
0

γ

(
n+ `+ k + 1,

λi
1− ρ2

)
γ

(
n+ `+ k + 1,

λj
1− ρ2

)
fΛij(λj, λj)dλidλj

The double integral of the first term, noted by I1, is obtained as follows:

I1 =

∞∫
0

∞∫
0

γ

(
n+ k,

λi
1− ρ2

)
γ

(
n+ k,

λj
1− ρ2

)
νiνj

(1− ρ2)Γ(κ)

(
νiνjλiλj
ρ2

)κ−1
2
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× exp

{
−νiλi + νjλj

1− ρ2

}
Iκ−1

(
2ρ

1− ρ2

√
νiνjλiλj

)
dλidλj

=
∞∑
`1=0

∞∑
k1=0

∞∑
k2=0

Γ(n+ k)2(νiνj)
`1+κρ2`1

Γ(n+ k + k1 + 1)Γ(n+ k + k2 + 1)Γ(`1 + κ)Γ(κ)`1!(1− ρ2)k1+k2+2n+2k+2`1+κ

×
∞∫

0

λn+k+k1+`1+κ−1
i exp

{
−(νi + 1)λi

1− ρ2

}
dλi

∞∫
0

λn+k+k2+`1+κ−1
j exp

{
−(νj + 1)λj

1− ρ2

}
dλj

=
∞∑
`1=0

Γ(n+ k)2(νiνj)
`1+κρ2`1

Γ(`1 + κ)Γ(κ)`1!(1− ρ2)−κ((νi + 1)(νj + 1))n+k+`1+κ

(
Γ(n+ k + `1 + κ)

Γ(n+ k + 1)

)2

× 2F1

(
1, n+ k + `1 + κ;n+ k + 1;

1

νi + 1

)
2F1

(
1, n+ k + `1 + κ;n+ k + 1;

1

νj + 1

)
=
∞∑
`1=0

Γ(n+ k)2(νiνj)
`1+κ−1ρ2`1(`1 + κ)n+k(κ)n+`1+κ

`1!(1− ρ2)κ((νi + 1)(νj + 1))n+k+`1+κ−1
H
(

1 ,1−`1−κ
r+k+1 ,−

1

νi
,− 1

νj

)

The double integral of the second term, noted by I2, is obtained as follows:

I2 =

∞∫
0

∞∫
0

exp{−λi}γ
(
n+ k,

λi
1− ρ2

)
γ

(
n+ k,

λj
1− ρ2

)
νiνj

(1− ρ2)Γ(κ)

(
νiνjλiλj
ρ2

)κ−1
2

× exp

{
−νiλi + νjλj

1− ρ2

}
Iκ−1

(
2ρ

1− ρ2

√
νiνjλiλj

)
dλidλj

=
∞∑
`1=0

∞∑
k1=0

∞∑
k2=0

Γ(n+ k)2(νiνj)
`1+κρ2n+2k+2k1+2`1

Γ(n+ k + k1 + 1)Γ(n+ k + k2 + 1)Γ(`1 + κ)Γ(κ)`1!(1− ρ2)k1+k2+2n+2k+2`1+κ

×
∞∫

0

λn+k+k1+`1+κ−1
i exp

{
−(νi + 1)λi

1− ρ2

}
dλi

∞∫
0

λn+k+k2+`1+κ−1
j exp

{
−(νj + 1)λj

1− ρ2

}
dλj

=
∞∑
`1=0

Γ(n+ k)2(νiνj)
`1+κρ2n+2k+2`1

Γ(`1 + κ)Γ(κ)`1!(1− ρ2)−κ((νi + 1)(νj + 1))n+k+`1+κ

(
Γ(n+ k + `1 + κ)

Γ(n+ k + 1)

)2

× 2F1

(
1, n+ k + `1 + κ;n+ k + 1;

ρ2

νi + 1

)
2F1

(
1, n+ k + `1 + κ;n+ k + 1;

1

νj + 1

)
=
∞∑
`1=0

Γ(n+ k)2(νiνj)
`1+κρ2`1(`1 + κ)n+k(κ)n+`1+κ

`1!(1− ρ2)κ((νi + 1)(νj + 1))n+k+`1+κ−1
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× 1

(1− νi − ρ2)νj
H
(

1 ,1−`1−κ
r+k+1 ,−

ρ2

1 + νi − ρ2
,− 1

νj

)
The double integral of the third term, noted by I3, is calculated as the previous one. The

result is:

I3 =
∞∑
`1=0

Γ(n+ k)2(νiνj)
`1+κρ2`1(`1 + κ)n+k(κ)n+`1+κ

`1!(1− ρ2)κ((νi + 1)(νj + 1))n+k+`1+κ−1

× 1

(1− νj − ρ2)νi
H
(

1 ,1−`1−κ
r+k+1 ,−

1

νi
,− ρ2

1 + νj − ρ2

)
The double integral of the last term, noted by I4, is obtained as follows:

I4 =

∞∫
0

∞∫
0

γ

(
n+ `+ k + 1,

λi
1− ρ2

)
γ

(
n+ `+ k + 1,

λj
1− ρ2

)
νiνj

(1− ρ2)Γ(κ)

×
(
νiνjλiλj
ρ2

)κ−1
2

exp

{
−νiλi + νjλj

1− ρ2

}
Iκ−1

(
2ρ

1− ρ2

√
νiνjλiλj

)
dλidλj

=
∞∑
`1=0

∞∑
k1=0

∞∑
k2=0

Γ(n+ `+ k + 1)2(νiνj)
`1+κρ2`1(1− ρ2)−(k1+k2+2n+2k+2`+2`1+κ+2)

Γ(n+ `+ k + k1 + 2)Γ(n+ `+ k + k1 + 2)Γ(`1 + κ)Γ(κ)`1!

×
∞∫

0

λn+`+k+k1+`1+κ
i exp

{
−(νi + 1)λi

1− ρ2

}
dλi

∞∫
0

λn+`+k+k2+`1+κ
j exp

{
−(νj + 1)λj

1− ρ2

}
dλj

=
∞∑
`1=0

Γ(n+ `+ k + 1)2(νiνj)
`1+κρ2`1

Γ(`1 + κ)Γ(κ)`1!(1− ρ2)−κ((νi + 1)(νj + 1))n+`+k+`1+κ+1

(
Γ(n+ `+ k + `1 + κ+ 1)

Γ(n+ `+ k + 2)

)2

× 2F1

(
1, n+ `+ k + `1 + κ+ 1;n+ `+ k + 2;

1

νi + 1

)
× 2F1

(
1, n+ `+ k + `1 + κ+ 1;n+ `+ k + 2;

1

νj + 1

)
=
∞∑
`1=0

Γ(n+ `+ k + 1)2(νiνj)
`1+κ−1ρ2`1(`1 + κ)n+`+k+1(κ)n+`+`1+κ+1

`1!(1− ρ2)κ((νi + 1)(νj + 1))n+`+k+`1+κ
H
(

1 ,1−`1−κ
r+k+`+2 ,−

1

νi
,− 1

νj

)
Thus, plugging in I1, I2, I3 and I4 on p̃nn and doing some algebra, the result holds.
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If n ≥ 2, m ≥ 1 with n > m:

Let n = m+ r with r > 0, then the bivariate distribution is

p̃nm =

∞∫
0

∞∫
0

λm+r
i exp

{
− λi

1− ρ2

} ∞∑
`=0

Γ(m+ `)

`!Γ(m)

(
ρ2λi

1− ρ2

)`
1

Γ(m+ `+ r + 1)Γ(m+ `)

× 1F1

(
r + 1;m+ `+ r + 1,

ρ2λi
1− ρ2

)
γ

(
m+ `,

λj
1− ρ2

)
fΛij(λi, λj)dλidλj

−
∞∫

0

∞∫
0

λm+r
i exp

{
− λi

1− ρ2

} ∞∑
k=0

∞∑
`=0

Γ(m+ `)

`!Γ(m)

(
ρ2λi

1− ρ2

)k+`

× 1

Γ(m+ `+ r + k + 1)Γ(m+ `+ k + 1)

× 1F1

(
r;m+ `+ r + k + 1,

ρ2λi
1− ρ2

)
γ

(
m+ `+ k + 1,

λj
1− ρ2

)
fΛij(λi, λj)dλidλj

=
∞∑
`=0

Γ(m+ `)

`!Γ(m)

(
ρ2

1− ρ2

)`
1

Γ(m+ `+ r + 1)Γ(m+ `)

×
∞∫

0

∞∫
0

λm+r+`
i exp

{
− λi

1− ρ2

}
1F1

(
r + 1;m+ `+ r + 1,

ρ2λi
1− ρ2

)

× γ
(
m+ `,

λj
1− ρ2

)
fΛij(λi, λj)dλidλj

−
∞∑
k=0

∞∑
`=0

Γ(m+ `)

`!Γ(m)

(
ρ2

1− ρ2

)k+`
1

Γ(m+ `+ r + k + 1)Γ(m+ `+ k + 1)

×
∞∫

0

∞∫
0

λm+rk+`
i exp

{
− λi

1− ρ2

}
1F1

(
r;m+ `+ r + k + 1,

ρ2λi
1− ρ2

)

× γ
(
m+ `+ k + 1,

λj
1− ρ2

)
fΛij(λi, λj)dλidλj

The double integral of the first term, noted by I1, is obtained as follows:

I1 =

∞∫
0

∞∫
0

λm+r+`
i exp

{
− λi

1− ρ2

}
1F1

(
r + 1;m+ `+ r + 1,

ρ2λi
1− ρ2

)
γ

(
m+ `,

λj
1− ρ2

)
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× νiνj
(1− ρ2)Γ(κ)

(
νiνjλiλj
ρ2

)κ−1
2

exp

{
−νiλi + νjλj

1− ρ2

}
Iκ−1

(
2ρ

1− ρ2

√
νiνjλiλj

)
dλidλj

=
∞∑
`1=0

∞∑
k1=0

∞∑
k2=0

Γ(r + k1 + 1)Γ(m+ `+ r + 1)Γ(m+ `)(νiνj)
`1+κ

Γ(κ)Γ(m+ `+ r + k1 + 1)Γ(r + 1)k1!

× ρ2k1+2`1(1− ρ2)−(k1+k2+m+`+2`1+κ)

Γ(m+ `+ k2 + 1)`1!Γ(`1 + κ)
∞∫

0

λm+r+`+k1+`1+κ−1
i exp

{
−(νi + 1)λi

1− ρ2

}
dλi

∞∫
0

λm+`+k2+`1+κ
j exp

{
−(νj + 1)λj

1− ρ2

}
dλj

=
∞∑
`1=0

Γ(m+ `+ r + 1)Γ(m+ `)(νiνj)
`1+κρ2`1(1− ρ2)m+`+κ+r

Γ(κ)`1!Γ(`1 + κ)(νi + 1)m+r+`+`1+κ(νj + 1)m+`+`1+κ

× Γ(m+ r + `+ `1 + κ)Γ(m+ `+ `1 + κ)

Γ(m+ `+ r + 1)Γ(m+ `+ 1)

× 2F1

(
r + 1,m+ r + `+ `1 + κ;m+ `+ r + 1;

ρ2

νi + 1

)
× 2F1

(
1,m+ `+ `1 + κ;m+ `+ 1;

1

νi + 1

)
=
∞∑
`1=0

Γ(m+ `+ r + 1)Γ(m+ `)(νiνj)
`1+κρ2`1(`+ κ)m+r+`(κ)m+`+`1

Γ(κ)`1!Γ(`1 + κ)((νi + 1)(νj + 1))m+`+`1+κ−1(1− ρ2)−(m+`+κ+r)

×
(

1

1− νi − ρ2

)−r−1(
1

νj

)−1

H̃
(

r+1, 1
1−`1−κ

`+m+r+1, `+m+1
,− ρ2

1 + νi − ρ2
,− 1

νj

)
=
∞∑
`1=0

Γ(n+ `+ 1)Γ(m+ `)(νiνj)
`1+κρ2`1(`+ κ)n+`(κ)m+`+`1

Γ(κ)`1!Γ(`1 + κ)((νi + 1)(νj + 1))m+`+`1+κ−1(1− ρ2)−(n`+κ)

×
(

1

1− νi − ρ2

)−n+m−1(
1

νj

)−1

H̃
(
n−m+1, 1
1−`1−κ
`+n+1, `+m+1

,− ρ2

1 + νi − ρ2
,− 1

νj

)

The double integral of the second term, noted by I2, is obtained as follows:

I2 =

∞∫
0

∞∫
0

λm+rk+`
i exp

{
− λi

1− ρ2

}
1F1

(
r;m+ `+ r + k + 1,

ρ2λi
1− ρ2

)
γ

(
m+ `+ k + 1,

λj
1− ρ2

)
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× νiνj
(1− ρ2)Γ(κ)

(
νiνjλiλj
ρ2

)κ−1
2

exp

{
−νiλi + νjλj

1− ρ2

}
Iκ−1

(
2ρ

1− ρ2

√
νiνjλiλj

)
dλidλj

=
∞∑
`1=0

∞∑
k1=0

∞∑
k2=0

Γ(r + k1)Γ(m+ r + `+ k + 1)Γ(m+ `+ k + 1)(νiνj)
`1+κ

Γ(κ)Γ(m+ r + `+ k + k1 + 1)Γ(r)k1!

× ρ2k1+2`1(1− ρ2)−(k1+k2+m+`+2`1+κ+1+k)

Γ(m+ `+ k + k2 + 2)`1!Γ(`1 + κ)
∞∫

0

λm+r+k+`+k1+`1+κ−1
i exp

{
−(νi + 1)λi

1− ρ2

}
dλi

∞∫
0

λm+`+k+k2+`1+κ
j exp

{
−(νj + 1)λj

1− ρ2

}
dλj

=
∞∑
`1=0

Γ(m+ r + `+ k + 1)Γ(m+ `+ k + 1)(νiνj)
`1+κρ2`1(1− ρ2)m+`+k+r+κ

Γ(κ)`1!Γ(`1 + κ)(νi + 1)m+r+k+`+`1+κ(νj + 1)m+`+k+`1+κ+1

× Γ(m+ r + k + `+ `1 + κ)Γ(m+ `+ k + `1 + κ+ 1)

Γ(m+ r + `+ k + 1)Γ(m+ `+ k + 2)

× 2F1

(
r,m+ r + k + `+ `1 + κ;m+ r + `+ k + 1;

ρ2

νi + 1

)
× 2F1

(
1,m+ `+ k + `1 + κ+ 1;m+ `+ k + 2;

1

νi + 1

)
=
∞∑
`1=0

Γ(m+ r + `+ k + 1)Γ(m+ `+ k + 1)(νiνj)
`1+κρ2`1(`+ κ)m+r+k+`(κ)m+k+`+`1+1

Γ(κ)`1!Γ(`1 + κ)((νi + 1)(νj + 1))m+`+k+`1+κ(1− ρ2)−(m+`+k+r+κ)

×
(

1

1− νi − ρ2

)−r (
1

νj

)−1

H̃
(

r, 1
1−`1−κ

`+k+m+r+1, `+m+k+2
,− ρ2

1 + νi − ρ2
,− 1

νj

)
=
∞∑
`1=0

Γ(n+ `+ k + 1)Γ(m+ `+ k + 1)(νiνj)
`1+κρ2`1(`+ κ)n+k+`(κ)m+k+`+`1+1

Γ(κ)`1!Γ(`1 + κ)((νi + 1)(νj + 1))m+`+k+`1+κ(1− ρ2)−(n+`+k+κ)

×
(

1

1− νi − ρ2

)−r (
1

νj

)−1

H̃
(

n−m, 1
1−`1−κ
`+k+n+1, `+m+k+2

,− ρ2

1 + νi − ρ2
,− 1

νj

)

Thus, plugging in I1 and I2 on p̃nm and doing some algebra, the result holds. Moreover,

the case m ≥ 2, n ≥ 1 with m > n is analogous to n ≥ 2,m ≥ 1 with n > m.
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