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August 2022

Santiago, Chile.

1



Acknowledgements

First, I would like to thank my Professor Advisor Ricardo Menares who has
been supporting me academically and financially since I was an undergraduate
student. His comments and advice in writing mathematics have been very helpful
to the process of creating this thesis. Also, I would like to thank him for intro-
ducing me to the concept of group representations, which is part of the subject
of this work and has become my favorite topic.

I would further like to thank my committee members Professor Hector Pastén
and Professor Nicolas Billerey who took the time to read my thesis. A special
thanks to the second professor for his quick and careful comments that helped the
final version of this work.

Lastly, I would like to thank my family members for their unconditional love
and support throughout all these years. I love you all!

This thesis was partially supported by FONDECYT 1211858 and 1171329.

2



Introduction

An odd prime p is said to be irregular if p divides the class number of K = Q(µp),
where µp = ⟨e2πi/p⟩. In 1850, Kummer showed a connection between irregular
primes and the set of Bernoulli numbers {Bk}k≥0. Those numbers are defined by
the Taylor series

t

et − 1
=

∑
k≥0

Bk
tk

k!
.

Each Bk is in fact rational and we may write pBk if p divides the numerator of
Bk. Kummer proved the following.

Theorem 1 ([Was97], Thm. 5.34). If p | Bk for some 2 ≤ k ≤ p− 3 even, then
p is irregular.1

This result was strengthened in the following way. Define to be AK the class
group of K and consider the Fp-vector space

C = AK/A
p
K ,

with the natural action of ∆ = Gal(K/Q)2. With this notation Kummer’s Theo-
rem may be written as

p|Bk for some 2 ≤ k ≤ p− 3 even ⇒ C ̸= 0.

Now let ζ ∈ µp be a primitive pth-root of unity. The (canonical) isomorphism
χ : ∆ → F∗

p defined by the relation

σ(ζ) = ζχ(σ) ∀σ ∈ ∆,

generates the set {χi : i mod p−1} of characters of ∆. Since ∆ has order co-prime
with p, one obtains a canonical decomposition for C

C =
⊕

i mod p−1

C(χi),

where C(χi) is the χi-eigenspace of C

C(χi) = {x ∈ C : g · x = χi(g)x for all g ∈ ∆}.

In 1976, Ribet proved the following stronger result.

1Kummer also proved the converse, but in this thesis we focus only in this direction.
2For a class a ∈ AK , consider a representative fractional ideal I of K, then σ · a is the (well

defined) class containing σ(I).
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Theorem A ([Rib76]). If p|Bk for some 2 ≤ k ≤ p− 3 even, then C(χ1−k) ̸= 0.3

Under the assumption p|Bk, Ribet begins by constructing a cuspidal eigenform
of weight 2 and level p whose q-coefficients satisfy certain congruence conditions
mod p. Then, he uses the Eichler–Shimura relation to obtain a Galois represen-
tation ρ over a p-adic field. This representation has a special reduction ρ which
cuts out an nontrivial unramified abelian extension E/K with a prescribed action
of ∆ on Gal(E/K). The non-triviality of this extension is a consequence of a
crucial property of the representation ρ which is obtained using Raynaud’s theory
on groups schemes of type (p, p, ..., p)4. Then Theorem A follows from Class Field
Theory.

In summary, we see that Ribet’s argument is divided into the following parts

Bernoulli
numbers

Cuspidal
forms

Galois
representation

Extensions
E/K

Class group of
K

The main part of this thesis focuses on proving Theorem A following this scheme,
but instead of working in weight 2 we will work directly in weight k. Since the
weight is k > 2, we use Deligne’s construction to obtain a Galois representation ρ
over a p-adic field. This Galois representation will have a reduction ρ satisfying
the same properties as in Ribet’s construction but for the proof of the crucial prop-
erty, we follow an approach using a result of Mazur and Wiles about p-ordinary
modular forms. This approach avoids the use of Raynaud’s theory.
The first Chapter is intended to provide the necessary tools which we will use.
The definitions of modular forms and Hecke operators are omitted and well known
results are just cited. We also state without proof important Theorems such as
Deligne’s construction of Galois representations and Mazur-Wiles Theorem on p-
ordinary modular forms. The proof of those results require advance tools which
are far from the scope of this thesis and the author’s background.
The second Chapter is dedicated on proving Theorem A. The proof is divided in
four sections where each section represents one arrow of the scheme.
In the last chapter, following a recent work of Lang and Wake ([LW21], Section
3), we prove some new results on the Class Field Theory of the extension E/K
constructed during the proof of Ribet’s Theorem. In particular, we obtain infor-
mation on the splitting of primes

3Its reciprocal is also true and it was proved by Herbrand in 1935. Thus Ribet’s result is also
know as Herbrand converse.

4See part (iv) of Theorem 2.4 for this crucial property
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Theorem B. Assume that p|Bk. Let q be a prime of K above a rational prime
q ̸= p. If qk−1 ̸≡ 1 mod p, then q splits completely in the extension E.

Theorem C. There exist (infinitely many) primes q in K above a prime q sat-
isfying qk−1 ≡ 1 mod p which do not split completely in the extension E/K.

At the end of the chapter, we show that the extension E/K may be defined
canonically from K. Thus obtaining general statements for both Theorems.

Sources. During the writing of this thesis, I found very helpful Mazur’s paper
[Maz11] and Dalawat’s paper [Dal09]. The mind scheme is borrowed from Mazur’s
paper. For information on cyclotomic fields, see [Was97].
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Chapter 1

Preliminaries

1.1 Modular forms

For k ≥ 0 even, we denote Mk and Sk the C-vector space of modular forms and
cusp forms of weight k respectively. For a definition of modular form, see Diamond
and Shurman book [DS05]. Since we will be working only in level 1, Serre’s book
[Ser73] is also useful.

1.1.1 A basis for Mk and Sk

In this subsection, we prove the existence of a basis for the spaces Mk and Sk

satisfying certain properties. Roughly speaking, the properties of this basis will
allow us to change the set of scalars C to an algebraic extension K of Q, in other
words, passing from analytic objects to algebraic ones.
We start by remembering some classical modular forms. For k > 2 even, we have
the Eisenstein series

Ek(τ) = −Bk

2k
+

∑
n≥1

σk−1(n)q
n ∈ Mk q = e2πiτ ,

where σk−1(n) =
∑

d|n d
k−1. For k = 12 we have the ∆ cusp form

∆(τ) = q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn ∈ Sk q = e2πiτ .

Using Eisenstein series Ek and the cusp form ∆, it is possible to give a general
description of the space of modular forms and cusp forms.

Theorem 1.1. ([Ser73], Pag. 88) Let k ≥ 0 even.

(1) For k ≥ 4, we have Mk = CEk
⊕

Sk, and so DimMk = DimSk + 1.

(2) We have M2 = {0}, and for k ∈ {0, 4, 6, 8, 10}, Mk has dimension 1 with
basis 1, E4, E6, E8, E10 respectively.
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(3) Multiplication by ∆ defines an isomorphism from Mk+12 onto Sk.

Proposition 1.2. Let k ≥ 0 even. A basis for Mk is given by:

B =
¶
Ea0

4 E
b0
6 , E

a1
4 E

b1
6 ∆, . . . , Ean

4 Ebn
6 ∆n

©
,

where ai, bi, i are non negative integers satisfying 4ai+6bi+12i = k and n = n(k)
is the maximal integer i for which such integers exist.

Proof. We prove by induction on N that the Proposition is true for k < 12N .
For N = 1, we have k < 12 and so n(k) = 0. The equation 4ai + 6bi = k has
exactly one (non negative) integer solution except for k = 2 which has no solution.
On the other hand we have

1 ∈M0, E4 ∈ M4, E6 ∈ M6, E2
4 ∈M8, E4E6 ∈ M10,

and they form a basis by part (2) of Theorem 1.1. This proves the Proposition
for k < 12.
Suppose it is true for N and let 12 ≤ k < 12(N + 1). Since k − 12 < N , we have
a basis

B =
¶
Ea0

4 E
b0
6 , E

a1
4 E

b1
6 ∆, . . . , Ean

4 Ebn
6 ∆n

©
,

for Mk−12. And by part (1) and (3) of Theorem 1.1, we have¶
Ea0

4 E
b0+2
6

©⋃¶
Ea0

4 E
b0
6 ∆, Ea1

4 E
b1
6 ∆2, . . . , Ean

4 Ebn
6 ∆n+1

©
,

is a basis for Mk. ■

For j ≥ 0 integer, we denote ψj : Mk → C the linear operator taking a modu-
lar form f =

∑
n≥0 an(f)q

n to its qj-coefficient aj(f). The following Proposition
describes the properties of our special basis.

Proposition 1.3. Let k ≥ 0 even. Then there exists basis for Mk and Sk of the
form

B = {f0, f1, . . . , fn}, B′ = {f1, . . . , fn},

respectively, where each element fi has integer q-coefficients and satisfies

ψj(fi) =

®
1 if j = i

0 if j < i
.

Proof. Since DimMk = DimSk + 1, it is enough to prove the statement for Mk.
Let {Eai

4 E
bi
6 ∆i}ni=0 be a basis for Mk as in last Proposition. Note that

ψj(E
ai
4 E

bi
6 ∆i) = 0

if j < i. Since B4 = −1/30 and B6 = 1/42, the formulas for Ek and ∆ show
that we may find integer λi such that the element fi = λiE

ai
4 E

bi
6 ∆i has integer

q-coefficients and ψi(fi) = 1. ■
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1.1.2 Modular forms with q-coefficients in some ring,

For any subring A ⊂ C, we define (Mk)A to be the subset of Mk of modular
forms whose q-coefficients in the Fourier expansion belong to A. We make an
analogous definition for (Sk)A.

Proposition 1.4. (Mk)A and (Sk)A are free A-modules of rank Dimk(Mk) and
Dimk(Sk) respectively.

Proof. Take a basis {f0, f1, . . . , fn} for Mk as in Proposition 1.3. We claim that
the A-module generated by this basis is free and it is exactly (Mk)A. Clearly it
is free and contained in (Mk)A. Let f ∈ (Mk)A and write

f = α0f0 + α1f1 + . . .+ αnfn,

with αi ∈ C. We prove by induction on k ≤ n that αi ∈ A for all i ≤ k.
If k = 0, we apply ψ0 obtaining

α0 = ψ0(f) ∈ A.

Now assume that αi ∈ A for all i ≤ k with k < n. By evaluating ψk+1 we obtain

αk+1 = ψk+1(f)− α0ψk+1(f0)− α1ψk+1(f1)− . . .− αkψk+1(fk) ∈ A.

This proves the proposition for (Mk)A. The same argument works for the A-
module (Sk)A using the basis B′ of Proposition 1.3. ■

1.1.3 Hecke operators

Let k ≥ 0 even fixed. For a natural number n ≥ 1, there exits a Hecke operator

Tn : Mk → Mk,

(see [DS05], Chapter 5 for a definition of Hecke operators). The following Propo-
sition describes how these Hecke operators act on the q-coefficients of a modular
form.

Proposition 1.5. ([DS05], Prop. 5.3.1) Let f ∈ Mk with Fourier expansion

f(τ) =
∑
m≥0

am(f)qm, q = e2πiτ .

Then for all n ≥ 1 integer, Tnf has Fourier expansion

Tnf(τ) =
∑
m≥0

am(Tnf)q
m,

where
am(Tnf) =

∑
d|(m,n)

dk−1amn/d2(f).
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Remark 1.5.1. From the formula for am(Tnf), we see that Tn sends cusp forms
to cusp forms. Moreover, if A is any subring of C, then Tn restricts to an A-
morphism on (Mk)A and (Sk)A.

It is well known that Hecke operators commute, thus the Hecke algebra

TZ := Z[{Tn : n ≥ 1}] ⊂ EndC(M)

forms a commutative Z-algebra. We will use this property repeatedly in this
thesis. Another important property that we will use is the fact that the Eisenstein
series Ek is an eigenvector for each Hecke operator Tn.

Proposition 1.6 ([DS05], Prop. 5.2.3). For each natural number n ≥ 1, the
Eisenstein series Ek ∈ Mk is an eigenvector of Tn with corresponding eigenvalue
σk−1(n).

Note that the value of the eigenvalue of Tn with eigenvector Ek coincides with
the qn-coefficient of the Fourier expansion of Ek. The following Proposition tells
us that this is always the case if the modular form f is normalized i.e. if f has a
Fourier expansion of the form

f(τ) = a0(f) + q +
∑
m≥2

am(f)qm, q = e2πiτ .

Proposition 1.7. Let f =
∑

m≥0 am(f)qm ∈ Mk be a normalized modular form
which is an eigenvector for the operator Tn. If λn is the corresponding eigenvalue,
then

λn = an(f).

Proof. Taking m = 1 in the formula for am(Tnf) of Proposition 1.5, we obtain

a1(Tnf) = an(f).

Also, by hypothesis we have that Tnf = λnf . Therefore a1(Tnf) = λna1(f).
Comparing both equalities and using a1(f) = 1, we conclude that λn = an(f). ■

Definition 1.8. A modular form f ∈ Mk is called an eigenform if it is an
eigenvector of Tn for each n ≥ 1. If f =

∑
m≥1 am(f)qm ∈ Sk is a normalized

cuspidal eigenform, we define

Kf = Q({am(f) : m ≥ 1}) ⊂ C,

the Hecke field of f . This is smallest field L such that f ∈ (Sk)L.

Remark 1.8.1. Note that if f =
∑

m≥0 am(f)qm ∈ Mk is an eigenform with
a1(f) = 0, then the proof of Proposition 1.7 shows that f is constant. Thus, in
weight k > 0 we may always normalize eigenforms.

Proposition 1.9. Let f =
∑

m≥1 am(f)qm ∈ Sk be a normalized cuspidal eigen-
form. Then its Hecke field Kf is a finite extension of Q.

10



Proof. Let K be the field generated by the eigenvalues of each operator Tn. Since
an(f) = λn(f) is an eigenvalue of Tn for all n ≥ 1, then Kf ⊂ K. Thus it is
enough to prove that K is a finite extension over Q.
By Remark 1.5.1, the Hecke Algebra TZ restrict to Z-morphisms on (Mk)Z. More-
over, by Proposition 1.4, (Mk)Z is free Z-module generated by some basis of Mk.
This implies that TZ is generated by a finite set of operators and the roots of their
characteristic polynomials are algebraic integers. Thus a finite set of eigenvalues,
which are algebraic integers, generates all the other eigenvalues. Therefore K is
generated by finite a set of algebraic integers and so it is a finite extension of
Q. ■

Remark 1.9.1. From the proof, we see that in fact f ∈ (Sk)OKf
where OKf

its

the ring of integers of Kf .

1.2 Deligne-Serre lifting Lemma

Let A be a discrete valuation ring (DVR) with maximal ideal mA. We say that
a DVR B with maximal ideal mB is an extension of A if A ⊂ B and mA =
A ∩ mB. For an A-algebra B, an A-module M , an element f ∈ M and a set of
A-endomorphisms T ⊂ EndA(M), we define

MB :=M ⊗A B

fB := f ⊗A 1B ∈MB

TB := {TB = T ⊗A idB : T ∈ T } ⊂ EndB(MB).

Note that if C is a B-algebra, then it has an induced structure of A-algebra and
we may identify (under a canonical isomorphism)

MC =MB ⊗B C, fC = fB ⊗B 1C etc ...

The next Proposition will be fundamental for the construction of appropriate
cuspidal eigenforms. We assume that K = Frac(A) is a perfect field.

Proposition 1.10 (D-S Lemma). Let M be a free A-module of finite rank and let
T ⊂ EndA(M) be a set of commuting A-endomorphisms. Suppose that f ∈ M is
such that fA/mA

∈MA/mA
is an eigenvector for each operator TA/mA

∈ TA/mA
with

eigenvalue aT ∈ A/mA. Then, there exists a DVR B extending A with field of
fractions L finite finite over K, and an element f ′ ∈MB which is an eigenvector
for each operator TB ∈ TB whose eigenvalue bT ∈ B satisfies aT = bT +mB.

Proof. Since M is free of finite rank, the field L generated by the eigenvalues of
each operator T ∈ T is a finite extension of K (see the proof of Proposition 1.9).
Let B be a DVR extending A with field of fraction L1. We may assume that the

1Since L/K is finite and separable, such ring exists (see [Sta22] Remark 15.110.6).
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B-module MB is TB-indecomposable. Indeed, let

MB =
k⊕

j=1

M (j)

be a decomposition as TB-indecomposable modules. Since B is PID and MB free
B-module of finite rank, then each M (j) is also a free B-module of finite rank and

MB/mB
=

k⊕
j=1

M j
B/mB

a decomposition as TB/mB
-modules. If we write the eigenvector fB/mB

as

fB/mB
=

k∑
j=1

f
(j)
B/mB

, f
(j)
B/mB

∈M j
B/mB,

then each nonzero f
(j)
B/mB

its an eigenvector with the same eigenvalue. Thus after

choosing j with f
(j)
B/mB

̸= 0, we may assume that MB is TB-indecomposable.

Let TB ∈ TB. Since EndB(MB) is free of finite rank, TB has a minimal polynomial
called p. Moreover B contains the eigenvalues of TB (B contains the integral
closure of A in L). Thus p has the form

p(x) =
Ä
x− b

(1)
TB

äe1
. . .
Ä
x− b

(n)
TB

äen
, b

(i)
TB

∈ B.

We claim that p has only one root. The factorization of p provides a decomposition
for MB as TB-invariant spaces

MB =

n⊕
j=1

M j ,

where M j is the null space of pj(T ) with pj certain polynomial associated to

(x− b(j)Tn
)(see [HK04], pag. 220). But since the elements of TB commute, each M j

will be TB-invariant and so p has only one root becauseMB is TB-indecomposable.
Finally, the commutativity of TB also implies that MB has at least one simul-
taneous eigenvector f ′ and it is clear that its eigenvalues satisfy the required
conditions. ■

1.3 Class field Theory

Let L/F/Q be a tower of finite field extensions. Through this section we assume
that F/Q is Galois and L/F is unramified and abelian.
Since F/Q is Galois, we have Gal(L/F ) ⊴ Gal(L/Q) and so Gal(L/Q) acts on
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Gal(L/F ) by conjugation. Moreover, since Gal(L/F ) is abelian, Gal(L/F ) acts
trivially. Therefore we have a well defined action of Gal(F/Q) on Gal(L/F ):

σ · τ := σ′τσ′−1,

where τ ∈ Gal(L/F ) and σ′ ∈ Gal(L/Q) with σ′|F = σ ∈ Gal(F/Q).
Let p be a prime of F and B a prime of L above p. Since L/F is unramified,

there exists a unique element ψL/F (B/p) ∈ Gal(L/F ) satisfying

ψL/F (B/p)(x) ≡ xq mod B for all x ∈ OL,

where OL is the ring of integers of L and q = N(p) is the norm of p. We call
ψL/F (B/p) the Frobenius element of B over p. We have the following result.

Lemma 1.11. Let σ ∈ Gal(L/Q). Then σ(B) and σ(p) are primes of L and F
respectively and we have

ψL/F (σ(B)/σ(p)) = σψL/F (B/p)σ
−1. (1.1)

Proof. The first claim follows from the fact that L/Q and F/Q are both Galois
extensions. Now we calculate

ψL/F (B/p)(x) ≡ xq mod B, for all x ∈ OL

⇒ σψL/F (B/p)(x) ≡ (σ(x))q mod σ(B), for all x ∈ OL

⇒ σψL/F (B/p)σ
−1(u) ≡ (u)q mod σ(B), for all u = σ(x) ∈ σ(OL) = OL,

Since N(p) = N(σ(p)) = q, the last relation corresponds to the definition of
ψL/F (σ(B)/σ(p)). This proves the lemma. ■

Since every prime of L above p is of the form σ(B) for σ ∈ Gal(L/F ) and
Gal(L/F ) acts trivially on the right hand side of equation (1.1), we see that ψL/F

depends only on the prime p of F . Henceforth we will write ψL/F (p) = ψL/F (B/p).
Extending ψL/F multiplicatively to the group of fractional ideals IF of F , we get
a group homomorphism

ψL/F : IF → Gal(L/F ).

Artin reciprocity asserts this map is surjective and factorizes through the class
group AF of F (see [Mil20] pag. 158 for example), thus obtaining a group homo-
morphism

ψL/F : AF → Gal(L/F ),

called the Artin map. We summarize our results in the following Proposition.

Proposition 1.12. The Artin map ψL/F : AF → Gal(L/F ) is surjective and
satisfies

ψL/F (σ · a) = σ · ψL/F (a)

for all σ ∈ Gal(F/Q) and a ∈ AF . Here σ · a is the natural action of Gal(F/Q)
on AF .

13



Proof. We only must prove the last claim. For a class a ∈ AF , consider a rep-
resentative fractional ideal I of F . If I =

∏
p p

ep is its decomposition in prime
ideals, then σ(I) =

∏
p σ(p)

ep . Thus it is enough to prove the case when I is a
prime ideal but this is exactly what Lemma 1.11 states. ■

1.4 Group representations

Let G be a pro-finite group (for the basic properties of these objects, see [Neu99]
Chapter 4 Section 1,2). Let K be a topological field. By a representation of
G of dimension n over K, or just a representation of G, we mean a continuous
morphism of groups

ρ : G→ GLn(K),

where G is endowed with the Krull topology and GLn(K) is endowed with the
subspace topology of Mn×n(K) = Kn2

.

1.4.1 Reduction of representations

We say that two representations ρ1, ρ2 : G→ GLn(K) of G are equivalent over K
if there exists matrix M ∈ GLn(K) such that

ρ1(g) =Mρ2(g)M
−1, ∀g ∈ G.

Let p be a prime number. During this section K will denote a finite extension of
Qp. We write OK for its ring of integers, mK the maximal ideal and Fq = OK/mK

the residue field.

Proposition 1.13. Let ρ : G → GLn(K) be a representation of G. Then ρ is
equivalent to a representation ρ′ : G→ GLn(OK) ⊂ GLn(K).

Proof. Let V = Kn be the vector space of columns of dimension n over K. Note
that G acts via ρ on V by multiplication on the left. For a basis B of V , define
ΛB ⊂ V as the OK-module generated by B. Then the Proposition is equivalent
to find a basis B such that ΛB is ρ(G)-invariant.
Since GLn(OK) is open and ρ is continuous, H = ρ−1(GLn(OK)) is open and so
it has finite index in G. Take {g1, . . . , gℓ} a set of representatives for the cosets
{Hg : g ∈ G}. If Λ0 = On

K ⊂ V is the OK-module generated by the canonical
basis, then Λ0 is ρ(H)-invariant and so

Λ =
ℓ∑

i=1

ρ(gi) (Λ0)

is a ρ(G)-invariant finite generated OK-module. Since OK is PID we have that
Λ = ΛB for some basis B of V . ■

Let ρ : G → GLn(K) be a representation of G and ρ′ : G → GLn(OK) an
equivalent representation over K with matrix coefficients in OK . After composing
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with the projection map GLn(OK) → GLn(Fq) we obtain a representation of G
of dimension n over Fq

ρ′ : G→ GLn(Fq).

We called ρ′ the reduction of ρ associated to ρ′ or a reduction of ρ to simplify.
Although equivalent representations over K

ρ1, ρ2 : G→ GL2(OK) ⊂ GLn(K),

could give us non-equivalent representation over Fq

ρ1, ρ2 : G→ GLn(Fq),

it can be proved that they share the same blocks in their Jordan form. To be
specific we make the following definition.

Let ρ : G → GLn(Fq) be a representation over Fq. Just as in the proof of
Proposition 1.13, we consider the Fq-vector space V = Fn

q with the action of G
via ρ on it. Since V is finite dimensional, there exists a descending chain of vector
spaces

V = V1 ⊋ V2 ⊋ . . . ⊋ Vk−1 ⊋ Vk+1 = 0,

such that each Vi is G-invariant and the quotient representation

ρ(i) : G→ GL(Vi/Vi+1) = GLni(Fq), ni = dimVi − dimVi+1,

is irreducible for all 1 ≤ i ≤ k. Now consider the representation

ρ′ =
k⊕

i=1

ρ(i).

The Jordan-Holder Theorem (see [CR06] pag. 79) asserts that up to equivalence,
the representation ρ′ is the same for every descending chain. We call this repre-
sentation the semi-simplification of ρ.

Theorem 1.14 (Brauer-Nesbitt). ([CR06] Pag. 215) Let L be a perfect field and
A a L-algebra. Let M,N be two A-modules finite-dimensional as L-vector spaces.
If for all a in A, the characteristic polynomials of M and N are equal, then their
semi-simplifications are equivalent.

For a matrix T ∈ GLn(K), we write charT for its characteristic polynomial.
If M ∈ GLn(K), then we have the relation charT = charMTM−1.

Proposition 1.15. Let ρ1, ρ2 : G → GLn(OK) ⊂ GLn(K) be two equivalent
group representations. Then the semi-simplifications of ρ1 and ρ2 are equivalent.

Proof. Take M ∈ GLn(K) such that ρ1(g) =Mρ2(g)M
−1 for all g ∈ G. Then

char[ρ2(g)] = char[ρ2(g)] mod mK

= char[Mρ2(g)M
−1] mod mK

= char[ρ1(g)] mod mK

= char[ρ1(g)]
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After taking L = Fq, A = FqG and M = Fn
q , N = Fn

q with the structure of
FqG-module induced by ρ1, ρ2 respectively, we see that Proposition follows from
Theorem 1.14. ■

In conclusion, the semi-simplification of a reduction ρ1 of ρ does not depend
on the chosen equivalent representation ρ1.

1.4.2 Ribet’s Lemma

Now consider a two dimensional representation ρ : G → GL2(K) of G. By
Proposition 1.13, ρ is equivalent to a representation ρ0 with matrix coefficients
in OK . Let us assume that its reduction ρ0 is reducible. Then there exist two
characters φ1, φ2 : G → Fq such that ρ0 is equivalent over Fq to a representation
of one of the forms Å

φ1 ∗
0 φ2

ã
,

Å
φ1 0
∗ φ2

ã
. (1.2)

Its semi-simplification is the representation φ1 ⊕ φ2. Note that Proposition 1.15
implies this will be the case for every reduction of ρ. In particular we see that all
its reductions are reducible.
The next Proposition will be used in the construction of the special reduction
mentioned in the proof of Theorem A.

Proposition 1.16 (Ribet’s Lemma). Let ρ : G → GL2(K) be an irreducible
representation of G such that its reductions are reducible. Then ρ is equivalent to
a representation ρ0 : G → GL2(OK) ⊂ GL2(K) such that its reduction is of the
form

ρ0 =

Å
φ1 ∗
0 φ2

ã
,

and it is not diagonalizable.

Proof. Let ρI : G → GL2(OK) ⊂ GL2(K) be an equivalent representation to ρ
with matrix coefficients in OK . Then its reduction is equivalent to one of the two
forms in (1.2). Note that since O∗

K = OK −mK , the natural map

Pr :M2×2(OK) →M2×2(Fq),

satisfies Pr−1(GL2(Fq)) = GL2(OK), and so the restriction

Pr|GL2(OK) : GL2(OK) → GL2(Fq),

is surjective. Thus after lifting a matrix from GL2(Fq) to GL2(OK), we may
assume that ρI is equal to one of the two forms in (1.2). Moreover, if π denotes
a generator for mK , the identity

P

Å
a πb
c d

ã
P−1 =

Å
a b
πc d

ã
, P =

Å
1 0
0 π

ã
, (1.3)
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shows that we may assume that ρI takes exactly the left form in (1.2).
For a matrix M ∈ GL2(K), we denote by ρM : G → GLn(K) the representation
defined by ρM (g) = MρI(g)M

−1 for all g ∈ G. Suppose for a contradiction that
for every matrix satisfying:

• The representation ρM : G→ GL(K) has coefficients in OK .

• Its reduction is

ρM =

Å
φ1 ∗
0 φ2

ã
.

We have that ρM is diagonalizable.
We are going to construct by induction a convergent sequence of matrices {Tn}n≥1

with the properties

ρTn(g) = TnρI(g)T
−1
n ∈

Å
OK mn

K

OK OK

ã
, ρTn

=

Å
φ1 0
∗ φ2

ã
. (1.4)

This will prove the Proposition. Indeed, if Tn → T is the limit, then the group
representation ρT : G→ GL2(K) has upper-right entry zero, but this is impossible
since it is equivalent to ρ and so it is irreducible.

For n = 1 we take T1 = P−1 and use identity (1.3). Suppose that for n ≥ 1,
we have matrix Tn satisfying (1.4). Then

ρPnTn(g) = PnρTn(g)P
−n ∈ Pn

Å
OK mn

K

OK OK

ã
P−n =

Å
OK OK

mn
K OK

ã
.

Since conjugating by P does not change upper-left and lower-right entries, its re-

duction is of the form ρPnTn
=

Å
φ1 ∗
0 φ2

ã
. Thus, by assumption of contradiction,

we have that ρPnTn
is diagonalizable. By using Pr−1(GL2(Fq)) = GL2(OK), we

find a matrix U ∈ GL2(OK) of the form U =

Å
1 u
0 1

ã
such that

ρUPnTn
(g) =

Å
1 u
0 1

ã
ρPnTn

(g)

Å
1 u
0 1

ã−1

=

Å
φ1(g) 0
0 φ2(g)

ã
.

Moreover, conjugation by U does not change the lower-left entry, then

ρUPnTn(g) = UρPnTn(g)U
−1 ∈

Å
OK mK

mn
K OK

ã
.

Conjugating by P−n we obtain

ρP−nUPnTn
= (P−n)ρUPnTn(g)(P

−n)−1 ∈
Å
OK mn+1

K

OK OK

ã
17



and ρP−nUPnTn
=

Å
φ1 0
∗ φ2

ã
since ρUPnTn

=

Å
φ1 0
∗ φ2

ã
and conjugation by P

does not change upper-left and lower-right entries. Thus taking

Tn+1 = P−nUPnTn =

Å
1 uπn

0 1

ã
Tn,

we complete the induction and the formula shows that {Tn}n≥1 is convergent. ■

Remark 1.16.1. Since ρ0 is not diagonalizable, Maschke Theorem (see [CR06]
pag. 40) implies that the characteristic of Fq must divide the order of ρ0(G). This
is the arithmetic information that we shall use in the proof Theorem A.

1.4.3 Galois representations induced by a modular form

Let k > 2 be a fixed even integer. Let f ∈ Sk be a normalized eigenform. Con-
sider a prime p of Kf above a rational prime p. We denote Kf,p, the completion
of Kf at the place p, Of,p its ring of integers and m = pOf,p the maximal ideal.
By Proposition 1.9 we see that that Kf,p is a finite extension of Qp. Let Q be the
algebraic closure of Q in C and write GQ = Gal(Q/Q). A representation of GQ is
called a Galois representation.
The following Theorem, due to Deligne, associates to a normalized eigenform a
Galois representation over Kf,p. This will be the analogous to Eichler–Shimura
construction used by Ribet.

Theorem 1.17 ([DS05], Thm. 9.6.5). Let f =
∑

n≥1 an(f)q
n ∈ Sk be a nor-

malized cuspidal eigenform with Hecke field Kf . Let p be a prime. For each
prime ideal p of Kf lying over p, there is an irreducible group representation of
dimension 2 over Kf,p

ρf,p : GQ → GL2(Kf,p).

This representation is unramified at all primes ℓ ∤ p. If Frobℓ ∈ GQ is an absolute
Frobenius at the prime ℓ, then the characteristic polynomial of ρ(Frobℓ) depends
only on ℓ and it is

x2 − aℓ(f)x+ ℓk−1.

1.4.4 p-ordinary modular forms

Definition 1.18. Let f =
∑

n≥1 an(f)q
n be a normalized eigenform. Let p be a

prime of Kf above a rational prime p. We say that f is p-ordinary if ap(f) ̸≡ 0
mod p.

To finalize this chapter, we quote a result due to Mazur and Wiles, which will
be used during the passage from cuspidal forms to Galois representations (see
part (iv) of Theorem 2.4). We denote by Dp an absolute decomposition group at
the prime p.
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Theorem 1.19 ([Wil88] Thm. 2). If f is p-ordinary, then the representation
ρf,p|Dp of Dp is equivalent to a representation ρ(0) : Dp → GL2(Kf,p) of the form

ρ(0) =

Å
ε1 ν
0 ε2

ã
,

where ε2 is unramified and ε2(Frobp) = αp where αp is the unit root of the poly-
nomial x2 − ap(f)x− pk−1.

Remark 1.19.1. We may assume that ρ(0)(g) ∈ Of,p for every g ∈ Dp. Indeed,
the characters ε1(g), ε2(g) are both integral since those are the roots of char ρf (g)
which by Proposition 1.13 has integral coefficients. By the compactness of Dp, we
have that ν(Dp) ⊂ mrO for some r ∈ Z. Thus, after conjugating several times by
a matrix P as in the proof of Ribet lemma, we obtain an equivalent representation
with the same form and integral upper-right entry.
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Chapter 2

Proof of Ribet’s Theorem in
weight k

Let p be an irregular prime and choose 2 ≤ k ≤ p − 3 even such that p|Bk. In
this chapter we focus on proving Theorem A. We divide the proof in four sections
following the mind scheme mentioned in the Introduction.

2.1 From Bernoulli numbers to Cusp forms

Let A = Z(p) be the localization of Z at p and mA = Z(p) its maximal ideal. Let

f =
∑
n≥0

an(f)q
n, g =

∑
n≥0

an(g)q
n,

be two modular forms in (Mk)A. Following the notation of Section 1.2, we see
that

fA/mA
= gA/mA

⇐⇒ an(f) ≡ an(g) mod mA ∀n ≥ 0.

We shall write f ≡ g mod mA in this case.

Lemma 2.1. If p|Bk, then there exists a cuspidal form f ∈ (Sk)A such that

f ≡ Ek mod mA.

Proof. Write Ek in the basis B = {f0, f1, . . . , fn} of Proposition 1.3

Ek = α0f0 + α1f1 + . . .+ αnfn.

Since Ek ∈ (Mk)A and (Mk)A is generated as A-module by B, we deduce that
αi ∈ A. Define

f = Ek − α0f0 = α1f1 + . . .+ αnfn ∈ (Sk)A.

By evaluating the linear operator ψ0, we obtain that

−Bk

2k
+ α0 = 0,
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and so α0 ∈ mA because p|Bk. Therefore

f = Ek − α0f0 ≡ Ek mod mA.

■

Proposition 2.2. If p|Bk, then there exists a normalized cuspidal eigenform f =∑
n≥1 an(f)q

n ∈ (Sk)(OKf
)p such that for each prime ℓ, we have

aℓ(f) ≡ 1 + ℓk−1 mod p(OKf
)p,

where p is a prime of the Hecke field Kf above p, and (OKf
)p is the localization

of the ring of integers of Kf at p.

Proof. Write M = (Sk)A and let f ∈ M be a cuspidal form as in Lemma 2.1.
Since Ek is an eigenvector for the Hecke operator Tn with eigenvalue σ(n), then
fA/mA

∈MA/mA
is an eigenvector for (Tn)A/mA

with eigenvalue σ(n) +mA. Since
M is free of finite rank and the Hecke operators commute, we may apply the
Deligne-Serre lemma to obtain a discrete valuation ring B extending A with field
of fraction L finite over Q, and an eigenform f ′ ∈ MB = (Sk)B such that its
eigenvalue λTn for the operator Tn satisfies

λTn ≡ σk−1(n) mod mB.

If we normalise the cusp form f ′ = q +
∑

n≥2 an(f
′)qn, then by Proposition 1.7

we obtain that
an(f

′) ≡ σk−1(n) mod mB, ∀n.

Thus the Proposition follows by changing the field L by Kf ′ and noticing that B
must be the localization of its ring of integer OKf ′ at some prime p above p. ■

2.2 From cusp forms to Galois representations

Let f be a cuspidal eigenform as in Proposition 2.2. Using the prime p above p,
we obtain an irreducible Galois representation ρf,p : GQ → GL2(Kf,p). Let OK,p

be its ring of integers, m the maximal ideal and Fq the residual field. Let ζ ∈ Q
be a primitive pth-root of unity. We write χ : GQ → F∗

p for the Galois character
satisfying

σ(ζ) = ζχ(σ), ∀σ ∈ GQ.

Proposition 2.3. The representation ρf,p is equivalent to a representation ρ :
GQ → GL2(OK,p) with reduction ρ of the formÅ

1 γ
0 χk−1

ã
,

which is not diagonalizable.
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Proof. By Ribet’s lemma (Proposition 1.16), it is enough to show that ρf,p has
an equivalent representation ρ : GQ → GL2(OK,p) ⊂ GL2(Kf,p) such that its
reduction ρ : GQ → GL2(Fq) has semi-simplification 1⊕ χk−1.
Let ℓ ̸= p be a prime and Frobℓ an absolute Frobenius element at the prime ℓ.
The semi-simple representation 1 ⊕ χk−1 has characteristic polynomial at Frobℓ
equal to

x2 − (1 + χk−1(Frobℓ))x+ χk−1(Frobℓ) = x2 − (1 + ℓk−1)x+ ℓk−1.

Now let ρ : GQ → GL2(OK,p) ⊂ GL2(Kf,p) be an equivalent representation to
ρf,p. By Theorem 1.17 and Proposition 2.2, its reduction ρ has characteristic
polynomial at Frobℓ equal to

x2 − aℓ(f)x+ ℓk−1 ≡ x2 − (1 + ℓk−1)x+ ℓk−1 mod m,

By the Ceboratev Density Theorem, we conclude that the representation 1⊕χk−1

and ρf,p have equal characteristic polynomials. Then the Proposition follows from
Brauer-Nesbitt Theorem 1.14. ■

Remark 2.3.1. Note that we may have proved the existence of similar equivalent
representation ρ : GQ → GL2(OK,p) with non diagonalizable reduction ρ but of
the form Å

χk−1 γ
0 1

ã
.

A reason of this choice is to prove that ρ|Dp is diagonalizable using Theorem 1.19
(see the proof of part (iv) of Theorem 2.4). If we use this form instead, there is
not guarantee that this crucial property is satisfied.

Theorem 2.4. Suppose p | Bk. Then there exists a finite extension Fq/Fp and a
representation

ρ : GQ → GL2(Fq),

with the properties:

(i) ρ is unramified at all primes ℓ ̸= p.

(ii) The representation ρ is equivalent (over Fq) to a representation of the formÅ
1 γ
0 χk−1

ã
,

for some function γ : GQ → Fq.

(iii) The image of ρ has order divisible by p.

(iv) Let Dp be a decomposition group for p in GQ. Then ρ|Dp is diagonalizable
and ρ(Dp) has order co-prime to p.
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Proof. Let ρ : GQ → GL2(OK,p) be the representation of Proposition 2.3. Let us
see that its associated reduction

ρ : GQ → GL2(Fq),

satisfies the Theorem. Since ρ is the resulting composition

GQ GL2(Of,p) GL2(Fq),
ρ (·)+m

by Theorem 1.17 we see that ρ is unramified at all primes ℓ ̸= p. This proves (i).
Properties (ii) and (iii) are satisfied by construction (see also Remark 1.16.1).
Thus it only remains to prove (iv). Since

ap(f) ≡ 1 + pk−1 ≡ 1 ̸≡ 0 mod m,

the modular form f is p-ordinary and so by Theorem 1.19, ρ|Dp is equivalent to
a representation ρ(0) of the form

ρ(0) =

Å
ε1 ν
0 ε2

ã
, (2.1)

with ε2 unramified. Since ρ|Dp and ρ(0) are equivalent, Proposition 1.15 tell us
that their reduction have the same semi-simplification.1 Furthermore, if we denote
ω1, ω2 the reduction of ε1, ε2 respectively, the semi-simplification of ρ(0) is ω1⊕ω2,
and since ω2 its unramified, we have that

ω1 = χk−1, ω2 = 1.

Now write ρ =

Å
A B
C D

ã
. Then

A+m = 1, B +m = γ, D +m = χk−1.

Let M =

Å
a b
c d

ã
∈ GL2(K) be a matrix such thatÅ
a b
c d

ãÅ
ε1 ν
0 ε2

ã
=

Å
A|Dp B|Dp

C|Dp D|Dp

ãÅ
a b
c d

ã
. (2.2)

Note that if we changeM by πrM with π a prime element and r ∈ Z, the equality
still holds and so we may assume that a, c ∈ Of,p and either a or c is a unit.
By looking at the upper-left entry in the equation (2.2) , we see that

a(ε1 −A|Dp) = cB|Dp . (2.3)

If π|c, then π|(ε1 −A|Dp) since a ∈ O∗
f,p. But on the other hand

ε1 +m = ω1 = χk−1 ̸= 1 = A|Dp +m.

1Here we use that ρ(0) has integer matrix coefficients (see Remark 1.19.1).
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Therefore π ∤ c and so c is a unit. Thus, if we denote s = −a/c+m ∈ Fq, then by
reducing the equation (2.3), we have thatÅ

1 s
0 1

ã
ρ

Å
1 s
0 1

ã−1

=

Å
1|Dp γ + s(χk−1|Dp − 1|Dp)
0 χk−1|Dp

ã
=

Å
1|Dp 0
0 χk−1|Dp

ã
.

This proves the first claim in (iv). For the second claim, note that using the
diagonal form of ρ, we may see the group ρ(Dp) as a subgroup of F∗

p. Since
|F∗

p| = p− 1, this shows that ρ(Dp) has order co-prime to p. ■

2.3 From Galois representation to extension E/K

Theorem 2.5. Suppose that p | Bk. Then there exists a Galois extension E/Q
containing K with the following properties.

(a) The extension E/K is everywhere unramified.

(b) The group H = Gal(E/K) is a finite non-zero p-elementary abelian group i.e.
Fp-vector space of positive dimension.

(c) The natural action of ∆ = Gal(K/Q) on H satisfies the relation

σ · τ = τχ(σ)
1−k

, σ ∈ ∆, τ ∈ H.

Proof. Let ρ a representation as in Theorem 2.4. We may assume that

ρ(g) =

Å
1 γ(g)
0 χk−1(g)

ã
, ∀g ∈ GQ.

We denote K ′ and E′ the fixed field of Ker(χk−1) and Ker(ρ) respectively. We
first prove the Theorem for the fields K ′ and E′ instead of K and E.
By Galois correspondence, we have

G′ = Gal(E′/Q) ≃ GQ/Ker(ρ) ≃ Im(ρ),

∆′ = Gal(K ′/Q) ≃ GQ/Ker(χ1−k) ≃ Im(χ1−k).

Write H ′ = Gal(E′/K ′) ⊴ G. Then

G′/H ′ ≃ ∆′. (2.4)

By the matrix identity Å
1 a
0 1

ãÅ
1 b
0 1

ã
=

Å
1 a+ b
0 1

ã
,

we see that γ induces an injective morphism from H ′ into the additive group Fq.
In particularly H ′ is a finite p-elementary abelian group. On the other hand we
have p ∤ |∆′| since ∆′ ≃ Im(χ1−k) ⩽ F∗

q . Using equation (2.4) and part (iii) of
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Theorem 2.4 we obtain that p divides |H ′| and so it is not trivial. This proves (b)
for the extension E′/K ′.
By part (i) of Theorem 2.4, the extension E′/Q is unramified at all primes ℓ ̸= p.
So E′/K ′ is unramified for all primes p of K ′ such that p∩Q ̸= p. Now let B/p/p
be primes in the extension E′/K ′/Q. The image of the decomposition Dp under
ρ is equal (up to conjugation) to the decomposition group D(B, p) and by part
(iv) of Theorem 2.4, its order is coprime to p. Since

D(B, p) = D(B, p) ∩H ′,

and H ′ is a p-group, we conclude that D(B, p) is trivial. In particularly its inertia
group I(B, p) is trivial and p is unramified. This proves (a) for the extension
E′/K ′. (Note that E′/K ′ is unramified at the infinite primes since the extension
is odd).
Now take elements σ ∈ G′, τ ∈ H ′, and g, h ∈ GQ such that g|E′ = σ and
h|K′ = τ . Using the identityÅ

1 γ(g)
0 χ(g)k−1

ãÅ
1 γ(h)
0 1

ãÅ
1 γ(g)
0 χ(g)k−1

ã−1

=

Å
1 γ(h)
0 1

ãχ(g)1−k

,

and the isomorphism described for G′ and H ′ above, we obtain that στσ−1 =
τχ(g)

1−k
. This proves (c) for the extension E′/K ′.

Now, we define E = E′K , G = Gal(E/Q) and H = Gal(E/K). The restriction
map H → H ′ is injective and has image Gal(E′/K ∩ E′). Thus H is an abelian
p-group. If H were trivial, then E′ ⊂ K and

G′ ≃ ∆/Gal(K/E′),

but this is impossible since p||G′| and p ∤ |∆|. This proves (b).
Since the restriction morphism sends inertia elements to inertia elements and
E′/(E′ ∩K ′) is unramified, we have that E/K is unramified. This proves (a).
For (c), we note the restriction map H → H ′ is a ∆-morphism. Therefore H =
H(χ1−k) because it is injective. This concludes the proof. ■

2.4 From Extensions E/K to the class group of K

Theorem A. If p|Bk for some 2 ≤ k ≤ p− 3 even, then C(χ1−k) ̸= 0.

Proof. By Proposition 1.12, the Artin map ψL/K : AK → H is a surjective ∆-
morphism. Since H is annihilated by p, this morphism factorizes through CK and
so one obtains a surjective ∆-morphism ψL/K : CK → H. Let

H =
⊕

i mod p−1

H(χi), H(χi) = {τ ∈ H : σ · τ = τχ(σ)
i ∀σ ∈ ∆},

the decomposition of H as χi-eigenspaces. By parts (b) and (c) of Theorem 2.5,
we have

H(χ1−k) = H ̸= 1.

25



Since φL/K is surjective, then

ψL/K(C(χ1−k)) = H(χ1−k) = H ̸= 0,

and so C(χ1−k) ̸= 0.
■
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Chapter 3

Class field Theory encoded by
the representation ρ

Let p be an irregular prime and choose 2 ≤ k ≤ p − 3 even with p|Bk. Let E be
the unramified abelian extension of K constructed in the proof of Theorem 2.5. In
this Chapter we use the representation ρ of Theorem 2.4 to prove Theorem B and
Theorem C mentioned in the Introduction. We finish the Chapter by describing
the field E as the unique extension of K satisfying certain explicit properties (see
Proposition 3.4 and Proposition 3.5). Thus obtaining a general statement for each
Theorem.

3.1 Class field Theory of the extension E/K

Before proving Theorem B and Theorem C, we recall some previous notation.
Let E′ and K ′ be the field fixed by Ker ρ and χk−1 respectively. By the proof of
Theorem 2.5 we have that E = E′K. For a prime B of E above a prime q of K,
we write

B′ = E′ ∩B, q′ = K ′ ∩B.

If ψE/K(B/q) and ψE′/Q(B
′/q) denote the Frobenius element of B over q and B′

over q respectively, then

ψE/K(B/q)|E′ = ψE′/Q(B
′/q)f(q/q) ∈ Gal(E′/K ′).

Note that since E = E′K, we have that

ψE/K(B/q) = 1 ⇐⇒ ψE/K(B/q)|E′ = 1.

Thus the prime q splits completely if and only if ψE′/Q(B
′/q)f(q/q) = 1.

We also use the following result.

Proposition 3.1 ([Was97], Thm 2.17). Let f(q/q) be the residual degree of q
over q. Then f(q/q) is the minimal integer f such that qf ≡ 1 mod p.

Now we are ready to prove the Theorem B and Theorem C.
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Theorem B. Assume that p|Bk. Let q be a prime of K above a rational prime
q ̸= p. If qk−1 ̸≡ 1 mod p, then q splits completely in the extension E.

Proof. Since E′ is the field fixed by Ker ρ, we have the following commutative
diagram

Gal(Q/Q)

ρ(GalQ)

Gal(L/Q)

ρ

≃
Let Frobq be an absolute Frobenius element at the prime q. Then (up to conju-
gation) we have that ψE′/Q(B

′/q) = Frobq |E′ , and so

ψE′/Q(B
′/q)f(q/q) = 1 ⇐⇒ Frobf(q/q)q ∈ Ker ρ.

We compute

ρ(Frobf(q/q)q ) =

Å
1 γ(Frobq)
0 qk−1

ãf(q/q)
=

Ç
1 γ(Frobq)

∑f(q/q)−1
i=0 (qk−1)i

0 1

å
.

By Proposition 3.1, qf(q/q) ≡ 1 mod p. Thus

f(q/q)−1∑
i=0

(qk−1)i ≡
®

0 mod p if qk−1 ̸≡ 1 mod p

f(q/q) mod p if qk−1 ≡ 1 mod p
.

Then the Theorem follows from the first case. Note that f(q/q)|p−1, so f(q/q) ̸≡ 0
mod p. ■

Theorem C. There exist (infinitely many) primes q in K above a prime q satis-
fying qk−1 ≡ 1 mod p which do not split completely in the extension E/K.

Proof. Let σ ∈ Gal(E′/K ′) ⊂ Gal(E′/Q) be a non-trivial element. By applying
the Chebotarev’s density theorem, we found (infinitely many) primes B′ in the
extension E′ above a rational prime q such that ψE′/Q(B

′/q) = σ. Choose a prime
B of E above B′ and write q = B ∩ K and q′ = B ∩ K ′. Since σ fixes K ′, we
have

ψK′/Q(q
′/q) = ψE′/Q(B

′/q)|K′ = 1,

or equivalently qk−1 ≡ 1 mod p. Also, since Gal(E′/K ′) is a p-group and f(q/q)
divides p− 1, then

ψE/K(B/q)|E′ = ψE′/Q(B
′/q)f(q/q) = σf(q/q) ̸= 1.

Therefore q does not split completely in the extension E. ■

Note that in this proof we only used the fact that the extension E/K is induced
by a lower unramified abelian extension E′/K ′ with K ′ the fixed field of χk−1.
This fact can be proven using only Class field Theory. First we prove a more
general result.
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Proposition 3.2. Let F/Q be a finite Galois extension and L/F an unramified
abelian extension such that the natural action of Gal(F/Q) on Gal(L/F ) factorizes
through a quotient Gal(F ′/Q). Assume that ([F : F ′], |Gal(L/F )|) = 1. Then
there exists an unramified abelian extension E′/K ′ such that E = E′K and the
restriction map Gal(L/F ) → Gal(L′/F ′) is a Gal(F ′/Q)-isomorphism.

Proof. Let p′ be a prime of F ′ and p any prime of F above p′. We define

φ(p′) = ψL/F (p)
[F :F ′]
f(p/p′) .

Note that the element [F :F ′]
f(p/p′) is always an integer since the extension F/F ′ is

Galois. Since the action of Gal(F/Q) on Gal(L/F ) factorizes through Gal(F ′/Q),
Lemma 1.11 implies

ψL/F (σ(p)) = ψL/F (p), ∀σ ∈ Gal(F/F ′). (3.1)

Thus φ(p′) does not depend on the chosen prime. We extend φ multiplicatively
to a morphism φ : IF ′ → Gal(L/F ) defined on the group of fractional ideals of
F ′. We claim that φ is surjective and its kernel contains the group of principal
ideals.
Since (|Gal(L/F )|, [F : F ′]) = 1 we have

⟨ψL/F (p)⟩ = ⟨ψL/F (p)
[F :F ′]
f(p/p′) ⟩ = ⟨φ(p′)⟩. (3.2)

Therefore φ is surjective because so is the Artin morphism. Now let α ∈ F ′.
Write

(α) =
∏
i

(p′i)
ordp′

i
(α)

as product of primes of F ′. By definition we have

φ((α)) =
∏
i

ψL/F (pi)
[F :F ′]
f(p/p′) ·ordp′i

(α)
, p′i = pi ∩ F ′.

On the other hand we have

αOF =
∏
i

[
(p′i)OF

]ordp′
i
(α)

=
∏
i

 ∏
p
(i)
j |p′i

ψL/F (p
(i)
j )e(p

(i)
j /p′i)


ordp′

i
(α)

,

and using (3.1) and Artin reciprocity, we obtain

φ((α)) = ψL/F (αOF ) = 1.

This proves the claim. Now the Existence Theorem of Class Field Theory (see
[Mil20] pag. 158), implies that there exists an unramified abelian extension L′/F ′

with Galois group Gal(L′/F ′) ≃ Gal(L/F ) and whose primes p′ which split are

29



those satisfying φ(p′) = 1. Now we prove that L = L′F .
Let L̃ = L′F . Then L̃ is a unramified extension of F . Let p a prime of F and
write p′ = p ∩ F ′. By the formula

ψL̃/F (p)|E′ = ψL′/F ′(p′)f(p/p
′) ∈ Gal(L′/F ), (3.3)

and the fact that f(p/p′) is coprime with |Gal(L′/F ′)|, we see that p′ splits in
L′/F ′ if and only if p splits in L̃/F . Moreover, by equation (3.2), we have that
p′ splits in in L′/F ′ if and only if p splits in L/F . Therefore L = L̃ = L′F since
the set of primes that split determines the extension (see [Mil20], Theorem 3.25
Chaper V).
Finally, the restriction map Gal(L/F ) → Gal(L′/F ′) agrees with the action of
Gal(F/Q), it is clearly injective and it is surjective by equation (3.3) and the fact
that the Artin map ψL′/F ′ : IF ′ → Gal(L′/F ′) is surjective. ■

Proposition 3.3. Let E/K be a p-elementary unramified extension such that
Gal(E/K) = H = H(χj) in his decomposition as χi-eigenspaces. Then the fixed
field K ′ by Kerχj has an unramified abelian extension E′/K ′ such that E′K = E
and the restriction Gal(E/K) → Gal(E′/K ′) is a χj-isomorphism.

Proof. This follows from the previous Proposition since [K : Q] = p−1 is co-prime
with |H|. ■

3.2 E as a canonical extension of K

Let α : Ak → C(χk−1) be the morphism defined by the commutative diagram

AK

C(χ1−k)

AK/A
p
K = C

α
Pr

Let L be the field fixed by Kerα and H the Hilbert Class field of K. Since the
restriction map Gal(H/K) → Gal(L/K) agrees with the action of ∆ = Gal(K/Q),
we obtain a ∆-isomorphism

Gal(L/K) ≃ C(χ1−k).

Proposition 3.4. The field L is the maximal p-elementary unramified abelian
extension of K such that Gal(L/K) = H = H(χ1−k) in its decomposition as
χi-eigenspaces.

Proof. Clearly L is a p-elementary unramified abelian extension of K. It also
satisfies the condition about its Galois group by the comment made above.
Let L′ be an extension of K satisfying the Proposition. Since pGal(L′/K) = 0,
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the restriction map φ : Gal(H/K) → Gal(L′/K) factorizes through π. Moreover,
since φ is a ∆-morphism and

Gal(L′/K) = H ′ = H ′(χ1−k),

φ also factorizes through Pr. Therefore Kerα is contained in the kernel of φ and
so L′ ⊂ L. ■

Now let E be the extension constructed in the proof of Theorem A. We have
that following.

Proposition 3.5. L = E.

Proof. By the previous Proposition we have that E ⊂ L. The fact that E = L
is a consequence of Iwasawa main conjecture (see the comment made below in
[Eri08] pag. 4) which implies that C(χ1−k) are one dimension Fp-spaces and so
L/K has degree p. ■
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