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Summary

This thesis is about the work on the topics of Jacobi and random Schrödinger operators,

which I started to study two years ago. The main model comes from an adaptation of

the Anderson model [1] written in 1958, which describes the possibles random impurities

of a solid, explaining mathematically in particular the phenomena of the conductivity of

electrons in semiconductors in absence of diffusion.

This work is divided in three principal parts: First, we just introduce some preliminaries

to keep in order the line of what results are important to us and also to put our notation.

in context.

Second: we give the proof a spectral averaging formula for a Jacobi operator on the line

using transfer matrices (appearing in [8]), and then the extension of this result to the strip,

following [31]. This gives some criteria for absolutely continuous spectrum.

Finally, we prove the purely absolutely continuous spectrum (apart from possible discrete

embedded eigenvalues) for some random Schrödinger operator on the strip with decaying

matrix potentials. Here, we apply the criterion studied in the last part, using transfer

matrices, Schur complements and probabilistic estimates.

4



Chapter 1

Mathematical preliminaries

We will introduce some very common mathematical notions which are important for

the results of this thesis. Let us start with some aspects of possibly unbounded self-adjoint

operators on Hilbert spaces. We recall that Hilbert spaces are vector spaces with an inner

product ⟨·, ·⟩ which are complete with respect to the induced norm ∥x∥2 = ⟨x, x⟩.

1.1 Operators on Hilbert spaces

Definition 1.1.1. [8] Let be given two (not necessarily different) Hilbert spaces H1, H2.

a) A linear operator from H1 to H2 is a linear map T : D(T ) → H2, where D(T ) ⊂ H1

is a vector subspace which is called the domain of T .

b) gr(T ) ⊂ H1 ×H2 denotes the graph of T defined as: gr(T ) := {(x, Tx);x ∈ D(T )}

c) T1 is an extension of T if gr(T ) ⊂ gr(T1), that means, if D(T ) ⊂ D(T1) and

Tx = T1x, ∀x ∈ D(T ) . We use the notation T ⊂ T1 for the extension of T in T1, and

T1
∣∣
D(T )

= T the restriction of T1 in D(T ).

d) If H1 = H2 = H we call T a linear operator on H.

e) The graph norm on D(T ) is defined by:

∥x∥T = ∥x∥H1 + ∥Tx∥H2 (1.1.1)
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CHAPTER 1. MATHEMATICAL PRELIMINARIES

∀x ∈ D(T )

f) The range of T is defined as RanT := {Tx;x ∈ D(T )} ⊂ H2

g) The kernel of T is defined as KerT := {x ∈ D(T );Tx = 0H2} ⊂ H1

An important notion is the one of a closed operator.

Definition 1.1.2. [8] Let T be a linear operator from H1 to H2, both Hilbert spaces.

a) T is called closed if gr(T ) = gr(T ) ⊂ H1 ×H2

b) T is called closable if it has a closed extension

(or T ⊂ T1 : D(T1) → H, or gr(T ) = gr(T ) ⊂ H1xH2)

c) If T is closable, then we define the closure of T , denoted by T , as the smallest closed

extension of T .

d) If T is closed (T = T ), then D is said to be a core of T if D ⊂ D(T ) so that T
∣∣
D = T .

A simple fact to note is the following:

Proposition 1.1.3. T is closable if and only if the closure of the graph gr(T ) is itself a

graph of an operator, in which case we have:

gr(T ) = gr(T ) .

In this case, T is an extension of T and D(T ) is a core of T .

Definition 1.1.4. [33] Let T : D(T ) ⊂ H1 → H2 be a linear operator

a) T is called a bounded operator if there is a constant c > 0 such that

∥Tx∥H2 ≤ c∥x∥H1 (1.1.2)

Otherwise, it is called an unbounded operator.
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CHAPTER 1. MATHEMATICAL PRELIMINARIES

b) T is called symmetric if H2 = H1 = H and:

⟨Tx, y⟩H = ⟨x, Ty⟩H (1.1.3)

∀x, y ∈ D(T ) ⊂ H

Definition 1.1.5. [33] Let T : D(T ) ⊂ H1 → H2, on H1,H2 Hilbert Spaces, with D(T )

being a dense domain.

a) The adjoint T ∗ : D(T ∗) ⊂ H2 → H1 is defined by

D(T ∗) := {y ∈ H2;∃!z ∈ H1,∀x ∈ D(T ), ⟨Tx, y⟩H2 = ⟨x, z⟩H1} (1.1.4)

and T ∗y = z. Or alternatively:

⟨Tx, y⟩H2 = ⟨x, T ∗y⟩H1 (1.1.5)

∀x ∈ D(T ), y ∈ D(T ∗)

b) T is called self-adjoint, if T ∗ = T , which means in particular that H1 = H2 = H

and D(T ∗) = D(T ).

If D(T ) is not dense, then the domain of T ∗ would be empty, as z would never be

unique, one could always add some vector in D(T )⊥. By the density of D(T ) and the Riesz

representation theorem one has

D(T ∗) := {y ∈ H2 : x 7→ ⟨Tx, y⟩ is bounded}

Notice, if T is self-adjoint then T is also symmetric.

Let us state some important facts connecting adjoints to closable operators.

Proposition 1.1.6. [7] Let T : D(T ) ⊂ H1 → H2 be a linear operator, D(T ) dense. We

have:

a) T ∗ is a closed operator
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b) D(T ∗) is dense if and only if T is closable. In this case T = T ∗∗

Definition 1.1.7. [7] Let W ⊂ H be a vector subspace on H Hilbert Space. The orthog-

onal Complement of W is defined by

W⊥ := {x ∈ H : ⟨x,w⟩H = 0 ∀w ∈W} (1.1.6)

In particular, one has:

H =W ⊕W⊥. (1.1.7)

Notice W⊥ is a closed vector subspace, but W not necessarily.

Proposition 1.1.8. [7] Let T : D(T ) ⊂ H1 → H2 be an unbounded operator, H1,H2

Hilbert Spaces, with D(T ) being a dense domain, then:

Ker(T ) = Ran(T ∗)⊥ (1.1.8a)

Ker(T ∗) = Ran(T )⊥ (1.1.8b)

Ran(T ∗) ⊂ Ker(T )⊥ (1.1.8c)

Ran(T ) = Ker(T ∗)⊥ (1.1.8d)

Definition 1.1.9. Let H1, H2 be Hilbert spaces. We call U : H1 → H2 a unitary trans-

formation, if U is an isomorphism, this means that U is linear, bijective with

⟨Ux,Uy⟩H2
= ⟨x, y⟩H1 (1.1.9)

If the equation 1.1.9 holds, we say that U perserves the inner product.

Notice U is also an isometry. Moreover, if H1 = H2 = H, U is an automorphism of H,

and in that case U is called a unitary operator. Also notice, U is a bounded operator

with constant c = 1.
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CHAPTER 1. MATHEMATICAL PRELIMINARIES

Proposition 1.1.10. [7] The following are equivalent

U is unitary operator (1.1.10a)

U∗U = UU∗ = I (1.1.10b)

U is surjective and U perserves the inner product (1.1.10c)

Ran(U) is dense in H and perserves the inner product (1.1.10d)

Definition 1.1.11. Let T be an self-adjoint on H Hilbert. The Caley Transform U :

Ker(T ∗ − iI) → Ker(T ∗ + iI) is defined as

U := (T ∗ − iI)(T ∗ + iI)−1 (1.1.11)

Notice U is well defined bounded T ∗ + iI and T ∗ − iI have bounded inverse in H.

Lemma 1.1.12. [33]: Let T a self-adjoint on H Hilbert. The Caley transform U of T is

an unitary transform, I − U is inyective and T = i(I + U)(I − U)−1
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1.2 Essentially self-adjoint operators

Definition 1.2.1. [33] : Let T be a symmetric operator in a Hilbert Space H. T is called

an essentially self-adjoint operator if T = T ∗ in which case T ∗∗ = T ∗, i.e. T = T ∗ is

self-adjoint.

Definition 1.2.2. [33] Let T be a symmetric operator on a Hilbert Space H. For z ∈ C/R

(or C/R+), we define the deficiency index d(z), d+, d− as:

d(z) = dimRan(T − zI)⊥ = dimKer(T ∗ − zI) (1.2.1a)

d+ = dimKer(T ∗ − iI) (1.2.1b)

d− = dimKer(T ∗ + iI) (1.2.1c)

Theorem 1.2.3. [33] Let T be a closed symmetric operator on H Hilbert Space, then

D(T ∗) = D(T )⊕Ker(T ∗ − iI)⊕Ker(T ∗ + iI) (1.2.2)

Lemma 1.2.4. [33] Let T be a symmetric operator on H Hilbert Space. If ±Imz > 0 so

d(z) = d±.

Theorem 1.2.5. [33] Let T be a closed symmetric operator on H Hilbert Space. Then

T ∗ = T if and only if d+ = d− = 0.

Corollary 1.2.6. [33] : Let T be a symmetric operator on H Hilbert Space. T is essentially

self-adjoint if and only if d+ = d− = 0.

Theorem 1.2.7. [33] Let T be operator on H Hilbert Space. T is essentially self-adjoint

if and only if there exists a unique self-adjoint extension of T which is T .
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1.3 Spectral Theory

Definition 1.3.1. [7]: Let T be a closed operator on H,

a) The resolvent set is defined as:

ρ(T ) := {λ ∈ C : Ker(T − λI) = {0},Ran(T − λI) = H} (1.3.1)

b) The spectrum is defined as:

σ(T ) := C/ρ(T ) (1.3.2)

We need to extend this definition for non-closed operator.

Definition 1.3.2. [7]: Let T be an operator on H . The resolvent is set also defined by

ρ(T ) as equation 1.3.1 , if T − λI : D(T ) ⊆ H → H satisfies all of the below:

Ker(T − λI) = {0} (1.3.3a)

(T − λI)(D(T )) is dense in H (1.3.3b)

(T − λI)−1 is bounded (1.3.3c)

Definition 1.3.3. [8] Let T be an operator with λ ∈ ρ(T ) we define the resolvent oper-

ator Rλ : H → H as:

Rλx := (T − λI)−1x, x ∈ H

Proposition 1.3.4. [8] (First resolvent identity) For an operator T with λ1, λ2 ∈ ρ(T )

Rλ1 −Rλ2 = (λ1 − λ2)Rλ1Rλ2

Proof. As Rλ1(T − λ1I) = (T − λ1I)Rλ1 = I = Rλ2(T − λ2I) = (T − λ2I)Rλ2

Rλ1 −Rλ2 = Rλ1(T − λ2I)Rλ2 −Rλ1(T − λ1I)Rλ2

= Rλ1((T − λ2I)− (T − λ1I))Rλ2

= (λ1 − λ2)Rλ1Rλ2
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Definition 1.3.5. [6]: Let W ⊂ H be a closed vector subspace of a Hilbert Space H , as

H =W ⊕W⊥. Let P : H →W be an operator. We call P an orthogonal projection if

Px = y , x = y + z x ∈ H , y ∈W , z ∈W⊥ (1.3.4)

Notice P is a bounded operator with P 2 = P

Definition 1.3.6. [8]: Let H be a Hilbert space, with P(H) we denote the set of orthogonal

projections on H. A spectral measure or projection-valued measure is a mapping

E : B(R) → P(H) (where B(R) denotes the Borel-sigma-algebra) such that

E(A) is a orthogonal projection, ∀A ∈ B(R) (1.3.5a)

E(R) = I (identity operator) (1.3.5b)

E(∅) = 0 (1.3.5c)

E(A ∩B) = E(A)E(B), ∀A,B ⊂ B(R), for A ∩B = ∅, A ̸= B (1.3.5d)∑
n≥1

E(An) = E(R), for
⊔
n≥1

An = R (1.3.5e)

Definition 1.3.7. (Spectral measures) [16] Let be given a spectral resolution E .

For ϕ, ψ ∈ H we have the associated spectral measures at ψ and ϕ, φ given by

µψ(A) : = ⟨ψ, E(A)ψ⟩ , ∀A ∈ B(R) (1.3.6a)

µϕ,ψ(A) : = ⟨ϕ, E(A)ψ⟩ , ∀A ∈ B(R) (1.3.6b)

Note µψ is a finite measure, and µϕ,ψ is a complex measure.

Definition 1.3.8. For a measurable function f : R → C we define the operator

Tf :=

∫
R
f(λ) dE(λ) (1.3.7)
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by its domain D(Tf ) := {ψ ∈ H :

∫
R
|f(λ)|2dµψ(λ) <∞} and

⟨ϕ, Tfψ⟩ :=

∫
f(λ) dµϕ,ψ(λ) for ψ ∈ D(Tf ), ϕ ∈ H (1.3.8)

Theorem 1.3.9. [33] (Spectral theorem for self-adjoint operator): Let T be a (pos-

sibly unbounded) self-adjoint operator on a Hilbert space H. Then, there exists a unique

orthogonal projection valued measure E on R, supported in σ(T ), such that

T =

∫
σ(T )

λ dE(λ) =

∫
R
λ dE(λ) (1.3.9)

∀f ∈ Cb(R) (and in fact for all measurable f) we find

f(T ) =

∫
σ(T )

f(λ) dE(λ) =

∫
R
f(λ) dE(λ) (1.3.10)

For the associated spectral measures at vectors we have

⟨ψ, f(T )ψ⟩ =

∫
R
f(λ) dµψ(λ) .

In particular, one finds

Ran E(A) = {ψ : µψ(R \A) = 0} .

That is, E(A) for A ∈ B(R) is the projection on those vectors where the measure µψ is

essentially supported within A.

1.4 Convergence of measures

Definition 1.4.1. [33]: Let (R,B(R), µ) be a measure space with a finite Borel measure

µ on R. Let {µn}n≥1 be finite Borel measures on R.

a) We say µn
w−→ µ converges weakly if for n→ ∞

∫
R
fdµn →

∫
R
fdµ, ∀f ∈ Cb(R) (1.4.1)
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b) We say µn
v−→ µ converges vaguely if for n→ ∞

∫
R
fdµn →

∫
R
fdµ, ∀f ∈ C0(R) (1.4.2)

Definition 1.4.2. [33]: Let µ be a finite Borel measure on R. The Stieltjes transfor-

mation of µ, Sµ is given by:

Sµ(z) :=

∫
R

dµ(x)

x− z
, z ∈ C+ (1.4.3)

Definition 1.4.3. We have the Cauchy distribution with parameteres λ ∈ R, η > 0 as,

ν(x;λ, η)dx where dx is the Lebesgue measure and:

ν(x;λ, η) :=
1

πη

[
1 +

(
x−λ
η

)2] =
1

π

[
η

(x− λ)2 + η2

]
(1.4.4)

If we put ψ = λ+ iη we can write the density as:

ν(x;ψ) =
1

π
ℑm

(
1

x− ψ

)
Definition 1.4.4. Given a finite measure µ on B(R) and η > 0 we define the absolutely

continuous measure µη by:

dµ(η)(λ)

dλ
:=

1

π
ℑm(S(λ+ iη) =

∫
R

1

π

η

(x− λ)2 + η2
dµ(x) (1.4.5)

And for f ∈ Cb(R)

f (η)(x) :=

∫
R

1

π

η

(x− λ)2 + η2
f(λ)dλ, f ∈ Cb(R) (1.4.6)

Lemma 1.4.5. If f ∈ Cb(R), µ(η)(f) = µ(f (η))

Proof. Using Fubini:

µ(η)(f) =

∫
R

∫
R

1

π

f(λ)η

(x− λ)2 + η2
dµ(x)dλ =

∫
R

∫
R

1

π

η

(x− λ)2 + η2
f(λ)dλdµ(x) = µ(f (η))

14



CHAPTER 1. MATHEMATICAL PRELIMINARIES

Lemma 1.4.6. If f ∈ C0(R), ∥f (η) − f∥∞ → 0 for η ↘ 0

Proof. Let f ∈ C0(R) and let ϵ > 0. Using the uniform continuity of f , ∃δ > 0 such that

|x− λ| < δ =⇒ |f(x)− f(λ)| < ϵ

In fact, by the Cauchy distribution:

∫
R

1

π

η

(x− λ)2 + (η)2
dλ = 1

. Now, with y = λ− x

|f (n)(λ)− f(λ)| ≤
∫
R

1

π

|f(x)− f(λ)|n
(x− λ)2 + n2

dλ =∫
{|x−λ|<δ}

1

π

|f(x)− f(λ)|η
(x− λ)2 + η2

dλ+

∫
{|x−λ|≥δ}

1

π

|f(x)− f(λ)|η
(x− λ)2 + η2

dλ ≤

ϵ

∫
{|x−λ|<δ}

1

π

η

(x− λ)2 + η2
dλ+

∫
{y≥δ}

2

π

|f(x)− f(λ)|η
y2 + η2

dy ≤

ϵ+

∫ ∞

δ

2

π

2∥f∥∞η
y2 + η2

dy ≤ ϵ+
4

π
∥f∥∞

∫ ∞

δ

η

y2 + η2
dy =

ϵ+
4

π
∥f∥∞(

π

2
− arctan(

δ

η
)) < ϵ(1 +

4

π
∥f∥∞)

and last line is given by η <
δ

tan(π2 − ϵ)

Lemma 1.4.7. For η > 0 and a finite measure µ one finds µ(η)(R) = µ(R).

Proof. Using Fubini, dominated convergence theorem and Cauchy distribution:

µ(η)(R) =
∫
R

∫
R

1

π

η

(x− λ)2 + η2
dµ(x)dλ =∫

R

∫
R

1

π

η

(x− λ)2 + η2
dλdµ(x) =∫

R

1

π
arctan

(
λ− x

η

) ∣∣∣∞
−∞

dµ(x) =

∫
R
1dµ(x) = µ(R)
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Lemma 1.4.8. Let µn, µ be finite measures. If µn
v−→ µ vaguely and µn(R) → µ(R), then

µn
w−→ µ weakly.

Proof. Let f ∈ Cb(R) and take

g(x) =



(N + ϵ+ x)/ϵ if −N − ϵ < x < −N

1 ,if −N ≤ x ≤ −N

(N + ϵ− x)/ϵ if N < x < N + ϵ

0 else

where we will choose N sufficiently large such that µ(1 − g) < ϵ for some given ϵ > 0. As

g ∈ C0(R) we note that µn(g) → µ(g), and as µn(1) = µn(R) → µ(1) = µ(R) we have

µn(1− g) → µ(1− g). Thus, we find,

∃N > 0 ,∀n > N : µn(1− g) ≤ 2ϵ .

Hence, for n > N , we find

|µn(f(1− g))| ≤ ∥f∥∞ µn(1− g) ≤ 2ϵ ∥f∥∞ and |µ(f(1− g))| < ϵ∥f∥∞

Moreover, fg ∈ C0(R), hence µn(fg) → µ(fg).

|µn(f)− µ(f)| ≤ |µn(f(1− g))− µ(f(1− g))|+ |µn(fg))− µ(fg))|

≤ 3ϵ∥f∥∞ + |µn(fg)− µ(fg)| → 3ϵ∥f∥∞

for n→ ∞. As ϵ > 0 was arbitrarily small, we get |µn(f)−µ(f)| → 0, giving the result.

Theorem 1.4.9. : Let µ be a finite Borel measure on R. Then µ(η)
w−→ µ for η ↘ 0

Proof. First, let f ∈ C0(R), and by Lemma 1.4.6

|µ(η)(f)− µ(f)| = |µ(f (η) − f)| ≤ µ(R)∥f (η) − f∥∞ → 0

16
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showing vague convergence. Now by Lemma 1.4.7 and Lemma 1.4.8 we get the result.

Proposition 1.4.10. If supn µn(R) < ∞, µ(R) < ∞, and Sµn(z) converges pointwise to

Sµ(z), ∀z ∈ C+, then µn
v→ µ vaguely.

Proof. Let f ∈ C0(R), let ϵ > 0. There is η > 0 such that ∥f (η) − f∥∞ < ϵ.

|µn(f)− µ(f) ≤ |µn(f)− µn(f
(η))|+ |µn(f (η))− µ(f (η))|+ |µ(f (η))− µ(f)|

≤ ∥f (η) − f∥∞µn(R) + |µ(η)n (f)− µ(η)(f)|+ ∥f (η) − f∥∞µ(R)

≤ ϵµn(R) +
∫
supp(f)

|Sµn(λ+ iη)− Sµ(λ+ iη)||f(λ)|dλ+ ϵµ(R)

Now, as |Sµn(z) − Sµ(z)| → 0 we find by dominated convergence that the integral above

converges to 0 for n → ∞. Thus, choosing n large enough we have |µn(f) − µ(f)| ≤

ϵ(supn µn(R) + µ(R) + 1). As ϵ was arbitrary small, we find µn(f) → µ(f) for n→ ∞. As

f ∈ C0(R) was arbitrary, this implies µn(f)
v→ µ(f)

Proposition 1.4.11. If µn(R) → µ(R) <∞ and Sµn(z) converges pointwise to Sµ(z), ∀z ∈

C+ then µn
w→ µ weakly.

Proof. This follows by Proposition 1.4.10 and Lemma 1.4.8.

Definition 1.4.12. [8]: Let {Tn}n∈N be self-adjoint operators on H. We say Tn converge to

a self-adjoint operator T in the sense of strong resolvent convergence if the resolvent

operator (Tn − λI)−1(x) goes to (T − λI)−1(x) for λ ∈ C/R, ∀x ∈ H

lim
n→∞

∥(Tn − λI)−1(x)− (T − λI)−1(x)∥ = 0 (1.4.7)

We say in a short way (Tn − λI)−1 s−→ (T − λI)−1

Proposition 1.4.13. [8]: Let T, {Tn}n∈N be self-adjoint operators of H and let x ∈ D(Tn)

for all n and x ∈ D(T ). Then, the spectral measures at x for Tn converge to the spectral

measure at x for T , weakly.

Proof. We define:

µx(f) := ⟨x, f(T )x⟩, µx,n(f) := ⟨x, f(Tn)x⟩

17
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That means, need to prove µx,n(f)
w−→ µx(f). Notice by definition

µx,n(R) = ⟨x, x⟩ = ∥x∥2 = µx(R)

. Now using the Stieltjes transform and by hypotesis:

lim
n→∞

Sµn(z) = lim
n→∞

⟨x, 1

Tn − z
x⟩ = ⟨x, 1

T − z
x⟩ = Sµ(z)

Finally, using Proposition 1.4.11, we have the result.

18



Chapter 2

Jacobi operators and transfer

matrices

2.1 Jacobi operators

Definition 2.1.1. [8] [35] [36] : A Jacobi-operator J on ℓ2(Z+) is given by

(Jψ)n =


−a1ψ1 + b0ψ0 , if n = 0

−an+1ψn+1 − anψn−1 + bnψn , if n ≥ 1

(2.1.1)

with an ∈ R \ {0}, bn ∈ R, n ∈ Z. Note that formaly Jψ can be defined for ψ ∈ CZ+ giving

a sequence in CZ+ .

The minimal domain of J is given by the compactly supported vectors:

Dmin = {ψ ∈ ℓ2(Z+) : #{n : ψn ̸= 0} <∞}

The maximal domain or natural domain is given by

Dmax = {ψ ∈ ℓ2(Z+) : Jψ ∈ ℓ2(Z+) } .
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By Jmin we denote the operator J with the domain Dmin. If we use just the symbol J we

typically mean the operator with its natural domain Dmax.

Clearly, J is an extension of Jmin and Jmin is symmetric. However, J is not necessarily

symmetric on its maximal domain.

Theorem 2.1.2. [8] [30] [21] Let J be a Jacobi operator as above. Then, J∗
min = J .

Proof. First, we show for ϕ ∈ Dmin, ψ ∈ Dmax it is easy to verify that

⟨Jminϕ, ψ⟩ = ⟨ϕ, Jψ⟩

and as Jψ ∈ ℓ2(Z+) this implies ψ ∈ D(J∗
min) and J∗

minψ = Jψ. We need to show that for

ψ ∈ D(J∗
min) we have ψ ∈ Dmax. Let ψ ∈ D(J∗

min) and let ϕnm = (Jψ)m for m ≤ n and

ϕnm = 0 for m > n. Moreover let ψnm = ψn for m ≤ n and ψnm = 0 for m > n. Then

∞ > ∥J∗
minψ∥ ≥ |⟨Jminϕ

n, ψ⟩|
∥ϕn∥

=
⟨Jminϕ

n, ψn+1⟩
∥ϕn∥

=
⟨ϕn, Jψn+1⟩

∥ϕn∥
= ∥ϕn∥

So we have ∥Jψ∥ = lim
n→∞

∥ϕn∥ ≤ ∥J∗
minψ∥ <∞

Corollary 2.1.3. If J is symmetric (with domain Dmax), then J is self-adjoint.

In particular, in this case, there is a unique spectral measure for J at the root δ0 ∈

ℓ2(Z+) given from spectral theory.

Proof. Jmin ⊂ J ⇒ J∗ ⊂ J∗
min = J , and as J is symmetric, J ⊂ J∗ and therefore

J = J∗.

Theorem 2.1.4. Let Jmin a Jacobi operator on ℓ2(Z+). If

∞∑
n=1

1

an
= ∞ (2.1.2)

holds, then Jmin is essentially self-adjoint and J = J∗
min is self-adjoint.
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Proof. We have to prove that J = J∗
min is symmetric, so let ϕ, ψ ∈ Dmax.

⟨ϕ, Jψ⟩ − ⟨Jϕ, ψ⟩ = lim
n→∞

(⟨ϕn, Jψ⟩ − ⟨Jϕ, ψn⟩)

= lim
n→∞

n∑
m=0

(
ϕ̄m(Jψ)m − (Jϕ)mψm

)
= lim

n→∞
an+1(ϕ̄nψn+1 − ϕ̄n+1ψn)

(2.1.3)

Notice, that xn = ϕ̄nψn+1 − ϕ̄n+1ψn is a sequence in ℓ1(Z+). and the limit lim
n→∞

an+1xn

exists. We want to show that it is zero, therefore it is sufficient to show that lim inf
n→∞

|an+1xn|

is zero. Suppose lim inf
n→∞

|an+1xn| = c ̸= 0, then for some N ∈ Z,∀n ≥ N implies

c

2
< |an+1xn| ≤ |an+1||xn|

Now dividing and taken the sum in both sides.

2

c
|xn| >

1

|an+1|
=⇒

∑
n≥N

1

|an+1|
<
∑
n≥N

2

c
|xn| <∞

Then, by contrapositive we have the result.

2.2 Transfer matrix

Definition 2.2.1. [36] : The transfer matrix at site n ∈ Z+ and spectral parameter

z ∈ C is given by

T zn :=

(bn − z)/an −an

1/an 0

 (2.2.1)

where we use a0 = 1 (note that the operator J on ℓ2(Z+) des not define a0)

Note, that for any ψ ∈ CZ+ , z ∈ C, the equation (Jψ)n = zψn is equivalent to

an+1ψn+1

ψn

 = T zn

anψn
ψn−1

 .
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Let us also define the products for m > n ∈ Z+

T zm,n := T znT
z
n−1 · · ·T zm+1T

z
m

so that Jψ = zψ implies

an+1ψn+1

ψn

 = T zm,n

amψm
ψm−1

 .

Definition 2.2.2. We denote the restriction of J to ℓ2({m,m + 1, . . . , n}) ≡ Cn−m+1 by

Jm,n (n ≥ m). This means, Jm,n is given by the matrix

Jm,n =


bm −am+1

−am+1
. . . . . .
. . . . . . −an

−an bn


if we identify δm, δm+1, . . . , δn with the standard basis in Cn−m+1.

Furthermore, we define the boundary resolvent data for Jm,n at spectral parameter z ̸∈

σ(Jm,n) by

αzm,n := ⟨amδm, (Jm,n − z)−1amδm⟩

βzm,n := ⟨amδm, (Jm,n − z)−1δn⟩

γzm,n := ⟨δn, (Jm,n − z)−1amδm⟩

δzm,n := ⟨δn, (Jm,n − z)−1δn⟩

Note that δm is a cyclic vector for Jm,n and therefore, the meromorphic function z 7→ βzm,n

is not identically zero. By Kramer’s rule it is a rational function in z, hence it has at most

finitely many zeroes and finitely many poles.
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Proposition 2.2.3. Let be given n ≥ m ∈ Z+ and let z ̸∈ σ(Jm,n). Then

T zm,n =

 (βzm,n)
−1 −(βzm,n)

−1αzm,n

δzm,n(β
z
m,n)

−1 γzm,n − δzm,n(β
z
m,n)

−1αzm,n


Proof. First, for m = n this follows by a simple calculation. Now, let z be such that

βzm,k ̸= 0, bk − z ̸= 0 and z ̸∈ σ(Jm,k) for any m ≤ k ≤ n. The more general case follows

from analytic extension. We will show the statement for these z and the transfer matrix

T zm,k by induction. As stated, k = m is trivial. As long as k < n we need the step from

k − 1 to k.

We define:

ψ̂k := ψk, k < m. ψ̂m :=

 ψm

ψm+1

...
ψn



ψ̂m+1 := ψn+1, ξ :=

 1
0
...
0
0

 , ϕ :=

 0
0
...
0
1


then we have

ψm = ξ∗ψ̂m , ψn := ϕ∗ψ̂m

and we get

(̂Jψ̂)m := Jm,nψ̂m − ξψ̂m−1 − ϕψ̂m+1 .

Moreover, we define

α β

γ δ

 :=

ξ∗
ϕ∗

 (Jm,n − z)−1
(
ξ ϕ

)
.

With z being the spectral parameter, (̂Jψ̂)m = zψ̂m leads to

zψ̂m = Jm,nψ̂m − ξψ̂m−1 − ϕψ̂m+1 =⇒

ϕψ̂m+1 = (Jm,n − z)ψ̂m − ξψ̂m−1 =⇒
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ξ∗(Jm,n − z)−1ϕψ̂m+1 = ξ∗ψ̂m − ξ∗(Jm,n − z)−1ξψ̂m−1 =⇒

βψn+1 = ψm − αψm−1 =⇒ ψn+1 = β−1ψm − β−1αψm−1

Multiplying from the left with ϕ∗ instead of ξ∗ leads to

ϕ∗(Jm,n − z)−1ϕψ̂m+1 = ϕ∗ψ̂m − ϕ∗(Jm,n − z)−1ξψ̂m−1 =⇒

δψn+1 = ψn − γψm−1 =⇒

δ(β−1ψm − β−1αψm−1) = ψn − γψm−1 =⇒

ψn = δβ−1ψm + (γ − δβ−1α)ψm−1

Finally, we have:

ψn+1

ψn

 =

 β−1 −β−1α

δβ−1 γ − δβ−1α

 ψm

ψm−1


As ψm, ψm−1 determine the solution to Jψ = zψ uniquely, the matrix must be T zm,n.

2.3 Spectral averaging formulas

In this section let J be a self-adjoint Jacobi operator with maximal domain.

Definition 2.3.1. Let χn be the operator

(χnψ)m : =


0 if m ̸= n

ψn if m = n

Theorem 2.3.2. Let J be a self-adjoint Jacobi operator (self-adjoint on its maximal do-

main). For any sequence Vn of real numbers and complex number z ∈ C \ R we find

lim
n→∞

⟨δ0, (J0,n + Vnχn − z)−1δ0⟩ = ⟨δ0, (J − z)−1δ0⟩
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Also, for any probability measure ν on R and z ∈ C \ R we find that

lim
n→∞

∫
R
⟨δ0, (J0,n + V χn − z)−1δ0⟩dν(V ) = ⟨δ0, (J − z)−1δ0⟩

Proof. The operators Jm,n can be extended to operators on ℓ2(Z+) by a direct sum with

zero. Then, for any sequence Vn of reals we have that J0,n + Vnχn converges strongly to J

on Dmin. By Proposition 1.4.13 we have strong resolvent convergence

(J0,n + Vnχn − z)−1 s−→ (J − z)−1

for any z ̸∈ R. This implies the first statement. Using dominated convergence, we have the

second statement.

Lemma 2.3.3. We find

⟨δ0, (J0,n − V χn − z)−1δ0⟩ = αz0,n + V βz0,n(1− V δz0,n)
−1γz0,n

Proof. Using the first resolvent identity Theorem 1.3.4 with the definition of inner product

we have the result.

Let ν be the Cauchy distribution and define the spectral average measure at the

root,

µn(g) =

∫
R
⟨δ0, g(J0,n − V χn), δ0⟩ dν(V ) .

Then one has the following formula for the spectral average:

Theorem 2.3.4. [8] (Average formula) The measure µn is absolutely continuous and

has the density
dµn(λ)

dλ
=

1

π

(βλ0,n)
2

1 + (δλ0,n)
2
=

1

π

1

∥T λ0,n ( 10 ) ∥2

Proof. Using the last definition with g(V ) =
1

V − z
and the Stieltjes transform with z =

λ+ iη

µn(g(z)) =

∫
R
⟨δ0, (J0,n−V χn−z)−1δ0⟩dν(V ) =

∫
R
(αz0,n+V β

z
0,n(1−V δz0,n)−1δz0,n)dν(V ) =
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= αz0,n + iβz0,n(1− iδz0,n)
−1γz0,n

Using rank-one perturbation arguments it is known that µn has to be an absolutely

continuous measure, its density is given by 1
π limη↓0ℑm(g(λ + iη)). We note that αλ0,n is

real, and γλ0,n = βλ0,n for λ ∈ R. Thus,

dµn
dλ

= ℑm
i(βλ0,n)

2

π(1− iδλ0,n)
=

ℜe(βλ0,n)2(1 + iδλ0,n)

π(1 + (δλ0,n)
2
)

=
1

π

(βλ0,n)
2

1 + (δλ0,n)
2

For the last part:

(βλ0,n)
2

1 + (δλ0,n)
=

1∥∥∥∥( (βλ
0,n)

−1

δλ0,n(β
λ
0,n)

−1

)∥∥∥∥2
=

1

∥T λ0,n ( 10 ) ∥2

Corollary 2.3.5. Let J be self-adjoint on Dmax, and let µ be the spectral measure at the

origin δ0, then µn
w−→ µ

Proof. Using the last theorem 2.3.4 with proposition 1.4.11 we have the result.

2.4 Spectral averaging formula on the strip

The formula of Theorem 2.3.4 can be extended to strips, i.e. block-Jacobi operators,

and even more generally to self-adjoint operators with locally finite hopping [31].

Definition 2.4.1. A block-Jacobi operator J on ℓ2(Z+,Cl) ∼= ℓ2(Z)⊗ Cl is given by

(Jψ)n =


−A∗

1ψ1 +B0Ψ0 , ifn = 0

−A∗
n+1ψn+1 + Bnψn − Anψn−1 ifn ≥ 1 .

(2.4.1)

where An ∈ GL(l) are invertible l × l matrices, Bn ∈ Her(l) are Hermitian l × l matrices,

and ψ = (ψn)n∈Z+ is an ℓ2 sequence of vectors in Cl, ψn ∈ Cl. Note that formally Jψ can

be defined for ψ ∈ (Cl)Z+ .
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Like above, we will assume that J is self-adjoint on its natural domain, which implies

that Jmin is essentially self-adjoint, were the domain of Jmin are the compactly supported

functions.

If An = I are the unit matrices and Bn = B is some fixed Hermatian matrix denoting

the adjacency matrix of a finite graph G, then J can be seen as a discrete Laplacian on the

product Z+ ×G. In fact in this case,

As before, solving Jψ = zψ leads to the equation

A∗
n+1ψn+1

ψn

 = T zn

A∗
nψn

ψn−1

 where T zn =

(Bn − z)(A∗
n)

−1 −An

(A∗
n)

−1 0

 (2.4.2)

Note that the 4 blocks of the transfer matrices are l× l matrices and T zn is a 2l× 2l matrix.

As above, (case l = 1) we introduce the products

T zm,n = T zmT
z
m−1 · · ·T zm+1T

z
m ,

and the restrictions of J to ℓ2({m,m+ 1, . . . , n})⊗ Cl ∼= Cl(n−m+1) given by

Jm,n =


Bm −A∗

m+1

−Am+1
. . . . . .
. . . . . . −A∗

n

−An Bn

 . (2.4.3)

Now we identify δj for j = m, . . . , n with the canonical injection of ℓ2({j})⊗Cl ∼= Cl into

ℓ2({m, . . . , n} ⊗Cl). For a vector v ∈ Cl we thus have δjv = δj ⊗ v where on the left hand

side δj is the classical δ symbol given one of the canonical basis vectors in ℓ2({m, . . . , n}).

Thus, δj is a l(n −m + 1) × l matrix consisting of (n −m + j) blocks in a column of size

l× l, where the j+1−m block is the unit matrix and all other blocks are the zero matrix.
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Then, similar as above, for z ̸∈ σ(Jm,n) we define the boundary resolvent data for Jm,n by

αzm,n := A∗
mδ

∗
m (Jm,n − z)−1 δmAm (2.4.4)

βzm,n := A∗
mδ

∗
m (Jm,n − z)−1 δn (2.4.5)

γzm,n := δ∗n (Jm,n − z)−1 δmAm (2.4.6)

δzm,n := δ∗n (Jm,n − z)−1 δn . (2.4.7)

(2.4.8)

Now, all these are l × l matrices.

A consequence of the more general calculations in [31] is the following

Theorem 2.4.2. [31] For given m ≤ n one finds that for all but finitely many values of

z ∈ C \ σ(Jm,n), the matrix βzm,n is invertible, and

T zm,n =

 (βzm,n)
−1 −(βzm,n)

−1αzm,n

δzm,n(β
z
m,n)

−1 γzm,n − δzm,n(β
z
m,n)

−1αzm,n

 .

Proof. The proof is exactly the same as for Proposition 2.2.3 .

Now in order to get an equivalent of the spectral averaging formula and the limit

expresion of a spectral measure at a vector, we need to first fix a vector in the root-shell.

Thus, we choose some A⃗ ∈ Cl which we identify with δ0⊗A⃗ ∈ ℓ2{Z+}⊗Cl. (Note that there

is no A0 matrix defined formally. For the transfer matrices, one can choose any invertible

one. In some sense, the vector A⃗ is now replacing the matrix A0.)

Let us assume that ∥A⃗∥ = 1, so that A⃗∗A⃗ = 1. Furthermore, identifying A⃗∗ with

a linear map from Cl to C, we have a l − 1 dimensional kernel consisting of the vectors

orthogonal to A⃗.

K := ker(A⃗∗) = {v ∈ Cl : A⃗∗v = 0} = {v ∈ Cl : A⃗ · v = 0}.
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Then, in this special case, the work of [31] simply replaces T z0 by the set of 2l× 2 matrices

Tz0 =


(Bn − z)(A⃗+ v) −A⃗+ (Bn − z)w

A⃗+ v w

 : v, w ∈ K

 ⊂ C2l×2 . (2.4.9)

Choosing A0 = I to be the identity matrix, one has

T z0 =

Bn − z −I

I 0

 and Tz0 = T z0


A⃗+ v w

0 A⃗

 : v, w ∈ K

 (2.4.10)

where we adopt the notation that TA = {TA : A ∈ A} for sets of matrices A.

Moreover we consider the spectral measure µA⃗ at the vector A⃗ ≡ δ0 ⊗ A⃗, that means

∫
fdµA⃗ = ⟨δ0 ⊗ A⃗, f(J) (δ0 ⊗ A⃗) ⟩

measure

Now, using that the operator J can not have compactly supported eigenfunctions, The-

orem 1 in [31] implies the following:

Theorem 2.4.3. [31] In the sense of a weak limit for finite measures one finds that

dµA⃗(λ) = lim
n→∞

1

π

dλ

min
Tλ∈Tλ

0

∥T λ1,n T λ ( 10 ) ∥2
= lim

n→∞

1

π

dλ

min
v⃗∈K

∥∥∥T λ0,n ( A⃗+v⃗0

)∥∥∥2
Using the symplectic structure of the transfermatrices and the Banach-Alaoglu theorem

one can obtain a criterion for absolute continuity (see [31]).

Theorem 2.4.4. If one finds u⃗λ,n ∈ Cm for λ ∈ (a, b), n ∈ N, such that

lim inf
n→∞

∫ b

a

∥∥∥T λ0,n ( u⃗λ,nA⃗ )∥∥∥4 dλ < ∞

then, the measure µA⃗ is absolutely continuous in the interval (a, b).

Proof. First, in [31] it was shown that the minimum min
v⃗∈K

∥∥∥T λ0,n ( A⃗+v⃗0

)∥∥∥ is achieved at a
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very specific vector which we call v⃗λ,n ∈ K. Defining

fn(λ) := π−1
∥∥∥T λ0,n ( A⃗+v⃗λ,n0

)∥∥∥−2

we see from Theorem 2.4.3 that µA⃗ is the weak limit of fn(λ)dλ in the interval (a, b). Note

that

(
T λ0,n

(
u⃗λ,n

A⃗

))∗ (
0 −I
I 0

)
T λ0,n

(
A⃗+v⃗λ,n

0

)
=

= ( u⃗∗λ,n A⃗∗ )
(
T λ0,n

)∗ ( 0 −I
I 0

)
T λ0,n

(
A⃗+v⃗λ,n

0

)
=

= ( u⃗∗λ,n A⃗∗ )
(
0 −I
I 0

) (
A⃗+v⃗λ,n

0

)
= ( u⃗∗λ,n A⃗∗ )

(
0

A⃗+v⃗λ,n

)
= 1

where we use ∥A⃗∥ = 1 and A⃗∗v⃗λ,n = 0 as v⃗λ,n ∈ K. Now, using the Cauchy Schwartz

inequality, this gives

1 ≤
∥∥∥T λ0,n ( u⃗λ,nA⃗ )∥∥∥ ·

∥∥∥T λ0,n ( A⃗+v⃗λ,n0

)∥∥∥
and hence

π2|fn(λ)|2 =
1∥∥∥T λ0,n ( A⃗+v⃗λ,n0

)∥∥∥4 ≤
∥∥∥T λ0,n ( u⃗λ,nA⃗ )∥∥∥4 .

Thus, the estimate given implies that

lim inf
n→∞

∫ b

a
|fn(λ)|2 dλ < ∞ .

This means, along a suitable sub-sequence, the norm of fn in L2(a, b) is bounded. By

Banach-Alaaoglu, there is a sub-sequence ( o better, a sub-sub-sequence of the suitable

sub-sequence) fnk
which converges weakly in L2(a, b) to a limit f ∈ L2(a, b). Noting that

bounded continuous functions g ∈ Cb(a, b) are also in L2(a, b) one has

lim
k→∞

∫ b

a
g(λ) fnk

(λ) dλ =

∫ b

a
g(λ) f(λ) dλ .

for all g ∈ Cb(a, b). But since fnk
(λ)dλ converges weakly to the measure µA⃗ this means
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that in the interval (a, b) we have

dµA⃗(λ) = f(λ) dλ

which is an absolutely continuous measure in (a, b) with a density in L2(a, b).
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Chapter 3

Absolutely continuous spectrum for

block Jacobi operators with random

ℓ2 matrix-potential

3.1 Model and main result

We consider a random family of block-Jacobi operators on ℓ2(Z+)⊗ Cl given by

(HωΨ)n = −Ψn−1 −Ψn+1 +AΨn + VnΨn (3.1.1)

where Vn = Vn(ω) ∈ Her(l) are independent random Hermitian l × l matrices satisfying

∑
n≥0

(
∥E(Vn)∥+ E(||Vn||2)

)
< ∞ , (3.1.2)

where E denotes the expectation value. This means, we have some probability space

(Ω,A,P) and Her(l) valued random variables Vn : Ω → Her(l). Ψ = (Ψn)n≥0 ∈ ℓ2(Z+)⊗Cl

means Ψn ∈ Cl, ∀n ∈ Z+ with
∑
n≥0

||Ψn||2 < ∞, A is a vertical Laplacian, which is a fixed

Hermitian matrix (A = A∗) and finally we have Vn = Vn(ω) a random matrix potential.
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We also de fine the ’unperturbed’ operator H0 by

(H0Ψ)n = −Ψn−1 −Ψn+1 +AΨn (3.1.3)

H0 and Hω can be seen as quasi-one dimensional discrete Schrödinger operators on a

strip of width l. The matrix A maybe the adjacency matrix of a finite graph G, in which

case H0 would be like a discrete Laplace operator on the product graph Z+ × G. H is

then a random perturbation of H0 adding the matrix potentials Vn at each horizontal level

n. This way, Hω falls into the class of operators describing randomly perturbed quantum

systems. The study of such systems was initiated by Anderson [1] with the today called

Anderson model where one studies operators on Zd with independent identically distributed

potentials on each lattice site. In general for such models one finds Anderson localization at

large disorder (large variance of the potential) and at the edges of the spectrum. Anderson

localization means one has pure point spectrum and exponentially decaying eigenfunctions.

There are two general methods to prove this, the fractional moment method [3] and multi-

scale analysis [13, 14, 15]. The fractional moment method at high disorder works fine in any

graphs with a finite upper bound on the connectivity of one point [34]. For a long time the

high disorder Bernoulli Anderson model on Zd for d > 1 could not be handled. However,

recently the localization has also been shown in this case in 2 and 3 dimensions [23, 24].

Existence of absolutely continuous spectrum for Anderson models at low disorder has first

been proved for infinite dimensional hyperbolic type graphs like regular trees and tree-like

structures [2, 4, 10, 11, 17, 19, 20, 27, 28]. Absolutely continuous spectrum has also been

shown for the Anderson model on special graphs with a finite-dimensional growth, so called

anti-trees and partial antitrees [29, 30].

As a mean to study critical transitions from absolutely continuous to pure point spec-

trum, random decaying potentials in one dimension were also investigated [12, 18, 22]. Here,

we extend and improve on the result in [12] using methods similar to [22]. The key point

for the absolutely continuous spectrum result in [22] has been the spectral average formula

by Carmona-Lacroix as stated in Theorem 2.3.4. The key point here is its generalization

to strips Theorem 2.4.3 which is a special case of the broader generalizaion in [31].
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3.1.1 Spectrum and spectral bands

Without loss of generality, we may assume that A in (3.1.1) is a diagonal matrix: If this

is not the case, then, as A∗ = A, there is a unitary matrix U such that U∗AU is diagonal.

Then, define the unitary operator U : ℓ2(Z+,Cl) → ℓ2(Z+,Cl) by

(UΨ)n := UΨn

and one finds:

(U∗HωUΨ)n = U∗(HUΨ)n =

U∗(−(UΨ)n+1 − (UΨ)n−1 +A(UΨ)n + Vn(UΨ)n) =

U∗(−UΨn+1 − UΨn−1 +AUΨn + VnUΨn) =

−Ψn+1 −Ψn−1 + U∗AUΨn + U∗VnUΨn

Now U∗AU is diagonal and U∗VnU are random Hermitian matrices satisfying an inequality

as (3.1.2). Thus, using this unitary conjugation, we may assume that A is diagonal, hence

A =


α1 0 . . . 0

0 α2 0 0
... 0

. . . 0

0 0 0 αl

 (3.1.4)

with αj ∈ R, j = 1, . . . , l being the eigenvalues of A.

Proposition 3.1.1. Let (Ju)n = −un+1 − un−1, u ∈ ℓ2(Z+) then:

H0
∼=

l⊕
j=1

(J + ajI), and, hence, σ(H0) =

l⋃
j=1

[aj − 2, aj + 2]

with pure absolutely continuous spectrum.

Proof. Let

Ψj := (Ψn,j)
∞
n=1,∀j ∈ {1, ..., l}

34



CHAPTER 3. ABSOLUTELY CONTINUOUS SPECTRUM FOR BLOCK JACOBI
OPERATORS WITH RANDOM ℓ2 MATRIX-POTENTIAL

then

U : ℓ2(Z+,Cl) :→
l⊕

j=1

ℓ2(Z+), UΨ =

l⊕
j=1

Ψj

is unitary and

UH0U
∗

l⊕
j=1

Ψj =

l⊕
j=1

(J + ajI)

We call [αj − 2, αj + 2] the j-th band of the spectrum of H0, {αj − 2, αj + 2} are the

band-edges of this band. Each band-edge can be internal, meaning inside of another band,

or external, meaning an edge (boundary point) of the spectrum of H0. We consider the

spectrum of H0 without all the (external and internal) band-edges and define

Σ =

 l⋃
j=1

(αj − 2, αj + 2)

 \

 l⋃
j=1

{αj − 2, αj + 2}

 (3.1.5)

Note Σ is open and Σ = σ(H0). We also define the intersection of all open bands,

Σ0 =
l⋂

j=1

(αj − 2, αj + 2) (3.1.6)

which might be empty. For the essential spectrum we note:

Proposition 3.1.2. σess(Hω) = Σ = σ(H0)

Proof. As
∞∑
n=1

E(||Vn||)2 <∞ that implies
∞∑
n=1

||Vn||2 <∞ almost surely. Then

∥∥∥∥∥
( ∞⊕
n=1

Vn

)
ψ −

(
m⊕
n=1

Vn

)
ψ

∥∥∥∥∥
2

≤
∞∑

n=m+1

||Vnψn||2 ≤
∞∑

n=m+1

||Vn||2||ψn||2 ≤
∞∑

n=m+1

||Vn||2||ψ||2

Thus ∥∥∥∥∥
∞⊕
n=1

Vn −
m⊕
n=1

Vn

∥∥∥∥∥
2

≤
∞∑

n=m+1

||Vn||2 → 0

and
⊕∞

n=1 Vn is a compact operator (limit of of operators with finite dimensional range)
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and, hence,

σess(Hω) = σess

(
H0 +

∞⊕
n=1

Vn

)
= σess(H0) = Σ

3.1.2 The main result

The main theorem of the whole thesis is the following:

Theorem I. Apart from discrete spectrum, (embedded isolated eigenvalues) the spectrum

of Hω is almost surely purely absolutely continuous in Σ. Moreover, there are no embed-

ded eigenvalues in the intersection of the bands, Σ0. That means, there may be embedded

eigenvalues in Σ \Σ0 which may only accumulate at the boundary ∂Σ, that is, the internal

and external band-edges.

In technical terms, this means, there is a set Ω̂ ⊂ Ω of probability one, P(Ω̂) = 1, such

that for all ω ∈ Ω̂ and all compact subsets C ⊂ Σ, there is a finite subset of eigenvalues

E ⊂ C \ Σ0, such that the spectrum of Hω is purely absolutely continuous in C \ E.

Under the stronger assumption that E(Vn) = 0 and
∑

n E(∥Vn∥2 + ∥Vn∥4) < ∞ it was

aready shown in [12] that the spectrum is purely absolutely continuous in Σ0, and that

there is absolutely continuous spectrum in all of Σ. However the proof method used there

for the set Σ does not exclude any other type of singular spectrum.

Note in the line case, l = 1 we have Σ = Σ0 and thus purely absolutely continuous

spectrum as already shown in [22]. On the line case it is also known that for any, also

non-random ℓ2-potential, one has absolutely continuous spectrum in Σ [9], but again, any

other type of embedded singular spectrum is possible (not excluded in the proof).

The general operator Hω investigated here allows the case, were the operator (almost

surely) splits into the direct sum of two strip operators H1 ⊕ H2 (two separated strips).

Then, adjusting one of the Vn one may create an eigenvalue for H1, lying outside of its

essential spectrum, but lying inside the essential spectrum of H2. In fact, one may have the

part of Vn belonging to H1 non-random and create some fixed embedded eigenvalue (for all

of ω). Thus, without further ’channel-mixing’ assumptions, one can not expect to obtain
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pure absolutely continuous spectrum within Σ. But under sufficient ’mixing’ created by

the Vn, this should be true.

3.2 Transfer matrices, elliptic and hyperbolic channels

Recall that Hω is given by

(Hωψ)n = −ψn+1 − ψn−1 + (A+ Vn)ψn

The eigenvalue equation Hωψ = λψ is a recursion that can be written in the matrix form

as follows. ψn+1

ψn

 = T λn

 ψn

ψn−1

 where T λn =

Vn +A− λI −I

I 0

 .

We may write

T λn = T λH0
+

Vn 0

0 0

 where T λH0
=

A− λI −I

I 0


where is basically the transfer matrix of the unperturbed operator H0. We will now write

the transfer matrix in some basis which diagonalises T λH0
.

Recall, A is assumed diagonal and its eigenvalues are α1, . . . , αl. Adopting the notions

of [26] we define:

Definition 3.2.1. Let λ ∈ R. We call the j-th channel

1. Elliptic at λ if |αj − λ| < 2

2. Hyperbolic at λ if |αj − λ| > 2

3. Parabolic at λ if |αj − λ| = 2

Now fix some λ ∈ Σ. Note that by the definition of Σ, there are no parabolic channels

and there is at least one elliptic channel. at λ We assume the channels to be ordered such
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that:

|αj − λ| < 2 ∀j ∈ {1, ..., le}

|αj − λ| > 2 ∀j ∈ {le + 1, ..., l}

Note that the set of all λ satisfying these inequalities is some open interval (λ0, λ1) ⊂ Σ.

We later vary λ slightly within this interval. For λ ∈ (λ0, λ1), and j ∈ {1, ..., le} we define

kj = kj(λ) ∈ (0, π) by

2 cos(kj) = αj − λ .

For j ∈ {1, ..., lh} with lh = l − le we define γj = γj(λ) ∈ R, |γj | > 1, by

γj +
1

γj
= αj+le − λ

We define the diagonal matrices

Γ =


γ1 0 . . . 0

0 γ2 0 0
... 0

. . . 0

0 0 0 γlh

 , K =


k1 0 . . . 0

0 k2 0 0
... 0

. . . 0

0 0 0 kle


such that

A− λI =

2 cos(K) 0

0 Γ + Γ−1

 .

Thus, for the transfer matrices of H0 we find

T λH0
=


2 cos(K) 0 −I 0

0 Γ + Γ−1 0 −I

I 0 0 0

0 I 0 0

 .
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Also we note that

T λH0


e±iK

0

I

0

 =


e±iK

0

I

0

 e±iK , T λH0


0

Γ±1

0

I

 =


0

Γ±1

0

I

Γ±1

so that e±ikj , γj and γ−1
j are the eigenvalues of T λH0

. In order to diagonlize T λH0 we

introduce

Qλ =


eiK e−iK 0 0

0 0 Γ−1 Γ

Ile Ile 0 0

0 0 Ilh Ilh

 ,

where Id is the unit matrix of size d× d, then

Q−1
λ T λnQλ = T λ + Vλn (3.2.1)

with T λ being diagonal, more precisely,

T λ =


eiK 0 0 0

0 e−iK 0 0

0 0 Γ−1 0

0 0 0 Γ

 , Vλn = Q−1
λ

Vn 0

0 0

Qλ . (3.2.2)

We note that Qλ is indeed invertible for λ ∈ (λ0, λ1) as eikj ̸= e−ikj and γj ̸= 1/γj in

this case. Defining

QK = (eiK − e−iK)−1 , QΓ = (Γ−1 − Γ)−1 (3.2.3)
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we find

Q−1
λ =


QK 0 −e−iKQK 0

−QK 0 QKe
iK 0

0 QΓ 0 −ΓQΓ

0 −QΓ 0 Γ−1QΓ

 (3.2.4)

Now, in order to work with uniform estimates we will restrict our consideration to a

compact interval [a, b] ⊂ (λ0, λ1) ⊂ Σ. Chosen such a compact interval and allowing com-

plex values for kj and γj , we can extend the definitions of K = K(λ),Γ = Γ(λ), Qλ, Q
−1
λ , T λ

analytically to spectral parameters z in the complex plane, z = λ+iη ∈ [a, b]+i[−c, c] ⊂ C,

for c small enough. This means λ ∈ [a, b], η ∈ [−c, c], and the equations (3.2.1) and (3.2.2)

still hold with λ replaced by z. We will need this extension in some part to use analyticity

arguments.

Choosing c > 0 small enough, one can guarantee by compactness and analyticity argu-

ments, that there is some γ > 0 such that

∥∥Γ−1(λ+ iη)
∥∥ ≤ e−2γ , and

∥∥∥e±iK(λ+iη)
∥∥∥ ≤ eγ ∀λ ∈ [a, b], ∀ |η| ≤ c . (3.2.5)

Note for λ ∈ [a, b] we have ∥e±iK∥ = 1.

3.3 The key estimate

We consider the following general situation:

Let be given independent random (l0 + l1)× (l0 + l1) matrices given by

Tn = T + Wn where T =

S
Γ

 , S ∈ Cl0×l0 , Γ ∈ Cl1×l1 (3.3.1)

where for some fixed γ > 0 we have

∥S∥ ≤ eγ , ∥Γ−1∥ ≤ e−2γ . (3.3.2)

Note that the second condition implies ∥Γv∥ ≥ e2γ∥v∥ for any vector v ∈ Cl0+l1 . Moreover,
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Wn are independent random (l0+l1)×(l0+l1) matrices satisfying, with some fixed constant

CW > 0,

∥Wn∥ ≤ e2γ − eγ

4
and

∞∑
n=1

∥E(Wn)∥+ E(∥Wn∥2) ≤ K < ∞ (3.3.3)

For certain parts we will also assume the stricter bound ∥S∥ ≤ 1.

Now let us consider the Markov process of (l0 + l1)× (l0 + l1) matrices given by

X0 = I, Xn+1 = TnXn .

Using the splitting into blocks of sizes d0 and d1 like above we write

Xn =

An Bn

Cn Dn

 and Wn =

an bn

cn dn

 (3.3.4)

From the process Xn we will define the process of pairs of matrices (Xn, Zn) given by

Xn = An −BnD
−1
n Cn , Zn = BnD

−1
n . (3.3.5)

Xn is a so called Schur-complement. Some standard calculations , see for instance [32],

show that (Xn, Zn) can be seen as the process of equivalence classes of Xn defining

X1 ∼ X2 ⇔ X1 = X2

 I 0

M G


with I being the l0 × l0 identity matrix, G ∈ GL(l1) and M being any l1 × l0 matrix. Note

that the set of matrices of the form
(
I 0
M G

)
is a group.

In that sense if D is invertible we get

Xn+1 =

An+1 Bn+1

Cn+1 Dn+1

 ∼

An Bn

Cn Dn

 I 0

−CnD−1
n D−1

n

 =

Xn Zn

0 I


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and we find

Xn+1 ∼

S + an bn

cn Γ + dn

Xn Zn

0 I

 =

(S + an)Xn (S + an)Zn + bn

cnXn cnZn + Γ + dn


which leads to the identities

Zn+1 =
(
(S + an)Zn + bn

)(
cnZn + Γ + dn

)−1 (3.3.6)

Xn+1 = (S + an)Xn − Zn+1 cnXn (3.3.7)

provided that D−1
n and D−1

n+1 exist.

Lemma 3.3.1. If M is a d× d square matrix we find for c > 0 fixed

∥Mv∥ ≥ c∥v∥ for all v ∈ Cd ⇔ M is invertible and ∥M−1∥ ≤ 1

c

Proof. First we show "⇒". Given v one finds The left condition clearly gives that v 7→Mv

is injective, hence also surjective (as a linear map from a finite dimensional vector space to

itself). And using M−1v for v in the inequality

∥M−1v∥ ≤ 1

c
∥MM−1v∥ =

1

c
∥v∥ .

For the other direction "⇐" note

∥v∥ = ∥M−1Mv∥ ≤ ∥M−1∥ ∥Mv∥ ≤ 1

c
∥Mv∥ .

Lemma 3.3.2. Assume ∥Zn∥ ≤ 1 and that the bounds conditions (3.3.2), (3.3.3) hold.

Then

∥(cnZn + Γ + dn)
−1∥ ≤ 1

e2γ − 2∥Wn∥
≤ 2

e2γ + eγ
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Proof. We use Lemma 3.3.1 noting

∥(cnZn + (Γ + dn))v∥ ≥ ∥Γv∥ − ∥(cnZn + dn)v∥ ≥ e2γ∥v∥ − (∥cn∥∥Zn∥+ ∥dn∥)∥v∥

≥
(
e2γ − 2∥Wn∥

)
∥v∥ ≥

(
e2γ − e2γ − eγ

2

)
∥v∥ =

e2γ + eγ

2
∥v∥ .

Now we are ready to make the first main step for the needed estimates:

Proposition 3.3.3. Under the given assumptions (3.3.2) and (3.3.3) one finds: Dn is

invertible for all n ∈ N, hence, Xn and Zn are well defined for all n and

sup
n∈N

∥Zn∥ ≤ 1

Proof. The proof will be by induction. First, we notice D0 = I is invertible and ∥Z0∥ =

∥0∥ = 0 ≤ 1. Now assume ∥Zn∥ ≤ 1 and Dn being invertible. We find

An+1 Bn+1

Cn+1 Dn+1

 =

S + an bn

cn Γ + dn

An Bn

Cn Dn


Now by the lower right block

Dn+1 = cnBn + (Γ + dn)Dn

Dn+1D
−1
n = cnBnD

−1
n + (Γ + dn) = cnZn + (Γ + dn)

Lemma 3.3.2 now shows invertibility of Dn+1D
−1
n and hence of Dn+1. Using (3.3.6) we find

∥Zn+1∥ = ∥((S + an)Zn + bn)(cnZn + (Γ + dn))
−1∥ ≤

(
eγ +

e2γ − eγ

2

)
2

e2γ + eγ
= 1 .

This finishes the induction.

Proposition 3.3.4. Under the given assumptions (3.3.2) and (3.3.3) and the aditional
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property limn→∞Wn = 0 we find

lim
n→∞

Zn = 0 , lim
n→∞

D−1
n = 0 and lim

n→∞
D−1
n Cn = Y exists .

Proof. We will prove by induction that there exists Nk such that for all n > Nk we have

∥Zn∥ ≤ e−kγ/2 for all n > Nk. The induction start for k = 0 is given by Proposition 3.3.3.

Assume the statement is true for k. Then we find N such that for all n > N

∥Wn∥ < e−kγ/2
e3γ/2 − eγ

4
and ∥Zn∥ ≤ e−kγ/2 .

Using (3.3.6), Lemma 3.3.1 we find for n > N that

∥Zn+1∥ ≤ (eγ + ∥Wn∥)∥Zn∥+ ∥Wn∥
e2γ − 2∥Wn∥

≤

≤ e−kγ/2
eγ + 1

4(e
3γ/2 − eγ)(1 + e−kγ/2)

e2γ − 1
2(e

3/2γ − eγ)e−kγ/2

≤ e−kγ/2
eγ + 1

2(e
3γ/2 − eγ)

e2γ − 1
2(e

2γ − e3γ/2)
≤ e−(k+1)γ/2

This finishes the induction and the first statement.

For the second statement note

D−1
n+1Cn+1 = [(Γ + dn)Dn + cnBn]

−1[cnAn + (Γ + dn)Cn] =

= D−1
n [Γ + dn + cnZn]

−1 [cnAn + (Γ + dn)Cn]

Now, using

[Γ + dn + cnZn]
−1 (Γ + dn) = I − [Γ + dn + cnZn]

−1 cnZn
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we obtain

D−1
n+1Cn+1 = D−1

n Cn +D−1
n [Γ + dn + cnZn]

−1 cn(An − ZnCn)

= D−1
n Cn + D−1

n+1cnXn .

Therefore, using D0 = I, C0 = 0,

D−1
n+1Cn+1 =

n∑
k=0

D−1
k+1ckXk . (3.3.8)

One obtains

∥D−1
n+1∥ ≤ ∥D−1

n ∥ ∥[Γ + dn + cnZ]
−1∥ ≤ 2

e2γ + eγ
∥Dn∥−1 .

which gives

∥D−1
n ∥ ≤

(
e2γ + eγ

2

)−n
→ 0 (3.3.9)

where we use that D0 = I as X0 = I.

Using (3.3.7) and ∥Zn∥ ≤ 1 and the condition (3.3.2) we obtain

∥Xn+1∥ ≤ (eγ + 2∥Wn∥)∥Xn∥ .

We note that for ε > 0 sufficiently small we have eγ +2ε < e2γ+eγ

2 . Now there exists N > 0

such that for n > N we have ∥Wn∥ < ε and thus for n > N we find for C0 = ∥XN∥ that

∥D−1
n+1cnXn∥ ≤ C0

(
2(eγ + 2ε)

e2γ + eγ

)
︸ ︷︷ ︸

<1

n

ε .

Therefore,
∞∑
n=0

D−1
n+1cnXn

converges absolutely and

lim
n→∞

D−1
n Cn =

∞∑
k=0

D−1
k+1ckXk
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exists.

The main point of this section is the following proposition.

Proposition 3.3.5. Under the given assumptions (3.3.2) and (3.3.3) and the additional

condition ∥S∥ ≤ 1, one has

sup
n

E(∥Xn∥4) ≤ CK,γ < ∞

where CK,γ is a continuous function in γ > 0, and K > 0 as they appear in (3.3.2), (3.3.3).

Proof. Given a starting vector v0 ∈ Cl0 we define (vn)n inductively by vn = Xn v0 . Using

(3.3.7) we find

∥vn+1∥2 = ⟨v∗0X∗
n+1, Xn+1v0⟩

= v∗0X
∗
n[S

∗ + a∗n − c∗nZ
∗
n+1][S + an − Zn+1cn]Xnv0

= v∗nS
∗Svn︸ ︷︷ ︸
χ1

+2ℜe(v∗nS∗anvn)︸ ︷︷ ︸
χ2

+−2ℜe[v∗nS∗Zn+1cnvn]︸ ︷︷ ︸
χ3

+ v∗n(a
∗
n − c∗nZ

∗
n+1)(an − Zn+1cn)vn︸ ︷︷ ︸

χ4

Now:

∥vn+1∥4 = χ2
1 + χ2

2 + χ2
3 + χ2

4 + 2
4∑
j=2

j−1∑
i=1

χiχj

As ||S|| ≤ 1 and ∥Zn∥ ≤ 1, we first note

|χ1| ≤ ∥vn∥2

|χ2| ≤ 2∥Wn∥∥vn∥2

|χ3| ≤ ∥Wn∥∥vn∥2

|χ4| ≤ 4∥Wn∥2 ∥vn∥2

The problematic terms, were we can not use the expectation outside the norm are χ1χ2
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and χ1χ3. For the other terms, we remark

E(χ2
1 + χ2

2 + χ2
3 + χ2

4 + 2χ1χ4 + 2χ2χ3 + 2χ2χ4 + 2χ3χ4) ≤

≤ E
(
∥vn∥4

(
1 + 17∥Wn∥2 + 24∥Wn∥3 + 16∥Wn∥4

))
≤ E(∥vn∥4)

(
1 + E(∥Wn∥2)[17 + 6(e2γ − eγ) + (e2γ − eγ)2)]

)
(3.3.10)

For the last step we use the bound (3.3.3) and the fact that Wn is independent of Xn and

thus vn.

For the frst problematic term, note that

E(χ1χ2) = E(E(χ1χ2|Xn)) = E
(
χ12ℜe(v∗nS∗E(an)vn)

)
using the fact that vn is Xn measurable and an is independent of Xn. Thus

|E(χ1χ2)| ≤ 2E(∥vn∥4) ∥E(Wn)∥ . (3.3.11)

Now for the term χ1χ3 we want to use a similar estiamte. However, one of hte problem is

now that Zn+1 actually depends on Wn and Xn. However, Wn is independent of (Xn, Zn).

Thus we want to condition on (Zn, Xn). Furthermore, before that, in order to handle some

the inverse, we use we use a resolvent identity together with (3.3.6) to find

Zn+1 = ((S + an)Zn + bn)
(
Γ−1 − (Γ + dn + cnZn)

−1(cnZn + dn)Γ
−1
)

giving

Zn+1 = ((S + an)Zn + bn)Γ
−1 − Zn+1(cnZn + dn)Γ

−1 .

Thus,

Zn+1 = SZnΓ
−1 + Mn

where

∥Mn∥ ≤ 4 ∥Wn∥ ∥Γ−1∥ ≤ 4 e−2γ ∥Wn∥ .
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Splitting up Zn+1 this way gives

E(χ1χ3) = −2ℜeE(χ1v
∗
nS

∗SZnΓ
−1cnvn) − 2ℜeE(χ1v

∗
nS

∗Mncnvn) .

Using the bonds from above, we see

|2ℜeE(χ1v
∗
nS

∗Mncnvn)| ≤ 8e−2γE(∥Wn∥2∥vn∥4) = 8e−2γ E(∥Wn∥2)E(∥vn∥4) .

and

∣∣E(χ1v
∗
nS

∗SZnΓ
−1cnvn)

∣∣ = ∣∣E(E(χ1v
∗
nS

∗SZnΓ
−1cnvn|(Xn, Zn))

)∣∣
=
∣∣E(χ1v

∗
nS

∗SZnΓ
−1E(cn)vn)

∣∣ ≤ e−2γ ∥E(Wn)∥E(∥vn∥4)

Thus, we have in total the bound

|E(χ1χ3)| ≤ E(∥vn∥4)
(
2e−2γ∥E(Wn)∥+ 8e−2γE(∥Wn∥2)

)
(3.3.12)

In summary we find

E(∥vn+1∥4) ≤ E(∥vn∥4)(1 + α(γ)||E(Wn)||+ β(γ)E||(Wn)||2)

where α(γ) and β(γ) are some positive conitnuous functions in γ. Taking Cγ = max(α(γ), β(γ))

we find

E(∥vn+1∥4) ≤ ∥v0∥4
∏
n≥1

(1 + α(γ)||E(Wn)||+ β(γ)E||(Wn)||2))

≤ ∥v0∥4 exp[Cγ(
∑
n≥1

||E(Wn)||+ E||(Wn)||2)] ≤ ∥v0∥4 exp(CγK)

Use ∥X∥ ≤
∑

k ∥Xwk∥ for (wk)k being some orthogonal basis to get the result.
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3.4 Applying the key estimates to the transfer matrices

The main point of this section will be to apply the estimates from Section 3.3 to the

conjugated transfer matrices as developed in Section 3.2.

Like indicated at the end of Section 3.2 we choose some compact interval [a, b] ⊂ Σ such

that for λ ∈ [a, b] the first le channels are elliptic and the other l − le = lh channels are

hyperbolic.

In the notations of the previous sections, we have l0 = 2le+ lh, l1 = lh and the matrices

T and S as defined in (3.3.1) are given by

T =

S
Γ

 where S =


e−iK

eiK

Γ−1

 .

where K and Γ depend analytically on z = λ+ iη ∈ [a, b] + i[−c, c]. Using continuity and

compactness arguments we have uniform estimates like

∥Γ−1∥ < e−2γ , ∥Qz∥ < CQ , ∥Q−1
z ∥ < CQ

for all z = λ+ iη with λ ∈ [a, b] and η ∈ [−c, c] . This leads to

∥Vzn∥ =

∥∥∥∥∥∥Q−1
z

Vn 0

0 0

Qz

∥∥∥∥∥∥ ≤ C2
Q ∥Vn∥ = C2

Q ∥Vn(ω)∥ . (3.4.1)

for all z = λ+ iη ∈ [a, b] + i[−c, c] ⊂ C.

In order to apply the results of Section 3.3 we need ∥Vzn∥ < e2γ−eγ
4 . We therefore will

replace Vλn by

W z
n =W z

n(ω) = Vzn(ω) · 1∥Vn∥<(e2γ−eγ)/(4C2
Q)(ω) (3.4.2)

where the latter expression is the indicator function on the event that ∥Vn(ω)∥ < e2γ−eγ
4C2

Q

on the probability space Ω. This means essentially to replace the potential Vn by

V̂n = Vn · 1∥Vn∥< e2γ−eγ

4C2
Q

.
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Note that by the estimates above

∥W z
n∥ <

e2γ − eγ

4
for all z = λ+ iη ∈ [a, b] + i[−c, c] (3.4.3)

We modify the transfer matrices accordingly and let

T̂ zn =

A+ V̂n − z I −I

I 0

 . (3.4.4)

With these definitions we note that

Q−1
z T̂ znQz = T z + W z

n .

Similarly to the products T zm,n we define

T̂ zm,n = T̂ zn T̂
z
n−1 · · · T̂ zm+1T̂

z
m .

and

X z
m,n = Q−1

z T̂ zm,nQz (3.4.5)

Using the splitting into blocks of sizes l0 = 2le + lh and l1 = lh we write

X z
m,n =

Azm,n Bz
m,n

Czm,n Dz
m,n

 (3.4.6)

and we define the Schur complements

Xz
m,n = Azm,n − Bz

m,n

(
Dz
m,n

)−1
Czm,n and Zzm,n = Bz

m,n

(
Dz
m,n

)−1
. (3.4.7)

The reason that we will work with the products from some m on is that for large n ≥ m

and some random m, we will have that Vn = V̂n. More precise probabilistic arguments will

be given later.

First, we need to check that the matrices W z
n do indeed satisfy the bounds we need:
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Proposition 3.4.1. There exists K <∞ (depending on the chosen compact interval [a, b] ⊂

Σ and the chosen c > 0) such that for all z = λ+ iη ∈ [a, b] + i[−c, c] we have

∞∑
n=0

(
∥E (W z

n)∥ + E
(
∥W z

n∥2
) )

≤ K .

Proof. First we note

∞∑
n=0

E
(
∥W z

n∥2
)
≤

∞∑
n=0

E
(
∥Vzn∥2

)
≤ C4

Q

∞∑
n=0

E
(
∥Vn∥2

)
= K′ < ∞ .

uniformly for z ∈ [a, b] + i[−c, c] ⊂ C, which bounds the second term as needed.

Using the Cauchy-Schwartz Inequality in L2(Ω,F ,P) we find

E (∥W z
n − Vzn∥) = E

(
∥Vzn∥ · 1∥Vn∥≥ e2γ−eγ

4C2
Q

)

≤
√
E
(
∥Vzn∥

2
)√√√√E

(
1∥Vn∥≥ e2γ−eγ

4C2
Q

)
.

For the first term we use (3.4.1), for the second term, we use Chebyshev’s inequality

E

(
1∥Vn∥≥ e2γ−eγ

4C2
Q

)
= P

(
∥Vn∥ ≥ e2γ − eγ

4C2
Q

)
≤

16 C4
Q

(e2γ − eγ)2
E(∥Vn∥2)

in order to get

E
(∥∥∥W λ

n − Vλn
∥∥∥) ≤

4 C4
Q

e2γ − eγ
E(∥Vn∥2) (3.4.8)

for all z ∈ [a, b] + i[−c, c] ⊂ C. Thus,

∥E (W z
n)∥ ≤ ∥E (Vzn)∥ + E (∥W z

n − Vzn∥) ≤ CQ ∥E (Vn)∥ +
4 C4

Q

e2γ − eγ
E(∥Vn∥2)

which leads to

∞∑
n=0

∥∥∥E(W λ
n

)∥∥∥ ≤
∞∑
n=0

(
CQ ∥E (Vn)∥ +

4 C4
Q

e2γ − eγ
E(∥Vn∥2)

)
= K′′ <∞.
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Now K = K′ +K′′ does the job.

Thus, we can apply the results from Section 3.3.

Proposition 3.4.2. Let Ω′ = {ω : limn→∞ Vn(ω) = 0} which satisfies P(Ω′) = 1.

(i) For all ω ∈ Ω′, all m ∈ Z+, and for all z ∈ [a, b] + i[−c, c] we have,

lim
n→∞

Zzm,n = 0 , lim
n→∞

(Dz
m,n)

−1 = 0 , and Y z
m := lim

n→∞
(Dz

m,n)
−1Czm,n exists.

(ii) For all ω ∈ Ω′, all m ∈ Z+

z 7→ Y λ
m is analytic for z = λ+ iη ∈ (a, b) + i(−c, c)

and, uniformly in z = λ+ iη ∈ [a, b] + i[−c, c] we find

lim
m→∞

Y z
m = 0 .

(iii) We have for all ω ∈ Ω, and z = λ+ iη ∈ [a, b] + i[−c, c] that ∥Zzm,n∥ ≤ 1 .

(iv) We find uniformly for all λ ∈ [a, b], all m ∈ Z+ and all n ≥ m, n ∈ Z+, that

sup
n≥m

E(∥Xλ
m,n∥4) ≤ C < ∞ .

for some fixed constant C (independent of λ,m, n).

Proof. For part (i) note that with probability 1, ∥Vn∥ → 0 for n → ∞. We let Ω′ ⊂ Ω be

the set of probability one where Vn = Vn(ω) → 0. Then we have the same for W z
n and the

limits follow from Proposition 3.3.4.

For part (ii) note first that (Dz
m,n)

−1Czm,n is analytic in z ∈ [a, b] + i[−c, c]. Now, for

ω ∈ Ω′ fixed, one sees from the estimates in Proposition 3.3.4 that the convergence of the

series
∑

n>m[(D
z
m,n+1)

−1Czm,n+1− (Dz
m,n)

−1Czm,n] is uniform for z ∈ [a, b]+ i[−c, c]. Hence,

the limiting function is analytic in z. Moreover, if for all n > m we have ∥Vn∥ < ε then one
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sees that with a uniform constant CY < ∞, we have ∥Y z
m∥ < εCY . As Vn → 0 for ω ∈ Ω′,

we find ε arbitrarily small as m→ ∞ and hence limm→∞ Y z
m = 0 uniformly in z.

Part (iii) simply follows from Proposition 3.3.3 and part (iv) from Proposition 3.3.5,

noting that all bounds are uniform for λ ∈ [a, b] and ∥S∥ ≤ 1 for λ ∈ [a, b].

Proposition 3.4.3. There is a set of probability one, Ω̃ ⊂ Ω, P(Ω̃) = 1, such that for any

ω ∈ Ω̃ and any m ∈ Z+ we find

lim inf
n→∞

∫ b

a
∥Xλ

m,n ∥4 dλ < ∞ .

Proof. By Proposition 3.4.2 (iii), Fatou lemma and Fubini theorem we find

E lim inf
n→∞

∫ b

a
(||Xz

m,n||4)dλ ≤ lim inf
n→∞

∫ b

a
E(||Xz

m,n||4)dλ ≤ C(b− a) < ∞

Hence, P(lim inf
∫ b
a ∥X

z
m,n∥dλ = ∞) = 0. Then we have the result.

3.5 Absolutely continuous spectrum

In this section we finally prove Theorem I. Recall in Proposition 3.4.2 we defined the

set Ω′ of probability one, where Vn → 0. For ω ∈ Ω′ we find m such that for n ≥ m and all

λ ∈ [a, b] + i[−c, c] we have Vzn = W z
n . However, the m is random. and not uniform in ω.

Therefore, we define the events

Ωm =

{
ω ∈ Ω′ :

(
∀n ≥ m : ∥Vn(ω)∥ <

e2γ − eγ

4C2
Q

) }

For ω ∈ Ωm, z = λ+ iη ∈ [a, b] + i[−c, c] and n ≥ m we find T̂ zn = T zn and, hence,

T zm,n(ω) = T̂ zm,n(ω) = QzX z
m,n(ω)Q

−1
z .

Moreover,

P

( ∞⋃
m=0

Ωm

)
= P

(
Ω′) = 1.
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We from now on fix some ω ∈ Ωm′ . We may still vary m ≥ m′, but note that ω ∈ Ωm′ ⊂ Ωm

for m ≥ m′.

The main work left to do now is to use Proposition 3.4.3 to obtain an estimate of the

form as needed in Theorem 2.4.4.

Thus, given a vector A⃗ ∈ Cl associated to some vector in the 0-th shell, we need to find

vectors u⃗λ,n ∈ Cl such that

lim inf
n→∞

∫ b

a

∥∥∥T λ0,n ( u⃗λ,nA⃗ )∥∥∥4 dλ < ∞ .

Note that one has

T z0,n

u⃗z,n
A⃗

 = Qz

Azm,n Bz
m,n

Czm,n Dz
m,n

Q−1
z T z0,m−1

u⃗z,n
A⃗

 .

Lemma 3.5.1. For Y ∈ Clh×(l+le) assume

rank

(Y Ilh

)
Q−1
λ T λ0,m−1

Il
0

 = lh , (3.5.1)

then, for any A⃗ one finds u⃗λ,Y ∈ Cl, y⃗Y ∈ Cl+le such that

Q−1
λ T λ0,m−1

u⃗λ,Y
A⃗

 =

 y⃗λ,Y

−Y y⃗λ,Y

 . (3.5.2)

If the condition (3.5.1) is fulfilled for specific λ = λ0 and Y = Y0, then it is fulfilled in a

neighborhood of (λ0, Y0). Moreover, given a fixed vector A⃗, one may get solutions u⃗Y and

y⃗Y that depend continuously on (λ, Y ) in a neighborhood of (λ0, Y0).

Using Y = (Dλ
m,n)

−1Cλm,n and denoting u⃗λ,Y , y⃗λ,Y with u⃗λ,n and y⃗λ,n in this case, we

find

T λ0,n

u⃗λ,n
A⃗

 = Qλ

Xλ
m,n y⃗λ,n

0

 . (3.5.3)

Proof. Using (3.5.2) in the decomposition of T z0,n above, with z = λ and Y = (Dλ
m,n)

−1Cλm,n,
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the statement (3.5.3) follows directly. Thus, we need to check that we find u⃗λ,Y and y⃗λ,Y

such that (3.5.2) is satisfied. Dividing the 2l× 2l matrix Q−1
λ T λ0,m−1 horizontally in blocks

of sizes l and l, and vertically into blocks of sizes l + le and lh we may write

Q−1
λ T λ0,m−1 =

a b

c d

 and Q−1
λ T λ0,m−1

u⃗λ,n
A⃗

 =

au⃗λn + bA⃗

cu⃗λ,n + dA⃗


Note a, b ∈ C(l+le)×l, c, d ∈ Clh×l . Then, (3.5.2) is satisfied for y⃗λ,Y = au⃗λ,Y + bA⃗ if and

only if

cu⃗λ,Y + dA⃗ = −Y
(
au⃗λ,Y + bA⃗

)
This is equivalent to

(Y a+ c) u⃗λ,Y = (−Y b− d) A⃗ .

Thus, we find a solution u⃗λ,Y for any A⃗, if Y a+ c is surjective (as a linear map from Cl to

Clh), which is exactly the rank condition given in the assumption.

Note, if this is fulfilled for some specific Y = Y0, and some specific spectral parameter

λ = λ0, then we find a matrix M ∈ Cl×lh such that det((Y0 a + c)M) ̸= 0,. So in a

neighborhood of Y0 and λ0, this determinant is still not zero and we may use

u⃗Y = M [(Y a+ c)M ]−1 (−Y b− d) A⃗

and as above, y⃗λ,Y = au⃗λ,Y + bA⃗. Thus, both depend continuously on (λ, Y ).

Lemma 3.5.2. Given ω ∈ Ωm′ , and c > η > 0 fixed, there exists m̃ > m′ such that ∀m > m̃

and ∀λ ∈ [a, b] :

rank

(Y z
m Ilh

)
Q−1
λ+iηT

λ+iη
0,m−1

Il
0

 = lh .

Proof. For notation we let z = λ+ iη and we let Az denote de matrix on the left hand side

(inside the rank function). Moreover, we let

Az
m =

(
Y z
m Ilh

)
Q−1
z T z0,m−1

Il
0


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Moreover, from Proposition 3.4.2 part (ii)we find that Y z
m is uniformly small for m suffi-

ciently big. This means, for any ε > 0, there exists m̃ > m′ such that for any n > m > m̃

and any z = λ+ iη ∈ [a, b] + i[−c, c] we have

∥Y z
m∥ < ε .

The ε needed for the statement will be chosen later.

Letting J0,m = J0,m(ω) be the restriction of Hω to ℓ2({0, . . . ,m})⊗Cl as in (2.4.3) and

defining βz0,m, δz0,m as in (2.4.5) and (2.4.7) we find using Theorem 2.4.2

T z0,m−1

Il
0

 =

 (βz0,m−1)
−1

δz0,m−1(β
z
0,m−1)

−1


By the other ways of writing the transfer matrix, we see that (βz0,m−1)

−1 exists for any z,

at least after analytic continuation. We also note that βz0,m−1 exists for any value z except

for the eigenvalues of J0,m−1. Thus, it exists for any z = λ+ iη with η > 0.

In order to prove that Az is of full rank lh, it is sufficient to prove that Q−1
Γ ΓAzB is

invertible, where B ∈ Cl×lh . In particular, we consider

B′ = βz0,m−1

 0

Ilh

 giving Az
mB′ =

(
Y z
m Ilh

)
Q−1
z

 Il

δz0,m−1

 0

Ilh


First, take the ’limit case’ and with (3.2.4) we find

(
0 Ilh

)
Q−1
z

 Il

δz0,m−1

 0

Ilh

 =
(
0 −QΓ 0 Γ−1QΓ

)


0

Ilh

δz0,m−1

 0

Ilh





= QΓΓ
−1

−Γ +
(
0 Ilh

)
δz0,m−1

 0

Ilh

 .
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were we note that by their definition, QΓ = (Γ−1 − Γ)−1 and Γ commute. Thus, we find

Q−1
Γ ΓAz

mB =
(
0 Ilh

)
δz0,m−1

 0

Ilh

− Γ +Rz

where

Rz = Q−1
Γ Γ

(
Y z
m 0

)
Q−1
z

 Ilh

δz0,m−1

 0

Ilh

 .

Using ∥δzm,n∥ ≤ 1
η , where z = λ+ iη, and compactness, we get with some uniform constant

C > 0 that

∥Q−1
Γ Γ∥∥Q−1

z ∥ < C and

∥∥∥∥∥∥
 Il

δz0,m−1

∥∥∥∥∥∥ < 1 +
1

η

for all z ∈ [a, b] + i[−c, c] and all m > m̃. This gives

∥Rz∥ ≤ C ε (1 + 1

η
)

for any z = λ+ iη ∈ [a, b] + i[−c, c] and any m > m̃ = m̃(ε). Note, Γ = Γ(z) is a diagonal

matrix, such that

Γ + Γ−1 =


αle+1 − z

. . .

αl − z


Moreover, as set above, all diagonal entries of Γ(z) are bigger than e2γ > 1. We note, that

the imaginary parts of Γ−1 have opposite sign and an absolute value smaller than for the

corresponding values of Γ. Thus, we find for η > 0 that

ℑ(−Γ− Γ−1) = η I implying ℑ(−Γ) > η I .

In general, we will define the "imaginary" part in C∗ algebra sense, that is ℑ(A) = (A −

A∗)/(2i), then

ℑ

(0 Ilh

)
δz0,m−1

 0

Ilh

 > 0
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for η > 0 and z = λ+ iη Hence, we finally obtain

ℑ
(
Q−1

Γ ΓAz
mB −Rz

)
> η Ilh .

Thus, if

ε <
η2

C(1 + η)
implying ∥Rz∥ < η

then, the lh × lh matrix Q−1
Γ ΓAz

mB is invertible and we have rank(Az
m) ≥ lh (for any

m > m̃). By the dimensions of Az
m ∈ Clh×l we also have rank(Az

m) ≤ lh.

Theorem 3.5.3. Let ω ∈ Ω′ ∩ Ω̃., where Ω̃ is the set as in Proposition 3.4.3. Then, there

is a finite set {λ1, . . . , λk} such that the spectrum of Hω is purely absolutely continuous in

(a, b) \ {λ1, . . . , λk}.

If there is no hyperbolic channel, that is lh = 0, then the spectrum is purely absolutely

continuous in (a, b).

Proof. For some m′ we find ω ∈ Ωm′ . Choose η with c > η > 0, take m̃ > m′ as in

Lemma 3.5.2 and consider some fixed m > m̃. We note that we also have ω ∈ Ωm. Now,

using the notation as above, Az
m has full rank for ℑm(z) = η. By analyticity, the rank of

Az
m is full for all but finitely many values of z = λ + iη ∈ [a, b] + i[−c, c]. We may now

restrict to the real line again and let {λ1, . . . , λk} ⊂ [a, b] be the finite set of energies, where

rank(Aλ
m) < lh.

We consider now a compact interval [a′, b′] ⊂ [a, b] \ {λ1, . . . , λk}. For all λ ∈ [a′, b′]

we find that Aλ
m has full rank lh. By compactness, the set {Aλ

m : λ ∈ [a′, b′]} has some

positive distance, say ε > 0, to the set of lh × l matrices of non full rank.

In order to get to the point of Lemma 3.5.2, let us introduce the notations

Az
Y =

(
Y Ilh

)
Q−1
z T z0,m−1

Il
0



Y z
m,n = (Dz

m,n)
−1Czm,n and Az

m,n = Az
Y z
m,n

=
(
Y z
m,n Ilh

)
Q−1
z T z0,m−1

Il
0

 .
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Again by compactness we note that ∥Q−1
λ T λ0,m−1∥ < C for all λ ∈ [a, b]. (Note, that m is

fixed now!). Thus we see that

∥Aλ
Y −Aλ

m∥ ≤ C∥Y − Y λ
m∥

for all λ ∈ [a, b] ⊃ [a′, b′]. Therefore, if

∥Y − Y λ
m∥ <

ε

C
imlying ∥Aλ

Y −Aλ
m∥ < ε

then Aλ
Y is of full rank lh.

Now, consider the compact set

S =
{
(λ, Y ) : λ ∈ [a′, b′] , ∥Y − Y λ

m∥ ≤ ε

2C

}
.

By Lemma 3.5.1, for any (λ′, Y ′) ∈ S, we find some neighborhood Uλ′,Y ′ and solutions

u⃗λ,Y , y⃗λ,Y to (3.5.2), that depend continuously on (λ, Y ) ∈ UY ′,λ′ . Possibly shrinking the

neighborhood a bit, we may assume it is compact, and thus, ∥y⃗λ,Y ∥ attains a maximum in

Uλ′,Y ′ . By compactness, S can be covered by finitely many such compact neighborhoods

U ′. Making a specific choice in the overlaps of these finitely many neighborhood, we find

piece-wise continuous functions

u⃗ : S → Cl , (λ, Y ) → u⃗λ,Y , y⃗ : S → Cl+le , (λ, Y ) → y⃗λ,Y

satisfying equation (3.5.2) such that for some constant Cy⃗ <∞ and all (λ, Y ) ∈ S we have

∥y⃗λ,Y ∥ ≤ Cy⃗ .

As mentioned in the proof of Proposition 3.4.2 part (ii), the convergence of Y z
m,n → Y z

m

for n→ ∞ is uniform in z, as such we find N > 0 such that ∀n > N and all λ ∈ [a′, b′] we

have

∥Y λ
m,n − Y λ

m∥ ≤ ε

2C
implying (λ, Y λ

m,n) ∈ S .
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Thus, for all n > N , and all λ ∈ [a′, b′] we may choose

u⃗λ,n = u⃗Y λ
m,n,λ

, y⃗λ,n = y⃗Y λ
m,n,λ

.

By (3.5.3) we obtain that

∥∥∥T λ0,n ( u⃗λ,nA⃗ )∥∥∥ =

∥∥∥∥∥∥Qλ
Xλ

m,n y⃗λ,n

0

∥∥∥∥∥∥ ≤ ∥Qλ∥ ∥Xλ
m,n∥ ∥y⃗λ,n∥ ≤ CQCy⃗∥Xλ

m,n∥ (3.5.4)

for λ ∈ [a′, b′] and all n > N .

Hence, using that ω ∈ Ω̃ we get by Proposition 3.4.3 that

lim inf
n→∞

∫ b′

a′

∥∥∥T λ0,n ( u⃗λ,nA⃗ )∥∥∥4 dλ ≤ CQCy lim inf
n→∞

∫ b′

a′
∥Xλ

m,n∥4 dλ < ∞ .

Hence, Theorem 2.4.4 gives that the spectral measure at δ0 ⊗ A⃗ is purely absolutely con-

tinuous in [a′, b′]. As A⃗ ∈ Cl was arbitrary, and the closures of span({(Hω)
kδ0 ⊗ A⃗ : A⃗ ∈

Cl, k ∈ N0}) is the whole Hilbert space, we find that the spectrum of Hω is purely ab-

solutely continuous in (a′, b′). Now, the set Σ′ = [a, b] \ {λ1, . . . , λk} can be written as

countable union of intervals (a′, b′) such that [a′, b′] ⊂ Σ′. Therefore, the spectrum of Hω

is purely absolutely continuous in Σ′. Note that λ1, . . . , λk may be eigenvalues of Hω,

but they do not have to be. If λj is not an eigenvalue, then the spectrum of Hω is also

purely absolutely continuous in a neighborhood of λj . Thus, we only need to subtract the

eigenvalues from the set [a, b].

Note, in the intersection of all the bands, that is, if lh = 0, one has Xλ
m,n = Q−1

λ T λm,nQλ,

y⃗λ,n = Q−1
λ T λ0,n

(
u⃗λ,n

A⃗

)
and one can choose any family of uniformly bounded vectors u⃗λ,n

to get pure absolutely continuous spectrum in (a, b). There is no need to subtract a finite

set of values.

Now Theorem I now essentially follows directly from the previous theorem:

Proof. First note that the set Ω′ does not depend on the interval [a, b] analyzed above, but

Ω̃ does. Using compact intervals inside Σ with rational boundary points we may write Σ

60



CHAPTER 3. ABSOLUTELY CONTINUOUS SPECTRUM FOR BLOCK JACOBI
OPERATORS WITH RANDOM ℓ2 MATRIX-POTENTIAL

as countable union of open intervals, whose closure is inside Σ,

Σ =

∞⋃
i=1

(ai, bi) where [ai, bi] ⊂ Σ .

As Σ does not contain any band-edges, for each j = 1 . . . , l the type of the j-th channel

does not change in [ai, bi]. Therefore, one can make the whole analysis as done for the

compact interval [a, b] above for the interval [ai, bi]. In particular, there is a corresponding

set Ω̃j of probability one for the set [ai, bi]. We then let

Ω̂ = Ω′ ∩
∞⋂
i=1

Ω̃i

and note P(Ω̂) = 1 . Let ω ∈ Ω̂ and let C ⊂ Σ be compact. Using compactness, there is a

finite sub-collection of these intervals, [aik , bik ], k = 1, . . . n, such that

C ⊂
n⋃
k=1

(aik , bik) .

Theorem 3.5.3 gives that there is a finite set Ek of eigenvalues, such that the spectrum of

Hω in (aik , bik) \ Ek is purely absolutely continuous. Letting E =
⋃n
k=1 Ek, which is finite,

we see that the spectrum in C \ E is purely absolutely continuous.

Due to the last comment in Theorem 3.5.3, the spectrum of Hω is purely absolutely con-

tinuous in the intersection of all bands Σ0 (which might be an empty set).
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