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Introduction

For quite some time now we know that algebraic curves have “parameter” spaces, for each g ≥ 0
there is a moduli space Mg that parametrizes every possible smooth curve of that genus up to
isomorphism. This space is in general not compact, and so Pierre Deligne and David Mumford
devised a way to naturally compactify it into the now called Deligne-Mumford compactification
Mg [DM69]. The extra points in this moduli space represent curves with singularities, and these
curves along with the smooth ones are called stable curves.

There is a similar story for the case of algebraic surfaces. This time if we fix two invariants:
K2, the self-intersection of the canonical class, and χ, the holomorphic Euler characteristic of the
structure sheaf, then Gieseker [G77] proved the existence of a moduli space MK2,χ whose points
correspond to minimal surfaces of general type S with K2

S = K2 and χ(S) = χ. In a manner
analogous to the case of curves, it is possible to compactify this space into MK2,χ, called now the
KSBA compactification, due to Kollár, Shepherd-Barron and Alexeev (see [KSB88] and [A94]). The
surfaces that can appear in MK2,χ are also called stable surfaces, and consist of those surfaces with
the given invariants that have semi-log-canonical singularities and ample dualizing sheaf. Up to this
day, very little is known about these moduli spaces, however we know that moduli spaces can be very
complex. For example, Vakil’s Murphy’s law [V06] states that certain moduli spaces have arbitrary
singularities. Manetti [M01] tells us that the moduli spaces of diffeomorphic surfaces of general
type have arbitrarily many connected components. Recent examples ([R21]) of extra components
added to MK2,χ, which consist of points parameterizing non-smoothable surfaces, show us that the
compactification of the moduli space increases the complexity of the space even more.

One aim of this thesis is to find examples of singular surfaces in the boundary of the moduli
space MK2,1, for K

2 = 1, 2, 3, 4 by fixing pg = q = 0 (although the methods can be extended to
other invariants such as pg = 1) while answering relevant questions, such as:

• Is this surface in the same component as one with smooth surfaces?

• What is the fundamental group of this surface?

The first question can be answered via Q-Gorenstein smoothing in the following way: if there exists
a Q-Gorenstein deformation X → D of a singular surface X0, where X is a threefold and D is a
disc or smooth curve, such that the general member Xt is smooth, then D× corresponds (in a vague
sense) to a piece of the moduli space MK2,χ that parametrizes smooth surfaces, so X0 is in the
actual boundary of this component. This method can also be seen as a proof of non-vacuity of
MK2,χ, since at least some smooth surfaces do exist. This is the technique developed by Lee and
Park (and later Shin) in [LP07, PPS09a, PPS09b].

In [R78], Reid asked if there existed simply connected surfaces with pg = q = 0 and K2 = 1, and
conjectured that the space M1,1 should have one component for each fundamental group, where
π1 must be Z/nZ, for n = 1, 2, 3, 4, 5. This last conjecture is still an open problem, but the first
question has a positive answer. The first example of a simply connected surface of general type with
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pg = q = 0 was given by Barlow in 1985 ([B85]) and had K2 = 1 but had no ample canonical class,
and the method used was via quotients of surfaces. The construction was actually motivated by
the conjecture that asked “Are all simply connected surfaces with pg = q = 0 rational?”, which is
answered negatively. Afterwards, Dolgachev and Werner [DW99] showed that a certain surface from
Craighero and Gattazzo with K2 = 1 was algebraically simply connected and had ample canonical
class, and a proof of simply connectedness can be found at [RTU17]. In fact, this and the Barlow
surface are the only concrete simply connected surface known in any of the MK2,1.

The method of Q-Gorenstein smoothings was first used for this problem by Lee and Park in
[LP07], where they proved the existence of simply connected surfaces of general type with pg = q = 0
and K2 = 2. It was followed by [PPS09a] and [PPS09b], where Park, Park and Shin did the same
with surfaces having K2 = 3 and 4 respectively. Further examples where the technique is used are
[PSU13] and [PPS13], among others. In [SU16], Stern and Urzúa give a (possibly) exhaustive list
of every Wahl singularity known to be in the KSBA moduli spaces. In [BCP11], Bauer, Catanese
and Pignatelli give a survey of what was known at the time for other surfaces with pg = q = 0.

As said before, the process consists of smoothing certain singular surfaces. The singular surfaces
that Lee, Park and Shin looked for were rational and had only Wahl singularities (see [W81, Example
5.9.1]). Via resolution of singularities, the problem of finding these singular surfaces is equivalent
to finding smooth rational surfaces with special configurations of curves called Wahl chains. The
conditions that the chains must hold are very restrictive, and carry a very discrete and combinatorial
structure.

For this thesis, we wrote a computer program able to tackle this problem: we feed this program
with information about a certain rational surface and configurations of curves inside of it, and it
searches for ways of using these curves in many different manners in hopes of finding a surface with
Wahl chains. It can be proved then that these surfaces admit a Q-Gorenstein smoothing if certain
criteria are met.

As an example of a given input and output of this program, consider the Figures 1 and 2
respectively.

Figure 1: Input configuration

Figure 1 represents a configuration of curves in a rational elliptic surface. The program searches
among many different ways to blow up intersections in this configuration in order to obtain a new
configuration of curves, namely Figure 2. One may recognize two disjoint chains of curves in this
new configuration, and it turns out that they are Wahl chains. If one contracts these chains in order
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Figure 2: Output configuration

to obtain a singular rational surface, it can be verified that it admits a Q-Gorenstein smoothing, and
that it lives in the boundary of M3,1. All details regarding this example are explained in Section
5.2.

Thanks to this computer program we have been able to obtain several tens of thousands of new
examples, which helped us deduce the following theorem, that gives more insight in the complexity
of the moduli spaces.

Theorem 1.

• Among unobstructed singular surfaces in the boundary of M1,1 there exist at least 44 types
of Wahl singularities arranged in at least 214 combinations.

• Among unobstructed singular surfaces in the boundary of M2,1 there exist at least 508 types
of Wahl singularities arranged in at least 3595 combinations.

• Among unobstructed singular surfaces in the boundary of M3,1 there exist at least 2104 types
of Wahl singularities arranged in at least 10169 combinations.

• Among unobstructed singular surfaces in the boundary of M4,1 there exist at least 1246 types
of Wahl singularities arranged in at least 2454 combinations.

As a stable surface may have more than one Wahl singularity, there may arise many different
combinations of types of singularities. The complexity can be understood in a more precise way:
each unobstructed singularity that appears corresponds to a divisor in the given component of the
moduli space.

One may notice that the amount of examples roughly increases with the K2, but surprisingly
decreases at the K2 = 4 point. This may be explained in the following way. The complexity of the
configuration of curves tends to increase strictly with the K2. For low K2, since this complexity
must be low, there is less room for wilder of bigger configurations, so not many examples arise. For
high K2, although there is more room for possibilities, the amount of “coincidences” that need to
happen also increases, which start to limit the amount of examples.

We note that in the literature there were essentially only two examples with K2 = 4 ([PPS09b]),
with some deformations of them appearing in [HTU17], and now there are thousands. We also got
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very unexpected results. As we hinted before, our objective was to find surfaces with K2 = 1, 2, 3, 4,
because by this method, the expected dimension of the moduli space around the singular surface
is 10 −K2, so for K2 ≥ 5 it is impossible to find examples with no obstructions to deformations.
However we have indeed found (obstructed) surfaces with K2 = 5. This leads to the next aim of
this thesis, which is much more topological in nature.

Thanks to Freedman [F82], we know very well the homeomorphism type of simply connected
surfaces, and as it turns out, many of them are homeomorphic, but not diffeomorphic to CP2#nCP2,
the projective plane blown up n times. Such surfaces are said to be exotic. It is well known that
under some conditions, if X is the rational blow down of some Wahl chain in a smooth surface Y
with pg = q = 0, then X is an exotic CP2#(9− c21(X))CP2. Here, c21(X) coincides with K2

Z if Z is
the contraction of the Wahl chains in Y .

With this we are able to still use these unexpected surfaces to answer questions of existence of
exotic structures. Although there are already examples in the literature of exotic structures with n
as low as 2 (see for instance [AP10]), and although we have not found yet surfaces with K2

Z ≥ 6, we
do have the first example of such an exotic surface obtained via rational blow down surgery with
n = 4.

This partially answers the following question of existence asked in [BKS22, Question 2]: “Is
there an exotic CP#mCP2 with m < 5 that can be obtained from a standard rational surface via
rational blow downs? If so, what is the smallest such m?”. We leave open the question for m < 4,
perhaps it is only a matter of time given the program we have.

The program can also be used in cases when χ > 1, as with the case pg = 1, q = 0. We have
already used it in [RU21] by using suitable K3 surfaces instead of rational elliptic fibrations. There
we deduced the following theorem:

Theorem 2. There exist complex algebraic simply connected surfaces with pg = 1, q = 0 with
K2 = 1, 2, 3, 4, 5, 6, 7, 8, 9.

We note that in the literature ([PPS13]) there only existed examples with K2 = 1, 2, 3, 4, 5, 6, 8,
so the cases K2 = 7, 9 are new.

If now X is the rational blow down of a surface Y with pg = 1, then, in a similar way s before,

X is an exotic 3CP2#(19 −K2
Z)CP2. We also found unexpected surfaces with K2 = 10, 11, 12, so

that we have:

Theorem 3. There exist exotic 3CP#nCP2 with n ∈ {7, 8, 9} obtained via rational blow down
surgery.

As before, in the literature there existed examples with n as low as 4 (for instance, see [AP10]),
but the minimum obtained via rational blow down surgery up to this day was 11 in [PPS13].

One final application of this program was to find examples of algebraically simply connected
surfaces of general type in positive characteristic. We were able to complete the main theorem in
[LN12], which now reads:

Theorem 4. For any algebraically closed field k and integer 1 ≤ K2 ≤ 4, there exists an al-
gebraically simply connected minimal surface S of general type over k with pg(S) = q(S) =
H2(S, TS/k) = 0, K2

S = K2 and KS ample.

The problem of this proof lied in the absence of examples of simply connected surfaces with
pg = q = 0 and K2 = 1, 2, 4, so for the pairs (p,K2) = (2, 1), (2, 2), (2, 4) they could not prove the
existence of such surfaces in characteristic p with K2

S = K2. Additionally, the example they gave
for the pair (p,K2) = (3, 4) had a small inaccuracy, so in order to complete the theorem, we also
found an example that fills this gap.
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The last three theorems will not be treated on this paper, but can be deduced from the list of
examples we provide along with the program. They will appear in future papers.

We now outline the structure of this thesis. The second chapter of this thesis introduces our
main object of study, the Wahl singularities and Wahl chains, and we give several properties that
will be useful in the computer program. The third chapter gives a small review of deformation
theory, and a strategy to determine when a given example has no obstructions to deformations, so
that singularities can be smoothed out. The fourth chapter deals with the topology of our examples.
We explain the rational blow down surgery, first introduced in [FS95], and a strategy to determine
when the fundamental group of our example is trivial. We also deal with exotic structures and prove
the before mentioned theorem. The fifth chapter introduces us with the rational surfaces we will
be using as a base to find all our examples. We give an example of a surface constructed with this
method, and go into detail explaining how all the tools we developed work. We conclude the chapter
with further combinatorial properties which are fundamental to the program. The sixth chapter
gives an overview of what the program does. Since the complete source code and all the examples
we found are far too big for this thesis, they can be found at an online repository, given in the
Appendix. We finalize this thesis with three interesting examples, including one of the unexpected
surfaces with K2 = 5 we have found.
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Chapter 1

Preliminaries

1.1 Basic Definitions

In this section we will go though some definitions and basic properties of algebraic varieties and
surfaces in particular. These definitions will be given for varieties over C where most properties are
well behaved, and where we have some intuition from complex analysis. They, however, are also
valid over other algebraically closed fields. Most of these definitions are standard and no proof of
some claims will be given.

Definition 1.1.1. A subset X ⊆ An is algebraic if it is the zero set of a set of polynomials in
C[x1, . . . , xn]. A subset X ⊆ Pn is (projective) algebraic if it is the zero set of a set of homogeneous
polynomials in C[x0, . . . , xn]. The family of all algebraic sets in An or Pn form the closed sets of the
Zariski topology. A set is quasi-affine (resp. quasi-projective) if it is an open set of a closed algebraic
subset of An (resp. Pn), thus all quasi-affine sets are also quasi-projective. A quasi-projective set is
irreducible if every nonempty open set in the Zariski topology is dense. Irreducible quasi-projective
sets are also called varieties. A projective variety is a variety isomorphic to a closed set in some
projective space.

As it turns out, all quasi-projective sets have a smooth locus, that is, an open set of points that
is locally bi-holomorphic to an open set of Cn for some n.

Definition 1.1.2. Let X be a variety. Then the number n defined above is constant for every point
in the smooth locus, and is called the dimension of X. A variety of dimension 1 is called a curve,
a variety of dimension 2 is called a surface, a variety of dimension 3 is called a threefold, and so on.

The dimension defined above does not correspond to the usual notion we have. For instance,
a curve, which locally looks like an open set in C, must be two-dimensional as a real manifold. In
fact, smooth projective curves are precisely the closed Riemann Surfaces.

Definition 1.1.3. Let X,Y be two varieties. A morphism f : X → Y is a function that locally
looks like polynomial functions in the coordinates of X. A rational map f : X 99K Y is a partial
function defined on a dense open subset X ′ ⊆ X that is a morphism restricted to X ′. X ′ is usually
taken to be maximal among all open subsets where f can be defined. A rational map (or morphism)
is dominant if its image is a dense subset of Y . It is called birrational if there is a rational map
g : Y 99K X such that f ◦ g and g ◦ f are the identities in the open sets where the are defined (and
so, they are actually the identity function thanks to the maximality of these open sets).
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Definition 1.1.4. A rational function f on a variety is a meromorphic function, that is, a par-
tial function defined locally as fractions of polynomials, where the denominator must not be zero
everywhere. The set of rational functions is denoted by K(X).

Definition 1.1.5. A variety is said to be regular in codimension n if the singular locus has codi-
mension at least n.

Definition 1.1.6 ([H70, II.6]). Let X be a variety, regular in codimension 1. A prime Weil divisor
D ⊆ X is a subvariety of codimension 1 in X. An example of a Weil divisor is an irreducible curve
inside a surface.

A Weil divisor is an element of the formal direct sum of all prime divisors, and the set of Weil
divisors is called DivX. A non-zero rational function f on X gives rise to a Weil divisor div f ,
which is called a principal divisor given by

div f =
∑
D⊆X

vf (D)D

where vf (D) is the order of zero or pole of f along D. This notion turns out to be well defined and
the sum is finite. The principal divisors form a subgroup of DivX, and we say that D is rationally
equivalent do D′, or D ∼ D′ if their difference is a rational divisor. Denote by ClX -the Class
group of X- the quotient of DivX by the principal divisors.

The support of a divisor D, denoted by SuppD is the union of the subvarieties which have
non-zero coefficient in D.

A divisor D is effective if every prime divisor in D appears with non-negative multiplicity. It is
reduced if every prime divisor in D has multiplicity 1. Given an effective divisor D =

∑
niDi, with

ni > 0, we can define the reduced divisor Dred =
∑
Di.

Definition 1.1.7. Let X be a variety regular in codimension 1. A Cartier divisor is a Weil divisor
that is locally the div(f) for some f . A Weil divisor D is said to be Q-Cartier if nD is a Cartier
divisor for some n > 0.

In fact, the notion of Cartier divisor can be extended to varieties not necessarily regular in
codimension 1. The way to do this is forgetting that there is a Weil divisor and only remember
the information of the f ∈ K(X) in an open cover of X, which should be compatible so that they
define the same divisor everywhere.

Definition 1.1.8. Let X be a variety. A Cartier divisor is determined by the following data:
{(Ui, fi)} where Ui ⊆ X be an open cover of X and fi ∈ K(Ui) = K(X) rational functions such
that fi

fj
is an invertible holomorphic function on Ui ∩ Uj , that is, it has no zeros nor poles.

A Cartier divisor is principal if it is determined by {(X, f)} for some f ∈ K(X). The set of
classes of Cartier divisors modulo principal divisors is denoted CaClX.

Of course, there could be different covers and different functions that define the same divisor,
we leave the details to [H70, II.6] where the definitions are made in terms of sheaves. If the variety
X is non-singular, then Cartier divisors and Weil divisors coincide. There is a final notion strongly
related to divisors that is important for our purposes.

Definition 1.1.9. Let X be a variety not necessarily regular in codimension 1. A line bundle on
X is a fibration π : L → X that locally looks like the projection U × C → U . Let PicX be set of
isomorphism classes of line bundles of X together with tensor product as an operation. As it turns
out, PicX is a group (see [H70, Proposition II.6.12]).
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A Cartier divisor D determines a line bundle O(D) by glueing Ui × C and Uj × C through

multiplication by
fj
fi
.

For an open set U ⊆ X, the set of algebraic sections of π restricted to U is Γ(U,L). A section is
a function σ : U → L such that π ◦ σ = idU . For the trivial line bundle X ×C we simply say Γ(U).
Its sections are precisely the algebraic holomorphic functions on X.

Proposition 1.1.10. Let D1,D2 Cartier divisors on X. Then D1 ∼ D2 if and only if O(D1) ∼=
O(D2) as line bundles.

Proof. See [H70, Proposition II.6.13].

Proposition 1.1.11. If X is a variety, the morphism CaClX → PicX given by D 7→ O(D) is an
isomorphism

Proof. See [H70, Proposition II.6.15].

To see how this works, let s ∈ Γ(U,L) be a non-zero local section, which must exist for some U
that trivializes π. Then s extends uniquely as a meromorphic function X → L. We let D be the
divisor of zeros minus the divisor of poles of s.

An important line bundle (and divisor) is the canonical line bundle of a variety.

Definition 1.1.12. Let X be a variety of dimension n regular in codimension 1. Let Xsmooth ⊆ X
the smooth locus of X. Then π :

∧nΩX = ωX → Xsmooth is the line bundle of n-forms over Xsmooth.
We let KX be a Weil divisor defined by ωX . KX is called a canonical divisor, and if X is smooth,ωX
is called the canonical bundle.

When X is singular, then ωX may not extend to a line bundle on the whole X, but sometimes
ω⊗m
X does. This gets translated into that mKX is a Cartier divisor, so KX is Q-Cartier. When this

happens, we say that X is Q-Gorenstein.
The notion of a canonical line bundle can be generalized to singular varieties thanks to the

dualizing sheaf ([H70, pp 241]), which is also called ωX .
Whenever we have a morphism f : Y → X and a line bundle π : L → X, we can define the

pullback line bundle f∗L → Y where the fiber over every point y ∈ Y coincides with the fiber
π−1(f(y)). When f is an inclusion of a subvariety, we say f∗L = L|Y . We can also define the
pullback of a Cartier divisor, where f∗({Ui, fi}) = {f−1(Ui), fi ◦ f}, as long as SuppD does not
contain the image of f . The contention Supp f∗(D) ⊆ f−1(SuppD) is clear. This pullback defined
in DivX (or PicX) has a natural extension to Q-divisors in DivX ⊗Q (or PicX ⊗Q).

Definition 1.1.13. Let X be a smooth complete curve and D =
∑

i niPi, where Pi ∈ X are points.
We define the degree of D, degD =

∑
i ni.

Equivalently, if π : L → C is a line bundle, degE is defined as the number of zeros minus the
number of poles of a non-zero meromorphic section s of π. This number is independent of the choice
of the s.

Proposition 1.1.14. Let X be a complete smooth curve. Then a principal divisor has degree 0.
In particular, deg is defined in ClX

Proof. This is [H70, Corollary II.6.10].

An important example of the above is the degree of the canonical divisor (or canonical bundle)
on a smooth curve.
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Proposition 1.1.15. Let X be a smooth complete curve of genus g. Then degKX = 2g − 2.

Proof. This is a consequence of the Riemann-Roch Theorem. See [H70, Example IV.1.3.3].

Definition 1.1.16. Let X be a smooth surface. A configuration of curves is an (effective) reduced
divisor D = C1 + . . . + Cn. It has normal crossings if has transversal intersections, that is, every
singularity in D is locally analytically isomorphic to the singularity {(x, y) | xy = 0}. It is simple
normal crossing (snc) if in addition, every curve Ci is smooth.

Definition 1.1.17. Let C0 be a possibly non-snc divisor in a smooth surface X. A log resolution
of C0 is a sequence of blow ups π : Y → X such that C = (π∗C0)red is a snc configuration. π is a
minimal log resolution if whenever a π-exceptional (−1)-curve is contracted, the image of C is not
snc.

We conclude this section with a very useful construction that we will use extensively, the blow
up of a non-singular point.

Definition 1.1.18. Let X be a variety of dimension n and x ∈ X be a non-singular point. The
blow up of x is a morphism π : Blx,X → X such that π|π−1(X−x) is an isomorphism and E = π−1(x)
parametrizes the tangent directions of X at x, so that π−1(x) ∼= Pn−1. E is called the exceptional
divisor of the blow up.

For an explicit construction of the blow up (as in [B96, II.1]), let x1, . . . , xn ∈ Γ(U) be local
parameters of x such that x is the only common zero in a neighborhood U of x. Then define
π|π−1(U) : Blx,X ∩π−1(U) → U as the restriction of the projection U × Pn−1 → U to the subvariety
defined by the equations {xiyj = xjyi}, where y1, . . . , yn are the homogeneous coordinates of Pn−1.
Note that π is an isomorphism outside x since at least one parameter is invertible, so we can glue
π with the identity of the open set X − x. For a more general approach, refer to [H70, II.7].

Sheaves over an algebraic variety, (and in particular line bundles) have a cohomology theory,
where the cohomology groups of a sheaf (or line bundle) L over X are denoted by H i(X,L),
i ≥ 0. In particular, H0(X,L) = Γ(X,L). When X is a projective variety of dimension n, all
cohomology groups are finite dimensional vector spaces over C, and all groups H i(X,L) vanish for
i > n (this is [H70, Theorem III.2.7]). The dimension of H i(X,L) is denoted by hi(X,L). The
Euler characteristic of a sheaf is defined as χ(L) =

∑
i≥0(−1)ihi(X,L), in particular, the Euler

characteristic of an irreducible surface X is

χ(X) = χ(OX) = h0(OX)− h1(OX) + h2(OX) = 1− q(X) + pg(X),

where q(X) = h1(OX) is the irregularity of X and pg(X) = h2(OX) is the geometric genus of X.

Theorem 1.1.19 (Serre Duality). Let X be a smooth variety of dimension n and L a locally free
sheaf on X. Then there are natural isomorphisms

H i(X,L) ∼= Hn−i(X,ωX ⊗ L∨)∨

Proof. This is a particular case of the duality for projective schemes, [H70, Theorem III.7.6 and
Corollary III.7.7].

In particular, if D is a divisor on a smooth surface, we have h2(D) = h0(KX −D).
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1.2 Review of Intersection Theory for Smooth Surfaces

Let us suppose now that X is a non-singular complete surface, and let Y,Z be two different
prime divisors. We will define their intersection Y · Z ∈ Z and then extend it to DivX. We first
give a naive definition that requires a strong assumption on Y and Z.

Definition 1.2.1. Suppose that Y and Z intersect transversely, that is, at each point of intersection
it is locally isomorphic (in the analytic topology) with the crossing {xy = 0} ⊆ C2. We define Y ·Z
to be the number of intersection points of Y and Z.

Of course we would like to extend our definition for every pair of divisors. As it turns out this
is possible.

Theorem 1.2.2. There exists a unique symmetric bilinear pairing DivX×DivX → Z that extends
Y · Z when Y and Z are smooth and transversal such that whenever C1 ∼ C2 and D1 ∼ D2, then
C1 ·D1 = C2 ·D2.

Proof. This is [H70, Theorem V.1.1].

This is thanks to the Moving Lemma, which states that any divisor in a smooth surface is linearly
equivalent to the difference of two smooth curves, and these curves can be chosen transversal to
any other finite set of curves. This lemma is found implicitly in the proof of [H70, Theorem V.1.1].
The fact that this intersection form is defined for every pair of curves means that we can talk about
the self-intersection of a curve C, denoted by C2 = C · C. For example, an important invariant of
a surface X is K2

X .
As an example of self-intersection of a curve, consider a line L ⊆ P2. This line is linearly

equivalent to any other line L′ ⊆ P2, and any two different lines in P2 intersect each other at one
point transversally. Therefore L2 = L.L′ = 1. Also, it is well known that KP2 ∼ −3L, so K2

P2 = 9.

Definition 1.2.3. By a (−n)-curve, we mean a smooth rational curve E with E2 = −n.

There is also intrinsic way of defining the intersection between two curves:

Proposition 1.2.4. Let X be a smooth surface and C,D ⊆ X be two irreducible curves, C smooth
and projective. Then

C ·D = deg(O(D)|C) = deg(OC(D))

Theorem 1.2.5 (Adjunction Formula). Let X be a smooth surface and C ⊆ X a smooth complete
curve. Then

ωC = (ωX ⊗O(C))|C .

This translates to the numerical equality

2g(C)− 2 = degKC = (KX + C) · C = KX · C + C2

This equality is also true for singular complete curves, where g(C) is replaced by the arithmetic
genus of C.

Proof. This is [H70, Proposition II.8.20] and [H70, Proposition V.1.5].

We now compare the intersection theories of a surface and the blow up at one of its points.

Definition 1.2.6. Let x ∈ X and π : Y → X the blow up at x. Let C ⊆ X be a curve. The
strict transform of C is Ĉ = f−1(C − x). The strict or proper transform of a divisor is defined by
linearity.
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Proposition 1.2.7. Let X be a smooth surface and x ∈ X. Let π : Y → X be the blow up at x,
and let E be its exceptional divisor. Then the following holds

1. If C ⊆ X has multiplicity m at x, then π∗C = Ĉ +mE.

2. If D is a divisor on X, then π∗D · E = 0.

3. If D,D′ are divisors in X, then (π∗D) · (π∗D′) = D ·D′.

4. E2 = −1.

5. KY = π∗KX + E.

6. PicY ∼= PicX ⊕ Z.

Proof. This is [B96, Lemma II.2 and Proposition II.3] or [H70, Propositions V.3.2 and V.3.3]. For
the sake of having some calculations, we may assume 1. and prove the rest. Let D ⊆ X. By
choosing a divisor D′ in the rational equivalence class of D that does not pass through x, we see
that π∗D ·E = π∗D′ ·E = 0 since π∗D′ and E do not intersect. This proves item 2. We can prove
item 3 in the same way, choosing D′′ and D′′′ in the rational equivalence classes of D and D′ that
are transversal to each other and do not pass through x. Then since π is an isomorphism outside
x, π∗D′′ · π∗D′′′ = D′′ ·D′′′.

Let C be a curve with multiplicity 1 at x. Then π∗C = Ĉ + E. Ĉ intersects E transversely,
since E parametrizes tangent directions at x and C has a single tangent direction at x. Therefore,
0 = π∗C · E = Ĉ · E + E2 = 1 + E2. This proves item 4.

Since π is an isomorphism outside x, then ωX and ωY are isomorphic outside x and E. by
choosing a representative of KX that do not pass though x, we must have KY = K̂X + kE =
π∗KX+kE for some k. By intersecting with E we get KY ·E = kE2 = −k, but since E is a smooth
curve of genus 0, by adjunction formula we have KY ·E = −2−E2 = −1. This proves k = 1. This
is item 5.

To prove item 6 we note that the morphism PicX ⊕ Z → PicY given by (D,n) 7→ π∗D + nE
is surjective, since every curve in Y is either E or of the form Ĉ. We also use item 1. To see it is
injective, suppose that π∗D+ nE = 0. Then 0 = E · (π∗D+ nE) = −n so n = 0. We note that the
image of π∗D by π is precisely D, so if π∗D = 0, then D = 0.

Corollary 1.2.8. Suppose C has multiplicity n and D has multiplicity m at x. Then

Ĉ · D̂ = C ·D − nm and Ĉ · E = n.

In particular, Ĉ2 = C2 − n2. Also,
K2
Y = K2

X − 1.

Proof. Since π∗C = Ĉ + nE and π∗D = D̂ +mE, then

0 = π∗C · E = Ĉ · E + nE2 = Ĉ · E − n, so Ĉ · E = n.

Also,

Ĉ · D̂ = (π∗C − nE)(π∗D −mE) = π∗C · π∗D −mπ∗C · E − nπ∗D · E + nmE2 = C ·D − nm.

Since KY = π∗KX + E, then K2
Y = (π∗KX + E)2 = K2

X + E2 = K2
X − 1.

Now that we know that the exceptional curve of a blow up has self-intersection −1, we can state
the inverse operation.
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Theorem 1.2.9 (Castelnuovo’s Contraction Theorem [B96, Theorem II.17]). Let E ∈ X be a
smooth rational curve with E2 = −1. Then there is a smooth surface Y , P ∈ Y and a morphism
π : X → Y such that π is the blow up at P and the exceptional curve is E. This operation that
contracts E is called a blow down.

1.3 Intersection Theory for Normal Surfaces

The question of existence of an intersection theory naturally extends to the case of singular
surfaces. An intersection theory always exists in the case of Cartier Divisors, however it is not
obvious to extend it to Weil divisors. Mumford [M61, II (b)] proposes the following solution for
normal surfaces.

Let X be a normal surface and π : Y → X a resolution of singularities. Such a resolution always
exists, and has smooth exceptional curves E1, . . . , En, intersecting each other transversally. Here Y
is a smooth surface, so we aim to translate the problem of intersecting curves in X to intersecting
them in Y .

Theorem 1.3.1. The matrix (Ei · Ej)ij is negative definite.

Proof. This is [M61] page 230. At least the case with a single singularity. The general case is a
formal consequence.

Definition 1.3.2. Let A ⊆ X be a divisor, and let A0 ⊆ Y its proper transform. Define the
pullback π∗(A) by A0 +

∑
riEi, where the ri satisfy the relations

0 = Ej · π∗(A) = Ej ·A0 +
∑

ri(Ei · Ej)

By Theorem 1.3.1, these ri are well defined and unique rational numbers. We can finally define
A · B = π∗(A) · π∗(B). As it turns out, this definition does not depend on the resolution Y → X
and has the property that π∗(A1) ∼ π∗(A2) whenever A1 ∼ A2. So in particular, if A1 ∼ A2 and
B1 ∼ B2, then A1 · B1 = A2 · B2. It also has the property that every ri is non-negative if A is
effective.

Note that since the Ei are exceptional, A ·B = π∗(A) · π∗(B) = A0 · π∗(B).

1.4 Du Val Singularities and ADE Classification

There are certain families of singularities that may appear in surfaces. These are the so-called
rational double points or Du Val singularities, and for various reasons these are regarded as the
simplest among all surface singularities (see [I18, §7.5]). As with any singularity, they are uniquely
determined by the configuration of curves arising in a minimal resolution. The following is classifi-
cation of all such possible exceptional divisors:

• An : . . .

• Dn : . . .

• E6 :
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• E7 :

• E8 :

Here are denoted the dual graphs of the respective configuration of curves. Nodes in the graph
correspond to curves and two nodes are connected if and only if the curves intersect, and if two curves
intersect, they only do it once. All intersections are transversal, and all curves have self-intersection
−2.

These graphs are precisely the simply laced Dynkin diagrams, which in turn are classified as one
of the families A-D-E.
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Chapter 2

T-Singularities

Before dealing with T-singularities, we define a broad class of singularities that may appear in
surfaces.

Definition 2.0.1 ([KM98]). Let (X,∆) be a log pair, that is, X is a variety and ∆ is a Q-divisor.
Assume that X is normal and that KX +∆ is Q-Cartier. Then (X,∆) is said to be log-canonical
if the following situation holds:

Let ν : Y → X be a log-resolution of (X,∆), that is, Y is smooth, relatively minimal and the
divisor f−1(Supp∆)+ exc ν is simple normal crossing. Let ∆̃ the strict birrational transform of ∆,
and write KY + ∆̃ as

KY + ∆̃ = ν∗(KX +∆) +
∑

Ei⊆exc ν

aiEi

Then for every Ei ⊆ exc ν, ai ≥ −1.
A normal surface X is said to have log-canonical singularities if (X, 0) is a log-canonical pair.

In this thesis we will only deal with log-canonical (in fact log-terminal, which require ai > −1)
singularities, but in order to fully describe the KSBA moduli space we need a slightly more general
class of singular surfaces, whose singularities are called semi-log-canonical (slc). For a rigorous
definition, refer to [KSB88]. Surfaces with slc singularities and ample dualizing sheaf are called
stable surfaces, and they are the kind of singularities that appear in the compactification of MK2,χ.

2.1 Cyclic Quotient Singularities

Definition 2.1.1. Let m, q be coprime integers with 1 ≤ q < m. Let µm ∈ C be a primitive
m-th root of unity and consider the cyclic group G of automorphisms of C2 generated by (x, y) 7→
(µmx, µ

q
my). The point 0 ∈ C2/G is a rational singularity ([I18, Definition 6.2.10 and Corollary

7.4.10]) called cyclic quotient singularity, and any surface singularity analytically isomorphic to it
is said to be of type 1

m(1, q).

In order to give an algebraic-geometric description of the quotient C2/G, we note that G acts
naturally on the coordinate ring C[x, y] of A2: if g ∈ G and f ∈ C[x, y] is a polynomial, then

g · f = f ◦ g.

With this in mind, the quotient space is realized as

C2/G = Spec(C[x, y]G)
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where C[x, y]G ⊆ C[x, y] is the C-sub algebra of polynomials that are G-invariant. Note that G is
a linear group acting on C, and so, C2/G and its resolution can be interpreted as a toric variety
([F93, §2.2]).

It is known thanks to Kawamata [I18, Theorem 7.4.9 and 7.4.11] that in characteristic 0 and
dimension 2, the slightly more general class of quotient singularities are precisely the log-terminal
singularities. They are in particular semi-log-canonical singularities, and so, working with surfaces
with only cyclic quotient singularities provide a nice, controlled framework to find examples of
surfaces that may be deformed. This is the reason that the technique due to Lee and Park is
applied almost exclusively with these types of singularities. See [LP07], [PPS09a], [PPS09b] for
constructions with pg = 0 and [PPS13] and [RU21] for constructions for pg = 1.

Cyclic quotient singularities have long since been very well understood in the literature. We will
now present some relevant definitions and facts related to them.

Definition 2.1.2 ([H53]). Let m, q be coprime integers with 1 ≤ q < m. The Hirzebruch-Jung
continued fraction of mq is given by

m

q
= e1 −

1

e2 −
1

. . . − 1

el

,

where the ei ≥ 2 are unique. We also denote

m

q
= [e1, . . . , el].

Theorem 2.1.3. [I18, Theorem 7.4.16] Let p ∈ U be a cyclic quotient singularity of type 1
m(1, q)

in some neighborhood U , and let π : V → U the minimal resolution of the point p. Then π−1(p) is
a divisor consisting of l > 0 smooth rational curves E1, . . . , El such that

1. Ei · Ei+1 = 1 for i = 1, . . . , l − 1,

2. Ei · Ej = 0 if j ̸∈ {i+ 1, i, i− 1},

3. E2
i = −ei, where ei is the corresponding value of the Hirzebruch-Jung continued fraction

m
q = [e1, . . . , el].

From now on, we will now denote by [e1, . . . , el] both the fraction m
q and the chain of P1 that are

the exceptional divisor of the minimal resolution of a 1
m(1, q) singularity. Note that both [e1, . . . , el]

and [el, . . . , e1] define the same singularity. The following lemma is a classic result that relates both
continued fractions (another proof can be seen in [V20, Corolario 1.19]).

Lemma 2.1.4. Let m
q = [e1, . . . , el] and

m′

q′ = [el, . . . , e1]. Then m = m′ and qq′ ≡ 1 mod m.

Proof. Let ai be defined by

a0 = m, a1 = q, and ai+1 = eiai − ai−1.

By solving for ai−1

ai
, we note that this is exactly the partial steps in the construction of its continued

fraction, so this means that ai−1

ai
= [ei, . . . , el]. Also, this construction ends when al = 1 and

al+1 = 0. Define also
b0 = 0, b1 = 1, and bi+1 = eibi − bi−1.
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This also coincides with the construction of a continued fraction, but from the other end, that is,
bi+1

bi
= [ei, . . . , e1], in particular, bl = q′ and bl+1 = m′. We prove by induction that for i ≥ 1,

qbi ≡ ai mod m. This is true by definition for i = 0, 1, and

qbi+1 = qeibi − qbi−1 ≡ eiai − ai−1 = ai+1.

This means in particular that qq′ ≡ 1 mod m and qm′ ≡ 0 mod m. By coprimality of m and q,
this means that m | m′. A symmetric arguments proves that m′ | m, so m′ = m.

Whenever m and q are clear by context, q′ will denote q−1 mod m, and ai, bi will be as in the
construction above.

Even though the singularities 1
m(1, q) and 1

m(1, q′) are isomorphic, sometimes the order in which
we consider the curves in the resolution is important, and we will choose either q or q′ accordingly.

Example 2.1.5. The simplest nontrivial cyclic quotient singularity is of type 1
2(1, 1), where the

group action is given by (x, y) 7→ (−x,−y).
A polynomial f ∈ C[x, y] is invariant with respect to this action if and only if every monomial

has an even degree, which means that C[x, y]G is generated by the elements x2, xy, y2. Naming
them u, v, w respectively, we obtain the relation uw = v2, which can be verified to be essentially
the only one.

This means that
C[x, y]G = C[x2, xy, y2] ∼= C[u, v, w]/(uw − v2)

and so, the quotient space C2/G can be realized as

Z(uw − v2) ⊆ C3
u,v,w

which can be readily recognized as a simple cone with a node at the origin. It is a usual exercise
to verify that the resolution of that singularity (which can be obtained blowing up the origin in the
ambient space C3) has a single P1 over the singular point with self-intersection −2.

Indeed, the Hirzebruch-Jung continued fraction of this singularity is

2

1
= 2

as expected.

The converse of the resolution also holds, that is, given a surface V with curves E1, . . . , El
satisfying the three conditions of Theorem 2.1.3, where V is smooth along E1, . . . , El, then there
exists a surface U and a morphism π : V → U such that π is an isomorphism outside E1 ∪ . . . ∪ El
and π(E1∪ . . .∪El) = p. This is a consequence of a well known numerical criteria for contractibility
due to Artin ([A62]), which requires that the matrix (Ei · Ej)ij is negative definite.

Since cyclic quotient singularities are rational singularities, a surface X with only cyclic quotient
singularities is Q-Gorenstein ([I18, Theorem 7.3.2]), that is, mKX is a Cartier divisor for some
m > 0. Because of this, the canonical divisor KX is well defined in DivX⊗Q. Consider π : Y → X
a resolution of singularities of X with exceptional divisors Ei, i = 1, . . . , l. Since π is an isomorphism
outside the total exceptional divisor, one must have the equality

KY = π∗KX +

l∑
j=1

djEj . (2.1)
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for some rational numbers dj called discrepancies.
∑l

j=1 djEj ∈ Div Y ⊗Q is called the discrepancy
Q-divisor. In order to find them, we intersect KY with every Ei. By adjunction formula (Theorem
1.2.5), since each Ei is a smooth rational curve, we have KY · Ei = −2 − E2

i , and since Ei is
exceptional, we have π∗KX · Ei = 0. Therefore we get the linear system

−2− E2
i =

l∑
j=1

dj(Ej · Ei)

Since π is a resolution of singularities, by Theorem 1.3.1 we know that the matrix (Ei · Ej)ij is
negative definite, so there must be a unique solution to this system. In the case of cyclic quotient
singularities we can determine the discrepancies in terms of the continued fraction of mq = [e1, . . . , el].
Note that in this case the system becomes

ei − 2 = di−1 − eidi + di+1

where for convenience d0 = dl+1 = 0. The following propositon is a classic result that relates the
discrepancies of a cyclic quotient singularity and ai, bi.

Proposition 2.1.6. Let x ∈ X be a cyclic quotient singularity of type m
q = [e1, . . . , el] and π : Y →

X its minimal resolution with exceptional curves E1, . . . , El (in order as in Theorem 2.1.3). Let ai
and bi be as in lemma 2.1.4. Then the i-th discrepancy has

di = −
(
1− ai + bi

m

)
.

for i = 0, . . . , l + 1, where we define d0 = dl+1 = 0.

Proof. It is enough to show that those numbers are a solution to the system. For i = 0 and i = l+1
this is clear. For i = 1, . . . , l,

di−1 − eidi + di+1 = −
(
1− ai−1 + bi−1

m

)
+ ei

(
1− ai + bi

m

)
−
(
1− ai+1 + bi+1

m

)
= ei − 2 +

(ai+1 − eiai + ai−1) + (bi+1 − eibi + bi−1)

m
= ei − 2.

Example 2.1.7. Going back to our example of 1
2(1, 1), the discrepancy of the single exceptional

over the point must satisfy the equation

e1d1 = e1 − 2 = 0

and therefore d1 = 0. In fact as long as every ei = 2, every discrepancy must be zero as the system
is trivial. These are precisely the An type of double point singularities (see Section 1.4)

2.2 T-Singularities and Wahl Chains

One of the main reasons for using Q-Gorenstein smoothings is that they preserve several invari-
ants of surfaces, in particular they preserve K2, even if the surface is singular. This immediately
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gives us a restriction on the kind of singularities that can appear on X: They must ensure that K2
X

is an integer.
By squaring equation 2.1 and noting that each Ei is π-exceptional, we obtain

K2
Y = K2

X +

(
l∑

i=1

diEi

)2

.

As K2
Y is an integer because Y is smooth, K2

X being an integer is equivalent to
(∑l

i=1 diEi

)2
being

an integer. The following result is classical.

Proposition 2.2.1. Let 1 ≤ q < m be coprime integers as before, and let x ∈ X be an isolated
singularity of type 1

m(1, q). The following are equivalent:

1. K2
X is an integer.

2. m = dn2, q = dna− 1 for a triple of integers (d, n, a) where 1 ≤ a ≤ n and gcd(n, a) = 1.

Proof. We have(
l∑

i=1

diEi

)2

=

l∑
i=1

di(di−1 − eidi + di+1)

=
l∑

i=1

di(ei − 2)

=
l∑

i=1

−
(
1− ai + bi

m

)
(ei − 2)

=
l∑

i=1

(2− ei) +
l∑

i=1

(
ai + bi
m

)
(ei − 2)

=

l∑
i=1

(2− ei) +

l∑
i=1

ei

(
ai + bi
m

)
−

l+1∑
i=2

ai−1 + bi−1

m
−

l−1∑
i=0

ai+1 + bi+1

m

=
l∑

i=1

(2− ei) +
l∑

i=1

(
eiai − ai−1 − ai+1 + eibi − bi−1 − bi+1

m

)
+
a0 + b0 − al − bl

m
+
al+1 + bl+1 − a1 − b1

m

=
l∑

i=1

(2− ei) +
m+ 0− 1− q′ + 0 +m− q − 1

m

=

l∑
i=1

(2− ei) + 2− q + q′ + 2

m

therefore, K2
X is an integer if and only if q+ q′ +2 ≡ 0 mod m. It is clear that 2. implies 1., as the

inverse of dna− 1 modulo m is dn(n− a)− 1.
For 1. implies 2. note that by multiplying by q we obtain q2 + 2q + 1 = (q + 1)2 ≡ 0 mod m,

therefore m | (q + 1)2. Let g = gcd(m, q + 1), n = m
g , d = g2

m and a = q+1
g , so n and a are
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coprime. Since m divides (q + 1)2, then it also divides g2, so d is an integer. Clearly m = dn2 and
q = dna− 1.

We will now differentiate two cases. The first is when n = a = 1 and d ≥ 2. The corresponding
singularity is of type 1

d(1, d− 1), and it is not hard to verify that

d

d− 1
= [ 2, . . . , 2︸ ︷︷ ︸

d− 1 times

],

so it is exactly a singularity of type Ad−1, from the ADE classification. As we saw, each discrepancy
is zero, and in particular K2

X = K2
Y , an integer. The truly interesting case is when n > 1.

Definition 2.2.2. Let 1 ≤ a < n and d ≥ 1 be integers with gcd(n, a) = 1. Then the singularity
1
dn2 (1, dna− 1) is called a T-singularity, and is denoted by T (d, n, a), and the corresponding chain
of P1’s in its resolution is called a T-chain. When d = 1, it is also called a Wahl singularity, and
the corresponding chain is called a Wahl chain.

Note however, that classically, as in [KSB88], T-singularities are defined as the ones above plus
ADE singularities.

We will now provide a complete description of all T-singularities.

Proposition 2.2.3 (T-chain algorithm, [KSB88, Proposition 3.11]). The following are ‘initial’ T-
chains:

• For d = 1, [4] is of type T (1, 2, 1).

• For d > 1, [3, 2, . . . , 2, 3] is of type T (d, 2, 1), where the amount of twos that appear in the
expansion is d− 2.

Now, if [e1, . . . , el] is of type T (d, n, a), then the following are also T-chains

• [2, e1, . . . , el−1, el + 1] is of type T (d, 2n− a, n).

• [e1 + 1, e2, . . . , el, 2] is of type T (d, n+ a, a).

Every T-chain can be obtained starting from an initial T-chain and applying the above operations
repeated times.

Proof. The cases for d = 1 and d = 2 can be readily checked. For d > 2, we know that

[ 2, . . . , 2︸ ︷︷ ︸
d− 2 times

] =
d− 1

d− 2

Then

[3, 2, . . . , 2] = 3− d− 2

d− 1
=

2d− 1

d− 1

The inverse of d− 1 modulo 2d− 1 is 2d− 3, therefore, by Lemma 2.1.4,

[2, . . . , 2, 3] =
2d− 1

2d− 3

and finally,

[3, 2, . . . , 2, 3] = 3− 2d− 3

2d− 1
=

4d

2d− 1
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which is precisely the fraction associated to T (d, 2, 1). In the case of the operations, we know that

[e1, . . . , el] =
dn2

dna− 1

The inverse of dna− 1 modulo dn2 is dn(n− a)− 1, so

[el, . . . , e1] =
dn2

dn(n− a)− 1

Therefore

[el + 1, . . . , e1] = 1 +
dn2

dn(n− a)− 1
=
dn(2n− a)− 1

dn(n− a)− 1

The inverse of dn(n− a)− 1 modulo dn(2n− a)− 1 is da(2n− a)− 2, so

[e1, . . . , el + 1] =
dn(2n− a)− 1

da(2n− a)− 2

Finally,

[2, e1, . . . , el + 1] = 2− da(2n− a)− 2

dn(2n− a)− 1

=
2dn(2n− a)− 2− da(2n− a) + 2

dn(2n− a)− 1

=
d(2n− a)2

d(2n− a)n− 1

which is precisely the fraction associated to T (d, 2n−a, n). For the last case, note that if [e1, . . . , el] is
of type T (d, n, a), then [el, . . . , e1] is of type T (d, n, n−a). By the previous part, [2, el, . . . , e1+1] is of
type T (d, 2n−(n−a), n) = T (d, n+a, n). Again, by reversing the chain we get that [e1+1, . . . , el, 2]
is of type T (d, n+ a, a).

We can use a simple argument of infinite descent to prove that every T-chain can be obtained
with this algorithm: Let (n, a) be a pair of coprime integers with n > a ≥ 1, n > 2. If a < n

2 , then
(n′, a′) = (n − a, a) also satisfies n′ > a′ ≥ 1, and n′ < n. In the other case, if a > n

2 (equality
cannot happen due to coprimality), then (n′, a′) = (a, 2a− n) also satisfies n′ > a′ ≥ 1 and n′ < n.
This process cannot go infinitely, and must stop when n = 2 and a = 1.

Example 2.2.4. The simplest Wahl chains are of type T (1, n, 1). In the algorithm above, since a
is never increased, it means that only operation 2 is applied, and it is done n− 2 times. The chain
we obtain is thus

[n+ 2, 2, . . . , 2︸ ︷︷ ︸
n− 2 times

] =
n2

n− 1
.

Its reversed chain is of type T (1, n, n− 1),

[ 2, . . . , 2︸ ︷︷ ︸
n− 2 times

, n+ 2] =
n2

n(n− 1)− 1
.

These will be called “linear chains”. Note that if [e1, . . . , el] is not a linear chain, i.e. both operations
are applied at least once, then two things happen. First, there must exist an index i ̸= 1, l such
that ei ̸= 2. Second, let i be the greatest index such that ei > 2. Then the chain is of the form

[e1, . . . , ei, 2, . . . , 2︸ ︷︷ ︸
e1 − 2 times

].
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since there must have been an operation of the first kind followed by e1−2 operations of the second
kind. In particular, if e1 = 2, then el > 2, since we must have finished with an operation of the first
kind. Of course, this also works the other way around: if i is the least index such that ei > 2, then
the chain is of the form

[ 2, . . . , 2︸ ︷︷ ︸
el − 2 times

, ei, . . . , el].

By using this construction of T-chains, we can calculate the discrepancies of each of the excep-
tional curves by introducing a little bit more information.

Lemma 2.2.5 ([V20, Proposición 2.20]). Denote by D(d, 2, 1) the tuple (1, . . . , 1) with d ones. If
D(d, n, a) is defined as the tuple (δ1, . . . , δl), then

• D(d, 2n− a, n) is the tuple (δ1 + δl, δ1, . . . , δl).

• D(d, n+ a, a) is the tuple (δ1, . . . , δl, δ1 + δl).

If T (d, n, a) is the T-singularity [e1, . . . , el] and D(d, n, a) is (δ1, . . . , δl), then the following holds

1. n = δ1 + δl,

2. a = δ1,

3. di = −
(
1− δi

n

)
for i = 1, . . . , l.

Proof. By Proposition 2.1.6, 3. holds if and only if ai + bi = dnδi for every i = 1, . . . , l, and this
easily implies 1. and 2. For T (d, n, 1) we only have to prove that every discrepancy is −1

2 . This can
be verified immediately for T (1, 2, 1) and T (2, 2, 1). For [3, 2, . . . , 2, 3], for i = 2, . . . , l − 1 we have
the equation

0 = ei − 2 = di−1 − 2di + di+1

therefore
di − di−1 = di+1 − di

so discrepancies increase or decrease linearly with the constant C = di−di−1. However, [3, 2, . . . , 2, 3]
is symmetric, so if the discrepancies were increase to the right, they would also increase to the left
and vice versa. This forces C = 0, that is, all discrepancies are equal. We finally evaluate at i = 1:

1 = e1 − 2 = d1 − 3d2 = −2d1

therefore di = d1 = −1
2 for every i.

We will prove that if the discrepancies of T (d, n, a) can be calculated with D(d, n, a) via 3. then
the discrepancies of T (d, ñ, ã) = T (d, n+a, a) can be calculated with D(d, ñ, ã). We note that since
ã = a, then ã = δ1 so 2. holds. This means that ã1 + b̃1 = q̃ + 1 = dñã = dñδ1 so the condition
holds for i = 1.

Since the discrepancies of T (d, n, a) can be calculated with D(d, n, a), then n = δ1 + δl, and
since ã = a = δ1, then ñ = n+ a = 2δ1 + δl = δ1 + δl+1, so δl+1 = ñ− ã, and

ãl+1 + b̃l+1 = 1 + q̃′ = 1 + (dñ(ñ− ã)− 1) = dñδl+1.

So the condition also holds for i = l + 1. This also solves the problem when l = 1.
Now, if l > 1, recall that if T (d, n, a) = [e1, . . . , el] then T (d, ñ, ã) = [e1 + 1, . . . , el, 2]. We have

dnδ2 = a2 + b2 = e1(a1 + b1)− (a0 + b0) = e1(a1 + b1)−m = e1dna− dn2 = dn(e1a− n)
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so δ2 = e1a− n, then

ã2 + b̃2 = (e1 + 1)(ã1 + b̃1)− m̃ = (e1 + 1)d(n+ a)a− d(n+ a)2 = d(n+ a)(e1a− n) = d(n+ a)δ2

So the condition holds for i = 2. By induction, for i = 2, . . . , l − 1,

dnδi+1 = ai+1 + bi+1 = ei(ai + bi)− (ai−1 + bi−1) = dn(eiδi − δi−1)

so δi+1 = eiδi − δi−1, and again by induction, for i = 2, . . . , l − 1,

ãi+1 + b̃i+1 = ei(ãi + b̃i)− (ãi−1 + b̃i−1) = dñ(eiδi − δi−1) = dñδi+1

We can conclude that ãi + b̃i = dñδi for every i = 3, . . . , l. The case for T (d, 2n − a, n) is clear by
symmetry.

Example 2.2.6. By applying this construction to linear chains of type T (1, n, 1) we see that
discrepancies increase linearly. Thus the name.

Remark 2.2.7. Note that unless the T-chain is initial, if we write it as [e1, . . . , 2] for e1 > 2, then
the discrepancy of the first curve is always < −1

2 , and the discrepancy of the last curve is always
> −1

2 . Moreover the curves with discrepancy ≥ −1
2 are always at the “tail” of (−2)-curves of a

Wahl chain.

Lemma 2.2.8. Let x ∈ X be a T (d, n, a) singularity, and let Y → X be its resolution. If l is the
length of the chain over the point, then

K2
Y −K2

X = d− 1− l.

In particular, if X has a Wahl singularity, then

K2
X = K2

Y + l.

Proof. Recall that

K2
Y −K2

X =

(
l∑

i=1

diEi

)2

=
l∑

i=1

(2− ei) + 2− dna− 1 + dn(n− a)− 1 + 2

dn2
=

l∑
i=1

(2− ei) + 1.

Note that for a T (d, 2, 1) chain we have l = d and

l∑
i=1

(2− ei) = −2,

so for initial T-chains we have
l∑

i=1

(2− ei) + 1 = −1.

By applying one operation of Proposition 2.2.3, we have that
∑

i(2− ei) decreases by one. In order
to get a chain of length l we must apply operations l− d times. Since each operation decreases the
value by one, we obtain

l∑
i=1

(2− ei) + 1 = −1 + d− l.
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We conclude this section by giving an example of how we can calculate the invariants of a given
chain.

Example 2.2.9. Suppose we are given a chain of P1’s that corresponds to

[3, 2, 3, 2, 3, 5, 4, 2]

Is it a T-singularity? if so, what are its invariants (d, n, a) and its discrepancies?
For these questions, we may naively calculate the fraction using the Hirzebruch-Jung coefficients,

but it will quickly become bothersome doing it by hand.
Alternatively we can use the algorithm in Proposition 2.2.3 backwards. If we arrive to a chain

of type T (d, 2, 1) that meant that our chain was a T-singularity. We can then use the algorithm in
Lemma 2.2.5 to calculate its invariants.

Applying 2.2.3 backwards successive times we obtain:

[3, 2, 3, 2, 3, 5, 4, 2] → [2, 2, 3, 2, 3, 5, 4]

[2, 2, 3, 2, 3, 5, 4] → [2, 3, 2, 3, 5, 3]

[2, 3, 2, 3, 5, 3] → [3, 2, 3, 5, 2]

[3, 2, 3, 5, 2] → [2, 2, 3, 5]

[2, 2, 3, 5] → [2, 3, 4]

[2, 3, 4] → [3, 3]

This means that we indeed are looking at a T-singularity with d = 2. Now that we also know how
to construct it starting from an ‘initial’ T-singularity, we may apply algorithm in lemma 2.2.5:

[3, 3]
(1, 1)

→ [2, 3, 4]
(2, 1, 1)

[2, 3, 4]
(2, 1, 1)

→ [2, 2, 3, 5]
(3, 2, 1, 1)

[2, 2, 3, 5]
(3, 2, 1, 1)

→ [3, 2, 3, 5, 2]
(3, 2, 1, 1, 4)

[3, 2, 3, 5, 2]
(3, 2, 1, 1, 4)

→ [2, 3, 2, 3, 5, 3]
(7, 3, 2, 1, 1, 4)

[2, 3, 2, 3, 5, 3]
(7, 3, 2, 1, 1, 4)

→ [2, 2, 3, 2, 3, 5, 4]
(11, 7, 3, 2, 1, 1, 4)

[2, 2, 3, 2, 3, 5, 4]
(11, 7, 3, 2, 1, 1, 4)

→ [3, 2, 3, 2, 3, 5, 4, 2]
(11, 7, 3, 2, 1, 1, 4, 15)

With this, we conclude that n = 26 and a = 11, so the singularity is of type 1
1352(1, 571). The

discrepancies are respectively(
−15

26
,−19

26
,−23

26
,−24

26
,−25

26
,−25

26
,−22

26
,−11

26

)
.

Since l = 8 and d = 2, we can also know that K2
Y −K2

X = −7.
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2.3 Extremal P-resolutions

P-resolutions ([KSB88, Definition 3.8]) appear in some deep parts of the theory of singularities,
including for example as byproducts of applying MMP to certain families of surfaces. They are also
related to general smoothings of cyclic quotient singularities. However we are only interested in a
concrete algorithm encountered in the case of extremal P-resolutions ([HTU17, §4]). To deal with
the algorithm, we must first extend our language of continued fractions a bit.

In this section we deal with ‘generalized’ Hirzebruch-Jung continued fractions, that is, negative
continued fractions that allows ones to appear, and also the special value [0]. Now the continued
fraction of a rational number is not unique, and not every possible combination of numbers allows
for a valid continued fraction. We will now see some properties of these new kind of chains.

Definition 2.3.1. A generalized continued fraction [e1, . . . , en] is admissible if in the partial cal-
culations p

q = [ei, . . . , en] are positive for i > 1 and non-negative for i = 1. We say the chain

[e1, . . . , en] represents
p
q .

Thus, we disallow partial calculations which imply divisions by zero or negative numbers.

Example 2.3.2. [1, 1, 1] is not admissible, since there is a division by zero in 1 − 1
1− 1

1

, however

[1, 1] is admissible since 1− 1
1 = 0, so [1, 1] represents zero.

Example 2.3.3. Both [2, 2] and [3, 1, 3] represent 3
2 . In fact there are infinitely many chains that

represent any non-negative number. This will be seen just below.

Definition 2.3.4. Let [e1, . . . , el] be a generalized chain. A blow up is an operation on the chain
modifies it in one of the three following ways

[e1, . . . , el] 7→ [1, e1 + 1, . . . , el],

[e1, . . . , ei, ei+1, . . . , el] 7→ [e1, . . . , ei + 1, 1, ei+1 + 1, . . . , el],

[e1, . . . , el] 7→ [e1, . . . , el + 1, 1].

A blow down operation is the inverse process.

Of course, blow ups and blow downs of chains mimic the respective operations in linear config-
urations of curves.

Proposition 2.3.5 ([V20, Proposición 1.21]). [e1, . . . , el] is admissible if and only if any of its blow
up is admissible. Moreover, if mq = [e1, . . . , el], then

[1, e1 + 1, . . . , el] =
m

m+ q
,

[e1, . . . , ei + 1, 1, ei+1 + 1, . . . , el] =
m

q
,

[e1, . . . , el + 1, 1] =
m

q
.

Every admissible chain is obtained from blow ups from a minimal chain which is either [0] or a
classical Hirzebruch-Jung chain.

The above proposition provides us with an algorithm to determine if a chain is admissible, where
we just have to blow down until we arrive to a valid minimal chain. If in any moment there appears
a 0 and we are not at [0], the chain would be invalid.
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Definition 2.3.6 ([KSB88, Definition 3.8]). Let 0 < Ω < ∆ coprime integers, and P ∈ X be a
cyclic quotient singularity of type 1

∆(1,Ω). A P-resolution (positive resolution) is a partial resolution
π : Y → X of P such that π−1(P ) consists of rational curves, all positive for KY , and contains only
T-singularities and An singularities, for possibly many different n.

To build a P-resolution one may start from the minimal resolution, blow up enough times so that
only Wahl chains remain with curves connecting them, then contract said Wahl chains into Wahl
singularities, all while satisfying that these curves connecting them are positive for the canonical
class.

Example 2.3.7. Let P ∈ X be the singularity given by ∆
Ω = 129

76 = [2, 4, 2, 2, 5, 2]. We can blow
up this chain twice to obtain the chain [2, 5, 1, 4, 1, 3, 5, 2], which still admits a contraction Y → X,
where we recognize the Wahl chains [2, 5], [4] and [3, 5, 2] connected by two (−1)-curves Γ1 and Γ2.
Let π : Y → Z be their contraction, and Γ̃i the image of Γi. The discrepancy of the first (−5)-curve
is −2

3 , for the (−4)-curve is −1
2 , and for the (−3)-curve is −3

5 , so KZ · Γ̃1 = −1 + 2
3 + 1

2 > 0 and

KZ · Γ̃2 = −1 + 1
2 + 3

5 > 0, so Z → X is a P-resolution of the singularity 1
129(1, 76).

Example 2.3.8. There may be many ways to partially solve a singularity that are not P-resolutions.
For example the chain [2, 6, 2, 2] admits the partial resolution [6, 2, 2, 1, 4, 2, 2, 7, 2, 2], but it can be
checked that the (−1)-curve in the middle is negative for the canonical class.

For the theory on general P-resolutions, the reader may refer to [KSB88, HTU17]. We will be
interested in a particular kind, called extremal P-resolutions.

Definition 2.3.9 ([HTU17, §4]). Let 0 < Ω < ∆ be coprime integers, and let P ∈ X be the cyclic
quotient singularity 1

∆(1,Ω). An extremal P-resolution is a P-resolution Y → X which contains a
single rational curve C over P . In particular, Y has at most 2 Wahl singularities.

Now we explain why extremal P-resolutions are important for our purposes. Suppose we are
trying to search for two Wahl chains from a given configuration of curves by blowing up several
times on intersections, all while ensuring that every non contracted exceptional curve is positive for
KX . Suppose that after some blow ups we arrive to a linear chain of curves with some invariants
that cannot be modified (cf. 5.3). Now the problem reduces to finding extremal P-resolutions of
this chain. This can become a priori really hard to do, since one might be forced to do several
infinitely near blow ups.

Notation 2.3.10. Even though in the literature, an extremal P-resolution is a configuration of curves
with some singularities, we are mainly interested in chains of curves, so we say that a chain
[f1, . . . , fn] is an extremal P-resolution of a chain [e1, . . . , en] if it corresponds to the resolution
of an extremal P-resolution of the singularity given by [e1, . . . , en]. In other words, if [f1, . . . , fn] is
obtained by blowing up [e1, . . . , en] and contains at most two Wahl chains (or An chains) connected
by a curve.

Example 2.3.11. Consider

1984909

452505
= [5, 2, 3, 4, 2, 3, 2, 2, 4, 5, 4, 2, 3, 4, 2, 2, 2].

This chain has exactly one extremal P-resolution, namely

[5, 2, 3, 4, 2, 3, 2, 2, 7,
3
4,

6
2,

7
3,

9
4,

12
2 ,

13
2 ,

14
2 ,

15
1 ,

11
5 ,

10
2 ,

8
3,

5
4,

4
2,

2
3,

1
2, 6, 4, 2, 3, 4, 2, 2, 2]
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where the number above shows the order in which blow ups where done. Here,

[5, 2, 3, 4, 2, 3, 2, 2, 7, 4, 2, 3, 4, 2, 2, 2] =
824464

187955
= T (1, 908, 207), and

[5, 2, 3, 4, 2, 3, 2, 6, 4, 2, 3, 4, 2, 2, 2] =
511225

116544
= T (1, 715, 163).

As it can be seen, it is not practical to just blow up blindly with the hopes to find an extremal
P-resolution. In [HTU17] an algorithm is explained that is used to find every extremal P-resolution
of a singularity, if they exist.

Definition 2.3.12. Let [e1, . . . , el] be the (classic) Hirzebruch-Jung continued fraction of m
q . The

dual continued fraction of mq is m
m−q = [f1, . . . , fs]

Proposition 2.3.13 ([HTU17, §4.1]). Let 0 < Ω < ∆ be coprime integers. Let ∆
∆−Ω = [f1, . . . , fs]

be the dual fraction of ∆
Ω . Then the extremal P-resolutions of ∆

Ω are in 1-1 correspondence with
pairs 1 ≤ α < β ≤ s such that the chain

[f1, . . . , fα−1, fα − 1, fα+1, . . . , fβ−1, fβ − 1, fβ+1, . . . , fs]

represents zero. They are labeled as

[f1, . . . , f̄α, . . . , f̄β, . . . , fs].

Additionally, a given singularity may have 0, 1 or 2 different extremal P-resolutions ([HTU17,
Theorem 4.3]).

With this proposition the problem of finding P-resolutions of a given chain is reduced to a simple
algorithm, cubic in the length of the chain. Also from [HTU17] we obtain the following

Proposition 2.3.14 ([HTU17, Proposition 4.1]). In the situation above, if [f1, . . . , f̄α, . . . , f̄β, . . . , fs]
represents zero, for 1 < α < β < s then defining

n1
a1

= [f1, . . . , fα−1], and
n2
a2

= [fs, . . . , fβ+1],

and letting
n2
1

n1a1−1 = [g1, . . . , gr] and
n2
2

n2a2−1 = [h1, . . . , ht], the corresponding extremal P-resolution
for [e1, . . . , el] is

[gr, . . . , g1, c, h1, . . . , ht].

where c is given by the formula δ = cn1n2 − n1a2 − n2a1, and δ is given by δ
ϵ = [fα+1, . . . , fβ−1]. It

corresponds to the self intersection of the curve connecting both T-singularities.

Example 2.3.15. Consider 196
141 = [2, 2, 3, 5, 2, 4]. Then the dual chain is

196

196− 141
=

196

55
= [4, 3, 2, 2, 4, 2, 2].

Here we can find two different extremal P-resolutions, since

[4, 2, 2, 1, 4, 2, 2] = 0, and [4, 3, 1, 2, 3, 2, 2] = 0.

In the first case we have n1
a1

= [4] = 4
1 , so the rightmost chain must be T (1, 4, 1) = [6, 2, 2], and also

n2
a2

= [2, 2, 4] = 10
7 , so the leftmost chain must be T (1, 10, 7) = [2, 2, 6, 2, 4]. The sub-chain between
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the selected indices is [2] = 2
1 , so δ = 2. Solving for c gives us 1, so the extremal P-resolution is

then
[2, 2, 6, 1, 2, 2, 6, 2, 4].

In the second case we have n1
a1

= [4, 3] = 11
3 , so the rightmost chain must be T (1, 11, 3) = [4, 5, 3, 2, 2],

and also n2
a2

= [2, 2] = 3
2 , so the leftmost chain must be T (1, 3, 2) = [2, 5]. Again, c = 1, so the

extremal P-resolution is then
[2, 2, 3, 5, 4, 1, 2, 5].

Example 2.3.16. The chain [4, 2, 4] defines its own extremal P-resolution, with c = 2. However,
for our purposes, we will always require the middle curve have c = 1.

Remark 2.3.17. It is possible to choose α = β, that is, to subtract 2 from the index at α and check
if the new chain represents zero. If it does, the result is not a P-resolution, but a resolution in which
the exceptional curve satisfies Γ ·KZ = 0. Since discrepancies in the middle must add up to −1,
both singularities are the same, and actually these are partial resolutions of singularities of type
T (2, d, n).

Example 2.3.18. For an example of the previous remark, consider T (2, 3, 1) = 18
5 = [4, 3, 2]. Its

dual chain is 18
13 = [2, 2, 3, 3], and choosing the third position, we note that [2, 2, 1, 3] represents

zero. For the first chain we have n1
a1

= [2, 2] = 3
2 , that is, T (1, 2, 2) = [2, 5]. For the second we have

n2
a2

= [3], that is T (1, 3, 1) = [5, 2], so the resolution becomes [5, 2, 1, 5, 2]. This happens in general
for T (d, n, a), which can be ‘separated’ into d copies of T (1, n, a). This is called an M-resolution of
T (d, n, a) (see [BC94]).

There is a final proposition that we will use later in the algorithm, but first we require a lemma.

Lemma 2.3.19. Let T (1, n1, a1) = [e1, . . . , el] and T (1, n2, a2) = [f1, . . . , fs] be Wahl chains. The
following are equivalent

• [e1, . . . , el, 1, f1, . . . , fs] is an extremal P-resolution of some chain.

• [e1 + 1, . . . , el, 2, 1, f1 + 1, . . . , fs, 2] is an extremal P-resolution of some chain.

• [2, e1, . . . , el + 1, 1, 2, f1, . . . , fs + 1] is an extremal P-resolution of some chain.

•
n2
a2

>
n1
a1

.

Proof. The discrepancy for el in T (1, n1, a1) is −
(
1− δl,1

n1

)
= − a1

n1
. The discrepancy for f1 in

T (1, n2, a2) is −
(
1− δ1,2

n2

)
= −n2−a2

n2
. The condition for being a P-resolution is then

a1
n1

+
n2 − a2
n2

> 1 ⇐⇒ a1n2 + n1n2 − n1a2 > n1n2

⇐⇒ n2
a2

>
n1
a1

For the second equivalence (the third is analogous), note that the first chain is of type T (1, n1+
a1, a1) and the second one is of type T (1, n2 + a2, a2). Therefore the relevant discrepancies are
− a1
n1+a1

and − n2
n2+a2

. The condition for being a P-resolution is then

a1
n1 + a1

+
n2

n2 + a2
> 1 ⇐⇒ a1n2 + a1a2 + n1n2 + a1n2 > n1n2 + n1a2 + a1n2 + a1a2

⇐⇒ n2
a2

>
n1
a1
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Definition 2.3.20. During the construction of a Wahl chain with the algorithm 2.2.3, call the start-
ing [4] the center of the chain, which remains unchanged during the process. That is, if we denote
the center by [e1, . . . , ẽi, . . . , el], then the centers of the successive chains are [2, e1, . . . , ẽi, . . . , el+1]
and [e1 + 1, . . . , ẽi, . . . , el, 2].

By Lemma 2.2.5, for any Wahl chain, its center is always the curve with more negative discrep-
ancy.

Corollary 2.3.21. Let [e1, . . . , el, 1, f1, . . . , fs] be an extremal P-resolution of some chain. Then
after blowing down all ones that appear, no center is blown down. Moreover, each center will end
up as a 3 or greater.

Proof. The proof is by induction in the amount of blow downs to do.
If el, f1 > 2, then after one blow down we are done, and in particular no members in the Wahl

chains where contracted. If el or f1 was a center, then it was at least a 4, then after blowing down
it will be at least a 3.

The case el = f1 = 2 cannot happen by remark 2.2.7.
Suppose without loss of generality that el = 2 and f1 > 2. Then by 2.2.7 s ≥ 2 and also fs = 2

(since the discrepancy of el > −1
2 , so [f1, . . . , fs] cannot be initial). Note that neither el or fs are

centers, so that if the centers of

[e1, . . . , el−1, 2, 1, f1, . . . , fs−1, 2]

are contracted, the same happens for the centers of

[e1 − 1, . . . , el−1, 1, f1 − 1, . . . , fs−1]

since they are shared by the construction algorithm. But by induction, those centers cannot be
contracted and will end up as a 3 or greater, and all members of [e1− 1, . . . , el−1, 1, f1− 1, . . . , fs−1]
are greater than or equal to their counterparts in [e1, . . . , el−1, 2, 1, f1, . . . , fs−1, 2].

Definition 2.3.22. Let [e1, . . . , (ek), . . . , en] be a chain with a mark at position k. An extension
operation on the chain is to replace it with

[e1, . . . , ek−1, (ek + 1), ek+1, . . . , en, 2].

A blow up operation on the chain preserves the marked position, that is,

[e1, . . . , ei, ei+1, . . . , (ek), . . . , el] 7→ [e1, . . . , ei + 1, 1, ei+1 + 1, . . . , (ek), . . . , el], and

[e1, . . . , (ek), . . . , ei, ei+1, . . . , el] 7→ [e1, . . . , (ek), . . . , ei + 1, 1, ei+1 + 1, . . . , el].

This definition recreates the following situation: Suppose we have a chain of smooth rational
curves C = C1 ∪ . . . ∪ Cn in a surface, and a (−1)-curve Γ intersecting Ck and Cn. The operation
consists in blowing up Ck ∩Γ and appending (the strict transform of) Γ to (the strict transform of)
C. The exceptional curve from this blow up becomes the new Γ for the new chain. The following
diagram illustrates the process.
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(−1)

(−2)(−1)

Proposition 2.3.23. Let [e1, . . . , (ek), . . . , en] be a marked chain with k ̸= 1, ei ≥ 2 for all i.
Extend the chain any positive amount of times. Then blow up the chain to obtain an extremal
P-resolution. If the first member of the second chain is not the marked position, then its value is
bounded by e1 +maxi ̸=k ei − 1. In particular, there can be at most e1 +maxi ̸=k ei − 3 extensions.

To give an example of the process in the proposition, consider the marked chain [e1, (e2), e3] =
[3, (2), 4]. Extend twice to obtain [3, (4), 4, 2, 2], then blow up twice to obtain its extremal P-
resolution [3, (5), 2, 1, 6, 2, 2]. The first member of the second chain is 6, and it is indeed bounded
by e1 +max{e1, e3} − 1 = 3 +max{3, 4} − 1 = 6.

Proof of Proposition 2.3.23. Let [f1, . . . , (fk), . . . , fs] be the chain after all s − n extensions. Since
at least one extension was done, fs = 2 and fk ≥ 3, and since k ̸= 1, f1 = e1.

In order to obtain an extremal P-resolution, let the first blow up happen between indices i and
i+ 1, so we are in one of the following scenarios

1. [e1, . . . , fs−1 + 1, 1, 3], (where possibly fs−1 + 1 is marked), or

2. [e1 + 1, 1, f2 + 1, . . . , 2], (where possibly f2 + 1 is marked), or

3. [e1, . . . , fi + 1, 1, fi+1 + 1, . . . , 2], (where possibly fi + 1 or fi+1 + 1 is marked).

The first scenario is impossible by Corollary 2.3.21. For the second scenario, thanks to Corollary
2.3.21 we know that e1 ≥ 3 and also e1 must be the center of the first chain, so the first chain must
end up as a linear Wahl chain. Then for some m ≥ 0, we must blow up m times to the left of each
of the ones that appear, and then e1 +m− 3 times to the right, so we would end up with either

[e1 + 1, 2, . . . , 2︸ ︷︷ ︸
e1−3

, 1, f2 + e1 − 2, . . . , 2],

if m = 0, or
[e1 +m+ 1, 2, . . . , 2︸ ︷︷ ︸

e1+m−3

, 1, e1 +m− 1, 2, . . . , 2︸ ︷︷ ︸
m−1

, f2 + 1, . . . , 2],
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if m > 0.
In the first case, f2 + e1 − 2 is the first member of the second chain, so it is not marked, so

f2 = e2 and we see that f2 + e1 − 2 ≤ e1 +maxi ̸=k ei − 1.
In the second case note that the second chain is not a linear Wahl chain, so there must be exactly

e1 +m− 3 twos at the end. By Lemma 2.3.19 this is a P-resolution if and only if

[4, 1, 2, 2, . . . , 2︸ ︷︷ ︸
m−1

, f2 + 1, . . . , fs−e1−m+3]

is also a P-resolution. This is not true by Remark 2.2.7, so this case is discarded.
For the third scenario, one possibility is to blow up successively m times to the right of each of

the ones that appear, thus appending m twos to the first of the chain and increasing by m at the
first index of the second chain, obtaining

[e1, . . . , fi + 1, 2, . . . , 2︸ ︷︷ ︸
m times

, 1, fi+1 +m+ 1, . . . , 2].

But [e1, . . . , fi+1, 2, . . . , 2] is not a linear Wahl chain, so m = e1− 2. Since fi+1+m+1 is the first
member of the second chain, it is not marked, so either fi+1 = ei+1 if i + 1 ≤ n or 2 if i + 1 > n.
Here we have fi+1 +m+ 1 = ei+1 + e1 − 1 ≤ e1 +maxj ̸=k ej − 1.

The other possibility is to alternate blow ups to the left and right of the ones that appear.
However by the same argument above, we must finish with m = e1 − 2 blow ups to the right. Thus
after the last blow up to the left we go from

[∗, 1, 2, ∗] to [∗, 2, . . . , 2︸ ︷︷ ︸
e1 − 2 times

, 1, e1, ∗]

And obviously e1 ≤ e1 +maxj ̸=k ej − 1. Note that if e1 = 2, then there cannot be alternated blow
ups, since the last blow up would need to be at the left, thus adding a 2 to the beginning of the
second chain. This chain would have twos at both ends, which cannot happen for Wahl chains.

To bound the number of extensions, the tail of (−2)-curves at the end ot the second chain
must be of length < e1 + maxi ̸=k ei − 3 by Example 2.2.4. Finally, every curve appended due to
an extension operation must be part of the same tail of (−2)-curves, since no blow up can occur
between them thanks to Corollary 2.3.21.
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Chapter 3

Deformations

In this chapter we will introduce the concept of deformation, and how local deformations can be
extended to global deformations. We will not go into much details as the studies of deformations
are quite extensive. We will follow Hartshorne’s Deformation Theory [H09], and we will be using
the language of schemes and sheaves.

3.1 Review of Deformation Theory

In general, given a scheme X0, a deformation of X0 is a scheme X together with a flat morphism
to a parameter space f : X → B, with a special point 0 ∈ B such that the scheme-theoretic fiber
f−1(0) is isomorphic to X ×B 0 ∼= X0. A deformation X → B is said to be Q-Gorenstein if the
relative canonical class KX/B = KX −f∗KB is Q-Cartier. As a consequence of this, a Q-Gorenstein
deformation preserves K2 and χ along its fibers.

We can easily determine when a morphism over a curve is flat, given by the following criteria:

Theorem 3.1.1 ([H70, Proposition III.9.7]). Let f : X → Y be a morphism of schemes, with Y an
irreducible smooth curve. Then f is flat if and only if it maps every associated point of X to the
generic point of Y .

As an example of deformation, consider X = {xy = t} ⊆ A3 and its morphism f : X → A1 given
by (x, y, t) 7→ t. This is a flat morphism by Theorem 3.1.1, and its special member X0 is the union
of two lines at a point. However, for a t ̸= 0, Xt = f−1(t) is a smooth conic in the affine plane, so
{xy = 0} can be deformed to smooth curves. This deformation is Q-Gorenstein since X is smooth.
It can be checked that this deformation is essentially unique, that is, all deformations of {xy = 0}
look like this one.

As a motivation for infinitesimal deformations, as in [H70, III.9], whenever we have a deformation
f : X → B, the tangent space of 0 ∈ B is described by morphisms D = Spec(k[t]/t2) → B where the
image of the unique point of D is 0, and so we get a new morphism by base extension f ′ : X ′ → D,
where X ′ = X ×B D. This way, the single point 0′ ∈ D has X ′ ×D 0′ ∼= X0, so f ′ is again a
deformation which encodes infinitesimal information of the deformation f .

Then our objective is to study or classify every possible infinitesimal deformation of X. Let C be
the category of local Artinian C-algebras with quotient field C, and Ĉ be the category of complete
local C-algebras with quotient field C. We define the (covariant) deformation functor DefX : C → Set
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the as the one that to each ring A associates the set of equivalence classes of diagrams

X0 X

SpecC SpecA

(3.1)

where X0 = X ×A C and X → SpecA is flat. This is an infinitesimal deformation. For instance,
X ′ → Spec(C[t]/t2) of the motivation above is an element of DefX0(C[t]/t2). As DefX0(C[t]/t2)
classifies all possible tangent spaces of deformations of X0, we call it the tangent space to the
functor DefX0 . The functor acts on morphisms by pullback: if A→ B is a morphism of C-algebras,
for any diagram as in 3.1 in DefX0(A) we can extend it as

X0 X ×A SpecB X

SpecC SpecB SpecA

(3.2)

which induces a diagram in DefX0(B). We say DefX0 is pro-representable if there exists a complete
local algebra R ∈ Ĉ and an isomorphism of functors, or natural equivalence, hR → DefX0 , where
hR : C → Set associates A to Hom(R,A). Being pro-representable would strongly suggests the
existence of a scheme and a flat morphism ξ : X → SpecR that fits in the pullback diagram

X0 X

SpecC SpecR

so that it exactly recovers every possible infinitesimal deformation, so we may think of SpecR as a
local moduli space for X.

As it turns out, it will not always be possible for DefX to be pro-representable ([H09, Examples
18.1.1 and 18.1.2]), so we need some weaker notions of representability. Suppose we have a complete
local ring R with maximal ideal m and residue field C. First note that R/mn ∈ C for every n,
and suppose that we have a compatible family of flat morphisms ξn : Xn → SpecR/mn, that is,
Xn = Xn+1 ×R/mn+1 SpecR/mn. This defines a morphism of functors, or natural transformation,
hR → DefX0 in the following way: For each A ∈ C and f : R → A, let n ≫ 0 be large enough so
we can factor f : R → R/mn → A. Then this morphism assigns f to the diagram associated with
the pullback Xn ×R/mn SpecA→ SpecA. Due to the compatibility condition of the ξn, this map is
well defined, and it can be seen that every functor hR → DefX0 arises uniquely from this way, so
we also identify the functor with ξ = {ξn}.

In the case above, we say (R, ξ) is a formal family. (R, ξ) is said to be a versal family if ξ : hR →
DefX is surjective and smooth. The surjective condition means that for every A, every flat morphism
X → SpecA can be obtained by pullback from X → SpecR. The smoothness condition states that
for every surjective morphism B → A, the natural morphism hR(B) → hR(A)×DefX0

(A) DefX0(B)
is also surjective. This means that given A and B in C, whenever we have a diagram
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X0

Xn ×R/mn SpecA

=

Y ×B SpecA
Y Xn

SpecC SpecA SpecB SpecR/mn

then after possibly increasing n we may fill the gaps: we can extend the morphism SpecA →
SpecR/mn to a morphism SpecB → SpecR/mn such that Y = Xn ×R/mn SpecB.

We also say that (R, ξ) is miniversal or a pro-representable hull if ξ(D) : hR(D) → DefX0(D) is
a bijection, where D = C[t]/t2. A miniversal family is unique up to non-unique isomorphism. If
ξ : hR → DefX0 is an isomorphism, then we say (R, ξ) is universal. A universal family is unique up
to unique isomorphism.

The existence of versal families is granted once Schlessinger’s conditions are met ([H09, Theorem
6.2]), and this in turn strongly suggests the existence of a local ‘coarse’ moduli space for X0. The
Schlessinger’s conditions are satisfied whenever X0 is projective, or affine with isolated singularities
([H09, Theorem 18.1]).

Once a versal family is found, we can take the limit over Xn → SpecR/mn to get a local
deformation X → Spf R ([H70, §II.9]). The question now is, given this deformation over the formal
spectrum, does there exist some X → SpecR flat such that the completion along the closed fiber is
X . In this case we say that X is effective.

Theorem 3.1.2 (Grothendieck, [H09, Theorem 21.2]). Let X be a formal scheme, proper over
Spf R, and suppose there exists a line bundle L on X such that L ⊗R C is ample on X0 = X × C.
Then X is effective.

One can verify the existence of such line bundle when H2(OX0) = pg(X0) = 0, and this will
happen in our case.1

Now comes Artin’s Algebraization theorem, which states that if X0 is a projective scheme and
X → Spf R is effective, then there exists a scheme S of finite type over k, s0 ∈ S and a flat and
finite type X → S such that X × s0 = X0, and the formal completion of X along s0 is X . This S
is unique locally around s0 up to étale covering. This is the “moduli” space we were looking for,
however it is not a real moduli space since it does not necessarily parametrizes different surfaces up
to isomorphism.

Let U be a neighborhood of a singularity of type T or ADE. Then U has a Q-Gorenstein
smoothing ([KSB88, Proposition 3.10]). In particular, its versal deformation space, also called DefU
has non-trivial deformations. In particular, it contains a component consisting of Q-Gorenstein
deformations denoted by DefQG,U .

Now let X be a projective slc (semi log canonical) surface. Let T i
X = Exti(ΩX ,OX), so that

T 0
X = TX = Hom(ΩX ,OX) the usual tangent sheaf of X. Let T1

X = Ext1X(ΩX ,OX) the set of first
infinitesimal deformation classes of X. Then there is an exact sequence ([H09, Exercise 5.7])

0 → H1(X, TX) → T1
X → H0(X, T 1

X) → H2(X, TX),

where H0(X, T 1
X) represents the local infinitesimal deformations of first order. The image of an

infinitesimal deformation of H0(X, T 1
X) in H2(X, TX) is called the local-to-global obstruction to

1In characteristic zero, this might not be needed. See [M91, Lemma 1]
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this deformation, and so a global deformation exists if and only this element is zero. This means
that if we prove that H2(X, TX) vanishes for a surface X, then every local first order deformation
of X, including Q-Gorenstein deformations, can be globalized. However to lift this deformation to
bigger Artinian rings, it is necessary for some other obstructions to vanish. These obstructions lie
now in T2

X = Ext2(ΩX ,OX). It can be further verified that this group vanishes if H2(X, TX) = 0
(see [H12, §3]).

3.2 Local to Global Obstruction

Let X be a pg = 0 variety with quotient singularities. Then to guarantee that there are no
local-to-global obstructions to deformations of X it is sufficient that H2(X, TX) vanishes. Here we
will explain some situations where this happens.

Definition 3.2.1. Let D be a SNC divisor on a smooth surface X. The sheaf of differentials with
simple poles along D is denoted by Ω1

X(logD) [EV92, Definition 2.1]. The dual of this sheaf is the
logarithmic tangent sheaf TX(− logD), whose sections are vector fields tangent to D.

Proposition 3.2.2 ([LP07, Theorem 2]). Let X be a normal surface with singularities of class T or
rational double points, and Y → X be the minimal resolution of X and E the reduced exceptional
divisor. Then h2(Y, TY (− logE)) = h2(X, TX).
Proposition 3.2.3 ([FZ94, Proposition 1.5]). Let X be a smooth surface and π : Y → X be the
blow up at p ∈ X. Let D be a reduced simple normal crossing divisor on X and D̃ = π∗(D)red.
Then

h2(X, TX(− logD)) = h2(Y, TY (− log D̃)).

Proposition 3.2.4 ([FZ94, Proposition 1.7]). Let X be a smooth surface and D be a reduced
simple normal crossing divisor containing a curve E with E2 ≥ −1.Then

h2(X, TX(− log(D − E))) = h2(X, TX(− logD)).

With 3.2.2 we translate the problem in X to Y . The general strategy is as follows. Start with a
divisor D on a surface S for which we know has h2(TS(− logD)) = 0. Then blow up as much as we
want while possibly adding or subtracting curves (as long as E2 ≥ −1) until we arrive to a divisor
D̃ with only disjoint Wahl chains, while preserving h2(TS̃(− log D̃)) = 0. We have an additional
tool to add (−2)-curves in some cases.

Proposition 3.2.5 ([PSU13, Theorem 4.4]). Let D be a reduced simple normal crossing divisor
and B a reduced divisor of (−2)-curves in some of the ADE configurations, such that D ∩ B = ∅.
Then

h2(X, TX(− logD)) = h2(X, TX(− log(D +B))).

Recall that the ADE configurations are precisely those whose dual graph is one of the simply
laced Dynkin diagrams (see Section 1.4).

Example 3.2.6. Consider a rational elliptic fibration S with two nodal rational fibers (cf. Section
5.1), and let S′ → S be the blow up at the two nodes, and let D = F1 + F2, where F1 and F2 are
the strict transforms of the rational fibers. This situation is shown in Figure 3.1.

Let S′ → Z be the contraction of the curves F1 and F2. Since both their images are Wahl singu-
larities, they have a local Q-Gorenstein smoothing. We will later see that H2(S′, TS′(− logD)) = 0
(cf. Proposition 5.1.4), so we obtain H2(Z, TZ) = 0. This means that the local smoothings can
be globalized. It can be verified that the general smooth member of a deformation is an Enriques
surface ([U16, Theorem 4.2]).
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Figure 3.1: The surface S and its blow up
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Chapter 4

Topology of the Smoothing

In this chapter, we will deal with the analytic topology of varieties, and so we will deal with
the topological fundamental group. We will give a criterion for the fundamental group of the
general fiber of a Q-Gorenstein smoothing to be trivial. This is useful since surfaces with different
fundamental groups belong to different components of the moduli space of stable surfaces with
fixed K2 and χ (although different components may have the same fundamental group), so by this
criterion we can identify to which component the surface we are constructing belongs. Unfortunately,
this criterion only works with simply connectedness, and if a particular example fails some of the
hypotheses, it seems to be very difficult to actually determine the fundamental group.

We will also talk about exotic structures on complex surfaces. This is because surfaces obtained
via Q-Gorenstein deformations are sometimes homeomorphic but not diffeomorphic to simpler com-
plex manifolds.

4.1 Symplectic Rational Blow Down

We start with a construction from symplectic geometry, namely the (generalized) rational blow-
down ([FS95]). They are analogous to a Q-Gorenstein smoothing of a Wahl singularity in the
symplectic category. A symplectic manifold M is a smooth manifold equipped with a closed non-
degenerate 2-form. A smooth algebraic variety or complex manifold is naturally also a symplectic
manifold.

Let 1 ≤ a < n be coprime integers, and µn a primitive n-th root of unity. Let D = {p ∈ C2 |
|p| ≤ 1} be the unitary ball in C2 and P ∈ D/G be the quotient singularity of type 1

n2 (1, na − 1),

where the group G ∼= Z/n2Z acts on D by (x, y) 7→ (µn2x, µna−1
n2 y). The lens space L(n2, na − 1)

is defined as ∂D/G = S3/G. As in [P97], L(n2, na − 1) not only bounds the quotient singularity
1
n2 (1, na− 1) but also bounds a (smooth) rational homology ball Bn,a.

Definition 4.1.1 (Generalized Rational Blow Down, [FS95, P97]). Let Y be a surface (therefore
a symplectic 4-fold) with a Wahl chain Cn,a The rational blow down of Cn,a is as follows. Consider
a small neighborhood V of Cn,a such that ∂V = L(n2, na− 1) (for example, under the contraction
of Cn,a, π : Y → X such that π−1(P ) = Cn,a, there exists a small neighborhood U ⊆ X of P such
that ∂U = L(n2, na − 1), so let V = π−1(U)). The rational blow down is the surface X̃ obtained
by replacing V with the rational homology ball Bn,a (more precisely, π1(Bn,a) is finite and cyclic,
and Hi(Bn,a,Q) = 0 for all i > 0). X̃ is uniquely determined up to diffeomorphism and also admits
a symplectic structure.

In this generality, the rational blow down of an algebraic surface need not to be algebraic.
However, as in [LP07, Proposition 8], if X → ∆ is a Q-Gorenstein smoothing of a surface X0 with

39



only Wahl singularities, then the general fiber is diffeomorphic to the rational blow down of the
Wahl chains of the minimal resolution Y → X. Therefore it suffices to find a condition for X̃ to be
simply connected.

4.2 Criterion For Simply Connectedness

In what follows of the chapter, we will recap of the strategy applied in [LP07, Theorem 3].

Lemma 4.2.1. Let X be a surface with only Wahl singularities P1, . . . , Pm, Y → X its minimal res-
olution, and X̃ the rational blow down of the corresponding Wahl chains. If X0 = X−{P1, . . . , Pm}
is simply connected, then so is X̃.

Proof. Suppose that the points Pi are of type 1
n2
i
(1, niai − 1), and let U1, . . . , Um small disjoint

neighborhoods of P1, . . . , Pm such that ∂Ui = L(n2i , niai − 1). This way we have

X = X0 ∪ U1 ∪ . . . ∪ Um

and
X̃ = X0 ∪Bn1,a1 ∪ . . . ∪Bnm,am

Define Xi = X0 ∪ Bn1,a1 ∪ . . . ∪ Bni,ai , i = 0, . . . ,m. We will now prove by induction that Xi is
simply connected. This is true by hypothesis for X0. Suppose now that Xi−1 is simply connected.

It is known that the inclusion induced homomorphism

ι∗ : π1(L(n
2
i , niai − 1)) ∼= Z/n2iZ → π1(Bni,ai)

∼= Z/niZ

is surjective (see for example [FS95] for the case of linear Wahl chains). By the theorem of Seifert-
Van Kampen, since Xi−1 ∩ Bni,ai has the homotopy type of ∂Bni,ai = L(n2i , niai − 1), we know
that

π1(Xi) = π1(Xi−1) ∗π1(L(n2
i ,niai−1)) π1(Bni,ai) = (Z/niZ) / N(ι∗(Z/n2iZ)) = {e}

Where N(G) is the normal subgroup generated by G. In particular, X̃ = Xn is simply connected.

From the above proof we can see that if π1(X0) is not simply connected, then it can be very
difficult to determine the amalgamated free product of π1(X0) and Z/n1Z. This complexity increases
along with the amount of singularities.

Let π : Y → X be the minimal resolution of X, and let Ci = π−1(Pi) = Ci,1 ∪ . . . ∪ Ci,li be the
corresponding Wahl chains. Let Vi be a small neighborhood of the chain Ci, so that Y = X0 ∪ V1 ∪
. . .∪Vm. Note that Ci is a wedge of spheres, so π1(Ci) = 1, and there is a deformation retract Vi → Ci
(see the construction of φ in [M61]), so π1(Vi) = 1. We know that Mi = ∂Vi ∼= L(n2i , niai − 1).
By [M61], the group π1(Mi) ∼= Z/n2iZ is generated by a loop αi,1 ⊆ Mi around a non-intersection
point of Ci,1. Again by [M61], it is possible to choose orientations of loops αi,j ⊆ Mi around
non-intersection points of Ci,j so that we obtain the relations in H1(Mi) (∼= π1(Mi))

+ei,1αi,1 −αi,2 = 0
−αi,1 +ei,2αi,2 −αi,3 = 0

−αi,2 +ei,3αi,3 −αi,4 = 0
. . .

−αi,li−1 +ei,liαi,li = 0

 , (4.1)
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where
n2
i

niai−1 = [ei,1, . . . , ei,li ]. Note that the associated matrix has determinant n2i , and the system

has a unique solution in terms of αi,1 or αi,li modulo n2i . It is not immediate from the result in
homology, but if τi,j is an appropriate path from a basepoint to the start of αi,j , then, for example,
τi,1α

ei,1
i,1 τ

−1
i,1 = τi,2αi,2τ

−1
i,2 . Note that solving for αi,j in terms of αi,1 follows the same formulas as

the construction of the bi’s. This means that αi,j is homotopic to α
bj
i,1.

Proposition 4.2.2. Suppose that Y is simply connected and that αi,1 can be contracted in X0 for
every i = 1, . . . ,m. Then X0 is also simply connected.

Proof. Let Yi = X0 ∪Vi+1 ∪ . . .∪Vm so that Y0 = Y and Ym = X0. We will prove by induction that
Yi is simply connected. This is true by hypothesis for Y0. Suppose that Yi−1 is simply connected.
By Seifert-Van Kampen’s theorem, we have

1 = π1(Yi−1) = π1(Vi) ∗π1(Mi) π1(Yi) = π1(Yi) / N(ι∗i (π1(Mi))),

because Vi is simply connected. Therefore π1(Yi) = N(ι∗i (π1(Mi))) = N(ι∗i (αi,1)), where ιi : Mi → Yi
is the inclusion. But since αi,1 can be contracted in X0 ⊆ Yi, we obtain π1(Yi) = N(e) = {e}.

Thus the two hypothesis we require is that the surface Y is simply connected (which will always
be true in our case) and that the αi,1 can be contracted in Y − {P1, . . . , Pm}. We will now present
two situations which gives us very good information for determining that αi,1 can be contracted in
X0.

1. Suppose that there exists a 2-sphere S ⊆ Y (for example, an algebraically embedded P1)
that intersects

⋃
i Ci transversally in a single point Q ∈ Ci,j . Then Mi ∩ S consists of a loop

homotopy equivalent to a single loop γ around Q, which by the system 4.1 must be homotopic
to α±k

i,1 for some k, depending on the orientation of γ. But S∩X0 is a punctured sphere, so we

can deform γ along S ∩X0 until it contracts. This shows that α±k
i,1 = e in X0. In particular,

if j = 1 or li or if k is coprime with ni, then immediately αi,1 contracts in X0.

2. Suppose that there exists a 2-sphere S ⊆ Y that intersects
⋃
i Ci transversally at two points,

Q1 ∈ Ci1,ji and Q2 ∈ Ci2,j2 . Then as before they define loops γ1 and γ2 loops in S ∩ X0

around Q1 and Q2. But S ∩X0 is a twice punctured sphere with two loops around each hole.
Thus γ1 and γ2 are homotopic up to perhaps changing orientation. If γ1 is homotopic to αk1i1,1
and γ2 is homotopic to αk2i2,1 and if τ is a path from the start of γ1 to the start of γ2 along
S and ρ1 (resp. ρ2) a path from the start of αi1,1 to γ1 (resp. from αi2,i to γ2), we have

ρ−1
2 αk1i1,1ρ2 = τρ−1

1 α±k2
i2,1

ρ1τ
−1.

For example if gcd(k1, ni1) = gcd(ni1 , ni2) = 1, then immediately αi1,1 is contractible in X0

since we can annihilate the loop. This situation happens very frequently.

In the Example 3.2.6, none of these conditions hold, so we cannot verify that the rational blow
down of Z, or equivalently, the general smooth member W of a Q-Gorenstein smoothing, is simply
connected. In fact, as these members are Enriques surfaces, we know that π1(W ) ∼= Z/2Z.

4.3 Exotic Structures on CP2#nCP2

In this section, the name CPn is used for the n-th dimensional complex projective space. Many
statements will be given without proof.
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We start by roughly defining the connected sum of two manifolds. Let X,Y be two oriented,
connected n-dimensional differential manifolds. The connected sum X#Y is the surface obtained
by removing small discs from X and Y and glueing along the borders in a smooth manner while
preserving orientation. This surgery operation is unique up to diffeomorphism, and if X,Y are
compact manifolds, so is X#Y . This way, by pX#qY we mean

X# . . .#X︸ ︷︷ ︸
p

#Y# . . .#Y︸ ︷︷ ︸
q

By X we mean the manifold obtained from X by reversing its orientation. In this way, the
blow up of X at one point is actually X#CP2 ([H04, Proposition 2.5.8]). Our objective is show
that there exist 4-manifolds homeomorphic to CP2#nCP2, but not diffeomorphic to it. There are,
however, examples in the literature with n as low as 2 (see for instance [AP10]).

The cornerstone of our approach is a theorem of Freedman, [F82, Theorem 1.5], one of whose
consequence is the following

Theorem 4.3.1 ([BHPV03, Corollary IX.1.2]). The oriented homeomorphism type of any simply
connected differentiable 4-manifold V is completely determined by its intersection form SV , where
SV : H2(V,Z)×H2(V,Z) → Z is given by SV (α, β) = ⟨α ∪ β, [V ]⟩.

And intersection forms are in turn determined by their rank r = b+ + b−, index τ = b+ − b−

and parity, where (b+, b−) is the signature of SV . In the notation of [BHPV03, Section IX.2], if H
is the intersection form of CP1 × CP1 (that is, given by the matrix ( 0 1

1 0 )), there exist two families
of intersection forms, namely

F p,q = p⟨1⟩ ⊕ q⟨−1⟩, τ = p− q (for odd forms)

Ep,±q = pH ⊕ q(±E8), τ = ±8q (for even forms)

Here we note that F p,q is the intersection form of pCP2#qCP2, so we need a tool to discard the
even case. This tool is given in the form of a theorem of Rochlin.

Theorem 4.3.2 ([BHPV03, Theorem IX.2.1]). For differentiable 4-manifolds with even intersection
form, τ is divisible by 16.

From here, let X be a symplectic manifold, and c1(X), c2(X) be the Chern classes of X. We
know that c2(X) = e(X), the topological Euler characteristic of X, and c1(X) = −KX . b1 and b2
denote the Betti numbers of X. We have b2 = b+ + b−, and as a consequence of Poincaré duality,
e(X) = 2− 2b1 + b2. If X is simply connected, then b1 = 0, since this is just the rank of H1(X).

Theorem 4.3.3 (Index theorem of Thom-Hirzebruch, [BHPV03, Theorem I.3.1]). If X is a com-
pact, connected, oriented 4-manifold that admits an almost-complex structure (in particular, a
symplectic structure), then

τ(X) = b+(X)− b−(X) =
1

3
(c21(X)− 2c2(X)).

Theorem 4.3.4 (Noether Formula). Let X be a projective algebraic surface. Then

12χ(X) = c21(X) + c2(X).

By this formula, we may define the invariant χ(X) = 1
12(c

2
1(X) + c2(X)) for any compact,

connected, oriented 4-manifold. With these formulae, we can deduce the following:
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Theorem 4.3.5. Let X be a compact, simply connected, oriented 4-manifold that admits an
almost-complex structure. Then

b+(X) = 2χ(X)− 1,

b−(X) = 10χ(X)− 1− c1(X)2, and

τ(X) = c1(X)2 − 8χ(X)

Since τ = c21 − 8χ, unless c21 = 8χ + 16k, for k ∈ Z, then by Rochlin’s theorem it would be
impossible that X had an even intersection form. Therefore, it has the same intersection form as
(2χ− 1)CP2#(10χ− 1− c21)CP2, so it is homeomorphic to it due to Friedman’s work.

We will now give a criterion for determining that X is not diffeomorphic to (2χ−1)CP2#(10χ−
1−c21)CP2. The following is a proof of a well known theorem, which was implicitly used in [PPS09a]
and [PPS09b].

Theorem 4.3.6. Let Y be a smooth χ(Y ) = χ algebraic surface with disjoint Wahl chains and
let Y → Z be the contraction of the chains, so that Z has only Wahl singularities. Let X be the
symplectic rational blow down of the Wahl chains. If X is simply connected and KZ is ample, with
K2
Z ̸≡ 8χ mod 16 and K2

Z ̸= 10χ− 1, then X is an exotic (2χ− 1)CP2#(10χ− 1−K2
Z)CP2.

Proof. Let the i-th Wahl chain Ci be of type T (1, ni, ai), i = 1, . . . , k, so that its image via Y → Z
is the singularity Pi. Choose small disjoint neighborhoods Di of Pi such that ∂Di = L(n2i , niai−1).
Let V ⊆ Z be the smooth locus of Z, so that Z = V ∪

⋃
iDi. The rational blow down surgery

replaces Di with a rational homology ball Bi, so that X = V ∪
⋃
iBi. We will now see that up

to a multiple, every symplectically embedded sphere is in the same homology class to some other
surface contained just in V . Let E ⊆ X be the embedded sphere, and denote by Vj = V ∪

⋃
i>j Bi,

so that V0 = X and Vk = V . The Mayer-Vietoris sequence tells us that for i = 1, . . . , k

H2(Bi)⊕H2(Vi) → H2(Vi−1) → H1(∂Bi)

is exact. Since Bi is a rational homology ball, H2(Bi) is finite, and H1(∂B1) = Z/n2iZ is also finite.
Therefore, any 2-manifold in H2(Vi−1) can be “moved” to H2(Vi) up to multiplying by some large
integer. Repeating the process k times, we get that [mE] ∈ H2(V ) for some large m.

Now, since KZ is ample, KV must also be ample, so F · c1(X) < 0 for any symplectically
embedded 2-manifold F . So, given E, choose F such that [F ] ∈ H2(V ) and [F ] = [mE]. Then we
have

nE · c1(X) = F · c1(X) = F · c1(V ) < 0

By applying adjunction formula, we obtain 0 > E · c1(X) = 2 + E2, so E2 ̸= −1. This means that
X is minimal.

Since χ(X) = χ(Y ) = χ, X is simply connected and c1(X)2 = K2
Z ̸≡ 8χ mod 16, X is

homeomorphic to (2χ − 1)CP2#(10χ − 1 − K2
Z)CP2. To finalize, we note that a minimal surface

cannot be diffeomorphic to a blow up of (2χ − 1)CP2 (here we use K2
Z ̸= 10χ − 1), so this is an

exotic example.

From this result we also know that it would be impossible to find such a surface Y with K2
Z >

10χ(Y )− 1. We will see later (cf. §5.3), that in fact K2
Z ≤ 9χ(Y )− 1.

In our case, with χ = 1, as long as KZ ̸= 8 (since KZ ̸= 9 by the above restriction), X is an
exotic CP2#(9−K2

Z)CP2. If K2
Z = 8, then X might instead be homeomorphic to CP1 × CP1.
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Chapter 5

The Problem of Finding Surfaces with
Wahl Chains

5.1 Elliptic Fibrations

Definition 5.1.1. An elliptic fibration is a surface S together with a morphism φ : S → C where
C is a smooth curve such that every fiber is connected and almost every fiber is a smooth curve of
genus 1. It is minimal if no fiber contains (−1)-curves.

A trivial example of an elliptic fibration is the product of an elliptic curve with any other curve.
As a less trivial example, it is known that any surface S with Kodaira dimension κ(S) = 1 admits
an elliptic fibration ([B96, Proposition IX.2]). We will be dealing with rational elliptic fibrations
arising from pencils of cubics in P2. But before we explain that construction, we will talk about the
singular fibers of an elliptic fibration. The following classification and notation is due to Kodaira.

Theorem 5.1.2 (Kodaira’s classification of singular fibers [K63, Theorem 6.2]). Let S → C be a
minimal elliptic fibration. The following table classifies every possible fiber of S.

Symbol Configuration Symbol Configuration Symbol Configuration

I0 II I∗n

I1 III II∗

I2 IV III∗

In I∗0 IV ∗
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Here, the In fiber has n components, and I∗n has n+ 5 components. Note that for any singular
fiber that is not of type I1 or II, any strict subset of its curves consists of disjoint ADE configura-
tions. The multiplicities of curves in the fibers are not included, but they are always 1 for singular
fibers of types In, II, III and IV in an elliptic surface with a section. The reader may refer to
[P90] for an exhaustive list of every possible combination of fibers that exist for rational elliptic
fibrations in characteristic zero.

We now proceed with the construction of an elliptic surface given a cubic pencil in P2. Let
f, g ∈ C[x, y, z] be two coprime homogeneous polynomials of degree 3 that have no singularities in
common. They define the pencil of curves in P2

Φ[s,t] = {sf + tg = 0}, [s, t] ∈ P1

where the conditions of coprimality and no common singularities guarantee that the general member
of the family is smooth. These polynomials also define a rational function φ : P2 99K P1 by

φ(P ) = [−g(P ), f(P )]

This rational function is undefined precisely in the 9 points of intersection between {f = 0} and
{g = 0}, counted with multiplicity. This means that after a sequence of 9 (possibly infinitely near)
blow ups ψ : S → P2 we obtain a morphism π : S → P1 such that the diagram

S P2

P1

ψ

π φ

is commutative. Note that for a general [s, t] ∈ P1,

φ−1([s, t]) =

{
P ∈ P2 | s

t
=

−g(P )
f(P )

}
=
{
P ∈ P2 | sf(P ) + tg(P ) = 0

}
= Φ[s,t]

is a smooth curve of genus one, since it is a smooth curve of degree 3 in the plane ([H70, Exercise
II.8.4]). Since there are finitely many exceptional curves of ψ, a general fiber of π : S → P1 contains
none of those exceptional curves, and since Φ[s,t] is a smooth curve, it is isomorphic to its strict

transform Φ̂[s,t] = π−1([s, t]), and thus, π : S → P1 is an elliptic fibration. Since ψ is the minimal
blow up to solve the indeterminacies of φ, then there can be no (−1)-curves in any fiber, so the
fibration is actually minimal.

Definition 5.1.3. An n-multi-section of S is a curve which intersects the general fiber F n times.
A rational 1-multi-section is simply a section. A rational 2-multi-section (resp. 3-multi-section)
may also be called double section (resp. triple section).

Note that a section admits a (true) section P1 → S. Also, KS ∼ −F for any fiber F . By
adjunction formula, E is a smooth rational n-multi-section if and only if E2 = −2−KS ·E = n− 2.
In particular, a (−1)-curve is a section. Note that S contains sections, as the last blow up in the
resolution S → P2 is a (−1)-curve. In the same way, a smooth curve E is a fiber component if and
only if E2 = −2. As a consequence of KS ∼ −F , we also have K2

S = 0. This can also be seen as S
being the blow up at 9 points of P2, because K2

P2 = 9 and each blow up decreases it by one.
Another important property of rational elliptic fibrations is that they are simply connected. This

is because P2 is simply connected and blowing up preserves fundamental group. This is because
the blow up of X is homeomorphic to X#CP2: Extracting a disc from both 4-manifolds preserves
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fundamental group since their topological dimension is greater than 2, and the connected sum also
preserves fundamental group thanks to Seifert-Van Kampen’s theorem, due to CP2 being simply
connected.

We will now deal with cohomological invariants of elliptic surface that will be useful for proving
that certain surfaces will have no obstruction for deformations. The following is a generalization of
[PSU13, Theorem 2.1].

Proposition 5.1.4. Let F1, F2 two singular fibers of type In1 , In2 in the rational elliptic surface
S, with n1, n2 ≥ 1, and let W → S the blow up at the nodes of F1 or F2 if they were of type I1.
Call F̃1 and F̃2 their strict transforms. Then

h2(W, TW (− log(F̃1 + F̃2))) = 0.

The original version of this theorem dealt with the case when both F1 and F2 are of type I1.
The proof we will give is a slight modification of the one given in [PSU13]. We must first recall a
property of sheaves of differentials with poles.

Proposition 5.1.5 ([EV92, Properties 2.3]). Let X be a smooth surface and D =
∑

iDi be a SNC
divisor. One has the following exact sequences

1. 0 → Ω1
X → Ω1

X(logD) →
⊕

iODi → 0

2. 0 → Ω1
X(logD) → Ω1

X(log(D −D1))(D1) → Ω1
D1

(D|D1) → 0

Proof of Proposition 5.1.4. Let Z → S be the blow up at every node of F1 and F2 and denote by
F̂1 =

∑n1
i=1Ci and F̂2 =

∑n2
j=1Dj their strict transforms. Note that Z → S factors throughW → S.

Let
∑n1

i=1Ei and
∑n2

j=1Gj be the exceptional curves. Then
∑

i(Ci+Ei) and
∑

i(Dj+Gj) are cycles
of alternating (−4) and (−1)-curves. Here we see that KZ ∼ −

∑
j Dj +

∑
iEj −

∑
j Gj . By Serre’s

duality, we have

h2(Z, TZ(− log(F̂1 + F̂2))) = h0(Z,Ω1
Z(log(F̂1 + F̂2))(KZ))

Applying n2 times the second property of Proposition 5.1.5, we obtain

H0
(
Z,Ω1

Z

(
log
(∑

i

Ci +
∑
j

Dj

))
(KZ)

)
⊆ H0

(
Z,Ω1

Z

(
log
(∑

i

Ci
))(

KZ +
∑
j

Dj

))
= H0

(
Z,Ω1

Z

(
log
(∑

i

Ci
))(∑

i

Ei −
∑
j

Dj

))
⊆ H0

(
Z,Ω1

Z

(
log
(∑

i

Ci
))(∑

i

Ei
))

The following step is to show that

H0
(
Z,Ω1

Z

(
log
(∑

i

Ci
))(∑

i

Ei
))

= H0
(
Z,Ω1

Z

(
log
(∑

i

Ci +
∑
i

Ei
)))

Applying the second property of Proposition 5.1.5 n1 times, it suffices to show that

H0
(
Es,Ω

1
Es

((∑
i

Ci +
s∑
i=1

Es
)
|Es

)( n1∑
i=s+1

Ei|Es

))
= 0
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However we know that Ω1
Es

= OEs(−2) and since Es intersects
∑

iCi twice and is disjoint with the
other Es′ , we have

degO
(∑

i

Ci +
s∑
i=1

Es
)
|Es =

∑
i

Ci · Es +
s∑
i=1

Ei · Es = 2− 1 = 1,

and

degO
( n1∑
i=s+1

Ei
)
|Es =

n1∑
i=s+1

Ei · Es = 0.

Therefore we can conclude that

H0
(
Es,Ω

1
Es

((∑
i

Ci +
s∑
i=1

Es
)
|Es

)( n1∑
i=s+1

Ei|Es

))
= H0(Es,OEs(−1)) = 0.

The next step is the same as [PSU13, proof of Theorem 2.1], namely constructing the long exact
sequence from the first property of Proposition 5.1.5 (and using H0(Z,Ω1

Z) = 0 since Z is rational):

0 → H0
(
Z,Ω1

Z

(
log
(∑

i

Ci +
∑
i

Ei
)))

→
⊕
i

H0(Ci,OCi)⊕
⊕
i

H0(Ei,OEi)
δ→ H1(Z,Ω1

Z)

and noting that the morphism δ is injective since the Ci’s and Ei’s are linearly independent in the
Picard group of Z.

We have proven that h2(Z, TZ(− log(F̂1 + F̂2))) = 0. All that is left is to “add” exceptionals
Ei or Gi to the cohomology using Proposition 3.2.4 and blow down until we arrive to W using
Proposition 3.2.3.

With this we have all the tools we need to finally start constructing surfaces.

5.2 Worked Example

We will use all the machinery we developed throughout this thesis to construct an example of a
surface Z with Wahl singularities, K2

Z = 4 and pg(Z) = q(Z) = 0, KZ ample with no obstruction for
deformations, where the general member Y of a smoothing is a simply connected surface of general
type, K2

Y = 4, pg(Y ) = q(Y ) = 0.
Consider the pencil of cubics in P2 given by

Φt = (y3 − zx2 + z2x) + 3txyz.

This pencil has 4 singular members, with t = ∞, t = 1, t = ω, and t = ω2, where ω is a primitive
third root of 1. Φωi is a nodal cubic with a node at [−1,−ω2i, 1], for i = 0, 1, 2. The base points of
this pencil are [0, 0, 1] with multiplicity 4, [1, 0, 0] with multiplicity 4, and [1, 0, 1] with multiplicity
1. The configuration is as in Figure 5.1

To resolve the indeterminacies of the fibration, blow up four times at [0, 0, 1] calling the suc-
cessive exceptionals E1, E2, E3, E4, blow up another four times at [1, 0, 0] calling the exceptionals
E5, E6, E7, E8, and blow up [1, 0, 1] and call the exceptional E9 Let X,Y, Z, F1, F2, F3 be the strict
transforms of {x = 0}, {y = 0}, {z = 0},Φ1,Φω,Φω2 . Also call H the strict transform of {x+1 = 0}.
This is a very special triple section through X ∩Z and the nodes of all Fi’s. The result is a I9+3I1
with three sections and a triple section as in Figure 5.2
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Figure 5.1: Φ∞ and Φ0.

Figure 5.2: I9 + 3I1 fibration.

From now on we ignore Z and F3, and whenever we blow up, we still call the strict transform of
curves by the same name. Blow up at the nodes of F1 and F2, resulting in a surface S1 as in Figure
5.3. Call the exceptionals G1 and G2 respectively.

We apply Propositions 5.1.4, 3.2.5 four times 3.2.4, and again two times 3.2.4 to remove the
exceptionals from the nodes of F1 and F2. If F = F1+F2, A = X+E3+E2+E1+Y +E5+E6+E7

and E = E4 + E8 + E9 +H (note that here H2 = −1)

H2(S1, TS1(− log(F +A+ E))) = 0

We do eight further blow ups calling the exceptionals respectively:

A1 7→ Y ∩ E1 A2 7→ Y ∩H G3 7→ Y ∩ E5

G4 7→ X ∩ E3 G5 7→ F1 ∩ E8 G6 7→ F1 ∩ E9

G7 7→ F1 ∩ E4 G8 7→ F2 ∩H

Call the resulting surface S2. Let D = A1+A2. They are (−1)-curves intersecting transversally,
so we may “add” them to the cohomology so that

H2(S2, TS2(− log(F +A+ E +D))) = 0
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Figure 5.3: The surface S1.

Blow up two more times at A1 ∩ H and A2 ∩ Y , and call the exceptionals G9 and G10. the
resulting surface S3. This looks as in Figure 5.4.

Figure 5.4: The surface S3.

Here we identify two chains of curves, in order

C1 : E5, E6, E7, E8, F2, E9, Y, A1,

and
C2 : X,H,F1, E4, E3, E2, E1, A2.

Their self-intersections are given respectively by [3, 2, 2, 2, 6, 2, 6, 2] = T (1, 29, 13) and
[3, 4, 6, 2, 3, 2, 3, 2] = T (1, 41, 15). Their discrepancies are

d(C1) =
(
−16

29
,−19

29
,−22

29
,−25

29
,−28

29
,−27

29
,−26

29
,−13

29

)
,
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and

d(C2) =
(
−26

41
,−37

41
,−40

41
,−39

41
,−38

41
,−34

41
,−30

41
,−15

41

)
.

Let π : S3 → Z be the contraction of these two Wahl chains. We will see now that π∗KZ = KS3−∑
i diCi is Q-effective, i.e. a multiple of it is an effective divisor. Recall thatKS = −F = −F1 = −F2

where F is any fiber, therefore we can write 2KS = −F1 − F2, or better, KS = −1
2F1 − 1

2F2. Since
the node of each Fi is a double point, if ψ1 : S1 → S is their blow up, then ψ∗

1(−1
2F1) = −1

2F1 −G1

and similarly, ψ∗
1(−1

2F2) = −1
2F2 −G2. This means that KS1 = −1

2F1 − 1
2F2. After blowing up the

eight points at the following step ψ2 : S2 → S1, we must have

KS2 = −1

2
F1 −

1

2
F2 +A1 +A2 +G3 +G4 +

1

2
G5 +

1

2
G6 +

1

2
G7 +

1

2
G8

After the blow up ψ3 : S3 → S2, we have

KS3 = −1

2
F1 −

1

2
F2 +A1 +A2 +G3 +G4 +

1

2
G5 +

1

2
G6 +

1

2
G7 +

1

2
G8 + 2G9 + 2G10

We finally subtract the discrepancies, obtaining

π∗KZ =
39

82
F1 +

27

58
F2 +

30

41
E1 +

34

41
E2 +

38

41
E3 +

39

41
E4 +

16

29
E5 +

19

29
E6 +

22

29
E7 +

25

29
E8

+
27

29
E9 +

26

41
X +

26

29
Y +

37

41
H +

42

29
A1 +

55

41
A2 +G3 +G4 +

1

2
G5 +

1

2
G6 +

1

2
G7 +

1

2
G8

+ 2G9 + 2G10

We now will see that KZ is ample. Let Γ ⊆ Z be any curve. KZ · Γ = π∗KZ · π∗Γ = π∗KZ · Γ̃,
where Γ̃ is the strict transform of Γ. If π∗KZ · Γ < 0, then since π∗KZ is Q-effective, Γ̃ must be
one of the curves of π∗KZ . The only non-exceptional curves in this representation of π∗KZ are the
G3, . . . , G10, and they all have positive intersection:

π∗KZ ·G3 = −1 +
16

29
+

26

29
=

13

29
π∗KZ ·G4 = −1 +

26

41
+

38

41
=

23

41

π∗KZ ·G5 = −1

2
+

39

82
+

25

29
=

996

1189
π∗KZ ·G6 = −1

2
+

39

82
+

27

29
=

1078

1189

π∗KZ ·G7 = −1

2
+

27

58
+

39

41
=

1090

1189
π∗KZ ·G8 = −1

2
+

27

58
+

37

41
=

1032

1189

π∗KZ ·G9 = −2 +
37

41
+

42

29
=

417

1189
π∗KZ ·G10 = −2 +

26

29
+

55

41
=

283

1189

So there cannot be a Γ such thatKZ ·Γ < 0. The above calculation also tells us that ifKZ ·Γ = 0,
then Γ̃ must not be a component of KZ . If Γ̃ is part of a fiber of S3 → P1, then it would be either
Z, G1, G2, or any fiber different than those over ∞, 1, ω. But all those curves intersect π∗KZ , a
contradiction. This means Γ must be a n-multiple-section. It cannot intersect E1, . . . , E4, G4 or G7,
so its image in P2 would be a curve that intersects the line {x = 0} 0 times. This is a contradiction.

Therefore KZ · Γ > 0 for any curve Γ. Also K2
S3

= −12, since the total blow ups were 12, and
the sum of lengths of the Wahl chains is 16. This means K2

Z = 4. By Nakai-Moishezon’s criterion,
KZ is ample.

For the fundamental group, note that G9 is a sphere intersecting transversally the end of C1
and the curve H in C2. Also gcd(29, 41) = 1, so this is one of the situations studied at the end
of Section 4.2. We can conclude that the loop around G9 over the point G9 ∩ E5 contracts in
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S3 \ (C1 ∪ C2). Similarly G10 intersects the curve A2 (the end of C2) and the curve Y in C1. These
all imply that, since S3 is simply connected, the symplectic rational blow down of C1 and C2 is also
simply connected.

Finally, since H2(S3, TS3(− log(C1 + C2))) = 0, we know we can smoothen out these singular
points via a Q-Gorenstein deformation, and the general surface has pg = q = 0, K2 = 4, is simply
connected, with K ample. Thus it lives in the moduli space M4,1.

Remark 5.2.1. As in the previous example, to verify that π∗KZ is Q-effective, it is enough to select
two complete fibers of type In F1 and F2 and having the discrepancies of each of their curves to
be ≤ −1

2 . This is because by writing KS ∼ −1
2F1 − 1

2F2, then after all blow ups we will have
KS3 ∼ −1

2F1− 1
2F2+

∑
niCi for the exceptional curves Ci, and ni ≥ 0 (by applying 1.2.7 successive

times). Then, after subtracting the discrepancies, every curve will have a non-negative coefficient.
This would not work with fibers of type I∗n, II

∗, III∗ and IV ∗ since they have curves with higher
multiplicities, and neither with fibers of type II, III, IV , since during their resolutions, there will
appear exceptional curves with negative multiplicity. Exceptionally, one may also check nefness
when dealing with 3 fibers F1, F2, F3 of type IV , by choosing KS = −1

3F1 − 1
3F2 − 1

3F3, since the
exceptional over the blow up at the triple point would have multiplicity 0. Here the example is
most probably obstructed though.

Remark 5.2.2. The condition of discrepancies ≤ −1
2 in the remark above always work when choosing

two fibers of type In, provided no multi-section is blown down. This is because in order to obtain
chains, one must “separate” the cycles in the fibers by blowing up, and by doing that, it is impossible
to obtain tails of (−2)-curves from these curves (cf. 2.2.7).

Remark 5.2.3. Assuming π∗KZ is Q-effective using the remarks above, since π∗KZ = KS3 −∑
i d(Ci)Ci, then when checking for nefness (or ampleness) of KZ , by adjunction formula, we only

have to verify it for non π-exceptional (−1)-curves in the representation of π∗KZ (since this repre-
sentation can only contain curves of negative self-intersection). For such a curve Gj we have

π∗KZ ·Gj = KS3 ·Gj +
∑
i

d(Ci)Ci ·Gj = −1−
∑
i

d(Ci)(Ci ·Gj)

so it is enough to check −
∑

i d(Ci)(Ci · Gj) ≥ 1 (or > 1 respectively for ampleness). Note that
these curves must always intersect at least two π-exceptional curves (so blow ups can only be done
at nodes), and in this case, by Remark 2.2.7 the inequality always holds if neither of the curves is a
(−2)-curve at the tail of a Wahl chain (or initial chains too for ampleness), so we only truly needed
to check for G9 and G10 in the construction above.

Remark 5.2.4. In order to verify H2(Z, TZ) = H2(S3, TS3(− log C)) = 0, then

• By Propositions 3.2.2, 5.1.4 and 3.2.5, it is enough that the original configuration in the elliptic
surface consists of at most two complete fibers F1 and F2, since partial fibers can be added as
ADE configurations; and

• By Propositions 3.2.3 and 3.2.4, if D is obtained by log-resolution of the original configuration,
then it is enough that every curve S coming from a multi-section has S2 ≥ −1.

5.3 Combinatorics

The objective of this section is to define the invariants P and K of a given configuration of
curves in a surface that gives us information of the possible T-singularities that could be obtained
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from this configuration. This will be useful when dealing with many configurations of curves as a
way to analyze the viability of obtaining T -singularities before even starting to search for them.

Definition 5.3.1. Let X be a smooth projective surface and D be a reduced divisor with “bouquet”
crossings–that is, every singularity of D locally looks like the union of different lines through a
single point in C2–where in particular we allow curves with singular points. Let SingD be the set
of singular points of D, and define

P (X,D) =
∑
C∈D

C2 + 5−
∑

p∈SingD
mp(C)

2

 ,

where mp(C) is the multiplicity of C at p ([H70, Definition pp. 388]).

In particular, if D is a simple normal crossing divisor,

P (X,D) =
∑
C∈D

C2 + 5|D| − 2| SingD|, (5.1)

where |D| is the number of curves in D. We will now prove several properties of P that make it
useful for computations.

Proposition 5.3.2. Let X be a smooth projective surface and D a divisor with bouquet crossings.
Let π : Y → X be the blow up at p0 ∈ SingD, and let D̂ be the strict transform of D. Then

P (Y, D̂) = P (X,D)

Proof. Every branch of D at p0 has different tangent directions, by blowing up that point we
separate every branch, thus, every point of the exceptional E∩ D̂ is non-singular in D̂, so π induces
a correspondence between SingD − {p0} and Sing D̂. By corollary 1.2.8 we have

P (X,D) =
∑
C∈D

C2 + 5−
∑

p∈SingD
mp(C)

2


=
∑
Ĉ∈D̂

Ĉ2 +mp0(C)
2 + 5−

∑
p∈SingD

mp(C)
2


=
∑
Ĉ∈D̂

Ĉ2 + 5−
∑

p∈SingD,p̸=p0

mp(C)
2


=
∑
Ĉ∈D̂

Ĉ2 + 5−
∑

p∈Sing D̂

mp(Ĉ)
2


= P (Y, D̂)

Proposition 5.3.3. Let E ⊆ X be a smooth curve not in D intersecting D at n smooth points
and m singular points. Then

P (X,D + E) = P (X,D) + E2 + 5− 2n−m

In particular, if π : Y → X is the blow up at a node of D and E0 ⊆ Y is the exceptional curve, then

P (Y, D̂ + E0) = P (Y, D̂) = P (X,D)
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Proof. The new singular points in D+E are given by the n intersections with D at smooth points
pi of curves Ci, that is mpi(Ci) = 1. Since at singular points the sum for curves in D is unaffected,
then curves in D contribute with

∑
C∈D

C2 + 5−
∑

p∈SingD
mp(C)

2

− n = P (X,D)− n

to the sum. Since E is smooth, mp(E) = 1 for every p ∈ E ∩D, so E contributes to the sum with

E2 + 5− n−m.

The final property of P is essentially the reason why it was defined.

Proposition 5.3.4. Let D be a divisor consisting of k disjoint T -singularities (di, ni, ai), i =
1, . . . , k, then

P (X,D) =

k∑
i=1

di

in particular, if every chain is a Wahl chain, P (X,D) = k.

Proof. This is a direct calculation using 5.1 for initial T -singularities, noting that it is invariant
under the algorithm and that P is additive for disjoint configurations.

This way, whenever we choose a configuration D of rational curves with only nodes, we can
immediately determine the amount of T -singularities we would obtain by consecutively blowing
up nodes and either adding or not to our configuration the exceptional curves that appear. The
next invariant we will define will do the same thing, but instead of counting the T -singularities, it
determines K2

Z if φ : X → Z is the contraction of the T -singularities obtained from D.

Definition 5.3.5. Let X and D be as in 5.3.1. Define

K(X,D) = K2
X + 2|D| − | SingD| − P (X,D)

In particular, if D is simple normal crossing, then

K(X,D) = K2
X −

∑
C∈D

C2 − 3|D|+ | SingD|

Proposition 5.3.6. Let X and D be as in 5.3.1, and let π : Y → X be the blow up at p0 ∈ SingD.
Let D̂ be the strict transform of D in Y . Then

K(Y, D̂) = K(X,D)

Proof. We already know P (X,D) and |D| remain constant. We also know that | SingD| decreases
by one and by corollary 1.2.8, K2

Y = K2
X − 1.

Proposition 5.3.7. Let E ⊆ X be a smooth curve not in D intersecting D at n smooth points
and m singular points. Then

K(X,D + E) = K(X,D)− E2 + n+m− 3.

In particular, if π : Y → X is the blow up at a node of D and E0 ⊆ Y is the exceptional curve, then

K(Y, D̂ + E0) = K(Y, D̂) = K(X,D)
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Proof. |D| increases by 1, |SingD| increases by n and P (X,D+E) = P (X,D)+E2+5−2n−m.

Proposition 5.3.8. Let D ⊆ X be a divisor consisting of disjoint T -singularities and let φ : X → Z
the contraction of D. Then

K2
Z = K(X,D)

Proof. Given a T -chain T (d, n, a) of length l with curves C1, . . . , Cl, it is easy to see that

−
l∑

i=1

C2
i = 3l + 2− d

since d = P (X,
∑l

i=1Ci) = 3l+2+
∑l

i=1C
2
i . This way if D consists of k T -chains, T (di, ni, ai), by

using Lemma 2.2.8 k times,

K(X,D) = K2
X −

∑
C∈D

C2 − 3|D|+ |SingD|

= K2
X +

k∑
i=1

((3li + 2− di)− 3li + (li − 1))

= K2
X +

k∑
i=1

(li − di + 1)

= K2
Z

To get extra bounds on what we may arrive to, we will define logarithmic pairs, their Chern
classes and state the logarithmic Bogomolov-Miyaoka-Yau inequality.

Definition 5.3.9 ([H70, A.3 & A.4]). Let X be a smooth surface. Its Chern classes are c1(X) =
c1(TX) and c2(X) = c2(TX). They coincide with the topological Chern classes so c2(X) = e(X) is
the Euler characteristic, and c1(X) = −KX .

Definition 5.3.10 ([U10, Definition 2.3]). Let X be a smooth surface. A log pair is a tuple
(X,D), where D is a simple normal crossing divisor in X. The log Chern classes are c1(X,D) =
c1(TX(− logD)) and c2(X,D) = c2(TX(− logD)).

Proposition 5.3.11 ([U10, Proposition 2.4]). Consider a log pair (X,D). Then

• c1(X,D) = −KX −D.

• c2(X,D) = c2(X) + 1
2D.(KX +D) +

∑
C∈D(g(C)− 1).

where g(C) is the genus of C.

If | Sing(D)| = t2 = 1
2(D

2 −
∑

C∈D C
2) =

∑
C ̸=C′∈D C.C

′ is the number of nodes of D, and
D consists of only rational curves as in our case, then, by using Noether’s formula 12χ(X) =
c21(X) + c2(X), the log Chern numbers of (X,D) may be written as

• c1
2(X,D) = K2

X + 2|Sing(D)| −
∑

iD
2
i − 4|D| = K2

X − P (X,D) + |D|.

• c2(X,D) = c2(X) + |Sing(D)| − 2|D| = 12χ(X)− P (X,D)−K(X,D).
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Theorem 5.3.12 (Log-Bogomolov-Miyaoka-Yau inequality [K85, Theorem 2]). Let (X,D) be a log
pair. Then the inequality c1

2(X,D) ≤ 3c2(X,D) holds.

Theorem 5.3.13. Let Z be a surface with only P Wahl singularities. Then K2
Z ≤ 9χ(Z)− 1

2P .

Proof. Suppose that D is a configuration of disjoint Wahl chains in a smooth surface X. Then by
Proposition 5.3.8 and Lemma 2.2.8, K2

X + |D| = K(X,D), so we obtain the inequality

K(X,D) ≤ 9χ(X)− 1

2
P (X,D).

In particular, if Z is a surface with only Wahl singularities then K2
Z ≤ 9χ(Z)− 1. This tells us

that with our method we will never be able to construct an exotic CP2.

55



Chapter 6

Automatization

In this chapter we will describe the program we wrote and used to search for surfaces with Wahl
configurations. For complexity reasons, this algorithm only works for finding configurations with one
or two Wahl chains. In principle, the program searches for Wahl chains arising from configurations
of curves in a rational elliptic fibration, and so we will describe the program assuming we are in that
situation. The program may very well be used in other situations, such as using as a starting point
a K3 surface (as with [RU21]) or any configuration of rational curves in arbitrary surfaces, but
some parts of the analysis over the examples would provide wrong results, such as the obstruction
test. The program can also search for more general QHD singularities, but they will be omitted
from this explanation. There are several optimizations and fine details that will also be omitted.

The process can be summarized as follows. Start with a configuration C of rational curves in a
surface X. Consider every sub-configuration of curves D ⊆ C, and search every possible way to blow
up nodes in D (with possibly infinitely near blow ups) to obtain surfaces Y → X that hopefully
contain configurations of Wahl chain. If we denote the contraction of said Wahl chains by Y → Z,
then the algorithm will also check that KZ is nef and big (K2

Z > 0), and discard the examples that
violate these rules.

The main way in which the algorithm works is by blowing up enough times D in order to get
chain “candidates” which can be modified using (−1)-curves. A “candidate” and its modification
can be visualized as follows.

(−1)

(−2)(−1)
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This operation creates a new (−1)-curve, so can be applied recursively. The purple point need
not to be in the same chain. Let us formalize this

Definition 6.0.1. Let D = C1 + . . .+ Cn be a chain in a surface X, where Ci intersects Ci−1 and
Ci+1. Let G be a (−1)-curve that intersects only Cn and some rational curve B, which may be
any of the Ci except C1 (if B = Cn, this means that Cn intersects G twice at different points).
Suppose that D +G+B is snc, and let p be a point of intersection of G and B (which is unique if
B ̸= Cn and one of two if B = Cn). A single extension operation on (X,D,G,B) is the the tuple
(Y,D′, G′, B̂), where we blow up at p, π : Y → X, we define the chain D′ = D̂ + Ĝ, and G′ is the
π-exceptional curve.

Note that (Y,D′, G′, B̂) also satisfies the hypotheses of this definition. An n-extension operation
is applying a single extension operation n times.

Combinatorially, an n-extension can be seen as extending the chain D with a sequence of n
(−2)-curves at one end, and decreasing B2 by n.

Definition 6.0.2. Let C0 be a configuration of rational curves in a rational elliptic surface S0. Then
we can write C0 = F0 + S0, where F0 consists of all curves contained in fibers, and S0 consists of
all other curves, in other words, multi-sections.

If π : Y → X is the minimal log resolution of C0, we may write C = F + S + E , where F and S
are the strict transforms of F0 and S0, and E is the reduced exceptional divisor of π. Such a pair
(Y, C) together with the subdivision into F ,S, E is called a starting configuration.

Note that it is equivalent to give a starting configuration than to give a configuration C0 of
curves. We do it this way in order to simplify the program so it can only accept simple normal
crossing configurations.

Definition 6.0.3. Let D be a snc configuration of curves.

• C a curve in D. Define δD(C) = (D − C).C, that is, the number of intersections of C with
the other curves in D. Define ∆(D) = maxC≤D δD(C).

• D is a chain-cycle forest if it is the disjoint union of chains and cycles. Equivalently, D is a
chain-cycle forest if ∆(D) ≤ 2.

Definition 6.0.4. Let D be a snc configuration of curves in a surface X. A separation of D is a
sequence of blow ups π : Y → X such that ∆(D̂) ≤ 2. A minimal separation is a separation that is
minimal among all separations.

Note that D might have many different minimal separations. Also, since all blow ups must be
done at nodes of D, then P (Y, D̂) = P (X,D) and K(Y, D̂) = K(X,D).

Definition 6.0.5. Let D = C1 + . . .+ Cn be a chain in a surface X. define

Λ(D) = 1− P (X,D) = −3n− 1−
n∑
i=1

C2
i .

Proposition 6.0.6. Let D1, D2 be disjoint chains in a surface X, D1 = C1,1 + . . . + C1,n1 , D2 =
C2,1 + . . .+ C2,n2 , where Ci,j intersects Ci,j−1 and Ci,j+1. If Di is a Wahl chain, then Λ(Di) = 0.

Let G1 be a (−1)-curve and suppose (X,D1, G1, A1,j) satisfies the hypotheses of Definition 6.0.1,

Let (Y,D′
1, G

′
1, Â1,j) be its n-extension. Then Λ(D′

1) = Λ(D1).
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Suppose now that G2 is a (−1)-curve such that (X,D1, G2, A2,j) satisfies the hypotheses of

Definition 6.0.1, and G2 intersects only A2,j in D2. Let (Y,D′
1, G

′
1, Â2,j) be its n-extension and

D′
2 = D̂2. Then

Λ(D′
1) = Λ(D1)− n, Λ(D′

2) = Λ(D2) + n.

Proof. The first statement is just 5.3.4.
For the others, note that Λ only depends on the combinatorics of a chain. If we append a

(−2)-curve to a chain, Λ decreases by one, and if we decrease the self intersection of a curve in a
chain by one, Λ increases by one.

Remark 6.0.7. The algorithm also handles blowing down in the middle of chains. Testing for
obstructions and nefness works essentially the same as with the case with only blow ups, though
the implementation does get a bit complicated. The only essential difference is that before applying
extensions, any (−1)-curve in the middle of chains gets contracted (unless that curve is the one
where an extension happen). For this reason, and because the notation would get too heavy, we will
assume no blow downs in the middle of chains occur. Cases like these are rare but not extremely
so.

The algorithm is divided into several “functions”, which are not entirely in order. The parameter
they take are shown in parenthesis. The first function we execute is Init().

Init()

Before starting the algorithm, we first describe the input to the program. The input consists
essentially of two things: On the one hand, options indicating what to search for. This includes

• Whether we want to search for configurations consisting of one Wahl chain, two Wahl chains,
or search for both.

• The target K2’s we are aiming for K2
Z .

• Whether to test for obstructions or not.

• Whether to test for KZ nef or not.

• Whether to test if KY −D is Q-effective or not, where D is the discrepancy Q-divisor.

On the other hand, the input also describes a starting configuration of rational curves. C = F+S+E
in a surface S, obtained by log resolution π : S → S0 of C0 = F0 + S0 a configuration in an elliptic
surface.

Every piece of data of the input is regarded as a global invariant. That means that every Step
has access to these values without needing them to be parameters.

Call Sub-Configuration-Selection().

Sub-Configuration-Selection()

In this step we want to select iterate through all sub-configurations of D ≤ C. The problem of
simply selecting a sub-configuration is that S might have been obtained by more than necessary
blow ups to make D snc, so we need to blow down some curves.

For every sub-configuration D ≤ C do the following. Blow down curves in E , φ : S → S′ suc-
cessively until no more curve can be blown down without making φ(D) a non-snc divisor. Note
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that S′ → S0 might not be the log resolution of π(D) (where π : S → S0), since the log resolution
requires also that every exceptional curve has also simple normal crossings with π(D). Algorithmi-
cally, this construction is standard: for every subset indexed by a binary mask, blow down vertices
of E whenever possible.

Call Calculate-Invariants(S′,φ(D)).

Calculate-Invariants(a surface X, a snc configuration D in X)

Now calculate the invariants P and K from our configuration D. If P (X,D) ̸= 1, 2 (also depend-
ing on the input) or K(X,D) is not part of the target K2 given, we discard this sub configuration
and return from this function. This is because it will be impossible to obtain desired configurations
of Wahl chains as described in Section 5.3.

We also calculate obstructions of (X,D). If this test was enabled in the input, call Calculate-
Obstruction(X,D). If (X,D) did not pass the “test”, discard it and return from this function.

If (X,D) passes all these “tests”, call Separate(X,D).

Separate(a surface X, a snc configuration D in X)

In this step we start blowing up. Since a configuration of chains W in a surface Y has always
∆(W ) ≤ 2, our first approach is to blow up enough times D in order to obtain this condition.

Construct every minimal separation φ : (Y, D̂) → (X,D). This step is done with the obvious
backtracking algorithm, which iterates through curves and blows up intersections whenever δD(C) >
2. The decision tree may be huge, so instead of constructing every possible (Y, D̂), the configuration
(X,D) is modified via blow ups and blow downs internally. Also note that this algorithm, although
is guaranteed to give every minimal separation, may also give non-minimal ones. It is possible to
trim them out afterwards.

For every minimal separation (Y, D̂) do the following:
Let G be the reduced exceptional divisor of φ. Then G consists of (−1)-curves that intersect

only two curves in D̂. At this point, D̂ is a chain-cycle forest.
If P (X,D) = 1, call Single-Chain-Init(Y , D̂, G)
Otherwise, if P (X,D) = 2, call Double-Chain-Init(Y , D̂, G).

Single-Chain-Init(a surface X, a chain-cycle forest D, a configura-
tion of (−1)-curves G)

At this step we have a chain-cycle forest D inside X with a set of (−1)-curves G. We wish to
construct a single Wahl chain from this forest.

If D is not connected, then it will be impossible to obtain a Wahl chain from this configuration.
This is because blowing up will preserve the number of connected components. Therefore in this
case discard D and return from this function.

If D is a chain, call Single-Chain-Check-Wahl (X, D, G). Afterwards, call Single-Chain-
Extend(X, D, G).

If instead, D is a cycle, for every node p ∈ SingD do the following. Construct the blow up
Y = Blp(X) → X. Let D̂ be the strict transform of D and let E be the exceptional curve. Let

G′ = Ĝ + E. Now D̂ is a chain in Y . Call Single-Chain-Check-Wahl(Y , D̂, G′). Afterwards, call
Single-Chain-Extend(Y , D̂, G′).
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Single-Chain-Check-Wahl (a surface X, a chain D, a configuration
of (−1)-curves G)

At this step we have a chain D in X with a set of (−1)-curves G, and we want to check if D
is already a Wahl chain. This can be quickly checked if all its curves Ai in D have A2

i ≤ −2 and

verifying that [−A2
1, . . . ,−A2

l ] is a fraction of the form n2

na−1 , where D = A1 + . . . + Al and Ai
intersects Ai−1 and Ai+1. If D is not a Wahl chain, return from this function.

If the Q-effective test was enabled in the input, call Q-Effective-Test(X, D, G). If it did not
pass the test, discard this example and return from this function.

If the nef test was enabled in the input, call Nef-Test(X, D, G). If it did not pass the test,
discard this example and return from this function.

At this point, D is a Wahl chain that passed all needed tests. Add this to the list of found
examples.

Single-Chain-Extend(a surface X, a chain D,configuration of (−1)-
curves G)

Here we will want to extend one of the ends of D via extension operations. We do not want a
(−1)-curve intersecting only both ends of a chain, as this means there will be a 0 curve for KZ , thus
it would not be ample (this also means that there could be infinitely many Wahl chain configuration
arising from D, all of them with KZ non ample, so we we wish to avoid this situation).

Since any Wahl chain of length > 1 must have a (−3)-curve or lower at one end, and a (−2)-
curve at the other, we do not want to extend an end of the chain if the other end is not (−3) or
lower.

Write D = A1 + . . .+Al, where Ai intersects Ai−1 and Ai+1. There are two ways of writing D
in this manner (the other is Al + . . .+A1), so for each of them do the following:

If A2
1 ≥ −2, ignore this case.

For every exceptional G ≤ G that intersects Al and does not intersect A1 do the following: Let
Ai be the other curve where G intersects (which may be Al too).

If A2
i > −2, apply 2+A2

i extension operations to (X,D,G,Ai), obtaining (Y0, D
′
0, G

′
0, Âi), where

Âi
2
= −2. Let G′

0 = Ĝ −G+G′
0 and call Single-Chain-Check-Wahl(Y0, D

′
0, G′

0).

In any case, we will try to extend al least enough times to get Âi
2
≤ −3. Let (Y,D′, G′, Âi)

be the m-extension of (X,D,G,Ai) where m > 0 is any integer such that Âi
2
≤ −3, and write

D′ = B1+ . . .+Bl+m, where Bi = Âi for i ∈ {1, . . . , l}. Since Âi
2
≤ −3, this means there is a single

j ≥ i > 1 independent of m, such that B2
k = −2 for every k > j, and Bj = Âj (which could be Âi)

would be a (−3)-curve or lower. Since j ≥ 2, this cannot be a linear chain (see Example 2.2.4), so if

D′ were to be a Wahl chain, the amount of (−2)-curves at the end of the chain must be −2− Â1
2
,

which is independent of m and equal to −2−A2
1 since i ̸= 1.

This means that the only m we should check is m = −2−A2
1 − l + j (if m ≤ 0, ignore this and

return from this function). Let G′ = Ĝ −G+G′ and call Single-Chain-Check-Wahl(Y , D′, G′).
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Double-Chain-Init(a surface X, a chain-cycle forest D, a configura-
tion of (−1)-curves G)

At this step we have a chain-cycle forest D inside X with a set of (−1)-curves G. We wish to
construct two Wahl chains from this forest.

If D has more than 2 connected components, then it will be impossible to obtain two Wahl
chains from this configuration so discard this example and return.

If D consists of two chains, let them be D1 and D2. Call Double-Chain-Standard(X, D1, D2,
G).

If instead, D consists of a chain and a cycle, let them be D1 and D2 respectively. For every
node p ∈ SingD2 do the following. Construct the blow up Y = Blp(X) → X. Let D̂i be the strict

transform of Di and let E be the exceptional curve. Let G′ = Ĝ +E. Now D̂i are both chains in Y .
Call Double-Chain-Standard(Y , D̂1, D̂2, G′).

If instead, D consists of two cycles, let them be D1 and D2 respectively. For every node p1 ∈
SingD1 and every node p2 ∈ SingD2 do the following. Construct the blow up Y = Blp2(Blp1(X)) →
X at p1 and p2. Let D̂i be the strict transform of Di and let E1, E2 be the exceptional curves. Let
G′ = Ĝ + E1 + E2. Now D̂i are both chains in Y . Call Double-Chain-Standard(Y , D̂1, D̂2, G′).

If instead, D is a single chain, call Extremal-P-Resolution-Check(X, D, G) and Extremal-P-
Resolution-Extend(X, D, G). Afterwards, for every node p ∈ SingD do the following. Construct
the blow up Y = Blp(X) → X. Let D̂ be the strict transform of D and let E be the exceptional

curve. Let G′ = Ĝ + E. Now D̂ consists of two chains D1 and D2 in Y . Call Double-Chain-
Standard(Y , D1, D2, G′).

If instead, D is a single cycle, for every node p ∈ SingD do the following. Construct the
blow up Y = Blp(X) → X. Let D̂ be the strict transform of D and let E be the exceptional

curve. Let G′ = Ĝ + E. Now D̂ is a chain in Y . Call Extremal-P-Resolution-Check(Y , D̂, G′) and
Extremal-P-Resolution-Extend(Y , D̂, G′).

Again, if D is a single cycle, for every pair of different nodes p1, p2 ∈ SingD do the following.
Construct the blow up Y = Blp2(Blp1(X)) → X at p1 and p2. Let D̂ be the strict transform of D

and let E1, E2 be the exceptional curves. Let G′ = Ĝ + E1 + E2. Now D̂ consists of two chains D1

and D2 in Y . Call Double-Chain-Standard(Y , D̂1, D̂2, G′).

Double-Chain-Standard(a surface X, a chain D1, a chain D2, a con-
figuration of (−1)-curves G)

Here we have two disjoint chains D1 = A1,1 + . . .+Al1 , and D2 = A2,1 + . . .+A2,l2 . Calculate

Λi = Λ(Di) = −3li − 1−
li∑
j=1

A2
i,j , i = 1, 2

Since P (X,D1+D2) = 2, then Λ1+Λ2 = 0. By Proposition 6.0.6, we want to modify this chains
in order to obtain Λ(D′

1) = Λ(D′
2) = 0. Again, by Proposition 6.0.6, we know that Λ1 measures the

number of extensions done at (X,D1, G,A2,i) for some G that intersects A1,n1 (or A1,1) and some
A2,i, minus the number of extensions done at (X,D2, G

′, A1,j) for some G′ that intersects A2,n2 (or
A2,1) and some A1,j . Since Λ2 = −Λ1, the property is symmetric for D2.

There are several non-exclusive cases:

• If Λ1 = 0 call Double-Chain-Independent(X, D1, D2, G).
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• If Λ1 ̸= 0 call Double-Chain-Semi-Independent(X, D1, D2, G).

• In any case call Double-Chain-Dependent(X, D1, D2, G).

Double-Chain-Check-Wahl(a surface X, a chain D1, a chain D2, a
configuration of (−1)-curves G)

At this step we have chains D1 and D2 in X with a set of (−1)-curves G, and we want to
check if the Di’s are already Wahl chains. This can be quickly checked if all the curves Ai,j in

Di have A
2
i,j ≤ −2 and verifying that [−A2

i,1, . . . ,−A2
i,li

] is a fraction of the form
n2
i

niai−1 , where
Di = Ai,1 + . . .+Ai,li and Ai,j intersects Ai,j−1 and Ai,j+1. If either Di is not a Wahl chain, return
from this function.

If the Q-effective test was enabled in the input, call Q-Effective-Test(X, D1 +D2, G). If it did
not pass the test, discard this example and return from this function.

If the nef test was enabled in the input, call Nef-Test(X, D1 + D2, G). If it did not pass the
test, discard this example and return from this function.

At this point, D1+D2 is a pair of Wahl chains that passed all needed tests. Add this to the list
of found examples.

Double-Chain-Independent(a surface X, a chain D1, a chain D2, a
configuration of (−1)-curves G)

Here Λ(D1) = Λ(D2) = 0, so both chains D1 and D2 have the numerical invariants to be Wahl
chains. We test modifications to D1 and D2 independently of one another in a way analogous to
Single-Chain-Check-Wahl and Single-Chain-Extend. First extend (or not) D1 with a G1 intersecting
twice D1 obtaining Y , D′

1, D
′
2 and G′, and then extend (or not) D′

2 with a G2 intersecting twice D′
2

obtaining Y ′, D′′
1 , D

′′
2 and G′′. Call Double-Chain-Check-Wahl(Y ′, D′′

1 , D
′′
2 , G′′).

Double-Chain-Semi-Independent(a surface X, a chain D1, a chain
D2, a configuration of (−1)-curves G)

Here, up to renaming the D1 and D2, we may assume Λ(D1) > 0, so we will try to extend D1

with exactly Λ(D1) extensions while decreasing the self intersection of a curve in D2 by Λ(D1), and
then independently extending D2.

For this, write D1 = A1,1 + . . . + A1,l1 where A1,i intersects A1,i−1 and A1,i+1. There are two
ways of writing D in this manner (the other is A1,l1 + . . .+A1,1), so for each do the following:

If A1,1 ≥ −2, ignore this case.
For every (−1)-curve G1 ≤ G that intersects A1,l1 and some A2,i do the following. Let

(Y,D′
1, G

′
1, Â2,i) be the Λ(D1)-extension of (X,D1, G1, A2,i), and let D′

2 be the strict transform of
D2. In a way analogous to Single-Chain-Check-Wahl and Single-Chain-Extend, test modifications
of D′

2 independently of D′
1, so extend (or not) D2 with a G2 intersecting D′

2 twice obtaining Y ′,
D′′

1 , D
′′
2 and G′′. Call Double-Chain-Check-Wahl(Y ′, D′′

1 , D
′′
2 , G′′).

Remark 6.0.8. We can easily optimize a step here, since the combinatorics of D′
1 do not depend on

the choice of G. We first extend with any G, and if we do not obtain a Wahl chain immediately,
discard this case.
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Double-Chain-Dependent(a surface X, a chain D1, a chain D2, a
configuration of (−1)-curves G)

Here we will try to extend simultaneously both chains with two curves in G that intersect them
both.

Write Di = Ai,1 + . . . + Ai,l1 where Ai,j intersects Ai,j−1 and Ai,j+1. For each i there are two
ways of writing Di in this manner (the other is Ai,li + . . .+Ai,1), so for each of the 4 possibilities,
do the following:

If either A2
i,1 ≥ −2, ignore this case.

For every G1 ≤ G that intersects A1,l1 and A2,i for some i, and every G2 ≤ G different from G1

that intersects A2,l2 and A1,j for some j, do the following:
If i = 1 or j = 1, ignore the pair (G1, G2), since these cases are taken into account in Extremal-

P-Resolution-Extend in some other separation of the original configuration.
Consider the inequality A2

2,i − Λ(D1) ≥ A2
1,j . It is equivalent to A2

1,j − Λ(D2) ≤ A2
2,i, so up to

renaming the chains, we may assume that A2
2,i − Λ(D1) ≥ A2

1,j .
Let m1 > 0 and m2 > 0 be integers such that m1 −m2 = Λ(D1). Consider the m1-extension

(Y ′, D′′
1 , G

′
1, Â2,i) of (X,D1, G1, A2,i), and let D′′

2 the strict transform of D2. Now consider the

m2-extension (Y,D′
2, G

′
2,
̂̂
A1,j) of (Y

′, D′′
2 , Ĝ2, Â1,j) (all this does is extend Di with mi (−2)-curves

and decrease A2
2,i by m1 and A2

1,j by m2). Write D′
i = Bi,1 + . . . + Bi,li+mi

, where Bi,j =
̂̂
Ai,j if

j ≤ li. Finally, let G′ = (G −G1 −G2 )̂̂ + Ĝ′
1 +G′

2.
There are two non-exclusive cases.

• A2
2,i > −2. We would like to decrease this self-intersection just enough so that B2

2,i = −2, so

now fix m1 = A2
2,i+2 (if m2 = m1−Λ(D1) ≤ 0, then ignore the rest of this item and proceed

with the next one). We have

B2
1,j = A2

1,j −m2 = A2
1,j −m1 + Λ(D1) ≤ A2

2,i −m1 = B2
2,i = −2

so there should be no problems with the restriction B2
i,j ≤ −2, at least for B1,j and B2,i. Call

Double-Chain-Check-Wahl(Y , D′
1, D

′
2, G′). Continue with the following item.

• In any case, we will require m1 large enough so that B2
2,i ≤ −3. This means there is a single

r ≥ i > 1, independent of m, such that every B2,k for k > r would be a (−2)-curve and B2,r

(which could be B2,i) would be a (−3)-curve or lower. Since r ≥ 2, this cannot be a linear
chain (see Example 2.2.4), so if D′

2 were to be a Wahl chain, the amount of (−2)-curves at
the end must be −2−B2

2,1, which is independent of m1 and equal to −2−A2
2,1 since i ̸= 1.

This means that the only m1 we should check is m1 = −2 − A2
2,i − l2 + r (if m1 or m2 =

m1−Λ(D1) ≤ 0, ignore this and return from this function). Call Double-Chain-Check-Wahl(Y ,
D′

1, D
′
2, G′).

Extremal-P-Resolution-Check(a surface X, a chain D, a configura-
tion of (−1)-curves G)

Here we have a single chain D = A1 + . . . + Al that we wish to separate in the middle by a
sequence of blow ups so that we may obtain two Wahl chains. This is done by extremal P-resolutions
of Ω

∆ = [−A2
1, . . . ,−A2

l ] as explained in Section 2.3.
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If they exist, let Y → X be an extremal P-resolution. Write (π∗D)red = D1 + E +D2 so that
D1 and D2 are the two Wahl chains and E is a (−1)-curve connecting them, and let G′ = Ĝ + E.
For every such extremal P-resolution do the following:

If the Q-effective test was enabled in the input, call Q-Effective-Test(Y , D1 +D2, G′). If it did
not pass the test, discard this example and return from this function.

If the nef test was enabled in the input, call Nef-Test(Y , D1 + D2, G′). If it did not pass the
test, discard this example and return from this function.

At this point, D1+D2 is a pair of Wahl chains that passed all needed tests. Add this to the list
of found examples.

Extremal-P-Resolution-Extend(a surface X, a chain D, a configura-
tion of (−1)-curves G)

Here we will try to extend the chain D before checking for extremal P-resolutions.
Write D = A1 + . . .+Al, where Ai intersects Ai−1 and Ai+1. There are two ways of writing D

in this manner (the other is Al + . . .+A1), so for each of them do the following:
For every G ∈ G that intersects Al and some Ai do the following:
If i = 1, ignore this G, since after extending and blowing up in the middle to obtain an extremal

P-resolution Y → X, we would have a dual graph with discrepancies (see Lemma 2.2.5):

−n−a
n

. . .
− a
n

Q1 Q2

−n′−a′
n′

. . .

− a′

n′

where Qi are (−1)-curves. If Q̃1 and Q̃2 are the images of Q1 and Q2 under the contraction
morphism π : Y → Z, we have by equation 2.1

KZ · Q̃1 = π∗KZ · π∗Q̃1 = π∗KZ ·Q1 = KY ·Q1 −
∑

djEj ·Q1 = −1 +
n− a

n
+
n′ − a′

n′

and

KZ · Q̃2 = π∗KZ · π∗Q̃2 = π∗KZ ·Q2 = KY ·Q2 −
∑

djEj ·Q2 = −1 +
a

n
+
a′

n′

and so, since
KZ · Q̃1 +KZ · Q̃2 = 0

at least one of KZ · Q̃1 or KZ · Q̃2 is non positive, so KZ cannot be ample.
Therefore we may assume that i ̸= 1.
Let m > 0 be an integer. Consider the m-extension (Y,D′, G′, Âi) of (X,D,G,Ai). Write

D′ = B1 + . . .+Bl+m, where Bi = Âi if i ≤ l. Finally, let G′ = Ĝ −G+G′.
There are two non exclusive cases:

• A2
i > −2. We would like to decrease this self intersection just enough so that B2

i = −2, so
now we fix m = A2

i + 2. Call Extremal-P-Resolution-Check(Y , D′, G′). Continue with the
following item.
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• In any case, we will require m large enough so that B2
i ≤ −3. Since we do not want a (−1)-

curve intersecting both ends of a Wahl chain (because KZ would not be ample), then after
doing all blow ups in the middle, the strict transform of Bi cannot be the first member of the
second chain. This is precisely the situation in the hypothesis of Proposition 2.3.23, so if we
want to obtain a chain with extremal P-resolutions, we know that m ≤ −A2

1 −minj ̸=iA
2
j − 3.

Call Extremal-P-Resolution-Check(Y , D′, G′) for every m from max(1, A2
i + 3) to −A2

1 −
minj ̸=iA

2
j − 3.

Q-Effective-Test(a surface X, a chain forest D, a configuration of
(−1)-curves G)

In this step D consists of either one or two Wahl chains. Let π : X → Z be the contraction of
these chains. We want to verify that π∗KZ is Q-effective. By Remark 5.2.1 it is enough to show
that D contains (the strict transforms) of at least two fibers of type In, and that the discrepancies
of each of these curves lesser than or equal to −1

2 . Discrepancies are easily calculated recursively
using the formula

ei − 2 = di−1 − eidi + di+1

while knowing that the first discrepancy for a Wahl chain is always a−n
n . A C++ code for calculating

discrepancies is:

1 #include <vector>

2 // Returns a vector of discrepancies of the Wahl chain associated to (n,a).

3 // Result is multiplied by n, so they are negative integers.

4 // Assumes 0 < a < n and gcd(a,n) = 1.

5 std::vector<long long> get_discrepancies(long long n, long long a)

6 {

7 std::vector<long long> discrepancies;

8 long long q = n*n;

9 long long m = n*a-1;

10 discrepancies.push_back(a-n);

11 long long prev_prev_disc = 0;

12 long long prev_disc = a-n;

13 while (m > 1ll)

14 {

15 long long disc = n*(q/m-1ll) + (q/m+1ll)*prev_disc - prev_prev_disc;

16 discrepancies.push_back(disc);

17 prev_prev_disc = prev_disc;

18 prev_disc = disc;

19 long long temp = m;

20 m = m - q%m;

21 q = temp;

22 }

23 return discrepancies;

24 }
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Remark 6.0.9. It is important to note that in this step we strongly assume that S0 is an elliptic
fibration where KS0 ∼ −1

2F1 − 1
2F2. In other cases, for example when S0 is a K3, so KS0 ≡ 0, this

test is not required as π∗KZ is always effective.

Remark 6.0.10. Due to Remark 5.2.2, in our case where there are no blow downs, this test will
always be passed whenever two complete fibers are used, so it is actually redundant. It might still
be necessary in the general case, where curves can be blown down, but the author has never found
an example where this fails.

Nef-Test(a surface X, a chain forest D, a configuration of (−1)-
curves G)

In this step D consists of either one or two Wahl chains. Let π : X → Z be the contraction of
these chains. Here we test if π∗KZ is nef. Sadly, we cannot immediately test if it is ample, since
there could be curves outside of C that the program does not know of, and that could intersect 0
with π∗KZ , so without more detailed analysis this is the best we could hope for. Let D consist of
curves A1, . . . , Al and let di be the discrepancy of Ai. Assuming π∗KZ is Q-effective, by remark
5.2.3 if φ : X → S0 is the composition of blow ups from the original elliptic fibration, we only need
to verify that for every φ-exceptional curve Γ with Γ2 = −1 we have

∑
i diAi · Γ ≤ −1. For this we

calculate
∑

i diAi · G ≤ −1 for every G ∈ G, and that
∑

i diAi · E ≤ −1 for every curve E coming
from E that has E2 = −1.

Remark 6.0.11. We might want to make this an strict inequality to discard examples that are
not ample. However we might also be interested in singularities of type T (2, n, a), whose partial
resolution are two T (1, n, a) singularities with a 0 curve connecting them. This translates into two
concatenated Wahl chains connected by a (−1)-curve Γ that satisfies

∑
i diCi · Γ = −1.

Calculate-Obstruction(a surface X, a snc configuration D in X)

Here we test if there are no obstructions for (X,D). Since all we will do to this configuration
is add (−1)-curves and blow up at nodes, if H2(X, TX(− logD)) = 0, then H2(Y, TY (− logD′)) = 0
for any configuration obtained by this algorithm.

By Propositions 5.1.4 and 3.2.5 it is enough to verify that at most two singular fibers of type In
are used completely, and by Propositions 3.2.3 and 3.2.4 that if we write D = F ′ + S ′ + E ′, where
F ′, S ′ and E ′ come from F , S and E in S respectively, then every curve in S ′ has self-intersection
≥ −1.

Remark 6.0.12. As in Q-Effective-Test, this test assumes that the surface S0 is a rational elliptic
surface, since the conditions for non-obstruction in other situations are different.

Remark 6.0.13. In this function, this criterion may give false negatives, as there may exist some
order of blow ups such that it could be possible to add some multi sections during the process before
their self-intersection gets too low.
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Chapter 7

Appendix

7.1 Some Interesting Examples

7.1.1 An example via extremal P-resolution and a blow down

Consider the same I9+3I1 elliptic fibration S as in Section 5.2. Blow up at the nodes of F1 and
F2 and select curves as in Figure 7.1, later blow up as in Figure 7.2. Note that G2 ∩H there were
five infinitely near blow ups.

Figure 7.1: The surface S1.

Call the exceptionals as follows:

G3 7→ Y ∩H G4 7→ F1 ∩H G5 7→ F1 ∩G1

G6 7→ F2 ∩H G7 7→ F2 ∩G2 A1, A2, A3, A4, G8 7→ G2 ∩H

Then after blowing down E8 via ψ : S2 → S3 we obtain the chain

C : E5, Y, E1, E2, E3, X,H,G1, F1, F2, G2, A1, A2, A3, A4

with self-intersections given by

[2, 3, 2, 2, 2, 2, 9, 2, 5, 5, 3, 2, 2, 2, 2].
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Figure 7.2: The surface S2.

This chain has exactly one extremal P-resolution, namely

[2, 3, 2, 2, 2, 2, 9, 3, 1, 6, 5, 3, 2, 2, 2, 2].

Here, C1 : E5, Y, E1, E2, E3, X,H,G1 has self-intersections given by [2, 3, 2, 2, 2, 2, 9, 3] = T (1, 20, 17)
and C2 : F1, F2, G2, A1, A2, A3, A4 has self-intersections given by [6, 5, 3, 2, 2, 2, 2] = T (1, 17, 3). Their
discrepancies are given by

d(C1) =
(
− 7

20
,−14

20
,−15

20
,−16

20
,−17

20
,−18

20
,−19

20
,−13

20

)
,

d(C2) =
(
−14

17
,−16

17
,−15

17
,−12

17
,− 9

17
,− 6

17
,− 3

17

)
Since KS3 = −12 and the sum of lengths of the chains is 15, then K2

Z = 3. Note that S1 is the
log-resolution of the original curves selected in S, and every curve coming from a multi-section is a
(−1)-curve, so by Remark 5.2.4, this example is unobstructed (by Proposition 3.2.3, the blow down
preserves the cohomology).

It can easily be verified that π∗KZ is Q-effective by writing KS = −1
2F1 − 1

2F2. We can also
verify that KZ is nef: since this comes from a P-resolution, the middle curve is positive for π∗KZ , so
the possibly problematic curves G3, . . . , G8, however note that the only one that does not intersect
two curves not from some tail of (−2)-curves is G8 (see Remark 2.2.7), so the others immediately
are positive for π∗KZ . We have

π∗KZ ·G8 =

(
KS3 +

3

17
A3 +

19

20
H

)
·G8 = −1 +

3

17
+

19

20
=

43

340
.

To see that it is ample, by choosing KS = −1
2F1 − 1

2F2 note that

π∗KZ =
11

34
F1 +

13

20
G1 +

1

2
G4 +

1

2
G5 + (effective divisor)

so going back to S2 before blowing down E8 we have

(ψ ◦ π)∗KZ =
11

34
F1 +

13

20
G1 +

1

2
G4 +

1

2
G5 +

11

34
E8 + (effective divisor)
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Note that every n-multi-section intersects this divisor at either F1, G1, G4 or G5, and the same for
every fiber component.

To see the resulting surface is simply connected, note that the middle curve of the extremal
resolution connects both ends of the Wahl chains, whose indices are coprime.

Theorem 7.1.1. There exists a singular surface Z with K2
Z = 3 and χ(Z) = 1, which has only the

singularities 1
202

(1, 20 ·17−1) and 1
172

(1, 17 ·3−1). It has no obstructions to deformations, and thus
lies in the border of M3,1. A general member of the component in which it lies is smooth, simply

connected and an exotic CP2#6CP2.

7.1.2 An example with K2 = 5

Consider the following pencil in P2:

Φt = 4xyz + t(y − x)(z2 − xy)

It has four singular members at t = 0,∞, 1,−1. This pencil has as base points [0, 0, 1] with
multiplicity 2, [0, 1, 0] with multiplicity 3, [1, 0, 0] with multiplicity 3 and [1, 1, 0] with multiplicity
1. Here, Φ1 is a nodal cubic curve with a node at [−1, 1, 1] and Φ−1 is a nodal cubic curve with
node at [1,−1, 1]. Also consider the special line h = {y − z = 0} which goes through [−1, 1, 1],
[1, 0, 0] and [1, 1, 1], a singular point of Φ∞. The diagram in P2 is as in Figure 7.3

Figure 7.3: In black: Φ0. In red: Φ∞. In purple: h

Call S → P2 the resulting fibration. Let E1, E2 be the exceptionals over [0, 0, 1], E3, E4, E5

the exceptionals over [0, 1, 0], E6, E7, E8 the exceptionals over [1, 0, 0] and E9 the exceptional over
[1, 1, 0]. Call X,Y, Z, L,C,H, F1, F2 the strict transforms of {x = 0}, {y = 0}, {z = 0}, {y−x = 0},
{z2 − xy = 0}, {y − z = 0}, Φ1, Φ−1. The fibration is of type I8 + I2 + 2I1, and looks as in Figure
7.4.

Blow up at the node of F1 and H ∩ C ∩ L, and call them G1 and G2 respectively, and call the
resulting surface S1. Select curves as in Figure 7.5. We immediately note that three complete fibers
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Figure 7.4: The surface S, an I8 + I2 + 2I1 fibration

are used, so the strategy for the vanishing of the cohomology does not work (in fact, this example
must be obstructed).

Figure 7.5: The surface S1

We blow up 11 more times as in Figure 7.6, and call the resulting surface S2. Call the exceptionals
as follows:

G3 7→ E2 ∩ F1 G4 7→ E6 ∩H G5 7→ E7 ∩ E8

G6 7→ (one of) F1 ∩G1 G7 7→ H ∩G1 G8 7→ C ∩ L
G9 7→ X ∩H A1, A2, A3, G10 7→ X ∩ E1

Here we recognize the chain

C : H,G1, F1, E8, C,G2, L,E2, E1, Y, E7, E6, Z,E3, E4, X,A1, A2, A3

with self-intersections given by the chain

[5, 2, 6, 2, 4, 2, 4, 2, 6, 2, 3, 3, 2, 2, 2, 4, 2, 2, 2] =
5354298

1203449
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Figure 7.6: The surface S2

This chain has a single extremal P-resolution after 11 more blow ups at C∩G2, and call the resulting
surface S3:

[5, 2, 6, 2, 6, 2, 2, 2, 4, 2, 2, 2, 1, 5, 2, 6, 3, 4, 2, 6, 2, 3, 3, 2, 2, 2, 4, 2, 2, 2]

Call the exceptional curves as Bi in the order they were blown up, B11 being the last (−1)-curve.
Then we have the chains

C1 : H,G1, F1, E8, C,B2, B3, B4, B5, B8, B9, B10

with self-intersections:
[5, 2, 6, 2, 6, 2, 2, 2, 4, 2, 2, 2] = T (1, 129, 29)

and discrepancies:

d(C1) =
(
−100

129
,−113

129
,−126

129
,−127

129
,−128

129
,−125

129
,−122

129
,−119

129
,−116

129
,− 87

129
,− 58

129
,− 29

129

)
and

C2 : B7, B6, B1, G2, L,E2, E1, Y, E7, E6, Z,E3, E4, X,A1, A2, A3

with self-intersections:

[5, 2, 6, 3, 4, 2, 6, 2, 3, 3, 2, 2, 2, 4, 2, 2, 2] = T (1, 1233, 277)

and discrepancies:

d(C2) =
(
− 956

1233
,−1081

1233
,−1206

1233
,−1223

1233
,−1230

1233
,−1231

1233
,−1232

1233
,−1229

1233
,−1226

1233
,−1216

1233
,−1189

1233
,

−1162

1233
,−1135

1233
,−1108

1233
,− 831

1233
,− 554

1233
,− 277

1233

)
Since we chose three complete fibers, π∗KZ is Q-effective. For nefness of KZ we must only check

at G10 since it is the only non-π-exceptional curve in π∗KZ that intersects a curve in some tail of
(−2)-curves (excluding B11 which is positive for this coming from a P-resolution). For G10 we have

π∗KZ ·G10 =

(
KS3 +

277

1233
A3 +

1232

1233
E1

)
·G10 = −1 +

277

1233
+

1232

1233
=

92

411
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Since there were 24 blow ups in total and the sum of lengths of the Wahl chains is 29, we obtain
K2
Z = 5.
To see that KZ is ample, by writing in S

KS = −1

2
(X + E1 + Y + E7 + E6 + Z + E3 + E4)−

1

2
(C + L)

then

π∗KZ =
126

129
F1 +

(
1 +

113

129

)
G1 +G3 + 2G6 + (effective divisor)

so every curve coming from a n-multi-section intersects π∗KZ positively. Moreover clearly every
component of fibers also intersects the divisor.

Lemma 7.1.2. The symplectic rational blow down of (S, C1 + C2) is simply connected.

Proof. This is not as direct as other examples, as gcd(129, 1233) = 3.
Let α1 be a loop around H and α2 be a loop around B7. Recall that these loops generate

fundamental groups of the lens spaces, which are isomorphic to Z/1292Z and Z/12332Z respectively.
By looking at 4.1 we see that α12899

1 is homotopic to a loop around B10, which in turn is homotopic
to α±1

2 via B11. This homotopy tells us that (α12899
1 )9 contracts, which implies that α9

1 contracts
since gcd(12899, 1292) = 1. Note that the loop around F1 is homotopic to α9

1 so it contracts. This
means that the loop around E2, which is homotopic to α9

1 via G3 also contracts. This loop around
E2 is homotopic to α503

2 , and since gcd(12332, 503) = 1, this means α2 contracts. Finally looking at
B11 again, we see that α12899

1 contracts, therefore α1 contracts as well.

Since this example is obstructed, we do not know if there is a Q-Gorenstein deformation of this
singular surface. It would be surprising if it did, as the expected dimension of this component of
the moduli space is 0.

Nonetheless we obtain the following.

Theorem 7.1.3. There exists a singular surface Z with K2
Z = 5 and χ(Z) = 1, which has only

the singularities 1
1292

(1, 129 · 29− 1) and 1
12332

(1, 1233 · 277− 1). Thus, it lies in M5,1. Its minimal
resolution can be symplectically blown down into a non-algebraic simply connected surface which
is an exotic CP2#4CP2.

7.1.3 An example of a wormhole

A wormhole happens when we find in a surface a chain with two extremal P-resolutions (for
a precise definition, see [UV22, Definition 2.7]). It is called a wormhole because up to a small
birrational surgery, the same surface appears in two places in the moduli space at once, assuming
the wormhole conjecture holds.

Consider the same fibration as in Example 7.1.2. This time, select curves and blow up as in
Figure 7.7, and call the surface S1. At this point, H is a (−1)-curve, and since we are using
two complete In fibers, by Remark 5.2.4 S1 together with these curves is unobstructed, so again
by Propositions 3.2.3 and 3.2.4, every example coming from a blow up of this configuration is
unobstructed.

We blow up 8 more times as in Figure 7.8 and call the surface S2. Call the exceptionals as
follows
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Figure 7.7: The surface S1

G3 7→ F2 ∩ E2 G4 7→ H ∩ E6 G5 7→ L ∩G2

G6 7→ X ∩H G7 7→ F2 ∩H G8 7→ E7 ∩ E8

A1, G9 7→ C ∩ E8

Figure 7.8: The surface S2

Here we recognize the chain

C : E7, E6, Z,E3, E4, X,E1, E2, L, C,G2, H, F2, E8, A1.

with self-intersections

[3, 3, 2, 2, 2, 3, 2, 2, 4, 5, 2, 4, 6, 3, 2] =
267325

104939
.

This chain has two extremal P-resolutions. The first one is obtained by blowing up 8 times at
X ∩ E1. Call the resulting surface S3. S3 contains the chain

[3, 3, 2, 2, 2, 8, 3, 2, 1, 3, 3, 2, 2, 2, 3, 2, 4, 5, 2, 4, 6, 3, 2].
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Call the exceptional curves as Bi in the order they were blown up, B8 being the exceptional at the
middle. The first chain is

C1 : E7, E6, Z,E3, E4, X,B5, B7

with self-intersections
[3, 3, 2, 2, 2, 8, 3] = T (1, 28, 11)

and discrepancies

d(C1) =
(
−17

28
,−23

28
,−24

28
,−25

28
,−26

28
,−27

28
,−22

28
,−11

28
,

)
The second chain is

C2 : B6, B4, B3, B2, B1, E1, E2, L, C,G2, H, F2, E8, A1

with self-intersections

[3, 3, 2, 2, 2, 3, 2, 4, 5, 2, 4, 6, 3, 2] = T (1, 451, 117)

and discrepancies

d(C2) =
(
−274

451
,−371

451
,−388

451
,−405

451
,−422

451
,−439

451
,−444

451
,−449

451
,−450

451
,−448

451
,−446

451
,−434

451
,

−354

451
,−117

451

)
By choosing KS = −1

2(C + L)− 1
2F2, we see that π∗KZ is Q-effective, and furthermore KZ is nef,

since the only non π-exceptional curve in the divisor that intersects a (−2)-curve in a tail excluding
B8 is G9, for which

π∗KZ ·G9 =

(
KS3 +

117

451
A1 +

450

451
C

)
·G9 = −1 +

117

451
+

450

451
=

116

451

The total blow ups done were 18, and the sum of lengths of the Wahl chains is 22, so K2
Z = 4.

We see that KZ is ample since

π∗KZ =

(
−1

2
+

449

451

)
L+

(
−1

2
+

450

451

)
C+

448

451
G2+

1

2
G5+

(
1

2
+

117

451

)
A1+G9+( effective divisor )

so every curve coming from n-multi-sections intersects π∗KZ positively. Since gcd(28, 451) = 1, the
sphere B8 immediately tells us that both loops around B6 and B7 contract, so the rational blow
down of S3 is simply connected. So this Z lives in the boundary of M4,1.

The second extremal P-resolution is given by blowing up 11 times at L ∩ C. Call the resulting
surface S′

3. It contains the chain

[3, 3, 2, 2, 2, 3, 2, 2, 7, 6, 3, 2, 1, 3, 3, 2, 2, 2, 3, 2, 6, 2, 4, 6, 3, 2].

Call the exceptional curves as B′
i in the order they were blown up, B′

11 being the exceptional at the
middle. The first chain is

C1 : E7, E6, Z,E3, E4, X,E1, E2, L,B
′
3, B

′
8, B

′
10
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with self-intersections
[3, 3, 2, 2, 2, 3, 2, 2, 7, 6, 3, 2] = T (1, 135, 53)

and discrepancies

d(C1) =
(
− 82

135
,−111

135
,−116

135
,−121

135
,−126

135
,−131

135
,−132

135
,−133

135
,−134

135
,−130

135
,−106

135
,− 53

135

)
The second chain is

C2 : B′
9, B

′
7, B

′
6, B

′
5, B

′
4, B

′
2, B

′
1, C,G2, H, F2, E8, A1

with self-intersections
[3, 3, 2, 2, 2, 3, 2, 6, 2, 4, 6, 3, 2] = T (1, 265, 104)

and discrepancies

d(C2) =
(
−161

265
,−218

265
,−228

265
,−238

265
,−248

265
,−258

265
,−261

265
,−264

265
,−263

265
,−262

265
,−255

265
,−208

265
,−104

265

)
Again, by choosing KS = −1

2(C + L) − 1
2F2 we see that π∗KZ′ is Q-effective. KZ is nef, because

excluding B′
11, the only non π-exceptional curve that intersects a (−2)-curve in the tail of a Wahl

chain is G9, for which

π∗KZ′ ·G9 =

(
KS3 +

104

265
A1 +

264

265
C

)
·G9 = −1 +

104

265
+

264

265
=

103

265

The total blow ups done were 21, and the sum of lengths of the Wahl chains is 25, so K2
Z′ = 4.

We see that KZ′ is ample the same way we saw KZ is ample. Note that

π∗KZ =

(
−1

2
+

264

265

)
C +

(
−1

2
+

164

165

)
L+

263

265
G2 +

1

2
G5 +

(
1

2
+

104

265

)
A1 +G9 +

261

265
B′

1

+

(
1

2
+

258

265

)
B′

2 +

(
1 +

130

135

)
B′

3 +

(
5

2
+

248

265

)
B′

4 +

(
9

2
+

238

265

)
B′

5 +

(
13

2
+

228

265

)
B′

6

+

(
17

2
+

218

265

)
B′

7 +

(
21

2
+

106

135

)
B′

8 +

(
20 +

161

265

)
B′

9 +

(
63

2
+

53

135

)
B′

10 +
105

2
B′

11

+ ( effective divisor )

so every curve coming from an n-multi-section intersects π∗KZ′ positively.

Lemma 7.1.4. The symplectic rational blow down of (S′
3, C1 + C2) is simply connected.

Proof. Let α1 be a loop around E7 and α2 be a loop around B′
9. We have gcd(135, 265) = 5, so

through the sphere B′
11 we can determine that α25

1 = α25
2 = e. By 4.1, the loop around F2 is

homotopic to α2645
2 = α20

2 and the loop around H is homotopic to α767
2 = α17

2 . Since these two

curves are connected by the sphere G7, it implies that
(
α17
2

)5
is homotopic to

(
α±20
2

)5
= e, and

since gcd(17, 25) = 1, it also implies α5
2 = e. In particular, the loop around F2 contracts, and since

it is homotopic to α±17
2 , it also contracts, which in turn gives us that α2 contracts. We finally use

B′
11 again to see that α1 also contracts, concluding that the symplectic rational blow down of S′

3 is
simply connected.

We can deduce the following.
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Theorem 7.1.5. There exist two different singular surfaces Z and Z ′ with K2
Z = K2

Z′ = 4 and
χ(Z) = χ(Z ′) = 1 where Z has only the singularities 1

282
(1, 28 ·11−1) and 1

4512
(1, 451 ·117−1), and

Z ′ has only the singularities 1
1352

(1, 135 ·53−1) and 1
2652

(1, 265 ·104−1), both with no obstructions
to deformations, and thus they lie in the border of M4,1 at two distinct points. They both are
extremal P-resolutions of a surface Y with a single singularity 1

267325(1, 104939). A general member

of the component of either Z or Z ′ is smooth, simply connected and an exotic CP2#5CP2.

7.2 Source Code

The source code of the program, instructions on how it works and thousands of examples can
be found at https://github.com/jereyes4/Wahl_Chains
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