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Chapter 1

Introduction

The basic equations in fluid dynamics are those of Navier-Stokes. In the case of a fluid at
constant temperature, also called an isothermal fluid, these equations represent two physical
laws: the conservation of mass and the conservation of linear momentum (see [18], Chapter
2). The variables that are involved in this model are the velocity v(t, x), the pressure p(t, x)
and the density ρ(t, x), where t represents the time and x the space location.
If the fluid is incompressible and homogeneous, then the variable ρ(t, x) is simplified by a
constant ρ0 > 0. When velocity and pressure do not change over time, these fluids are
modeled using the stationary Navier-Stokes equations

−µ∆u+ (u · ∇)u+∇p = f,

div(u) = 0,
(1.1)

in some domain Ω. If a fluid moves very slowly in a stationary flow the nonlinear term
(u ·∇)u of (1.1) can be neglected. This situation leads to a linear system of equations, called
the Stokes equations

−µ∆u+∇p = f in Ω,

div(u) = 0 in Ω.
(1.2)

The Stokes equations model the simplest incompressible flow problems.

The discontinuous Petrov Galerkin (DPG) method consists in applying Petrov-Galerkin
approximations with optimal test functions to ultra-weak variational formulations. This
method was introduced in its current form by Demkowicz and Gopalakrishnan in a series of
papers [6], [7], [8], [19]. DPG methods for the Stokes problem can be found in [17].

In this work we present an ultra-weak formulation of the Stokes problem, using a pseudo-
stress variable, and we discuss its well-posedness. After that we apply the DPG method
to our problem to find a solution and analyze its convergence. The main difference is the
pseudo-stress variable, which allows us to eliminate the pressure variable from the problem
and also calculate the vorticity a posteriori. We note that [17] uses a similar formulation but
does not eliminate the pressure from the system.
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The remainder of this work is organized as follows:

• Chapter 2: We define the Sobolev spaces and their broken version. We recall some
important results of the abstract setting of the DPG framework and for the broken
variational forms. Finally we give a triangulation for the discrete space and some
approximation properties.

• Chapter 3: Here we present the Stokes problem with the new pseudo-stress variable.
We prove the existence of a unique solution of this new formulation and the inf − sup
conditions. In the last section of this chapter we present the Stokes problem in its
ultra-weak formulation and prove its well-posedness.

• Chapter 4: We analyze the existence of a Fortin operator and we estimate the conver-
gence rate of the error.

• Chapter 5: We present numerical experiments. We consider some smooth problems
on a convex domain and one in an L-shaped domain. Also we consider a Lid-Driven
cavity flow problem in a convex domain. Figure 1.1 shows the velocity field and pressure
approximation of one of the smooth examples. In every example we show the predicted
and observed convergence rates.

Figure 1.1: Velocity (left) and pressure (right) approximation of a smooth problem.

• In the final Chapter 6 we discuss our results and we propose some future lines of our
investigation.
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Chapter 2

Preliminaries

In this chapter we present the functional analytic framework of this work and a description
of the DPG method. All these definitions and results can be found in [1], [2], [5], [11], [15],
[9],[12] and [16].

2.1 Sobolev spaces

Let Ω be an open subset of Rd (d ≥ 2). The integration by parts formula yields that for
every function with k continuous derivatives in Ω, u ∈ Ck(Ω), where k is a natural number,
and for all infinitely differentiable functions with compact support φ ∈ C∞c (Ω),∫

Ω

uDαφdx = (−1)|α|
∫

Ω

φDαudx, (2.1)

where α is a multi-index of order |α| = k and we are using the notation

Dαu =
∂|α|u

∂xα1
1 · · · ∂xαn

n

.

The left-hand side of equation (2.1) still makes sense if we only assume u to be locally
integrable.

Definition 2.1. Suppose u, v are locally integrable functions in Ω and α a multi-index. We
say that v is the αth-weak partial derivative of u, written

Dαu = v,

provided ∫
Ω

uDαφdx = (−1)|α|
∫

Ω

vφdx, (2.2)

for all φ ∈ C∞c (Ω).

If there exists a weak α-th partial derivative of u, then it is uniquely defined almost every-
where, and thus is uniquely determined as an element of a Lebesgue space. On the other
hand, if u ∈ Ck(Ω), the classical and the weak derivatives coincide.
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Definition 2.2. Let 1 ≤ p ≤ ∞ and k a non-negative integer. The Sobolev space W k,p(Ω)
is defined as

W k,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω)∀|α| ≤ k},

where Dαu is the weak derivative.

Remark 1. If p = 2 we write Hk(Ω) = W k,2(Ω) (k = 0, 1, 2, · · · ). Note that H0(Ω) = L2(Ω).
We will focus on the H1(Ω) space throughout this work.

Definition 2.3. If u ∈ H1(Ω), we define its norm to be

‖u‖2
H1(Ω) = ‖u‖2

L2(Ω) + ‖∇u‖2
L2(Ω),

where ‖u‖L2(Ω) is defined by

‖u‖L2(Ω) =

(∫
Ω

|u|2dx
)1/2

.

Definition 2.4. We denote by H1
0 (Ω) the closure of C∞c (Ω) with respect to ‖·‖H1(Ω).

We interpret H1
0 (Ω) as comprising those functions u ∈ H1(Ω) such that “u = 0 on ∂Ω”.

Now we discuss the possibility of assigning “boundary values” along ∂Ω to a function u ∈
H1(Ω), assuming that Ω is Lipschitz. Now if u ∈ C1(Ω), then clearly u has values on
∂Ω in the usual sense. The problem is that a typical function u ∈ H1(Ω) is not in general
continuous and is only defined almost everywhere in Ω. Since ∂Ω has d-dimensional Lebesgue
measure zero, there is no direct meaning we can give to the expression “u restricted to ∂Ω”.
The notion of a trace operator resolves this problem.

Theorem 2.1 (Trace Theorem, [15] Theorems 3.37 and 3.38). Assume Ω is bounded and
∂Ω is Lipschitz. Define the trace operator tr : D(Ω)→ D(∂Ω), where D(Ω) = C∞c (Ω), by

tr(u) = u|∂Ω.

Then tr(·) has a unique extension to a bounded linear operator

tr : H1(Ω)→ tr(H1(Ω)),

and this extension has a continuous right inverse.

Definition 2.5. We call tr(u) the trace of u on ∂Ω. Also, we define H1/2(∂Ω) = tr(H1(Ω))
which is a Sobolev space with norm

‖w‖H1/2(∂Ω) = inf
u∈H1(Ω), tr(u)=w

‖u‖H1(Ω), for all w ∈ H1/2(∂Ω).

Theorem 2.2 (Trace-zero functions in H1(Ω), [15] Theorem 3.40). Assume Ω is bounded
and ∂Ω is Lipschitz. Suppose furthermore that u ∈ H1(Ω). Then

u ∈ H1
0 (Ω) if and only if tr(u) = 0 on ∂Ω.

4



Definition 2.6. We define

H(div,Ω) = {u ∈ L2(Ω)d : div(u) ∈ L2(Ω)}
which is a Hilbert space with the norm ‖u‖2

H(div,Ω) = ‖u‖2
L2(Ω) + ‖div(u)‖2

L2(Ω).

Definition 2.7. Define H−1/2(∂Ω) = (H1/2(∂Ω))′ equipped with the dual norm

‖u∗‖H−1/2(∂Ω) = sup
06=u∈H1/2(∂Ω)

〈u∗, u〉
‖u‖H1/2(∂Ω)

.

Here, 〈·, ·〉 is an extension of the scalar product of L2(∂Ω) in the sense that when u∗ ∈ L2(∂Ω)
we can identify 〈u∗, u〉 =

∫
∂Ω
u∗u.

Theorem 2.3 (Trace theorem on H(div,Ω), [11] Theorem 2.5). Assume Ω is bounded and
∂Ω is Lipschitz. Let n denote the outward unit normal vector on ∂Ω. Then the mapping
trn : u→ u ·n|∂Ω defined in D(Ω)d can be extended by continuity to a linear and continuous
mapping, from H(div,Ω) into H−1/2(∂Ω).

2.2 DPG Method

Let U, V be Hilbert spaces with norms ‖.‖U , ‖.‖V and continuous dual spaces U ′, V ′. We
consider a bounded bilinear form b : U × V → R and given ` ∈ V ′, we seek a solution of the
problem: find u ∈ U such that

b(u, v) = `(v) for all v ∈ V. (2.3)

Here, the question of solvability of (2.3) arises and we will answer that question within the
context of the inf-sup conditions.

2.2.1 Solvability

Theorem 2.4 ([9], [12] Theorem 2.5). Suppose that U, V are Hilbert spaces, then the follow-
ing statements are equivalent:

1. For all ` ∈ V ′, there exists a unique u ∈ U such that

b(u, v) = `(v) for all v ∈ V. (2.4)

2. {v ∈ V : b(u, v) = 0 for all u ∈ U} = {0} and there exists C > 0 such that

inf
06=u∈U

sup
0 6=v∈V

b(u, v)

‖u‖U‖v‖V
≥ C. (2.5)

3. {u ∈ U : b(u, v) = 0 for all v ∈ V } = {0} and there exists C ′ > 0 such that

inf
06=v∈V

sup
06=u∈U

b(u, v)

‖u‖U‖v‖V
≥ C ′. (2.6)
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Theorem 2.5 (Babuška’s Theorem, [9] Theorem 2.6). Let U, V be Hilbert spaces and let
Uh ⊆ U, Vh ⊆ V be finite dimensional subspaces with dim(Uh) = dim(Vh). Let ` ∈ V ′. If
there exists a constant Ch > 0 such that

inf
06=uh∈Uh

sup
06=vh∈Vh

b(uh, vh)

‖uh‖U‖vh‖V
≥ Ch, (2.7)

then, there exists a unique solution uh ∈ Uh with

b(uh, vh) = `(vh) for all vh ∈ Vh. (2.8)

Moreover, suppose that u ∈ U satisfies (2.3). Then, there holds quasi-optimality

‖u− uh‖ ≤ Copt inf
wh∈Uh

‖u− wh‖U , (2.9)

where Copt := Cb/Ch, and Cb is such that |b(u, v)| ≤ Cb‖u‖U‖v‖V for all u ∈ U, v ∈ V .

2.2.2 Optimal test functions

When U = V , one usually chooses Uh = Vh, but still the inf − sup condition has to be
proved. For Petrov-Galerkin methods, the right choice of Vh for a given subspace Uh is non-
trivial. Also, we want that the quasi-optimality (2.9) holds independent of the discretization
parameter h.

Now, suppose that one of statements in Theorem 2.4 holds true. Given a finite dimensional
space Uh ⊆ U , we want to find a subspace Vh ⊆ V such that the discrete inf-sup condition
is satisfied automatically and Ch ≥ C > 0.

Let U, V be Hilbert spaces with scalar products (·, ·)U , (·, ·)V and induced norms ‖·‖2
U :=

(·, ·)U , ‖·‖2
V := (·, ·)V . We define the trial-to-test operator Θ : U → V by

(Θu, v)V = b(u, v) for all u ∈ U, v ∈ V. (2.10)

Let RV : V → V ′ be the Riesz isomorphism and the operator B : U → V ′ associated to
b(·, ·) as follows:

〈Bu, v〉V ′×V := b(u, v).

Lemma 2.6 ([9], Lemma 2.8). The trial-to-test operator satisfies Θ = R−1
V B and is hence a

well-defined bounded linear operator. In particular, it holds that

‖Θ‖ ≤ Cb.

Moreover, if B is invertible, then Θ is invertible.

For some finite dimensional subspace Uh ⊆ U , we define the optimal test space V Θ
h as the

image of Uh under Θ,
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V Θ
h := Θ(Uh). (2.11)

V Θ
h is finite dimensional and the computation vh = Θuh still involves the infinite dimensional

test space V .
With the optimal test functions at hand, we are able to write down an idealized Petrov
Galerkin method, the so-called ideal PG method : Given ` ∈ V ′, find uh ∈ Uh such that

b(uh, vh) = `(vh) for all vh ∈ V Θ
h . (2.12)

Theorem 2.7 ([9], Theorem 2.9). Let Uh ⊆ U be a finite dimensional subspace and let
V Θ
h = Θ(Uh) be the optimal space test space. If one of the statements in Theorem 2.4 holds,

then, the discrete inf-sup condition (2.7) is satisfied for Vh = V Θ
h and there holds Ch = C.

Moreover, let u ∈ U , denote the solution of (2.3) and let uh ∈ Uh be the unique solution of
the ideal PG method (2.12). Then, quasi-optimality

‖u− uh‖U ≤ Copt inf
wh∈Uh

‖u− wh‖U , (2.13)

holds, where Copt = Cb/C.

2.2.3 Ideal PG methods

We suppose that B : U → V ′ is invertible, so by Lemma 2.6 the trial-to-test operator Θ is
invertible. Moreover, we suppose Uh ⊆ U is a finite dimensional subspace.
We seek uh ∈ Uh such that

b(uh, vh) = `(vh) for all vh ∈ V Θ
h .

Now, for vh ∈ V Θ
h , there exists a unique wh ∈ Uh such that vh = Θ(wh), so that we can

rewrite the equations above as

b(uh,Θ(wh)) = `(Θ(wh)) for all wh ∈ Uh. (2.14)

This is the Galerkin formulation of the ideal PG method. Define the bilinear form a :
U × U → R by

a(u,w) := b(u,Θw) for all u,w ∈ U.

Lemma 2.8 ([9], Lemma 2.10). The bilinear form a : U × U → R is bounded, symmetric
and coercive, i.e.,

|a(u,w)| ≤C2
b ‖u‖U‖w‖U ,

a(u,w) =a(w, u),

C2‖u‖2
U ≤a(u, u),

for all u,w ∈ U where C > 0 denotes the inf − sup constant of b(·, ·).
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If we define L := `(Θ(·)) ∈ U ′, then the solution u ∈ U of (2.4) satisfies

a(u,w) = L(w) for all w ∈ U, (2.15)

and the ideal PG method (2.14) reads: Find uh ∈ Uh such that

a(uh, wh) = L(wh) for all wh ∈ Uh. (2.16)

Theorem 2.9 ([9], Theorem 2.11). Problems (2.15), (2.16) admit unique solutions u ∈ U ,
uh ∈ Uh, and there holds optimality

|||u− uh||| = inf
wh∈Uh

|||u− wh|||, (2.17)

and quasi-optimality (2.13), where |||·||| := ‖Θ(·)‖V is called the energy norm.

Theorem 2.10 ([9], Theorem 2.13). The following statements are equivalent:

1. uh ∈ Uh is the unique solution of (2.12).

2. uh ∈ Uh minimizes the residual in V ′, i.e.,

uh = arg min
wh∈Uh

‖`−Bwh‖V ′ . (2.18)

Lemma 2.11 ([9], Lemma 2.14). Let uh ∈ Uh be the solution of (2.12). There holds

‖εh‖V = |||u− uh||| and εh ⊥V V Θ
h , (2.19)

where εh := ε(uh) := R−1
V (`−Buh) ∈ V is the residual (representation) function.

2.3 Trace operators and Breaking Sobolev spaces

Based on Carstensen et al. [5], we will work with infinite-dimensional (but mesh-dependent)
spaces on an open bounded domain Ω ⊂ Rd with Lipschitz boundary. The mesh, denoted by
Ωh, is a disjoint partitioning of Ω into open elements K such that the union of their closures
is the closure of Ω. The collection of element boundaries ∂K for all K ∈ Ωh, is denoted by S.
We assume that each element boundary ∂K is Lipschitz. For the most commonly occurring
first order Sobolev spaces, namely H1(Ω) and H(div,Ω), we define their broken versions as

H1(Ωh) = {u ∈ L2(Ω) : u|K ∈ H1(K), K ∈ Ωh},
H(div,Ωh) = {σ ∈ (L2(Ω))d : σ|K ∈ H(div, K), K ∈ Ωh}.

These spaces are equipped with the norms

‖u‖2
H1(Ωh) :=

∑
K∈Ωh

‖u‖2
H1(K), ‖σ‖2

H(div,Ωh) :=
∑
K∈Ωh

‖σ‖2
H(div,K).
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To recover the original Sobolev spaces from these broken spaces, we need traces. Let us
consider these traces on each element K in Ωh

trKgradu = u|∂K , u ∈ H1(K),

trKdivσ = σ|∂K · nK , σ ∈ H(div, K).

Here nK denotes the unit outward normal on ∂K. These traces and nK are well defined
almost everywhere on ∂K, thanks to the assumption that ∂K is Lipschitz. The operators
trgrad and trdiv perform the above trace operation element by element on each of the broken
spaces we defined previously, thus giving rise to linear maps

trgrad : H1(Ωh)→
∏
K∈Ωh

H1/2(∂K), trdiv : H(div,Ωh)→
∏
K∈Ωh

H−1/2(∂K).

These maps are continuous and surjective. We define the spaces

H1/2(S) = trgrad

(
H1(Ω)

)
, H−1/2(S) = trdiv (H(div,Ω)) .

If Ωh consists of a single element, thenH1/2(S) equalsH1/2(∂Ω), but in general trgrad (H1(Ω)) ⊂
trgrad (H1(Ωh)) and analogously with H−1/2(S). We norm each of the above spaces by the
quotient norms:

‖û‖H1/2(S) = inf
u∈H1(Ω)∩tr−1

grad{û}
‖u‖H1(Ω),

‖σ̂‖H−1/2(S) = inf
σ∈H(div,Ω)∩tr−1

div{σ̂}
‖σ‖H(div,Ω).

Also we define H
1/2
0 (S) = trgrad(H1

0 (Ω)).
An important tool that we use is integration by parts, which can be extended to the Sobolev
spaces as

〈trKdivτ, tr
K
gradv〉∂K = (div τ, v)K + (τ,∇v)K for all τ ∈ H(div, K), v ∈ H1(K). (2.20)

Then, for u ∈ H1(Ω) with trgradu = û and σ ∈ H(div,Ω) with trdivσ = σ̂, we observe that

〈û, τ · n〉S =
∑
K∈Ωh

〈trKdivτ, û〉∂K =
∑
K∈Ωh

(∇u, τ)K + (u, div τ)K , for all τ ∈ H(div,Ωh), (2.21)

〈σ̂, v〉S =
∑
K∈Ωh

〈σ̂, trKgradv〉∂K =
∑
K∈Ωh

(σ,∇v)K + (div σ, v)K , for all v ∈ H1(Ωh). (2.22)
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Lemma 2.12 ([5], Lemma 2.2). The following identities hold for any σ̂ in H−1/2(∂K) and
any û in H1/2(∂K)

‖σ̂‖H−1/2(∂K) = sup
0 6=u∈H1(K)

|〈σ̂, u〉∂K |
‖u‖H1(K)

= sup
0 6=û∈H1/2(∂K)

|〈σ̂, û〉∂K |
‖û‖H1/2(∂K)

, (2.23a)

‖û‖H1/2(∂K) = sup
0 6=σ∈H(div,K)

|〈n · σ, û〉∂K |
‖σ‖H(div,K)

= sup
0 6=σ̂∈H−1/2(∂K)

|〈σ̂, û〉∂K |
‖σ̂‖H−1/2(∂K)

. (2.23b)

Theorem 2.13 ([5], Theorem 2.3). The following identities hold for any function σ̂ in
H−1/2(S) and û in H1/2(S),

‖σ̂‖H−1/2(S) = sup
0 6=u∈H1(Ωh)

|〈σ̂, u〉S |
‖u‖H1(Ωh)

, (2.24a)

‖û‖H1/2(S) = sup
06=σ∈H(div,Ωh)

|〈n · σ, û〉S |
‖σ‖H(div,Ωh)

. (2.24b)

For any v ∈ H1(Ωh) and τ ∈ H(div,Ωh),

v ∈ H1
0 (Ω)⇔ 〈σ̂, v〉S = 0 ∀σ̂ ∈ H−1/2(S), (2.25a)

τ ∈ H0(div,Ω)⇔ 〈τ · n, û〉S = 0 ∀û ∈ H1/2(S). (2.25b)

2.4 Breaking variational forms

In this section we will recall some results from [5], which will be used in the analysis of the
next chapter.
Let U0 and V denote two Hilbert spaces and let V0 be a closed subspace of V . We consider
the bilinear form b0 : U0 × V → R satisfying the following assumption.

Assumption 2.1. There is a positive constant c0 such that

sup
v∈V0

|b0(u, v)|
‖v‖V

≥ c0‖u‖U0

It is a well-known result of Babuška and Nečas ([2], [16]) that Assumption 2.1 together with
triviality of

Z0 = {v ∈ V0 : b0(u, v) = 0,∀u ∈ U0} (2.26)

guarantees wellposedness of the following variational problem: Given ` ∈ V ′0 , find u ∈ U0

satisfying

b0(u, v) = `(v) ∀v ∈ V0. (2.27)
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To describe a “broken” version of (2.27), we need another Hilbert space Û , together with a

continuous bilinear form b̂ : Û × V → R. Define

b((u, û), v) = b0(u, v) + b̂(û, v).

Clearly b : U × V → R is continuous, where U = U0 × Û is a Hilbert space under the
Cartesian product norm. Now consider the following new broken variational formulation:
Given ` ∈ V ′, find u ∈ U0 and û ∈ Û satisfying

b((u, û), v) = `(v), ∀v ∈ V. (2.28)

Problems (2.28) and (2.26) are related under the following assumption.

Assumption 2.2. The spaces V0, V and Û satisfy

V0 = {v ∈ V : b̂(û, v) = 0, for all û ∈ Û} (2.29)

and there is a positive constant ĉ such that

ĉ · ‖û‖Û ≤ sup
06=v∈V

|̂b(û, v)|
‖v‖V

∀û ∈ Û (2.30)

Under this assumption, there is a simple result which shows that the broken form (2.28)
inherits stability from the original unbroken form (2.26).

Theorem 2.14 ([5], Theorem 3.3). Assumptions (2.1) and (2.2) imply

c1‖(u, û)‖U ≤ sup
06=v∈V

|b((u, û), v)|
‖v‖V

, for all (u, û) ∈ U,

where c1 is defined by

1

c2
1

=
1

c2
0

+
1

ĉ2

(
‖b0‖
c0

+ 1

)2

,

and ‖b0‖ denotes the smallest number with |b0(u, v)| ≤ ‖b0‖‖u‖U0‖v‖V holds for all u ∈ U0

and all v ∈ V . Moreover, if

Z = {v ∈ V : b((u, û), v) = 0 for all u ∈ U0 and û ∈ Û},

then Z = Z0. Consequently, if Z0 = {0}, then (2.28) is uniquely solvable and the solution
component u from (2.28) coincides with the solution of (2.27).
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2.5 Triangulation and discrete subspaces

Recall that we are working on an open bounded domain Ω ⊂ Rd and a mesh Ωh. We will
work with meshes consisting of non-degenerated d-simplices, like triangles in the case of
d = 2. The mesh Ωh = {K1, K2, . . . , KM} is a regular triangulation of Ω, if

• Each elementK ∈ Ωh is a d−simplex, i.e., there exists d+1 different nodes z1, . . . , zd+1 ∈
Ω, which do not lay in a (d− 1)−dimensional hypersurface with

K = conv{z1, . . . , zd+1}.

The points in the set N (K) := {z1, . . . , zd+1} are called nodes of the element K.

• For two different elements K,K ′ ∈ Ωh it holds that

K ∩K ′ = conv{N (K) ∩N (K ′)}.

We define the nodes N of Ωh by

N (Ωh) :=
⋃
K∈Ωh

N (K)

Moreover, let hΩh
∈ L2(Ωh) denote the local mesh-size function

hΩh
|K := hK := diam(K) for K ∈ Ωh,

and set h := maxK∈Ωh
hΩh

. Shape-regularity of an element K ∈ Ωh is defined by

κ(K) :=
diam(K)d

|K|
and κΩh

:= maxK∈Ωh
κ(K) is the shape-regularity of Ωh. Also, let E denote the collection of

all facets of the triangulation Ωh, i.e., E ∈ E is given by

E = conv{z1, z2, . . . , zd}

for different nodes z1, . . . , zd ∈ N (K) for some K ∈ Ωh.

For q ∈ N0 the space of elementwise polynomials is defined by

Pq(Ωh) := {v ∈ L2(Ω) : v|K is polynomial of degree ≤ q, for all K ∈ Ωh}.

We approximate the solution component u ∈ L2(Ω) by some uh ∈ Pq(Ωh) ⊆ L2(Ω) and σ ∈
L2(Ω)d by some σh ∈ (Pq(K))d ⊆ L2(Ω)d. To define approximation spaces for the numerical

trace û ∈ H1/2
0 (S) we proceed as follows: For q ≥ 1, define Pqc,0(Ωh) := Pq(Ωh) ∩H1

0 (Ω) and

Pqc,0(S) := trgrad(Pqc,0(Ωh)) ⊆ H
1/2
0 (S).
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Finally, to define approximation of the numerical flux σ̂ ∈ H−1/2(S) we use the Raviart-
Thomas space: Let Pqm(K) denote the space of homogeneous polynomials of degree q, and
let x = (x, y)T for d = 2 and let x = (x, y, z)T for d = 3. The Raviart-Thomas element for
q ≥ 0 is defined by

RT q(K) := Pq(K)d + xPqm(K)

and the global Raviart-Thomas space is given by

RT q(Ωh) := {τ ∈ H(div,Ω) : τ |K ∈ RT q(K), for all K ∈ Ωh} ⊆ H(div,Ω).

Then,we define the approximation space

Pq(S) := trdiv(RT q(Ωh)) ⊆ H−1/2(S).

For q ∈ N0, let Πq : L2(Ω)→ Pq(Ωh) denote the L2−orthogonal projection. It is known (see
[10]) that

min
uh∈Pq(Ωh)

‖u− uh‖L2(Ω) = ‖u− Πqu‖L2(Ω) ≤ Cqh
s|u|Hs(Ω) for s ∈ (0, q + 1]. (2.31)

Here |·|Hs(Ω) denotes the seminorm in Hs(Ω). Further, let Πq+1
grad : H1+s(Ω) → Pq+1

c (Ωh) ∩
H1

0 (Ω), where Pq+1
c (Ωh) = Pq+1(Ωh) ∩ C(Ω), denote an interpolation operator, such that

‖u− Πq+1
gradu‖H1(Ω) ≤ Cqh

s|u|H1+s(Ω) for s ∈ (1/2, q + 1]. (2.32)

Let Πq
RT : H1(Ω)2 → RT q(Ωh) denote the Raviart-Thomas projection. It holds that

‖σ − Πq
RT σ‖L2(Ω) ≤ Cqh

s|σ|Hs(Ω) for s ∈ (1/2, q + 1]. (2.33)

The constant Cq = Cq(s) > 0 in (2.31), (2.32) and (2.33) depends on shape-regularity of the
mesh Ωh and the fixed polynomial degree q ∈ N0 and s, but not on h.

Theorem 2.15 ([10], Theorem 5). Let q ∈ N0. Let σ ∈ Hs(Ω)2 ∩ H(div,Ω) for some
s ∈ [1, q + 1]. Then

‖trdiv(1− Πq
RT )σ‖H−1/2(S) ≤ C · hs‖σ‖Hs(Ω) (2.34)

The constant C > 0 only depends on the constant Cp.

2.6 Notational convention

We will write A . B resp. B . A if there exists a constant C > 0 that is independent of
the maximal mesh-size h such that A . CB resp. B . CA. Moreover, A ∼= B means that
A . B and B . A.

For f : Ω ⊆ Rd → Rd recall the following operators:
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∇f = ∇


f1

f2
...
fd

 =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xd

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xd

...
...

. . .
...

∂fd
∂x1

∂fd
∂x2

· · · ∂fd
∂xd

 ,

∆f =



d∑
k=1

∂2f1

∂x2
k

...
d∑

k=1

∂2f1

∂x2
k


.

Finally we will need some particular spaces

(L2(Ω))d×d∗ = {G ∈ (L2(Ω))d×d :

∫
Ω

Tr(G) = 0}, V = (H1
0 (Ω))d × (H?(div; Ω))d,

with (H?(div; Ω))d = {M ∈ (H(div; Ω))d :
∫

Ω
Tr(M) = 0}. Here Tr(·) means the trace of a

matrix. This notation will be used in some proofs.
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Chapter 3

The DPG method and the Stokes
problem

3.1 The Stokes problem

Let Ω be a bounded and connected Lipschitz domain (Ω ⊂ Rd with d = 2, 3) with boundary
∂Ω. The Stokes flow problem consists of finding a vector valued function u (velocity), and a
scalar function p (pressure) satisfying:

−µ∆u+∇p = f in Ω, (3.1a)

div(u) = 0 in Ω, (3.1b)

u|∂Ω = u0. (3.1c)

Here, the momentum balance is expressed in (3.1a), the mass balance of the flow is in (3.1b),
and (3.1c) are the Dirichlet boundary conditions. The force acting on the fluid is guided by
f and the viscosity of the medium is µ > 0, but for a simpler representation we set µ = 1.
The pressure solution of problem (3.1) is unique up to a constant. A canonical choice to fix
the constant is to consider p with

∫
Ω
p = 0.

Let I denote the identity matrix. We reformulate the Stokes problem by introducing the
pseudostress M as new variable

M = ∇u− p · I.
Taking the trace of this matrix we get Tr(M) = div(u)︸ ︷︷ ︸

=0

−d · p. Thus, we can eliminate the

pressure in (3.1) and reformulate the Stokes problem as the following first order system:

− div(M) = f, (3.2a)

M − 1

d
Tr(M) · I −∇u = 0, (3.2b)

u|∂Ω = u0. (3.2c)

Note that equations (3.1b) and (3.1c) are now implicitly contained in (3.2b).
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Theorem 3.1. Let f ∈ (L2(Ω))d, F ∈ (L2(Ω))d×d∗ . Then, the problem

− div(M) = f, (3.3a)

M − 1

d
Tr(M) · I −∇u = F, (3.3b)

u|∂Ω = 0, (3.3c)

admits a unique solution (u,M) ∈ V and the solution satisfies

‖u‖H1(Ω) + ‖M‖H(div;Ω) ≤ C
(
‖f‖L2(Ω) + ‖F‖L2(Ω)

)
. (3.4)

The constant C > 0 only depends on Ω.

For the demonstration of Theorem 3.1 we use three main steps. First we build an auxiliary
mathematical system by introducing a scalar value p = −1

d
Tr(M) which allows us to rewrite

the original system in a variational form that has a unique solution for (u, p). Second, with
this solution we can then find a solution for the initial variable M and prove that it satisfies
the conditions of system (3.3). Third we prove that (3.3) admits a unique solution.

Proof. Note that if we take the trace in (3.3b) we obtain that

Tr

(
M − 1

d
Tr(M) · I −∇u

)
= Tr(F ) ⇔ div(u) = −Tr(F ).

Replacing (3.3b) in (3.3a) we obtain the following system

−∆u− 1

d
∇Tr(M) = f + div(F ),

div(u) = −Tr(F ).

Naming G = f + div(F ) ∈ (H−1(Ω))d and p = −1
d

Tr(M), this system written in its varia-
tional formulation reads as

(∇u,∇v)− (p, div(v)) = (G, v), (3.5a)

(div(u), q) = −(Tr(F ), q) (3.5b)

for all v ∈ (H1
0 (Ω))d and q ∈ L2(Ω)/R. Then, by mixed system theory for the Stokes problem

(see [3], Theorem 8.2.1) there exists a unique solution (u, p) ∈ (H1
0 (Ω))d×L2(Ω)/R, and this

solution satisfies

‖u‖H1(Ω) + ‖p‖L2(Ω) ≤ C(‖G‖H−1(Ω) + ‖Tr(F )‖L2(Ω)).

Also, we have that
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‖G‖H−1(Ω) = sup
06=v∈H1

0 (Ω)

(f + div(F ), v)

‖v‖H1(Ω)

= sup
06=v∈H1

0 (Ω)

(f, v)− (F,∇v)

‖v‖H1(Ω)

≤ sup
06=v∈H1

0 (Ω)

‖f‖L2(Ω)‖v‖L2(Ω) + ‖F‖L2(Ω)‖∇v‖L2(Ω)

‖v‖H1(Ω)

≤ ‖f‖L2(Ω) + ‖F‖L2(Ω),

For the trace of F note that

‖F‖2
L2(Ω) = ‖F − 1

d
Tr(F ) · I +

1

d
Tr(F ) · I‖2

L2(Ω) =

∫
Ω

|(F − 1

d
Tr(F ) · I) +

1

d
Tr(F ) · I|2

=

∫
Ω

|(F − 1

d
Tr(F ) · I)|2 + 2〈(F − 1

d
Tr(F ) · I),

1

d
Tr(F ) · I〉F + |1

d
Tr(F ) · I|2

=

∫
Ω

|(F − 1

d
Tr(F ) · I)|2 + |1

d
Tr(F ) · I|2

= ‖F − 1

d
Tr(F ) · I‖2

L2(Ω) + ‖1

d
Tr(F ) · I‖2

L2(Ω).

Here 〈·, ·〉F is the Frobenius inner product, |A|2 = 〈A,A〉F and

〈(F − 1

d
Tr(F ) · I),

1

d
Tr(F ) · I〉F =

1

d
Tr(F )2 − 1

d2
dTr(F )2 = 0,

and we get that ‖Tr(F )‖L2(Ω) ≤ d‖F‖L2(Ω). Consequently, there exists C > 0 such that

‖u‖H1(Ω) + ‖p‖L2(Ω) ≤ C(‖f‖L2(Ω) + ‖F‖L2(Ω)).

Now, using the solution (u, p) of (3.5), we define M = ∇u− pI + F to find the solution for
M . Taking the trace of M we see that Tr(M) = −d · p (observe that div(u) = −Tr(F )).
This means that M satisfies (3.3b). It still remains to show that M satisfies (3.3a), because
we don’t know if div(M) ∈ L2(Ω). For φ ∈ (C∞0 (Ω))d ⊆ (H1

0 (Ω))d we have that

〈
Distribution︷ ︸︸ ︷
div(M) , φ〉 = −〈M,∇φ〉 = −(M,∇φ)

= −(∇u− p · I + F,∇φ)

= −(∇u,∇φ) + (p, div(φ))− (F,∇φ)

= −(f, φ)

which proves that div(M) = −f ∈ (L2(Ω))d. Thus, we have shown that f ∈ (L2(Ω))d and
for F ∈ (L2(Ω))d×d∗ exists (u,M) ∈ V that satisfies (3.3) and (3.4). Note that for f = 0 and
F = 0 we get that
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− div(M) = 0,

M − 1

d
Tr(M) · I −∇u = 0,

u|∂Ω = 0.

Since
∫

Ω
Tr(M) = 0 and since the Stokes problem admits a unique solution we conclude

that u = 0 and Tr(M) = 0. From (3.3b) we get that M = 0 and thus we conclude that
(u,M) = 0. Overall, this shows that (3.3) admits a unique solution which satisfies (3.4).

We recast problem (3.3) into an ultra-weak variational formulation. Using test functions
(v,N) ∈ V and integrating by parts shows that

(M,∇v) = (f, v)

(M,N) + (M,−1

d
Tr(N) · I) + (u, div(N)) = (F,N), for all (v,N) ∈ V.

For (u,M) ∈ W = (L2(Ω))d×(L2(Ω))d×d∗ , (v,N) ∈ V we define the bilinear form b : W×V →
R by

b((u,M); (v,N)) = (M,N − 1

d
Tr(N) · I +∇v) + (u, div(N)). (3.6)

Lemma 3.2. b : W × V → R is bounded.

Proof. Note that

(M,N)2 ≤ ‖M‖2
L2(Ω)‖N‖2

L2(Ω)

≤ (‖M‖2
L2(Ω) + ‖u‖2

L2(Ω))(‖N‖2
L2(Ω) + ‖div(N)‖2

L2(Ω) + ‖v‖2
L2(Ω) + ‖∇v‖2

L2(Ω))

= ‖(u,M)‖2
W (‖N‖2

H(div,Ω) + ‖v‖2
H1(Ω)) = ‖(u,M)‖2

W‖(v,N)‖2
V ,

(M,Tr(N) · I) ≤ ‖M‖L2(Ω)‖Tr(N) · I‖L2(Ω) ≤ d‖M‖L2(Ω)‖N‖L2(Ω) ≤ d‖(u,M)‖W‖(v,N)‖V ,
(M,∇v) ≤ ‖M‖L2(Ω)‖∇v‖L2(Ω) ≤ ‖(u,M)‖W‖(v,N)‖V ,

(u, div(N)) ≤ ‖u‖L2(Ω)‖div(N)‖L2(Ω) ≤ ‖(u,M)‖W‖(v,N)‖V .

Then, b(·, ·) is bounded.

Lemma 3.3. There are constants c1, c2 > 0 such that:

inf
06=(u,M)∈W

sup
06=(v,N)∈V

b((u,M); (v,N))

‖(v,N)‖V ‖(u,M)‖W
≥ c1, (3.7a)

inf
06=(v,N)∈V

sup
06=(u,M)∈W

b((u,M); (v,N))

‖(v,N)‖V ‖(u,M)‖W
≥ c2. (3.7b)
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Proof. For the first condition let us note that it suffices to demonstrate that for all (u,M) ∈
W

sup
06=(v,N)∈V

b((u,M), (v,N))

‖(v,N)‖V
≥ ‖(u,M)‖W .

For this, let us consider the following system:

div(N∗) = u,

N∗ − 1

d
Tr(N∗) +∇v∗ = M,

v∗|∂Ω = 0.

Note that this system is the adjoint problem of Theorem 3.1. By considering N∗ → −N∗
and v∗ → −v∗ Theorem 3.1 proves that there exists a unique solution which satisfies:

‖(v∗, N∗)‖V . ‖u‖L2(Ω) + ‖M‖L2(Ω).

Then, we have that:

sup
06=(v,N)∈V

b((u,M); (v,N))

‖(u,N)‖V
≥ b((u,M); (v∗, N∗))

‖(v∗, N∗)‖V

=
‖u‖2

L2(Ω) + ‖M‖2
L2(Ω)

‖(v∗, N∗)‖V

&
‖u‖2

L2(Ω) + ‖M‖2
L2(Ω)

‖u‖L2(Ω) + ‖M‖L2(Ω)

∼= ‖(u,M)‖W .

For the second condition it suffices to see that (see Theorem 2.4)

{b((u,M); (v,N)) = 0, ∀(u,M) ∈ W} ⇒ (v,N) = 0.

Let us notice that if

b((u,M); (v,N)) = (u, div(N)) + (M,N − 1

d
Tr(N) +∇v) = 0,

for all (u,M) ∈ W then, we can choose u = div(N) ∈ L2(Ω)d y M = N − 1
d

Tr(N) · I+∇v ∈
(L2(Ω))d×d∗ and with this we have that

‖div(N)‖2
L2(Ω) + ‖N − 1

d
Tr(N) · I +∇v‖2

L2(Ω) = 0.

19



It follows that

div(N) = 0,

N − 1

d
Tr(N) · I +∇v = 0,

with (v,N) ∈ V . Again, Theorem 3.1 proves that this system has the unique solution
(v,N) = 0, which finishes the proof.

3.2 Ultra weak formulation

We consider the variational formulation of (3.3), but using v ∈ (H1(Ωh))
d andN ∈ (H(div,Ωh))

d

as test functions and integrating over K ∈ Ωh gives

−
∫
K

div(M) · v =

∫
K

f · v,∫
K

M : N − 1

d

∫
K

Tr(M)I : N −
∫
K

∇u : N =

∫
K

F : N.

Integrating by parts that we get

∫
K

M : ∇v −
∫
∂K

M · nKv =

∫
K

f · v,∫
K

M : N − 1

d

∫
K

M : Tr(N)I +

∫
K

u · div(N)−
∫
∂K

uN · nK =

∫
K

F : N.

Summing over all K ∈ Ωh we end up with

∑
K∈Ωh

(∫
K

M : ∇v −
∫
∂K

M · nKv
)

=
∑
K∈Ωh

∫
K

f · v,

∑
K∈Ωh

(∫
K

M : N − 1

d

∫
K

M : Tr(N)I +

∫
K

u · div(N)−
∫
∂K

uN · nK
)

=
∑
K∈Ωh

∫
K

F : N.

Now, for u ∈ (L2(Ω))d, M ∈ (L2(Ω))d×d, v ∈ (H1(Ωh))
d and N ∈ (H(div,Ωh))

d, let us define

(u, divΩh
(N)) =

∑
K∈Ω

(u, div(N))K ,

(M,∇Ωh
v) =

∑
K∈Ω

(M,∇v)K .
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With the skeleton S = {∂K|K ∈ Ωh} and traces (û, M̂) ∈ (H1/2(S))d × (H−1/2(S))d we
recall that formally

〈M̂, v〉S =
∑
K∈Ω

∫
∂K

M · nKv,

〈û, N · n〉S =
∑
K∈Ω

∫
∂K

uN · nK .

We refer to Section 2.3 for more details. From this we get the following system: Find
(u,M, û, M̂) ∈ (L2(Ω))d × (L2(Ω))d×d∗ × (H

1/2
0 (S))d × (H−1/2(S))d such that

(M,∇Ωh
v)− 〈M̂, v〉S = (f, v), (3.8a)

(M,N)− 1

d
(M,Tr(N)I) + (u, divΩh

(N))− 〈û, N · n〉S = (F,N), (3.8b)

for all (v,N) ∈ (H1(Ωh))
d × (H(div,Ωh))

d. Now, let us define U0 = (L2(Ω))d × (L2(Ω))d×d∗ ,

Û = (H
1/2
0 (S))d × (H−1/2(S))d, V = (H1(Ωh))

d × (H(div; Ωh))
d and V0 = (H1

0 (Ω))d ×
(H?(div; Ω))d ⊆ V , and the bilinears forms b0 : U0 × V → R and b̂ : Û × V → R as follows

b0(u,M ; v,N) = (M,N − 1

d
Tr(N)I +∇Ωh

v) + (u, divΩh
(N)),

b̂(û, M̂ ; v,N) = 〈M̂, v〉S + 〈û, N · n〉S,

and from here we define b : U × V → R, where U = U0 × Û as

b(u,M, û, M̂ ; v,N) = b0(u,M ; v,N)− b̂(û, M̂ ; v,N).

For (f, F ) ∈ (L2(Ω))d × (L2(Ω))d×d∗ we define ` : V → R by

`(v,N) = (f, v) + (F,N), ∀(v,N) ∈ V.

Finally, the variational formulation (3.8) reads: Find (u,M, û, M̂) ∈ U such that

b(u,M, û, M̂) = `(v,N), ∀(v,N) ∈ V, (3.9)

and our main result is

Theorem 3.4. The bilinear form b(·, ·) is bounded and satisfies the inf-sup conditions. In
particular, problem (3.9) admits a unique solution which satisfies

‖(u,M, û, M̂)‖U ≤ C‖`‖V ′
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Proof. Note that

b0(u,M ; v,N) =
∑
K∈Ω

(M,N − 1

d
Tr(N)I +∇v)K + (u, div(N))K ,

and

b̂(û, M̂ ; v,N) =
∑
K∈Ω

〈M̂, v〉∂K + 〈û, N〉∂K .

Then, using the same arguments from Lemma 3.2 we get that

|b0(u,M ; v,N)| ≤
∑
K∈Ω

|(M,N)K |+
1

d
|(M,Tr(N) · I)K |+ |(M,∇v)K |+ |(u, div(N))K |

≤
∑
K∈Ω

4‖(u,M)‖(L2(K))d×(L2(K))d×d‖(v,N)‖H1(K)×H(div;K)

= 4‖(u,M)‖U0‖(v,N)‖V .

Boundedness of b̂(·, ·) follows from the boundednes of the trace operators defined in Section
2.3. With this we get that b(·, ·) is bounded. Now, note that by Lemma 3.3 we already get
that

sup
(v,N)∈V0

|b0(u,M ; v,N)|
‖(v,N)‖V

≥ ‖(u,M)‖

and {(v,N) ∈ V : b(u,M, û, M̂ ; v,N) = 0 for all (u,M, û, M̂) ∈ U} = {0}, see (3.7b). Also,
by Theorem 2.13 we get that

V0 = {(v,N) ∈ V : b̂(û, M̂ ; v,N) = 0 for all (û, M̂) ∈ Û},

sup
(v,N)∈V

|̂b(û, M̂ ; v,N)|
‖(v,N)‖V

= ‖(û, M̂)‖Û .

Then, by Theorem 2.14, (3.9) is uniquely solvable.
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Chapter 4

Practical DPG method

4.1 Fortin Operator

For the definition of the practical DPG method, we replace V by some finite dimensional
subspace Vk ⊆ V and define the discrete trial-to-test operator Θk : U → Vk by

(Θku,vk)V = b(u,vk) for all vk ∈ Vk,u ∈ U. (4.1)

Let Uh ⊆ U be some finite dimensional subspace and define the discrete optimal test space:

V Θ
h,k := Θk(Uh)

Then, the practical DPG method reads: Find uh ∈ Uh such that

b(uh,vh) = `(vh) for all vh ∈ V Θ
h,k. (4.2)

This problem is well-posed if we can prove the inf-sup conditions for b : Uh × V Θ
h,k → R. We

do this with the help of a Fortin operator.
We say Π : V → Vk is a Fortin operator if there exists CΠ > 0 such that

‖Πv‖V ≤ CΠ‖v‖V and b(uh,v) = b(uh,Πv) for all uh ∈ Uh,v ∈ V. (4.3)

Theorem 4.1 ([9], Theorem 4.1). Let Uh ⊂ U be a finite-dimensional subspace. Suppose
that Π : V → Vk is a Fortin operator. Then, b : Uh×V Θ

h,k → R satisfies the inf-sup conditions.
In particular (4.2) admits a unique solution uh ∈ Uh.
Furthermore, let u ∈ U be the unique solution of (3.3). Then, there holds quasi-optimality

‖u− uh‖U ≤ Copt min
wh∈Uh

‖u−wh‖U (4.4)

with Copt = Cb · CΠ/C and Cb denotes the continuity constant of b : U × V → R.

Recall that

U = (L2(Ω))d × (L2(Ω))d×d∗ × (H
1/2
0 (S))d × (H−1/2(S))d,

V = (H1(Ωh))
d × (H(div; Ωh))

d,
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and define for d = 2

Uh = (Pq(Ωh))
2 × (Pq(Ωh))

2×2
∗ × (Pq+1

c,0 (S))2 × (Pq(S))2 (4.5)

with q ∈ N0 and (Pq(Ωh))
2×2
∗ = (Pq(Ωh))

2×2∩(L2(Ω))d×d∗ . For the solvability of the resulting
practical DPG method, we need at least dim(Vk) ≥ dim(Uh). We consider

Vk := (Pk1(Ωh))
2 × (Pk2(Ωh))

2×2 (4.6)

with some k1, k2 ∈ N. In order to construct operators that satisfy (4.6), one has to choose
k1, k2 depending on the polynomial degree q ∈ N0 of the space Uh.

In the following we construct a Fortin operator Π = (Πk1
∇ ,Π

k2
div) : V → Vk, where Vk is defined

in 4.6. We follow [9] for the case d = 2. [13] also covers the general case d ≥ 3.

Lemma 4.2 ([9], Lemma 4.3). Let k = q+2. There exists Πk
∇,Tv such that for all v ∈ H1(K)

there holds

(
Πk
∇,Kv − v, w

)
K

= 0 for all w ∈ Pq−1(K), (4.7a)

〈trKgrad(Πk
∇,Kv − v), ŵ〉∂K = 0 for all ŵ ∈ Pq(∂K). (4.7b)

Moreover, there exists C > 0 depending only on shape-regularity and q such that

‖Πk
∇,Kv‖H1(K) ≤ C‖v‖H1(T ), (4.8a)

‖Πk
∇,Kv − v‖K ≤ ChK‖∇v‖K , (4.8b)

for all v ∈ H1(K).

Lemma 4.3 ([9], Lemma 4.5). Let q ∈ N0 and set k := q + 2. There exists Πk
div,K :

H(div, K)→ Pk(K)2 such that for all τ ∈ H(div, K) there holds

(
Πk

div,Kτ − τ, σ
)
K

= 0 for all σ ∈ Pq(K)2, (4.9a)

〈trKdiv(Πk
div,Kτ − τ), σ̂〉∂K = 0 for all ŵ ∈ Pq+1

c (∂K). (4.9b)

Moreover, there exists C > 0 depending only on q and shape-regularity such that

‖Πk
div,Kτ‖H(div,K) ≤ C‖τ‖H(div,K) for all τ ∈ H(div, K). (4.10)

The proof of Lemma 4.3 defines an operator over a reference element Kref and then extend
to the other elements with the Piola transformation. Details are in [9].

Theorem 4.4. Let q ∈ N0, d = 2, and set k := q + 2. For v = (v,N) ∈ V , where v =
(v1, v2)T ∈ H1(Ωh)

2 and N = (N1, N2)T ∈ H(div,Ωh)
2, define Πv := (Πk

∇v1,Π
k
∇v2,Π

k
divN1,Π

k
divN2)

where
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Πk
∇vj := (Πk

∇,K1
vj|K1 , · · · ,Πk

∇,KM
vj|KM

),
Πk

divNj := (Πk
div,K1

Nj|K1 , · · · ,Πk
div,KM

Nj|KM
)

with M = #Ωh and j ∈ {1, 2}. Then, Π : V → Vk = (Pk(Ωh))
2 × (Pk(Ωh))

2×2 is a
Fortin operator, i.e., satisfies (4.3) with CΠ > 0 depending only on shape-regularity and the
polynomial degree q.
In particular, the practical DPG method (4.2) is well-posed and there holds quasi-optimality

‖u− uh‖U ≤ Copt min
wh∈Uh

‖u−wh‖U .

Proof. First, note that by Lemma 4.2-4.3 ‖Πv‖V ≤ CΠ‖v‖V for all v ∈ V ,where CΠ > 0
depends only on shape-regularity and the polynomial degree q.
Next, we prove that b(uh,v) = b(uh,Πv) for v ∈ V , uh ∈ Uh. Recall that

b(uh,v) =

(
Mh, N −

1

d
Tr(N) · I −∇Ωh

v

)
+ (uh, divΩh

N)− 〈ûh, N · n〉S − 〈M̂h, v〉S ,

where

uh = (uh,Mh, ûh, M̂h) ∈ Uh = (Pq(Ωh))
2 × (Pq(Ωh))

2×2 × (Pq+1
c,0 (S))2 × (Pq(S))2.

Properties (4.7b),(4.9) directly show that

〈M̂h, v〉S = 〈M̂h,Π
q+2
∇ v〉S ,

(Mh, N) = (Mh,Π
q+2
div N),

〈ûh, N · n〉S = 〈ûh, (Πq+2
div N) · n〉S .

It can be proved (cf. [9], proof of Lemma 4.5) that div Πq+2
div = Πq+1 div, where Πq

K :
L2(K)→ Pp(K) is the L2(K)−orthogonal projection. Using this identity and Πq+1uh = uh,
since uh ∈ Pq(Ωh), we infer

(uh, divN) = (uh,Π
q+1 divN) = (uh, div Πq+2

div N).

For the term (Mh,∇Ωh
v), note that divMh ∈ (Pq−1(Ωh))

2 and trdivMh ∈ (Pq(S))2. Elemen-
twise Integration by parts and (4.9) show

(Mh,∇Ωh
v) = −(divMh, v) + 〈trdivMh, v〉S

= −(divMh,Π
q+2
∇ v) + 〈trdivMh,Π

q+2
∇ v〉S = (Mh,∇Ωh

Πq+2
∇ v).

Finally, for the term (Mh,Tr(N) · I) we use (4.9) to get

(Mh,Tr(N) · I) = (Tr(Mh) · I,N) = (Tr(Mh) · I,Πq+2
div N) = (Mh,Tr(Πq+2

div N)) · I).

Putting all together shows that Π is indeed a Fortin operator. Theorem 4.1 concludes the
proof.
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Recall that in equation (3.2) we introduce the pseudostress variable M = ∇u− p · I, where
u is the velocity and p the pressure. We can recover p taking the trace of M . Note that if
u ∈ (Hq+2(Ω))2 and p ∈ Hq+1(Ω), then M ∈ (Hq+1(Ω))2×2.

Theorem 4.5. Let u ∈ U the unique solution of (3.3) and uh ∈ Uh the solution of (4.2).
Under the assumptions of Theorem 4.4 and suppose that u ∈ (Hq+2(Ω))2 and p ∈ Hq+1(Ω),
then

‖u− uh‖U . hq+1(‖u‖Hq+2(Ω) + ‖p‖Hq+1(Ω))

Proof. Set wh = (Πqu,ΠqM, trgradΠq+1
gradu, trdivΠq

divM) ∈ Uh. Then, with the approximation
properties (2.31), (2.32) and (2.33) we get

‖u−wh‖ . hq+1‖u‖Hq+1(Ω) + hq+1‖M‖Hq+1(Ω) + hq+1‖u‖Hq+2(Ω) + ‖trdiv(1− Πq
RT )M‖−1/2,S

The last term is tackled with Theorem 2.15. Using M = ∇u − p · I together with the
quasi-optimality from Theorem 4.4 finish the proof.

4.2 Error estimator

We collect some results on the built-in error estimator, see [4], [9] for details. Let uh ∈ Uh
denote the solution of the practical DPG method (4.2). Let ξh ∈ Uh and ` ∈ V ′. Recall the
error function εh(ξh) = R−1

V (` − Bξh) and its discrete form εh,k(ξh) = R−1
Vk

(` − Bξh). We
define the DPG error estimator by

ηh,k(ξh) := ‖εh,k(ξh)‖V = ‖`−Bξh‖V ′k
An error estimator η is called reliable if there exists Crel > 0 such that

‖u− uh‖ ≤ Crelη,

and efficient if there exists Ceff > 0 such that

Ceffη ≤ ‖u− uh‖.

Now, given ` ∈ V ′, we define the data oscillation term by

osc(`) := ‖` ◦ (1− Π)‖V ′ = sup
06=v∈V

`((1− Π)v)

‖v‖V
. (4.11)

Then, define the overall estimator

η(ξh)
2 := ηh,k(ξh)

2 + osc(`)2.
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Theorem 4.6 ([9], Theorem 5.1). Let ` ∈ V ′ and u = B−1F be the exact solution. Then,
for ξh ∈ Uh there holds

C2‖u− ξh‖2
U ≤ (1 + 2C2

Π)ηh,k(ξh)
2 + 2 osc(`)2, (4.12a)

ηh,k(ξh) ≤ Cb‖u− ξh‖U , (4.12b)

osc(`) ≤ Cb(1 + CΠ) min
wh∈Uh

‖u−wh‖. (4.12c)

In particular, the overall estimator η(ξh) is efficient and reliable.

Since η is efficient and reliable this implies that

η(ξh) ' ‖u− ξh‖U for all ξh ∈ Uh.

Since Vk is a broken space, the estimator can be localized, i.e.,

η2
h,k =

∑
K∈Ω

‖`−Buh‖2
Vk(K),

where Vk(K) is the restricction of the space Vk to the element K. We use the local indicators
to steer mesh-refinement in Chapter 5.
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Chapter 5

Numerical Examples

We consider several examples to study our proposed method for the Stokes problem. We
consider analytical solutions to measure the solution quality for different velocities u and
pressures p under uniform mesh refinements. We then apply the adaptive refinement strategy
to model a circulant segment with a re-entrant corner. Lastly, we analyze a lid-driven cavity
problem with uniform and adaptive refinements. Most of the examples are from [14].
Recall that we introduced a variable M = ∇u − p · I. Taking the trace on both sides we
recover the pressure p as follows

Tr(M) = div(u)︸ ︷︷ ︸
=0

−d · p⇒ p = −1

d
· Tr(M).

For the approximate solutions we use Uh defined in (4.5) with q ∈ {0, 1}, and Vk defined in
(4.6) for the test space, with k1 = k2 = q + 2. We expect that the total error behaves like

‖u − uh‖U = O(hq+1) = O(N
−(q+1)/2
tot ), where Ntot = dim(Uh) denotes the total degrees of

freedom.

For the implementation of the condition
∫

Ω
Tr(M) = 0 we use Lagrange multipliers. Let

{ψ1, . . . , ψt} be a basis for (Pq(Ω))2×2 and let L = (0, . . . , 0,
∫

Ω
Tr(ψ1), . . . ,

∫
Ω

Tr(ψt), 0, . . . , 0).
If the discrete problem can be represented as

Ax = f ,

where x are the coefficients of our approximated solution, we solve[
A LT
L 0

](
x
λ

)
=

(
f
0

)
.

From here we get that Lx =
∫

Ω
Tr(Mh) = 0.

5.1 Smooth solution

First we study a smooth solution with different pressures to validate our method. The
analytical expressions for the solution are:
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Figure 5.1: Approximation of the velocity for q = 0 (left) and q = 1 (right) for problem (5.1)
with p1.

usol =

[
π sin2(πx) · sin(2πy)
−π sin(2πx) · sin2(πy)

]
, (5.1a)

p1 = x− 1

2
, (5.1b)

p2 =

(
x− 1

2

)
·
(
y − 1

2

)
, (5.1c)

p3 = cos(2πx). (5.1d)

Using the above pressures and the velocity, we construct the force term:

fi = −∆usol +∇pi, i ∈ {1, 2, 3} (5.2)

Figures 5.1, 5.2 and 5.3 show the approximation of the velocity field of usol in (5.1) for the
different pressures pi and polynomial orders. Figures 5.4, 5.5 and 5.6 show the comparisons
between the exact solution of the different pressures and its approximations for different
polynomial orders. For the case of q = 0, the approximation of the pressures seems not to be
good, however the convergence rates of the error look correct because they converge in the
proper order as predicted by Theorem 4.5. In Figures 5.7, 5.8 and 5.9 we show the errors in
L2 of u, pi and Mi, with Mi = ∇u− pi · I for i ∈ {1, 2, 3}. We plot these errors as a function
of the mesh size h in logarithmic scale. Also we compare this curves with the convergence
optimal order.
Also we study the manufactured solution from [14]. The analytical expressions of the solution
are:
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Figure 5.2: Approximation of the velocity for q = 0 (left) and q = 1 (right) for problem (5.1)
with p2.

Figure 5.3: Approximation of the velocity for q = 0 (left) and q = 1 (right) for problem (5.1)
with p3.
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Figure 5.4: p1 approximation compared to exact solution (left) for q = 0 (middle) and q = 1
(right) for problem (5.1).

Figure 5.5: p2 approximation compared to exact solution (left) for q = 0 (middle) and q = 1
(right) for problem (5.1).
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Figure 5.6: p3 approximation compared to exact solution (left) for q = 0 (middle) and q = 1
(right) for problem (5.1).

Figure 5.7: DPG error for problem (5.1) with p1 for q = 0 (left) and q = 1 (right).

Figure 5.8: DPG error for the problem (5.1) with p2 for q = 0 (left) and q = 1 (right).
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Figure 5.9: DPG error for problem (5.1) with p3 for q = 0 (left) and q = 1 (right).

usol =

[
(2ex(−1 + x)2x2(y2 − y)(−1 + 2y))

(−ex(−1 + x)x(−2 + x(3 + x))(−1 + y)2y2)

]
, (5.3a)

psol = (−424 + 156e+ (y2 − y)(−456 + ex(456 + x2(228− 5(y2 − y))
+2x(−228 + (y2 − y)) + 2x3(−36 + (y2 − y)) + x4(12 + (y2 − y))))).

(5.3b)

In Figure 5.10 we show the approximations of the velocity field with q = 0, 1. Figure 5.11
show the comparison between the exact solution of p, and its approximations for different
polynomial orders and Figure 5.12 show the different errors.

Figure 5.10: Approximation of the velocity for q = 0 (left) and q = 1 (right) for problem
(5.3)

5.2 L-shaped domain and adaptive refinement

For the adaptive mesh refinement case, we consider the L-shaped Ω = (−1, 1)2 \ ((0, 1) ×
(−1, 0)) and the analytical solution for usol and psol from [14] given as
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Figure 5.11: psol approximation compared to exact solution (left) for q = 0 (middle) and
q = 1 (right) for problem (5.3).

Figure 5.12: DPG error for problem (5.3) for q = 0 (left) and q = 1 (right).
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Figure 5.13: Adaptive mesh for q = 0 (left) and q = 1 (right) for problem (5.4).

usol =

[
rα[(1 + α) sin(φ)ψ(φ) + cos(φ)∂φψ(φ)]

rα[sin(φ)∂φψ(φ)− (1 + α) cos(φ)ψ(φ)]

]
, (5.4a)

psol =− rα−1[(1 + α)2∂φψ(φ) + ∂3
φψ(φ)]/(1− α), (5.4b)

with

ψ(φ) =
sin((1 + α)φ) cos(αω)

(1 + α)
− cos((1 + α)φ)

+
sin((α− 1)φ) cos(αω)

(1− α)
+ cos((α− 1)φ),

α =
856399

1572864
, ω =

3π

2
.

(5.5)

Here, (r, φ) denote polar coordinates centered in (0, 0). We set the forcing term equal to
zero and impose Dirichlet boundary conditions on the entire boundary, setting homogeneous
values on the edges of the reentrant corner and nonhomogeneous ones on the complementary
part. Figure 5.13 show meshes for different polynomials degrees q, Figure 5.14 show the
approximation of the velocity field, Figure 5.15 show the pressure approximation and Figure
5.16 show the DPG errors. Also 5.17 show a comparison of the error using a uniform
refinement of the mesh versus an adaptive refinement.

5.3 Lid driven cavity flow

As a last example, we consider the well-known lid-driven cavity flow problem (see [14]). We
set the source term f = 0 and consider no-slip boundary conditions on the bottom, left,
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Figure 5.14: Approximation of the velocity for q = 0 (left) and q = 1 (right) for problem
(5.4)

Figure 5.15: psol approximation compared to exact solution (left) for q = 0 (left) and q = 1
(right) for problem (5.4).

Figure 5.16: DPG error for problem (5.4) for q = 0 (left) and q = 1 (right).
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Figure 5.17: Comparison of the DPG error between an adaptive refinement vs. a uniform
refinement of the mesh, for q = 0 (left) and q = 1 (right).

and right boundaries (u = (0, 0)). At the top, as Figure 5.18 shows, we impose the velocity
profile utop = (u1(x), 0) (see [18], Example D.4)

u1(x) =


1− 1

4

(
1− cos

(
x1−x
x1
· π
))2

for x ∈ [0, x1]

1 for x ∈ (x1, 1− x1)

1− 1
4

(
1− cos

(
x−(1−x1)

x1
· π
))2

for x ∈ [1− x1, 1]

(5.6)

utop

Figure 5.18: Boundary conditions for the lid-driven cavity flow.

The simulation of this example were performed with x1 = 0.2. Figure 5.19 show the adaptive

37



Figure 5.19: Adaptive mesh for q = 0 (left) and q = 1 (right) for problem from Section 5.3

meshes, Figures 5.20 and 5.21 show the velocity field and pressure approximation respectively
and Figure 5.22 shows the DPG error. All figures show the cases q = 0, 1.
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Figure 5.20: Approximation of the velocity for q = 0 (left) and q = 1 (right) for problem
from Section 5.3
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Figure 5.21: Approximation of the pressure for q = 0 (left) and q = 1 (right) for problem
from Section (5.3).

Figure 5.22: DPG error for problem from Section (5.3) for q = 0 (left) and q = 1 (right).
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Chapter 6

Conclusions

In this work we have presented an ultra-weak formulation of the Stokes problem with a
pseudo-stress variable and the approximation of its solution with the DPG method. Our
formulation is similar to the one in [17] but we eliminate the pressure variable from the
system. In Chapter 2 we saw the tools needed for the ultra-weak formulation and also the
presentation of the DPG method. Theorem 3.1 shows that our reformulation has a unique
solution and in the rest of Chapter 3 we see that its ultra-weak formulation also has a
unique solution, if the inf-sup conditions are met (see Theorem 3.4). Chapter 4 shows us the
existence of a Fortin operator and thus ensures the well-posedness of the discrete problem
as well as the quasi-optimality of the DPG method.
In Chapter 5 we discuss numerical examples that empirically show our theoretical develop-
ment and the different rates of convergence for different degrees of polynomial approximation.
The poor approximation of the pressures that we observe (at least visually) in Problem (5.1)
is striking, even though the convergence rate is correct. A possible solution to this problem
could be to increase the polynomial degree for the trace of the pseudostress variable in order
to improve the approximation for the pressure, which in our scheme is defined using the
trace of the pseudostress.
In [10] superconvergence in the primal variable is achieved by doing element-by-element
post-processing for the Poisson problem. We believe that the same results can be proved for
the Stokes problem, using the formulation proposed in this work.
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