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Introduction

The Riemann zeta function ζ(s), first studied in the 18th century by L. Euler as a real
variable function and later by B. Riemann as a complex variable function, plays a crucial
role in analytic number theory. Since then, many zeta functions have been defined,
which have made important appearances in various areas of mathematics. It is therefore
interesting to study their properties, for example their analytic continuation, special
values at the integers, and decomposition as sum/product of simpler zeta functions.

Around 1990, related to his work on topological quantum field theory, E. Witten
[Wit91] calculated the volumes of the moduli spaces of representations of the fundamental
groups of two dimensional surfaces in terms of special values of a new zeta function
attached to complex semi-simple Lie algebras g at positive integers. Inspired by this
result, in 1994 D. Zagier [Zag94] defined the Witten zeta function ζWg (s) as

ζWg (s) :=
∑
ρ

1

(dim ρ)s
, (0.1)

where the sum runs over all isomorphism classes of finite-dimensional irreducible repre-
sentations of g. Using Weyl’s dimension formula he computed

ζWsl(2)(s) = ζ(s) =
∞∑
m=1

1

ms

and

ζWsl(3)(s) =

∞∑
m,n=1

2s

msns(m+ n)s
. (0.2)

With this in mind, for G a compact topological group, N. Kurokawa & H. Ochiai
[KO13] considered

ζWG (s) :=
∑
ρ∈Ĝ

1

(dim ρ)s
, (0.3)

where the sum runs over the set of equivalence classes of irreducible unitary repre-
sentations. If G is a simply connected Lie group with Lie algebra g, then from the
correspondence between representations of G and representations of g it is clear that
ζWG (s) = ζWg (s). Thus (0.3) generalizes (0.1). They also noticed that if G is a finite
group, then

ζWG (−2) =
∑
ρ∈Ĝ

(dim ρ)2 = |G|

and
ζWSU(2)(−2) = ζWsl(2)(−2) = ζ(−2) = 0.

Moreover, they proved that

ζWSU(3)(−2) = ζWsl(3)(−2) = 0 and ζWSL2(Zp)(−2) = 0 for p 6= 2,
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where Zp is the ring of p−adic integers. Finally, they conjectured that if G is an infinite
group then ζWG (−2) = 0.

Little is known so far about ζWG (−2) for arbitrary compact topological groups. In fact,
we have not been able to find a proof in the literature that s = −2 is a regular value of
ζWG (s) for such groups. Various authors (see for example [Ess97, Mat03, MT06, KMT10])
have defined a multi-variable versions of Witten’s zeta function ζWg (s), or zeta functions
that include Witten’s as a special case, and studied its meromorphic continuation. How-
ever they do not specialize their analysis to the case of ζWg , nor does it follow from their

results that s = −2 is a regular value of ζWg (s).

In 2004 E. Friedman & S. Ruijsenaars [FR04] studied the meromorphic continuation
(in s ∈ C) and special values of

ζN,n(s, w | a1, . . . , aN ) :=

∞∑
k1,...,kN=0

n∏
j=1

(wj + k1a1j + · · ·+ kNaNj)
−s,

where the ai and w are elements of Cn whose coordinates aij and wj have positive real
parts. This was a slight generalization of Shintani’s zeta function [Shi76] where w was
more restricted.

The main purpose of this thesis is to use the ideas developed in [FR04] to generalize
some of their results by allowing aij = 0, but assuming that for each i there is some j
such that aij 6= 0, and assuming further that there exists ε > 0 such that −π/2 + ε <
arg(aij) < π/2 + ε whenever aij 6= 0. This generalization allows us to include Witten
zeta function ζWg as a special case of ζN,n.

Specifically, in Chapter 1 we define the Shintani-Barnes zeta function ζN,n(s, w,M ),
prove some of its basic properties, and we also show several examples of zeta functions
that are special cases of ζN,n, including ζWg (except for an exponential factor). We end

Chapter 1 calculating explicitly ζWg (s) for all classical Lie algebras and the exceptional
type G2. In Chapter 2 we prove that ζN,n and its multi-variable and integral versions
ZN,n and ZN,n extend to meromorphic functions. In particular, for k ∈ N0 we prove that
s = −k is always a regular value of ζN,n(s, w), it has at most poles of order n which can
only occur among the rational numbers of the form

s =
N − l
v

, with v ∈ {1, . . . , n} and l ∈ N0 \ {N + kv : k ∈ N0},

and we show that ζN,n(−k,w) is a polynomial in w and find an upper bound for its
degree. This result, together with the results from Section 1.3, imply that if g is a
complex semi-simple Lie algebra then s = −2 is always a regular value of ζWg (s).

iii



Chapter 1

Preliminaries

1.1. Definitions and basic results

Let M be the N × n matrix defined by

M := {aij}, i ∈ {1, . . . , N}, j ∈ {1, . . . , n},

where aij ∈ C are such that

for each i ∈ {1, . . . , N} there exists j ∈ {1, . . . , n} such that aij 6= 0, (1.1)

i.e. every row has at least one non-zero value, and

there exists ε > 0 such that − π/2 + ε < arg(aij) ≤ π/2− ε whenever aij 6= 0. (1.2)

For Re(s)� 0, we define the Shintani-Barnes zeta function by

ζN,n(s, w,M ) = ζN,n(s, w | a1, . . . , aN ) :=

∞∑
k1,...,kN=0

n∏
j=1

(wj+k1a1j+· · ·+kNaNj)−s, (1.3)

its multi-variable version

ZN,n(s, w,M ) :=
∞∑

k1,...,kN=0

n∏
j=1

(wj + k1a1j + · · ·+ kNaNj)
−sj , (1.4)

and its integral version

ZN,n(s, w,M ) :=

∫
x∈[0,∞)N

n∏
j=1

(wj + x1a1j + · · ·+ xNaNj)
−s dx, (1.5)

where ai = (ai1, . . . , ain), s = (s1, . . . , sn), w ∈ Cn, Re(wj) > 0 for all j ∈ {1, . . . , n},
and dx is the Lebesgue measure on RN . Since Re(wj) > 0 and Re(aij) ≥ 0, in all these
definitions we choose the principal branch of the logarithm to define the complex powers.

Note that if the j−th column of M has only zeros then the corresponding factor in
(1.4) is w

−sj
j , therefore to study the convergence of (1.4) we can safely assume that M

has no zero columns.

In order to find a region of absolute convergence for each of the functions defined
above, let

Aj := {i ∈ {1, . . . , N} : aij 6= 0} and c := min
i,j
{Re(aij) : aij 6= 0} > 0.
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For ki ≥ 0, and letting |Aj | denote the cardinality of Aj , we have

|wj + k1a1j + · · ·+kNaNj |2 =

∣∣∣∣∣∣wj +
∑
i∈Aj

kiaij

∣∣∣∣∣∣
2

≥

Re(wj) +
∑
i∈Aj

ki · Re(aij)

2

≥
Re(wj)

2 +
∑

i∈Aj k
2
i Re(aij)

2

|Aj |+ 1

≥

(
Re(wj) +

∑
i∈Aj kiRe(aij)

|Aj |+ 1

)2

≥

(
Re(wj) + c

∑
i∈Aj ki

|Aj |+ 1

)2

≥

Re(wj) + c
√∑

i∈Aj k
2
i

|Aj |+ 1

2

.

From here we conclude that if Re(sj) ≥ 0 ∀j ∈ {1, . . . , n} and |Im(sj)| is contained in a
compact set, then

∞∑
k1,...,kN=0

n∏
j=1

|(wj + k1a1j + · · ·+ kNaNj)
−sj |

=
∞∑

k1,...,kN=0

n∏
j=1

∣∣∣∣∣∣wj +
∑
i∈Aj

kiaij

∣∣∣∣∣∣
−Re(sj)

· exp

arg

wj +
∑
i∈Aj

kiaij

 · Im(s)


�

n∏
j=1

∑
k1,...,kN=0
ki≥0 for i∈Aj

∣∣∣∣∣∣wj +
∑
i∈Aj

kiaij

∣∣∣∣∣∣
−Re(sj)

≤
n∏
j=1

∑
k1,...,kN=0
ki≥0 for i∈Aj

Re(wj) + c
√∑

i∈Aj k
2
i

|Aj |+ 1

−Re(sj)

,

and each series inside the product above clearly converges for s ∈ Cn such that Re(sj) >
|Aj |. We conclude that (1.4) converges absolutely, and therefore it defines an analytic
function, for (s, w,M ) ∈ CN,n ×Dn ×D∗N,n, where

CN,n := {s ∈ Cn : Re(sj) > N ∀j ∈ {1, . . . , n}},

Dn := {w ∈ Cn : Re(wj) > 0 ∀j ∈ {1, . . . , n}},

and D∗N,n is the set of N × n matrices M = {aij} that satisfy (1.1) and (1.2). In
particular, (1.4) converges absolutely for Re(sj) > N . Taking all sj equal to s in (1.4)
we get (1.3). Therefore (1.3) converges absolutely and defines an analytic function for
(s, w,M ) ∈ {s ∈ C : Re(s) > N} × Dn × D∗N,n. Replacing the sums by integrals, the
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same argument shows that (1.5) converges absolutely and defines an analytic function in
the same region as ζN,n.

A remarkable property of ζN,n is that they satisfy a recurrence relation: from (1.3)
we have

ζN,n(s, w + aN | a1, . . . , aN ) =

∞∑
k1,...,kN−1=0

∞∑
kN=1

n∏
j=1

(wj + k1a1j + · · ·+ kNaNj)
−s.

Thus ζN,n satisfies

ζN,n(s, w+ aN |a1, . . . , aN )− ζN,n(s, w |a1, . . . , aN ) = −ζN−1,n(s, w |a1, . . . , aN−1), (1.6)

where ζ0,n(s, w) :=
∏n
j=1w

−s
j . In Section 2.2 we will use this recurrence relation together

with Theorem 2.1 to prove that ζN,n(−k,w,M ) is a polynomial in w when k is a non-
negative integer, and find an upper bound to its degree.

1.2. Examples of related zeta functions

In this section we show several examples of zeta functions which are actively studied and
are special cases of ζN,n and ZN,n. We begin with the origin of ζN,n:

Example 1.1 (Shintani, cf. [Shi76]). If W (x) :=
∑N

i=1 xiai ∈ Cn then

ζN,n(s,W (x),M ) =
∞∑

k1,...,kN=0

n∏
j=1

(
N∑
i=1

aij(ki + xi)

)−s
gives the Shintani zeta function, originally of interest in Number Theory.

Example 1.2 (Barnes, cf. [Bar04]). If n = 1, and letting superscript T stand for the
transpose, then

ζN,1(s, w, (a1, . . . , aN )T ) =
∞∑

k1,...,kN=0

(w + k1a1 + · · ·+ kNaN )−s

gives the Barnes zeta function.

Example 1.3 (multiple zeta/Euler-Zagier zeta). If N = n, s = (s1, . . . , sN ) and M =
{aij} is the N ×N matrix with aij = 1 if i ≥ j and aij = 0 if i < j, then

ZN,N (s, (1, . . . , N),M ) =
∞∑

k1,...,kn=0

(k1 + 1)−s1(k1 + k2 + 2)−s2 · · · (k1 + · · ·+ kN +N)−sN

=
∑

1≤k1<k2<···<kN

k−s11 k−s22 · · · k−sNN =: ζ(s1, . . . , sN )

gives the multiple zeta function, also called Euler-Zagier zeta function by some authors.

There is an extensive literature about this function, including its analytic continu-
ation, special values, which are often called Multiple Zeta Values (MZV), and its de-
composition into simpler zeta functions. For example, Euler proved the decomposition
formula

2ζ(1, n) = nζ(n+ 1)−
n−2∑
i=1

ζ(n− i)ζ(i+ 1) for n ≥ 2.

For further details see [BGF, Mat02, Mat06, Zha16].
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Example 1.4 (Mordell-Tornheim, cf. [Mor58, Tor50]). If N = 2, n = 3, s = (s1, s2, s3)

and M =

(
1 0 1
0 1 1

)
then

Z2,3(s, (1, 1, 2),M ) =
∞∑

k1,k2=0

(k1 + 1)−s1(k2 + 1)−s2(k1 + k2 + 2)−s3

=

∞∑
l,k=1

l−s1k−s2(l + k)−s3 =: ζMT (s1, s2, s3)

gives the Mordell-Tornheim zeta function, and ζMT (s, s, s) = 2−sζsl(3)(s) (see (0.2)). As
we mentioned earlier, this function was studied in [KO13], but we would also like to
mention the work of K. Onodera [Ono14] who calculated the values at all integers (along
with the corresponding derivatives at non-positive integers), and D. Romik [Rom17] who
calculated the exact pole locations and calculated their corresponding residues.

1.3. Witten zeta function

Given g a complex semi-simple Lie algebra, we have

ζWg (s) =
∑
ρ

1

(dim ρ)s

where the sum runs over all isomorphism classes of finite-dimensional irreducible repre-
sentations of g. In this section we will find a simpler formula for ζWg (s), and calculate
it in terms of explicit series in the case that g is one of the classical Lie algebras or the
exceptional type G2. All the notation and results used in this section will be based in
[Bou02, Chapter I, §1 and §4] unless otherwise stated.

Let N be the rank of g, ∆ = ∆(g) the set of all roots of g, ∆+ = ∆+(g) the
set of positive roots, and Ψ = Ψ(g) = {α1, . . . , αN} the fundamental system of ∆. Let
λ1, . . . , λN be the fundamental weights satisfying (λi, αj) = δij (Kronecker’s delta), where
(·, ·) is the usual Euclidean inner product. Any dominant weight can be written as

λ = l1λ1 + · · ·+ lNλN , with l1, . . . , lN ∈ N0. (1.7)

Let

ρ =
1

2

∑
β∈∆+

β = λ1 + · · ·+ λN ,

and also let Vλ be the representation space corresponding to the dominant weight λ.
Using Weyl’s dimension formula (see for example [Hal15, Theorem 10.18]), we get

dim(Vλ) =
∏
β∈∆+

(β, λ+ ρ)

(β, ρ)

=
∏
β∈∆+

(β, (l1 + 1)λ1 + · · ·+ (lN + 1)λN )

(β, λ1 + · · ·+ λN )
.
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Hence, writing ki = li + 1 and summing over all dominant weights of the form (1.7) we
have

ζWg (s) =
∑
λ

∏
β∈∆+

(
(β, k1λ1 + · · ·+ kNλN )

(β, λ1 + · · ·+ λN )

)−s

= K(g)s
∞∑

k1,...,kN=1

∏
β∈∆+

(β, k1λ1 + · · ·+ kNλN )−s,

(1.8)

where
K(g) =

∏
β∈∆+

(β, λ1 + · · ·+ λN ).

Now, it follows from the definitions of fundamental system and positive root that
every β ∈ ∆+ can be written uniquely as

β = c(1, β)α1 + · · ·+ c(N, β)αN ,

where c(i, β) are non-negative integers, not all zero, thus∏
β∈∆+

(β, k1λ1 + · · ·+ kNλN ) =
∏
β∈∆+

(c(1, β)k1 + · · ·+ c(N, β)kN )

and
K(g) =

∏
β∈∆+

(c(1, β) + · · ·+ c(N, β)).

If we now define n := |∆+|, we list ∆+ = {β1, . . . , βn}, define M := {aij} where aij :=
c(i, βj), and w = (w1, . . . , wn) where wj := a1j + · · ·+ aNj , then

ζWg (s) = K(g)s · ζN,n(s, w,M ).

Thus ζWg is a special case of ζN,n except for an exponential factor, which is not relevant
when studying the poles or zeros.

We will now use (1.8) and the results from [Bou02, Chapter VI, §4] to calculate
explicitly ζWg (s) for each of the classical Lie algebras, and the exceptional type G2. For
the rest of the section ei will always denote the i−th canonical vector (ei has l + 1
coordinates for Al, 3 coordinates for G2, and l coordinates for the remainding cases
treated here).

1.3.1. Type Al: g = sl(l + 1) (l ≥ 1)

Here
∆ = {ei − ej : i 6= j, 1 ≤ i ≤ l + 1, 1 ≤ j ≤ l + 1},

Ψ = {αi := ei − ei+1 : 1 ≤ i ≤ l},

∆+ = {αi + · · ·+ αj−1 : 1 ≤ i < j ≤ l + 1},

and the corresponding fundamental weights are

λi = e1 + · · ·+ ei −
i

l + 1
(e1 + · · ·+ el+1), for 1 ≤ i ≤ l,

5



thus

∏
β∈∆+

(β, k1λ1 + · · ·+ klλl) =
∏

1≤i<j≤l+1

l∑
r=1

kr(αi + · · ·+ αj−1, λr)

=
∏

1≤i<j≤l+1

(ki + · · ·+ kj−1),

therefore

ζWg (s) = K(g)s
∞∑

k1,...,kl=1

∏
1≤i<j≤l+1

(ki + · · ·+ kj−1)−s.

1.3.2. Type Bl: g = so(2l + 1) (l ≥ 2)

Here
∆ = {±ei : 1 ≤ i ≤ l} ∪ {±ei ± ej : 1 ≤ i < j ≤ l},

Ψ = {αi := ei − ei+1 : 1 ≤ i ≤ l − 1} ∪ {αl := el},

∆+ = {αi + · · ·+ αl : 1 ≤ i ≤ l} ∪ {αi + · · ·+ αj−1 + 2αj + · · ·+ 2αl : 1 ≤ i < j ≤ l}
∪ {αi + · · ·+ αj−1 : 1 ≤ i < j ≤ l},

and the corresponding fundamental weights are

λi = e1 + · · ·+ ei, for 1 ≤ i ≤ l − 1, and λl =
1

2
(e1 + · · ·+ el) .

Now we get

ζWg (s) = K(g)s
∞∑

k1,...,kl=1

 ∏
1≤i<j≤l

(ki + · · ·+ kj−1 + 2kj + · · ·+ 2kl)
−s

·
l∏

i=1

(ki + · · ·+ kl)
−s ·

∏
1≤i<j≤l

(ki + · · ·+ kj−1)−s

 .

1.3.3. Type Cl: g = sp(2l) (l ≥ 2)

Here
∆ = {±2ei : 1 ≤ i ≤ l} ∪ {±ei ± ej : 1 ≤ i < j ≤ l},

Ψ = {αi := ei − ei+1 : 1 ≤ i ≤ l − 1} ∪ {αl := 2el},

∆+ = {αi + · · ·+ αj−1 + 2αj + · · ·+ 2αl−1 + αl : 1 ≤ i < j ≤ l}
∪ {αi + · · ·+ αj−1 : 1 ≤ i < j ≤ l} ∪ {2αi + · · ·+ 2αl−1 + αl : 1 ≤ i ≤ l},

and the corresponding fundamental weights are

λi = e1 + · · ·+ ei, for 1 ≤ i ≤ l.

6



Now we get

ζWg (s) = K(g)s
∞∑

k1,...,kl=1

 ∏
1≤i<j≤l

(ki + · · ·+ kj−1 + 2kj + · · ·+ 2kl−1 + kl)
−s

·
∏

1≤i<j≤l
(ki + · · ·+ kj−1)−s ·

∏
1≤i<j≤l

(2ki + · · ·+ 2kl−1 + kl)
−s

 .

1.3.4. Type Dl: g = so(2l) (l ≥ 3)

Here
∆ = {±ei ± ej : 1 ≤ i < j ≤ l},

Ψ = {αi := ei − ei+1 : 1 ≤ i ≤ l − 1} ∪ {αl := el−1 + el},

∆+ = {αi + · · ·+ αj−1 + 2αj + · · ·+ 2αl−2 + αl−1 + αl : 1 ≤ i < j ≤ l − 2}
∪ {αi + · · ·+ αj−1 : 1 ≤ i < j ≤ l} ∪ {αi + · · ·+ αl : 1 ≤ i ≤ l − 2}
∪ {αi + · · ·+ αl−2 + αl : 1 ≤ i ≤ l − 2} ∪ {αl},

and the corresponding fundamental weights are

λi = e1 + · · ·+ ei, for 1 ≤ i ≤ l − 2,

λl−1 =
1

2
(e1 + · · ·+ el−1 − el) and λl =

1

2
(e1 + · · ·+ el).

Now we get

ζWg (s) = K(g)s
∞∑

k1,...,kl=1

 ∏
1≤i<j≤l−2

(ki + · · ·+ kj−1 + 2kj + · · ·+ 2kl−2 + kl−1 + kl)
−s

· k−sl ·
∏

1≤i≤l−2

(ki + · · ·+ kl−2 + kl)
−s ·

∏
1≤i<j≤l

(ki + · · ·+ kj−1)−s

·
∏

1≤i≤l−2

(ki + · · ·+ kl)
−s

 .

1.3.5. Type G2

Here

∆ = {±(ei − ej) : 1 ≤ i < j ≤ 3} ∪ {±(2e1 − e2 − e3),±(2e2 − e1 − e3),±(2e3 − e1 − e2)},

Ψ = {α1 := e1 − e2, α2 := −2e1 + e2 + e3},

∆+ = {α1, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2},

and the corresponding fundamental weights are

λ1 = −e2 + e3, λ2 = −e1 − e2 + 2e3.
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Now we get
K(g) = 1(1 + 1)(2 + 1)(3 + 1)(3 + 2) = 120

and

ζWg (s) = 120s
∞∑

k1,k2=1

k−s1 (k1 + k2)−s(2k1 + k2)−s(3k1 + k2)−s(3k1 + 2k2)−s.

Similarly, ζWg (s) can be calculated for the remaining exceptional types (F4, E6, E7 and
E8), but we do not include the calculations since the resulting expressions are much
larger.
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Chapter 2

Main result and consequences

2.1. Notation

We begin introducing the notation that will be used for the rest of the Chapter.

Given a matrix M as in Chapter 1, let z = z(M ) be the maximum number of zeros in
any one row of M , and let Inj(z+1, n) be the set of injective functions from {1, . . . , z+1}
to {1, . . . , n}. For non-zero v = (v1, . . . , vn) ∈ Cn we define the order of v by

j = ord(v) ⇐⇒ vi = 0 ∀i < j and vj 6= 0,

and for each j ∈ {1, . . . , z + 1} let

Fj(M ) := {i ∈ {1, . . . , N} : ord(ai) = j}.

In summary, for each τ ∈ Inj(z + 1, n) we have z + 1 numbers from 1 to n, and we think
of τ as being an ordering of these numbers: τ(1) being the first, τ(2) second, etc. With
this in mind, Fj(M ) tells which rows of M are such that the first j − 1 entries are zero
and the j−th entry is non-zero.

The following definitions will be useful to simplify the notation of Theorem 2.1, since
they are what is obtained naturally from the study of the analytic continuation. For each
τ ∈ Inj(z + 1, n) and v ∈ Cn we define vτ := (vτ(1), . . . , vτ(z+1), vqτz+2

, . . . , vqτn), where
qτz+2, . . . , q

τ
n are the remaining indices in increasing order. We use this to define, for

k ∈ {n− z, . . . , n}, the set

Ap(k) := {{p1, . . . , pk} ⊆ {1, . . . , n} : ∃τ ∈ Inj(z + 1, n) s.t.

{qτz+2, . . . , q
τ
n, τ(n− k + 1), τ(n− k + 2), . . . , τ(z + 1)} = {p1, . . . , pk}}.

Given M a matrix with rows ai and τ ∈ Inj(z+1, n), let M τ denote the matrix with rows
aτi , and use this to define, for r ∈ {n− z, . . . , n} and {p1, . . . , pr} ∈ Ap(r), the numbers

m(p1, . . . , pr) := max
τ∈Inj(z+1,n) s.t.

{qτz+2,...,q
τ
n,τ(n−r+1),τ(n−r+2),...,τ(z+1)}={p1,...,pr}


z+1∑

j=n−r+1

|Fj(M τ )|

 ,

and

mr := max
τ∈Inj(z+1,n)


z+1∑

j=n−r+1

|Fj(M τ )|

 .

Lastly, from now on empty sums (products) are always taken to be 0 (1, respectively).

9



2.2. Analytic continuation of ζN,n, ZN,n and ZN,n

Our main result is the following Theorem, which generalizes [FR04, Proposition 2.1],
[Mat03, Theorem 3] and is the analog of [FP12, Theorem 3] but for a different class of
functions:

Theorem 2.1. The functions

ζN,n(s, w,M ) · Γ(s)z+1

Γ (ns−N) ·
∏n−1
k=n−z Γ(ks−mk)

and
ZN,n(s, w,M ) · Γ(s)z+1

Γ (ns−N) ·
∏n−1
k=n−z Γ(ks−mk)

extend to analytic functions on C×Dn×D∗N,n. In particular, for fixed (w,M ) ∈ Dn×D∗N,n,
the functions s 7→ ζN,n(s, w,M ) and s 7→ ZN,n(s, w,M ) are meromorphic and have at
most poles of order z + 1, which can only occur among the rational numbers of the form

s =
mv − l
v

, with v ∈ {n− z, . . . , n} and l ∈ N0 \ {mv + kv : k ∈ N0},

and have no poles for s = −k with k ∈ N0. Similarly, the function

ZN,n(s, w,M ) ·H(s,M )

Γ (−N +
∑n

k=1 sk) ·
∏n−1
k=n−z

∏
{p1,...,pk}∈Ap(k) Γ

(
−m(p1, . . . , pk) +

∑k
j=1 spj

)
extends to an analytic function on Cn ×Dn ×D∗N,n, where

H(s,M ) :=

{ ∏n
j=1 Γ(sj) if z = n− 1

1 if z 6= n− 1
.

The case z = 0 (i.e. Re(aij) > 0 for all i, j) is precisely [FR04, Proposition 2.1], and

the case wj =
∑N

i=1 aij is precisely [Mat03, Theorem 3]. Also note that [FP12, Theorem 3]
does not apply here because

∏n
j=1(wj +x1a1j + · · ·+xNaNj) does not necessarily satisfy

Mahler’s Hypothesis (see [FP12, p. 5]), but we manage to get the same conclusion.
Finally, we would like to mention that the existence of meromorphic continuation of
ζN,n(s, w,M ) can be deduced from D. Essouabri’s work [Ess97, Théorème 2], but our
results are simpler to prove and give more detailed information about the poles that
cannot be deduced from his work. For example, the fact that s = −k is always a regular
value of ζN,n(s, w,M ) for all k ∈ N0 does not seem to follow from [Ess97].

We will first prove the following Lemma:

Lemma 2.2. Let Re(sj) > N , Re(wj) > 0 for j ∈ {1, . . . , n}, and

I(s, w,M ) :=

∫
E

∏n
j=1 e

−wjTj∏N
i=1

(∑n
j=1 aijTj

)f(T )

n∏
j=1

T
sj−1
j dT, (2.1)

where

E := {T ∈ (0,∞)n : T1 ≥ T2 ≥ . . . ≥ Tz+1 and Tz+1 ≥ Tl ∀l ≥ z + 2},

and

f(T ) :=
N∏
i=1

ϕ

 n∑
j=1

aijTj

 , ϕ(r) :=
r

1− e−r
. (2.2)
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Then the function

I(s, w,M )

Γ
(
−N +

∑n
j=1 sj

)
·
∏n
l=z+2 Γ(sl) ·

∏z+1
k=2 Γ

(∑n
j=k sj −

∑z+1
j=k |Fj(M )|

)
extends to an analytic function on Cn ×Dn ×D∗N,n.

Proof. For T ∈ E we set σ1 := T1, σk := Tk/Tk−1 for k ∈ {2, . . . , z + 1}, and µl :=
Tl/Tz+1 for l ∈ {z + 2, . . . , n}. These range over σ1 ∈ (0,∞), σj ∈ (0, 1) for j ∈
{2, . . . , z+ 1} and µl ∈ (0, 1) for l ∈ {z+ 2, . . . , n}. The coordinates Tk can be written as

Tk =
k∏
j=1

σj for k ∈ {1, . . . , z + 1},

and

Tl = µl ·
z+1∏
j=1

σj for l ∈ {z + 2, . . . , n}.

Using the new coordinates we have

n∏
j=1

T
sj−1
j =

z+1∏
j=1

σ
∑n
k=j(sk−1)

j ·
n∏

l=z+2

µsl−1
l ,

and ∂Ti
∂σj

= ∂Ti
∂µj

= 0 for i < j. Therefore the corresponding Jacobian matrix is lower

triangular, and the Jacobian determinant equals

z+1∏
j=1

∂Tj
∂σj
·

n∏
l=z+2

∂Tl
∂µl

=

z+1∏
j=1

(
j−1∏
k=1

σk

)
·

n∏
l=z+2

z+1∏
j=1

σj

 =

z+1∏
j=1

σn−jj .

Lastly, denoting Fj := Fj(M ), note that for fixed j ∈ {1, . . . , z + 1} we have

∏
i∈Fj

 n∑
j=1

aijTj

 =
∏
i∈Fj

aijTj +
n∑

k=j+1

aikTk

 = T
|Fj |
j ·

∏
i∈Fj

aij +
n∑

k=j+1

aik
Tk
Tj

 ,

thus, considering σ′ := (σ2, . . . , σz+1) and µ := (µz+2, . . . , µn), we get

N∏
i=1

 n∑
j=1

aijTj

 =
z+1∏
j=1

∏
i∈Fj

(
n∑
k=1

aikTk

)
=

z+1∏
j=1

T
|Fj |
j ·

z+1∏
j=1

∏
i∈Fj

aij +

n∑
k=j+1

aik
Tk
Tj


=

z+1∏
j=1

σ

∑z+1
k=j |Fk|

j ·
z+1∏
j=1

∏
i∈Fj

aij +

z+1∑
k=j+1

aik

k∏
r=j+1

σr +

z+1∏
r=j+1

σr

n∑
l=z+2

ailµl


︸ ︷︷ ︸

y(σ′,µ)

,
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where we have used that {1, . . . , N} is the disjoint union of the Fj ’s. From the previous
computations, after simplifying, (2.1) becomes

I(s, w,M ) =

∫ ∞
σ1=0

σ
−N−1+

∑n
j=1 sj

1 · e−σ1w1

∫
σ′,µ

g(σ1, σ
′, µ) · p(s, σ′, µ) dσ′ dµ dσ1, (2.3)

where

g(σ1, σ
′, µ) :=

f̃(σ1, σ, µ) ·
∏z+1
j=2 e

−wk
∏j
k=1 σk ·

∏n
l=z+2 e

−wlµl
∏z+1
j=1 σj

y(σ′, µ)
,

with

f̃(σ1, σ
′, µ) :=

N∏
i=1

ϕ

z+1∑
j=1

aij

j∏
k=1

σk +
z+1∏
j=1

σj ·
n∑

l=z+2

ailµl

 ,

∫
σ′,µ

:=

∫ 1

σ2=0
· · ·
∫ 1

σz+1=0

∫ 1

µz+2=0
· · ·
∫ 1

µn=0
, dσ′ := dσ2 · · · dσz+1, dµ := dµz+2 · · · dµn,

and

p(s, σ′, µ) :=
z+1∏
j=2

σ
−1+

∑n
k=j sk−

∑z+1
k=j |Fk|

j ·
n∏

l=z+2

µsl−1
l . (2.4)

Note that g is infinitely differentiable in (σ1, σ
′, µ) on an open neighborhood of [0,∞)×

[0, 1]z×[0, 1]n−z−1 because the numerator is, and the denominator does not vanish because
of condition (1.2) and the fact that aij 6= 0 for j ∈ {1, . . . , n}, i ∈ Fj . Now, using
integration by parts over µn in (2.3), for Re(sj) > N we get∫ 1

µn=0
g(σ1, σ

′, µ) · µsn−1
n dµn

=
g(σ1, σ

′, µz+2, . . . , µn−1, 1)

sn
− 1

sn

∫ 1

µn=0

∂g

∂µn
(σ1, σ

′, µ) · µsnn dµn

=
1

sn

∫ 1

µn=0

(
(sn + 1)g(σ1, σ

′, µz+2, . . . , µn−1, 1)− ∂g

∂µn
(σ1, σ

′, µ)

)
· µsnn dµn

=
1

sn

∫ 1

µn=0
g0(s, σ1, σ

′, µ) · µsnn dµn,

with the obvious definition of g0. Repeating the integration by parts M more times we
get ∫ 1

µn=0
g(σ1, σ

′, µ) · µsn−1
n dµn =

 M∏
p=0

1

sn + p

 · ∫ 1

µn=0
gM (s, σ1, σ

′, µ) · µsn+M
n dµn,

where gM is a finite sum of µn−derivatives of g and some specializations of them at
µn = 1, with coefficients which are monomials in sn. The same procedure applied to the
remaining µ’s and σ’s replaces each µsl−1

l in (2.4) by µsl+Ml . Repeating the integration
by parts over σj (2 ≤ j ≤ z + 1) enough times it also replaces each

σ
−1+

∑n
k=j sk−

∑z+1
k=j |Fk|

j

in (2.4) by

σ
M+

∑n
k=j sk

j .
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We conclude that

I = TM (s)

∫ ∞
σ1=0

σ
−N−1+

∑n
j=1 sj

1 ·e−σ1w1

∫
σ′,µ

g∗(s, σ1, σ
′, µ)·pM (s, σ′, µ) dσ′ dµ dσ1, (2.5)

where

TM (s) :=
n∏

l=z+2

M∏
p=0

1

sl + p
·
z+1∏
j=2

M∏
p=−

∑z+1
k=j |Fk|

1

p+
∑n

k=j sk
, (2.6)

pM (s, σ′, µ) :=
z+1∏
j=2

σ
M+

∑n
k=j sk

j ·
n∏

l=z+2

µsl+Ml , (2.7)

and
g∗(s, σ1, σ

′, µ) =
∑
u

cu(s)du(σ1, σ
′, µ) (2.8)

is again a finite sum, cu are monomials in s and du are partial derivatives of g with respect
to some σj and µl, and some specializations of these at 1.

Now, we use the finite Taylor expansion of du centered at σ1 = 0 with the integral
form of the remainder, to obtain

du(σ1, σ
′, µ)=

M−1∑
l=0

1

l!

∂ldu

∂σl1
(0, σ′, µ)︸ ︷︷ ︸

bu,l(σ′,µ)

·σl1 + σM1 ·
1

M !

∫ 1

0

∂Mdu

∂σM1
(σ1y, σ

′, µ)·(1− y)M−1 dy︸ ︷︷ ︸
ru,M (σ1,σ′,µ)

,

(2.9)
and is clear from their definition that bu,l is bounded and |ru,M | is bounded above for
(σ1, σ

′, µ) ∈ [0,∞)× [0, 1]z × [0, 1]n−z−1 by a polynomial in σ1.

Replacing (2.9) in (2.8), and then all this into (2.5), we get

I=TM (s)
∑
u

cu(s)

(
M−1∑
l=0

Γ(−N + l +
∑n

j=1 sj)

w
−N+l+

∑n
j=1 sj

1

∫
σ′,µ
bu,l(σ

′, µ)·pM (s, σ′, µ) dσ′ dµ

+

∫ ∞
σ1=0

∫
σ′,µ

e−σ1w1 · σM−N−1+
∑n
j=1 sj

1 · ru,M (σ1, σ
′, µ) · pM (s, σ′, µ) dσ′ dµ dσ1

)
.

(2.10)

From the definition (2.6) of TM (s) we have that

TM (s)∏n
l=z+2 Γ(sl) ·

∏z+1
k=2 Γ

(∑n
j=k sj −

∑z+1
j=k |Fj |

)
is analytic, and together with (2.7) and (2.10) we conclude that

I(s, w,M )

Γ
(
−N +

∑n
j=1 sj

)
·
∏n
l=z+2 Γ(sl) ·

∏z+1
k=2 Γ

(∑n
j=k sj −

∑z+1
j=k |Fj |

)
extends analytically to the domain given by

n∑
k=j

Re(sk) > −M − 1 for j ∈ {2, . . . , z + 1},
n∑
j=1

Re(sj) > N −M,

Re(sl) > −M − 1 for l ∈ {z + 2, . . . , n} and (w,M ) ∈ Dn ×D∗N,n.

As M is arbitrary we get the desired result.
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Proof of Theorem 2.1. We follow [FR04] closely. Using the integral definition of the
Γ−function and the absolute convergence of ZN,n(s, w,M ) for s ∈ CN,n and Re(sj) > 0,
we have

ZN,n(s, w,M )

n∏
j=1

Γ(sj) =

∫
[0,∞)n

h(t)

n∏
j=1

t
sj−1
j dt, (2.11)

where

h(t) :=
∞∑

k1,...,kN=0

n∏
j=1

exp(−tj(wj + k1a1j + · · ·+ kNaNj))

=

n∏
j=1

e−wjtj ·
N∏
i=1

 ∞∑
ki=0

exp(−ki(ai1t1 + · · ·+ aintn)


=

∏n
j=1 e

−wjtj∏N
i=1

(∑n
j=1 aijtj

)f(t),

since Re(
∑n

j=1 aijtj) > 0 except on a subset of measure 0 of [0,∞)n, and f(t) is given by
(2.2). For each τ ∈ Inj(z + 1, n) let

Eτ := {t ∈ [0,∞)n : tτ(1) ≥ tτ(2) ≥ . . . ≥ tτ(z+1) and tτ(z+1) ≥ tqτj ∀j ∈ {z + 2, . . . , n}},

where qτj is defined as in Section 2.1. Write

[0,∞)n =
⋃

τ∈Inj(z+1,n)

Eτ ,

where the union is disjoint up to sets of measure 0. With this, (2.11) becomes

ZN,n(s, w,M )

n∏
j=1

Γ(sj) =
∑

τ∈Inj(z+1,n)

∫
Eτ

h(t)

n∏
k=1

tsk−1
k dt =:

∑
τ∈Inj(z+1,n)

Iτ (s, w,M ). (2.12)

For t ∈ Eτ set Tk = tτ(k) for k ∈ {1, . . . , z+ 1} and Tl = tqτl for l ∈ {z+ 2, . . . , n}, so that
the corresponding Jacobian determinant is clearly 1. For each τ ∈ Inj(z + 1, n) we have

Iτ (s, w,M ) = I(sτ , wτ ,M τ ),

where I is as in Lemma 2.2 and M τ is defined as in Section 2.1. Thus

Iτ (s, w,M )

Γ
(
−N +

∑n
j=1 sj

)
·
∏n
l=z+2 Γ(sqτl ) ·

∏z+1
k=2 Γ

(∑z+1
j=k(sτ(j) − |F τj |) +

∑n
l=z+2 sqτl

) ,
extends to an analytic function on Cn ×Dn ×D∗N,n.

We now examine
z+1∏
k=2

Γ

z+1∑
j=k

(sτ(j) − |F τj |) +
n∑

l=z+2

sqτl

 (2.13)

as τ varies. First note that for k = 2 the number of sj ’s that appear inside (2.13) is n−1,
and as k varies we get that all the number of appearances from n − z to n − 1 occur.
With this in mind, for fixed r ∈ {n− z, . . . , n− 1} we choose {p1, . . . , pr} ⊆ {1, . . . , n} a
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subset of indices. Now, note that the previous indices appear inside some factor of (2.13)
if and only if there exists some τ ∈ Inj(z + 1, n) such that {qτz+2, . . . , q

τ
n} ⊆ {p1, . . . , pr},

and the remaining pj ’s are exactly τ(n− r+ 1), τ(n− r+ 2), . . ., τ(z+ 1). For such τ we
conclude that the corresponding number inside (2.13) is the negative of

z+1∑
j=n−r+1

|F τj |. (2.14)

If we take the maximum of (2.14) over all such τ ∈ Inj(z + 1, n) we get m(p1, . . . , pr),
which means that

n−1∏
k=n−z

∏
{p1,...,pk}∈Ap(k)

Γ

−m(p1, . . . , pk) +
k∑
j=1

spj


contains all the poles that appear in (2.13) as τ varies. Similarly, note that∏

j∈{1,...,n} s.t. ∃τ∈Inj(z+1,n)
with j 6∈{τ(1),...,τ(z+1)}

Γ(sj)

contains all the poles that appear in
∏n
l=z+2 Γ(sqτl ) as τ varies. From this discussion and

(2.12) we conclude the result for ZN,n.

If we take sj = s for all j then now we only care how many sj ’s appear inside (2.13),
not which ones, and by a similar argument to the one above we see that ks appears
inside (2.13) for all k ∈ {n − z, . . . , n − 1} and τ ∈ Inj(z + 1, n). Again, for fixed
r ∈ {n − z, . . . , n − 1} the corresponding number inside (2.12) is the negative of (2.14),
and if we take the maximum of (2.14) over all τ ∈ Inj(z + 1, n) we get mr. Putting all
of the above together, we conclude the result for ζN,n. Lastly, for ZN,n we can use the
same trick as in (2.11) to obtain

ZN,n(s, w,M )Γ(s)n =

∫
[0,∞)n

h̃(t)
n∏
j=1

ts−1
j dt,

where

h̃(t) :=

∫
[0,∞)N

n∏
j=1

exp(−tj(wj + x1a1j + · · ·+ xNaNj)) dx

=

∏n
j=1 e

−wjtj∏N
i=1

(∑n
j=1 aijtj

)
and from here on the argument is exactly the same as before, replacing f(t) with 1.

2.3. Consequences of Theorem 2.1

Remark 2.3. Note that, except for a factor of w
−sj
j , (1.4) remains the same if M has a

column of zeros, in which case we can remove that column and obtain a new matrix with
a lower n. Similarly, (1.4) does not change if the rows of M are permuted, and the same
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happens if we permute the columns of M and the corresponding wj ’s accordingly. If after
applying some of these operations to M we obtain a matrix M ′ that can be written as
diagonal blocks M1 ⊕ . . . ⊕Mp, where Mj has Nj rows and nj columns, then we get a
product decomposition

ζN,n(s, w,M ) = ζN1,n1(s, w′1,M1) · . . . · ζNp,np(s, w′p,Mp),

where w′j is obtained from w. If we now apply Theorem 2.1 to each ζNp,np we get better
information about the poles of ζN,n, as we illustrate in the next example:

Example 2.4. If N = 5, n = 7 and

M =


1 1 1 1 0 0 0
1 1 0 0 0 0 0
0 0 0 0 0 1 1
0 0 0 0 1 0 1
0 0 0 0 1 1 0

 ,

then M = M1 ⊕M2, where

M1 =

(
1 1 1 1
1 1 0 0

)
and M2 =

0 1 1
1 0 1
1 1 0

 .

Applying Theorem 2.1 directly to ζ5,7(s, w,M ) we get that z(M ) = 5, m2 = 1, m3 =
m4 = 3 and m5 = m6 = 4, therefore we conclude that ζ5,7(s, w,M ) has at most poles of
order up to 6 at{

1− k
2

: k ∈ N0

}
∪
{

3− k
3

: k ∈ N0

}
∪
{

3− k
4

: k ∈ N0

}
∪
{

4− k
5

: k ∈ N0

}
∪
{

4− k
6

: k ∈ N0

}
∪
{

5− k
7

: k ∈ N0

}
.

(2.15)

On the other hand, applying Theorem 2.1 to ζ2,4(s, (w1, w2, w3, w4),M1) we get z(M1) =
2 and m2 = m3 = 1, so it has at most poles of order 3 at{

1− k
2

: k ∈ N0

}
∪
{

1− k
3

: k ∈ N0

}
∪
{

2− k
4

: k ∈ N0

}
,

and with ζ3,3(s, (w5, w6, w7),M2) we obtain z(M2) = 1 and m2 = 1, therefore it has at
most simple poles at {

1− k
2

: k ∈ N0

}
∪
{

3− k
3

: k ∈ N0

}
.

Finally, we conclude that

ζ5,7(s, w,M ) = ζ2,4(s, (w1, w2, w3, w4),M1) · ζ3,3(s, (w5, w6, w7),M2)

has at most simple poles at s = 1 and s = 2/3, at most poles of order 3 at{
2− k

4
: k ∈ N0

}
,

and at most poles of order 4 at{
1− k

2
: k ∈ N0

}
∪
{

1− k
3

: k ∈ N0

}
,

which is a considerable improvement with respect to what was obtained in (2.15).
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Example 2.5 (Example 1.4 revisited). If N = 2, n = 3, w = (1, 1, 2), and

M =

(
1 0 1
0 1 1

)
,

then

ζ2,3(s, w,M ) = 2−s · ζWSU(3)(s) =
∞∑

k,l=1

1

(kl(k + l))s
. (2.16)

In this case is clear that z = 1 and m2 = 1, therefore from Theorem 2.1 we conclude that
(2.16) extends to a meromorphic function with at most simple poles at{

1

2
− k : k ∈ N0

}
∪
{

1

3
− k : k ∈ N0

}
∪
{

2

3
− k : k ∈ N0

}
.

As we mentioned before, this example was previously studied in [KO13, Ono14, Rom17]
and they proved, among other things, that in fact the only poles are{

2

3

}
∪
{

1

2
− k : k ∈ N0

}
,

and ζ2,3(s, w,M ) = 0 for s = −1,−2,−3, . . ..

We now list some Theorems which are consequences of Theorem 2.1, which apply
with exactly the same proof as in their corresponding articles thanks to the analytical
continuation that we have already developed. We include the proofs and the authors of
each Theorem for the sake of completeness.

Theorem 2.6 (cf. Theorem 4 (1), [FP12]). For s outside the possible set of poles of
ZN,n(s, w,M ) given by Theorem 2.1 and (w,M ) ∈ Dn ×D∗N,n, we have

ZN,n(s, w,M ) =

∫
t∈[0,1]N

ζN,n(s, w +W (t),M ) dt,

where W (x) :=
∑N

i=1 xiai.

Proof. For Re(s) > N the integral and series defining ζN,n and ZN,n are absolutely
convergent. Thus we have∫
t∈[0,1]N

ζN,n(s, w +W (t),M ) dt

=

∫
t∈[0,1]N

∞∑
k1,...,kN=0

n∏
j=1

(wj + (k1 + t1)a1j + · · ·+ (kN + tN )aNj)
−s dt

=

∞∑
k1,...,kN=0

∫
x∈k+[0,1]N

n∏
j=1

(wj + x1a1j + · · ·+ xNaNj)
−s dx

=

∫
x∈[0,∞)N

n∏
j=1

(wj + x1a1j + · · ·+ xNaNj)
−s

= ZN,n(s, w,M ).
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By analytic continuation, the Raabe formula

ZN,n(s, w,M ) =

∫
t∈[0,1]N

ζN,n(s, w +W (t),M ) dt

holds for all s outside the possible set of poles of ZN,n(s, w,M ) given by Theorem 2.1.

Theorem 2.7 (cf. Proposition 3.1, [FR04]). The functions of w = (w1, . . . , wn), defined
for Re(wj) > 0 (1 ≤ j ≤ n), given by

Pkn+N,N,n(w) := ζN,n(−k,w,M ), k ∈ N0

are polynomials of degree at most n(k + 1) − 1 +
∑n

j=1 |Aj |, with Aj as defined in Sec-
tion 1.1.

Proof. Given a multi-index I = (I1, . . . , In) of weight |I| :=
∑n

j=1 Ij , let ∂Jw be the differ-

ential operator ∂|I|

∂w
I1
1 ···∂w

In
n

. For Re(s) > N the series defining ζN,n converges absolutely,

thus direct differentiation yields

∂Iw ζN,n(s, w,M )

= (−1)|I|

 n∏
j=1

Ij−1∏
p=0

(s+ p)

 ∞∑
k1,...,kN=0

n∏
j=1

(wj + k1a1j + · · ·+ kNaNj)
−s−Ij

= (−1)|I|ZN,n((s+ I1, . . . , s+ In), w,M )
n∏
j=1

Ij−1∏
p=0

(s+ p).

(2.17)

The above series converges absolutely for s+ I1 > |A1|, . . . , s + In > |An| by the results
in Section 1.1, thus, by analytic continuation, it represents ∂IwζN,n(−k,w,M ) for I1 ≥
k+ |A1|+ 1, . . . , In ≥ k+ |An|+ 1. Since the product term in (2.17) vanishes for s = −k
and I = (k+ |A1|+ 1, . . . , k+ |An|+ 1), we conclude that ζN,n(−k,w,M ) is a polynomial
in w of degree at most n(k + 1)− 1 +

∑n
j=1 |Aj |.

Finally, we state the following Theorem which is an immediate consequence of Theo-
rem 2.1 and the results of Section 1.3:

Theorem 2.8. Given g a complex semi-simple Lie algebra, let N denote its rank, and
n = |∆+(g)| denote the number of positive roots associated to g. Then ζWg (s) extends to
an analytic function on C, it has at most poles of order n which can only occur among
the rational numbers of the form

s =
N − l
v

, with v ∈ {1, . . . , n} and l ∈ N0 \ {N + kv : k ∈ N0},

and has no poles for s = −k with k ∈ N0.
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