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Classification and Modeling of time series of astronomical data

Abstract

We are living in the era of Big Data, where several tools have been developed to deal with
large amount of data. These technological advances have allowed the rise of the astro-
nomical surveys. These surveys are capable to take observations from the sky and from
them generate information ready to be analyzed. Among the observations available there
are light curves of astronomical objects, such as, variable stars, transients or supernovae.
Generally, the light curves are irregularly measured in time, since it is not always possible
to get observational data from optical telescopes. This issue makes the light curves anal-
ysis an interesting statistical challenge, because there are few statistical tools to analyze
irregular time series. In addition, due to the large amount of light curves available in each
survey, automated processes are also required to analyze all the information efficiently.
Consequently, in this thesis two goals are addressed: the classification of the light curves
from the implementation of data mining algorithms and the temporal modeling of them.

Regarding the classification of light curves, our contribution was to develop a clas-
sifier for RR Lyrae variable stars in the Vista Variables in the Via Lactea (VVV) near-
infrared survey. It is important to detect RR-Lyraes since they are essential to build a
three-dimensional map of the Galactic bulge. In this work, the focus is on RRab type
ab (i.e., fundamental-mode pulsators). The final classifier is built following eight key
steps that include the choice of features, training set, selection of aperture, and family of
classifiers. The best classification performance was obtained by the AdaBoost classifier
which achieves an harmonic mean between false positives and false negatives of ≈ 7%.
The performance is estimated using cross validation and through the comparison with two
independent datasets that were classified by human experts. The classifier implemented
has already made it possible to identify some RRab in the outer bulge and the southern
galactic disk areas of the VVV.

In addition, I worked on modeling light curves. I develop new models to fit irregularly
spaced time series. Currently there are few tools to model this type of time series. One
example is the Continuous Autoregressive model of order one, CAR(1), however some
assumptions must be satisfied in order to use this model. A new alternative to fit irregu-
lar time series, that we call the irregular autoregressive model (IAR model), is proposed.
The IAR model is a discrete representation of the CAR(1) model which provide more
flexibility, since it is not limited by Gaussian time series. However, both the CAR(1)
and IAR model are only able to estimate positive autocorrelations. In order to fit neg-
atively correlated irregular time series a Complex irregular autoregressive model (CIAR
model) was also developed. For both models maximum likelihood estimation procedures
are proposed. Furthermore, the finite sample performance of the parameters estimation is
assessed by Monte Carlo simulations. Finally, for both models some applications are pro-
posed on astronomical data. Applications include the detection of multiperiodic variable
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stars and the verification of the correct estimation of the parameters in models commonly
used to fit astronomical light curves.

Keywords: light curves, variable stars, RR-Lyrae, irregular time series, autoregressive
models, data mining algorithms.
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Chapter 1

Introduction

In the era of Big Data, Astronomy is undergoing a major revolution. Due to the advances
in technology the astronomical surveys have evolved from taking observations of small
and focused areas of the sky (for example OGLE [68] and HIPPARCOS [28]) to wide-
field surveys (for example VVV [48]).

The Large Synoptic Survey Telescope (LSST) is one of the upcoming big challenge
in astronomy. It will take a full picture of the whole sky every three nights. This survey
is designed to conduct a ten-year survey of the dynamic universe, from 2022 - 2032. This
project will generate a huge amount of data posing important challenges that require the
expertise from diverse disciplines such as for example Statistics, Informatics and Astron-
omy. All this data will be available to the community of astronomers living in Chile.

Therefore, in order to face the challenges of the LSST, the Millennium Institute of
Astrophysics (MAS) was created. The MAS has gathered over a hundred researchers and
students from five prestigious Chilean Universities.

The MAS is divided into five research lines, where one of them is Astrostatistics &
Astroinformatics. The role of astro-statisticians is to provide models and tools to process
large datasets and extract valuable knowledge from them. For example, data mining and
machine learning algorithms will allow us to automate processes necessary to analyze all
fields observed by a specific astronomical survey in a short time.

Some astronomical data available for statistical analysis are light curves, which repre-
sent the temporal variations of the brightness of an astronomical object. The light curves
can represent the brightness of variable stars, the transit of an extrasolar planet or a super-
novae. Light curves analysis offers many astronomical and statistical challenges.

For astronomers, light curves analysis allow to study the dynamic properties of an
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object. For example, light curves can differ in the degree of change in magnitude, in the
degree of regularity from one cycle to the next and in the length of the cycle (period).
These properties can be related to physical properties of the system, like rotation and bi-
nary period. These dynamic properties allow the astronomers, for example, to identify
the class of a specific variable star only by inspecting the temporal behavior of a star.

For statisticians, light curves consist on a time series of the brightness variation of
stars. Generally, this time series are irregularly measured in time, since it is not always
possible to get observational data from optical telescopes, because its dependency, for
example, on clear skies. Working with irregular time series is an important statistical
challenge because there are still few robust statistical tools to analyze unequally spaced
time series. Some examples are in the estimation of the spectrum of an irregular time
series using the Lomb-Scargle periodogram (Zechmeister & Kürster 2009) [74]) or the
continuous-time autoregressive moving average (CARMA) models to fit irregular time
series (Kelly et al. (2014) [43]).

In this thesis my focus is to provide new methods to analyze light curves of variable
stars. This is performed following two approaches, the classification of light curves from
the implementation of data mining algorithms and the temporal modeling of them. The
challenges that will be addressed in both approaches are shown in Figure 1.1.

Regarding the classification of variable stars, the main aim is to build automated pro-
cedures to classify pulsating variable stars from the VVV survey, such as RR Lyraes and
Cepheids. The basic idea is that the classifiers that are implemented must be useful for
the astronomers in the process of searching pulsating stars within the VVV observation
area. Finding pulsating variable stars in the VVV is particularly interesting, since they are
essential to determine the three-dimensional structure of our Galaxy.

In order to build the classifier, I followed the procedure proposed by Debosscher et al.
(2007) [23], Dubath et al. (2011) [26], Richards et al. (2011) [56]. The basic idea is to
compute characteristics or features of the variable stars from an harmonic model fitted to
them. Later, the set of features computed for the variable stars in the training set are used
as input in the supervised data mining algorithms.

Some additional aims in the classifier construction were addressed. First, to provide
new features specifically designed to better characterize the temporal behavior of the pul-
sating classes. Second, the data mining algorithm used generally for classification prob-
lems in Astronomy is the Random Forest. I looked for an alternative from a wide variety
of state-of-the-art data mining algorithms.
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Another purpose of this thesis, is to provide new methods to the modeling of irregular
time series. Currently, the light curves are fitted using the CARMA family of models.
Particularly, using the CAR(1) model is possible to estimate the autocorrelation of a ir-
regularly sampled time series. However, the CAR(1) model have some assumptions, e.g.,
Gaussian distribution and continuous white noise. In this work, a more flexible alternative
to fit irregularly sampled time series is introduced. This model is called the irregular au-
toregressive model (IAR model), which is a discrete representation of the CAR(1) model.
This model is more flexible than the CAR(1) model, since it allows non-Gaussian dis-
tributed data.

Furthermore, both CAR(1) and IAR models are only able to estimate positive auto-
correlation. That is a limitation compared to the regular autoregressive model which can
detect both positive and negative time dependencies. In order to address this constraint,
a second model, called the complex irregular autoregressive model (CIAR), is proposed.
This model is an extension of the irregular autoregressive model that allows to estimate
both positive and negative autocorrelation.

In this work, these models are applied in the analysis of astronomical light curves.
The light curves are generally modeled using a parametric model that assumes indepen-
dent and homoscedastic errors. However, these assumptions are not necessarily satisfied,
since in many cases there remain a temporal dependency structure on the errors. Here
the aim of the irregular time series models is to verify whether the parametric model is
capable to describe all the temporal structure of the light curves.

Consequently, in this thesis we present automated and efficient computational meth-
ods under a solid statistical framework applied to solve common problems in the analysis
of astronomical data. The structure of this thesis is as follows. In the following section
of this chapter the purpose of the study is given. In Chapter 2 the literature on both as-
tronomy and statistical background is reviewed, putting the main emphasis in describing
the machine learning algorithms and the methods used currently to model irregular time
series.

In Chapter 3 I describe the procedure to build a machine learning classifier for the
light curves of variable stars. This procedure is presented in eight key steps. The first half
corresponds with the data cleaning and the feature extraction steps. The second half of
the procedure corresponds to the implementation of two different classifiers, one for the
RRab and other for the Cepheids. In both cases, the optimization of machine learning
algorithms, the selection of the most important features and assessing the performance of
the trained classifier are presented, putting some emphasis in the challenges to build each
classifier in the VVV.
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Light Curves Analysis

.

Classification Challenges:

• Classification in NIR

• Provide New Features

• Propose Data Mining Algorithms

.

Modeling Challenges:

• Detect Temporal Dependencies

• Provide a New Flexible Model

Figure 1.1: Statistical challenges in the light curves analysis addressed in this work

In Chapter 4 we present new and flexible methods to model the irregular time series,
which are the irregular autoregressive model (IAR) and the Complex irregular autoregres-
sive model (CIAR). In both cases the estimation procedure is described. In addition, the
performance of the maximum likelihood estimators is assessed via Monte Carlo simula-
tions. Some applications in astronomical data of both models are also presented. Finally,
in Chapter 5, the conclusions and future works are drawn.

1.1 Purpose of the study

1.1.1 General objective

Provide statistical methods with a robust framework to analyze efficiently a large number
of light curves for astronomical data observed using surveys such as OGLE, HIPPARCOS
and the VVV.

1.1.2 Specific objectives

1. To build an automated procedure to classify RR Lyrae type ab stars from the VVV
survey.

2. To assess the performance of the classifier on different datasets in which flux mea-
surements do not necessarily follow the same conditions in cadence, depth, etc. as
our training set.
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3. To propose an irregular autoregressive time series model to detect time dependen-
cies on the light curves of astronomical data under a solid statistical framework.

4. To extend the irregular autoregressive model to allow the data to come from other
statistical distributions and to detect negative time dependencies.
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Chapter 2

Literature Review

2.1 Astronomical Background

Since mankind look at the sky for the first time we have tried to find an explanation to
the mysteries of the universe. Over the course of thousand years of our history several
scientists, e.g., Aristotle, Nicolaus Copernicus, Johannes Kepler, Galileo, Isaac Newton
and Albert Einstein have made significant contributions to explain the astronomical phe-
nomena.

These contributions start in the third century when Aristotle believed that the Earth
was at the center of the universe. Later Copernicus proposed that the Sun, not the Earth,
was the center of the Solar System. In the early 1600s, Kepler proposed three laws that
describe the motion of planets around the Sun. Galileo was the first to use systematically
a telescope to observe celestial objects, this allows him to discover the phases of Venus.
Sir Isaac Newton improves the Kepler laws of motion and developed the theory of uni-
versal gravity. Finally, Einstein developed the theory of general relativity in 1915, which
describes how mass and space are related to each other. This theory has been fundamental
to better understand astronomical phenomena such as the black holes.

All these contributions have allowed us to better understand how the universe works.
Nowadays, we live in the era of the astronomical surveys. Due to the availability of pow-
erful computers, these surveys are capable to take observations from the sky and from
them generate a great amount of information ready to be analyzed by the astronomers.

Several scientists from different areas have been attracted by this large amount of in-
formation available. Consequently, in this era networks of interdisciplinary collaboration
have been created in order to analyze all the available data. These networks are generally
composed by astronomers, statisticians, informatics and other related scientists.
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All this available data allows us to study and detect patterns of several astronomical
objects that are of interest like the stars, planets, supernovas and other variables phe-
nomena. The statistical challenge here, is to provide methods that allow us to analyze
efficiently the available information.

Particularly, in this work are addressed two main issues. First, the implementation of
an automated procedure to classify variable stars in the VVV survey. The most important
challenge related to the classifier is to propose a data mining procedure that considers
steps of data cleaning, data transformation and assessment of the implemented classifica-
tion models. In addition, it is important to test alternative classification methods to the
well-known Random Forest algorithm, commonly used to address this problem.

Secondly, the modeling of astronomical time series is another important topic to ad-
dress. In astronomy it is common to find irregular time series because some conditions
must be met to take observations of the sky. Nowadays, there are few methods for mod-
eling irregularly sampled time series. In this work has been made a contribution in this
sense, providing new models to fit irregularly sampled time series. The details of each
method will be discussed in the following chapters of this thesis. However, some impor-
tant concepts must be explained previously.

2.1.1 Light curves
Astronomical observations are taken from a region of the sky. From each region observa-
tions are obtained several times, which produces a sequence of images in time.

Photometry is the technique of astronomy that allows precise measurement of the
brightness of an astronomical object from an image. Historically, several methods have
been used to perform the photometry. The last revolution in this sense, came with the rise
of the CCD technology.

Using photometry on a sequence of images taken for an astronomical object, a tem-
poral sequence of the brightness measurements can be obtained. This time sequence of
brightness measurements is called the light curve of the astronomical object. Conse-
quently, we can define the light curve as a time series of its brightness variations. The
light curve allows to follow the behavior of a specific astronomical object through the
time.

Additionally, we can define the apparent magnitude as the brightness of an object as
it appears to you. Changes in magnitude are in logarithmic scale, i.e., each magnitude
means factor of 2.512 in brightness, according to a brightness ranking, originally devel-
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oped by Hipparchos (140 AD).

Generally, the light curves are plotted using the apparent magnitude in axis y and the
Julian date in axis x. If the astronomical object is periodic, and the period is known,
it becomes useful to plot a phased light curve. The phase ϕ of an observation can be
computed as,

ϕ =

(
t − t0

p

)
− E(t) (2.1.1)

where t0 is the reference time, t is the time when the observation was taken, p is the period
of the light curve and E(t) is the integer part of t−t0

p , sometimes called as the epoch. The
phase generally is expressed as the fraction of the star cycle, taking values in the interval
[0,1].

2.1.2 Variable Stars
A variable star is a star whose brightness magnitude fluctuates. Historically, variable stars
have been the main tool for determining the content and structure of stellar systems and
have had a crucial role in the history of Astronomy. Among these stars, we can differ-
entiate two types depending on whether the process creating the observed variability is
inherent to the star (intrinsic variation) or not (extrinsic variation.) The General Catalog
of Variable Stars (Samus et al. 2009 [58]) lists over 110 classes and subclasses based on
a variety of criteria.

In Figure 2.1 is shown a ‘Variability tree’ (from Eyer & Mowlavi, 2008 [29]), which
gives a visual summary of several of the different types of variable phenomena that may
be found in astronomy, in this diagram four division levels are introduced. In the first
level are the “classical” division between extrinsic and intrinsic variables. In the second
level a distinction is made according to the type of object, being either asteroids, stars, or
galaxies.

The third level identifies the phenomenon at the origin of the variability. In the group
with extrinsic variability, the phenomena considered are the rotation, microlensing effects
and eclipses by a companion or by a foreground object. Among the former, are the eclips-
ing binaries. The eclipsing binaries are a system in which two stars orbiting a common
center of mass. This type of variable stars is composed by the classes Ellipsoidal (ELL),
Beta Persei (EA), Beta Lyrae (EB) and the W Ursae Maj (EW).

Among the intrinsic variable objects one finds the eruptive variables, the cataclysmic
variables, the rotational variables and finally the pulsating variables. Arguably the most
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important group among the intrinsic variables is that of pulsating variables because it con-
tains the RR Lyrae and Cepheids classes, which satisfy a relation between their periods
and absolute luminosities that allow to estimate distances, a quantity both fundamental
and elusive in Astronomy. For a current review of the physics and phenomenology of
pulsating stars, we refer to the recent monograph by Catelan & Smith (2015) [16].

Figure 2.1: ‘Variability tree’ showing the many different types of stellar (and non-stellar)
phenomena that are found in astronomy, (from Eyer & Mowlavi, 2008 [29]).

Many classes of variable stars can also be divided into subclasses. For example, the
RR-Lyraes are divided between RR Lyrae types ab and c (sometimes alternatively termed
RR0 and RR1, respectively) if the stars pulsate in the fundamental radial mode or in the
first-overtone radial mode respectively. The main difference between these subclasses of
RR-Lyrae is that the RRab have longer pulsation periods and asymmetric light curves,
while the RRc have shorter pulsation periods and almost sinusoidal light curves.

The Cepheids can also be divided in the Classical Cepheids (Type I) and the Type II.
The different Cepheids types obey different period-luminosity relations. In general, Type
I Cepheids are brighter than Type II Cepheids, if both have the same period.
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In addition, it is well known that the Cepheids and RR-Lyraes have multi-periodic
subclasses such as DMCEP (Double-Mode Cepheid) and RRD (Double-Mode RR-Lyrae)
respectively (Moskalik, 2014 [49]). Table 2.1 shows a briefly description of the most com-
mon variable stars with its respective observational properties,

Table 2.1: Most common pulsating variable stars and their amplitudes (in magnitude)
and periods (in days) (from Eyer & Mowlavi, 2008 [29]).

Class name Period (Days) Amplitude (mag)
Cepheids 2-70 0.1-1.5
RR Lyrae 0.2-1.1 0.2-2

SR-MIRA 50-1000 up to 8
SPB 0.5-5 up to 0.03

RVTau 30-150 1-3
δ-Scuti 0.02-0.25 up to few 0.1

As mentioned in the previous chapter, in this thesis most of the analysis will be done
on the light curves of variable stars, so it is very important to have cleared these concepts
to understand the subsequent results. The data of the light curves of several stars (variables
and non-variables) can be extracted from different astronomical surveys. In this work the
information sources that will be used are the OGLE, HIPPARCOS and the VVV survey
whose characteristics will be described below.

2.1.3 Astronomical Surveys
2.1.3.1 OGLE and HIPPARCOS Survey

The Optical Gravitational Lensing Experiment (OGLE) is a ground-based survey from
Las Campanas Observatory covering fields in the Magellanic Clouds and Galactic bulge.
The OGLE survey began regular sky monitoring on April 12, 1992 as one of the first-
generation microlensing sky surveys. The project is now in its fourth phase.

The first phase of the project (OGLE-1) started in 1992 (Udalski et al, 1992 [67])
and observations were continued for four consecutive observing seasons through 1995.
The OGLE-II survey collected data from January 1997 to December 2000 (Udalski et al,
1997 [68]). On June 12, 2001 regular observations of the OGLE-III phase began (Udalski
2003b) and ended in May 2009. Finally, the OGLE-IV survey began regular observations
of the sky on the night of March 4/5, 2010 (Udalski et al, 2015 [69])). Since 1997 obser-
vations have been conducted with the modern automated 1.3 m Warsaw telescope at the
Las Campanas Observatory, Chile.
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Throughout the 25-year history of OGLE it has been discovered hundreds of thou-
sands of pulsating stars. Most of the observations are collected in the I-band filter with a
number of collected epochs between 120-150 in OGLE-IV (Udalski, 2017 [70]).

Hipparcos (The High Precision Parallax Collecting Satellite) Space Astrometry Mis-
sion (Perryman et al. 1997 [28]) was an ESA project designed to precisely measure the
positions of more than one hundred thousand stars. Launched in August 1989, Hipparcos
successfully observed the celestial sphere for 3.5 years before operations ceased in March
1993. Among the 118218 stars measured by Hipparcos, 11597 were found to be (possi-
bly) variable. Of these more than 8000 were new.

2.1.3.2 VVV ESO Public Survey

The Vista Variables in the Via Lactea (VVV) is an ESO public survey that is performing
a variability survey of the Galactic bulge and part of the inner disk using ESO’s Visible
and Infrared Survey Telescope for Astronomy (VISTA), a 4m-class telescope operated by
ESO and located at Cerro Paranal, Chile. The VISTA Telescope has started the observa-
tions in February 2010 and has finished in October 2015, in this time it took 1929 hours
of observation. The sky area covered by the survey was of 520 deg2 (Fig.1 2.2), where
there are 109 point sources, an estimated ∼ 106 − 107 variable stars, 33 known globular
clusters and approximately 350 open clusters.

Unlike optical surveys such as OGLE and HIPPARCOS, the VVV is characterized by
using near-infrared filters (Z, Y, J, H and Ks) (NIR). The size of an uniformly covered
field (also called a “tile”) is 1,501 deg2 , hence the VVV Survey requires a total of 348
such “tiles” to cover the survey area (see (Fig 2.3)), a total of 196 tiles are needed to map
the bulge area and 152 tiles for the disk.

Aperture photometry of VVV sources is performed on single detector frame stacks
provided by the VISTA Data Flow System (Irwin et al. 2004 [39]) of the Cambridge
Astronomy Survey Unit (CASU). A series of flux-corrected circular apertures are used as
detailed in previous publications (Catelan et al. 2013 [17]; Dekany et al. 2015 [24]). The
smallest 5 apertures, which we denoted as 1, 2, 3, 4, 5, are extracted in aperture radii of
{0.5, 1/

√
2, 1,

√
2, 2} arcsec.

The final products will be a deep NIR atlas in five passbands. One of the main goals
is to gain insight into the inner Milky Way origin, structure, and evolution. This will
be achieved, for instance, by obtaining a precise three-dimensional map of the Galactic
bulge. To achieve this goal, the pulsating stars like Cepheids or RR-Lyrae are of particu-
lar importance, for example, there are many RR Lyrae in the direction of the bulge and,
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Figure 2.2: 2MASS map of the inner Milky Way showing the VVV bulge (solid box,
−10o < l < +10o and −10o < b < +5o) and plane survey areas (dotted box, −65o < l < 10o

and −2o < b < +2o), (from Minniti, 2010 [48]).

Figure 2.3: VVV Survey Area Tile Numbers Galactic Coordinates (from Catelan et al.
2013 [17]).

because they are very old, they are fossil records of the formation history of the Milky
Way. For a detailed account of the VVV see Minniti et al. (2010) [48], and for a recent
status updated with emphasis on variability see Catelan et al. (2014) [18].

With the information extracted from the VVV, OGLE and HIPPARCOS surveys, cata-
logues of known variable stars have been created, which will be useful to test the classifi-
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cation and modeling methods that will be proposed in this work. The main idea is to have
previously certified tools that allows us to be prepared when future synoptic studies such
as the Large Scale Synoptic Telescope (LSST, Ivezic et 2008 [40]) become operational.

The Large Synoptic Survey Telescope (LSST) is the upcoming big challenge in as-
tronomy, this survey is designed to conduct a ten-year survey of the dynamic universe
from 2022 - 2032. Among its main goals is to define more precisely the structure and
formation of our home galaxy, the Milky Way and cataloging the solar system.
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2.2 Time Series Background

In the study of astronomical data, the time series tools have been widely used to explain
the temporal behavior of the flux of astronomical objects such as, variable stars, transients
or supernovae. This is useful since these objects can be characterized from its temporal
behavior. For example, from a suitable time series model, can be derived a set of features
able to distinguish between different types of variable stars.

The astronomical observations are generally obtained at irregular time gaps due to
some conditions must be met to be able to observe in the optical telescopes, for example,
that the sky is clear. This implies several statistical challenges because there are few sta-
tistical tools specifically developed to work with unequally spaced time series.

A time series can be defined as a real valued sequence of observations Yn with n =
1, . . . ,N measured in observational times tn such that the sequence t1, . . . , tN is strictly
increasing. A time series is called regular if the distance of consecutive times t j − t j−1 is
constant, whereas if this distance is not constant, the time series is called irregular.

Another basic distinction can be made between the time series tools depending on the
domain in which they operate. First the time domain methods will be reviewed.

2.2.1 Analysis in Time Domain

First, I will introduce some basic ideas of the time series analysis. Among the most
important concepts in time series are the following:

• Strict stationarity: A stochastic process Yt is strictly stationary (or strongly sta-
tionary) if each joint distribution F of a finite sequence of length n (Y1,Y2, . . . , Yn)
is invariant to a translation in k times, i.e.,

F(Yk+1,Yk+2, . . . , Yk+n) = F(Y1, Y2, . . . , Yn) ∀n, k ∈ Z

• Weak stationarity: A stochastic process Yt is weakly stationary (or second-order
stationarity) if,

1. E[Yt] = µ < ∞ ∀t ∈ T
2. V[Yt] = σ2 < ∞ ∀t ∈ T
3. There exists a function γ(.) such that Cov(Yt,Ys) = γ(t − s) ∀t, s ∈ T
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It is easy to check that if Yt is strictly stationary and E(Y2
t ) < ∞ ∀t then Yt is also

weakly stationary [11].

• Autocovariance function Let Yt be a weakly stationary process. The autocovari-
ance function (ACVF) of Yt at lag k is,

γ(k) = Cov(Yt,Yt−k)

• Autocorrelation function The autocorrelation function (ACF) of Yt at lag k is,

ρ(k) =
γ(k)
γ(0)

• White Noise A weakly stationary sequence ϵt is called white noise if all observa-
tions of this sequence are uncorrelated. If the mean of ϵt are 0 then the sequence
can be denoted ϵt ∼ WN(0, σ2).

Time series models can be implemented under two scenarios. When the observations
are measured regularly or irregularly in time. The basic time series processes are defined
in the regular case. The most common model used to fit a weakly stationary time series is
the ARMA(p,q) model.

2.2.1.1 ARMA Models

Yt is an ARMA(p,q) process, if Yt is weakly stationary and can be written as,

Yt − ϕ1Yt−1 − . . . − ϕpYt−p = ϵt + θ1ϵt−1 + . . . + θqϵt−q (2.2.1)

where ϵt ∼ WN(0, σ2). In addition, let Φ(B) = (1 − ϕ1B − . . . − ϕpBp) and Θ(B) =
(1 + θ1B + . . . + θqBq) the autoregressive polynomial and the moving-average polynomial
respectively. The process is well defined if Φ(B) and Θ(B) have no common factors.

A condition for which a stationary solution of 2.2.1 exists is that the zeros of the
autoregressive polynomial Φ(B) = (1 − ϕ1B − . . . − ϕpBp) are located outside of the unit
circle. Some particular cases of the ARMA models can be defined, for example,

• Autoregressive process (AR). If Yt is an ARMA(p,q) process with q = 0, then
Yt ∼ AR(p) and can be written as,

Yt − ϕ1Yt−1 − . . . − ϕpYt−p = ϵt (2.2.2)



xxxiii

• Moving-Average process (MA). If Yt is an ARMA(p,q) process with p = 0, then
Yt ∼ MA(q) and can be written as,

Yt = ϵt + θ1ϵt−1 + . . . + θqϵt−q (2.2.3)

The ARMA(p,q) process can be estimated by maximum likelihood. Let the obser-
vations equally spaced on time Y = (Y1, . . . , Yn)′ have a Gaussian distribution, with the
follow covariance matrix,

Γλ = (γ(i − j))n
i, j=1 = (Cov(Yi,Y j))n

i, j=1

with λ = (ϕ1, . . . , ϕp, θ1, . . . , θq, σ
2)′ is the parameter vector of the model. The likeli-

hood of Y is,

L(λ) = (2π)−n/2|Γλ|−1/2 exp
{
−1

2
Y ′Γ−1

λ Y
}

.
From Section 5.2 of Brockwell and Davis [11] the maximum likelihood estimator λ̂ is

asymptotically normal.

2.2.1.2 ARFIMA Models

The ARMA model is a particular case of the general linear process. Another particular
class of linear time series is called long memory processes. On the contrary of the ARMA
models, the long-memory processes are characterized by an autocovariance function not
absolutely summable, i.e. , the autocovariance function γ(k) is such that,

∞∑
k=−∞
|γ(k)| = ∞

A well-known class of long-memory models is the autoregressive fractionally inte-
grated moving-average (ARFIMA) processes. An ARFIMA process Yt may be defined
by,

Φ(B)Yt = Θ(B)(1 − B)−dϵt (2.2.4)

where Φ(B) and Θ(B) are the autoregressive polynomial and the moving-average polyno-
mial respectively. In addition, (1 − B)−d is a fractional differencing operator defined by
the binomial expansion,

(1 − B)−d =

∞∑
j=0

η jB j (2.2.5)
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where

η j =
Γ( j + d)
Γ( j + 1)Γ(d)

for d < 1
2 , d , 0,−1,−2, . . . and ϵt is a white noise sequence with finite variance. If

the process (2.2.4) satisfy that d ∈ (−1, 1
2 ), and the polynomials Φ(B) and Θ(B) have no

common zeros, then the stationarity, causality and invertibility of an ARFIMA model can
be established.

Each time series model reviewed previously may be represented in many different
forms. Some examples are the Wold expansion, the autoregressive expansion and the
state space systems. Here, I will focus in the state-space system, since it will be very
useful later on.

2.2.1.3 State-Space Systems

A linear state space system may be described by the following equations,

Xt = Ft−1Xt−1 + Vt−1 (2.2.6)

Yt = GXt +Wt (2.2.7)

where (2.2.6) is known as the state equation which determines a v−dimensional state vari-
able Xt and the second equation (2.2.7) is called the observation equation, which expresses
the w−dimensional observation Yt. In addition, Ft is a sequence of v × v called the transi-
tion matrix, G ∈ Rw×v is the observation linear operator of the observation matrix. Finally,
Wt ∼ WN(0,Rt), Vt ∼ WN(0,Qt) and Vt is uncorrelated with Wt.

Properties

• Stability

A state space system is said to be stable if Fn
t converges to zero as n tends to ∞. If

λ is an eigenvalue of Ft associated to the eigenvector x, then Fn
t x = λnx. Thus, if

the eigenvalues of Ft satisfy |λ| < 1 then λn → 0 as n increases. Consequently, Fnx
also converges to zero as n→ ∞.

In the stable case the equations (2.2.9) have the unique stationary solution given by

Xt =

∞∑
j=0

F j
t Vt− j−1
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The corresponding sequence of observations

Yt = Wt +

∞∑
j=0

GF j
t Vt− j−1

is also stationary.

• Hankel Matrix

Suppose that ψ0 = 1 and ψ j = GF j−1 ∈ R for all j > 0 such that
∑∞

j=0 ψ
2
j < ∞. Then

from (2.2.6)- (2.2.7), the process Yt may be written as the Wold expansion

Yt =

∞∑
j=0

ψ2
jϵt− j

This linear process can be characterized by the Hankel matrix given by

H =


ψ1 ψ2 ψ3 . . .
ψ2 ψ3 ψ4 . . .
ψ3 ψ4 ψ5 . . .
...

...
...

...


Since the state space representation of a linear regular process is not necessarily
unique, one may ask what the minimal dimension of the state vector is. In order to
answer this question it is necessary to introduce the concepts of observability and
controllability.

• Observability

Let O = (G′, F′tG
′, F′2t G′, . . .)′ be the observability matrix. The system (2.2.6)-

(2.2.7) is said to be observable if and only if O is full rank or, equivalently, O′O is
invertible.

The definition of observability is related to the problem of determining the value of
the unobserved initial state x0 from a trajectory of the observed process {y0, y1, . . .}
in the absence of state or observational noise.
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• Controllability

Consider the case where the state error is written in terms of the observation so that
Vt = HWt and the state space model can be expressed as,

Xt+1 = FtXt + HWt (2.2.8)

Yt = GXt +Wt (2.2.9)

Let C = (H, FtH, F2
t H, . . .) be the controllability matrix. The system (2.2.8)- (2.2.9)

is controllable if C is full rank or, C′C is invertible.

• Minimality

A state space system is minimal if Ft is of minimal dimension among all represen-
tations of the linear process (3.3). A state space system is minimal if and only if it
is observable and controllable.

The estimation of the state space models can be performed by the following Kalman
recursive equations. For the state-space model (2.2.6)- (2.2.7), the one-step predictors
X̂t = Pt−1(Xt) and their error covariance matrices Σt = E[(Xt − X̂t)(Xt − X̂t)′] are unique
and determined by the initial conditions

X̂1 = P(X1|Y0), Σ1 = E[(X1 − X̂1)(X1 − X̂1)′]

And the recursions, for t = 1, . . .

Λt = GtΩtG′t + Rt (2.2.10)

Θt = FtΩtG′t (2.2.11)

Ωt+1 = FtΩtF′t + Qt − ΘtΛ
−1
t Θ

′
t (2.2.12)

νt = Yt −GtX̂t (2.2.13)

X̂t+1 = FtX̂t + ΘtΛ
−1
t νt (2.2.14)

where {νt} is called the innovation sequence.

The optimization of the parameters in Kalman recursion was made by minimizing the
reduced likelihood defined as,
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ℓ(ϕ) ∝ 1
n

n∑
t=1

(
log(Λt) +

ν2
t

Λt

)
So far, I have introduced the methods to analyze regular time series. Suppose now a

sequence of observational times and values (tn,Yn) such that the series t1, . . . , tN is strictly
increasing and the distance between consecutive times, t j − t j−1 is not constant ∀ j =
1, . . . ,N, i.e., henceforth it will be assumed that Y1, . . . , YN was irregularly measured in
time. Generally, when a time series is measured in continuous time, the notation changes
slightly, writing Y(t) rather than Yt. An usual approach to fit irregular time series is using
the continuous-time autoregressive moving average (CARMA) models

2.2.1.4 CARMA Models

Continuous-time ARMA processes are defined in terms of stochastic differential equa-
tions analogous to the difference equations that are used to define discrete-time ARMA
processes. The continuous time AR(1) (CAR (1)) process is defined as a stationary solu-
tion of the first-order stochastic differential equation.

d
dt

Y(t) + α0Y(t) = σν(t) + β (2.2.15)

where ν(t) is the continuous time white noise, α0 and β are unknown parameters of the
model. In addition, ν(t) = d

dt B(t), where B(t) is the standard Brownian motion or Wiener
process. The derivative of B(t) does not exist in the usual sense, so equation (2.2.15) is
interpreted as an Itô differential equation,

dY(t) + α0Y(t)dt = σdB(t) + βdt, t > 0, (2.2.16)

with dY(t) and dB(t) denoting the increments of Y and B in the interval (t, t+dt) and Y(0)
a random variable with finite variance, independent of {B(t)}. The solution of (2.2.16) can
be written as,

Y(t) = e−α0tY(0) + σ
∫ t

0
e−α0(t−u)dB(u) + β

∫ t

0
e−α0(t−u)du

or equivalently,

Y(t) = e−α0tY(0) + e−α0tI(t) + βe−α0t
∫ t

0
eα0udu (2.2.17)

where I(t) = σ
∫ t

0
eα0udB(u) is an Itô integral satisfying E(I(t)) = 0 and Cov(I(t+h), I(t)) =

σ2
∫ t

0
e2α0udu for all t ≥ 0 and h > 0. It can be shown that necessary and sufficient

conditions for {Y(t)} to be stationary are α0 > 0, E(Y(0)) = β/α0 and V(Y(0)) = σ2/(2α0).
In addition, under these conditions
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E(Y(t)) = β/α0 Cov(Y(t + h),Y(t)) =
σ2

2α0
e−α0h

Further, if Y(0) ∼ N
(
β/α0, σ

2/(2α0)
)
, then the CAR(1) process is also Gaussian and

strictly stationary.

If a > 0 and 0 ≤ s ≤ t, it follows from (2.2.17) that Y(t) can be expressed as,

Y(t) = e−α0(t−s)Y(s) +
β

α0

(
1 − e−α0(t−s)

)
+ e−α0t(I(t) − I(s)) (2.2.18)

or equivalently,

Y(t) − β

α0
= e−α0(t−s)

(
Y(s) − β

α0

)
+ e−α0t(I(t) − I(s)) (2.2.19)

We can be extending the model (2.2.15) to a standard continuous time autoregressive
model of order (p) (CAR(p)) process {Y(t)}:

DpY(t) + α1Dp−1Y(t) + . . . + αpY(t) = β0DB(t) (2.2.20)

It is useful to represent this equation in operator notation as α(D)Y(t) = B(t) where,

α(D) = Dp + α1Dp−1 + . . . + αp−1D + αp (2.2.21)

A parameterization used by Jones (1981) [41] was based on the zeros r1, . . . , rp of
α(D) such that

α(D) =
p∏

i=1

(D − ri)

The necessary and sufficient condition for the stationarity of the model is that all the
zeros have negative real parts.

In Belcher et al, (1994) [6] it is defined a new parameterization, where the old param-
eters αi may be constructed from the new parameters ϕi. The link between the α and ϕ
parameters is given by,

β(D) = β0Dp + β1Dp−1 + . . . + βp−1D + βp =

p∑
i=0

ϕi(1 − D/κ)i(1 + D/κ)p−i (2.2.22)

where κ is a scale parameter and we take ϕ0 = 1. Thus the βi are linear combinations of
the ϕi. Now let α(s) = β(s)/β0 so that αi = βi/β0. In a CAR(1) model we can prove that
α1 = κ

(1+ϕ1)
(1−ϕ1) . The function car of the R packages cts ([73]) estimates the reparametrized
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autoregressive parameters ϕi.

Finally, we define a zero-mean CARMA(p,q) process {Y(t)} (with 0 ≤ q < p) to be a
stationary solution of the pth-order linear differential equation,

DpY(t) + α1Dp−1Y(t) + . . . + αpY(t) = β0DB(t) + β1D2B(t) + . . . + βqDq+1B(t) (2.2.23)

where D( j) denotes j-fold differentiation with respect to t. Since the derivatives D jB(t),
j > 0, do not exist in the usual sense, we interpret (2.2.23) as being equivalent to the
state-space system.

As mentioned above, the time series methods can be distinguished according to the
domain in which works. As the methods which works in time domain were already re-
vised, now the methods that operate in the frequency domain will be seen. Here also the
distinction between regular and irregular time series will be made.

2.2.2 Analysis in Frequency Domain
Frequency-domain methods are based in the discrete Fourier transform. The main dif-
ference with the time-domain analysis is that these methods are based on the correlation
function, while the Frequency-domain methods analyze the response of the process to
given set of frequencies. This type of analysis is also called spectral analysis.

2.2.2.1 Spectral Analysis in regular case

Let ω denote the frequency, such that −π < ω < π, and let P denote the period, such that
P = 2π

ω
. Given a time series {Yt}, the spectrum is defined to be the Fourier transform of

the autocovariance function γy(h)

fy(ω) =
1

2π

∞∑
h=−∞

e−ihωγy(h)

Now, if we know the spectrum fy(ω), from Herglotz Theorem we can compute γy(h)
using the inverse Fourier transform:

γy(h) =

π∫
−π

eihω fy(ω)dω

These results show that the Fourier spectrum can be directly mapped onto the time-
domain autocovariance function, in this sense the frequency and time domain methods
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are closely related.

To estimate the spectral density, we may compute the periodogram, which is defined
as the squared modulus of the discrete Fourier transform of the autocovariance function,
i.e.,

I(ω) =
1

2π

∣∣∣∣∣∣∣
∞∑

h=−∞
e−ihωγy(h)

∣∣∣∣∣∣∣
2

A sampled data set like 2π j
n with j = . . . ,−3,−2,−1, 0, 1, 2, 3, . . . contains complete

information about all spectral components in a signal Yt, between the low fundamental
frequency 2π

n and the high Nyquist frequency π.

Fourier analysis has restrictive assumptions, for example, equally spaced time se-
ries and sinusoidal shaped variations. As mentioned above, these assumptions are rarely
achieved in real astronomical data. There are several methods more appropriate to use in
this context, as for example the Lomb Scargle Periodogram.

2.2.2.2 Lomb-Scargle Periodogram

The Lomb-Scargle (LS) periodogram is an extension of the conventional periodogram for
unevenly sampled time series. For a time series (ti,Yi) with zero mean, the normalized LS
periodogram can be computed as,

PLS (ω) =
1

2σ2


[

N∑
i=1
yi cos(ωti − τ)]2

N∑
i=1

cos2(ωti − τ)
+

[
N∑

i=1
yi sin(ωti − τ)]2

N∑
i=1

sin2(ωti − τ)


where ω = 2π f is the angular frequency, f is the ordinary frequency, τ is the phase and
σ2 is the sample variance of yi. The parameter τ is defined by,

tan(2ωτ) =

N∑
i=0

sin(2ωti)

N∑
i=0

cos(2ωti)

Lomb (1976) [45] showed that PLS is identical to the least-squares fit of a single com-
ponent stationary sinusoidal model of the form y(t) = A sin(ωt + τ). Consequently, the
dominant angular frequency ω is the value that best fit the time series in a least squares
sense. This frequency also corresponds to the maximum power in the Lomb-Scargle pe-
riodogram. The sinusoidal model can also be expressed by y(t) = a cos(ωt) + b sin(ωt)
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where the amplitude A and the phase ψ can be computed from the estimated parameters
as A =

√
a2 + b2 and ψ = atan(a/b) respectively.

However, the Lomb-Scargle periodogram have two shortcomings. First, this method
assumes that the mean of the data is equivalent to the mean of the fitted sine functions.
Second, the Lomb-Scargle periodogram does not take into account the measurement er-
rors. The Generalized Lomb-Scargle (GLS) defined by Zechmeister & Kürster (2009)
[74] solves these limitations.

2.2.2.3 Generalized Lomb-Scargle Periodogram

This method takes in consideration the measurement error by introducing a weighted
sum in the original Lomb-Scargle formulation. Additionally, the GLS introduce an offset
constant c to overcome the assumption of the mean of the data. Consequently, let Yi be the
N measurements of a time series at time ti and measurement errors σi, the GLS performs
a full sine waves fitting of the form,

y(t) = a cos(ωt) + b sin(ωt) + c

where the frequency f is obtained by minimizing the squared difference between the
observed data Yt and the model function y(t) as follow,

χ2
m( f ) = minθχ2( f ) =

∑
i

(Yi−y(ti))2

σ2
i

where θ = (a, b, c) is the parameter vector of the model y(ti). Let χ2
0 defined by,

χ2
0 =

∑
i[Yi−µ]2

σ2
i

where µ =
∑

i Yi/σ
2
i∑

i 1/σ2
i

. The normalized Generalized Lomb Scargle (GLS) periodogram is
given by,

P f ( f ) =
χ2

0 − χ2
m( f )

χ2
0

(2.2.24)

Under Gaussian noise the difference χ2
0−χ2

m( f ) is χ2 distributed with 2 degrees of freedom.
Alternatively, the periodogram can be normalized by a Gaussian noise level 2

N−1 , so the
equation (2.2.25) becomes,
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P( f ) =
N − 1

2
χ2

0 − χ2
m( f )

χ2
0

(2.2.25)

P is F-distributed with 2 numerator and N-1 denominator degrees of freedom under the
null hypothesis of white noise spectrum (Richards et al. (2011) [56]). Note that the power
of the periodogram P f ( f ) is restricted to 0 ≤ P f ( f ) < 1, while the periodogram P( f ) is
restricted to 0 ≤ P( f ) < N−1

2 .

An advantage of this generalization with respect to the original Lomb-Scargle peri-
odogram is that the GLS is less susceptible to aliasing, giving more accurate frequencies
as a consequence of a better determination of the spectral intensity.
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2.3 Machine Learning Background

The machine learning procedures have received particular interest from the astronomical
community, since the constant growth of the astronomical surveys and the amount of data
that must be analyzed have forced to consider methods that allow to automate processes
in a short time. As mentioned above, in this work one of the most important aims is to
build an automated classifier using the machine learning methods. First, it is important to
state the general classification problem,

2.3.1 The General Classification Problem

When referring to a classification problem, the first distinction to be made is whether there
are in the data available a prior knowledge of the class to be predicted. If the response class
is known, it is said that a supervised classification will be made. Therefore, in supervised
classification there are a set of explanatory variables which have some influence on a
discrete response variable. If the discrete response variable takes values 0 or 1, a binary
classification algorithm must be used, while if the response takes finite discrete values,
a multiclass classification algorithm must be used. In this work, is addressed a binary
classification problem. The binary classification methods implemented in this work will
be explained briefly below. I refer to Hastie et al. (2009) [38] for more detailed description
of the state-of-the-art data mining algorithms.

2.3.2 State-of-the-art Data Mining Algorithms

2.3.2.1 Logistic Regression

Suppose Yi ∼ Ber(p) is a binary response variable, which can be explained by a set of fea-
tures xi = (1, xi1 . . . , xip). In logistic regression the main aim is to model directly the con-
ditional probability of the response Yi given a set of features xi (i.e., P(Yi = yi|Xi j = xi j)),
for that we could assume a particular functional form for link function. The standard lo-
gistic function (or Sigmoid) is applied to a linear function of the input features,

P(Yi = 1|Xi j = xi j) =
1

1 + exp (−θ′xi)

where θ = (β0, . . . , βp). Let pi = P(Yi = 1|Xi j = xi j), a simple calculation shows the later
expression is equivalent to,

log
(

pi
1−pi

)
= exp (−θ′xi)
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where log
(

pi
1−pi

)
is the logit link function. Logistic regression models are usually fit by

maximum likelihood. Note that P(Yi = 1|Xi j = xi j) is a function of θ, which can be ex-
pressed as hxi j(θ), then the log-likelihood function can be written as,

ℓ(θ) = −
n∑

i=1

wi

[
yi log(hxi j(θ)) + (1 − yi) log(1 − hxi j(θ))

]
where wi are the observation weights, which are generally assumed equally distributed
(i.e., wi = 1/n). To find the maximum likelihood estimator it is necessary to use optimiza-
tion methods such as Newton Raphson or Gradient Descent.

2.3.2.2 CART Algorithm

The tree-based methods partition the feature space into a set of rectangles, and then fit
a simple model (like a constant y = c) in each one. There a lot of tree-based methods
which differ in the type of partition and the impurity measure used. The CART algorithm
produces binary splits based on the Gini impurity measure, which are defined by,

i(k) =
J∑

i= j=1,i, j
p(i|k)p( j|k) = 1 −

J∑
j=1

p( j|k)2

where p( j|k) is the proportion of class j in node k. Using Gini we first split the space into
two regions and model the response by the proportion of the class y = j in each region.
We choose the variable and split-point to achieve the best fit. Then one or both of these
regions are split into two more regions, and this process is continued, until some stopping
rule is applied.

A key advantage of the recursive binary tree is its interpretability. The feature space
partition is fully described by a single tree. A disadvantage of the CART algorithm is that
they can be extremely sensitive to small perturbations in the data, producing completely
different trees.

2.3.2.3 Ensemble Classifiers

The idea of ensemble learning is to build a prediction model by combining the strengths
of a collection of simpler base models. The most popular algorithms that follow this
methodology are,

• Bagging (Breiman, 1996 [8]): Fit many weak classifiers from bootstrap resampling
versions of training data and performs the classification by majority vote.
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• Boosting (Freund & Shapire, 1996 [32]): Fit many weak classifiers to reweighted
versions of the training data. The classification is obtained by weighted majority
vote.

• Random Forest (Breiman, 2001 [10]): Bagging method refinement.

Figure 2.4: Workflow of Ensemble Methods (from Utami, et al., 2014) [72].

2.3.2.4 Bagging

Bagging (Bootstrap aggregation) is a method that combines bootstrapping and aggregat-
ing. Usually, the aggregation is performed using the mean in regression problems and
majority vote in classification problems. The main idea is reducing the variance of an
estimated prediction function through the bootstrap sampling. Bagging seems to work
especially well for high-variance, low-bias procedures, such as trees. The procedure is
the following.
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Algorithm 1 Bagging

Input: Training Data, (xi j, yi), i = 1, . . . ,N, j = 1, . . . , P.
1: Take a bootstrap replicate Tb of the training set Tn.
2: Construct a single classifier Cb(Xi) = {1, 2, . . . , k} in Tb.
3: Combine the basic classifiers Cb(Xi), b = 1, 2, . . . , B by the majority vote (the most

often predicted class).

2.3.2.5 Random Forest

Random forests (Breiman, 2001 [10]) is a substantial modification of bagging that builds
a large collection of de-correlated trees, and then averages them. The basic idea is to
improve the variance reduction of bagging by reducing the correlation between the trees,
without increasing the variance too much. This is achieved in the tree-growing process
through random selection of the input variables. Consequently, before each split the al-
gorithm select m ≤ p of the input variables at random as candidates for splitting. The
procedure is described in the Algorithm 2. Due to the process of sampling the input vari-
ables, this method is sensitive to the quality of these inputs.

Algorithm 2 Random Forest

Input: Training Data, (xi j, yi), i = 1, . . . ,N, j = 1, . . . , P.
1: Set the weights wm(i) = 1/n, i = 1, 2, . . . , n.
2: for b in 1 to B
3: Take a bootstrap replicate Tb of the training set Tn.
4: Grow a random-forest tree to Tb, by recursively repeating the followings step for

each terminal node of the tree.
a: Select m variables at random from the P variables.
b: Pick the best variable/split point among the m.
c: Split the node into two daughter nodes.

5: Output the ensemble of trees {Cb(Xi)}B1 .

2.3.2.6 Boosting

The term “boosting” refers to the process of taking a “weak” learning algorithm (clas-
sification or regression) and boosting its performance by training many classifiers and
combining them in some way. The main idea of the “boosting” algorithms is to give more
weight, in each iteration, to the observations that are harder to classify correctly. Con-
sequently, given initial weights wm(i) = 1/n the boosting algorithm update these weights
after each step based on the error of the classifier in the m-th iteration em and the weight
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updating coefficient αm.

There are several versions of the boosting algorithms that differ in the value of αm and
the loss function used. The most popular method for classification is the AdaBoost.M1,
which aims to minimize the exponential loss. The Adaboost.M1 algorithm was proposed
by Freund and Schapire (1996) [32]. Given a training set Tn = {(x1, y1), . . . , (xi, yi), . . . , (xn, yn)}
where yi takes values in 1, 2, . . . , k, a weak classifier hm(xi) is built on this new training
set (Tm) and is applied to every training example. Later the error of the classifier in the
step m is computed, which it is used to update the weights, which are normalized to sum
one. Finally, as in random forest and bagging the majority vote criterion is used to en-
semble the weak classifiers. Summarizing, the Adaboost.M1 procedure is shown in the
Algorithm 3,

Algorithm 3 Adaboost.M1

Input: Training Data, (xi j, yi), i = 1, . . . ,N, j = 1, . . . , P.
1: Set the weights wm(i) = 1/n, i = 1, 2, . . . , n.
2: for m in 1 to M
3: Fit the classifier hm(xi) = {1, 2, . . . , k} using weights wm(i) on Tm

4: Compute em =
n∑

i=1
wm(xi)I (hm(xi) , yi)) and αm = ln((1 − em)/em)

5: Update the weights wm+1(i) = wm(i) exp(αmI (hm(xi) , yi)) and normalize them.

6: Output the final classifier hm(xi) = argmax j∈Y
B∑

b=1
αbI (hm(xi) = j))

Note that in the weight updating formula (step 5 in Algorithm 3), the expression
I(hm(xi) , yi) causes that the weights of the observations wrongly classified increases
and the observations rightly classified decreases.

As mentioned above, there are some variations of the “boosting” algorithm which can
be obtained by changing the αm coefficient. As for example, Breiman (1998) [9] propose
to use αm = 1/2 ln((1 − em)/em) which is half of αm proposed originally by Freund and
Schapire. Another example is the SAMME algorithm proposed by Zhu [76] which uses
αm = ln((1− em)/em)+ ln(k− 1) where k is the number of classes of the response variable.
These three flavours of boosting are implemented in the “adabag” package of R [1].

In addition, note that algorithm 3 uses a link function η(x) = sign(x) and an exponen-
tial loss function L(yi, g) = exp(yig). There are variants of the boosting algorithm that
uses different loss functions. One example is the L2 Boost (Friedman et al (2001) [35]
that uses the logistic loss function L(yi, g) = log(1 + exp(−yig)). In addition, the boosting
algorithms can also differ in the link function used. For example the Real-AdaBoost uses
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η(x) = 0.5 log
(

x
1−x

)
and the Gentle-Adaboost uses η(x) = x, both algorithms are presented

in Friedman et al (2000) [33]. The use of different link function attempts to overcome a
problem to find an optimal classification model using as output the object’s predicted la-
bel, which only gives a partial view of the efficiency of the classifier. These variations of
boosting are implemented in the “ada” package of R [22].

2.3.2.7 Support Vector Machine

The Support Vector Machine (Cortes & Vapnik, 1995 [21]) is a generalization of the op-
timal separating hyperplanes defined when two classes are linearly separable (also called
the maximal margin classifier). This optimal separation can be achieved enlarging the
feature space in order to accommodate a non-linear boundary between the classes, using
kernels (also called the “kernel trick”).

Let the hyperplane < w, x > +b = 0 where w and b are the weights and bias vector
respectively. In addition, the operator < w, x > is the inner product between the vector w
and the features matrix x. A maximum margin classifier consists in finding the parameters
w and b for an optimal hyperplane. Figure 2.5 illustrates a geometric construction of the
corresponding optimal hyperplane in a linear classification problem.

Now, let Φ : X → H denote a nonlinear transformation from the input space X ⊂ Rm

to the feature space H where the problem can be linearly separable. We may define the
corresponding optimal hyperplane as follows:

< w,Φ(x) > +b = 0 (2.3.1)

corresponding to the decision function,

f (x) = sign(< w,Φ(x) > +b) (2.3.2)

Here, the optimal hyperplane computed in the feature space is,

n∑
i=1

α∗i yiΦ
T (xi)Φ(xi) = 0 (2.3.3)

Consequently, the kernel can be defined as a function K(x, x′) ∀ x, x′ ∈ X ⊂ Rm that
satisfy K(x, x′) = ΦT (x)Φ(x′). The most popular kernels are the linear, polynomial, radial
and sigmoid, which are defined in Table 2.2
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Figure 2.5: Illustration of the optimal hyperplane in SVC for a linearly separable (from
Meyer, 2001) [47].

2.3.2.8 Artificial Neural Network

A neural network is a two-stage classification model. This network applies both to regres-
sion or classification problems. A single layer perceptron is the simplest type of neural
network. But, this method is only capable of solving linearly separable problems.

The limitations of the single layer network have led to the development of multi-layer
feed-forward networks (also called Multilayer perceptron (MLP)). Typically, an MLP
neural network consists of an input layer, one or more hidden layers, and an output layer,
as shown in Figure 2.6.
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Table 2.2: Kernels commonly used in SVMs.
Kernel Formula Parameters
Linear K(x, x′) =< x, x′ >

Polynomial K(x, x′) = (scale < x, x′ > +offset)degree scale, offset and degree
Radial Basis K(x, x′) = exp(−scale||x − x′||2) scale

Sigmoid K(x, x′) = tanh(scale < x, x′ > +offset) scale, offset

Figure 2.6: Illustration of multi-layer feed-forward networks (from Zhang, 2000) [75].

In this representation, the neurons are ordered into layers so that each neuron in a par-
ticular layer is connected with all neurons in the next layer. The connection between the
i-th neuron and j-th neuron is characterized by the weight coefficient wi j. Additionally, an
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extra weight parameter for each neuron, wi0 is introduced, representing the bias for i-th
neuron of l-th layer.

Suppose the simplest multi-layer network, with only one hidden layer. The first layer
involves M linear combinations of the p-dimension inputs. The output value of the k-th
neuron yk is determined by the following equation,

yk = g

 M∑
j=0

w(2)
k j σ

ηi +

p∑
i=0

w(1)
ik xi


 (2.3.4)

where w(l) are the weights of the l-th layer l = 1, 2. σ(.) and g(.) are the activation func-
tions for the hidden unit and output respectively. Some examples of activation functions
are shown in Table 2.3

Table 2.3: Activation functions commonly used in MLP.
Activation Function Formula

Sigmoid σ(γ) = 1
(1+e−γ)

Arc-Tangent σ(γ) =
(

2
π

)
arctan(γ)

Hyperbolic-Tangent σ(γ) =
(

eγ−e−γ
eγ+e−γ

)
All these functions are bounded, continuous, monotonic and continuously differen-

tiable (Zhang, 2000). [75]. This neural network can be trained using gradient descent
over an error function. The evaluation of the error derivatives proceeds using a version of
the chain rule of differentiation, referred to as back-propagation of error.

It is well known that an artificial neural network (ANN), either single layer or mul-
tiple layers, is sensitive to the hyperparameters such as the number of hidden layers, the
number of neurons at each hidden layer, batch size for stochastic gradient descent.

2.3.2.9 Regularized Regression

Finally, classification algorithms based on regularization techniques will also be used.
Among them, the Lasso (Tibshirani 1996 [65]) is a very popular method for regression
that uses an ℓ1 penalization, this implies that the Lasso coefficients are the solutions that
minimize the loss function,

PRS S (β)ℓ1 = (y − Xβ)T (y − Xβ) + λ||β||1 (2.3.5)
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where ||β||1 =
p∑

j=1
|β j| and λ is a tuning parameter that controls the amount of regularization.

An alternative to this method is the Ridge regression which differs to Lasso in that uses
a ℓ2 penalization. The ridge coefficients can be found by minimizing the following loss
function,

PRS S (β)ℓ2 = (y − Xβ)T (y − Xβ) + λ||β||22 (2.3.6)

where ||β||22 =
p∑

j=1
β2

j . The main difference between these two methods is that unlike ridge

regression, the lasso is not a linear estimator, i.e., there is no matrix H such that ŷ = Hy.
In addition, ridge regression is known to shrink the coefficients of correlated predictors
towards each other. Lasso, on the other hand, tend to pick one of the correlated predictors
and ignore the rest (Friedman et al, 2010 [34]).

Another characteristic of the Lasso is that some of the coefficients are shrunken toward
to zero, such solutions are said to be sparse. In order to give flexibility to these methods,
Zou and Hastie (2005) [77] defined the elastic net which is a mixture of the lasso and
ridge penalties. This method is particularly useful when p >> n or when there are many
correlated predictor variables. Here, the elastic net criterion is

PRS S (β)ℓ2 = (y − Xβ)T (y − Xβ) + λ2||β||22 + λ1||β||1 (2.3.7)

where λ1 and λ2 are fixed and non-negative coefficients. Let α = λ2
λ1+λ2

we can rewrite the
elastic net penalty as α||β||22 + (1 − α)||β||1, which is a convex combination of the lasso and
ridge penalty. In this sense, when α = 1 the elastic net becomes simple ridge regression
and when α = 0 we have the Lasso penalty.

2.3.3 Measuring classifier performance
A confusion matrix is a table that is often used to describe the performance of a super-
vised classification model (or “classifier”). The main idea is to show the true and predicted
classes in the same table. The confusion matrix itself is relatively simple to understand
and allows to compute several measures of quality from it.

Suppose a binary classification problem, the 2 × 2 confusion matrix has de form,

True\Predicted 0 1
0 (TN) n11 (FP) n12
1 (FN) n21 (TP) n22

where,
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• TP = True positive. Is the number of observations with true class y = 1 classified
correctly.

• FN = False negative. Is the number of observations with true class y = 1 classified
incorrectly.

• FP = False positive. Is the number of observations with true class y = 0 classified
incorrectly.

• TN = True negative. Is the number of observations with true class y = 1 classified
correctly.

From this table we can compute several measures of quality as,

Precision

Is the probability that a randomly selected object predicted to be in a target class does
belong to the target class. In this work the precision is denoted by P. The precision can
be computed as,

P =
T P

T P + FP
(2.3.8)

Note that the false-discovery rate, that is, the rate of false positives, is 1 − P.

Recall

Recall is the probability that a randomly selected object belonging to a target class is
indeed predicted to be in that class. In this work the recall is denoted by R. It is also called
True positive rate or sensitivity and can be computed as,

R =
T P

T P + FN
(2.3.9)

F measure

The Precision-recall Fβ measure is defined as the weighted harmonic mean between
P and R, that is,

Fβ =
(β2 + 1)PR
(R + β2P)

(2.3.10)

It is a measure of the accuracy of the classifier, where a perfect accuracy would imply
values close to one. In this formulation, the mean is balanced if β = 1. In this case we
call Fβ as F1 measure (F1).
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Area under the curve (AUC)

AUC is the area under the so-called receiver operating characteristic (ROC) curve,
which shows the true-positive rate as a function of the false-positive rate. Values close to
1, which is the maximum possible, are best because they indicate a classifier that quickly
achieves a high true-positive rate with a correspondingly low false-positive rate.



Chapter 3

Light Curves Classification

One of the most important goals of this work is to develop an automated procedure to
classify variable stars in the VVV survey. Particularly, it is important to detect the pul-
sating stars, like for example the RR-Lyraes or Cepheids, since they are essential to build
a three-dimensional map of the Galactic bulge. In order to make the classifier, a pro-
cedure consisting in eight steps was created, starting with the data cleaning procedure
and finishing with the final classifier. To reach this final classifier with the best possible
performance in training data, all the state-of-the-art data mining algorithms reviewed in
section 2.3.2 were implemented. Each step in the classification is explained in this chapter.

First, to build the classifier the only information that we take into account is the time
series of the light curve of each star observed irregularly in time by the VVV survey using
the Ks-band. Each time series is composed by the following three attributes,

• Time: heliocentric Julian day.

• Magnitude: Measure of the brightness of a variable star.

• Error: Magnitude Error.

Generally the light curves of variable stars are fitted using an harmonic model. The
p-harmonic model is defined by:

y(t) = β0 +

p∑
j=1

(α1 jsin(2π f1 jt) + β1 jcos(2π f1 jt)) + ϵ(t) (3.0.1)

Following Debosscher et al. (2007) [23] and Richards et al. (2011) [56] p = 4 is
assumed to fit the light curves of variables stars. Before fitting this model, we need to
estimate the dominant frequency f1. We use the generalized Lomb-Scargle periodogram
(GLS Zechmeister & Kurster 2009 [74]) to obtain f1. We restricted the periodogram to
frequencies satisfying f1 < 5 day−1. Both the harmonic model and GLS periodogram are

lv
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very useful in the first steps of the classifier construction procedure, since for example,
they allow us to obtain features to train the classifier and also eliminate outliers and non-
periodic light curves.

In each VVV field, millions of stars can be observed, but not all of them will be useful
to train the classifier. In this sense the training set must be cleaned in order to use only
light curves that make a contribution to the classifier. In addition, the light curves of these
stars must also be cleared from outliers and high standard errors.

3.1 Light-curve extraction and pre-processing

One of the most important steps in the classifier building is the pre-processing of the light
curves. The aim is to improve the performance of the classifier by removing noisy infor-
mation of the training set. The data cleaning procedure was performed in the following
steps:

Removing Non-Variable Stars: First, the stars that are not variables were removed
from the training set. Consequently, stars with light variations were selected using the
robust version of the Weltch/Stetson variability index J [62, Eq. 1] to the Ks-band light
curves. Candidate variable stars have been selected by requiring the value of the Stet-
son index above the 0.1% significance level corresponding to pure Gaussian noise. The
significance level of this statistic was derived from Monte Carlo simulations for several
numbers of sample sizes.

Removing Observations with Large Errors: After selecting the curves that showed
evidence of variability, we proceeded to eliminate individual observations that have anoma-
lously large magnitude errors, since these observations were measured with much uncer-
tainty due to anomalous observing conditions and therefore they provide little informa-
tion. Let {ϵi}ni=1 be the set of measurement errors estimates for a light curve with n points,
then we eliminate the observations with ϵi values > 5σ, where σ = V({ϵi}).

Removing Outliers Observations: In addition, an outlier rejection procedure was
performed for each light curve. The procedure consists in first estimating the dominant
frequency f1 using the GLS periodogram. This frequency is used to fit the harmonic
model (3.0.1) to the light curve. Later, a smooth estimation of the phased light curve was
obtained using smoothing splines from the R function smooth.spline, where the pa-
rameter that controls the smoothing (spar) is set equal to 0.8 (this value was chosen based
on a best-fit measure of folded light curves). Then, we performed an iterative σ-clipping
procedure to the residuals around the smooth model of the phased light curve. Assuming
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(c)

Figure 3.1: a) Original light curve of an RRab star observed in B295 field folded in its
period. b) Light curve of the RRab star after the elimination of one observation with large
magnitude error . c) Light curve of the RRab star after the elimination of two outliers
observations.

Gaussian errors, we removed outliers greater than 4σ, where σ = 1.4826× MAD and
MAD is the median absolute deviation (the explicit formula is in Table 3.2).

In Figure 3.1 is shown an example of the last two steps described (i.e., elimination
of large magnitude errors and outliers observations) of the data cleaning procedure per-
formed in a RRab variable star from B295 Field. It can be observed that in two steps three
observations were removed from the light curve, reaching a perfectly cleaned light curve.
Note that two phases are shown in each Figure of 3.1 to appreciate more clearly the shape
of the light curve. The same procedure will be followed for each light curve plotted in
this work.

Removing Noisy Light Curves: We also eliminated from our sample light curves
with either too low signal-to-noise ratios or irregular phase coverage. Therefore, we elim-
inated all light curves whose scatter around the phased light curve was not significantly
different from the raw light curve. To achieve this, the feature p2p scatter pfold over mad
was used so that 1/p2p scatter pfold over mad must be greater than 0.8. This feature con-
sists in the median absolute deviation of the phased light curve times the median absolute
deviation of the raw light curve (the explicit formula will be shown in Table 3.2).

To eliminate curves with incomplete phase coverage, we eliminated all curves where
1 − ∆ϕmax < 0.8, where ∆ϕmax is the maximum of the consecutive phase differences
{ϕi+1−ϕi}Ni=1, where N is the number of measurements, and we took ϕN+1−ϕN ≡ 1+ϕ1−ϕN .

Removing Non-Periodical Light Curves: Later, in order to select variable stars with
periodical behavior, we eliminated all light curves whose highest Lomb-Scargle peak sat-
isfy ≤ 0.3. The threshold was determined using the Lomb-Scargle peaks of known RRab
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in our VVV training fields, where none of them has a GLS peak with a value lower that
the chosen threshold. Finally, as the VVV observations are clustered, usually in groups
of 4, we eliminated all the light curves with ≤ 50 observations, and therefore with < 15
epochs approx.

After we performed the data cleaning procedure, the classifiers are created. Here, we
must consider that the observations of the light curves are sampled unequally spaced in
time due to different observation constraints. Consequently, the light curves also differ
in their sample sizes. This issue makes the classification of light curves a big challenge.
To implement the machine learning algorithms, we must represent each light curve as a
vector of the same length for all stars composed with features of these light curves, as is
represented in figure 3.2 .
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Figure 3.2: Illustration of the process in which each light curve in the training set is
represented as a vector of features.

3.2 Feature Extraction of Light Curves
The features extracted from light curves can be divided in two groups, depending whether
they are extracted directly from the parameters of the harmonic model fitted to the light
curves or not. Henceforth, the first group will be called as the periodic features and the
second one as the non-periodic features.
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3.2.1 Periodic Features
After each light curve has gone through the preprocessing step described in Section 3.1,
an harmonic model is fitted to them in order to extract the features from the parameters of
this model. Following the previous works of Debosscher et al. (2007) [23], Richards et
al. (2011) [56] or Elorrieta et al. (2016) [27] the features were extracted from the param-
eters of the harmonic model with n frequencies and p components where n = 3 and p = 4.

In Elorrieta et al. (2016) [27] we propose to add the measurement errors in the fitted
model. Therefore, we fit the raw light curve using a harmonic model where the parameters
are estimated by weighted least-squares with weights equal to the inverse measurement
variances σ−2

i . The full model is given by,

ŷ(t) =
n∑

i=1

p∑
j=1

(α̂i jsin(2π fi jt) + β̂i jcos(2π fi jt)) + â + b̂t. (3.2.1)

This model is fitted using the following procedure. Let y(t) be the observed magnitude
at time t from a given variable star. Let ŷ(t) = â + b̂t be the linear trend estimated from a
linear regression model of the light curve. Therefore, r(t) = y(t)− ŷ(t) are the residuals of
this model. Next, we iterated n = 3 times the following two steps.

1. Using the GLS periodogram we determine the dominant frequency fi of r(t) as the
highest peak in the periodogram. Next, the frequency fi is used to fit the harmonic
model (3.0.1) using the method of weighted least-squares. We denote ẑ(t) the fitted
values of this model

2. We reassigned r(t) through r(t)← r(t) − ẑ(t)

In words, we first subtract the linear trend from the light curve. The intercept and the
slope of the linear trend are the first features which are computed. Next, we compute the
first frequency f1 from the largest peak of the GLS periodogram. The frequency and the
GLS peak value are also features that are used in the classifier to represent the variable
stars. Using this frequency, we fit an harmonic model with p components (3.0.1). The
Fourier parameters α̂1 j and β̂1 j, with j = 1, . . . , 4 can also be used as features. However,
as these parameters are sensitive to the time translations we used a time invariant rep-
resentation of them. Consequently, we transformed the Fourier coefficients into a set of
amplitudes Ai j and phases ϕ

′

i j as follows:

Ai j =

√
α̂2

i j + β̂
2
i j

PHi j = arctan(sin(ϕi j), cos(ϕi j))
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Table 3.1: List of the 40 light-curve periodical features used in this work.
Feature name Description Referenceb

intercept (slope) Intercept (slope) of a linear regression to
the light curve

D07

Ai j Amplitude of the i-th frequency and j-th
harmonic

D07

ϕi j Phase of the i-th frequency and j-th har-
monic

D07

fi i-th frequency obtained from GLS D07
Pi Peak in the GLS periodogram of the i-th

frequency
D07

vari Variance left after i-th fit of Fourier model D07
msei Mean squared error of i-th fit of Fourier

model
D07

freq amplitude ratio 21 (31) Amplitude ratio of 2nd (3rd) to 1st com-
ponent of the Fourier model

R12

freq frequency ratio 21 (31) Frequency ratio of 2nd (3rd) to 1st com-
ponent of the Fourier model

R12

(a) Note that i = 1, 2, 3 and j = 1, . . . , 4. In addition, the phases ϕ1 j are not used as
features because are set as zero. (b) D07=Debosscher et al. [23]; R12=Richards et al. [57]

where ϕi j = arctan(β̂i j, α̂i j) − j f1
f1

arctan(β̂i j, α̂i j). In this notation, ϕ11 was chosen as the
reference and was set to zero so that PH1 j takes values in the interval [−π, π].

Later, the fitted harmonic model ẑ(t) was subtracted from r(t). Then we proceed with
the second iteration. So, we obtain a new frequency f2 and a new GLS peak periodogram
from the residuals and then the process described above is repeated until n frequencies
were found and n harmonic models were fitted.

As can be seen, an important set of features was derived from the fitting procedure.
Table 3.1 lists all the features that can be computed from the harmonic fit, along with a
short description and a reference to the literature when adopted from previous work.

3.2.2 Non-Periodic Features
From the fitting procedure we can get 40 periodical features, to which 28 additional fea-
tures will be added. They will be called as non-periodic features. Most of them have been
proposed by Debosscher et al. (2007) [23], Richards et al. (2011) [56] and Richards et al.
(2012) Richards et al. [57]. In Table 3.2 these features are detailed.
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Figure 3.3: a) Folded light curve of an RRab star with R1 = 0.46 observed in B295 field
of the VVV. b) Folded light curve of an RRab star with R1 = 0.77 observed in B295 field
of the VVV . c) Folded light curve of a variable star with R1 = 1.18 observed in B295
field of the VVV.

However, we propose two new features, which are specifically designed to better dis-
tinguish RRab from eclipsing binaries such as those of the W UMa type, which were our
most troublesome contaminant in NIR. The basic idea of these features is to represent the
asymmetrical behavior typical of the RRab light curves.

We called one of these features R1, which captures the asymmetrical behavior of the
phased light curve by computing the ratio between the elapsed phase until reach the first
minimum and the second maximum of the smoothed light curve. In other words, let A1 be
the phase difference of the first maximum and the first minimum and A2 be the difference
in the phases of the first minimum and the second maximum. The R1 measure can be
computed by,

R1 =
A1

A2
=
ϕmax,1 − ϕmin,1

ϕmin,1 − ϕmax,2

where ϕmax(min),i denotes the phase corresponding to the i-th maximum (minimum) of a
phased curve. In order to show an example of how this feature works, we compute the
feature R1 for three light curves of the B295 field of the VVV. These three light curves are
plotted in Figure 3.3, the first two of them (Figure a)-b)) corresponds to RRab variable
stars and its corresponding R1 is 0.46 and 0.77 respectively. The R1 for the third light
curve is 1.18. Note that the increment in the values of the feature R1 are consistent with
that the light curves have a more symmetrical behavior.



lxii

Table 3.2: List of the 28 light-curve non-periodical features used in this work.
Feature name Descriptiona Referenceb

skew Skewness of y R11
small kurtosis Small sample kurtosis of y R11

std Standard deviation of y R11
max slope max{(yi+1 − yi)/(ti+1 − ti)} R11
amplitude max(y) −min(y) R11

median absolute deviation median(|y −median(y)|) R11
median buffer range percentage Fraction of points in {y} with amplitude

within < 0.1 of median(y)
R11

pair slope trend For the set {yN−29+i − yN−30+i}30
i=2 the ratio

N+/N−
R11

flux percentile ratio mid k F50−k/2,50+k/2/F5,95 R11
percent amplitude max(|F −median(F)|)/median(F) R11

percent difference flux percentile F5,95/median(F) R11
freq model max(min) delta mags Difference in magnitudes between the two

maxima (minima) of y2P

R12

freq model phi1 phi2 (ϕmin,1 − ϕmax,1)/(ϕmin,1 − ϕmax,2) (for ym,2P) R12
freq rrd Boolean that is 1 if

freq frequency ratio 21 (or 31) is
within 0.0035 of 0.746

R12

gskew (median(y) −median(y0)) + (median(y) −
median(y1−p)) with p = 0.03

R12

scatter res raw MAD(y − ym)/MAD(y) D11
p2p scatter 2praw

∑N
i=2(y2P,i+1 − y2P,i)2/

∑N
i=2(yi+1 − yi)2 D11

p2p scatter over mad
∑N

i=2 |yi+1 − yi|/(N − 1)MAD(y) D11
p2p scatter pfold over mad

∑N
i=2 |yP,i+1 − yP,i|/(N − 1)MAD(y) D11

fold2P slope 10percentile (90) 10th (90th) percentile of slopes y2P R12
R1c (ϕmax,1 − ϕmin,1)/(ϕmin,1 − ϕmax,2) (for ys,2P) R12, E16
R2 (ys,2P(ϕmax,1)−ys,2P(ϕmin,1))/(ys,2P(ϕmin,1)−

ys,2P(ϕmax,2))
E16

(a) We use the following notation: the light-curve magnitudes at times ti are denoted by
y(ti) or yi, the magnitudes phased with period P at phase ϕi as yP(ϕ), the harmonic
(Fourier) model as ym, the smooth spline mode as ys. ϕmax(min),i denotes the phase

corresponding to the i-th maximum (minimum) of a phased curve, y(ϕmax(min),i) the
corresponding value. N+ and N− denote the number of positive and negative members of

a set, respectively. Fa,b is the difference in flux between the percentile a and b of the
fluxes implied by y. ya:b are the subset of y whose members lie between the a-th and b-th

percentile. (b) D07=Debosscher et al. [23]; R11=Richards et al. [56]; R12=Richards
et al. [57]; D11=Dubath et al. [26];E16=Elorrieta et al. [27] (c) This feature is the same

as freq model phi1 phi2, but uses ys instead of ym.
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3.3 A Machine Learned Classifier for RR Lyrae in the
VVV Survey

In this section we describe a supervised machine-learned classifier constructed for assign-
ing a score to a Ks-band VVV light curve that indicates its likelihood of being ab-type RR
Lyrae. The performance of automated classifiers of variable sources in the optical has
been assessed in several previous studies [e.g., 23, 26, 56, 51, 44].

The classifier built in this work differs from those constructed in the referred studies
in two aspects. First, this classifier was designed to detect only variable stars of the RRab
class. As mentioned in the background section, this is due to the RR Lyrae stars are of
particular importance to produce the three-dimensional map of the Galactic bulge. In this
specific work, we decided to restrict ourselves only to the RRab stars, since the RRc stars
have smaller amplitudes (hence noisier light curves) and are frequently very difficult to
distinguish from eclipsing binaries.

The second difference regarding previous studies is which these are performed in
the optical, while we use the light curves from the VVV survey to build the classifier,
which were observed in the near-infrared (NIR). Consequently, it is important to high-
light the differences between light curves observed in optical and near-infrared to classify
the RRab.

3.3.1 RRab classification in the VVV

The near-infrared (NIR) offers additional challenges as compared to the optical one. First,
it is harder to classify RRab in the infrared because their amplitudes are smaller than in
the optical. Second, there are not many NIR high-quality light curves with which super-
vised classifiers can be trained. Third, the NIR light curves have measure with greater
errors than the optical. The Figure 3.3.1 shows an example of the light curves observed in
the optical and near infrared of a known RRab, where it can be noticed a very symmetric
light curve in the infrared (lower panel).

Despite all these difficulties, it is necessary to make the classifier using VVV data,
since the near infrared has some desirable properties. For example, in near infrared the
distance scale of pulsating stars can be determined most accurately, since the period-
luminosity (PL) relations can be determined with lower dispersion (Navarrete et al. (2017)
[50]). A precise estimation of distance is essential to build the three-dimensional map of
the Galactic bulge. In addition, as the dust is transparent to the NIR filters, it is possible to
detect objects that are enshrouded in circumstellar dust. (Matsunaga et al. (2017) [46]).
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Consequently, the near-infrared (NIR) surveys can detect objects that cannot be found in
the optical.

Figure 3.4: Example of a known RRab classified by OGLE using an optical IC light curve
(upper panel). It shows a very symmetric light curve in the infrared (lower panel, Ks light
curve from the VVV).

3.3.2 Classification Procedure
The procedure to build the classifier was detailed in Figure 3.5. Here, eight key steps
in the construction of the classifier are described. The first four steps were detailed in
previous sections, since are related with the procedure in which we take the light curve of
each variable star and transform it into a vector of features ready to be used as input in the
data mining classification algorithms. These steps are, the pre-processing step, the period
estimation by GLS, the light curves modeling and the feature extraction.
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Pre-Processing Data:
Extract Outliers

Remove Noisy Light Curves
Classifier Selection:

Adaboost.M1

Period Estimation:
Generalized Lomb Scargle

(Fortran)
Aperture Selection :

KDC

Light Curves Modeling :
4 Harmonic 3 Frequencies

Feature Selection and
Training Set Selection :

Templates + 80% All Fields

Feature Extraction : Final Classifier

Figure 3.5: Flowchart of the classifier building phase.

From now the next steps will be detailed. These steps are related with the construc-
tion of the optimal classifier, choosing the best classification algorithm, the photometry
aperture, the most important features and the training sets. Finally, from this analysis we
take a decision about the final classifier.

3.3.3 Training sets

Since the aim of this classifier is to detect RRab stars, the response variable which the
classifier was trained is defined as,

y =

1, if the variable star belongs to the RRab class
0, if not

Therefore, here a supervised classification scheme must be used. Consequently, the
training sets must have known instances of the RRab class, ideally observed with a ca-
dence and precision similar to that of the target data that arises from the VVV. To retrieve
a training set from the VVV itself, we used light curves consistent with being variable
from the fields B293, B294, and B295, located in the center of the bulge area (around
Baade’s window, see Figure 2.3) .
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Dataset Class N
VVV Templates RRab 1603

Other 1063
B293 Field RRab 277

Other 4869
B294 Field RRab 207

Other 5448
B295 Field RRab 178

Other 4056

Table 3.3: Number of RRab versus other classes in the training datasets.

These fields were chosen because the OGLE-III survey [63] has also observed in the
same field. The OGLE-III catalog is vast and contains known variable stars of several
classes. Therefore, we assumed that all RRab in the three chosen fields are present in the
OGLE-III catalog. So, can be performed a match between the RRab of the OGLE-III cat-
alog and the light curves extracted from VVV data. In addition to the training set above,
we used the NIR light curves belonging to the VVV Templates project [4].

Table 3.3 shows the numbers of RRab light curves versus those belonging to other
classes in each of the training datasets considered to build the classifier.

3.3.4 Choice of classifier

To assess the performance of the classifiers, we estimated four measures of quality using
ten-fold cross validation: precision, recall, F1 , and AUC (defined in section 2.3.3). In
ten-fold cross-validation, the classifier is trained with nine tenths of the training set, and
remaining tenth is used as testing set. The basic idea is to assess the performance of the
classifier in new data which not was used in the training process. This process is repeated
ten times, and each time, a different tenth of the training set is used as testing set. In each
step, the performance measures described above are computed. Finally, each of them is
aggregated by the average and the estimated error is computed by the standard deviation.

To choose the best classifier for RRab a several classifiers were tested, which are
described in the section 2.3.2. The classifiers were implement using functions in the R
language [64] according with the Table 3.4.

To test the classifiers performance, we use as training set the data from VVV templates
plus 80% field B293, 80% field B294, and 80% field B295 (we show below that this par-
ticular choice of training set is representative of the other fields). The cross-validation
estimates of the performance that resulted after training all of the classifiers listed above
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Algorithms Description R Source Code Package
Logistic Logistic Regression glm(formula,data,family=binomial()) stats
Cart Classification and Re-

gression Trees
rpart(formula,data) rpart

RF Random Forest randomForest(formula,data,importance=TRUE,
proximity=TRUE,ntree=500,mtry=20)

randomForest

SBoost Stochastic Boosting ada(formula,data,loss=c(’exponential’),
type=c(’discrete’),iter=500)

ada

Ada.M1 AdaBoost.M1 boosting(formula,data,boos=TRUE,mfinal=500,
coeflearn = ’Breiman’))

adabag

SVM Support Vector Ma-
chine

svm(formula,data,kernel=’lineal’,probability
=TRUE)))

e1071

Lasso Lasso Regression glmnet(trainx,trainy,family=”binomial”,nlambda
=1000)

glmnet

MHNN Multiple-hidden-
layer trained with
backpropagation

nn.train(trainx,trainy,hidden=c(10),activationfun
= ”sigm”, numepochs=2000,batchsize=1500)

deepnet

DeepNet Deep Neural Network sae.dnn.train(trainx,trainy,hidden = c(5,5), acti-
vationfun = ”sigm”,numepochs = 2000, batch-
size=1500)

deepnet

Table 3.4: State-of-the-art data mining algorithms used to build the classifier for RRab.

using all the features available are summarized in Table 3.5. It is clear from this table that
when using all the features we defined, the AdaBoost and SBoost classifiers achieve best
performance. It is interesting to note that the performance of the AdaBoost and SBoost
classifiers is significantly better than that of random forests, which has been the classifier
of choice in the recent literature (e.g., Dubath et al. [26], Richards et al. [57]). While
AdaBoost and SBoost are fairly equivalent within the uncertainties, we chose Ada.M1 as
our final classifier.

3.4 Optimization of Classification Algorithms
An important step in the selection of the classification algorithms is the tuning (hyper-
parameters optimization) of each candidate algorithm. In what follows, the optimization
process is described for each classifier implemented,

• Random Forest: The randomForest algorithm was used with parameter ntree=500
(number of trees) and mtry=20 (number of variables at each tree). Our final clas-
sifier includes only 12 out of the 68 original features; for the final classifier the
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Table 3.5: Cross-validation performance of classifiers on the tem-
plates+B293+B294+B295 training set, using all features

Algorithm AUC P R F1 (σF1)
Logistic 0.9756 0.7869 0.8579 0.8121 (±0.0198)
CART 0.9265 0.8591 0.7373 0.7911 (±0.0177)

RF 0.9811 0.9515 0.8234 0.8804 (±0.0105)
SBoost 0.9939 0.9522 0.9094 0.9298 (±0.0054)
Ada.M1 0.9937 0.9685 0.8974 0.9311 (±0.0046)

SVM 0.9792 0.9036 0.7960 0.8456 (±0.0120)
Lasso 0.9849 0.8599 0.8398 0.8454 (±0.0139)

MHNN 0.9851 0.9190 0.8793 0.8968 (±0.0116)
DeepNet 0.9823 0.9143 0.8762 0.8941 (±0.0102)

parameter mtry was set to 3.

To set these parameter values, we assessed the performance of the classifier on a
grid of values. The parameter mtry has been tested using values in the interval
[1,p], where p is the number of features. In Figure 3.6 a) is shown the performance
of the Random Forest algorithm under different values of mtry using all the fea-
tures. Note that the Random Forest reach the highest values of the F1 index in the
interval [20,50]. In addition, in Figure 3.6 b) is shown the tuning of the same pa-
rameter using only the 12 selected features (further explained in Section 3.4.2). In
this case the highest values of the F1 is reached in the interval [3,4]. Furthermore,
when 12 features have been used, the performance of Random Forest improves
significantly, because this algorithm is very sensitive to the quality of the data.

• Stochastic Boosting: was implemented with parameters loss= “exponential” and
parameter type=“discrete”. In addition, the “ada” function of R also allows to use
a logistic loss function and real and gentle type of boosting. All combinations of
loss functions and type of boosting were evaluated, and the max.iter parameter
was assessed in the interval [100, 1000].

• AdaBoost: is implemented with the Breiman weight-updating coefficient and mfi-
nal=500. The learning coefficient of the boosting function take different options
for weighting the “weak” classifiers based on the misclassification rate. If co-
eflearn=“Zhu” implies that the AdaBoost SAMME algorithm was used. Both al-
gorithms have the parameter boos set to TRUE, and therefore, a bootstrap sample of
the training set was drawn using the weights for each observation on that iteration.
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Figure 3.6: Optimization of the number of variables in each tree (mtry parameter) used in
Random Forest. In Figure a) is the F-Measure (y-axis) computed for values of the mtry
parameter (x-axis) when all the features are used in the classifier. In Figure b) is the F-
Measure (y-axis) computed for values of the mtry parameter (x-axis) when only the 12
selected features are used in the classifier.

• Support Vector Machine : is implemented with a polynomial kernel and parameters
degree=2 and nu=0.1. The “svm” function of R also allows to use the radial basis,
lineal, polynomial, and sigmoid kernels. All of them were assessed and we found
that the best performing was the polynomial kernel.

• LASSO: The implementation was made with options family=“Binomial” and nla-
mbda=1000. The latter was chosen after testing performance in the range [100,10000].
The parameter α, the elastic net mixing parameter, was tested in the range [0,1] and
set to 1 (giving thus a LASSO, α = 0 corresponds to ridge regression).

• Multiple hidden neural networks: is implemented with parameters hidden=10, ac-
tivationfun=“sigm” (a sigmoid activation function), batchsize=1500 and nume-
pochs=2000. It is known that neural networks are sensitive to the number of hid-
den layers and the batch size for stochastic gradient descent. The number of hidden
layers was tested in the interval [1, 20] (see Figure 3.7 a)). The neural network
improves its performance when the number of hidden layers is greater than 3. In
addition, as can be seen in Figure 3.7 b), the batch size was assessed in the interval
[100, 2000] reaching the highest values of F1 when the batch size is greater than
1000, after this the performance remains stable.

• Deep neural network: is implemented with a sigmoid activation function and ten
hidden layers. The remaining parameters are set as batchsize=1500, numepochs=2000.
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Figure 3.7: Optimization of parameters of Multi Hidden Neural Network. On the left
figure is the F-Measure (y-axis) computed for number of Hidden Layers used in the Neural
Network (x-axis). On the right figure is the F-Measure (y-axis) computed for the Batch
Size used in the Neural Network (x-axis).

The classifier performance was assessed, testing the parameters batchsize in the in-
terval [100,2000] and the number of hidden layers in [1, 20].

Following the optimization of the distinctive parameters of each algorithm, the num-
ber of iterations of each of them was assessed. Consequently, the parameters ntree of
Random Forest, max.iter of Stochastic Boosting, mfinal of Adaboost.M1 and nume-
pochs of Multiple hidden neural networks has been tested in the interval [100,1000]. In
Figure 3.8 can be observed that the number of iterations does not vary significantly the
performance measure for any of the algorithms assessed. This result has been evaluated in
three different scenarios ( Figure 3.8 a), b) and c)), depending on the strategy of aperture
selection and the feature set used (more details below). In all the figures can be observed
that the boosting algorithms (i.e., Stochastic Boosting and Adaboost) consistently get bet-
ter performance than its two most important competitors (Random Forest and Neuronal
Networks). This result is verified even when the Random Forest and Neuronal Network
reach its best performance, which happens when only the most important features are
used.

3.4.1 Choice of aperture for photometry

After we selected the best classifier, we assessed whether the selection of an aperture
from which we estimated the features of the light curves affected the classification per-
formance. We implemented three strategies to select the aperture. The first was to fix
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Figure 3.8: Optimization of the number of iterations used in the data mining algorithms
implemented this work. The red line is the F-Measure computed for Random Forest,
the yellow line corresponds to Stochastic Boosting, the green line is for the Deep Neural
Network, the light blue line is for the multi hidden neural network. Finally, the blue, violet
and pink lines corresponds to the AdaBoost algorithm with coeflearn Breiman, Freund
and Zhu respectively. In figure a) the 12 selected features are used and the minError
strategy of aperture selection in each classifier. In figure b) all the features are used and
the KDC strategy of aperture selection. In figure c) the 12 selected features are used and
the KDC strategy of aperture selection.

the aperture size to be equal for all variable stars. We call this strategy fixAper(i) for
aperture size i, where i = 1, . . . , 5 (this gives us five strategies).

Second, we chose for each light curve the aperture size that achieved the minimum
sum of squared errors and called this strategy minError. The proportion of light curves
assigned under this criterion in each aperture is shown in Figure 3.9.

Third, similarly to Richards et al. [57], we developed a strategy to select the best
photometry aperture for each light curve based on a Kernel Density Classifier (KDC). We
call this strategy KDC. In this method, we select the aperture according to the follow steps:

1. Compute Kernel Density for each aperture. The kernel density for an aperture fi,
with i = 1, . . . , 5 was estimated using the mean magnitudes whose minimal sum of
squared measurement errors was achieved at aperture i. Note that the proportion
of light curves used in each density estimation comes from the strategy minError
Figure 3.9. The estimated densities for each aperture are shown in Figure 3.10.

2. Evaluate the median of the magnitudes for a specific light curve xm in each density.

3. Compute the following vector of probabilities,
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Figure 3.9: Number of light curves with the minimum sum of squared errors at each
aperture size.

pi =
πi fi(xm)

5∑
j=1

π j f j(xm)

where i = 1, . . . , 5 and pi is the probability to belongs of each density given by the
median of magnitudes xm.

4. For each light curve we select the aperture with the highest pi.

The main difference with the method proposed by Richards et al. [57] is that we de-
veloped a soft thresholding classifier to choose an optimal aperture.

All these seven strategies were evaluated using the boosting classifier algorithms,
which were selected previously as the best classification methods. The results are shown
in Table 3.6. We used cross-validation on variable stars from the B295 field to estimate the
performance of the boosting classifiers under different strategies. The best performance
was reached by the strategies KDC and fixAper(2). The KDC strategy chooses in most
cases the aperture 2, therefore it is natural that the KDC have a similar performance than
the fixAper(2). In addition, note that KDC is a better strategy than the minError, which
is the most commonly used method to choose an aperture. This result is explained by the
fact that the strategy minError selects the apertures 3, 4 and 5 more frequently than the
KDC strategy. As can be seen in Table 3.6 the classifier based on any of these apertures
has a poor performance.
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Figure 3.10: Kernel density estimates of the mean magnitude of curves with the minimum
sum of squared errors at each aperture size.

Table 3.6: F1 Measure by Aperture and Classifier Algorithm
Strategy SBoost1 SBoost2 Ada.M1 Ada.SAMME
fixAper(1) 0.9210 (0.0189) 0.9244 (0.0176) 0.9120 (0.0165) 0.9217 (0.0175)
fixAper(2) 0.9359 (0.0090) 0.9363 (0.0080) 0.9308 (0.0099) 0.9303 (0.0092)
fixAper(3) 0.8794 (0.0197) 0.8728 (0.0198) 0.8799 (0.0271) 0.8757 (0.0184)
fixAper(4) 0.8621 (0.0181) 0.8651 (0.0206) 0.8615 (0.0207) 0.8631 (0.0218)
fixAper(5) 0.8055 (0.0249) 0.8019 (0.0278) 0.8146 (0.0194) 0.8166 (0.0251)
KDC 0.9316 (0.0090) 0.9327 (0.0093) 0.9308 (0.0099) 0.9255 (0.0089)
minError 0.9133 (0.0139) 0.9140 (0.0136) 0.9140 (0.0146) 0.9131 (0.0159)
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Table 3.7: Cross-validation performance of classifiers on the tem-
plates+B293+B294+B295 training set, using the best 12 features

Algorithm AUC P R F1 (σF1)
Logistic 0.8574 0.4624 0.8057 0.4855 (±0.0686)
CART 0.9311 0.8577 0.7342 0.7860 (±0.0141)

RF 0.9902 0.9522 0.8896 0.9194 (±0.0067)
SBoost 0.9942 0.9483 0.9184 0.9326 (±0.0050)
Ada.M1 0.9937 0.9526 0.9154 0.9331 (±0.0055)

SVM 0.9840 0.9073 0.8321 0.8651 (±0.0090)
Lasso 0.9553 0.7618 0.6691 0.6953 (±0.0145)

MHNN 0.9824 0.9365 0.8608 0.8956 (±0.0090)
DeepNet 0.9823 0.9258 0.8775 0.9001 (±0.0079)

3.4.2 Feature selection

Previously we detailed 68 features (Tables 3.1 and 3.2) that were used to find the best
classifier. It is clear that not all features have the same effect on the classification. Several
data mining algorithms allow measuring the importance of the variables using some cri-
teria. For example, the Adaboost.M1 algorithm uses the gain of the Gini index given by a
variable in a tree and the weight of the tree and we can measure how important each one
of them is for the classification. In Fig. 3.11 we show the features ordered by importance,
with the most important at the top.

As expected, the most important feature is the dominant frequency ( f1). This result
is explained since the RRab have periods defined in a known range, between 0.2 and 1
days approx (see section 2.1.2). Consequently, if a RRab variable star has an estimated
period out of this range, the classifier will probably label it as “No RRab”. Therefore, it is
essential to estimate the period of variable stars correctly to obtain an accurate classifier
for the RRab stars.

Note in Figure 3.11 that the next three most important features are the ones related to
the harmonic fit (i.e., the periodical features). The first non-periodic feature is p2p scatter 2praw,
which is related to the noise of the signal. In order to obtain the best performance of the
classifier according to the F1 measure, we decided to use 12 features. This means that the
additional features do not add significant information.

We again assess the performance of the data mining algorithms, but now using only
the 12 more important features. The cross-validation estimation of the performance mea-
sures is summarized in Table 3.7. Note that the performance of the boosting classifiers
(Ada.M1 and SBoost) do not vary significantly when using all the features, which shows
that the Adaboost.M1 classifier is more stable regarding to the features selected than other
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Figure 3.11: Feature importance using the Ada.M1 classifier. Based on this graph, we
chose to consider only the 12 most important features in the final classifier.

classification algorithms. On the contrary, the Random Forest algorithm improves its per-
formance significantly after the feature selection, which proves that this algorithm is very
sensitive to quality of the features used, since in each step of the Random Forest a set of
features is chosen. Despite the increasing performance, the Random Forest has still lower
values at the performance measures compared with the Adaboost.M1.

3.4.3 Sensitivity to training set choice
An important step in building a classifier is to select an appropriate training set that cap-
tures the variability of the data because when the training set is not representative, the
resulting classifier is bound to fail for some types of objects. To test our sensitivity to the
training set choice, we trained our classifier using different training sets by taking different
subsets out of the four available sets (templates, B293, B294, and B295, see Sect. 3.3.3).
In Table 3.8 we show the results of this exercise using the Adaboost.M1 classifier, show-
ing the F1 measure for different combinations of training and test sets; we note that in
this case we measured the performance with a test set that was disjoint from the training.
The first row shows the performance for the classifier trained only on templates (T), the
following three rows shows the performance for the classifier trained using templates plus
B295, B294, or B293 respectively. The next three rows are similar to the previous three,
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but now two complete fields are incorporated into the training set. The last two rows show
the performance of the classifier with all of the curves from templates plus 90% (80%) of
the curves from the three fields. As it is evident from Table 3.8, the performance is best
when we include curves from templates and all three fields. It does not vary significantly
between having 80% or 90% of the curves over the expected random variations in the F1

performance, which for Adaboost.M1 was expected to be on the order 1%. We conclude
that our choice of training set of templates+ 80% B293 + 80% B294 + 80% B295 does
not bias our results in a significant way, as assessed by training the classifier.

Training \Test B295 B294 B293
Templates 0.8713 0.8905 0.9065

T+B295 - 0.9095 0.9251
T+B294 0.9043 - 0.9270
T+B293 0.9003 0.9150 -

All \B294 - 0.9204 -
All \B293 - - 0.9290
All \B295 0.9122 - -

All 90% 0.9267 0.9476 0.9502
All 80% 0.9269 0.9536 0.9304

Table 3.8: F-measure by training set (Adaboost.M1)

3.4.4 Final classifier

After performing all the steps in the classification procedure described above (see Figure
3.5) successfully, we obtain our final classifier. Accordingly, with the results obtained,
the final classifier is built using a training set composed by the templates+ 80% B293 +
80% B294 + 80% B295, with a KDC criteria to select the aperture of each light curve,
and with the Ada.M1 classifier using the following 12 features of the 68 listed in Tables
3.1 and 3.2 (ordered by its importance).

1. f1

2. ϕ12

3. ϕ13

4. A11

5. p2p scatter 2praw

6. P1

7. R1
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8. skew

9. A12

10. A13

11. ϕ14

12. p2p scatter pfold over mad

The final classifier has a F1 measure estimated from cross-validation ≈ 0.93. As
mentioned above, until now it has never been implemented a classifier for RRab variable
stars in the NIR. However, in the optical several classifiers have been implemented. For
example, for the ASAS survey, Richards et al. [57] implemented a classifier with a F1

performance of ≈ 0.96 for RRab classification (see their Fig. 5). This means that the
expected number of false positives or negatives is about half of what we achieve with our
classifier. A better performance in the optical is expected given the larger amplitudes and
more asymmetric shape in those bands (see Figure 3.3.1). Therefore, the performance
in the optical should be taken as an upper bound of what supervised classification could
achieve for the VVV data. In addition, the data is not directly comparable, because the
ASAS data have a larger number of epochs (mean 541), whereas the VVV has in most
cases close to 100 epochs. Therefore, we are satisfied with the performance achieved,
since is very close to the performance obtained in the optical for RRab variable stars.

3.5 Performance on independent datasets
In the procedure to find the final classifier, we measured the performance of several clas-
sifiers, using different training set, aperture selection criteria and features. Although the
performance was always evaluated using ten-fold cross validation, all the data used in the
training set comes from the center of the bulge area of the VVV. In this section, we assess
the performance of our classifier in light curves observed in other areas of the VVV, which
have been studied by astronomers. These are, (1) a catalog of RRab in the Galactic glob-
ular clusters 2MASS-GC 02 and Terzan 10 [2], (2) a catalog of RRab in the outer bulge
area of the VVV [37] and (3) a census of RRab stars along the southern galactic disk [25].

This analysis is particularly relevant, since it allows us to evaluate the performance of
the classifier on different datasets in which flux measurements do not necessarily follow
the same conditions in cadence, depth, etc. as our training set. The final classifier has a F1

measure of ≈ 93% obtained by cross-validation using a score threshold of 0.548, so that
if this performance generalizes well, we would expect the harmonic mean of the number
of false positives and false negatives to be on the order of 7%.
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3.5.1 RRab in 2MASS-GC 02 and Terzan 10

Alonso-Garcı́a et al. [2] identified, by human inspection of the light curves and color in-
formation, 39 RRab variables stars in the globular clusters 2MASS-GC 02 and Terzan 10.
Terzan 10 also has been covered by OGLE-IV [61], which allows that the authors at
Alonso-Garcı́a et al. [2] match their results with optical light curves from OGLE. There-
fore, the stars labeled as RRab by Alonso-Garcı́a et al. [2] were classified with great
certainty. Our machine-learned classifier is at a disadvantage, since we only had the VVV
light curves as input for the classification and not color information.

To assess the performance of the classifier in the light curves of the globular clusters
2MASS-GC 02 and Terzan 10, we compare the scores obtained by the final classifier and
the RRab classified by Alonso-Garcı́a et al. [2] (true positives). In Figure 3.12 the dis-
tribution of the scores for true positives, false negatives and false positives are shown.
Most of the known RRab are classified correctly by the classifier. Only six light curves,
or ≈ 15% of the sample, are false negatives. The periods of these false negatives are con-
sistent with those of RRab, and because they are not symmetrical, they were classified as
RRab by Alonso-Garcı́a et al. [2].

Figure 3.12: Histogram of scores obtained by the classifier for the light curves of the sam-
ple presented by Alonso-Garcı́a et al. [2]. Shown are the true positives (sources classified
by Alonso-Garcı́a et al. [2] as RRab), false positives, and false negatives.

Using a score threshold of 0.548 we found two false positives, or ≈ 5% of the sample.
Both light curves are shown in Fig. 3.13. We discuss each in turn. Terzan10 V113, shown
in panel (a), was classified as an eclipsing binary in Alonso-Garcı́a et al. [2] because of its
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very symmetric behavior. It is not classified as an RRab by OGLE either, reinforcing its
status as a non-RRab. As in the NIR, some RRab have a more symmetrical behavior (see
Figure 3.3.1), it is not surprising that variables stars with correct periods and amplitudes
are classified as RRab even if they are very symmetric.

One additional variable star was classified as RRab, but was not present as a vari-
able in the Alonso-Garcı́a et al. [2] catalog. Its internal IDs is 21089, and it is shown
in panel (b) of Fig. 3.13. This variable star (273508) was labeled as RRab by OGLE
(OGLE BLG RRLYR-33508), but that was inadvertently left out in Alonso-Garcı́a et al.
[2]. Probably this light curve is part of a VVV field and not of the cluster Terzan 10,
because it is beyond the tidal radius of Terzan 10 and it is also too bright to be part of the
cluster.

After studying the false positives in detail, we conclude that one is probably a RRab
variable stars and consequently the classifier has only one false positive. Overall, the har-
monic mean of false positives and false negatives is 1.71 or ≈ 4.4% of the data, better
than the performance measures obtained in the training and even better than expected.

Figure 3.13: Two sources that were nominally false positives: (a) Terzan10 V113; (b)
internal identifier 273508. One of them (a) is a bona fide false positive, while the other
(b) is a true positive that was not flagged as such in the work of Alonso-Garcı́a et al. [2]
(see text).

3.5.2 RRab in the outer bulge area of the VVV
Gran, F. et al. [37] performed a human classification of RRab variable stars in 7869 light
curves previously classified as variable in the outer bulge region of the VVV survey. This
region corresponds to the VVV fields b201 through b228 (see Figure 2.3). In order to
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assess the performance of our classifier in this dataset, we compare the scores obtained
by the classifier with the human classification. There were 1019 light curves classified as
RRab by Gran et al., of which 939 passed the cleaning process detailed in Sect. 3.1.

Although the data of the outer bulge area were used to verify the performance of the
classifier on independent datasets, the classifier also helped to confirm some RRab that
were not classified with certainty in the visual inspection. Among the 1019 RRab found
by Gran et al. (2016), the classifier helped to detect the more symmetrical RRab (In Fig-
ure 3.14 some examples are shown) where the visual inspection suggested to eliminate
as many of them as possible since they could be confused with eclipsing binaries and
contaminate the sample. Other important contribution was that our classifier found the
RRab stars of high magnitude (more than Ks ∼ 15 approx.). This result allowed to rule
out many false positives selected by analyzing the χ2 test (Carpenter, 2001 [15]).
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Figure 3.14: Light curves of RRab stars found by Gran et al. (2016) in the outer bulge
area of the VVV which were confirmed by the classifier.

After labeling the RRab stars confirmed by the classifier, we could assess the perfor-
mance obtained by the classifier in the outer bulge data. In the 939 variable stars which
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passed the cleaning filters, there were 50 false negatives, and the classifier gave an addi-
tional 177 false positives, which gives a total of 1066 stars that were detected as RRab by
the classifier. The distributions of the scores for the outer bulge light curves is shown in
Fig. 3.15. The harmonic mean of the number of false positives and negatives is ≈78, or
≈ 8% of the sample size, slightly lower but fully consistent with the F1 measure estimated
from cross-validation on the training set.

Figure 3.15: Histogram of scores obtained by the classifier for the outer bulge light-curves
of the sample used by Gran et al. (2016). Shown are the true positives (sources classified
by as RRab), false positives, and false negatives.

3.5.3 Census of RRab stars along the southern galactic disk.
Dekany et al. (2018) [25] performed a census of RRab along the southern galactic disk.
The southern galactic disk corresponds to the fields b001-b151 of the VVV survey (see
Figure 2.3). It is particularly interesting to assess our classifier in this data, because the
light curves from the disk have less observations than the light curves from the bulge area.
Therefore, the curves of both data sets differ in their temporal distribution. Furthermore,
as there are currently few known RRab in the disk, the classifier was used to discover new
RRab stars in this area. Due to the small number of known RRab stars in the disk, the
performance of the classifier should be assessed from visual inspections of human experts.
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The visual inspection was performed by selecting all the variable stars with a score
estimated by the classifier above the 0.5. As a result, they obtained a selection of 3379
RRab candidates. These objects were labeled as RRab or not by a group of human ex-
perts. Based in this inspection, Dekany et al. (2018) [25] concluded that 90% of the
candidates are consistent with being RRab.

Later, the threshold of the classifier was calibrated to improve the performance on this
data. In Figure 3.16 the Kernel Density of the scores of RRab and No RRab are shown.
Note that using a score threshold of 0.7 we can obtain a pure sample of RRab candidates.
Dekany et al. (2018) decided to use a score threshold of 0.6 with a human-estimated pre-
cision of approx 0.9. Using this threshold the classifier found 2147 RRab candidates.

Figure 3.16: Kernel Density estimation of the classification score for RRab (green den-
sity) and No RRab (red density) and overall (green density). The blue and black lines
correspond to the contamination and precision respectively (from Dekany et al, 2018
[25]).

As can be seen, the classifier was used in several datasets of the VVV survey. Each
of them have different characteristics than the dataset used to train the classifier. Particu-
larly, the center of the bulge area was used to train the classifier. This area is distant of the
southern galactic disk or the outer bulge area, where the classifier was applied. However,
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the results obtained by the RRab classifier were consistent with the performance of the
classifier estimated by cross-validation in the training set. The satisfactory results of the
classifier allow us to continue looking RRab stars over the full area of the VVV.
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Chapter 4

Light Curves Modeling

In the previous sections, I mentioned that the light curves of astronomical objects are
measured irregularly in time. Therefore, there are few methods to model the time depen-
dency of the light curves. Some of these methods transform the irregular time series into
a regular time series, using interpolation techniques (for a review of such methods see e.g.
Rehfeld et al. (2011) [55]).

To model directly the irregular time series, generally the CARMA family of models
are used. A particular case of the CARMA models is the CAR(1) model. This model
can be used to estimate the autocorrelation of an irregular time series. However, as men-
tioned in section 2.2.1.4, the CAR(1) models assumes Gaussian distribution and contin-
uous white noise. These constraints provide to the CAR(1) models with little flexibility.
For instance, the CAR(1) model is defined by a continuous time white noise, which ex-
ists only in the sense that its integral is a continuous time random walk. In addition, the
assumption of a Gaussian distribution could be a limitation to model irregular time series
with asymmetrical or heavy tailed distributions.

In this section, two new models that fit unequally spaced time series are introduced.
The main task of these models is to offer an alternative solution with more flexibility re-
garding the distribution assumption. This can be achieved using a discrete representation
of the continuous time processes and relaxing the distribution assumption. We called these
models, the Irregular Autoregressive (IAR) model [30, 31] and the Complex Irregular Au-
toregressive (CIAR) model. In the following we present both models and its properties.

4.1 Irregular Autoregressive (IAR) model
Let {yt} be an observation measured at irregular times, and therefore {yt} = {yt j}, where {t j}
is the increasing sequence of observation times with j = 1, . . . , n. The first-order irregular

lxxxv
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autoregressive (IAR) process is defined by,

yt j = ϕ
t j−t j−1 yt j−1 + σy

√
1 − ϕ2(t j−t j−1) εt j , (4.1.1)

where εt j is a white noise sequence with zero mean and unit variance. Note that in a time
series measured irregularly, t j − t j−1 is not constant. The initial value of the process is
yt1 = σyεt1 . Figure 4.1 shows a simulated irregular autoregressive process. Note that the
time gaps are not constant in the simulated process.

0 2000 4000 6000 8000

-3
-2

-1
0

1
2

Time

Figure 4.1: Simulated IAR Time Series of length 300 and ϕ = 0.9.

The IAR model is an extension of the regular autoregressive model in the sense that
if t j − t j−1 = 1 is assumed, the IAR process becomes the autoregressive model of order 1
(AR(1)) for regularly space data.

Furthermore, both the IAR and CAR(1) process are strongly connected. In equation
(2.2.19) we defined the CAR(1) process by,

X(t) − β

α0
= e−α0(t−s)

(
X(s) − β

α0

)
+ e−α0t(I(t) − I(s)) (4.1.2)
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Setting β = 0, σ2 =
σ2

0
2α0

and replacing e−α0 with ϕ the equation (4.1.2) is equivalently
to the equation (4.1.1). Furthermore, if yt j is described by the equation (4.1.1) then,

E(yt j) = 0,
V(yt j) = σ

2,

E(ytk yt j) = σ
2 ϕtk−t j

(4.1.3)

where k ≥ j. Consequently, the autocovariance and autocorrelation function between two
observational times t, s are defined by,

γ(t − s) = E(yt ys) = σ2 ϕt−s,

ρ(t − s) =
γ(t − s)
γ(0)

= ϕt−s.
(4.1.4)

Furthermore, it can be proved that the first two moments of CAR and IAR processes
are the same (see Appendix A), so under gaussianity, both processes are equivalent. In
other words, it can be considered that, the IAR process is a discrete representation of the
CAR (1) process, where the time dependency is represented in the IAR model by the pa-
rameter ϕ and in the CAR(1) model with e−α0 .

The results in (4.1.3) prove that the sequence {yt j} corresponds to a second-order
or weakly stationary process. Furthermore, under some conditions, the IAR process is
strictly stationary and ergodic. This result has been stated in the Theorem 1 of Eyhera-
mendy et al. (2017) [31], which is presented below

Theorem 4.1.1. Consider the process defined by (4.1.1) and assume that the input noise
is an i.i.d. sequence of random variables with zero mean and unit variance. Furthermore,
suppose that t j − t j−n ≥ C log n as n → ∞, ϕ2 < 1 such C is a positive constant such
that C log ϕ2 < −1. Then, there exists a solution to the process defined by (4.1.1), and the
sequence {yt j} is strictly stationary and ergodic.

Proof: For a given positive integer n we can write

yt j = ϕ
t j−t j−n yt j−n + σ

n−1∑
k=0

ϕt j−t j−k

√
1 − ϕ2(t j−k−t j−k−1) εt j−k ,

Notice that under the assumptions of the theorem the first term converges to zero in prob-
ability. On the other hand, we have that

ϕ2(t j−t j−k) ≤ kα,
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where

α = C log ϕ2

Consequently,

∞∑
k=0

ϕ2(t j−t j−k) ≤
∞∑

k=0

kα < ∞,

since α < −1 by assumption. Thus, the expression

yt j = σ

∞∑
k=0

ϕt j−t j−k

√
1 − ϕ2(t j−k−t j−k−1) εt j−k , (4.1.5)

corresponds to a measurable transformation of the i.i.d. sequence {εt j}. Therefore, due to
Theorem 1.7 of Palma (2007) [52], the sequence {yt j} is strictly stationary and ergodic.

Further, it is straightforward to see that the equation (4.1.5) is a solution to the process
defined by (4.1.1). This can be shown by plugging-in yt j−1 , as defined in (4.1.5), into the
right-side of equation (4.1.1). After some arithmetic one gets to yt j , showing that (4.1.5)
is indeed a solution to the process defined by (4.1.1).

Note that for a process measured in regular times the assumption of the theorem is
satisfied since t j − t j−n = n and n > log(n) is achieved. In addition, for a regular AR(1)
model ϕ2 < 1 is also satisfied. Therefore, the regular AR(1) is also ergodic and stationary.

4.1.1 Estimation of IAR Model
The finite past predictor of the process at time t j is given by,

ŷt j = ϕ
t j−t j−1 yt j−1 , for j = 2, . . . , n. (4.1.6)

where the initial value is ŷt1 = 0. Furthermore, et j = yt j − ŷt j is the innovation with
variance,

νt j = Var(et j) = σ
2
y[1 − ϕ2(t j−t j−1)] (4.1.7)

where the initial values are et1 = yt1 and νt1 = Var(et1) = σ
2
y.

The estimation of the model parameter θ = (σ2
y, ϕ) can be performed by maximum

likelihood. Assuming a Gaussian distribution, minus the log-likelihood of this process
can be written as,
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ℓ(θ) =
n
2

log(2π) +
1
2

n∑
j=1

log νt j +
1
2

n∑
j=1

e2
t j

νt j

, (4.1.8)

We can obtain the maximum likelihood estimator ofσ2
y by maximizing the log-likelihood

(4.1.8), such that,

σ̂y
2 =

1
n

n∑
j=1

(yt j − ŷt j)
2

τt j

, where τt j = νt j/σ
2
y. (4.1.9)

it is not possible to find a closed form expression for the maximum likelihood estima-
tor of ϕ, but iterative methods can be used.

4.1.2 IAR Gamma
As I mentioned above, the IAR model is equivalent to the CAR(1) model when the data
is assumed normally, but the IAR model is more general, since it allows fitting data com-
ing from other distributions. To verify this, we perform an IAR model with Gamma
conditional distribution following the procedure of writing the conditional variance as a
function of the conditional mean [53]. Let Ft j−1 = σ(yt j−1 , yt j−2 , . . .) the σ-field generated
by the information up to instant t j−1, then the conditional mean and variance of IAR model
are defined by

E(yt j |Ft j−1) = µ + ϕ
t j−t j−1 yt j−1

V(yt j |Ft j−1) = σ
2 (1 − ϕ2(t j−t j−1))

(4.1.10)

Note that these conditional moments are equivalent to those of the Gaussian IAR pro-
cess, the only difference is the positive parameter µ that corresponds to the expected value
of yt j−1 . If yt j |yt j−1 follow a Gamma distribution, a positive value of µ is required in order
to ensure the positivity of the process. However, the process may be shifted, so that yt j −µ
have a zero mean, like the Gaussian IAR. Under this notation, the initial value of the pro-
cess yt1 is µ.

In addition, note that under the assumption of stochastic times the marginal mean

E(yt j) =
µ

1−E(ϕt j−t j−1 )
and marginal variance V(yt j) = σ

2 +
E(yt j )

2V(ϕt j−t j−1 )

1−E(ϕ2(t j−t j−1))
are constants.

Now suppose that xt j follows a gamma distribution with shape αt j and scale βt j . It is
well known that the expected value and the variance of this distribution are E(xt j) = αt jβt j

and V(xt j) = E(xt j)βt j respectively.
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Let E(yt j |Ft j−1) = λt j , note that V(yt j |Ft j−1) can be defined as a function g of λt j (g(λt j)).

Consequently, yt j |Ft j−1 ∼ Gamma
(
αt j , βt j

)
with βt j =

g(λt j )

λt j
and αt j =

λ2
t j

g(λt j )
. The log-

likelihood are,

ℓ j = log fθ
(
αt j , βt j

)
= −

(
αt j

)
log βt j − logΓ

(
αt j

)
− 1
βt j

yt j +
(
αt j − 1

)
log yt j

Let f (yt1) ∼ Gamma(1, 1), then the full log-likelihood are,

ℓ(θ) =
N∑

j=2

ℓ j + ℓ1

where ℓ1 = −yt1 . The unknown parameters of the model are ϕ, µ and σ which can be
estimated using iterative methods. From now, this model will be called as IAR-Gamma.

4.1.3 Simulation Results

As mentioned above, the estimation of the parameters of both the IAR and IAR-Gamma
is performed by maximum likelihood. In order to implement the estimation procedures of
both models several functions were created in R and Python softwares (for more details,
see Section 4.4).

It is very important to assess whether the functions were implemented correctly and
whether the maximum likelihood estimator proposed is accurate. Consequently, in this
section a Monte Carlo experiments is performed in order to assess the finite sample esti-
mation procedure.

The Monte Carlo experiment is based on 1000 repetitions of each simulation. In
each repetition, the irregular times were generated using the following mixture of two
exponential distributions,

f (t|λ1, λ2, ω1, ω2) = ω1g(t|λ1) + ω2g(t|λ2) (4.1.11)

In this representation, the exponential distributions have means 1/λ1 and 1/λ2 and ω1

and ω2 are its respective weights.

In the following two experiments, the estimation of the ϕ and σ2 parameters of the
IAR model are assessed. In the first of them λ1 = 130, λ2 = 6.5, ω1 = 0.15 and ω2 = 0.85
have been used to generate the irregular times. In Table 4.1 it can be observed that the
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Table 4.1: Maximum likelihood estimation of simulated IAR series with mixture of Expo-
nential distribution for the observational times, with λ1 = 130 and λ2 = 6.5, ω1 = 0.15
and ω2 = 0.85.

Case n ϕ ϕ̂ SD(ϕ̂) σ(ϕ̂) σ̂

1 50 0.900 0.887 0.044 0.034 1.013
2 50 0.990 0.985 0.008 0.008 1.039
3 50 0.999 0.996 0.004 0.003 1.155
4 100 0.900 0.894 0.029 0.024 1.005
5 100 0.990 0.988 0.005 0.006 1.015
6 100 0.999 0.998 0.002 0.002 1.049

estimation of ϕ and σ2 are close to the real values, even for smaller sample sizes.

It is interesting to assess the sensibility of the estimation procedure to changes in the
time distribution. Consequently, we implement a new time distribution with the parame-
ters set to λ1 = 300, λ2 = 10, ω1 = 0.15 and ω2 = 0.85. Table 4.2 confirms the results
obtained in the first experiment, since for all combinations of sample size and ϕ the esti-
mation of the parameters is very accurate.

Table 4.2: Maximum likelihood estimation of simulated IAR series of size n, with Expo-
nential distribution mix observation times, λ1 = 300 and λ2 = 10.

Case n ϕ ϕ̂ SD(ϕ̂) σ(ϕ̂) σ̂

1 40 0.900 0.8843 0.058 0.038 1.011
2 40 0.990 0.9854 0.009 0.007 1.037
3 40 0.999 0.9969 0.003 0.002 1.120
4 80 0.900 0.8929 0.034 0.027 1.006
5 80 0.990 0.9876 0.005 0.005 1.018
6 80 0.999 0.9980 0.001 0.002 1.046

Therefore, the Monte Carlo simulations suggest that the finite-sample performance of
the proposed methodology is accurate, and is not sensitive to smaller sample sizes and
changes in the time distribution. In both cases high values of the parameter ϕ were used
in order to have a significant time dependency in the simulated IAR process, taking in
consideration that the time distributions that were chosen to have large time gaps.

Now, using the parameters of time distribution λ1 = 130 and λ2 = 6.5, ω1 = 0.15 and
ω2 = 0.85 the parameter estimation procedure of the conditionally Gamma IAR process
was assessed. In this case it is interesting also to assess the estimation performance of the
CAR(1) process. To perform the CAR model we use both the package cts of R [73] and
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the Python script developed by Pichara et al, (2012) [54].

Table 4.3: Implementation of IAR and CAR models on simulated Gamma-IAR series in R
and Python. For the observational times we use a mixture of two Exponential distributions
with parameters λ1 = 130 and λ2 = 6.5, w1 = 0.15 and w2 = 0.85.

N ϕ σ ϕ̂ SD(ϕ̂) ϕ̂C SD(ϕ̂C) σ̂ SD(σ̂)
R 100 0.9 1 0.899 0.014 0.418 0.306 0.984 0.170
R 100 0.99 1 0.990 0.001 0.890 0.201 0.985 0.161
R 200 0.9 1 0.899 0.010 0.355 0.286 0.993 0.122
R 200 0.99 1 0.990 0.001 0.900 0.184 0.998 0.120
Python 100 0.9 1 0.899 0.013 0.449 0.318 0.990 0.169
Python 100 0.99 1 0.990 0.001 0.919 0.169 0.981 0.200
Python 200 0.9 1 0.899 0.010 0.393 0.299 0.985 0.127
Python 200 0.99 1 0.990 0.001 0.927 0.163 0.996 0.332

In Table 4.3 ϕ̂ is the estimation using the conditionally gamma IAR process and ϕ̂C is
the estimation using the CAR process. Evidently, the performance of the CAR(1) model
is substantially worse than the one obtained with the IAR model. In addition, note that
the performance of CAR(1) model using the Python function does not vary significantly
regarding to the results obtained using R.

Another interesting experiment is to assess the ability of the regular time series mod-
els to fit an IAR sequence. The standard deviation of the innovations was computed (Eq
(4.1.7)) to compare the goodness of fit of each model fitted to the sequence. The IAR se-
quence was generated with ϕ = 0.99, n = 100 and the observational times was generated
using the equation (4.1.11), with λ1 = 130 and λ2 = 6.5, ω1 = 0.15 and ω2 = 0.85. The
basic idea is to fit this sequence using the IAR model, the regular autoregressive model
of order one (AR(1)) and the ARFIMA(1,d,0) model, where the last two assume regular
spaced data.

According to equation (4.1.7), the standard deviation of innovations changes for each
observational time, which differs to the regular time series models in which the standard
deviation of innovation is constant. Each standard deviation of the IAR model corre-
sponds to the black dots in Figure 4.2. Here we can note that for large time gaps the
standard deviation of innovations computed using the IAR model are greater than the
ones computed by the AR and ARFIMA models, but if the observations are close, the
smallest values are achieved using the irregular model. On average, the standard devia-
tion of innovations is lower when using the IAR model than when using any of the other
models.
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Figure 4.2: Comparison of standard deviation of innovations computed using the IAR
model and other time series models that assumes regular times. The red line is the stan-
dard deviation of the data, the blue and green lines are the standard deviation of innova-
tions computed using the AR(1) and ARFIMA(1,d,0) model respectively. The black line
is the mean of the standard deviation of innovation computed using the IAR(1) model.

This result shows the importance of including the time difference in the definition of
the model used to fit an irregular time series. However, both the CAR(1) and the IAR
models only allow to estimate positive autocorrelation. That is a limitation of these mod-
els regarding to the regular autoregressive model that allows −1 < ϕ < 1. In the case of
the IAR model, the equation (4.1.1) shows that ϕ is powered to the time difference t j−t j−1,
which could be a real number. In general a negative ϕ powered to a real number does not
exist. Therefore, these models do not have the ability to detect and model negative auto-
correlations.

Negative time dependencies appear often in some areas. In financial time series, is
common to find significant negative autocorrelation for weekly and monthly stocks re-
turns (further discussion can be found in Sewell (2011) [60]). Several authors agree that
these are generally produced in stocks with a high trading frequency [20] [14].

Another well-known example of negatively correlated time series are the antipersis-
tent processes which are characterized for having negative correlation for all positive lags
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(For more details see Bondon & Palma (2007) [7]). The best known anti-persistent pro-
cess is the Kolmogorov’s energy spectrum of turbulence [36]. There are several examples
in meteorology, e.g., Ausloos,M. and Ivanova,K. (2001) [5] which detect antipersistence
in the fluctuations of the Southern Oscillation Index, e.g. sea level pressure. Also, the
electricity prices in some Canadian provinces have an antipersistent behavior [71].

The problem of detecting negative time dependencies in irregularly sampled time se-
ries has been scarcely addressed in the literature. Chan and Tong (1987) [19] proved that
a discrete-time AR(1) process with negative coefficient, always can be embedded in suit-
ably chosen continuous-time ARMA(2,1) process, but this is a low parsimony solution.
Alternatively, when an irregular time series have an antipersistent behavior it can be fitted
by the CARFIMA process (Tsai H. (2009) [66]) with an intermediate memory, i.e., the
Hurst parameter H is such that 0 < H < 1/2.

In order to detect negative time dependencies, we propose a new alternative model
for irregular time series that allows to estimate both positive and negative autocorrela-
tion. This model is an extension of the irregular autoregressive model where now ϕ takes
complex values. We call this model a complex irregular autoregressive model (CIAR). In
what follows, we describe this model.

4.2 Complex Irregular Autoregressive (CIAR) model

In order to derive a complex extension of the model (4.1.1). we follow the approach of
Sekita et al. (1991) [59], which build a complex autoregressive model for regular times.
Consequently, suppose that xt j is a complex valued sequence, such that, xt j = yt j+izt j ∀ j =
1, . . . , n. Likewise, ϕ = ϕR + iϕI is the complex coefficient of the model and εt j = ε

R
t j
+ iεI

t j

is a complex white noise. We define the complex irregular autoregressive (CIAR) process
of order 1 as,

yt j + izt j = (ϕR + iϕI)t j−t j−1 (yt j−1 + izt j−1) + σt j(ε
R
t j
+ iεI

t j
), (4.2.1)

where σt j = σ

√
1 − |ϕt j−t j−1 |2 and |.| is the modulus of a complex number. Furthermore,

we assume that only the real part yt j is observed and the imaginary part zt j is a latent
process. In addition, εR

t j
and εI

t j
, the real and imaginary part of εt j respectively are inde-

pendent with zero mean and variances V(εR
t ) = 1 and V(εI

t ) = c. The initial values are
set to yt1 = σε

R
t1 and zt1 = σε

I
t1 . In the next lemma are described some properties of this

process.

Lemma 1: Let xt j a complex sequence that satisfies the equation (4.2.1). Then,
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a) E(xt j) = 0

b) V(xt j) = γx(0) = σ2(1 + c)

c) The autocovariance function of the process is such that γx(k) = E(xt j+k xt j) =
(1+c)ϕt j+k−t j

∣∣∣∣σt j

∣∣∣∣2
1−ϕδ j+kϕ

δ j

d) The autocorrelation function of the process is such that ρx(k) = γx(k)
γx(0) =

ϕ
t j+k−t j

(
1−

∣∣∣∣ϕδ j
∣∣∣∣2)

1−ϕδ j+kδ j

where ϕ is the complex conjugate of ϕ. In addition, note that under |ϕ| = |ϕR + iϕI | < 1,
the results above prove that the complex sequence xt j is a weakly stationary process.

Proof: It is straightforward to show that xt j = yt j + izt j is such that E(xt j) = 0. Denote
δ j = t j−t j−1 the time differences and γx(0) = E(xt j xt j) = V(xt j) the variance of the process,
where xt j is the complex conjugate of xt j , therefore,

xt j xt j =
(
ϕδ j xt j−1 + σt j εt j

) (
ϕδ j xt j−1 + σt j εt j

)
=

∣∣∣ϕδ j
∣∣∣2 ∣∣∣xt j−1

∣∣∣2 + . . . + ∣∣∣σt j

∣∣∣2 ∣∣∣εt j

∣∣∣2
Now, applying expectation E and using the properties of the model (4.2.1)

γx(0) =
∣∣∣ϕδ j

∣∣∣2 γx(0) +
∣∣∣σt j

∣∣∣2 (1 + c)

γx(0) =
(1 + c)

∣∣∣σt j

∣∣∣2
1 −

∣∣∣ϕδ j
∣∣∣2

γx(0) =
(1 + c)σ2

(
1 −

∣∣∣ϕδ j
∣∣∣2)

1 −
∣∣∣ϕδ j

∣∣∣2 = (1 + c)σ2 = V(xt j)

The covariance of the process is defined such that γx(k) = E(xt j+k xt j), then,

xt j+k xt j =
(
ϕδ j+k xt j+k−1 + σt j+k εt j+k

) (
ϕδ j xt j−1 + σt jεt j

)
= ϕδ j+kϕδ j xt j+k−1 xt j−1 + . . . + ϕ

δ j+k xt j+k−1σt j εt j

Now, applying expectation E we have,
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γx(k) = ϕδ j+kϕδ jγx(k) + ϕδ j+k σt j E(xt j+k−1εt j)

γx(k) =
ϕδ j+k σt j E(xt j+k−1εt j)

1 − ϕδ j+kϕδ j

where we can prove by recursive replacing of the definition of xt j−k that the numerator of

the latter expression is equal to (1 + c)ϕt j+k−t j
∣∣∣σt j

∣∣∣2. Finally, the autocovariance function
is,

γx(k) =
(1 + c)ϕt j+k−t j

∣∣∣σt j

∣∣∣2
1 − ϕδ j+kϕδ j

and therefore, ρx(k) =
ϕ

t j+k−t j
(
1−

∣∣∣∣ϕδ j
∣∣∣∣2)

1−ϕδ j+kδ j

Note that the autocorrelation function ρ(k) of the CIAR process decay in a rate ϕt j+k−t j

(also called exponential decay). This autocorrelation structure makes the difference re-
garding antipersistent or intermediate memory CARFIMA process, since the autocorrela-
tion function of the latter decays more slowly than an exponential decay. Thus, although
both models can fit irregular time series with negative autocorrelation, the appropriate use
of these models will depend on the correlation structure of the data.

In this work, we propose an implementation of the CIAR model derived from the
State-Space systems. The representation of this model in a state-space system allows us
to implement the Kalman filter in order to get the maximum likelihood estimators of the
parameters of the model.

4.2.1 State-Space Representation of CIAR Model
To represent the CIAR model in a state-space system the equation (4.2.1) must be rewrit-
ten. This is achieved following the results from the next lemma,

Lemma 2: The CIAR process described by (4.2.1) can be expressed by the following
equation,

yt j + izt j = (αR
t j
+ iαI

t j
) (yt j−1 + izt j−1) + σt j(ε

R
t j
+ iεI

t j
), (4.2.2)

where αR
t j
= |ϕ|δ j cos(δ jψ), αI

t j
= |ϕ|δ j sin(δ jψ), δ j = t j − t j−1, ψ = arccos

(
ϕR

|ϕ|

)
and

ϕ = ϕR + iϕI .
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Proof: The CIAR model follows the equation yt j + izt j = (ϕR+ iϕI)t j−t j−1 (yt j−1 + izt j−1)+
σt j(ε

R
t j
+ iεI

t j
). Let’s focus on the term” (ϕR + iϕI)t j−t j−1 ,

(ϕR + iϕI)t j−t j−1 = (ϕR + iϕI)δ j = |ϕ|δ j

(
ϕR + iϕI

|ϕ|

)δ j

where δ j = t j− t j−1 and ϕ = ϕR+ iϕI . Using the polar representation for complex numbers
we obtain,

(
ϕR + iϕI

|ϕ|

)δ j

= (cos(ψ) + i sin(ψ))δ j(
ϕR + iϕI

)δ j
= |ϕ|δ j(cos(ψ) + i sin(ψ))δ j

where ψ = arccos
(
ϕR

|ϕ|

)
. Now, using the Moivre property, we have

(
ϕR + iϕI

)δ j
= |ϕ|δ j(cos(δ jψ) + i sin(δ jψ))

= |ϕ|δ j cos(δ jψ) + i|ϕ|δ j sin(δ jψ)
= αR

t j
+ iαI

t j

where αR
t j
= |ϕ|δ jcos(δ jψ) and αI

t j
= |ϕ|δ j sin(δ jψ). Finally, the Complex IAR model can be

represented by the expression,

yt j + izt j = (αR
t j
+ iαI

t j
) (yt j−1 + izt j−1) + σt j(ε

R
t j
+ iεI

t j
)

Note that following this representation we can express the observed process as yt j =

αR
t j
yt j−1 − αI

t j
zt j−1 + σt jε

R
t j

and the latent process zt j = α
I
t j
yt j−1 + α

R
t j
zt j−1 + σt jε

I
t j
. Note that the

process yt j is an IAR with parameter ϕ by assuming αI
t j
= 0 and αR

t j
= ϕt j−t j−1 . In addition,

it is straightforward to show that αI
t j
= 0 is equivalent to ϕI = 0.

Another important consideration is that the observed process yt j does not depend di-
rectly on εI

t j
. Consequently, the variance of the imaginary part c is a nuisance parameter,

in the sense that can take any value in R+ and do not cause significant changes in the
model.

The equation (4.2.2) can be represented by the space-state system (2.2.6) - (2.2.7) un-

der t = t j and Xt j =

(
yt j

zt j

)
. According to the initial assumption of the model, it is only



xcviii

observable yt j which implies that Yt j = yt j . Consequently, G =
(

1 0
)

is the observation
matrix under this representation.

To complete the specification we define the transition matrix as Ft j =

(
αR

t j
−αI

t j

αI
t j

αR
t j

)
,

the noise of both equations as Vt j = σt j

(
εR

t j

εI
t j

)
and Wt j = 0. Finally, the observation and

state equations of the state-space representation of CIAR model are,(
yt j

zt j

)
=

(
αR

t j
−αI

t j

αI
t j

αR
t j

) (
yt j−1

zt j−1

)
+ σt j

(
εR

t j

εI
t j

)
(4.2.3)

yt j =
(

1 0
) ( yt j

zt j

)
(4.2.4)

Note that in this representation, the transition matrix and the variance of noise term of
the state equation Qt j = |σt j |2V

(
εt j

)
depend on time.

Lemma 3: Let αt j = α
R
t j
+ iαI

t j
. If |αt j | < 1, the process (4.2.3) is stable and it has a

unique stationary solution given by,

Xt j = Vt j +

∞∑
k=1

Vt j−k

k−1∏
i=0

Ft j−i

where Vt j−k = σt j−k

(
εR

t j−k

εI
t j−k

)
Proof: Let the transition matrix of CIAR process Ft j =

(
αR

t j
−αI

t j

αI
t j

αR
t j

)
, then for a

specific time t j the eigenvalues of Ft j satisfy the follow equation

|(Ft j − λI)| =
∣∣∣∣∣∣
(
αR

t j
−αI

t j

αI
t j

αR
t j

)
−

(
λ 0
0 λ

)∣∣∣∣∣∣ = 0

=

∣∣∣∣∣∣
(
αR

t j
− λ −αI

t j

αI
t j

αR
t j
− λ

)∣∣∣∣∣∣
0 = (αR

t j
− λ)2 + αI2

t j

0 = λ2 − 2αR
t j
λ + (αR2

t j
+ αI2

t j
)

⇒ λ =
2αR

t j
±

√
4αR2

t j
−4(αR2

t j
+αI2

t j
)

2 = αR
t j
± iαI

t j
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As |αR
t j
+ iαI

t j
| = |αR

t j
− iαI

t j
| = |αt j |, then the process is stable if |αt j | < 1. Therefore,

under this assumption the CIAR process has the unique stationary solution (Brockwell &
Davis (2002) [12]) given by

Xt j = Ft j Xt j−1 + Vt j

= Ft j(Ft j−1 Xt j−2 + Vt j−1) + Vt j

= Ft j Ft j−1 Xt j−2 + Ft jVt j−1 + Vt j

= Ft j Ft j−1(Ft j−2 Xt j−3 + Vt j−2) + Ft jVt j−1 + Vt j

= Ft j Ft j−1 Ft j−2 Xt j−3 + Ft j Ft j−1Vt j−2 + Ft jVt j−1 + Vt j

Therefore, the general form can be written as,

Xt j = Xt j−n

n−1∏
k=0

Ft j−k + Vt j +

n−1∑
k=1

Vt j−k

k−1∏
i=0

Ft j−i

As
∣∣∣∏n−1

k=0 Ft j−k

∣∣∣ = ∏n−1
k=0

∣∣∣Ft j−k

∣∣∣ and |Ft j−k | < 1 due to the stability of the process, then
lim
n→∞

∏n−1
k=0 Ft j−k = 0. Finally if n→ ∞ then the unique stationary solution is given by,

Xt j = Vt j +

∞∑
k=1

Vt j−k

k−1∏
i=0

Ft j−i

4.2.2 Estimation of CIAR Model
For the state-space model (4.2.3)- (4.2.4), the one-step predictors X̂t j = Pt j−1(Xt j) and their
error covariance matrices Ωt j = E[(Xt j − X̂t j)(Xt j − X̂t j)

′] are unique and determined by the

initial values: X̂t1 =

(
0
0

)
and Ωt1 = E[(Xt1 − X̂t1)(Xt1 − X̂t1)

′]. Using the properties of the

model (4.2.1) we can rewrite Ωt1 as,

Ωt1 = σ
2
(

1 0
0 c

)
.

The Kalman recursions, for j = 1, . . . , n − 1 are defined by,

Λt j = Gt jΩt jG
′
t j

(4.2.5)

Θt j = Ft jΩt jG
′
t j

(4.2.6)

Ωt j+1 = Ft jΩt j F
′
t j
+ Qt j − Θt jΛ

−1
t j
Θ′t j

(4.2.7)

νt j = yt j −Gt j X̂t j (4.2.8)
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X̂t j+1 = Ft j X̂t j + Θt jΛ
−1
t j
νt j (4.2.9)

where {νt j} is called the innovation sequence.
The maximum likelihood estimators of the CIAR model parameters ϕR and ϕI can be
obtained by minimizing the reduced likelihood defined as,

ℓ(ϕ) ∝ 1
n

n∑
j=1

log(Λt j) +
ν2

t j

Λt j


where Λt j and νt j comes from the Kalman recursion.

4.2.3 Simulation Results
Similarly to the procedure used in section 4.1.3, the finite sample performance of the es-
timation procedure with Kalman filter of the CIAR model will be assessed performing
Monte Carlo experiments based on 1000 repetitions of each simulation. In each repetition
we generate a CIAR sequence corresponding to the equation (4.2.1) using coefficients
with different positive and negative values of the real part ϕR. In addition, both the imag-
inary part of the coefficient and the imaginary variance are set to ϕI = 0 and c = 1. The
irregular times are also generated using the mixture of exponentials distributions defined
in (4.1.11). In this case, λ1 = 15 and λ2 = 2 are chosen as the mean of each exponential
distribution ω1 = 0.15 and ω2 = 0.85 as its respective weights.

In addition, in order to assess the performance of the IAR model when the CIAR
process is generated with a negative correlation, we also estimate the parameter ϕ of the
IAR model. In Table 4.4 the results of the Monte Carlo simulations are shown. We can
note that the finite-sample performance of the proposed methodology is accurate both for
positive and negative values of ϕR. In addition, the estimation of the IAR parameter (ϕ̂IAR)
is close to the value with which the CIAR process was generated ϕR, when this value is
positive. But when the CIAR process is generated with negative ϕR the estimation of the
IAR coefficient is close to zero. This result is important since it shows that the IAR model
can’t identify negative values of ϕ unlike the CIAR model. Finally, note that the accuracy
of the estimated values does not depend on the magnitude of the given coefficient.

4.2.4 Comparing the CIAR with other time series models
In order to assess the performance of another time series models in capturing negative
time dependences produced by the CIAR model, we generate the sequence of CIAR ob-
servations {y1, . . . , yn} with ϕR = −0.99, ϕI = 0, c = 1, n = 300 and the irregular times are
defined as in the above example. We fit this sequence using the follow time series models,
IAR, AR(1), ARFIMA and CAR(1), and CIAR and compute the root mean squared error
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Table 4.4: Maximum likelihood estimation of complex ϕ computed by the CIAR model in
simulated IAR data. The observational times are generated using a mixture of Exponential
distribution with λ1 = 15 and λ2 = 2, w1 = 0.15 and w2 = 0.85.

Case N ϕR ϕ̂R SD(ϕ̂R) ϕI ϕ̂I SD(ϕ̂I) ϕ̂I SD(ϕ̂I)
1 300 0.999 0.9949 0.0036 0 0.0009 0.0030 0.9949 0.0036
2 300 0.9 0.8960 0.0187 0 0.0116 0.0413 0.8950 0.0188
3 300 0.7 0.6967 0.0412 0 0.0557 0.0819 0.6948 0.0406
4 300 0.5 0.4942 0.0596 0 0.0849 0.1111 0.4965 0.0569
5 300 -0.999 -0.9984 0.0012 0 0.0001 0.0009 0.0626 0.0265
6 300 -0.9 -0.8991 0.0154 0 0.0014 0.0134 0.0643 0.0299
7 300 -0.7 -0.6991 0.0414 0 0.0061 0.0354 0.0628 0.0289
8 300 -0.5 -0.4971 0.0717 0 0.0091 0.0607 0.0589 0.0283

(RMSE). Figure 4.4 shows that the RMSE of all the models with the exception of the
CIAR model has similar values regarding to the standard deviation of the data. On the
other hand, the CIAR is the only model that reduce significantly the standard deviation of
the sequence.

Further, in order to assess the stability of the above result, this experiment is repeated
1000 times. In addition, we also fitted a CIAR process with positive time dependency
(ϕR = 0.99) with the time series models mentioned above. Figure 4.4 a) shows that
the RMSE estimated by the irregular time series models are smaller than both the AR and
ARFIMA models (both assumes regular sampling). However, as can be seen in Figure 4.4
b) the CIAR model has a significantly better performance in fitting the negatively corre-
lated processes generated than the other models tested. Therefore, we verify that a CIAR
process with a large and negative time dependency can not be correctly modeled with the
conventional time series models, including those that assume irregular sampling.

For a complete view of the performance of the time series models in fitting the CIAR
process, the procedure described above is repeated using different values of ϕR. Conse-
quently, in each iteration 100 sequences of the CIAR process are generated taking a total
of 20 values of ϕR equally spaced in the range (-1,1). In this experiment two distributional
times were implemented. Figure 4.4 c) is obtained using times generated by the equation
(4.1.11) with λ1 = 15 and λ2 = 2. Figure 4.4 d) is obtained using times generated by the
equation (4.1.11) with λ1 = 130 and λ2 = 6.5. Figures 4.4 c)-d) show that the largest
difference in performance between CIAR and the other time series models fitted, occur
for high and negative autocorrelations. This difference tends to be smaller when the au-
tocorrelation parameter approaches 0. Finally, for positive autocorrelations the irregular
models have the same performance. The main difference between the two experiments is
that for high and positive autocorrelations both the regular and irregular models have the
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Figure 4.3: Comparison of root mean squared error at each time of a sequence simulated
with the IAR model with parameter ϕR = −0.99, ϕI = 0, c = 0 and length n = 300.
The red line corresponds to the standard deviation of the sequence, the blue, green, gray
and orange lines correspond to the RMSE computed when the sequence was fitted with
IAR(1), AR(1), ARMA(2,1), CAR(1) models respectively. The black line corresponds to
the root mean squared error of the CIAR model, where the black dots are the individual
RMSE at each time.

same performance when the observational times are closest.

4.2.5 Computing the Autocorrelation in an Harmonic Model

The main advantage of the CIAR process over the other irregular time series models is
its ability to model weakly stationary time series with negative autocorrelation. However,
another interesting application of this model is to use it to detect if an irregular time series
have a negative autocorrelation. A well-known example of a weakly stationary time series
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Figure 4.4: In the first row are shown on figures (a) and (b) the kernel Distributions of
the root mean squared error computed for the fitted models on the 1000 CIAR sequences
simulated. In a) each CIAR process was generated using ϕR = −0.99. In b) each CIAR
process was generated using ϕR = 0.99. The other parameters of the models were defined
as ϕI = 0, c = 0 and length n = 300. In the second row are shown on figures (c) and
(d) the RMSE computed for different values of the autocorrelation parameter ϕR of the
CIAR model. The red, blue, green, darkgreen and black lines correspond to the RMSE
computed for the CIAR, IAR, AR, ARFIMA and CAR models respectively. In Figure
(c) the observational times are generated using a mixture of Exponential distribution with
λ1 = 15 and λ2 = 2, ω1 = 0.15 and ω2 = 0.85. In figures (a), (b) and (d) the observational
times are generated using a mixture of Exponential distribution with λ1 = 130 and λ2 =

6.5, ω1 = 0.15 and ω2 = 0.85.
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that can be negatively correlated is the following harmonic process,

yti = A sin( f ti + ψ) + ϵti (4.2.10)

where f is the frequency of the process and ϵti is a white noise sequence with mean 0 and
variance σ2. In addition, the amplitude A is a fixed parameter and the phase ψ is a ran-
dom variable with uniform distribution between −π and π. Assuming irregular times, the
one-step autocorrelation is given by ρ1 = cos( f ) [13]. It can be proved that this result is
also met under irregular times. Note that this autocorrelation is negative for f ∈ (π/2, π).
In addition, note that for higher frequency values the harmonic process 4.2.10 becomes
more anti-persistent, it has been discussed by some authors (e.g., Alperovich, et al (2017)
[3]).

A simulation study was performed in order to assess whether the CIAR model can de-
tect the correlation structure of an irregular harmonic model. Suppose that we generated
the irregular observational times ti with i = 1, . . . , n using the mixture of exponentials
distributions (equation (4.1.11)) with λ1 = 130 and λ2 = 6.5, ω1 = 0.15 and ω2 = 0.85.
Later, the process yti is simulated with length n = 300, amplitude A = 20 and a unit
variance for ϵti . The procedure is repeated k = 200 times using k different frequencies
taken equally spaced from the interval (0, π). We fit the CIAR model to each simulated
sequence. In Figure 4.5 the parameters estimated from CIAR model are shown. The the-
oretical autocorrelation is also added in the plot. Note that, the ϕR parameter estimated by
the CIAR model is close to the theoretical value.

4.3 Application of Irregular Time Series Models in As-
tronomical time series

As mentioned previously, in astronomical data is common to observe irregular time series
in which these models can be implemented. Particularly, in the analysis of the light curves
of variable stars, these models can be useful to characterize the light curves according to
its structure of temporal dependence.

In the previous section, I mentioned that the light curves are generally fitted by an har-
monic model (see equation (3.0.1)). One application of the irregular time series models
in the astronomical context, is to detect whether the harmonic model is sufficient to cap-
ture all the temporal dependency in the light curve, i.e., whether a temporal dependency
structure remains in the residuals of the harmonic model.
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Figure 4.5: Estimated coefficients (y-axis) by the CIAR model in k = 200 harmonic
processes generated using frequencies (x-axis) in the interval (0, π). The black line cor-
responds to the coefficients estimated by the CIAR model. The red line is the theoretical
autocorrelation of the process yti

The main idea is to first fit an harmonic model to the light curves of variable stars us-
ing only the first dominant period. Later, we fit the irregular time series models (IAR and
CIAR) to the residuals of the harmonic fit. The estimated parameters ϕ̂ and ϕ̂R of the IAR
and CIAR models respectively, will indicate whether it remains a time dependency on the
residuals. A time dependency structure on the residuals of the harmonic fit can be due
to several reasons. One possibility is that the light curve corresponds to a multiperiodic
variable stars, and therefore an harmonic model fitted with only one period is not enough
to fit the light curve. Another possibility is that the light curves was incorrectly fitted by
the harmonic model, as for example using a wrong period in the harmonic fit.

In order to show some applications on real data, in this work the irregular time se-
ries models were applied on the light curves of variable stars from the optical surveys
OGLE and Hipparcos. We use these surveys, since they have many class of variable stars
available and, as these surveys use the optical I-band to make observations, the brightness
magnitude of each star is measured with small errors.

All the light curves of the OGLE and Hipparcos surveys are fitted using an harmonic
model with one period and 4 harmonic, according to equation (3.0.1). The residuals of
each harmonic model are then fitted using IAR and CIAR models. In Figure 4.6 the
estimated coefficients for both models are shown. Note that there is a high correlation
between the estimated coefficients when both values are positive, which are consistent
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with the results of the Monte Carlo simulations.
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Figure 4.6: Values of the coefficient estimated by the CIAR and IAR models in OGLE
and HIPPARCOS light curves.

However, we note several cases identified as uncorrelated or without dependency
structure in residuals by the IAR model where the autocorrelation computed using CIAR
model is high but negative. In other words, these light curves remain with negative de-
pendency structure in the residuals after the fit of the harmonic model.

In addition, in order to assess the fitting performance of the IAR and CIAR models,
we compute the root mean squared error (RMSE) after fitting each irregular model on
the residuals of the harmonic model. These results do not vary significantly when ϕR is
positive. However, if this coefficient is negative, the RMSE computed when we fit the
residuals of the harmonic fit using the CIAR model are less than the ones obtained when
we fit this data using the IAR model, as can be seen in Figure 4.7.

Therefore, the results obtained for the light curves in OGLE and Hipparcos surveys
are consistent with the ones obtained in the Monte Carlo experiments in section 4.2.3,
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Figure 4.7: Kernel Density of the RMSE computed for the residuals of harmonic fit in the
light curves when the CIAR coefficient is negative. The red density corresponds to the
RMSE computed using the IAR model, and the green density corresponds to the RMSE
computed using the CIAR model.

in the sense that the CIAR process can identify negative time dependencies that the IAR
model cannot.

4.3.1 Irregular time series models to detect the harmonic model mis-
specification

As mentioned above, the time dependencies detected can be due to whether a light curve
was incorrectly fitted by the harmonic model or the light curve corresponds to a multi-
periodic variable stars. It is said that an harmonic model has been misspecified if it has
incorrectly fitted to a light curve due to a bad specification of some of its parameters, for
example, the period.

In order to show how the irregular time series models can identify misspecified har-
monic models, forty variable stars from OGLE and Hipparcos surveys were selected, for
which the harmonic model gives a precise fit of the light curve. These forty light curves
are selected by a visual inspection of the 250 light curves with highest R squared value
(R2). The coefficient of determination R2, is a widely used goodness of fit measure. To
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Class f1 ≤ 0.1 0.1 < f1 ≤ 0.5 0.5 < f1 ≤ 1 1 < f1 ≤ 2 f1 > 2
Classical Cepheid (CLCEP) 2 4
Chem. Peculiar (CP) 1
Double Mode Cepheid (DMCEP) 1 2
Delta Scuti (DSCUT) 2
Beta Persei (EA) 1 4 2
Beta Lyrae (EB) 1 2 2
W Ursae Maj (EW) 1 1 1 2
Mira (MIRA) 4
PV Supergiants (PVSG) 1
RR Lyrae, FM (RRAB) 1 1
RR Lyrae, FO (RRC) 2
Semireg PV (SR) 1
SX Phoenicis (SXPHE) 1
Total 8 8 8 8 8

Table 4.5: Distribution of the forty selected examples by his frequency range and class of
variable stars.

select these light curves a representative sample of the classes and frequencies values
observed in OGLE and HIPPARCOS are take in consideration. In order to take a repre-
sentative sample of the frequencies, five group of frequencies were created and eight light
curves from each group were selected. In addition, in each frequency group, the light
curves selected were from the most representative classes of each group. Table 4.5 shows
the distribution of classes over the different frequency groups.

The hypothesis behind this application is that when a light curve was fitted by an har-
monic model with the correct period, the residuals do not have any dependency on time.
In other words, the parameter of the IAR (CIAR) model ϕ should be equal to zero. On the
other hand, if we fit a model with a wrong period to the light curve, the residuals remain
with dependency on time, and therefore ϕ > 0.

In order to verify this hypothesis we perform an experiment, which consists in to fit
wrongly each selected light curve. To fit wrongly these light curves, we used percentual
variations of the real frequency in the interval ( f1 − 0.5 f1, f1 + 0.5 f1), where f1 is the real
frequency. In this interval a total of 38 frequency equally spaced are taken g1, . . . , g38.
Consequently, for each incorrect frequency g j used to fit the harmonic model we obtain
a ϕ̂ j from the IAR model. The distribution of ϕ̂ when the light curve was fitted correctly
(on the right) and when not (on the left) is shown in the boxplot of Figure 4.8. The dis-
tribution of ϕ̂ when the light curve was correctly fitted takes small values regarding to the
values estimated when the light curve was incorrectly fitted.
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Figure 4.8: Boxplot of the distribution of ϕ, for the light-curves using the correct fre-
quency (on the left) and for the light-curves using the incorrect frequency (on the right).

In addition, in Figure 4.9 three examples among the forty light curves are shown. In
the first row (figures (a)-(c)) the folded light curve of a Classical Cepheid (CLCEP), W
Ursae Maj (EW) and Delta Scuti (DSCUT) are shown. Each of these light curves is pre-
cisely fitted by the harmonic model. On the second row, (figures (d)-(f)) are shown the ϕ
values estimated for the IAR model on the residuals of the harmonic model fitted using
the percentual variations of the real frequency mentioned above. Note that a percentual
variation (x-axis) equal to 0 means that the light curves is correctly fitted. In this case, the
estimated values ϕ̂ are presented in the center of each plot. On the other hand, when the
percentual variation is not equal to 0 means that the light curve is fitted using an incorrect
period and the estimated ϕ are represented both in left and right of each plot. In all three
examples, the smaller values of the estimated ϕ by the IAR model are close to zero and
are obtained when the light curve is correctly fitted, while the maximum values of ϕ̂ are
obtained when the light curve is incorrectly fitted. Note that the estimated parameters
differ substantially in the three examples. Taking in consideration that the frequency of
these three light curves are 0.06, 0.97 and 3.74 respectively, it can be seen that the esti-
mated coefficients depend directly to the frequency of the light curve, which has values
around 0.75, 0.18 and 7.5 × 10−5 respectively. In other words, this dependence means
that the light curves with short periods have short values of ϕ̂. Consequently, it is not
always possible to discriminate whether ϕ , 0 is significative or not. In order to facilitate
this decision, we develop a statistical test for assessing the significance of the parameter ϕ.
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Figure 4.9: In the first row, the light curves of a Classical Cepheid, EW and DSCUT are
shown on figures (a)-(c) respectively. The continuous blue line is the harmonic best fit.
On the second row (figures (d)-(f)), for each of the variable stars, it is depicted on the x-
axis the % of variation from the correct frequency, and on the y-axis is the estimate of the
parameter ϕ of the IAR model obtained after fitting an harmonic model with the wrong
period (except at zero that corresponds to the right period). On the third row (figures (g)-
(i)), the distribution of the parameter ϕ of the IAR model is shown when each light curve
is fitted with the wrong period. The red triangle corresponds to the value of ϕ when the
correct period is used in the harmonic model fitting the light curves.
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4.3.2 Statistical test for the autocorrelation parameter
In this section, a statistical test developed to assess the hypothesis H0 : ϕ = 0 vs H1 : ϕ , 0
is described. Based on the above result, we know that the estimated parameter on the
residuals of an harmonic fit is minimized when the real frequency is used. So, in order
to assess whether the estimated parameter is significantly different from zero, we must
compare it with the remaining estimates. Consequently, the null and the alternative hy-
pothesis can be rewritten as H0 : ϕ ∼ F1 vs H1 : ϕ / F1, where F1 is the distribution of
the ϕ̂

˜
= {ϕ̂1, . . . , ϕ̂38}, where each ϕ̂ j is computed in the residuals of the harmonic model

fitted with an incorrect frequency g j .

To develop the test for the IAR model, log(ϕ̂) is assumed to follow a Gaussian dis-
tribution. Figures (g)-(h) shows the density of the log(ϕ̂

˜
) computed in the wrongly fitted

light curves, and the red triangle shows the log(ϕ̂) values when the correct period is used.
The p-values in the three examples are 0, 1.62 × 10−281, 2.86 × 10−19 respectively, which
is consistent with the precise fit of the light curves.

To perform an equivalent test for the ϕR parameter of the CIAR model, log(|ϕ̂R|) is
assumed to follow a Gaussian distribution.

Due to the limitation of the IAR model to detect negative autocorrelations, there are
some examples in which the IAR model can’t distinguish if the model was correctly fitted
or not, but the CIAR model can do it. One example is shown in Figure 4.10. The light
curve corresponds to a RRc star observed by the HIPPARCOS survey. Figure a) shows the
perfect fit of the harmonic model to the light curve. Both the IAR and CIAR model were
able to detect this precise fit, since the two models have estimated values closed to zero.
However, only the CIAR model gives small estimated value of |ϕR| when the light curve
was correctly adjusted. Consequently, in this case only the CIAR model can distinguish
the estimation of ϕ in the correct harmonic fit from the wrong harmonic models (Figures
b) and c)).

The light curves from OGLE and Hipparcos have similar cadence and distributions er-
ror. An additional interesting experiment would be to replicate the above application using
other data with different characteristics. Another light curves examples can be found in
the VVV-Templates project (Angeloni et al (2014) [4]). As mentioned in chapter 2, the
VVV survey is characterized by using the near infrared to make observations, which al-
lows us to observe more distant objects, but with greater measurement errors. In addition,
the VVV light curves also differs from light curves observed in OGLE and HIPPARCOS
in the cadence sampling time. The main difference is that in the light curves of the VVV,
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Figure 4.10: a) Light curve of a RRc star observed by the HIPPARCOS survey. The
continuous blue line is the harmonic best fit. b) Logarithm of the absolute value of the
estimated parameter ϕ̂R by the CIAR model on the residuals of the harmonic model fitted
with different frequencies. In the x-axis are the percentual variation from the correct
frequency, in the y-axis are the logarithm of ϕ̂. c) Logarithm of the estimated parameter ϕ̂
by the IAR model on the residuals of the harmonic model fitted with different frequencies.
In the x-axis are the percentual variations from the correct frequency, in the y-axis is the
logarithm of ϕ̂.

it is common to see observations spaced at time gaps greater than 100 days, unlike the
light curves used so far.

In Figure (4.11) is shown a RRab light curve from the VVV-Templates which was fit-
ted very well by the harmonic model. Again, the CIAR model works well in the detection
of the correct modeling, unlike to the IAR model.

4.3.3 Irregular time series models to detect multiperiodic variable
stars

As mentioned above, the last application of the irregular time series models, and perhaps
the most interesting is the ability to find multi-periodic variable stars. The basic idea is
that, when a light curve that corresponds to a multi-periodic variable star with two peri-
ods (bi-periodic variable stars) is fitted by an harmonic model using only one period, the
residuals remain with temporary dependency structure. Therefore, it is expected that the
irregular models are able to detect this temporary dependence.

The difference with the first application is that, the existing temporary dependency in
the residuals of the first harmonic model can be explained by an harmonic model using
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Figure 4.11: a) Light curve of a RRab star observed by the VVV survey. The continuous
blue line is the harmonic best fit. b) Logarithm of the absolute value of the estimated
parameter ϕ̂R by the CIAR model on the residuals of the harmonic model fitted with
different frequencies. In the x-axis are the percentual variation from the correct frequency,
in the y-axis are the logarithm of ϕ̂. c) Logarithm of the estimated parameter ϕ̂ by the IAR
model on the residuals of the harmonic model fitted with different frequencies. In the x-
axis are the percentual variations from the correct frequency, in the y-axis is the logarithm
of ϕ̂.

the second most important period. In other words, the time dependency of a light curve of
a bi-periodic variable star must be explained using at least the two most important period
in the harmonic model.

Consequently, for a bi-periodic variable star, the raw light curve has a temporal de-
pendency. The residuals of the first harmonic model have a temporal dependency. The
residuals of the second harmonic model should no longer have autocorrelation. Therefore,
it is expected that irregular time series models have an estimated parameter different than
zero in the first two cases, and approximately equal to zero for the residuals of the second
harmonic model.

In order to illustrate this application, a bi-periodic light curve was simulated using a
2-harmonic model. This model can be derived from the equation 3.2.1. Consequently, the
simulated light curve comes from the following equation,

y(t) =
2∑

i=1

4∑
j=1

(αi jsin(2π fi jt) + βi jcos(2π fi jt)) + ϵt (4.3.1)

where ϵt follows a Gaussian distribution with mean zero and unit variance. In this case,
the bi periodic light curve is generated using the frequencies f1 = 1/3 and f2 = 1/12.
Likewise to the previous simulations, the irregular times is generated using the mixture of
two exponential distributions (equation (4.1.11)) with parameters λ1 = 130 and λ2 = 6.5,
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ω1 = 0.15 and ω2 = 0.85.

In the plot a) of the Figure 4.12 are the residuals obtained after fitting the simulated
time series with an harmonic model using one period. The estimated parameter ϕ by the
IAR model fitted to these residuals was ϕ̂ = 0.5447. This result is consistent with the
temporal dependency observed in the plot a). The residuals after fitting the harmonic
model using two periods are in the plot b). The estimated parameter ϕ by the IAR model
fitted to these residuals is close to zero ϕ̂ ≤ 0.0001, which is consistent with the random
behavior observed in plot b).
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Figure 4.12: (a) Residuals of the best harmonic fit with one frequency for a simulated
multiperiodic light curve; (b) Residuals of the best harmonic best fit with two frequencies
for the same simulated multiperiodic light curve.

There are several classes of pulsating variable stars with multiperiodic behavior, for
example the DMCEP and RRD. From the set of real light curves observed in the OGLE
and Hipparcos surveys, a DMCEP that pulses in the first two radial overtones (1O/2O type, P2/P1 ∈
(0.79 − 0.81)) was selected.

In Figure 4.13 a) are the residuals of the harmonic model fitted with the fundamental
period. In Figure 4.13 b) are the residuals of the harmonic model fitted with the two most
important period. It can be observed that after fitting the harmonic model with one period
there remains a temporal dependency structure in the residuals plotted in figure a) , while
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if we fit this light curve with two harmonics, there is no longer a temporary dependence
on residuals (Figure b). The estimated parameter ϕ by the IAR model to the residuals
in Figures a) and b) are 0.5411 and 0.033 respectively. If we fit the CIAR model to the
same data, the ϕ̂R is also 0.5411. Therefore, both models could detect the multiperiodic
behavior of this light curve.

Another example of a bi-periodic light curve also corresponding to a Double mode
Cepheid class of variable star are in Figures c) and d) of Figure 4.13. Just like the previ-
ous example, it is clearly seen that the residuals of the harmonic model remain with time
dependency structure. But, here the estimation using the CIAR model and IAR model
differ. While ϕ̂R is -0.561 the ϕ̂ of the IAR model is 0.011. Therefore, this light curve is
an example of negative time dependency structure in the residuals of the harmonic model,
which cannot be detected using the IAR model.

4.3.4 Classification Features estimated from the irregular time series
models

One of the most important aims in the light curves analysis is to find features that can
discriminate one class of variable star from the others. Finding a good feature is the key
to building a classifier with good performance to detect stars of a given class. Generally,
these features are extracted from the temporal behavior of the brightness of each variable
star. In this work, we propose to use the parameters estimated by both the IAR and CIAR
models as features. As can be discussed in section 4.3.3, multiperiodic variable stars
should have large estimated coefficients, which can distinguish them from other class of
variable stars. In the OGLE and HIPPARCOS catalogues there are two classes of multi-
periodic variable stars: the Double Mode RR Lyrae (RRD) and the Double Mode Cepheid
(DMCEP).

The features that can be extracted from the irregular time series models are the es-
timated parameters ϕ and ϕR of the IAR and CIAR models respectively and the p-value
associated to these estimations. It is interesting to assess whether these features can sepa-
rate the multiperiodic classes from the other RR-Lyraes and Cepheids respectively. Figure
a)-b) shows the distribution of the features computed by the CIAR model. As can be seen
there are no significant differences between the classes of RR-Lyrae and Cepheids in the
distributions of the estimated ϕR. However, the p-values computed for the RRD and DM-
CEP classes take larges values in comparison to the other classes.
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Figure 4.13: In the first column are shown on figures (a) and (c) the residuals after fitting
an harmonic model with one period for two double mode Cepheids. On the second column
(figures (b) and (d)), the residuals of the same variable stars after fitting an harmonic
model with two periods are shown.
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Figure 4.14: a) Boxplot of the ϕR and the p-value estimated from the CIAR model in the
RR-Lyraes variable stars separated by subclasses. b) Boxplot of the ϕR and the p-value
estimated from the CIAR model in the Cepheids variable stars separated by subclasses.

This result helps to illustrate that a small coefficient estimated by both irregular models
does not necessarily imply that the time series are uncorrelated (as discussed in section
4.3.2). Only the p-value computed reflects the multiperiodic behavior of the RRD and
DMCEP classes.

4.3.5 Exoplanet Transit light-curve
So far, all the applications of the irregular time series models developed in this work have
been made for the light curves of variable stars. However, for some stars its brightness
cannot be seen constantly since they have a planet orbiting around them. If a planet or-
biting a star transit in front of it, it will block part of the brightness of the star. The light
curve that represents this astronomical phenomenon is generally called as exoplanet tran-
sit light-curve.

An exoplanet light curve can be modeled by multiplying the approximately constant
flux of the star with the transit signal. Just like the variable stars, the model fitted to the
exoplanet transit have the structure y(t) = g(t, θ) + ϵ(t). Some differences are that here
y(t) represents the logarithm of the brightness magnitude of the star, g(t, θ) is the sum of a
log constant flux and the transiting signal and ϵ(t) is the independent Gaussian error with
zero mean and variance σ2. It is very common to see that the residuals of this model do
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not follow a white noise process.

We test our model in a transit of the exoplanet WASP-6b (Jordan et al, 2013 [42]).
They show that the residuals of the fit assuming a Gaussian white noise holds the depen-
dency structure. In Figure 4.15 a) these residuals are shown. To address this, the residuals
were adjusted using an ARMA(2,2) model and a 1/ f -model, indicating a long memory
time dependency. Both models assume regular times.

In order to fit these residuals with a model that considers the unequally spaced times,
the IAR model was used. To detect the temporal dependence in the residuals using this
model, the autocorrelation estimator ϕ̂ and the p-value of the test defined in section 4.3.2
is used. However, this test must be modified since, as the exoplanet transit light curve
does not have a periodic behavior, it is not possible to estimate a dominant frequency us-
ing the GLS model in this light curve. Therefore, the procedure explained in section 4.3.2
to fit wrongly a light curve cannot be performed.

An alternative is to perform a randomized experiment. This experiment consists in fix-
ing the observation times and shuffle randomly the brightness magnitude a hundred times.
To each randomized light curve, the IAR model was fitted in order to estimate the parame-
ter ϕ. Note that the randomized light curve does not have a temporal dependency structure.
Likewise to the test described in Section 4.3.2, the ϕ parameter estimated from the residu-
als is tested whether it belongs to the distribution built using the hundred randomized (and
independent) light curves. So, the null hypothesis here is H0 : ϕ ∼ F1 vs H1 : ϕ / F1,
where F1 is the distribution of the vector ϕ̂

˜
= {ϕ̂1, . . . , ϕ̂100}, where each ϕ̂ j is computed

on the j − th randomized light curve.

The p-value computed for the ϕ estimated using the IAR model in the residuals of the
fitted model g(t, θ) is 5.642274e − 05. According with this p-value, these residuals do not
have an independent behavior. Therefore, the p-value confirms the existence of temporal
dependency on this data. This result is consistent with the results of Jordan et al, 2013
[42]. In Figure 4.15 b) is the distribution of the vector ϕ̂

˜
, and the red triangle corresponds

to log(ϕ̂), where ϕ̂ was computed on the residuals. It can be observed that the ϕ̂ is greater
than the ϕ estimated for the randomized light curves.

4.4 AITS Package in R
In this section, a new package built in the freeware R (R Core Team 2015 [64]) is pre-
sented. This package is called AITS (Analysis of Irregular Time Series). The package
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Figure 4.15: (a) Residuals after fitting the model for a transiting exoplanet; (b) The red
triangle represents the log(ϕ̂), where ϕ̂ is the parameter of the IAR model. The black line
represents the density of the ϕ for the randomized experiment.
.

AITS contains R functions to fit unequally spaced time series from the Irregular Autore-
gressive (IAR) and the Complex Irregular Autoregressive (CIAR) models. Both models
were described previously in this chapter.

This package consists of a total of fifteen functions, five of them for the IAR process,
three for the IAR-Gamma Process and four for the CIAR process. The three remaining
functions are for generating the irregular times from the mixture of exponential distribu-
tions (equation 4.1.11), fitting an harmonic model (equation 3.0.1) and plotting the folded
light curve (equation 2.1.1). The functions implemented for the irregular time series mod-
els allow to generate observations for each process, fit each model and test the significance
of the autocorrelation parameter according with the two tests described previously.

In addition, the package contains four time series which can be used to test the func-
tions. Three of these time series corresponds to light curves of a Classical Cepheid
(clcep), Delta Scuti (dscut) and a Beta Lyrae (eb) eclipsing binaries variable stars.
These light curves have been used previously in the section 4.3.1 in order to assess the
ability of the IAR model to detect the model misspecification. In the R documentation of
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each light curve, the frequency estimated by GLS was added. The remaining time series
corresponds to the residuals of the fitted exoplanet transit light curve (Planets) presented
in the section 4.3.5.

4.4.1 The gentime function
The AITS package offers several methods to fit temporal data irregularly observed. Fur-
thermore, if you do not have an irregular time series to test these models, the AITS pack-
age have functions that allow to generate synthetic irregular time series. To do this, first
the irregular times must be generated. As mentioned above, in this work it has been pro-
posed to generate the irregular times using a mixture of exponential distributions (equation
4.1.11). The function gentime allows to simulate the irregular times. The function can
be implemented by the following R command.

gentime(n, lambda1 = 130, lambda2 = 6.5, p1 = 0.15, p2 = 0.85)

where n corresponds to the number of observational times that will be generated. lambda1
and lambda2 are the means of each exponential distribution, p1 and p2 are its respective
weights. The result of this function is an array with the irregularly spaced observations
times.

4.4.2 The harmonicfit function
Most of the applications of the irregular time series models that were presented in the
previous sections, were performed on light curves of variable stars, which generally have
a periodical behavior. If the period of a specific variable star is known, this light curve
can be fitted by an harmonic model. An p-harmonic model has been defined previously
in the equation (3.0.1). From the function harmonicfit this model can be fitted to an
irregular time series, using the following R command,

harmonicfit(file, f1, nham = 4,weights=NULL,print=FALSE)

where file is a matrix with two columns, the first of them must have the irregular times
and the second the observations. Furthermore, f1 is the frequency of the time series that
will be modeled and nham is the number of harmonics that can be used in the fit. The
default is 4. In addition, to fit a weighted harmonic model, an array with the weights of
each observation must be added in the argument weights. Finally, the print argument is
a boolean. When print = TRUE a summary of the harmonic model fitted will be printed.
The data clcep can be used to test this function. An harmonic model can be fitted to this
time series using the follow command,
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data(clcep)

f1=0.060033386

results=harmonicfit(file=clcep,f1=f1,nham=4)

The function harmonicfit returns both the residuals of the fitted model and good-
ness of fit measures, such as the R squared (R2) and the Mean Squared Error (MSE).

4.4.3 The foldlc function

In chapter 2 we mentioned that the light curves of variable stars that have a periodical
behavior are generally plotted in its phase. In the phased light curve, the periodic behavior
of the brightness a star can be seen much better than in the irregularly measured raw light
curve. In equation (2.1.1) the phase of an observation ϕ is defined. The phased light curve
also is currently called folded light curve. To make the plot of the folded (phased) light
curve with this package, the following code must be used,

foldlc(file,f1)

where file is a matrix with three columns, corresponding to the irregular times, the mag-
nitudes and the measurement errors, and the f1 is the frequency of the light curve.

The three functions explained above are incorporated into the AITS package in order
to facilitate the application of the irregular time series models in the light curves of vari-
able stars. The remaining functions are useful to simulate and modeling the irregular time
series process. First, the functions that allow to simulate each process are described below.

4.4.4 Simulating the Irregular Time Series Processes

The functions IAR.sample, IARg.sample and CIAR.sample allow to generate obser-
vations from the IAR, IAR-Gamma and CIAR process respectively. All these functions
work similarly, in the sense that they need as input the length of the generated time series
(n), the vector with the irregular times (sT), which can be generated using the function
gentime, and the specific parameters of each model. For example, to generate an IAR
process the following R command must be used,

IAR.sample(phi, n = 100, sT)

where phi is the value of the autocorrelation parameter of the simulated data. phi can
take values in the interval (0,1). The R-command to simulate an IAR-Gamma process is,
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IARg.sample(n, phi, st, sigma2 = 1, mu = 1)

as can be seen, the last two commands are very similar. However, the IAR gamma needs
to specify two additional parameters according with equation 4.1.10, the scale parameter
sigma2 and the level parameter mu. Finally, to generate observations of the CIAR process,
the following R command must be used,

CIAR.sample(n, sT, phi.R, phi.I, rho = 0, c = 1)

where phi.R is the real part and phi.I is the imaginary part of the complex phi param-
eter of this model. Both values must be chosen with the condition that |ϕR + iϕI | < 1. In
addition, it can also be specified the correlation (rho) between the real and the imaginary
part of the process, and the nuisance parameter c related to the variance of the imaginary
part. The defaults values are 0 and 1 respectively.

As an example of the use of these functions, the following script generate a IAR
process of length 300 with irregular times coming from the mixture of exponential dis-
tributions, with parameters λ1 = 130, λ2 = 6.5, ω1 = 0.15 and ω2 = 0.85, and the time
dependency parameter ϕ = 0.9.

set.seed(6714)

st<-gentime(n=300)

y<-IAR.sample(phi=0.9,n=300,st)

y<-y$series

plot(st,y,type=’l’)

rug(st, col = 2)

In Figure 4.16, the simulated IAR process are shown. It can be observed a stationary
behavior of its mean and variance.

4.4.5 Fitting the Irregular Time Series Processes
The estimation of the three models implemented in the AITS package can be performed
by maximum likelihood. However, the estimators of the autocorrelation parameters do
not have a closed form, whereby iterative methods must be used. These iterative methods
have already been implemented in other packages, for example, the optimize function of
the stats package allows us to find the optimal estimator of the ϕ parameter of the IAR
model. Both for the CIAR model and the IAR Gamma it is necessary to optimize more
than one parameter. Consequently, the function nlminb of the stats package allows us
to find the optimal solution for these models.

To estimate the IAR model parameter ϕ, the function IAR.loglik must be imple-
mented by,
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Figure 4.16: Simulated IAR Time Series of length 300 and ϕ = 0.9. The times was
generated by the mixture of exponential distributions with parameters λ1 = 130, λ2 = 6.5,
ω1 = 0.15 and ω2 = 0.85.

IAR.loglik(y, sT, standarized = "TRUE")

where y is the array with the values of the sequence, sT is the array with the irregular
times and the boolean standarized must be “TRUE” if the array y was standarized. As
for example, the ϕ parameter of the IAR process shown in Figure 4.16 will be estimated
with the following code.

set.seed(6714)

st<-gentime(n=300)

y<-IAR.sample(phi=0.9,n=300,st)

y<-y$series

phi=IAR.loglik(y=y,sT=st)$phi

phi

[1] 0.898135

Note that the estimated value was ϕ̂ = 0.898, which was very close to the value with
which the IAR process was generated (ϕ = 0.9). The fitted values of the IAR process and
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the maximum likelihood estimator of σ2 can be obtained with the following code,

n=300

d=c(0,diff(st))

phi1=phi**d

yhat=phi1*as.vector(c(0,y[1:(n-1)]))

sigma=var(y)

nu=c(sigma,sigma*(1-phi1**(2))[-1])

tau<-nu/sigma

var.hat=mean(((y-yhat)**2)/tau)

var.hat

[1] 0.9506582

where yhat is the vector of the fitted values and var.hat is the maximum likelihood
estimation of the variance of the process.

Similarly to the IAR process, the function IAR.gamma allows to estimate the parame-
ters of the IAR-Gamma process using the following command,

IAR.gamma(y, sT)

where y is the array with the values of the sequence and sT is the array with the irregular
times. In order to test this function, a IAR.gamma process will be generated with the
following code,

n=300

set.seed(6714)

st<-gentime(n)

y<-IARg.sample(n,phi=0.9,st,sigma2=1,mu=1)

plot(st,y$y,type=’l’)

rug(st, col = 2)

hist(y$y,breaks=20)

In Figure 4.17 a) the IAR.gamma time series is shown. In order to show the asymmet-
rical behavior of this time series, the histogram of the IAR.gamma observations has been
added in figure b).
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Figure 4.17: Figure a) shows the time series of the Simulated IAR-Gamma Process with
length 300 and ϕ = 0.9. The times was generated by the mixture of exponential distribu-
tions with parameters λ1 = 130, λ2 = 6.5, ω1 = 0.15 and ω2 = 0.85. Figure (b) shows the
histogram of the IAR-Gamma observations

The maximum likelihood estimation of the IAR-Gamma parameters ϕ, µ y σ (see
equation 4.1.10) can be performed on the simulated time series with the following R-
command,

model<-IAR.gamma(y$y, sT=st)

phi=model$phi

muest=model$mu

sigmaest=model$sigma

phi

[1] 0.8990846

muest

[1] 0.9349599

sigmaest

[1] 0.9854233

Note that the estimation of the three parameters ϕ̂, µ̂, σ̂ of the IAR-gamma process
was very accurate, taking values 0.899, 0.934 and 0.985 respectively.

Finally, the last estimation procedure that will be reviewed is the corresponding to
the CIAR model. The parameters of this model can be estimated using the function



cxxvi

CIAR.Kalman. This function can be called using the following R-command,

CIAR.kalman(y, t, standarized = "TRUE", c = 1, niter = 10, seed =

1234)

where y is the array with the values of the sequence corresponding to the real part of
the complex process, sT is the array with the irregular times, standarized is a boolean
which must be “TRUE” if the array y is standarized and c is the value of the nuisance
parameter equivalent to the variance of the imaginary part of the process. In addition, this
function uses the R function nlminb to find the optimal maximum likelihood estimators
using the Kalman Filter. Using this procedure, the solution found is not always optimal.
Therefore, we add the parameter niter equivalent to the times that the estimation pro-
cedure will be repeated in order to find the optimal estimators. The default value is niter
= 10. Finally, a seed parameter is specified in order to remove the randomness of the
optimal values.

As in the previous examples, this function will be tested in a simulated CIAR process,
which can be generated using the following R-command,

n=300

set.seed(6714)

st<-gentime(n)

x=CIAR.sample(n=n,phi.R=0.9,phi.I=0,sT=st,c=1)

plot(st,x$y,type=’l’)

In Figure 4.18 is the time series of the real part of the CIAR process generated. To
find the maximum likelihood estimators of the parameters of this model, the following
code must be used,

options(digits=4)

y=x$y

y1=y/sd(y)

ciar=CIAR.kalman(y=y1,t=st)

ciar

[1] 9.108e-01 -9.683e-10

Mod(complex(real=ciar[1],imaginary=ciar[2]))

[1] 0.9108

Note that the estimated parameters are ϕ̂R = 0.91 and ϕ̂I ≈ 0, which are very closed to
the real values of these parameters used to simulate the sequence.
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Figure 4.18: Real part of the simulated CIAR process of length 300, ϕR = 0.9, ϕI = 0.9
and the nuisance parameter c = 1. The times was generated by the mixture of exponential
distributions with parameters λ1 = 130, λ2 = 6.5, ω1 = 0.15 and ω2 = 0.85.

4.4.6 Testing the significance of the parameters of the irregular mod-
els

The construction of two statistical test to assess the significance of the autocorrelation
parameters was shown previously. The formulated tests differ in that the first of them
assumes that the time series have a periodical behavior which can be modeled by an har-
monic model. The main idea of this test is to verify whether the harmonic model explain
all the time dependency structure in the time series or not. If not, a time dependency
structure should remain in the residual of the harmonic fit.

To assess the significance of the autocorrelation parameter, this test uses the dom-
inant frequency (which can be found by GLS (2.2.25)). This frequency is used to fit
an harmonic model to the time series. Later, the residuals of the harmonic fitted model
are modeled by the irregular time series. The parameter estimated ϕ can be used as an
autocorrelation index. However, as mentioned previously a small value of ϕ̂ does not nec-
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essarily mean that there is no temporal dependence on the time series, since this may be
due to the dependence between the frequency and the phi value discussed in section 4.3.2.
To verify whether the residuals are uncorrelated or not, the test fit an harmonic model to
the raw time series using now a percentual variation of the correct frequency. As these
models are fitted using a wrong period, ϕ̂ must have greater values regarding to the ones
obtained in the residuals of the correct fitted model.

To perform this test in the AITS package for the ϕ parameter estimated by the IAR
model, the following command must be used,

IAR.Test(y, sT, f, phi, plot = "TRUE", xlim = c(-1, 0))

where y is the array with the time series observations and sT is the array with the irregular
observational times. In addition, the dominant frequency f and the ϕ parameter estimated
by the IAR model (IAR.loglik) are needed as input. The argument plot is logical,
if it is true, the function returns a density plot of the distribution of the ϕ̂ estimated in
the residuals of the wrongly fitted models. The argument xlim only works if plot =
"TRUE", and define the limits of the x axis. The data clcep of this package can be used
to exemplify the use of this function. With the following code the example of this test for
the IAR model can be run,

data(clcep)

f1=0.060033386

results=harmonicfit(file=clcep,f1=f1)

y=results$res/sqrt(var(results$res))

sT=results$t

res3=IAR.loglik(y,sT,standarized=’TRUE’)

require(ggplot2)

test<-IAR.Test(y=clcep[,2],sT=clcep[,1],f1,res3$phi,plot=’TRUE’,xlim=c(-10,0.5))

test

In this example the ϕ estimated by the IAR model is ϕ̂ = 6.67e − 05 and the p-value
of the test is 0. According with the hypothesis of the test defined in the section 4.3.2,
the ϕ estimated value is not significative. Therefore, the residuals of the harmonic fit
do not have a time dependency structure. In Figure 4.19 a) it is shown the density plot
returned for the function IAR.Test. This plot has the density of the log(ϕ) estimated in
the residuals when the time series was fitted wrongly, and the red triangle is the log(ϕ) of
the “correct” ϕ estimation. Evidently, this point does not belong to the distribution of the
“wrong” estimations.
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Figure 4.19: Figure a) shows the Density Plot of the log(ϕ), where ϕ was estimated by
the IAR model when the time series is fitted using wrong periods. The red triangle is the
log(ϕ) estimated when the correct period is used in the harmonic fit. Figure (b) shows the
same plot for the CIAR process.

For the CIAR process, the significance of the parameter ϕR can be assessed following
the same procedure of the IAR.Test. To perform a test for the CIAR process, the following
R-command must be used,

CIAR.Test(y, sT, c = 1, f, phi, plot = "TRUE", xlim = c(-1, 0), Mod =

"False")

The arguments of this function are the same of the IAR.Test function, with the dif-
ference of the argument c corresponding to the nuisance parameter of the CIAR model
and the argument Mod which is a boolean. When Mod=‘‘False’’ the significance of
the parameter ϕR is assessed. When Mod=‘‘True’’ the significance of the |ϕR + iϕI | is
assessed. To perform this test using the same data of the previous example, the following
code must be used,

data(clcep)

f1=0.060033386

results=harmonicfit(file=clcep,f1=f1)

y=results$res/sqrt(var(results$res))

sT=results$t

res3=CIAR.kalman(y,sT,standarized=’TRUE’)

res3$phiR

require(ggplot2)

test<-CIAR.Test(y=clcep[,2],sT=clcep[,1],f=f1,phi=res3$phiR,plot=’TRUE’)

test
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In Figure 4.19 b) it is shown the density plot returned for this function, as can be seen
the result of the test of the CIAR process is consistent with the result obtained by the IAR
model previously.

As mentioned previously, in this package there are two different kind of test. The
second one, do not assumes a periodical behavior of the time series. Therefore, this time
series is not able to fit an harmonic model. The main idea of this test is shuffling the time
series several times, generating in each case independent samples of the original time se-
ries or breaking the time dependency. The ϕ estimated in the “independent” time series
must be less than the ϕ estimated in the raw time series. To perform this test with the
AITS package the following code must be used,

IAR.Test2(y, sT, iter = 100, phi, plot = "TRUE", xlim = c(-1, 0))

This function works with the same arguments as the IAR.Test function, with the
exception that it does not require knowing the frequency of the time series. Instead, the
function IAR.Test2 uses the argument iter to define the number of independent time
series that will be used to create the distribution of log(ϕ). In order to exemplify the use
of this function, the code used in the application on the light curve of an exoplanet transit
described in section 4.3.5 will be shown below,

data(Planets)

t<-Planets[,1]

res<-Planets[,2]

y=res/sqrt(var(res))

res3=IAR.loglik(y,t,standarized=’TRUE’)[1]

res3$phi

set.seed(6713)

require(ggplot2)

test<-IAR.Test2(y=y,sT=t,phi=res3$phi,plot=’TRUE’,xlim=c(-9.6,-9.45))

test

As mentioned above, the data Planets is also in the package AITS and corresponds
to the residuals of the fitted model by Jordan et al,2013 [42] in an exoplanet transit. In this
example, the p-value was ≈ 1, therefore the null hypothesis was accepted. Consequently,
it is confirmed that in the Planets time series there is no structure of temporal correlation.



Chapter 5

Discussion

In this work, several tools for the modeling and classification of the light curves have been
presented under a solid statistical framework. First, the procedure of a machine learned
classifier for RR-Lyrae type ab stars of the VVV survey has been detailed. This clas-
sifier was built following eight key steps from the pre-processing of the light curves to
the implementation of the data mining algorithms. Throughout this procedure, relevant
decisions were taken regarding the photometry aperture, the classification algorithm and
the features used.

The best performance among the state-of-the-art data mining algorithms implemented
in this work was achieved by the AdaBoost Classifier. This is an interesting result, as
the classifiers used for variable stars are usually built from Random Forest. In 3.4 I have
found that the Adaboost is consistently better than the Random Forest for this training set.
In addition, I have noticed that the Adaboost algorithm is more stable to feature selection
than the Random Forest which is sensitive to the quality of the features used.

In addition, the photometry aperture was selected using a method based on a Kernel
Density Classifier. Generally, the aperture selection is done by selecting the aperture with
the minimum error. However, using this method of aperture selection the performance of
the classifier is significantly lower than the reached using the Kernel Selection Method.

In the classification procedure it has also been proposed to make a selection of the
more important features for the classifier. This procedure has been rarely used in the lit-
erature. However, I have noticed that some classification algorithms are sensitive to the
presence of poor quality features. In this work we have chosen the set of features that
maximize the F1-measure. I have noticed that 12 features were enough to achieve the
best performance of the classifier. As expected, the most important feature was the pe-
riod, since the periods of RRab take values in a well-known range. In addition, most of
the important features come from the harmonic fitted model.

cxxxi
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Finally, the performance of the chosen classifier estimated by cross-validation on the
training set achieves an F1-Measure of ≈ 0.93 using a score threshold of 0.548. This clas-
sifier has a lower performance than the one obtained by Richards et al. (2012) Richards
et al. [57] for ASAS, which achieved an F1-Measure of ≈ 0.96. However, the results are
not necessarily comparable since our classifier was performed using NIR data, whereas
Richards uses data from the optical. As mentioned in 3.3.1, building a classifier in the
VVV is more difficult due to the quality of the NIR light curves.

The classifier built in this work has been used in different fields of the VVV. In the
globular clusters 2MASS- GC 02 and Terzan 10, the classifier reached an harmonic mean
between false positive and negatives of the 4.4% of the data, which are consistent with
the performance of the classifier in the training set. In the outer bulge (fields b201–b228)
region, the classifier also had a performance consistent with the training, reaching an har-
monic mean between false positive and negatives of the 8% of the data. Furthermore, the
classifier also helped to confirm some RRab of the outer bulge with a more symmetrical
behavior. Finally, the classifier was used to perform a census of RRab along the southern
galactic disk (fields b001–b151). After calibrating the classification threshold, Dekany et
al. (2018) [25] found 2147 RRab candidates.

In addition to the classifier construction, in this thesis I worked also on providing
alternative models to fit irregular time series, as the light curves of astronomical data.
The main aim is to provide a more flexible representation of the CAR(1) model, which
are currently used for this purpose. To achieve this goal, the first model proposed is a
discrete representation of the CAR(1) model called the Irregular Autoregressive Model
(IAR). Unlike the CAR(1) model, the irregular autoregressive model allows for Gaussian
and non-Gaussian distributed data. Furthermore, it has been proven that the IAR model
is strictly stationary and ergodic under conventional conditions. Finally, we propose a
maximum likelihood estimation procedure for the parameters of the model.

The IAR model are strongly connected with both the AR and CAR models. Partic-
ularly, the IAR model is an extension of the regular autoregressive model of order 1 by
assuming irregular times. In addition, the IAR process is also equivalent to the CAR(1)
model by assuming Gaussian data. However, the CAR(1) model have a low performance
in the fit of non-Gaussian data. This was verified for a Gamma distributed IAR process
developed in this work.

A drawback that both the IAR model and the CAR(1) have, is that they only allow
to estimate positive autocorrelation. In order to estimate negative autocorrelation, an ex-
tension of the IAR model has been proposed. This model is called the Complex Irregular
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Autoregressive Model (CIAR), which are characterized by allowing complex coefficients.
It has been proven that this model is weakly stationary, and its state-space representation
is stable, under some conditions. Like the IAR model, the parameters of the CIAR model
are estimated following a maximum likelihood procedure based on the Kalman recursion
performed on the state-space representation of the CIAR model. Finally, by assuming a
null imaginary part of the autocorrelation parameter, we come back to the IAR process.

Both models proposed in this work were implemented on the light curves of variable
stars observed by OGLE and HIPPARCOS surveys. Two applications of these models
have been illustrated on this data. First, to identify whether the light curve corresponds to
a multiperiodic variable stars. This can be achieved by estimating a significant autocorre-
lation using these models on the residuals of the harmonic model fitted on the light curve
using only the dominant period. The second application is to detect whether a parametric
model was misspecified. This application has been tested both in an astrophysical model
fitted on a planet and in the harmonic model fitted in the light curves of variable stars.

After fitting both models to the light curves, we have noticed a strong relationship
between the IAR and CIAR model estimates, when the coefficient of the CIAR model is
positive. However, we have also found several cases of negatively correlated light curves
that the IAR model has ignored. In addition, we have shown illustrative examples where
the inability to estimate negative correlations of the IAR model prevents finding multi-
periodic variable stars or correctly detect whether the harmonic model was misspecified.

In the analysis it was shown that the estimated autocorrelation by both models depend
on the frequency used in the harmonic model. This dependency can affect the interpreta-
tion of the estimated coefficients. In order to correctly distinguish between a coefficient
that indicates significative correlation and another that indicates the opposite, a statistical
test has been developed for both models. This test was assessed in forty variable stars
selected due to the good harmonic fit obtained in these light curves. For both models,
the p-value estimated by the test was consistent with good fit of the selected curves. In
addition, we have shown that the p-values obtained from the test proposed in this work
for the CIAR model are useful for characterizing the multiperiodic classes of RR-Lyraes
(RRD) and Cepheids (DMCEP). This result indicates that the p-value can be an important
feature for a machine learned classifier implemented to these classes.

Both IAR and CIAR models are capable to fit irregular time series that have an ex-
ponential decay behavior in the autocorrelation function. Another class of irregular time
series that have an persistent (antipersisent) behavior can be fitted by the CARFIMA
model. For these time series, the CIAR process can be used to identify the sign of the
autocorrelation function.
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Finally, the package Analysis of Irregular Time Series was developed in R. This pack-
age allows to implement both the IAR and CIAR models. The functions of the package
allow to simulate each process, estimate its parameters and to assess the significance of
the estimated coefficients. The accuracy of the estimation procedures implemented was
confirmed using Monte Carlo simulations.

5.1 Future Works
The work developed in this thesis opens up new challenges for future work. One of the
most important of them is the construction of a classifier for Cepheids stars. Like the
RRab, the Cepheids are pulsating stars essential to build the three-dimensional map of
the Galactic bulge. The main idea is to find unknown Cepheids in the VVV disk area. As
mentioned in section 3.5.3 to implement a classifier in the VVV disk offers more chal-
lenges, due to the small number of observations that light curves have. Furthermore, it is
also interesting to classify between type 1 and type 2 Cepheids. An important challenge
is to improve the performance of the classifier by finding features that can distinguish
between the subclasses of Cepheids.

Regarding the light curves modeling, the discrete representation of irregular time se-
ries models has been very useful in terms to extend the regular models to the irregular
case. Both the IAR and CIAR models have desirable properties which other models for
irregular time series do not have. In this sense, we are currently working to propose new
extensions of the very well-known ARMA models in order to relax the regular sampling
assumption. In addition, an interesting work for future is to use the autocorrelation coef-
ficients estimated by both models in the next machine learned classifiers implemented.

Since the upcoming astronomical surveys will have continuous stream of data, we
start to study methods that allows us to analyze the data while the information is coming
in optimal way. The online learning algorithms are characterized by process each training
instance once “on arrival” without the need for storage and reprocessing.
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[1] Esteban Alfaro, Matı́as Gámez, and Noelia Garcı́a. adabag: An R package for
classification with boosting and bagging. Journal of Statistical Software, 54(2):1–
35, 2013. URL http://www.jstatsoft.org/v54/i02/.
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Arriagada, J. Roquette, R. K. Saito, A. Siviero, J. Sohn, H.-I. Sung, M. Tamura,
R. Tata, L. Tomasella, B. Townsend, and P. Whitelock. The VVV Templates
Project Towards an automated classification of VVV light-curves. I. Building a
database of stellar variability in the near-infrared. , 567:A100, July 2014. doi:
10.1051/0004-6361/201423904.

[5] M. Ausloos and K. Ivanova. Power-law correlations in the southern-oscillation-
index fluctuations characterizing el Niño. Phys. Rev. E, 63:047201, Mar 2001. doi:
10.1103/PhysRevE.63.047201. URL https://link.aps.org/doi/10.1103/
PhysRevE.63.047201.

[6] J. Belcher, J. S. Hampton, and G. Tunnicliffe Wilson. Parameterization of contin-
uous time autoregressive models for irregularly sampled time series data. Journal

cxxxv

http://www.jstatsoft.org/v54/i02/
https://link.aps.org/doi/10.1103/PhysRevE.63.047201
https://link.aps.org/doi/10.1103/PhysRevE.63.047201


cxxxvi

of the Royal Statistical Society. Series B (Methodological), 56(1):141–155, 1994.
ISSN Belcher. URL http://www.jstor.org/stable/2346034.

[7] Pascal Bondon and Wilfredo Palma. A class of antipersistent processes. Jour-
nal of Time Series Analysis, 28(2):261–273, 2007. doi: 10.1111/j.1467-9892.
2006.00509.x. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/
j.1467-9892.2006.00509.x.

[8] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, Aug 1996.
ISSN 1573-0565. doi: 10.1007/BF00058655. URL https://doi.org/10.1007/
BF00058655.

[9] Leo Breiman. Arcing classifier (with discussion and a rejoinder by the author).
Ann. Statist., 26(3):801–849, 06 1998. doi: 10.1214/aos/1024691079. URL https:
//doi.org/10.1214/aos/1024691079.

[10] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, Oct 2001. ISSN
1573-0565. doi: 10.1023/A:1010933404324. URL https://doi.org/10.1023/
A:1010933404324.

[11] P.J. Brockwell and R.A. Davis. Time Series: Theory and Methods: Theory
and Methods. Springer Series in Statistics. Springer New York, 1991. ISBN
9780387974293. doi: 10.1007/978-1-4419-0320-4.

[12] P.J. Brockwell and R.A. Davis. Introduction to Time Series and Forecasting.
Springer-Verlag New York, 2002. ISBN 9780387216577. doi: 10.1007/b97391.

[13] Piet M. T. Broersen. Automatic Autocorrelation and Spectral Analysis. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2006. ISBN 1846283280.

[14] John Y. Campbell, Andrew Wen-Chuan Lo, and Archie Craig MacKinlay. The
Econometrics of Financial Markets. princeton University press, 1997. URL
http://press.princeton.edu/titles/5904.html.

[15] J. M. Carpenter, L. A. Hillenbrand, and M. F. Skrutskie. Near-Infrared Photometric
Variability of Stars toward the Orion A Molecular Cloud. , 121:3160–3190, June
2001. doi: 10.1086/321086.

[16] M. Catelan and H. A. Smith. Pulsating Stars (Wiley-CVH). Wiley-VCH, March
2015.

[17] M. Catelan, D. Minniti, P. W. Lucas, I. Dékány, R. K. Saito, R. Angeloni, J. Alonso-
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Appendix A

Connection Between CAR(1) and IAR
process

The CAR(1) model is described by the following equation,

ϵ(t) − β

α0
= e−α0(t−s)(ϵ(s) − β

α0
) + e−α0t(I(t) − I(s)) (A.0.1)

The IAR model is described by the following equation,

εt1 , yt j = ϕ
t j−t j−1 yt j−1 + σ

√
1 − ϕ2(t j−t j−1) εt j for j = 2, . . . , n, (A.0.2)

Now, setting β = 0 and e−α0 = ϕ, the equation (A.0.1) becomes to,

ϵ(t) = ϕt−sϵ(s) + ϕt(I(t) − I(s))

To prove the equivalence between the equation (A.0.1) and equation (A.0.2), we can
prove that

ϕt(I(t) − I(s)) = σ
√

1 − ϕ2(t−s) εt j

Let, Z(t) = σ
√

1 − ϕ2(t j−t j−1) we know that E(Z(t)) = 0 and V(Z(t)) = σ2(1 − ϕ2(t−s)).

Furthermore, if Z(t) = ϕt(I(t) − I(s)), we know that E(Z(t)) = 0, and

V(Z(t)) = V(ϕt(I(t) − I(s)))
= V(e−α0t(I(t) − I(s)))
= e−2α0tV(I(t) − I(s))
= e−2α0t[V(I(t)) + V(I(s)) − 2Cov(I(t), I(s))
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Let t = s + h, then

V(Z(t)) = e−2α0(s+h)[V(I(s + h)) + V(I(s)) − 2Cov(I(s + h), I(s))]

= σ2
0e−2α0(s+h)

[∫ s+h

0
e2α0udu +

∫ s

0
e2α0udu − 2

∫ s

0
e2α0udu

]
= σ2

0e−2α0(s+h)
[∫ s+h

0
e2α0udu

∫ s

0
e2α0udu

]
= σ2

0e−2α0(s+h)
[∫ s+h

s
e2α0udu

]
= σ2

0e−2α0(s+h) 1
2α0

[
e2α0(s+h) − e2α0 s

]
= σ2

0
1

2α0

[
1 − e−2α0h

]
=

σ2
0

2α0

[
1 − ϕh

]

Let σ2 =
σ2

0
2α0

then we proved that the two first moments of e−α0t(I(t) − I(s)) and

σ
√

1 − ϕ2(t j−t j−1) are equivalent.
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