
Similarity Analysis in Species Sampling Mixture

Models

Carlos A. Navarrete



Abstract. Species Sampling Mixture Models (SSMMs) rely on modeling the

data on top of a structure that considers the inherent clustering of the obser-

vations under the hypothesis of prior exchangeability. This work proposes a

method to study the information given by the posterior clustering behaviour

of SSMMs, called Similarity Analysis. It is based fundamentally on decom-

posing the similarity matrix obtained from a sample of the partitions in an

intrinsic and an extrinsic part. This gives valuable information about the in-

dividual characteristics that explain the clustering, specially in the presence

of covariates. A new approach to the representation of partitions and their in-

terpretation is also given. Applications in Bayesian density estimation, linear

regression models and multivariate regression models for binary response are

included.

Keywords: Species Sampling Mixture Models, Dirichlet process, cluster anal-

ysis, Bayesian density estimation, multivariate binary regression, Gibbs sampling.
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CHAPTER 1

Introduction

The main goal of this work is to study the relationship between individuals,

their covariates and the posterior probability of grouping the observations, that is,

a partition for the data, in the context of Species Sampling Mixture Models (SS-

MMs). Models defined from mixtures of Species Sampling Models (SSMs) present a

great innovation, compared with the full parametric scheme: they consider a prior

probability distribution for the latent inherent clustering structure of the data.

This is done by means of specifying a random probability measure (RPM) for in-

dividual parameters, which in turn defines a random partition structure, allowing

the model to accommodate the posterior distribution of the parameters in a way

that represents the observations guided by the model specification, but not con-

strained to a unique form of it: there are individual variations in the specific way

such model is followed. For individuals sharing the same subject-specific random

effects, the difference between them is explained by sampling variability in the like-

lihood. This characteristic makes SSMM a very flexible tool. In this work we focus

on the posterior partition structures and their interpretation, based on individual

covariates.

For data y1, . . . , yn, we consider the following hierarchical model:

yi|θi, xi, ν ∼ F (φ(θi, xi), ν)

θi|G ∼ G (1)

G ∼ SSM(G0, p)

The individual parameters (θ1, . . . , θn) come from a SSM centered in a baseline

measure G0 and defined by a predictive rule p, to be defined below. (x1, . . . , xn)

are optional vectors of covariates and φ is a function relating θi and xi in F , for

5



6 1. INTRODUCTION

i = 1, 2, . . . , n, like, for example, the traditional linear regression form

φ(θi, xi) = E(yi|θi, xi) = θ0i + θ1ix1i + . . .+ θ(q−1)ix(q−1)i.

The parameters θi need not be always functionally related to the covariates xi.

For instance, one could also define θqi = V ar(yi|θi, xi) in the context of a Normal

specification for F . ν represents optional additional parameters, which may be

fixed or given an hyperprior distribution π|η. θi, i = 1, . . . , n are, in general,

vectors in Rm, for some known positive integer m. The framework provided by

SSMMs assume that the observations come from a mixture of distributions, and

this mixture is defined by the SSM. Equivalently, (1) can be written as

yi|xi, θi, ν ∼
∫
F (φ(θi, xi), ν)dG(θi) (2)

with G(θi) coming in turn from a SSM. Model (1) can be extended by traditional

Bayesian hierarchical specifications. A common choice for F is a normal kernel

N(µ, V ). Many applications consider θi = µi and a common variance ν = V , which

leads to a mixture of normals. This scheme can be extended to the more general

case θi = (µi, Vi). A typical base distribution for the first case is Normal, and for

the latter Normal/Inverse Gamma or Multivariate Normal/Inverse Wishart, both

chosen for conjugacy.

SSMs are RPMs introduced by Pitman (1996), which include, as a particular

case, the Dirichlet Process (DP) (Ferguson 1973, Blackwell and MacQueen, 1973).

The name Species Sampling comes from the idea that θ1, θ2, . . . come from a big

population formed by different species, and each value θi is a tag associated to a

new species found. The following definitions, all due to Pitman (1996) introduce

SSMs.

Definition 1. Given a baseline distribution G0, (θn) is a species sampling

sequence iff it is a sample from a random distribution G of the form

G =
∑
i

ωiδ(θ̂i)
(·) + (1−

∑
i

ωi)G0 (3)

for some sequence of random variables (ωi) such that ωi >= 0 for every i and∑
i ωi ≤ 1 a.s. Marginally, {θ̂i, i = 1, 2, . . .} is a random sample from G0 and,

given G, θ1, θ2, . . . are independent and identically distributed according to G.
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Definition 2. A Species Sampling Model (SSM) is a random distribution G

of the form (3) with a random sample θ1, . . . , θn from G.

SSMs belong to a class of Bayesian models which are often called non-parame-

tric, although they are defined, in fact, in terms of an infinite (but countable) num-

ber of parameters. We will refer to them as the non-parametric part of the model.

We will be interested in proper SSMs, in which
∑
i ωi = 1 a.s., which determine

discrete distributions with probability one. Moreover, when the SSM is proper, its

construction determines a partition in the sampled values of (θ1, . . . , θn). In other

words, proper SSMs are based, fundamentally, on a probability distribution over all

possible partitions of the vector of parameters (θ1, . . . , θn), which are assumed to

be exchangeable, plus the locations of the clusters, distributed depending on both

the partition and the baseline measure G0. The RPM (3) is then simplified to

G(·) =
∑
i

ωiδ(θ̂i)
(·) (4)

The connection between proper SSMs and the underlying partition structure that

characterizes them becomes clear when introducing predictive rules.

Definition 3. A predictive rule is a rule specifying the distribution of θ1 and

the conditional distribution of θn+1 given θ1, . . . , θn for any n = 1, 2, . . ..

Pitman (1996) shows that, given a continuous distribution G0, a sequence (θn)

is a species sampling sequence if it is exchangeable and subject to a predictive rule

of the form

P (θ1 ∈ ·) = Go(·)

P (θn+1 ∈ ·|θ1, . . . , θn) =
k∑
j=1

pj(Nn)I(θ∗j ∈ ·) + pk+1(Nn)G0(·). (5)

Given n, the construction (5) defines the probability distribution of (θ1, . . . , θn) in

a recursive way. This constitutes, in fact, a generalization of the Polya urn scheme

that characterizes the Dirichlet Process (Blackwell and MacQueen, 1973). The first

value, θ1, is directly sampled from the baseline distribution G0. The rest of the

parameters θi, conditional on the previously sampled values, can either copy one

sampled value, or generate a new one from G0. It can be seen in (5) that the

probability of obtaining ties in the sampled values θi is positive. k represents the
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number of unique values (θ∗1 , . . . , θ
∗
k) in (θ1, . . . , θn), that is, the number of clusters,

and Nn is the vector of cluster sizes nj in the implicit partition of (θ1, . . . , θn), for

j = 1, 2, . . . , k. Exchangeability imposes the constraint that the probabilities of

copying a previous value or sampling a new one depend on the already sampled

values only on Nn. Connecting (5) with (4), Pitman (1996) shows that (4) is the

limit in total variation norm of (5) when n → ∞, and thus the weigths ωi can be

interpreted as limit proportions of the recorded tags. For any SSM, marginalizing

over the RPM G leads to a joint distribution p(θ1, . . . , θn) that can be expressed

as the product of conditional distributions as in (5). From the point of view of

partitions, this determines an exchangeable partition probability function (EPPF).

The EPPF is defined as (Pitman 1996)

P

 k⋂
j=1

(θi = θ∗j for all i ∈ Cj)

 = p(n1, . . . , nk) (6)

for some symmetric function p of k-tuples of non-negative integers with sum n.

Allowing n to vary, let [n]k = (n1, . . . , nk) with
∑k
j=1 nj = n. This represents a

partition with k clusters, and each cluster j has nj elements. Pitman (1996) shows

that an EPPF must satisfy, for any sequence [n]k and for any k

p([1]) = 1 and

p([n]k) =
k+1∑
j=1

p([nj+]k) (7)

where [nj+]k is defined from [n]k incrementing nj by one (so a partition with k

or k + 1 clusters may be obtained, the latter case when j = k + 1). Conversely,

any symmetric function p satisfying (7) is an EPPF. EPPFs are important because

SSMs can be alternatively defined by an EPPF plus the baseline measure G0. In

this case, the predictive probability functions in (5) are easily shown to be given by

pj(Nn) =
p([nj+]k)
p([n]k)

, 1 ≤ j ≤ k + 1 (8)

It follows that the choice of predictive probabilities are constrained by (7) and (8),

and so they are not arbitrary. Two available forms of SSM will be considered in

this work: the Dirichlet Process and the Pitman-Yor process, also called Poisson-

Dirichlet process.
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Dirichlet Process. The Dirichlet Process (DP) (Ferguson 1973, Blackwell and

MacQueen 1973) is a well known particular case of SSM, with (5) determined by

pj = nj/(n + M) for j ≤ k and pk+1 = M/(n + M), where nj is the size of

cluster j, and M is a positive mass parameter, in what is referred to as Blackwell

& MacQueen Polya urn representation. The EPPF for the DP is

p(n1, . . . , nk) =
Mk−1

∏k
j=1(nj − 1)!

[M + 1]n−1
(9)

with [x]m =
∏m
j=1(x+ j − 1). Sethuraman (1994) showed that the DP corresponds

to (4) with θ̂1, θ̂2, . . . being i.i.d. from a baseline distribution G0 and with weights

defined as

ω1 = 1 and

ωh =
h−1∏
j=1

(1− Vj)Vh for h > 1, (10)

where V1, V2, . . . are i.i.d. samples from a Beta(1,M) distribution. This construc-

tion is often referred to as Stick Breaking representation.

Pitman-Yor process. Another example of SSM is the Pitman-Yor process, in

which case we have pj = (nj−α)/(n+M) for j ≤ k and pk+1 = (M+kα)/(n+M).

This process can be seen as a generalization of the Dirichlet process. The process

can be defined in two alternative ways:

α = −M/m for some m = 2, 3, . . . and M > 0, or (11)

0 ≤ α ≤ 1 and M > −α. (12)

Note that the process defined by (11) determines partitions with a number of clus-

ters less or equal to m with probability 1. The EPPF for this model is given by

(Pitman 1996)

p(n1, . . . , nk) =

(∏k−1
j=1 (M + jα)

)(∏k
j=1[1− α]nj−1

)
[M + 1]n−1

(13)

When α = 0 and M > 0, the PY model reduces to the DP case.

The class of SSM models admits several other important special cases. These

include the Dirichlet-multinomial process (Muliere and Secchi 1995), the beta-two

process (Ishwaran and Zarepour 2000) and the stick-breaking priors (Ishwaran and



10 1. INTRODUCTION

James 2001, 2003b). Additional properties of SSMs can be found in Pitman (1996).

For a related class of RPMs see Lijoi, Mena and Prünster (2007).

The specific topic of relating covariates with the nonparametric part of the

model has been studied mainly by means of introducing dependence on the co-

variates in the stick-breaking representation of the Dirichlet Process. MacEachern

(1999) introduces the Dependent Dirichlet Process (DDP), allowing explicit depen-

dence on covariates on random distributions coming from a DP. DDP models allow

various types of dependence. One type comes from replacing the random values

θ̂i in (10) by stochastic processes ˆθi(x). Additionaly, the base measure may be al-

lowed to depend on x, too. Other source of dependence is obtained from replacing

the random variables Vj in (10) with stochastic processes Vj(x), which also intro-

duces dependence on the mass parameter, setting M = M(x). De Iorio, Müller,

Rosner and MacEachern (2004) study ANOVA-type structures based on the DDP.

They impose the structure on the locations θ̂i := θ̂i(x) = mi + Aνi + Bωi, where

xi = (νi, ωi) in an ANOVA fashion. They show that this model can be written as

a DP mixture model of the form

(yi|xi) ∼ Hxi
(yi)

Hxi
(y) =

∫
N(y|αdi, S)dF (α), (14)

F ∼ DP (M,p0)

where di denote a design vector to select the appropiate ANOVA effects correspond-

ing to xi. They show that this scheme can be generalized by further hierarchical

specifications, which include the possibility to represent a categorical response by

means of specifying additional latent parameters. Their conclusions extend natu-

rally to mixtures of proper SSMs, since they are valid for the general representation

(4). In a related approach, Griffin and Steel (2006) make the weights in the Sethu-

raman representation dependent on the covariates in what is called Order-Based

DDP (πDDP). They induce an ordering π in the random variables which define the

weights in (10) at each covariate value, such that distributions for similar covariates

values are associated with similar orderings, and so they are are close. They apply

mixtures of πDDP processes to time series and spatial data. Dunson, Pillai and

Park (2007) propose a model with a formulation similar to (14) in the context of
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Bayesian density regression. But their approach replaces the stick-breaking prior

(10) by weighted mixtures of DP priors

Gx =
n∑
j=1

bj(x)G∗xj
,

G∗xj
∼ DP (M,G0)

independently for j=1,2,. . . ,n.

In this work, we focus on the relation of posterior partitions obtained from (1)

and individual covariates, without specifying, explicitly, dependence on the covari-

ates in the SSM that generates the individual parameters θi. Instead, we study the

indirect influence of the covariates, through the likelihood, in the posterior cluster-

ing process. By exchangeability, the prior probability for any particular observation

to join a cluster (actually, for a sample of the individual parameter, coming from

the SSM) depends only on the cluster sizes in the partition. A posteriori, this is

modified by the likelihood of the observations, and the influence of the covariates in

the process is determined by their influence in the likelihood. To identify individ-

ual influence, and then associate it to covariate values, it is necessary to know how

the clustering process and the likelihood interact. MacEachern and Müller (1998,

2000) note that the individual parameters (θ1, . . .,θn) can be reparameterized as

pairs (ci, θ∗ci
), where ci is the cluster corresponding to the i-th element, and θ∗ci

represents its location. Then, conditional on the random partition determined by

the SSM, the model becomes

yi|ci, θ∗ci
, xi, ν ∼ F (φ(θ∗ci

, xi), ν) i = 1, . . . , n,

considering a partition for θ1, . . . , θn, with k ≤ n possible different values for θ∗ci
.

Note that the partition of θ1, . . . , θn is in 1 : 1 relation with a partition of y1, . . . , yn,

unless the optional additional parameters ν determine an additional clustering pro-

cess, a case not treated here. From (5) and (2), the posterior distribution for the
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cluster membership of element θn, given (θ1, . . . , θn−1) is determined by

p(cn|θ1, . . . , θn−1, yn, xn, ν)

∝
kn−1∑
j=1

p(yn|φ(θ∗j , xn), ν)pj(Nn−1)I(cn = j) (15)

+ p(kn−1+1)(Nn−1)
(∫

p(yn|φ(θ, xn), ν)dG0(θ)
)
I(cn = kn−1 + 1)

where kn−1 is the number of clusters in the partition of (θ1, . . . , θn−1). In turn, the

posterior location for cluster cn, given the elements that form it, is given by

p(θ∗cn
|y, x, ν) ∝

 ∏
yi∈Cn

p(yi|φ(θ∗cn
, xi), ν)

G0(θ∗n). (16)

This updating scheme controls the formation of clusters, and therefore its under-

standing is very important for the interpretation of the resulting partitions. The

predictive probabilities pj(Nn−1), j = 1, . . . , (kn−1 + 1) are the most obvious way

to control the clustering process. One example is the DP, where the probability of

repeating a previously sampled value is distributed a priori equally for each value

(considering every location individually, no matter how many times it is repeated),

and pk−+1(N−n ) ∝M , the so-called mass parameter, which controls the probability

of forming new clusters. When the prior distribution of the partitions is ruled by

the PY process, the probability of forming new clusters is, additionally, dependent

on the number of clusters. That comes from the prior specification. In the posterior

form, the construction tends to join similar individuals in terms of their likelihood.

The process also depends on the specification of G0, since it rules the prior distri-

bution for the locations. For the probability of creating new clusters in (15), we

have ∫
p(yn|φ(θ, xn), ν)dG0(θ) = EG0(θ) [p(yn|φ(θ, xn), ν)] (17)

So, as a general rule, an observation will tend to form a new cluster when the already

sampled values are less likely to represent it, compared with the expected likelihood

defined by the base distribution. One could think of this process as sampling from

a spectrum of colors. Depending on some degree of tolerance, different colors can

be sampled and then classified in more basic categories, like blue, yellow or red. In

(15), basic color classification (clusters) group individuals which are likely to be

represented by the same version of the model. The degree of tolerance determines,
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for instance, if some tone of purple is classified in blue or red, or rather forces the

process to create a new category called, say, purple. Tolerance is in turn determined

by the specification of the likelihood in (2), the base measure G0 and the clustering

mechanism (5). From a data analysis perspective it is interesting to note that

model (1) allows for two extreme cases: all the parameters θi are equal, and all of

them are distinct, reducing inference to parametric models. But more generally,

a discrete RPM prior for the unknown distribution of the individual parameters

represents an intermediate choice between models with all parameters equal or

different. By adequately choosing the predictive probabilities {pj}, the analyst can

favor different partition structures. In the DP case, for instance, a large value of

M implies many clusters, while small values of M favor partitions with a a reduced

number of clusters. The prior expectation and variance of the number of clusters

are given by Liu (1996)

n∑
i=1

M

M + i− 1
and

n∑
i=1

M(i− 1)
(M + i− 1)2

.

The extreme cases mentioned earlier follow by letting M → 0 and M → ∞, re-

spectively. Some authors (e.g. Escobar & West, 1995) treat M as an unknown

parameter itself, choosing a prior distribution (usually Gamma) to reflect uncer-

tainty. The above expressions for prior mean and variance can be used for prior

elicitation purposes (Kottas et al. 2005). In contrast, the PY process has more

flexible partition structures, taking also in consideration the number of clusters in

the clustering process.

In the last years, efficient algorithms have been developed in the context of

Gibbs Sampling for Dirichlet Process Mixture Models (DPMMs), which extend

naturally to SSMMs. Among others, we can mention the works of Escobar (1994),

Escobar & West (1995), Bush & MacEachern (1996), MacEachern & Müller (1998,

2000) and Walker (2007). Many Gibbs Sampling algorithms are based on noting

that, as a consequence of prior exchangeability in θ1, . . . , θn, given the number of

observations n, the prediction rule (5) implies that

P (θi ∈ ·|θ−i) =
k−i∑
j=1

p−ij (Nn−1)I(θ∗j ∈ ·) + pk−i+1(Nn−1)G0(·) (18)
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where θ−i = {θ1, . . . , θi−1, θi+1, . . . , θn} and k−i is the number of clusters without

considering observation i. A posteriori, this fact leads to the modified posterior

probability for cluster configurations

p(ci|θ−i, yi, xi, ν)

∝
k−i∑
j=1

p(yi|φ(θ∗j , xi), ν)pj(Nn−1)I(ci = j) (19)

+ p(k−i+1)(Nn−1)
(∫

p(yi|φ(θ, xi), ν)dG0(θ)
)
I(ci = k−i + 1)

where k−i is the number of clusters in the partition of without θi. The posterior

location for cluster ci is similar to (16). This allows direct sampling for θ1, . . ., θn

conditional on the rest of the parameters (Escobar, 1994, Escobar and West, 1995).

MacEachern and Müller (1998) showed that it is more efficient to sample from this

distribution in two steps. First, sample cluster memberships ci, i = 1, 2, . . . , n, and

then update the locations θj , j = 1, 2, . . . , k. This individual allocation scheme

is used in most applications presented in this work, and is detailed in Appendix

A. Walker (2007) proposes a new alternative, based on the introduction of latent

variables which reduce the infiniteness of the RPM representation to a finite case.

Several other algorithms are available now, like Neal (1998), Neal and Jain (2000)

and Dahl (2005). Most of them rely on accept/reject methods. The only other

algorithm used in this work is the one proposed by Dahl, which made possible

simulations for the application shown in Chapter 5.

For the purpose of identifying individual influence in the clustering, we propose

a new way of representing partitions. Partitions are represented by Partition Ma-

trices (PMs), defined by ρij = 1 if individuals i and j belong to the same cluster, 0

in other case, for every pair (i, j) in the sample. This representation requires tak-

ing in consideration that partitions are uniquely defined by equivalence relations,

and these, in turn, are characterized by reflexiveness, symmetry and transitivity.

In general, the clustering process is characterized, beyond sampled partitions, by

probabilities of joining pairs of individuals. This is represented by Similarity Ma-

trices (SMs), defined by the probabilities of pairs (i, j) to be in the same cluster.

They constitute the expectation of PMs, and make it possible the definition of loss

functions associated to the decision of selecting one partition for the data, as is
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shown in Lau and Green (2007). The proposed representation allows, additionally,

identification of individual influence by means of decomposing the PM or SM in

two parts: one intrinsic and one extrinsic, the former relating two individuals di-

rectly, and the latter relating individuals by application of a transitivity rule. The

decomposition is based, in turn, in identifying the first cluster representative (FCR)

of each cluster, defined as the representative with lowest label of each cluster. The

partitions themselves, considering only the individuals forming each cluster, are

invariant to the order of the observations. But PMs and SMs, and their decom-

positions, represent partitions in relation with the order of the observations in the

sample, and this can be changed at will by rearranging the rows and columns of the

PM or SM. This method, called Similarity Analysis, provides valuable information

concerning the role of the covariates in the clustering process, since it identifies

which individuals “lead” the groups, and this is the same as knowing which ones

are more likely to represent the rest. Graphical ways to represent this information

are proposed, along with a guide to their interpretation, based on the covariates.

As a side effect of the proposed partition representation, some new algorithms to

find candidate partitions for the data are also proposed.

Mixtures of Dirichlet processes are currently being used in different contexts.

De La Cruz, Quintana and Müller (2007) develop a semiparametric hierarchical

model for classification based on logitudinal markers. Their model is an extension

of the DDP, with an additional probability model for group classification. They also

investigate the effect of the dependence introduced by the DDP compared with a

model with independent DP priors. Jara, Garćıa-Zattera and Lesaffre (2007) pro-

pose an extension to multivariate probit models based on a DP mixture. The

mixture is with respect to both location and covariance of a normal kernel. They

study different parametrization alternatives for the covariance matrix, addressing

identification constraints and tractability of computations. To show SSMMs and

Similarity Analysis in practice, three applications are presented in this work. The

first one (Chapter 3) reviews the Bayesian density estimation model proposed by

Escobar and West (1995), extended to SSMMs. As Escobar and West do, we

also apply their model to Galaxy data from Roeder (1990), and show how to find

candidate partitions based on the algorithms proposed in this work. The Galaxy
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dataset has been analyzed by a number of authors, including Escobar & West

(1995), Richardson & Green (1997), Stephens (2000), Ishwaran & James (2003),

Quintana (2006) and Navarrete, Quintana and Müller (2008). The second appli-

cation presents a linear regression model based on (1) and explore the posterior

clustering behavior of simulated data, based on covariates and Similarity Analysis.

The third application shows a multivariate binary response model applied to real

data, modelling the relative risk of Atrial Fibrilation events at 30 days and 1 year

of follow-up. The statistical model presented is similar to the application in Jara

et al (2007), but it considers a full specification of the covariance structure, dealing

with a high dimensional parameter space.

The rest of this work is organized as follows. Chapter 2 introduces PMs, SMs,

their graphical representation and properties and their decomposition in intrinsic

and extrinsic parts. Some methods to find partitions for the data based on the infor-

mation given by the SM are also discussed. Chapter 3 shows the Bayesian Density

application. Chapter 4 shows the application related to linear regression models,

based on simulated data. Chapter 5 presents the multivariate regression model. A

final discussion is given in Chapter 6, and a short introduction to computational

algorithms used in this work is given in Appendix A.



CHAPTER 2

Similarity analysis

As seen in the previous chapter, SSMMs rely on an inherent mechanism of

clustering the observations. In fact, any set of data can be seen to be partitioned,

at least in trivial ways, like one cluster per individual, or one cluster for all observa-

tions. In this section, a novel way of representing the prior and posterior partition

structure will be introduced, which will be seen to reveal valuable information from

data modelled by a SSMM. For the purpose of this work, we need to establish a link

between posterior partitions and individual information. The first step consists in

representing partitions based on individuals and the relations between them. This

is the concept behind partition matrices. Then, we need to summarize the informa-

tion provided by the clustering mechanism, considering that partitions are sampled

following a stochastic process which depends both on prior cluster configuration

and individual information. This will be done by means of similarity matrices, and

their decomposition in intrinsic and extrinsic parts, the base of Similarity Analy-

sis. The link with individual information is based on the concept of first cluster

representatives and the interpretation of the decomposition of the similarity.

1. Partitions and Partition Matrices

1.1. Equivalence relations and partitions. Let us consider a set of n ele-

ments [n] = {1, 2, . . . , n}. A relation r between the elements of [n] is defined as a

subset of the product [n]× [n] = {(i, j) : i ∈ [n], j ∈ [n]}. Two elements, i and j, of

[n] are said to be related iff the pair (i, j) belongs to r. From now on, we will be

interested in equivalence relations (ERs), which satisfy three well known properties:

reflexiveness (every element is related with itself), symmetry (if a is related with b,

then b is related with a), and transitivity (if a is related with b, and b is related with

c, then a is related with c). Every ER ”∼” in [n] defines a partition {C1, . . . , Ck},

which means [n] =
⋃k
j=1 Ci and Ci ∩ Cj = ∅ for every i, j = 1, 2, . . . , k. Every

17
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element i ∈ [n] will belong to an equivalence class, which we will call cluster Ci,

1 ≤ Ci ≤ k, calling k the number of such clusters, for some 1 ≤ k ≤ n. Equiva-

lently, the cluster label of i, ci will be j iff i ∈ Cj . In order to label the clusters in a

unique way, we will follow the convention of labeling them in order of appearence:

(1) c1 = 1

(2) min{i : ci = j1} < min{i : ci = j2} ⇔ 1 ≤ j1 < j2 ≤ k

In other words, the first element must belong to C1, and the first element of [n]−

(C1 ∪ . . . ∪ Cj−1) must belong to Cj , for 2 ≤ j ≤ k. This is equivalent to the

following recursive formula for cluster labels.

Proposition 1. Let ∼ be an ER in [n], and let ρij = 1 if i ∼ j, 0 in other case.

Labeling clusters in the partition in order of appearence is equivalent to defining the

cluster label for element i, i = 1, 2, . . . , n as

c1 = 1

ci = max
l<i
{clρl,i}+ (1−max

l<i
{ρl,i}) max

l<i
{cl + 1} (20)

Proof. Let ∼ be an ER, and let i be an element in [n]. The case i = 1 is obvious.

For i > 1, if element i joins a previous cluster, then ρil will be one for any element

l belonging to the same cluster. As one element can not belong to more than one

cluster at a time, then we have ci = maxl<i{clρl,i}. Otherwise, if element i forms a

new cluster, then the label of the new cluster must be the maximum label already

defined, plus one, which is equivalent to the second term of the right side of (20).

1.2. Partition matrices. From now on,we will represent a partition by an n×

n matrix R formed by the elements ρij , i, j ∈ 1, 2, . . . , n. Reflexiveness implies that

the main diagonal of R is formed by ones. Symmetry imposes R to be symmetric.

Transitivity is fulfilled when for every triplet of elements {i, j, k} ∈ [n], the number

of ones in {ρij , ρik, ρjk} is not two. There are several equivalent ways to define this

contition algebraically. One is saying that transitivity is equivalent to the following

condition:

Proposition 2. An n × n symmetric matrix R = (ρij) with main diagonal 1

represents a transitive relation if and only if

1− (ρij + ρik + ρjk) + 2ρijρikρjk ≥ 0 (21)



1. PARTITIONS AND PARTITION MATRICES 19

for every triplet {i, j, k} in [n].

Proof. The latter condition sums zero or one, except in the case when there are

two ones in the triplet {ρij , ρik, ρjk}, when the sum is -1. The reason to highlight

this specific result will be seen later on.

Definition 4. A partition matrix (PM) of size n, R, is a square, symmetric

matrix with elements ρij ∈ {0, 1}, i, j = 1, . . . , n, with ones in the main diagonal

and satisfying (21).

For a fixed number of elements n, any partition of such elements can be rep-

resented by a partition matrix, and conversely, any matrix satisfying the preceding

definition represents a unique partition of n elements, defined by (20). Any partic-

ular order of the elements in [n] defines a different PM, but given a specific order

of the elements in [n], the PM is unique. Any row or column represents a cluster,

and the sum of a row or column is equal to the size of the respective cluster.

Proposition 3. If the rows and columns of a PM are sorted by cluster label,

a block-diagonal matrix is obtained. On the other hand, every PM is a permutation

of the rows and columns of a block diagonal matrix of zeroes and ones.

Example. Suppose we have 5 elements, and the partition is {{1, 3}, {2}, {4, 5}}.

Sorting the rows and columns of the PM by cluster label is equivalent to renaming

element 3 as 2, and viceversa. The partition is now {{1, 2}, {3}, {4, 5}}, and it is

represented by a block diagonal matrix.

Definition 5. The first cluster representative (FCR) of an element i is di =

min{l ∈ [n] : cl = ci}. The first representative of a cluster C is given by min{i ∈

[n] : ci = c}.

FCRs provide a link from partitions to individual influence. FCRs are defined

in relation to the specific order of the sample, and the information they provide is

intrepretable when the order of the observations is meaningful, based on individual

characteristics, which are defined by individual covariates in the scope of this work.

Proposition 4. Any PM R can be written as R = QTQ, where Q is a (n×n)

matrix, with row l, l = 1, 2, . . . , n representing a cluster whose FCR is element l,
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and each column representing an element of [n]. The elements qli take value 1 if

element i belongs to cluster cdl
, and 0 otherwise. The matrix Q defined this way is

upper triangular and unique.

Proof. For any PM R, its elements rij can be written as rij =
∑i
l=1 qliqlj with

q as defined above, since the only way that elements i and j can be related is when

they both belong to the same cluster, and each cluster is uniquely identified by its

first representative. The number of possible FCRs for element i is at most i, because

i can either join a previous cluster, represented by a preceding element in the

sample, or form a new one. An element i can, actually, be classified with elements

represented by an observation with higher label, but then, due to the partition

representation rule (20), i becomes the FCR. There can not be more elements than

clusters, so the matrix is upper triangular. Since clusters are represented uniquely

by their FCR, and elements can belong to only one cluster, the matrix Q is unique.

1.3. Example. Suppose we have 5 elements, partitioned in three clusters:

{{1, 2}, {3}, {4, 5}}. In relation notation we have r = {{1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5},

{1, 2}, {2, 1}, {4, 5}, {5, 4}}. The PM is then

R =



1 1 0 0 0

1 1 0 0 0

0 0 1 0 0

0 0 0 1 1

0 0 0 1 1


and the partition decomposition is given by R = QTQ with

Q =



1 1 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 1

0 0 0 0 0


Two special partitions can be highlighted. One is the minimal partition, which

has as many clusters as elements, and it is represented by the identity matrix. The

other is the maximal partition, where all elements are grouped in one cluster, and

it is represented by a square matrix of ones. If we represent ERs in [n] as subsets
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of [n] × [n], the maximal partition {(i, j) : i = 1, . . . , n; j = 1, . . . , n} is, indeed,

maximal, in the sense that it covers the ER corresponding to any other partition.

In the same way, the minimal partition’s ER {(i, i) : i = 1, . . . , n} is a subset of any

other partition’s ER. The ⊆ relation in ERs corresponds to the ≤ relation element

by element in the partition matrices. The intersection of two PMs is obtained by

taking the logical AND element by element (or the product), obtaining a new ER.

This is not the case for the union, in general, and the result must be completed to

satisfy transitivity. For PMs, the union is equivalent to the logical OR element by

element (or the sum defining 1 + 1 = 1).

Definition 6. Let R be a reflexive and symmetric relation in [n]. The transi-

tive closure R+ is the intersection of all ERs in [n] that cover R.

Definition 7. Let R be a reflexive and symmetric matrix with elements ρij ∈

{0, 1}. We will define the completion operator for R as R+ = {ρ+
ij} with

ρ+
ij = ρij + (1− ρij) max

k=1,2,...,n
{ρikρkj}

Completing R several times, until no change is done, results in the transitive

closure of R. What the previous operation does is connecting the elements that

should be related for the relation to be transitive, and it results in a bigger relation,

in the sense that it includes the original one. Algorithms to find the transitive

closure have been developed in Graph Theory. For further information, see Warshall

(1962), Yoeli (1961) and Nuutila (1995).

2. Similarity Matrices

Definition 8. A similarity matrix (SM) of size n, S, is a square, symmetric

and semi positive definite matrix with elements sij in the [0, 1] interval, such that

sii = 1 for all i = 1, 2, . . . , n.

A SM is intended to represent the marginal probabilities for every pair (i, j) to

be related. It is a generalization of a PM, since PMs are particular cases of SMs

with probabilities zero and one. It can also be seen as the expectation of a random

sample of PMs coming from the same process. Then, by the Law of Large Numbers,

it can be estimated by Ŝ = 1
N

∑N
r=1Rr, based on a sample of PMs R1, . . . , RN .

But this is not enough. Just like PMs must satisfy (21) in order to be transitive
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and so represent an actual partition, a similarity matrix must be somehow coherent

in order to give information about the clustering structure of the data, so that the

probability of joining two observations takes into account the transitivity property

on the underlying partitions. The starting point comes out noting that, just like

PMs can be decomposed as the cross-product of a matrix of cluster memberships, it

would be desireable that a SM could also share this property, and for that purpose,

since symmetry is guaranteed, SMs should be semi positive definite.

2.1. Diagonalization of a SM. From Linear Algebra, real symmetric ma-

trices are semi positive definite iff any diagonal representation (under congruence)

has only positive diagonal elements, or equivalently, if all eigenvalues are positive

(or zero). We will make use of this fact to explore what being semi positive definite

means in terms of the similarities sij . The diagonalization can be made by elemen-

tary row and column operations, in order to make zeroes from down and from the

right of the diagonal to the extreme of the matrix. That is, for i = 1, 2, . . . , n − 1

substract to row (i+ 1) row i multiplied by the i-th diagonal element, substract to

column (i + 1) column i multiplied by the same i-th diagonal element, and repeat

the operation for i+ 2 to n. At the end of the process, a diagonal matrix congruent

with S is obtained, and it must be checked that every element in the diagonal is

positive.

For n = 2, it is easy to verify that S = (sij) is semi positive definite iff 1− s12 ≥ 0,

which is always true. The case s12 = 1 defines a PM.

For n = 3, the diagonal elements obtained are v1 = 1, v2 = 1 − s12 and v3 =

(1− (s212 + s213 + s223) + 2s12s13s23)/(1− s212). Since v1 and v2 are always positive,

it can be concluded that S is semi positive definite if and only if

1− (s212 + s213 + s223) + 2s12s13s23 ≥ 0. (22)

This is equivalent to (21) for PMs, with the obvious detail that r2ij = rij for the

elements of a PM. This condition constitutes, in fact, a generalized definition of

transitivity, which we will call coherence. Triplets close to intransitivity for PMs

are discarded, like, for example, (sij , sik, sjk) = (0.1, 0.9, 0.9). The limiting region
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is shown in figure (1), and the transitive triplets are located in the interior, and

border, of the region.

Figure 1. Coherence region for n=3. Transitive triplets are lo-

cated in the interior of the region.

What vi ≥ 0 actually shows is the overall coherence of row (column) i with the

previous rows (columns).

2.1.1. Example. Let S be the following 5× 5 matrix.

1 2 3 4 5

1 1.00 0.30 0.60 0.70 0.70

2 0.30 1.00 0.60 0.90 0.85

3 0.60 0.60 1.00 0.75 0.20

4 0.70 0.90 0.75 1.00 0.90

5 0.70 0.85 0.20 0.90 1.00

The diagonal elements of S, after diagonalization, are, approximately, v1 = 1, v2 =

0.91, v3 = 0.45, v4 = −0.01, v5 = −0.25. There are problems then, since elements

4 and 5 seem to contradict the similarity of the rest. For instance, s24 = 0.9,

s14 = 0.7, but s12 = 0.3. Also, s35 = 0.2, but s15 = 0.7 and s13 = 0.6. We are going

to change some values, arbitrarily, in order to obtain more coherence. To choose
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better values, let us examine the formula for v4:

v4 = 1− s214 −
s24 − s12s14

1− s212
−
s34 − s13s14 − (s24−s12s14)(s23−s12s13)

1−s212

1− s213 −
(s23−s12s13)2

1−s212

What we need is to put the values in an acceptable range in order to turn v4 in a

non-negative value. If we set, for instance, s24 = s42 = 0.3, we obtain v4 = 0.31 and

v5 = −2 (notice that the previous diagonal values remain unchanged). We have

fixed one incoherence. The reasoning for v5 goes along the same way. We do not

show its formula here, for space considerations, but it is calculated straightforwardly

from the row and column operations already mentioned. We see that element 5

“pretends” to be close to 1 and 2, but 1 and 2 are distant from each other. So 5

must “decide” if joining 1 or 2. The same problem with 4 and 2. Also, 5 is distant

from 3, which is close to 4, a “close friend” to 5. In order to make the system more

coherent, we have to distance 5 from 2, and improve the relations with 3. Setting

s25 = s52 = 0.2 and s35 = s53 = 0.5 we get v5 = 0.09, which passes the test. The

new matrix, which is indeed a SM, is

1 2 3 4 5

1 1.00 0.30 0.60 0.70 0.70

2 0.30 1.00 0.60 0.30 0.20

3 0.60 0.60 1.00 0.75 0.50

4 0.70 0.30 0.75 1.00 0.90

5 0.70 0.20 0.50 0.90 1.00

Of course, this was shown as a fabricated example. With real data, one can not just

change the SM. An incoherent SM reveals inner contradictions on the clustering

process, demanding further research.

2.1.2. Decomposition of the similarity. In general, the diagonal elements are

built up based on the recursive formulas

qij =

(
sij −

i−1∑
l=1

qliqlj

)
/qii (23)

v2
i = q2ii = 1−

i−1∑
l=1

q2li

The condition that the diagonal values qii should be positive is equivalent to check-

ing the coherence of row and column i with the previous ones, as can be seen in
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the expansion of q2ii:

q2ii = 1−
i−1∑
l=1

q2li

= 1− s21i − (s2i − s12s1i)2

−((s3i − s13s1i)− (s23 − s12s13)(s2i − s12s1i))2 − . . .

The above formula takes in consideration and compensates every possible source of

incoherence in the related triplets in the rows and columns, evaluating recursively

every row and column with its predecessors. For every triplet {i, j, k}, i < j < k

the factors (sik − sijsjk) constitute a measure of influence of the transitive rule in

the triplet. As the row and/or column number increases, the previous expansion

evaluates recursively every possible combination of triplets with index lower or equal

to i, that is, the elements that i can join when they are considered FCRs of their

clusters. Of course, here we do not have actual clusters, but a tendency to group,

which differs between the observations, and it is relative to the order in which the

observations are sampled. But in the total similarity, the order of the observations

is irrelevant, except for the order of the rows and columns, and the values sij remain

the same when they correspond to the same individuals. (23) corresponds to the

recursive formula for the elements of Q in the Cholesky decomposition S = QTQ.

From this point of view, we have for any 1 ≤ i ≤ j ≤ n

Sij = Iij + Eij with

Iij = qiiqij (24)

Eij =
i−1∑
l=1

qliqlj

This decomposition is quite informative, since it explains the likeness of elements i

and j in terms of one part that depends exclusively on i and j (intrinsic similarity),

and a remaining part that depends on how their common relations influence their

tendency to join (extrinsic similarity). Starting recursively from n = 2, it can be

observed that Iij is a measure of closeness between i and j, beyond transitivity:

For n = 2,

I12 = S12

E12 = 0
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For n = 3,

I12 = S12

I13 = S13

I23 = S23 − S12S13

E12 = 0

E13 = 0

E23 = S12S13

Both Iij and Eij have absolute value lower than one since, by construction of

the Cholesky decomposition, we have Sii = 1 =
∑i
l=1 q

2
li. Numerically, Iij and

Eij can take negative values, and if Iij is negative, Eij must take higher values

in order to compensate that, for Sij to be positive, and viceversa. In practice,

however, negative values are rare, and close to zero. Now, if we take j = i, we

have that Iii = 1 −
∑i−1
l=1 q

2
li represents the degree of autonomy of element i from

the previous elements. This process can be compared to a group of n persons, who

meet each other depending on both the agreement with one specific individual, and

the similarity to the people that relate to him. An individual with high autonomy is

like a person with strong opinions, who rarely follows others, but others may follow

him, like a leader. Autonomy can be understood as the idiosyncratic part of an

individual’s ideas, not depending on the opinions of the other individuals that relate

to him. In our case, due to the representation of partitions (20), the observations

that an element i can possibly relate to, in a constructive view of the partition, are

1, 2, . . . , i− 1. Highly autonomous individuals represent a generalization of cluster

representatives. Here, autonomy represents to what degree and individual can be

considered the first representative of its kind. We will see that these quantities give

essential information for similarity analysis in SSMMs, justifying a formal definition.

Definition 9. Let S = (sij) be a SM of size n, and S = QTQ its Cholesky

decomposition. Let qij be the elements of the upper triangular matrix Q. We will

call decomposition of the similarity sij to the sum sij = Iij + Eij, with

• Intrinsic similarity of elements i and j to Iij = qiiqij,

• Extrinsic similarity of elements i and j to Eij =
∑i−1
l=1 qliqlj and
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• Autonomy of element i to Ai = Iii = q2ii.

2.1.3. Autonomy versus probability of creating new clusters. It is tempting to

interpret the previously defined quantities in terms of probabilities, specially with

Autonomy, in which case we have

i∑
l=1

q2li = 1

One could associate q2li to the probability of element i joining element l. But, for

instance, q212 = s212, which is different to the probability of element 2 to join 1,

which is s12. Then we also have A2 = q222 = 1 − s212, which is greater than the

probability of element 2 forming a new cluster, which is 1 − s12. The quantities

in Definition 9 constitute a decomposition of probabilities, and should be treated

like that. Nevertheless, they are quite informative. One reason to consider these

quantities instead of the empirical probability of creating new clusters is that the

latter distinguish only highly autonomous individuals when the statistical model

favours partitions with few clusters, which is a very common case. Instead, the

mentioned quantities will be shown in the applications to be much more sensitive

to the information provided by an individual, which is to say its covariates. Another

reason is related with the unique representation of partitions (20) and the recursive

nature of the Polya urn cluster allocating process. The sampled partitions follow

these rules, so, for instance, the first element in the sample will generate a new

cluster with probability one. But this particular element may not be that special,

it is just the first one in the list. A fundamental hypothesis of Species Sampling

models is the exchangeability of θ1, . . . , θn given the nonparametric distribution G.

But in the sample, when an element forms a new cluster, cluster labels are changed

in order to follow the representation rule for partitions. In the clustering process

itself, every element has a priori the same probability to form new clusters, and any

element can be the first one. So the information provided by autonomy can not be

fully extracted from the empirical probability of generating new clusters, in general,

because the latter is associated with the order of appearence of the elements in the

sample, when the model was fit. Instead, decomposed similarity and its derivatives

follow directly from the similarity matrix, which does not consider any particular

order of the observations in terms of the values of the matrix, but only in the
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order of its rows and columns. If the rows and columns of the SM are rearranged

in any order, the similarity decomposition, based on the Cholesky decomposition

of the rearranged SM, automatically accommodates to the permutation, and the

new first element will have autonomy one, and highly autonomous elements will

have the first cluster representative interpretation relative to the new order of the

elements. Looking at the decomposition in PMs (Proposition 4) can be clarifying.

Two elements i and j, i < j can be related for two reasons. One case is when both

belong to a cluster represented by a FCR l, for some l < i. We can consider this

an extrinsic relation, and it is equivalent to ERij =
∑i
l=1 qliqlj with qli = I(di = l),

qlj = I(dj = l). The other case is when i is itself a FCR, and then the relation can

be considered intrinsic. It is equivalent to Iij = I(dj = i). It is implied that di = i,

since i must be a FCR for dj to take i as its value. With these considerations, the

decomposition in Definition 9 is the same for PMs, although for any pair (i, j), either

the intrinsic or the extrinsic part will be zero. As the SM S is an approximation

to the expectation of the PMs R, its decomposition is based on the same principle,

and it can be interpreted in a similar way.

It is important to consider, in the context of SSMMs, which motivate this work,

the connection of the discussion in this section and predictive rules. (5) is equivalent

to (18), the latter being a representation of the clustering process adapted for Gibbs

Sampling. But in (18), an element i could be reallocated in a cluster represented by

a FCR with higher label than i, say j > i. There is no contradiction between this

and similarity decomposition, since, after the reallocation, to respect the partition

representation, cluster labels are changed, and element i in this case will become

the FCR of its cluster, even if its reallocation did not originate a new cluster. So,

the probability that di = i is not equal to the probability that element i forms a

new cluster.

2.1.4. Similarity analysis and covariates. The posterior probability for the par-

tition of (θ1, . . . , θn) given the observations (y1, x1), . . . , (yn, xn) is given by

n∏
i=1

p(ci|θ1, . . . , θi−1, yi, xi)
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and the conditional probabilities in the product are defined in (15). From the point

of view of FCRs, given d1, . . . , di−1, (15) is equivalent to setting recursively

di = l < i with prob. ∝ pcdl
(Ni−1)p(yi|φ(θl, xi))qll (25)

di = i with prob. ∝ pki−1+1(Ni−1)
(∫

p(yi|φ(θi, xi))dG0(θi)
)

(26)

As seen before (Chapter 1), the expresion∫
p(yi|φ(θi, xi))dG0(θi)

corresponds to the expectation of p(yi|φ(θi, xi)) defined by G0, so we will refer to

it as expected likelihood. The construction of (d1, . . . , dn) determines the decom-

position {qij , 1 ≤ i ≤ j ≤ n} for every partition, since qli = I(di = l), and this

is relative to the order of the observations. From this construction, it can be seen

that individuals, based on their covariates, tend to join a previous one if its pa-

rameters represent it with high likelihood, or to form a new cluster if its expected

likelihood, based on G0, is relatively high for a new sample of the parameters from

G0, compared with the parameter values of the clusters represented by the previous

FCRs.

Suppose there is an important association between the response yi and the

covariates xi, and the rows and columns of the SM are sorted according to x.

This sorting means arranging the rows and columns of the SM in an order that

depends on the values of x. For this task, it does not matter if x is continuous

or discrete. The important thing is that the order considered is interpretable in

terms of the covariate. If the association between y and x is correctly specified

in the model, then a combination of parameters which is highly likely for the first

observation (y1, x1) should give high likelihood to the rest of the observations too.

If the relation somehow changes for different values of the covariates, for instance if

there is an interaction not considered in the model, or the functional specification φ

of the relation is not the most adequate in (2), then the sampled values for the first

observation will be likely for the rest of the observations up to a certain value of

the sorting covariate. After this value, it will be more likely that the observations

come from a newly sampled value of the parameters that represent them better.

Let us suppose now that the covariates relate poorly with the response. Then the

clustering process will behave erratically when depending on the order of x, and one
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could see a variable number of clusters, depending on the specification of the rest of

the covariates, but clusters will tend to mix, making it difficult to distinguish which

elements form them, and which are the FCRs. Other clearly identifiable case is the

presence of observations which differ notably from the rest in their behavior. We

could call them outliers, understanding that the term does not necessarily refer to

observations with extreme covariate values, but observations which seem to relate

with their covariates in a different way. In that case, we will see a tendency to

cluster all the observations together, except for the outliers, which will appear as

FCRs of their own size-one cluster.

2.1.5. Example. Suppose the data come from

yi ∼ N(α0 + α1xi, σ
2) for i = 1, 2, . . . , n and xi ∈ {0, 1}

and we propose

yi ∼ N(αi, σ2)

αi|F ∼ F

F ∼ SSM(G0, p)

Given αi, the likelihood for yi is proportional to

exp(− 1
2σ2

(yi − αi)2).

The real mean of the observations is α0 for every yi such that xi = 0, and (α0 +α1)

for the other group. Suppose the observations are sorted by xi, although this co-

variate is not considered in the proposed model. Then x1 = 0, and an estimation

α1, highly likely for y1, will be likely for any observation of group 0, but it will

not fit as well for group 1. So the first observation (yl, xl) of group 1 will define a

new estimation αl with high probability, an estimation which will be highly likely

for the rest of the group. This process depends also on other parameters. In this

case, if the variance σ2 is overestimated, it will be difficult for the clustering process

to detect important differences on the means. On the contrary, if the variance is

subestimated, clustering will tend to compensate this by assigning more individ-

ual effects than needed. The specification of the baseline measure G0 is crucial,

and should support the entire range of possible values for the parameters α. If

G0 is poorly specified, the effect will be a confussion in the clustering process, and
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there will be no clear clustering tendency, making the similarity analysis hard to

interpret. If now we fit a better specified model yi ∼ N(α0i + α1ixi, σ
2), with the

nonparametric part defined accordingly, then an estimation (α01, α11) correspond-

ing to the observation (y1, x1) will be likely for the rest of the observations too,

regardless of covariate values.�

SSMMs are so flexible in part because of their ability to adequate to differences

in the observations which are not considered explicitly in the topmost part of the

hierarchy. If the SM shows a tendency to a particular clustering of the observa-

tions, and this clustering coincides with the presence of a factor, it is a strong sign

that the mentioned factor could be included in an explicit way in the model. This

is also applicable to continuous covariates, since, when one important covariate or

interaction between covariates is missing, the nonparametric part of the model will

tend to correct the lack of fit proposing different parameter values for the obser-

vations, according to the missing covariate(s). These covariates may be available,

or may be considered latent, in which case a reformulation of the model could be

considered. The intrinsic similarity I, in particular, shows the clustering tendency

in a more precise way, beyond the clustering explained by simple application of the

transitivity rule, highlighting the specific observations that rule the partitioning,

which are the FCRs. Consider a SM S, decomposed as S = I + E. Sorting the

rows and columns of S by any particular covariate, and then decomposing it, gives

important information about the relevance of the covariate in the model. Let π be

a permutation of {1, 2, . . . , n}, and let Sπ be the SM S with its rows and columns

rearranged by π. Sπ can be decomposed as Sπ = Iπ +Eπ. For any pair of individ-

uals (i, j), the similarity values remain the same, that is, Sij = Sππ(i)π(j). But the

decomposition changes, and now we have new intrinsic and extrinsic parts, which

depend on a different set of elements, determined by the permutation π. If we de-

fine π as an order depending on a specific covariate, or a set of covariates, then the

decomposition can be explained in terms of intrinsic and extrinsic similarity due to

the covariate values associated with i and j, whose positions are now π(i) and π(j).

This analysis is made based on a graphic representation of I. In a complimentary

way, one can combine scatter plots of the covariates with the information given by
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I, obtaining a good approximation to the kind of grouping obtained, depending on

the sorting of the rows and columns of S.

2.2. Similarity Decomposition Graphs (SDG). At this stage, we need a

practical graphical representation for the decomposition of the SM, one that could

extract the relevant information from the clustering process. Here we propose the

following. Construct a square grid for all the elements in the sample. The rows

and columns of the grid represent each individual, sorted accordingly to the SM.

Then fill the points in every coordinate with RGB colors, defined as Red, Green

and Blue channels in a [0, 1] scale. In the Red channel, put the intrinsic part of the

similarity. In the Blue channel, put the extrinsic part, and in the Green channel

put 1 minus the total similarity. Following this scheme, for high similarity areas,

the intrinsic part will be colored in red, and the extrinsic in blue. For low similarity

areas, the intrinsic part will be colored in orange or brown, and the extrinsic part

in green. There are specific patterns that can be recognized and interpreted. These

are, mainly:

• Unordered pattern. This pattern appears when the order of the rows and

columns in the SM is not directly associated with the clustering, or it is

not evident. It is convenient to rearrange the rows and columns of the SM

to make the clustering suitable for interpretation.

• Blue blocks A blue block represents a set of observations that mix from

one cluster to another, so in average they seem to share a common cluster,

but there is no FCR defined.

• Blue blocks with red delimeter. This is the representation of a well formed

cluster. The blue block indicates the extent of the cluster, starting with

well defined vertical and horizontal red bars, originated by the FCR. In

the diagonal, the FCR is represented by a red point, and the bars show

that the other members of the cluster relate to it intrinsically. The rest of

the block is made up of extrinsic relations, following the transitivity rule.

• Isolated red points in the main diagonal. These represent individuals

which are FCR of their own singleton cluster. This means the model is

treating them as separate entities, so they can be considered as different of



3. CHOOSING A PARTITION FOR THE DATA 33

the rest of the sample, at least in the dimension explained by the covariate

that defines the order of the rows and columns of the SM.

• Green areas. Green areas represent pairs of elements which rarely relate

to each other, and separate one cluster from other. Evaluating which

individuals (specifically their covariates) separate the clusters is the key

to determining which covariate may explain the clustering.

All the previous description constitutes a guide, which must be evaluated consid-

ering which covariate determines the order of the observations, and wether this

covariate is included in the model, or not, and how. A partition with two or more

clusters, determined by a covariate that is not being considered in the main speci-

fication could advise on considering the mentioned covariate, or the information it

represents. If, on the contrary, the covariate is actually included, it may be a sign

that the functional form of the covariate is not the most adequate, and one could

try, for instance, a quadratic form instead of a linear form.

In the next chapters we will explore these relations in more detail with concrete

applications. To conclude this part, let us discuss one more aspect relating SMs

and PMs.

3. Choosing a partition for the data

Sometimes it is necessary to choose one specific partition for the data, which is

a decision problem. As Bernardo and Smith (1994) state, the elements of a decision

problem in the inference context are:

(1) a ∈ A, a set of available “answers” to the inference problem.

(2) ω ∈ Ω, a set of unknown states of the world.

(3) u : A × Ω → R, a function attaching utilities to each consequence of a

decision to summarise inference in the form of an “answer” a, and an

ensuing state of the world, ω.

(4) p(ω), a specification, in the form of a probability distribution, of current

beliefs about the possible states of the world.

In our context, element (4) is given by the SSMM specification, and (2) is the set

of all possible partitions in [n]. Lau and Green (2007) propose an answer to (3)

in terms of a loss function defined on pairwise coincidences, discussed by Binder
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(1978), which adequates to our aim to make inference on partitions based on a SM.

This loss function considers pairs of items and the cost of clustering together items

that should be separate, and also the cost of setting apart items that should be

together. For item (1), the huge size of the set of possible partitions for the data

makes insufficient any practical sample size of posterior partitions. Here we propose

some simple methods to find good candidate partitions based on the expected loss.

3.1. Expected loss and distance.

Definition 10. (Binder, 1978, Lau and Green 2007) The expected loss func-

tion ELa:b(·) for a PM R = (ρij) given a SM S = (sij), both of size n, and positive

weights a and b is defined as

ELa:b(R|S) =
∑

i,j=1,2,...,n

{a I(ci 6= cj)p(ci = cj) + b I(ci = cj)p(ci 6= cj)}

=
∑

i,j=1,2,...,n

{a (1− ρij)sij + b ρij(1− sij)} (27)

where a and b represent the relative cost of separating two elements that should be

joined, and joining two elements that should be separated, respectively.

The Euclidean distance between a SM S = (sij) and a PM R = (ρij) is

D(R,S) =
√ ∑
i,j=1,2,...,n

(sij − ρij)2

Noting that ρij(1− ρij) = 0 for any pair (i, j) in [n]× [n], we have

EL1:1(R|S) = D(R,S)2 +
∑

i,j=1,2,...,n

sij(1− sij)

so finding the PM R that minimizes EL1:1(R|S) is the same as minimizing D(R,S).

3.2. Sampling partitions. The number of possible partitions for [n] is huge,

but always finite, and it is called the Bell number, Bn (see Klaska (1997), Rota

(1964)). Recursively, Bell numbers satisfy

Bn+1 =
n∑
k=0

 n

k

Bk,

and we have, for instance, that the number of partitions for 100 elements approxi-

mates to 4.8 × 10115. Anyway, we can always define a probability distribution for

the partitions, by means of assigning a probability value to every possible partition
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p(Ri) = pi ≥ 0, i = 1, 2, . . . , Bn subject to
∑Bn

i=1 pi = 1. Sampling partitions from a

huge discrete space has the potencial problem that many possible partitions cannot

even get a chance to be sampled, specially when n is big, as Bn can be far greater

than any practical sample size for simulations. Nevertheless, we can actually obtain

samples of any size, and select from the sampled partitions, for instance, the mode.

For this task, taking the distance from sampled partitions to a reference PM or SM

can be useful to identify the partitions efficiently. From the Bayesian perspective,

selecting the sampled partition with minimum expected loss (Lau &Green, 2007)

based on a similarity matrix is the preferred choice.

3.2.1. Methods to find PMs based on a SM. SM’s do not represent partitions,

but, in typical problems, the SM is our approximation to the expected PM, so we

may want to find a list of PM’s close, in some sense, to S, to choose then the

partition with minimum EL.

Let S = {sij} be a SM.

• Direct method

Define a cutpoint c ∈ [0, 1], for instance c = 0.5, and set ρij = I(sij >= c).

A quick method to find a PM from S comes straightforward from (20). It

is guaranteed to obtain an actual PM, good enough to get a preliminary

result, although it may not be the optimal answer in terms of a chosen

expected loss.

• Cut & Complete

Define a cutpoint as before, and complete R = {ρij} to obtain the tran-

sitive closure. This can be used itself as a method to find a candidate

partition, or as a step in the next algorithm.

• Succesive Completion

Define a sequence of cutpoints, which can be the list of unique values of

the SM. Define a list of partitions based on cutting and completing for

every value in the list, and then choose the PM with minimum EL.

• Minimize & Complete

From the definition of the expected loss function, it is easy to see that,
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given a SM S = {sij}, a relation R = {ρij} that minimizes the EL can be

constructed, defining

ρij = I(a(1− sij)− bsij < 0).

Then, completing R gives us the result. In the case a = b, the EL is

minimized when ρij = I(sij > 0.5).

• Optimizing a PM

Sometimes it is possible to optimize a PM, that is, given a starting PM

R0, find a PM R1 with lower EL. The contribution of each pair (i, j) to

the overall EL is arij(1 − sij) + b(1 − rij)sij , where rij and sij are the

corresponding elements of the PM and the SM, respectively, and a and b

are the constants which define the EL. So, one can select a pair (i, j) with

a high (maybe the highest) contribution to the EL, and change it, in a

merge-split fashion.

– If rij = 1, setting rij = 0 implies splitting the cluster where i and j

belong. Put i and j in new singleton clusters, and for every element

k that was related with i, put it in j’s cluster if a(1− ski) > bski and

in i’s cluster in other case.

– If rij = 0, set rij = 1 and merge clusters corresponding to elements

i and j.

If the new partition obtained has a lower EL, it can be used as a better

choice. If not, try changing another pair. It is recommended to work with

a relatively short list of pairs, ordered decreasingly by contribution to the

EL, and stop if no better solution is found.

3.2.2. Example. Let’s continue with the SM from 2.1.1. We saw that the first

matrix was not positive definite, and then corrected it to

1 2 3 4 5

1 1.00 0.30 0.60 0.70 0.70

2 0.30 1.00 0.60 0.30 0.20

3 0.60 0.60 1.00 0.75 0.50

4 0.70 0.30 0.75 1.00 0.90

5 0.70 0.20 0.50 0.90 1.00



3. CHOOSING A PARTITION FOR THE DATA 37

To form a PM from that, let’s start defining R = (rij) by rij = I(sij > 0.5). We

obtain

1 2 3 4 5

1 1 0 1 1 1

2 0 1 1 0 0

3 1 1 1 1 0

4 1 0 1 1 1

5 1 0 0 1 1

We see that this matrix does not represent a real partition, since there are related

triplets of the PM which sum 2.

i j k rij rjk rik rij + rik + rjk

1 2 3 0 1 1 2

4 0 0 1 1

5 0 0 1 1

3 4 1 1 1 3

5 1 0 1 2

4 5 1 1 1 3

2 3 4 1 1 0 2

5 1 0 0 1

4 5 0 1 0 1

3 4 5 1 1 0 2

These triplets have to be completed to satisfy transitivity, and that means changing

the matrix so that all mentioned triplets that sum 2 sum 3. The new matrix is

1 2 3 4 5

1 1 1 1 1 1

2 1 1 1 1 0

3 1 1 1 1 1

4 1 1 1 1 1

5 1 0 1 1 1

This matrix has to be completed again, since the previous operation created more

incoherencies:
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i j k rij rjk rik rij + rik + rjk

1 2 3 1 1 1 3

4 1 1 1 3

5 1 0 1 2

3 4 1 1 1 3

5 1 1 1 3

4 5 1 1 1 3

2 3 4 1 1 1 3

5 1 1 0 2

4 5 1 1 1 3

3 4 5 1 1 1 3

Then, completing again, we obtain the maximal partition, with EL1:1 = 8.9. Let us

check now the minimal partition, represented by the identity matrix. Its expected

loss is 11.1. The list of possible cuts determined by S is {0.9, 0.75, 0.7, 0.6, 0.5, 0.3,

0.2}. After cutting at 0.9 we obtain a matrix which does not need to be completed,

with EL1:1 = 9.5.

1 2 3 4 5

1 1 0 0 0 0

2 0 1 0 0 0

3 0 0 1 0 0

4 0 0 0 1 1

5 0 0 0 1 1

After cutting at 0.75, the following matrix is obtained

1 2 3 4 5

1 1 0 0 0 0

2 0 1 0 0 0

3 0 0 1 1 0

4 0 0 1 1 1

5 0 0 0 1 1

This matrix must be completed, since for transitivity we must have r35 = r53 = 1
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1 2 3 4 5

1 1 0 0 0 0

2 0 1 0 0 0

3 0 0 1 1 1

4 0 0 1 1 1

5 0 0 1 1 1

The EL for this PM is 8.5. After cutting at 0.7 we obtain the same matrix, and

after cutting at 0.6 we obtain

1 2 3 4 5

1 1 0 1 1 1

2 0 1 1 0 0

3 1 1 1 1 1

4 1 0 1 1 1

5 1 0 1 1 1

The completion of this matrix is the maximal PM, whose EL is 8.9. So the choice

from this method is the previous PM. Let’s see if it can be optimized. The partial

contributions to the overall EL is listed now.

1 2 3 4 5

1 0.0 0.3 0.6 0.7 0.7

2 0.3 0.0 0.6 0.3 0.2

3 0.6 0.6 0.0 0.25 0.5

4 0.7 0.3 0.25 0.0 0.1

5 0.7 0.2 0.5 0.1 0.0

Changing the pairs which add 0.7 to the EL results in merging element 1’s cluster

with the cluster formed by 3, 4 and 5, resulting in

1 2 3 4 5

1 1 0 1 1 1

2 0 1 0 0 0

3 1 0 1 1 1

4 1 0 1 1 1

5 1 0 1 1 1
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Table 1. List of all possible partitions for five elements

Element clusters EL1:1 Element clusters EL1:1 Element clusters EL1:1

1 1 1 1 1 8.9 1 1 1 1 2 10.1 1 1 1 2 1 11.5

1 1 1 2 2 9.5 1 1 1 2 3 11.1 1 1 2 1 1 10.7

1 1 2 1 2 11.9 1 1 2 1 3 11.9 1 1 2 2 1 11.3

1 1 2 2 2 9.3 1 1 2 2 3 10.9 1 1 2 3 1 12.3

1 1 2 3 2 11.9 1 1 2 3 3 10.3 1 1 2 3 4 11.9

1 2 1 1 1 6.5 1 2 1 1 2 10.1 1 2 1 1 3 8.9

1 2 1 2 1 10.7 1 2 1 2 2 11.1 1 2 1 2 3 11.5

1 2 1 3 1 9.9 1 2 1 3 2 11.9 1 2 1 3 3 9.1

1 2 1 3 4 10.7 1 2 2 1 1 7.5 1 2 2 1 2 11.1

1 2 2 1 3 9.9 1 2 2 2 1 9.7 1 2 2 2 2 10.1

1 2 2 2 3 10.5 1 2 2 3 1 9.9 1 2 2 3 2 11.9

1 2 2 3 3 9.1 1 2 2 3 4 10.7 1 2 3 1 1 7.9

1 2 3 1 2 11.5 1 2 3 1 3 10.3 1 2 3 1 4 10.3

1 2 3 2 1 11.1 1 2 3 2 2 11.5 1 2 3 2 3 11.9

1 2 3 2 4 11.9 1 2 3 3 1 9.3 1 2 3 3 2 11.3

1 2 3 3 3 8.5 1 2 3 3 4 10.1 1 2 3 4 1 10.3

1 2 3 4 2 12.3 1 2 3 4 3 11.1 1 2 3 4 4 9.5

1 2 3 4 5 11.1

This PM has EL1:1 = 6.5, and is in fact the PM with minimum EL. The list of all

possible partitions for 5 elements and their expected loss is shown in table 1.



CHAPTER 3

Application: Bayesian Density Estimation Model

This chapter reviews a well known Bayesian non-parametric model with no

covariates. It is adequate to see the prior and posterior clustering mechanism de-

rived from the SSMM specification. The application presented is already a classical

example of cluster analysis, representing a good opportunity to see the informa-

tion derived from Similarity Analysis. We will study the clustering behavior of the

data and propose partitions based on the SM. The interpretation of SDGs will be

discussed here, too.

1. Bayesian density estimation

Bayesian density estimation comes from the posterior predictive distribution

p(yn+1|y1, . . . , yn). In the context of the general model (1) without considering

covariates, letting y = (y1, . . . , yn) represent the observations, and θ = (θ1, . . . , θn)

their corresponding parameters coming from a SSM, we have

p(yn+1|y) =
∫
p(yn+1|θn+1)p(θn+1|θ, y)p(θ|y)dθdθn+1 (28)

From a Gibbs Sampling point of view, (θn+1|θ, y) comes from the predictive

rule

p(θn+1|θ, y) ∝
kn∑
j=1

pj(Nn)δθ∗j (θn+1) + p(kn+1)(Nn)G0(θn+1) (29)

where kn is the currently imputed number of clusters for (θ1, . . . , θn) and θ∗j ,

j = 1, . . . , kn are the currently imputed locations for each cluster, which in turn

come from (16). pj are the weights of the predictive rule defined in (5), for

j = 1, . . . , kn + 1. Having a sampled value for θn+1, (yn+1|θn+1, y) is sampled

from (30), by conditional independence. The formulas for sampling the parameters

are intended for an individual allocation Gibbs sampling scheme. For details, see

section A.

41



42 3. APPLICATION: BAYESIAN DENSITY ESTIMATION MODEL

1.0.3. Escobar & West (1995) density estimation model. Here we have θi =

(µi, Vi). We consider

yi ∼ N(µi, Vi)

(µi, Vi)|G ∼ G

G ∼ DP(M,G0)

G0(Vi) ≡ IG(ν0, ν1) (30)

G0(µi|Vi) ≡ N(m, τVi)

m ∼ N(a,A)

τ ∼ IG(λ0, λ1)

This model differs form our basic model (1) in the absense of covariates, and the

additional hyperpriors for the parameters in the baseline measure G0, in the part

that concerns the means µi, i = 1, . . . , n. For SSMMs in general, parameters can be

sampled based on the following scheme: first, update the partition of (θ1, . . . , θn)

from (19), for i = 1, 2,. . . , n, and then sample the locations of the clusters from

(16). In this particular case, the posterior predictive rule for cluster configuration

is based on

P (ci = j|c−i, µ∗j , V ∗j ) ∝ Nj(2πV ∗j )−1/2 exp

[
− 1

2V ∗j
(yi − µ∗j )2

]
for j = 1, . . . , k−i

P (ci = k−i + 1|c−i) ∝ M(2π(τ + 1))−1/2 νν01

Γ(ν0)
Γ(ν0 + 1/2)[

y2
i +m2 + 2(τ + 1)ν1 − 2myi

2(τ + 1)

]−(ν0+1/2).

(31)

For cluster locations update we have

V ∗j |µ∗j , c ∼ IG

ν0 +Nj/2,
1
2

∑
ci=j

(yi − µ∗j )2 + ν1

 (32)

µ∗j |V ∗j , c ∼ N
(
τ
∑
ci=j

yi +m

τNj + 1
,

τV ∗j
τNj + 1

)
(33)
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Secondly, the rest of the parameters is updated. For m and τ we have

m|µ∗, V ∗ ∼ N


1
τ

k∑
j=1

1
V ∗j

+
1
A

−11
τ

k∑
j=1

µ∗j
V ∗j

+
a

A

 ,

1
τ

k∑
j=1

1
V ∗j

+
1
A

−1


(34)

τ |µ∗, V ∗ ∼ IG

k/2 + λ0, λ1 +
1
2

k∑
j=1

(µ∗j −m)2

V ∗j

 (35)

Model (30) bases the distribution of the data entirely in the nonparametric part.

The tuning of the model specification comes from the baseline measure G0, which

in turn depends on the hyperparameters m and τ , and the mass parameter M . So,

it is very important to specify the hyperparameters a, A, λ0 and λ1 based on the

available information. Escobar and West (1995) also propose a prior specification

M ∼ Γ(a0, b0), a Gamma prior with shape a0 > 0 and scale b0 > 0. Learning

about M is important due to the relation of this parameter with the mechanism for

creating clusters. Their scheme for updating this parameter is shown in Appendix

A. For further details, refer to Escobar and West (1995).
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Figure 1. Galaxy data
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Table 1. Galaxy dataset

Observation 1 2 3 4 5 6 7

Value 9.172 9.35 9.483 9.558 9.775 10.227 10.406

Observation 8 9 10 11 12 13 14

Value 16.084 16.17 18.419 18.552 18.6 18.927 19.052

Observation 15 16 17 18 19 20 21

Value 19.07 19.33 19.343 19.349 19.44 19.473 19.529

Observation 22 23 24 25 26 27 28

Value 19.541 19.547 19.663 19.846 19.856 19.863 19.914

Observation 29 30 31 32 33 34 35

Value 19.918 19.973 19.989 20.166 20.175 20.179 20.196

Observation 36 37 38 39 40 41 42

Value 20.215 20.221 20.415 20.629 20.795 20.821 20.846

Observation 43 44 45 46 47 48 49

Value 20.875 20.986 21.137 21.492 21.701 21.814 21.921

Observation 50 51 52 53 54 55 56

Value 21.96 22.185 22.209 22.242 22.249 22.314 22.374

Observation 57 58 59 60 61 62 63

Value 22.495 22.746 22.747 22.888 22.914 23.206 23.241

Observation 64 65 66 67 68 69 70

Value 23.263 23.484 23.538 23.542 23.666 23.706 23.711

Observation 71 72 73 74 75 76 77

Value 24.129 24.285 24.289 24.366 24.717 24.99 25.633

Observation 78 79 80 81 82

Value 26.96 26.995 32.065 32.789 34.279

2. Galaxy data

The data consists on n = 82 measured velocities (in 103 km/s) of galaxies from

six well-separated conic sections in space, relative to our own galaxy. A histogram

with kernel-smoothing density estimation for the data is shown in figure (1). At first

glance, the data shows a multimodal distribution, leading the observer to suppose

the data may be grouped in three or four, or up to six clusters. The interest focuses,

then, in estimating the probability density and make inference about the clustering,

from a Bayesian point of view, based on the observed data and available information

about it. The complete dataset is shown in table 1, to make the cluster allocation

easier to understand.

3. Model specification

The following values are assigned to the hyperparameters in (30), following

Escobar & West (1995): ν0 = 2, ν1 = 1, a = 20, A = 1000, λ0 = 0.5, λ1 = 50. Two

prior distributions were considered for M. First model (DP1) considered a0 = 2,
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b0 = 4, which puts a prior expected value for M of 0.5. A second model (DP2)

specified a0 = 10, b0 = 2, with prior expectation of 5, intended to favour partitions

with a higher number of clusters. For both models, MCMC sample size was 10000,

after burning 2000 initial samples and thinning 150 samples each time.
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Figure 2. Density estimation from model DP1

4. Partitions

The formulation of Model (30) is not focused explicitly in making inference

about the partitions. Nevertheless, the SSMM structure is based on considering

the latent partition structure of the data, and posterior partitions are obtained. In

Chapter 2, various methods to obtain partitions for the data based on an approxi-

mation of their expectation are given. Table 2 summarizes partitions obtained for

Model DP1 by four criteria: mode of sampled partitions, sampled partition with

minimum expected loss EL1:1, the partition obtained from the similarity matrix by

application of the Succesive Completion (SC) method, and the partition obtained

from the Minimize & Complete (MC) method. Two extra partitions are presented

(Opt1 and Opt2), obtained from optimizing the second partition. For the decision

problem implied in the choice of partitions, we suggest setting default values a = 1
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Table 2. Partitions from Model DP1

PM method EL1:1 Clusters

1 2 3 4 5 6

Mode 1880.176 1-7 8-79 80-82

Best sampled 1872.610 1-7 8 9 10-42 43-79 80-82

SC 1876.258 1-7 8-9 10-79 80-82

MC 1880.176 1-7 8-79 80-82

Opt1 1871.48 1-7 8-9 10-42 43-79 80-82

Opt2 1859.476 1-7 8-9,43-79 10-42 80-82

and b = 1 in (27), unless one has specific reasons to do otherwise. A conservative

guess from visual appreciation is consistent with the mode of the sampled parti-

tions. Its sampling frequency was 1879/10000. This partition was also obtained

by the MC method. The sampled partition with minimum EL was sampled with a

frequency of 1/10000, so the possibility that it could not have been sampled can not

be discarded. The partition obtained with the SC method was actually sampled,

with a frequency of 13/10000. Neither of the optimized partitions were sampled.

Although Opt2 has the best EL, it is not plausible for the data, so the best parti-

tion found is Opt1. The posterior mean number of clusters was 5.08 (s.d. 1.8). For

Model DP2, no Mode partition could be selected, since the highest frequency for

sampled partitions was 2, a value obtained by almost 30 configurations. The sam-

pled partition with minimum EL obtained consisted of 13 clusters, with an EL1:1

of 608.99. The partition obtained by the SC method had an EL1:1 of 594.12 and

it consisted of 17 clusters. This method was able to find 13 non-sampled partitions

with lower EL than the sampled ones, with number of clusters varying from 12 to

26. No optimization was done for this model’s partitions. The posterior number of

clusters was 11.49 (s.d. 3.19). Density estimation is shown on figures (2) and (3).

Further information for mass parameter and posterior number of clusters is given

in figures (4) and (5).
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5. Similarity analysis

From the similarity matrices (figures 6 and 7) it is possible to appreciate the

clustering behavior of the observations. High similarity areas are colored in white

and yellow, low similarity in red. In model DP1, three well defined clusters can be

distinguished, which correspond to partitions Mode and MC in table (2). The SM

for model DP1 indicates that the second big cluster, corresponding to observations

8 to 79, can be split in two, three or four sub clusters, with less certainty than

the first mentioned three clusters. One likely form for this splitting is detailed in

partition Opt1 from table (2).

It is interesting to see how the choice of a partition based on the mean of the

sampled partitions (the SM) can differ from what is seen from the sampled partitions

themselves. The forming of a new cluster is in direct relation with the autonomy of

its first element, due to the nature of the Polya urn mechanism (see (5) and (15)).

In figures (8) and (11), the autonomy and an empirical estimation of the probability

of creating new clusters, respectively, can be appreciated for model DP1. It must

be noted that such probability is conditional on both, current cluster configurations

and sampling order. This is important to provide an adequate interpretation. Both

figures show the same information in this case, since the order of the observations

is the same as the order of the cluster labels, although the autonomy is more

sensitive. We can see the strong trend of observations 8, 10 and 80 to form new

clusters (the first observation always forms a new cluster, obviously), as seen in

the partitions from table (2). But, when the big central cluster is split, all of

the mentioned candidate partitions consider the split beginning in observation 43.

The selection is based on expected loss, that is to say, on the SM. But observing

the autonomy and new cluster probability plots, it so happens that observation

43 is in fact the locally less autonomous observation. Instead, the observations

with higher posterior probability of leading clusters are 40 and 46. The reason for

this becomes clear when looking at the graphical representation of PMs. Let us

consider as example an extreme case. Suppose we have 25 elements, and one half of

the sample consist on one partition, and the other half on a different one, as shown

in Figure 9. The first conclusion from seeing the SM points to a partition of three

clusters, although we know the sample concentrates in two partitions of two clusters
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each, shown on the left and right side of the graph. When two frequent clusters

overlap, the SM may reflect relations of pairs of individuals laying at or close to the

”boundaries” on both clusters. These relations, in the SM, are extrinsic, following

different FCRs, corresponding to the overlapping clusters. This information is

considered in the decomposition of the SM, and the “real” clusters can be better

identified by their FCRs. Figure 10 shows the decomposition of the SM in the

example, and an autonomy plot. It can be seen there that the supposed central

cluster is less important than the ones in the extremes, based on the definition

of the FCRs and the autonomy of elements 1 and 15. So, in the Galaxy data,

based on Similarity Analysis, it can be concluded that, instead of having a central

cluster splitted at observation 43, it is more plausible that observations 41 to 45

belong alternatively to a cluster represented by observation 40, or to a cluster at

the left of another cluster, in turn represented by observation 46. Let us consider

partition Opt1, and put observations 40, 41, and 42 in cluster 4. This partition

obtains an EL of 1880.201. If we put observations 43, 44 and 46 on cluster 3,

the obtained EL is 1880.655. So, these partitions are more distant from the SM

than Opt1 or, equivalently, their EL1:1 is higher. If the decision is based strictly

on EL, then the best choice found is Opt1. For model DP2, the autonomy and

new cluster probability are shown in figures (12) and (13). This model encourages

the observations to form new clusters in a higher way that DP1. The change is

readily captured in the autonomy plot. The empirical probabilities for creating

new clusters, on the other side, are also higher than their counterparts for model

DP1. A comparison between autonomy and empirical probability of creating new

clusters is shown in figure (14). The similarity decomposition for both models is

reflected in figures (15) and (16). It can be appreciated that most of the clustering

seen in the SM is due to coherency coming from the transitivity rule, and the

intrinsic part reveals which observations actually lead the process. In figure (15),

a clear and homogeneus cluster for observations 1 to 7 can be observed. It is lead,

naturally, by element 1, marked in red, followed by a blue block that completes the

cluster. From 8 to 80, one can appreciate a second big cluster, subdivided by three

or four less important subclusters. From 8 to 9, and from 10 to a not well defined

extent, two clusters lead by observations 8 and 10 can be seen. Somewhere around
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element 43, a new cluster is started, but there is no recognizable FCR. This means

that, although these observations tend to group, the cluster memberships mix in

the MCMC sample, so it is not an homogeneus cluster. A similar situation can be

observed for observations 79 and 80. Elements 81, 82 and 83 clearly form a well

defined cluster. Note that in SDGs the vertical axis follow the traditional order

for plots, and not the matrix order, as in plots for SMs. In the SDG for model

DP2 (16), it can be seen that the model favors partitions with more clusters, but

this is reflected in a greater tendency of the observations to mix, and this can be

seen in the greener color of the central clusters, plus the fact that no FCR can be

distinguished in their zone.

6. Density estimation model extended to Pitman-Yor process

Pitman-Yor (PY) models are another case of SSM, and include the DP as a

particular case (α = 0, M = 1). See (11) for definition. These models extend

the DP to much wider possibilities. Here, as illustrative examples, we will fit two

models based on PY priors for the clustering process to the Galaxy data. The

first model, called PY 3, is defined considering α = −1 and M = 3. When α is

negative, the prior probability of creating new clusters is (M + kα)/(n+M), with

α equal to −M/m, for some positive integer m. The mentioned probability is then

M(1− k/m)/(n+M), which is null for k = m. So the clustering process can only

sample partitions with a maximum of m clusters. In our case, that number is 3.

The second model, PY 4, considers α = 0.9 and M = −0.1. The prior probability

of forming new clusters is (0.9k−0.1)/(n−0.1). A priori, this specification does not

restrict the number of clusters as the previous one, but, if a relatively big number

of clusters is reached, it tends to maintain that situation. For model PY 3, the

partitions consist in an almost complete separation of the observations in the three

main clusters discussed before (figure 18), commanded by observations 1, 8 and 81

(figure 19). The rigid clustering prior determines a very clear partition in the data,

as can be seen in the SDG (20). The number of clusters in the sample was 3, almost

constantly. Model PY 4, in contrast, is much more flexible. The mean of the number

of clusters in the sampled partitions was 20.7 with a standard deviation of 10.2.

In the previous models we observed a tendency to group the observations in three

main clusters. The second cluster, in turn, showed a tendency to split in two or
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three, when model specification allowed it. In model PY 4, given the resulting highly

partitioned cluster configurations, one could expect an important mixing in clusters.

The Bayesian density estimation (figure 21) shows, in contrast, a multimodality

that does not differ too much from the models based on DP specifications. Figure

(23) shows the SDG. There, we can see that the big number of sampled clusters

traduces in the presence of a high number of autonomous individuals. Elements

8, 9, 10 and the last 5 or 6 observations have a clearly independent behavior, as

seen in the corresponding red spots in the diagonal of the SDG, with no clusters

surrounding them. The autonomy plot (figure 22) compliments this information.

It can be seen that, in summary, the posterior density estimation of figure (21) is

strongly influenced by individual contributions.

7. Discussion

Model DP1 resembles the specifications of Escobar and West (1994), with

similar results. Similarity Analysis represents a contribution towards a better un-

derstanding and interpretation of the clustering mechanism underlying in SSMMs.

We studied three additional models and compared their clustering behaviors. One

model (DP2) was based on the DP, like DP1, but specifying a prior for the mass

parameter that favours a high number of clusters. This resulted in an larger num-

ber of clusters, and an increased probability for some elements to be relocated in

different clusters. Nevertheless, Similarity Analysis pointed to similar conclusions

compared with the first model, proving to be robust to variability in the sampled

partitions. The MCMC sample size of 10000 observations was clearly insufficient to

obtain a fair representation of all plausible partitions under this specification. The

best partitions obtained, in terms of EL, were sampled only once or twice in the

whole sample. Nevertheless, the information provided by the sampled partitions

was enough to get conclusions from Similarity Analysis. The last two models con-

sidered were based on the PY process. Mixing on PY models brings the possibility

of considering the number of clusters in the clustering mechanism. We used this

feature in two ways. First, we explored a model in which the number of clusters was

bounded above by three with probability one. Under this specification, the model

showed an almost constant partition of three well defined clusters, consistent with

the information provided by the previous models. Secondly, we specified a model
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Table 3. Summary statistics for some posterior parameters in

Bayesian Density Estimation models

Mean S.Dev. P05 P10 P50 P90 P95

DP1

Pred. µ 20.77 4.28 9.76 19.21 21.43 23.14 24.42

Pred. V 4.52 57.32 0.28 0.36 3.29 5.78 6.74

m 17.41 6.48 7.61 10.27 17.37 24.52 27.46

τ 211.41 280.39 35.18 44.30 122.52 456.03 721.15

N. Clusters 5.09 1.80 3.00 3.00 5.00 7.00 8.00

M 0.74 0.38 0.24 0.31 0.68 1.25 1.45

α 0.00

DP2

Pred. µ 20.79 4.89 9.80 15.78 20.66 24.05 27.10

Pred. V 3.45 38.70 0.25 0.30 0.69 3.20 5.79

m 19.34 3.00 14.26 15.60 19.43 22.89 24.01

τ 85.43 74.48 27.28 32.50 66.33 155.06 200.32

N. Clusters 11.49 3.19 7.00 8.00 11.00 16.00 17.00

M 4.18 1.26 2.36 2.69 4.05 5.84 6.45

α 0.00

PY3

Pred. µ 20.86 4.36 9.74 20.75 21.38 21.80 22.13

Pred. V 4.23 1.67 0.35 0.67 4.56 5.80 6.16

m 17.13 9.76 2.06 6.15 16.91 28.44 32.60

τ 396.97 439.93 64.09 82.88 244.43 1037.26 1669.22

N. Clusters 3.00 0.00 3.00 3.00 3.00 3.00 3.00

M 3.00

α -1.00

PY4

Pred. µ 20.46 4.82 9.79 14.31 21.05 23.46 25.91

Pred. V 1.96 7.65 0.26 0.31 0.78 3.81 4.76

m 19.72 3.30 13.95 15.63 20.10 23.20 24.29

τ 56.55 62.53 14.52 18.48 42.38 102.03 138.12

N. Clusters 20.70 10.18 8.00 10.00 19.00 34.00 41.00

M -0.10

α 0.90

that allowed for extra flexibility in the choice of number of clusters based, addi-

tionally, on the current number of clusters. This resulted in a different clustering

behavior than in model DP2. This time, the higher number of clusters expressed

in the formation of various individual clusters, decreasing the mixing, as shown in

Similarity Analysis. General statistics for selected posterior parameter estimations

for all models are shown in table 3.
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Figure 13. Empirical probability of creating a new cluster for

model DP2
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Figure 17. Density estimation for model PY3
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Figure 18. Similarity matrix for model PY3
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Figure 21. Density estimation for model PY4
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CHAPTER 4

Application: Linear Regression Model

In the previous chapter, we explored in detail the clustering mechanism in

model (1) in the absense of covariates. Here we will study the behavior of the

clustering process when covariates are considered. For that purpose, a multiple

linear regression model is specified. The model was conceived keeping in mind the

ANOVA-DDP model used by De Iorio et al (2004) as a starting point. However,

we do not restrict to categorical covariates representing levels of a factor. We add

a continuous covariate and study its effect in the configuration of the partitions,

based on FCRs. We use simulated data, to know in advance the true relation be-

tween response and covariates. We will study posterior cluster configurations under

different combinations of covariates specified in the model, and compare informa-

tion provided by Similarity Analysis in each case. We also present an application

to outlier detection to the Forbes data (1857) using Similarity Analysis.

1. Statistical model

We consider the linear regression specification

yi ∼ N(αTi di, Vi). (36)

The mean for each individual is defined as a linear combination of a vector

αi = (αi0 αi1 · · · αi(q−1))T

of individual parameters, and a vector

di = (1 xi1 · · · xi(q−1))T

63
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based on individual covariates. We assume the pairs (αi, Vi) come from a Dirichlet

process centered in a base distribution G = G1G2, with

G1(αi) ≡ Nq(µ,Σ) (37)

G2(Vi) ≡ IG(ν0, ν1) (38)

We need to determine the effect of covariates in the clustering process. For that

purpose, all sources of variability in the posterior partitions have to be taken in

consideration in the model specification. To introduce additional flexibility in the

model, we specify a prior distribution for the parameters in the baseline measure

considering

(µ,Σ) ∼ NqIWη0(µ0,Σ/κ0; η0,Λ0).

To consider a flexible prior for the number of clusters, we also specify a prior

distribution over the mass parameter M ∼ Gamma(a, b), as proposed by Escobar

and West (1994).

2. Simulated data

We considered a set of 100 simulated observations y1, . . . , yn with two covari-

ates: a group indicator gi ∈ {0, 1} and a continuous covariate xi. 60 observations

were assigned to group g = 0 and 40 to group g = 1. Covariates were generated uni-

formly U(0, 10). For group 0, the simulated observations came from yi = 2xi+1+ei,

ei i.i.d. N(0, 1), i = 1, . . . , 60. For group 1, yi = 0.5xi − 2 + ei, ei i.i.d. N(0, 0.5),

i = 61, . . . , 100. That is, we specified two groups, with different intercepts and

slopes. The individual variability is also slightly different between both groups, but

constant within each group. Both groups are clearly differentiated, and the effect

of the continuous covariate x is evident (Figure 1). In terms of partitions, we know

in advance that the individuals are grouped based on their intercepts and their

relation with the covariate, expressed by the different slopes. This fact relates clus-

tering with with covariates gi and xi, respectively. Individual variability represents

an additional possibility of classification, which does not depend on the covariates.

The differentiation of the groups becomes more clear at higher values of x.

Four specifications were considered in (36). In Model 1, covariates included

are intercept and group effect, with base prior defined by µ = (0, 0)T . Model 2
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includes intercept and x, with base prior µ = (0, 1)T . Model 3 includes both group

effect and x as covariates, µ = (0, 0, 1)T . Model 4 includes an additional interaction

between group and x, with base mean µ = (0, 0, 1, 1)T . For all models, the rest of

the prior specification was completed setting η0 = q + 2, Λ0 = I, µ0 = 0, κ0 = 1,

ν0 = 1, ν1 = 1, understanding every vector of parameters with the corresponding

dimensions. Mass parameter prior distribution was based on a = 1, b = 1.

3. Gibbs Sampling details

Model (36) is non-conjugate, so there is no explicit formulation in (19) for

the probability of creating new clusters. To update partitions, no-gaps algorithm

(MacEacher and Müller, 1998) was used. See Appendix A for details. Cluster
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locations are sampled from

α∗j |V ∗j ∼ Nq

( 1
V ∗j

DT
j Dj + Σ−1

)−1(
ỹj
V ∗j

Dj + Σ−1µ

)
,

(
1
V ∗j

DT
j Dj + Σ−1

)−1
 (39)

V ∗j |α∗j ∼ IG

nj
2

+ ν0,
1
2

∑
si=j

(yi − α∗Tj di)2 + ν1


with Dj the design matrix for the observations in cluster j, that is, the rows of

Dj are di for each observation i in cluster j. (µ,Σ) have a joint distribution

NqIWη0(µ0,Λ0/κ0; η0,Λ0), with p.d.f.

p(µ,Σ) ∝ |Σ|−((η0+q)/2+1) exp
{
−1

2
tr(Λ0Σ−1)− κ0

2
(µ− µ0)TΣ−1(µ− µ0)

}
which leads to

p(µ,Σ|α∗1, . . . , α∗k) ∼ NqIWηn(µn,Λn/κn; ηn,Λn) (40)

with

µn =
κ0

κ0 + k
µ0 +

κ

κ0 + k
ᾱ∗

κn = κ0 + k

ηn = η0 + k

Λn = Λ0 + V ∗ +
κ0k

κ0 + k
(ᾱ∗ − µ0)(ᾱ∗ − µ0)T

V ∗ =
k∑
j=1

(α∗j − ᾱ∗)(α∗j − ᾱ∗)T

ᾱ∗ = (1/k)
k∑
j=1

α∗j

To sample from this distribution, we proceed as follows:

• First draw z1, . . . , zηn i.i.d.Nq(0,Λn). Then

Σ =
ηn∑
i=1

ziz
T
i ∼ IWηn

(Λn).

• Draw µ|Σ, α∗ ∼ Nq(µn,Σ/κn)
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4. Results

The posterior predictive distribution for the regression parameters in the four

models can be seen in figures (2) to (5). The posterior predictions from all models

can be compared with the observed data in figure (6). For Model 1, it can be seen

how the non-parametric part of the model attempts to compensate a poor speci-

fication. The regression coefficients α0 and α1 show trimodal posterior predictive

distribution (Figure 2), which in turn is reflected in the clustered posterior pre-

dictions in Figure 6. The principal explanation of the clustering comes from the

absense of x in the specification of Model 1. The observations tend to group at

different levels of x. Visually, we can distinguish three levels for Group 0, and two

for Group 1, in concordance with the observed clustering in the posterior predic-

tive distribution of the parameters. Note that the partitions affect all regression

parameters α and the variance V jointly. In Model 2, where only intercept and

x are included in the regression, the clustering mechanism clearly identifies two

groups in exact concordance with the real group memberships. The difference in

the variance is also captured, as can be seen in the posterior predictive distribution

for V (Figure 3). Parameters in Model 3 show essentially one mode for Intercept

and variance, and a bimodal distribution for Group and x effects (Figure 3). The

posterior predictive draws (Figure 6) show how the unspecified interaction between

Group and x is captured. However, as clusters are defined in terms of all regression

parameters and the variance, the model fails to detect that each group defined by

g has a different slope. Instead, for each group the model requires fitting a pair of

slope and intercept. Model 4 is close to the real specification for the parameters,

although it does not take into explicit account the different variances in the groups.

Although for α0 and α1 some bimodality can still be appreciated, the estimations

in general show a tendency to represent every observation by the same model spec-

ification, and only a single mixture component is required. Also, the effect of the

relatively vague prior specification can be seen with more clarity in models 3 and

4, where predictions can be seen as conservative in terms of the differences between

the groups.
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Figure 2. Posterior predictive distribution of selected parameters

for Model 1.

5. Similarity analysis

Of course, looking at the plot of the data (see figure 6), models 1, 2, and even 3

seem inadequate. They are presented here to illustrate how the clustering process

allows SSMM models to compensate a specification which does not fit the data in

the best possible way by means of proposing different parameters to distinct groups

of individuals. Certainly, the most poorly specified one is model 1. The clustering

process correctly captures the lack of a continuous covariate. The intrinsic similar-

ity, based on the SM sorted by group and covariate x, shows how observations are

clustered at different levels of x, and also in different groups in concordance with

covariate g. This follows from observing the formation of various adjacent clusters
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Figure 3. Posterior predictive distribution of selected parameters

for Model 2.

of similar size along the range of x (see figures 8- 11). It can also be seen that

the most autonomous observations are actually the first representatives of their

clusters, when the proposed order is considered. Model 2 has other mispecifica-

tion. Here, the only covariate considered is the continuous one, x. The SM clearly

identifies two clusters, which correspond exactly to the simulated groups. Model

3 includes both g and x and constitutes a more reasonable specification, although

we know there is an interaction term missing. The SM still shows a partitioning

in two groups, although more diffuse, and that is a sign of a possible interaction

that has not been taken into account. When the SM is sorted only by x, the SDG

shows that, although there is a tendency to form clusters at different values of the
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Figure 4. Posterior predictive distribution of selected parameters

for Model 3.

covariate, it is not fully explained by it. When the SM is additionally sorted by

the group effect, the partitions become quite clear. Model 4 adds the mentioned

interaction effect. The SM clearly reflects the maximal partition, so, as far as clus-

tering is concerned, the model does not capture any substantial difference in the

behavior of the observations based on the statistical model, and one common set

of parameters is set for all. There is still a difference between both groups, which

consists on the different variances, and it is not captured. This may be explained

by the high tolerance to different variances determined by the hyperpriors ν0 = 1

and ν1 = 1. In Figure 7, the clustering behavior of the observations in terms of
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Figure 5. Posterior predictive distribution of selected parameters

for Model 4.

the covariates can be appreciated clearly for all models. The lines connect obser-

vations that belong to the same cluster. The degree of association is related to the

intensity of the lines. In fact, pairs of observations that do not belong to the same

cluster are joined by transparent lines. The color of the lines is determined by the

position of the FCR in the sample, based on sorting by Group and x. Observa-

tions are represented by circles, and the radious of the circles is proportional to

the autonomy of each observation. FCRs are represented by the biggest circles. In

Model 1, the clustering process determines, roughly, three levels for x in Group 0.

Group 1 is more homogeneous. In turn, low levels of x determine more variability

in the FCRs than high levels. In Model 2, two clusters, represented by their FCRs,
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Figure 6. Sampled posterior predictive values for simulated data.

Group 0 is marked in blue, and Group 1 in red.

can be clearly identified. In Model 3, clusters tend to combine at low levels of x,

representing some sort of confussion in the clustering mechanism. Model 4 clearly

groups all observations in one cluster, represented by the first oservation.

The power of the nonparametric part of SSMMs to detect differences on how

the observations respond to the model specification depends on several factors. It

is advisable that the SSM, which rules the nonparametric part, should be flexible

enough to allow detecting differences when there actually are. For that purpose,

it is better that the variance specified in the topmost part of the hierarchy should

be relatively tight. That allows for flexible cluster location placement, as driven

by the data. Otherwise, it is possible to end up with all observations assigned to a
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Figure 7. Clustering plot based on intrinsic similarity matrix.

single cluster. Other very important aspect is the indirect specification of the prior

number of clusters. In the DP, this is adjusted in the mass parameter M , and the

mean number of clusters is, a priori, close to M log(n) (Liu, 1996). As usual in

Bayesian statistics, all prior specifications need to be as honest as possible, but it

is recommended to give positive prior probability mass to a broad range of number

of clusters. For instance, the PY process with α < 0 upper bounds the number of

clusters with probability one, and this is not recommended in general, unless the

researcher is highly convinced on putting all the prior probability on small values

for the number of clusters.
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Figure 8. Similarity decomposition graph for Model 1.
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Figure 9. Similarity decomposition graph for Model 2.

6. Example: Forbes’ data

James Forbes (1857) studied the relationship between atmospheric pressure and

the boiling point of water. He was interested in estimating altitude, as he knew

that altitude could be determined from atmospheric pressure, with lower pressures

corresponding to higher altitudes. He collected data in Scotland and in the Alps,

measuring at each of 17 locations pressure in inches of mercury with a barometer

and boiling point in degrees Fahrenheit using a thermometer. The data seem to
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Figure 10. Similarity decomposition graph for Model 3.
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Figure 11. Similarity decomposition graph for Model 4.

follow a well defined linear trend (Figure 12). Two observations, however, do not

seem to fit in the model like the rest do. Sorting by Temperature, these observations

correspond to numbers 12 and 17. These observations present the highest errors,

from standard linear regression (Figure 12). Actually, a logarithmic transfomation

of Pressure is known to normalize the distribution of the residuals. But these two

observations keep certain distance from the rest, and can be considered as outliers.

The inherent flexibility of our model allows for atypical observations to potentially

be allocated to a different cluster, thus avoiding the classical usage of stabilizing
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transformations. We are going to fit Model (36) to Forbes’ data to see the result

of Similarity Analysis applied to this case. Based on standard linear regression, we

set µ = (−83, 0.5)T . The residual variance from linear regression is 0.08. We set

ν0 = 100 and ν1 = 2 to define a prior expectation of 0.02 in the baseline measure

for individual variance parameters Vi. Prior distribution for M is determined by

a = 10 and b = 2, that is, an expectation of 5 in the Gamma prior. The rest of the

parameters is specified by η0 = 4, κ0 = 1, and Σ is set to the Identity matrix.
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Figure 12. Forbes’ data and residuals from standard linear regression.

6.1. Results. The posterior distribution for individual parameters can be seen

in Figure 15. We can appreciate that observations 1, 12 and 17 show a lower in-

tercept and higher slope, compared with the rest of the observations. Observation

2 also differentiates from the rest, to a lesser extent. Individual variances are set

equal, from visual appreciation. The SDG (Figure 13) is consistent with these

conclusions. Observations 12 and 17 appear as classified together in one cluster,

apart from the rest, although they also appear related with observation 1. Addi-

tional information is obtained in relation to observations 1, 2 and 3. Observation 1

looks like an outlier, separate from the second cluster, which in turn is represented
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partially by observations 2 and 3. In Figure 15, we can see that the distribution

of regression parameters corresponding to observation 2 tend to overlap with the

posterior distribution for observations 3 to 11.

5 10 15

5
1

0
1

5

Similari ty decomposition

Elements sorted by Boi l ing Temperature

E
le

m
e

n
ts

 s
o

rt
e

d
 b

y 
B

o
il

in
g

 T
e

m
p

e
ra

tu
re

Figure 13. Similarity Decomposition Graph for Forbes’ data.

Information obtained from the SDG can be complemented by looking at the

clustering plot in Figure 14. It can be seen there that the general tendency is

represented by observations 1 and 2, and observations corresponding to central

temperatures are also represented by observation 3. Observations 12 and 17 show a

clear tendency to be classified in a cluster represented by observation 12, although

the latter can be also represented by observation 1, since they are connected. In

fact, observation 1 seems to relate with every observation up to some extent, and

it is difficult to decide where to classify it from visual inspection. The diameter

of the circles is proportional to the autonomy of each element, and the intensity

of the connecting lines is proportional to the intrinsic similarity. Additionally, the

graph includes posterior predictive mean response, based on posterior predictive

means for the regression parameters, and 95% credibility bands, based on posterior

predictive means for the individual variances. Observations 12 and 17 fall out of

the bands, confirming their outlier condition. Three observations (10, 11 and 13)



78 4. APPLICATION: LINEAR REGRESSION MODEL

195 200 205 210

2
2

2
4

2
6

2
8

3
0

Temperature

P
re
s
s
u
re

Figure 14. Clustering plot for Forbes’ data.

fall slightly below the lower confidence band, but the tendency is to classify them

in a cluster lead by observation 3, like other observations in the central part of the

graph. The sampled partition with minimum expected loss has EL1:1 = 29.05, and

is represented as

π1 = (1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1),

where the positions correspond to observations (in order determined by Tempera-

ture) and numbers correspond to cluster labels. Putting observations 10, 11 and

13 in a new cluster results in the following partition:

π2 = (1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 1, 3, 2, 2, 2, 1).

It has expected loss EL1:1 = 87.91. To decide about the membership of observation

1, the expected loss for the partition

π3 = (1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3)

is 29.23. So, the optimal decision is to represent the 17 observations by partition

π1. It can be concluded then that the individuals that behave (slightly) different

from the rest are 1, 12 and 17.
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Figure 15. Posterior invididual parameters for Forbes’ data.





CHAPTER 5

Application: Multivariate Binary Model

The application shown here considers modelling a bivariate binary response,

representing the occurrence of an event in two periods, and its relation to covariates

measured at the beginning of a study. The response is the occurrence of atrial

fibrillation (AF) in 102 patients evaluated at 30 days and 1 year of follow-up.

The multivariate binary response is modelled based on latent covariates which are

supposed to come from a multivariate Normal distribution, following Albert and

Chib (1993). This distribution, in turn, considers individual regression parameters

coming from a Dirichlet Process, together with individual variance. Similarity

Analysis is based on the same principles as before, and this application gives us the

opportunity to observe clustering behavior from a new modelling perspective.

1. Atrial Fibrilation data

We consider data coming from 102 patients that were admitted to the Catholic

University Hospital for non-valvular AF between January 2000 and August 2002,

prospectively recruited. The data are used here with permission from the re-

searchers (Acevedo et al 2006). Conclusions derived from the application of the

statistical models presented here are intended to be subject of further research

with participation of physicians and experts in the scientific areas involved.

AF is the most common sustained arrhythmia in clinical practice and it is

associated with increased risk of morbidity and mortality. Systemic and/or local

inflammation could be involved in the process of thrombogenesis and contribute

to the perpetuation of the arrhythmia. There is interest in evaluating wether the

presence of inflammation could contribute to predict the cardiac rhythm during the

long-term follow-up. The existence of a systemic inflammatory state is character-

ized by the elevation in C-reactive protein (CRP) plasma levels. Evidence for the

presence of inflammation during AF has been suggested by the findings of activation

81
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of the complement system and release of proinflammatory cytokines after cardiac

surgery and by the demonstration of inflammation in left atrial biopsies taken dur-

ing surgery (Bruins et al 1997, Frustaci et al 1997). Chung et al. (2001) and

Dernellis et al. (2001) have demonstrated the existence of a systemic inflammatory

state, characterized by the elevation in C-reactive protein (CRP) plasma levels, in

patients with atrial arrhythmias and non-valvular AF, respectively. Other groups

have published about an elevation in other inflammatory markers in the same pa-

tients (such as ICAM and IL-6) (Roldan et al 2003). The objective in the present

study is to predict the occurrence of AF at 30 days and 1 year follow-up, based on

individual covariates measured at baseline. Variables considered and their possible

relation with the outcome is herewith explained:
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Figure 1. Scatterplots of association between covariates.

• Age. It has been suggested that the probability of having recurrence of

Atrial fibrillation is incresed in patientes older than 70. In these patients

there is a higher prevalence of AF, probably due to the fact that these

patients have a greater prevalence of hypertensive cardiomyopathy with

diastolic dysfunction and dilated left atrium. In our data, the range of

Age is between 27 and 91 years old.
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• HBP High blood pressure (HBP) causes dilation of the left atrium, which

is associated to systolic dysfunction and AF, since there is an elevated

diastolic pressure in the left ventricle which predisposes the left atrium to

get enlarged.

• LVD Left ventricular dysfunction (LVD) is a direct cause of AF.

• AA Anticoagulants/Antiarrhythmic (AA) drugs (e.g. aspirin) act as an-

tiinflammatory drugs. In AF, there exists an inflammatory process in the

atrium with inflammation and increased hemostatic activation, increas-

ing the possibility to form thrombus inside the atrium. Therefore, it has

been seen that when a patient takes aspirin there is less chance for the

recurrence of AF.

• Paroxysmal/Persistent state. There is more chance for the recurrence of

AF in patients who have chronic AF than for those who had a paroxys-

mal AF. Persistent and chronic patients have larger left atrium, which

predisposes the arrhythmia to stay forever.

• CRP CRP is elevated in patients with chronic and paroxysmal AF and

it characterizes the existence of a systemic inflammatory state. CRP de-

terminations were performed with the inmunoturbidimetric method (sen-

sitivity < 0.03 mg/dl). It has been suggested that small increments of

CRP, within normal levels, may be useful to detect inflammation.

• TAT Thrombin-antithrombin complex (TAT) plasma levels are associated

with the presence of thrombus inside the atrium.

Table 1. Basic summary of Atrial Fibrilation data

Variable Total Paroxysmal group Persistent group

n=103 n=63 n=39

Mean St. Dev. Range Mean St. Dev. Mean St. Dev.

Age 65.6 14.0 27 - 91 64.8 15.3 66.9 11.6

log(CRP) -0.81 1.43 (-4.6) - 2.7 -1.01 1.43 -0.49 1.39

log(TAT) 1.98 1.63 (-1.2) - 6.0 1.88 1.61 2.13 1.67

HBP (%) 49.0 50.8 46.2

LVD (%) 12.7 9.5 17.9

AA (%) 40.2 41.3 38.5

30 days FA (%) 40.2 9.5 89.7

1 year FA (%) 52.0 31.7 84.6
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Figure 2. Association between Paroxysmal/Permanent groups

and covariates.
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Figure 3. Nonparametric estimates of risk at 30 days follow-up.

CRP and TAT levels are entered in logarithmic form in model specifications to

standardize its left-skewed distribution. HBP, LVD, AA and Persistent staus are

represented with 1 if the risk factor is present, 0 if absent. A general description of

the data and the association of the covariates is presented in table 1 and figures 1

and 2. Figures 3 and 4 show nonparametric estimates of risk at 30 days and 1 year

follow-up, based on penalized regression splines fit by the gam function in mgcv

package for statistical software R.
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Figure 4. Nonparametric estimates of risk at 1 year follow-up.

2. Statistical model

Suppose we have a random sample y1, . . . , yn of m-dimensional binary re-

sponses, which in turn may be explained by a set of q − 1 real-valued baseline

covariates x1, . . . , xq−1. We propose the model

yi = (I(zi1 ≥ 0), I(zi2 ≥ 0), · · · , I(zim ≥ 0))T i = 1, . . . , n

zi|(αi,Λi), di ∼ Nm

(
(αTi1di · · ·αTimdi)T ,Λi

)
i = 1, . . . , n (41)

(αi,Λi)|G ∼ G.

with

αi = (αTi1 α
T
i2 · · · αTim)T i = 1, . . . , n

αij = (αij0 αij1 · · · αij(q−1))T j = 1, . . . ,m (42)

di = (1 x1i x2i · · · x(q−1)i)T

In (41), yi, i = 1, . . . , n are the observed multivariate binary responses, and they

are defined on the basis of latent vectors zi, whose distribution is supposed to

be multivariate Normal, following Albert and Chib (1993). The prior mean of zi

is defined as a linear combination of individual covariates grouped in the vector

di, associated with an unknown vector of regression coefficients αi and covariance
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matrix Λi. In turn, G comes from a RPM defined as

G ∼ DP(M,G0)

G0(αi) ≡ Nmq(µ,Σ) (43)

G0(Λi) ≡ IWη(Λ0)

(µ,Σ) ∼ NmqIWη0(µ1,Σ/κ1; η0,Σ0)

M ∼ Γ(a, b)

Note that the covariates in di are the same for every component from 1 to m

in the multivariate response vector, and we are considering q coefficients for each

individual component of the response, including the intercept.

Our interest focuses on the estimation of individual relative risks (RR) of pre-

senting an episode of AF at 30 days or 1 year, based on individual covariates. We

define a set of reference values for the covariates x0. These values can be, for

instance, theoretical indicators of low risk, or mean values for a certain group of

reference individuals. The RR for a patient i at stage j (j = 1 for 30 days, j = 2

for 1 year) compared with the reference values is calculated as

RRij =
p(zij ≥ 0|xi, θi)
p(zij ≥ 0|x0, θi)

. (44)

The posterior predictive relative risk for an hypothetical patient with covariate

values xh can also be calculated, based on the posterior predictive distribution

p(zn+1|y1, . . . , yn). It is estimated by

RR∗j (xh) =
rj(xh)
rj(x0)

. (45)

To calculate the predictive risk rj(xh), we sample posterior predictive values (θ∗,Λ∗)

for the regression coefficients and individual variance from (29). This is then eval-

uated in (41) with the covariate value of interest xh.

The model presented here follows, in principle, an approach similar to the mix-

ture models presented in the works of Kottas, Müller and Quintana (2005) for

multivariate ordinal data, and Jara, Garćıa-Zattera and Lesaffre (2007) for multi-

variate binary outcomes. The difference is made in the extreme flexibility in the

specification of the variances. The covariance matrix for the latent vectors zi is

not constrained at all and, moreover, the base measure specified for the Dirichlet
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process that defines the random distribution for the multivariate regression param-

eters considers, additionally, a prior Normal - Inverse Wishart distribution for even

more flexibility. It is important to note that the variance specified in (41) leads

to parameter estimations that are not likelihood identified (Chib and Greenberg,

1998). This identification problem affects the estimations in terms of scale, and it

is solved specifying the covariance in terms of correlations, or specifying constraints

as discussed in Jara et al (2007). We do not consider such restrictions here, and

the possible implications of this problem need to be further investigated like, for

instance, how this affects the MCMC sampling. RRs defined in (44) and (45), on

the other hand, do not depend directly on the non-identifiable scale of the param-

eters, but the specific influence of non-identifiability on these estimations needs to

be investigated, too. Other important consequence of the chosen parameterization

is the dimension of the parameter space. Sampling from all parameters involved is

a computationally intensive task. In the context of this application, the dimension

of the multivariate binary response vector is m = 2. With 102 observations and

considering 3 covariates plus intercept, the dimension of the regression parameters

for each level of the multivariate response is q = 4. The values to estimate in each

individual covariance matrix is 3, plus 2 values for the latent z. That gives a total

of 13 parameters per individual. In addition, the posterior distribution of the base-

line parameters µ and Σ is also sampled. In our case, µ is an 8-dimensional vector,

making necessary 36 parameters to estimate in Σ. Posterior predictive values for

α and Λ are also sampled. In summary, including also the posterior sampling of

the mass parameter M , 1384 parameters are obtained at each iteration. In return

of this cost, we obtain a model capable to adapt itself to a broad range of pos-

sible relations between response and covariates, plus the additional consideration

to partition structures in the data. Information about the data that is possible

to obtain include detection of outliers, adaptation of the model to subgroups of

data, modelling the relation between response and covariates specifically for each

dimension in the response, and more.

2.1. Posterior computations. Every component of the binary observations

yi constrains, a posteriori, the corresponding component of the latent vectors zi

to be positive or negative with probability one. Conditional on the data and the
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rest of the parameters, the posterior distribution of z1, . . . , zn is then truncated

multivariate normal of the form

(zi|yi, αi, Di,Λi, Bi) ∼ TNm(Diαi,Λi, Bi)

Di =


dTi 0 · · · · · · 0

0 dTi 0 · · · 0
...

...
...

...
...

0 · · · · · · · · · dTi


(46)

Bi = Bi1 ×Bi2 × · · · ×Bim

Bij =

 R+ if yij = 1

R− if yij = 0

The posterior distribution of zi is truncated to the m-dimensional product of posi-

tive or negative real intervals, depending on the observed value yi. Simulations for

the truncated multivariate normal distribution in (46) were done following Geweke

(1991).

The partition for the parameters coming from the DP is updated as follows.

Posterior predictive rule results in putting observation i in cluster j with probability

proportional to

nj(2π)−mnj/2|Λ∗j |−nj/2 exp

−1
2

∑
ci=j

(zi −Diα
∗
j )
TΛ∗−1

j (zi −Diα
∗
j )

 (47)

where α∗j and Λ∗j are the vector of parameters and covariance matrix associated

with cluster j, that is, each cluster location is (mq + mq(mq + 1)/2)-dimensional.

The probability of generating a new cluster for observation i is proportional to

M

∫
(2π)−m/2|Λ|−1/2 exp

[
−1

2
(zi −Diα)TΛ−1(zi −Diα)

]
dG0(α,Λ) (48)
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This result requires using algorithms designed for non-conjugate specifications. See

Appendix A for details. For cluster locations, we have

α∗j |Λ∗j ∼ Nmq(M∗, V ∗)

with V ∗ =

∑
si=j

DT
i Λ∗−1

j Di + Σ−1

−1

(49)

M∗ = V ∗

∑
si=j

zTi Λ∗jDi + µΣ−1



Λ∗j |α∗j ∼ IWnj+η0


∑
si=j

(zi −Diα
∗
j )(zi −Diα

∗
j )
T + Σ

−1
 (50)

Parameters (µ,Σ), which determine the baseline distribution in the DP for the

regression parameters, are in turn updated using (40), but replacing q by mq, κ0

by κ1, µ0 by µ1 and Λ0 by Σ.

2.2. Model specification. Of principal interest is the relationship between

CRP and the response. Our basic model (Model 1) considers Age, Log(CRP), and

Persistent state as baseline covariates. After knowing the conclusions from this

model, we extend the specification to include the effects of HBP, LVD, AA and

Log(TAT) in Model 2. Prior specification for the baseline measure G0 was defined

by a standard multivariate Normal distribution for α, and Λ0 was defined as the

Identity matrix. This prior specifications were intended to represent conservative

initial beliefs on the effect of the covariates, but informative enough to have param-

eter estimations in a reasonable scale. In order to obtain posterior predictions for

the parameters, the number of clusters does not have to be too high, because this

would give too much importance to the baseline measure in the sampling. In initial

test runs, the proposed specification gave reasonable results concerning this point,

too. Hyperparameters η and η0 were set to the dimension of the corresponding

vectors, plus 2, to ensure the finiteness of its density and expectation, and κ was

set to 1.

3. Results

Table 2 summarizes the posterior predictive distribution for parameters coming

from the DP for Model 1. In order to obtain conclusions from these distributions,
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all the available information must be considered. These results constitute an initial

reference and do not show the different interactions involved. At first glance, we

can see that the effect of age appears to be positive, although the negative mean at

30 days indicates fluctuations that need further exploration. At both 30 days and

1 year of follow-up, Persistent patients have clearly more risk of AF. It can also be

seen that the risk of AF increases with log(CRP), specially at 1 year, although the

negative mean at the latter time indicates variations as in the case of Age. The

correlation between both periods is small, as it is seen in the value of λ12. Detailed

information about the implications of this model in terms of predictive relative risks

for different combinations of covariate values can be obtained from Figure 6. From

(41), the probability of having an AF episode is obtained from the quadrants of the

bivariate Normal distribution defined by the individual parameters coming from

the DP. The first quadrant defines the probability of having AF at both 30 days

and 1 year of follow-up. The second quadrant represents having an episode at 1

year but not at 30 days. The third one, the probability of not having an episode at

any time. The fourth quadrant is related with the probability of having AF at 30

days but not at 1 year. The two-dimensional relative risks in Figure 6 are based on

the quadrants obtained for every sample of the parameters, and the 95% credibility

ellipsoids are based on a bivariate normal approximation for the mean relative risks

obtained for each MCMC sample. All relative risks are based on taking as reference

patients with Age=30, CRP=0.01, TAT=0.3, Paroxysmal, not hypertensive, with

no left atrial dysfunction and no aspirin. Several conclusions can be obtained from

Figure 6. The effect of the Persistent status is more notorious at 1 year. At 30

days, it is slightly noticeable at high levels of CRP. The effect of CRP is clear for

the risk at 1 year, but not at 30 days. This information is complemented in Figure

9, where marginal 30 days and 1 year risks are presented for different levels of CRP

and mean levels of the remaining covariates. The effect of Age changes depending

on CRP levels. At low levels of CRP, increments in Age result in increased risk at

both 30 days and 1 year follow-ups, and the increase is higher for older patients.

At intermediate and high levels of CRP, the effect of Age inverts. This is consistent

with the fact that older patients in the sample present, in average, lower levels of

CRP (Figure 1). 50% of patients older that 60 years old use aspirin, compared with
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Table 2. Summary statistics for posterior predictive distribution

of parameters in Model 1. Columns indicate mean, standard devi-

ation, percentiles and probability of being positive.

Mean S.Dev. P05 P25 P50 P75 P95 P(>0)

30 days

Intercept -0.046 0.216 -0.33 -0.109 -0.059 -0.007 0.327 0.224

Age -0.004 0.092 -0.019 0.000 0.000 0.001 0.008 0.647

Persistent 0.058 0.198 -0.249 0.043 0.065 0.089 0.303 0.907

Log(CRP) 0.007 0.18 -0.236 -0.005 0.002 0.01 0.28 0.559

1 year

Intercept -0.028 0.221 -0.278 -0.085 -0.036 0.015 0.3 0.314

Age 0.002 0.082 -0.019 0.000 0.000 0.001 0.009 0.649

Persistent 0.035 0.195 -0.263 0.017 0.038 0.061 0.277 0.847

Log(CRP) -0.001 0.198 -0.272 -0.003 0.005 0.012 0.165 0.664

Covariance

Λ11 0.21 0.922 0.005 0.006 0.007 0.008 0.846 1.000

Λ12 -0.017 0.382 -0.09 -0.001 0.000 0.000 0.069 0.330

Λ22 0.191 0.847 0.005 0.006 0.007 0.008 0.637 1.000

20% in the rest. This reduces inflammation and hence CRP values. Their risk may

be explained by other factors, for instance, the prevalence of HBP is 59.7% in these

patients, compared with 28.5% in the younger ones.

The predictive results from Model 2 are summarized in Table 3. Essentially,

the conclusions for the Persistent group and the effect of CRP persist. The use of

Anticoagulants (AA) represent a slight decrease in the risk at 30 days and 1 year.

For the rest of the parameters (HBP, LVD and Log(TAT)), the results in Table 3

seem inconclusive at 30 days. The same can be said for Age. At 1 year, Age and

LVD cleary express as risk factors, but the effect of HBP and Log(TAT) remain

unclear. Again, the covariance parameter Λ12 indicates low association between 30

days and 1 year responses. Figure 8 details predictive relative risk at 30 days and 1

year for different levels of CRP, Age and Paroxysmal/Persistent groups. Compared

with Model 1, the adjustment for the additional effects sharpens the effect of CRP.

It can be seen that the risk gets stable for high levels of CRP (see also Figure 10),

and the main increase of risk manifests in relation with small increases at low levels

of CRP. In this segment, the effect of Age dilutes in the presence of the additional

factors. At high levels of CRP, the inverse effect of Age seen in Model 1 becomes

more clear.
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Table 3. Summary statistics for posterior predictive distribution

of parameters in Model 2. Columns indicate mean, standard devi-

ation, percentiles and probability of being positive.

Mean S.Dev. P05 P25 P50 P75 P95 P(>0)

30 days

Intercept -0.038 0.289 -0.530 -0.145 -0.057 0.050 0.490 0.336

Age -0.010 0.132 -0.073 -0.002 0.001 0.002 0.048 0.586

HBP -0.013 0.280 -0.521 -0.065 -0.012 0.036 0.485 0.417

LVD -0.016 0.290 -0.564 -0.076 0.009 0.062 0.469 0.548

AA 0.000 0.295 -0.517 -0.055 -0.001 0.049 0.514 0.494

Persistent 0.040 0.269 -0.477 -0.010 0.059 0.101 0.522 0.741

Log(CRP) 0.002 0.278 -0.490 -0.021 0.003 0.028 0.469 0.546

Log(TAT) -0.006 0.283 -0.500 -0.027 0.000 0.017 0.460 0.509

1 year

Intercept -0.021 0.307 -0.513 -0.122 -0.043 0.063 0.517 0.367

Age 0.000 0.111 -0.060 -0.002 0.001 0.002 0.054 0.603

HBP 0.006 0.284 -0.440 -0.053 -0.005 0.039 0.496 0.462

LVD 0.017 0.277 -0.488 -0.045 0.020 0.080 0.487 0.608

AA 0.000 0.288 -0.471 -0.057 -0.009 0.050 0.512 0.435

Persistent 0.025 0.279 -0.448 -0.019 0.035 0.081 0.508 0.698

Log(CRP) 0.003 0.281 -0.498 -0.018 0.004 0.025 0.509 0.586

Log(TAT) -0.002 0.274 -0.469 -0.016 0.001 0.021 0.490 0.519

Covariance

Λ11 0.470 1.366 0.005 0.007 0.010 0.257 3.045 1.000

Λ12 0.010 0.620 -0.365 -0.002 0.000 0.001 0.396 0.413

Λ22 0.456 1.280 0.005 0.006 0.009 0.261 2.845 1.000

Similarity Analysis shows a general tendency of the clustering process to group

observations in one cluster for Model 1 (Figure 11), with some outliers, which

correspond to the red points in the individual posterior relative risk pairs of Figure

5. A more sensitive description of the clustering process is revealed in Figure 14.

It can be seen there that the two outliers in the rigth part of the graph have some

relation with the principal cluster. Two points in the bottom, which appear as

outliers in Figure 5, are revealed as FCRs of clusters of little representation. These

observations, together with the third lowest point in the graph, and the main FCR

represented with the big circle in Figure 14, have 4 of the 7 lowest CRP values in

the sample (0.01), a value that is relatively far from the next sorted value of 0.1. In

model 2 (Figures 12 and 14), approximately three low representation clusters are

identified, together with the same outliers as before. Figure 13 shows autonomy

plots for Models 1 and 2. It can be seen that the identification of outliers, and

highly auonomous individuals in general, is consistent in both models. Because of
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its specification, which considers more covariates related to the response, Model 2

captures more individual differences thatn Model 1. The mean number of clusters

obtained from Model 1 is 2.2 (1.5 s.d.), and 5.2 (2.9 s.d.) for Model 2. The mean

for mass parameter M was 0.38 (0.39 s.d.) for Model 1, and 1.04 (0.80 s.d.) for

Model 2.

Comparison between Models 1 and 2 was done based on conditional predictive

ordinates (CPO) (Gelfand, Dey, Chang, 1992). Denoting as y−i the set of obser-

vations without considering observation i, the CPO is defined as the conditional

p(yi|y−i). The CPO for each observation i can be approximated by Monte Carlo

integration as

ˆCPOi =

(
1
N

N∑
k=1

1

p(yi|θ(k)i , xi)

)−1

where N is the size of the MCMC sample. See Chen, Shao and Ibrahim (2000)

for further discussion on this topic. For the application presented here, let qi,11 =

p(zi1 ≥ 0, zi2 ≥ 0), qi,01 = p(zi1 < 0, zi2 ≥ 0), qi,00 = p(zi1 < 0, zi2 < 0) and

qi,10 = p(zi1 ≥ 0, zi2 < 0). These numbers are obtained from the posterior bivariate

Normal probability for zi based on the sampled value of the vector θi. Then we

have

p(yi|θi, xi) = yi1yi2qi,11 + (1− yi1)yi2qi,01 + (1− yi1)(1− yi2)qi,00 + yi1(1− yi2)qi,10.

We compare models based on the quotient∏
i p(yi|y−i)Model 1∏
i p(yi|y−i)Model 2

.

In our case, we obtained −1483 for the numerator in logarithmic scale, and −7656

for the denominator, so in terms of cross-validation model assessment, we choose

Model 1.

4. Discussion

The main interest in this application was to study the influence of CRP in the

risk of presenting AF. We have obtained evidence that, from all possible risk fac-

tors considered, inflammation, measured by CRP, and the condition of presenting

persistent AF, represent an increase in the risk, although moderate. This can be

concluded even after considering additional factors that may relate to AF, namely
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Table 4. Predictive power of proposed models. Values in %.

Se Sp PPV NPV

30 days

Model 1 49.9 52.1 41.3 60.9

Model 2 49.3 52.1 41.4 60.9

1 year

Model 1 50.4 53.3 52.6 51.3

Model 2 49.5 53.7 52.8 51.2

LVD, HBP, AA and TAT levels. The formulation based on Species Sampling mix-

ture allows the expression of variations in the observed relationship between re-

sponse and covariates for each individual. Each subject can express the relation

in its own way, or tend to behave like another observation in the sample, in terms

of the covariates. As a result, we conclude that each subject may have an id-

iosyncratic relation, or tend to follow the model in the same way, except for some

few observations, all from the Paroxysmal group. Individuals that behave different

from the majority differentiate between them, too. This result is consistent on both

proposed models, suggesting the need to investigate what makes these individuals

behave differently. In order to assess the overall predictive power of the models,

for each stage j, we can calculate Sensitivity (Se) from p(zj >= 0|yj = 1) and

Specificity (Sp) from p(zj < 0|yj = 0). Positive predictive value (PPV) and Neg-

ative predictive value (NPV) can be calculated by means of Bayes theorem. We

have PPV = Se
p(zj≥0)p(yj = 1), and, similarly, NPV = Sp

p(zj<0)p(yj = 0). Collaps-

ing over all individuals, and approximating p(yj = 1) by the empirical estimation∑
i yij/n, we obtain the results shown in Table 4. Both models show a similar pre-

dictive power, indicating that the additional covariates included in Model 2 do not

improve much the association between predicted and observed responses. It would

be interesting to see if a different parameterization of the variance that takes into

account identifiability restrictions can improve these results. It can be concluded

from our results that CRP and Persistent state are positively related with the risk

of presenting AF at 30 days and 1 year, although further research has to be done

to identify more individual characteristics that could predict this outcome.
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Figure 5. Posterior 30 days and 1 year estimated relative risk of

FA according to Model 1. Ellipses represent 95% credibility region.
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Figure 6. Posterior 30 days and 1 year predictive relative risk

of FA according to Model 1, by Age, Paroxysmal/Persistent sta-

tus and Log(CRP). Numbers denote Age. Ellipses represent 95%

credibility region.
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Figure 7. Posterior 30 days and 1 year estimated relative risk of

FA according to Model 2. Ellipses represent 95% credibility region.
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ative risk of FA according to Model 1, associated with different

values for Log(CRP). Bands represent 95% credibility.
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ative risk of FA according to Model 2, associated with different

values for Log(CRP). Bands represent 95% credibility.
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Figure 11. SDG for Model 1.
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Figure 12. SDG for Model 2.



4. DISCUSSION 103

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Elements sorted by Paroxysmal/Persistent status and LogCRP

Model 1
Model 2

Figure 13. Autonomy plot for Models 1 and 2.



104 5. APPLICATION: MULTIVARIATE BINARY MODEL

1.00 1.05 1.10 1.15 1.20

1
.0

1
.1

1
.2

1
.3

1
.4

30 day s

1
 y

e
a

r

Figure 14. Posterior partition structure for Model 1.
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Figure 15. Posterior partition structure for Model 2.





CHAPTER 6

Conclusions

SSMMs constitute a type of statistical models capable of adapting to individual

and/or grupal differences in the form that the covariates relate with the response.

This ability is based on an inherent clustering mechanism that considers partitions

for the individual parameters, and tends to cluster together individuals based on the

likelihood. The dynamic nature of the process comes from taking into account the

latent partition of the data, no matter what it is, and its variability. Understanding

partitions and the role of individual characteristics in their formation is crucial

to make good use of the power and flexibility of these models. These models

make it possible for any difference in how individuals follow the statistical model

to manifest. That is, they adjust the model specification to take into account

characteristics that may not have been considered explicitly in the formulation of

the likelihood. So if we are able to understand and interpret this adjustment, we

will learn much more about the data.

The representation of partitions by PMs and the explicit identification of FCRs

in PMs by means of the decomposition of PMs in intrinsic and extrinsic parts pro-

vide a link between partitions and individual characteristics (covariates). This link

is closely related to the nature of the probability model assumed for the partitions,

based on predictive rules, and the likelihood of the data given the partition and the

locations of the clusters that form it.

In order to obtain the same kind of information that we are able to extract

from one single partition from the whole partition process, we proposed a method,

called Similarity Analysis. This method extends the decomposition of PMs to their

expectation, the SM. Based on the Choleski decomposition of the SM, similarity

decomposition proved to be an informative and sensitive tool to identify individ-

ual influence in the clustering process. We applied the proposed technique to the

107
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Galaxy data, dealing specifically with clustering, and to models considering covari-

ates, based on simulated and real data. Similarity Analysis applied to Galaxy data

allowed us to show this analysis in practice, and gave plaussible answers to the clus-

tering problem itself, that is, we were able to make inference about the partition of

the data. With the application to simulated data, we were able to clearly identify

the influence of the covariates in a controlled situation. This experience was used

to improve the quality of information obtained after specifying a SSMM to a real

data set. This application was very useful to see the power and flexibility of SSMMs

in action, apart from the interpretation provided by the clustering, from which we

were able to identify individuals that showed a different behavior in relation to the

specified model, consistently across two different specifications.

This work intends to contribute one step in the research of a vast and fascinating

field. Further steps that can be seen from current perspective are:

• Application of SSMM priors and Similarity Analysis to model specifica-

tions based on more flexible distributions than the Normal case considered

here, for instance, Skew-Normal models, considering parameters related

with skewness in the nonparametric part of the hierarchy.

• Explore measures of sensitivity of the clustering process to individual char-

acteristics.

• Application of Similarity Analysis to models based on mixtures of other

SSMs, and incorporate learning about the parameter α of the PY process.

• Extend the application of Similarity Analysis to other prior specifications

for partitions, apart from SSMs.



APPENDIX A

Computational Issues

To obtain samples from the posterior distribution of the parameters in the

context of SSM mixtures, MCMC based on Gibbs sampling, sometimes with Metro-

polis-Hastings steps within, are considered here. The process can be divided in

two complementary sampling tasks, for the parametric and the non-parametric

parts of the models. For the parametric part, all available methods should work

here. The main discussion is related on how to sample parameters coming from

nonparametric distributions. The latter problem consists, in practice, in sampling

a partition, which is ruled by a posterior discrete distribution on a finite but huge

space. The main problem of the early sampling schemes was the difficult to cover

the posterior distribution of cluster locations, due to ”sticky” model parameters.

The initial schemes proposed moving elements to the existing clusters one at a time

(individual reallocation). Some newer aproaches propose merge/split techniques

like Dahl’s SAMS algorithm (Dahl 2005).

1. Gibbs sampling by individual allocation

One choice considered here to update parameters whose distribution come from

the nonparametric part of the models is MacEachern & Müller (1998, 2000) al-

gorithm. Distributions coming from a Dirichlet process are discrete with prob-

ability 1 (Ferguson, 1973, Blackwell & MacQueen, 1973). The same result ex-

tends to SSM (Pitman 1996). Let’s suppose we have a sample (α1, . . . , αn) from

a DP (M,G0) or, in general, a SSM. From (5) and the exchangeability of θi,

i = 1, 2, . . . , n, we have that the distribution of one θi conditional on the rest

θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn) is

p(θi|θ−i) =
k−∑
j=1

pj(N−n )δθ∗j (θi) + pk−+1(N−n )G0(θi) (51)
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where k− and N−n are the number of clusters and the vector of cluster sizes without

considering element i. With a Gibbs sampling scheme in mind, we repeat the j-th

sampled value for θ with probability proportional to pj(Nn), j = 1, . . . , k−, or we

sample from the base distribution G0 with probability proportional to pk+1(Nn).

MacEachern & Müller algorithm is based on updating the vector of cluster mem-

berships (c1, . . . , cn) and then the cluster locations (θ∗1 , . . . , θ
∗
k) conditional on the

sampled partition configuration. If we combine Bayes theorem with (51), we have

p(ci = j|θ∗, y, ν) ∝


pj(N−n )p(yi|θ∗j , ν) j = 1, . . . , k−

pk−+1(N−n )
∫
p(yi|θ, ν)dG0(θ) j = k− + 1

(52)

Note that k− = k if the current value of nci
is greater than one, and k−1 otherwise.

Conditional on cluster configuration, cluster locations can be sampled from

p(θ∗j |s, y, ν) ∝
∏
si=j

p(yi|θ∗j , ν)G0(θ∗j ) (53)

1.1. Conjugate models. When G0 is conjugate with p(y|θ, ν), Gibbs sam-

pling goes as follows. Sample a starting configuration from prior distribution (51).

Then repeat the following steps:

(1) Sample (θ∗1 , . . . , θ
∗
k) from (53)

(2) For i = 1, . . . , n, sample ci from (52). Note that, at each step, clusters

can be created or deleted. When a new cluster is created, increment

k and sample θ∗k from (53). To program the algorithm in a computer,

deleting a cluster j is equivalent to leaving it empty, that is, nj = 0. Non-

empty clusters must be kept together, due to the restrictions for partition

representation, so deleting a cluster is equivalent to exchanging it with

the last one. Then it must be assured that cluster labels are sorted by

their first element, so exchanging cluster labels may be necessary.

(3) Continue the Gibbs sampling scheme for the rest of the parameters in the

usual way.

1.2. Non-conjugate models. In non-conjugate models, there is no explicit

form for the integral in (52). In that situation, MacEachern & Müller (1998) propose

the No Gaps algorithm. It is based on having latent (θk+1, . . . , θn), which are in
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fact sampled only when needed, from the base distribution G0. Replace the second

step of the previous algorithm with the following one:

(2) If nsi > 1, set k− = k and sample ci from

p(ci = j|c−i, θ) ∝


n−j p(yi|θ∗j , ν) j = 1, . . . , k−

M
k−+1p(yi|θ

∗
k− , ν) j = k− + 1

(54)

If nci = 1 then with probability (k − 1)/k leave si unchanged. Oth-

erwise, set k− = k − 1 and resample si from (54). If the new si equals

k− + 1 = k, then θ∗k remains unchanged. Otherwise, keep θ∗k for a future

new cluster, and decrement k.

A good explanation to this algorithm and some extensions is given in Neal (1998).

2. SAMS algorithm

Other algorithms consider Metropolis-Hastings steps to update the partitions.

One of such algorithms is Dahl’s SAMS algorithm. This algorithm was used in the

application of section 5, providing faster convergence and a noticeable lower com-

putational burden in the partition update process. As in the preceeding algorithm,

there is one version for conjugate and other for non-conjugate SSM specifications.

2.1. Conjugate version.

(1) Let π be the current partition of [n]. Form a new partition π∗ by means

of uniformly selecting a pair of distinct indices i and j and:

(2) If i and j belong to the same cluster C, split the cluster, forming two new

singleton clusters with i and j, namely Ci and Cj . Then, for each k in

a random permutation of the remaining indices in C, add k to Ci with

probability

p(k ∈ Ci|Ci, Cj , y)

=
NCi

∫
p(yk|θ)p(θ|yCi

)dG0(θ)
NCi

∫
p(yk|θ)p(θ|yCi

)dG0(θ) +NCj

∫
p(yk|θ)p(θ|yCj

)dG0(θ)
(55)

where p(θ|yC) is the posterior distribution of a cluster location based on

the base measure G0(θ) and the observations corresponding to the indices

in C. NC is the size of cluster C. With probability complementary to
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(55), add k to Cj . Note that at each step, either Ci or Cj gains an index,

and p(θ|yCi
) and p(θ|yCi

) change accordingly. At each step, relabeling the

clusters may be necessary to comply the partition representation rules.

(3) If i and j belong to different clusters Ci and Cj , merge those clusters, and

update the location for the joined cluster from (53).

(4) In either case, accept the new partition formed with probability

a(π∗|π) = min
{

1,
p(π∗|y)q(π|π∗)
p(π|y)q(π∗|π)

}
(56)

where p(π∗|y) and p(π|y) are the posterior probabilities for the respec-

tive partitions, proportional to p(y|π∗)p(π∗) and p(y|π)p(π), and p(pi∗)

and p(pi) are the prior probabilities for the partitions, defined from (6).

q(π∗|π) and q(π|π∗) are the probabilities of proposing π or π∗ from the

respective state, and come from multiplying (55) or its compliment ac-

cording to the partitions.

2.2. Nonconjugate version. When the model is nonconjugate, as was the

case in section 5, replace (55) with

p(k ∈ Ci|Ci, Cj , y) =
NCi

p(yk|θCi
)

NCi
p(yk|θCi

) +NCj
p(yk|θCj

)
(57)

where θCi
and θCj

are new locations for their respective clusters, that can be

sampled from (53). The Metropolis-Hastings ratio is similar to 56, but considering

the newly sampled locations.

3. Sampling M

Following Escobar and West (1995), we consider M ∼ Γ(a0, b0). Having current

values for M and k (the number of clusters), we sample a latent parameter η from

η|M,k ∼ B(M + 1, n), (58)

calculate πη from
πη

1− πη
=

a+ k − 1
n(b− log(η))

(59)

and then sample M from

p(M |η, k) ∼ πηG(a+ k, b− log(η)) + (1− πη)G(a+ k − 1, b− log(η)) (60)
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4. Software

Algorithms used in this work were programmed in c# and will be available for

public use in the near future. The rest of the statistical analysis was done using

R2.6.0, Copyright 2007 The R Foundation for Statistical Computing. Concerning

this software, additional to the base package, the following extensions were used. For

penalized regression splines, we used mgcv-package (Wood, S.N., 2006). For plots,

the Cairo package (Urbanek, S., Horner, J., 2007). For analysis of the MCMC

chains, the BOA package (Smith, B. 2004). For confidence ellipsoids, the ellipse

package (Murdoch, D., 2006). For multivariate Normal probability calculations,

mvtnorm package (Hothor, T., Bretz, F., Genz, A., 2006). Some comparisons for

Bayesian density estimation based on DP mixture models were done using the DP

package by Alejandro Jara (2007).
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