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Prof. Raphaël Huser - King Abdullah University of Science and Technology

August, 2015.

Santiago, Chile.



Copyright c○2015 by Daniela Andrea Castro Camilo.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint,

microfilm, electronic or any other means without written permission from the author.



Acknowledgements

First and foremost, I would like to express my deepest gratitude to my advisor Miguel de Carvalho for

his fundamental role in my doctoral work. Miguel provided the guidance and expertise that I needed to

get introduced to the theory of extreme values. I am grateful for his patience, motivation, enthusiasm,

and friendship. I am also thankful for all the time we spent talking not only about statistics, but life

itself. His advice on both research and life’s experiences has been priceless.

I give my utmost thanks to Jennifer Wadsworth, for her guidance, enthusiasm, and for helping me

broaden my academic horizons. Additionally, I wish to thank the University of Cambridge for the

hospitality shown during my research stay with Jennifer.

I would like to gratefully acknowledge the financial support from Comisión Nacional de Investi-

gación Científica y Tecnológica (CONICYT), through the programs “Becas para Estudios de Doctor-

ado en Chile” and the Fondecyt project 11121186 “Constrained Inference Problems in Extreme Value

Modeling”.

My sincere thanks to the members of the Department of Statistics, for all the years in which they

welcomed me. To all the professors who in some way or another we crossed paths or who helped me

grow. To Guido del Pino, for all the guidance, patience and help provided. To my fellow students

and now colleagues, for their support and friendship during the past years. Specially to Claudia, for

sharing my hours of happiness and frustration. I will miss our talks and our very special way of not

showing affection. To Maria Soledad and Fabiola, for being an active part of the process, and for the

many things they do during the day that are too often unappreciated. (With wisdom and temperance

you both rule the roost around here!)

I would also like to express my eternal gratitude to my friends, for their loving care, understanding

and support. To Carolina, for reminding me that we can all aspire to be the best version of ourselves.

i



To my wonderful family and relatives, for keeping my feet on the ground and showing me what really

matters. To my parents Nelson and Mónica for their unconditional support and for giving me the

freedom to pursue my dreams. To my sister Paulina, because being her little sister is one of the best

things that ever happened to me.

To my life partner Eduardo: Thank you for your kindness, patience, encouragement, help, and faith

in me. For being my fellow adventurer, my personal angel, and for choosing me, day after day.

ii



Contents

Aknowledgements i

List of Figures vi

List of Tables ix

Abstract x

1 Introduction 1

1.1 Background and literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Univariate extreme value theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Extremes for nonstationary sequences . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.3 Bivariate extreme value theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.4 Regression analysis in bivariate extremes . . . . . . . . . . . . . . . . . . . . . . 28

1.1.5 Multivariate extreme value theory . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.2.1 Nonstationarity in bivariate extreme value distributions . . . . . . . . . . . . . . 33

1.2.2 Nonparametric estimation of the spectral density . . . . . . . . . . . . . . . . . 35

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 Spectral density regression for bivariate extremes 37

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Spectral density regression model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.1 Bivariate statistics of extremes and 𝐾-sample setting . . . . . . . . . . . . . . . 39

iii



CONTENTS

2.2.2 Predictor-dependent spectral measures . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.3 Double kernel estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.4 Details on implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.1 Models, configurations, and preliminary experiments . . . . . . . . . . . . . . . 46

2.3.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4 Extreme forest temperature illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4.1 Data description and preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4.2 Altitude-adjusted extremal dependence . . . . . . . . . . . . . . . . . . . . . . . 54

2.5 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.6.1 Appendix A: Monte Carlo mean spectral surfaces . . . . . . . . . . . . . . . . . 56

2.6.2 Appendix A: Additional data application report . . . . . . . . . . . . . . . . . . 57

3 Time-Varying Extreme Value Dependence with Application to Leading European

Stock Markets 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Predictor-dependent modeling for bivariate extremes . . . . . . . . . . . . . . . . . . . 61

3.2.1 Bivariate statistics of extremes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.2 Predictor-dependent modeling framework . . . . . . . . . . . . . . . . . . . . . . 62

3.2.3 Related predictor-dependent objects of interest . . . . . . . . . . . . . . . . . . . 64

3.3 Estimation and inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.1 Derivation of pseudo-angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.2 Predictor-dependent spectral density estimation . . . . . . . . . . . . . . . . . . 66

3.3.3 Connections to smoothing on the unit interval . . . . . . . . . . . . . . . . . . . 67

3.3.4 Tuning parameter selection and bootstrap . . . . . . . . . . . . . . . . . . . . . 68

3.4 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.1 Data-generating configurations and preliminary experiments . . . . . . . . . . . 70

3.4.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

iv



CONTENTS

3.5 Dynamics of joint extremal losses in leading European stock markets . . . . . . . . . . . . . 75

3.5.1 Background and motivation for empirical analysis . . . . . . . . . . . . . . . . . 75

3.5.2 Data description and exploratory considerations . . . . . . . . . . . . . . . . . . 76

3.5.3 Modeling time-varying extremal dependence . . . . . . . . . . . . . . . . . . . . 78

3.6 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.7.1 Appendix A: tuning parameter selection . . . . . . . . . . . . . . . . . . . . . . 83

3.7.2 Appendix B: Monte Carlo mean spectral surfaces . . . . . . . . . . . . . . . . . 84

3.7.3 Appendix D: supplementary data analysis reports . . . . . . . . . . . . . . . . . 85

4 Conclusions and Further Modeling 87

4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Further Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

v



CONTENTS

vi



List of Figures

1-1 Pickands dependence functions for logistic and Dirichlet models . . . . . . . . . . . . . 23

1-2 Trajectories of nonparametric estimates of the spectral measure . . . . . . . . . . . . . 27

2-1 Predictor-dependent beta spectral densities . . . . . . . . . . . . . . . . . . . . . . . . . 42

2-2 True and estimated cross sections of the spectral surface from the symmetric and asym-

metric Dirichlet predictor-dependent models . . . . . . . . . . . . . . . . . . . . . . . . 47

2-3 True and estimated symmetric Dirichlet spectral surfaces . . . . . . . . . . . . . . . . . 48

2-4 True and estimated asymmetric Dirichlet spectral surfaces . . . . . . . . . . . . . . . . 49

2-5 Cross sections of the symmetric and asymmetric Dirichlet spectral surfaces with their

corresponding true values and Monte Carlo means . . . . . . . . . . . . . . . . . . . . . 51

2-6 Location of air temperature monitoring stations and scatterplots of the pairs of extreme

temperatures using an altitude-varying color palette . . . . . . . . . . . . . . . . . . . . 52

2-7 Spectral density estimates for 14 sites in Switzerland using the smoothed Euclidean

likelihood estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2-8 Spectral surface estimate using the double kernel estimator . . . . . . . . . . . . . . . . 55

2-9 True and Monte Carlo mean spectral surfaces for the symmetric Dirichlet predictor-

dependent model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2-10 True and Monte Carlo mean spectral surfaces for the asymmetric Dirichlet predictor-

dependent model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3-1 Spectral surfaces from predictor-dependent beta and logistic families . . . . . . . . . . . 63

vii



LIST OF FIGURES

3-2 True and estimated spectral surfaces for logistic, symmetric and asymmetric Dirichlet

predictor-dependent models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3-3 Cross sections of logistic, symmetric and asymmetric Dirichlet spectral surfaces with

their corresponding true values and Monte Carlo means . . . . . . . . . . . . . . . . . . 74

3-4 Scatterplots using a time-varying color palette for daily returns for CAC 40, DAX 30,

and FTSE 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3-5 Rolling window estimates for 𝜒 and 𝜒 for CAC 40, DAX 30, and FTSE 100 . . . . . . . 78

3-6 Cross sections of spectral surface estimates for CAC–DAX, FTSE–CAC, and FTSE–DAX 80

3-7 Spectral surfaces estimates for CAC–DAX, FTSE–CAC, and FTSE–DAX . . . . . . . . 81

3-8 Time-dependent extremal coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3-9 True and Monte Carlo mean spectral surfaces for logistic, symmetric and asymmetric

Dirichlet predictor-dependent model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3-10 Daily returns for CAC 40, DAX 30 and FTSE 100 . . . . . . . . . . . . . . . . . . . . . 85

viii



List of Tables

2.1 Estimated MIAE for all twelve data-generating configurations discussed in Sections 2.3.1

and 2.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2 Locations of monitoring stations in 14 sites in Switzerland, along with the number of

pseudo-angles (𝑛𝑘) in each site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1 Estimated MIAE for all six data-generating configurations discussed in Section 3.4.1 . . 73

3.2 Summary statistics of the return series for CAC 40, DAX 30, and FTSE 100 . . . . . . 85

ix



LIST OF TABLES

x



Abstract

The statistical modeling of extreme events provides a framework to develop techniques and models for

describing the unusual rather than the usual. Many problems involving extreme values are inherently

bivariate, which mean that we are concerned with the problem of modeling the joint tail of a bivariate

distribution. Extreme Value Theory allow us to address this problem by modeling the marginal distri-

butions and the dependence structure separately. In applied extreme value modeling, nonstationarity

in marginal distributions has been the focus of much recent literature, but approaches to modeling

nonstationarity in the extremal dependence structure have received relatively little attention. Working

within a framework of asymptotic dependence, we propose two regression models for the spectral den-

sity of a bivariate extreme value distribution that allows us to assess how extremal dependence evolves

over a predictor. Considering that the spectral density is a moment-constrained density, we propose

methodologies to estimate the predictor-dependent spectral density that produce moment-constrained

estimators.

Nonstationarity is analyzed from two extremal dependence prospects. First, in a setting where differ-

ent dependence structures are related with different values of the predictor, and second, in a setting

where the dependence is changing over the predictor. Numerical experiments show that our methods

are computationally compelling. Two data applications are given to assess extremal dependence of air

temperatures at different altitudes, and to assess the dynamics governing extremal dependence of some

leading European stock markets over the last decades. Our empirical analyses allow us to uncover

interesting dynamics governing extremal dependence in both cases.
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1 Introduction

1.1 Background and literature review

The statistical modeling of extreme values has received increasing attention in the statistical litera-

ture since it provides a framework to develop techniques and models for describing events that are far

from being branded as usual. The foundations of statistics of extremes can be traced back to 1928,

when Fisher and Tippett settled the possible limit laws of the sample maximum, a theory that was

later unified and extended by Gnedenko (1948). Nevertheless, it was not until 1958, when E. J. Gum-

bel (Gumbel, 1958) published what it has been considered the main referential work for applications

of extremes. Later, de Haan (1975) established the probabilistic and stochastic properties of sample

extremes, giving rise to important theoretical developments.

Early applications of extreme value models were developed primarily in the field of engineering, but

now they have been extended to a wide range of areas, such as environmental impact assessment (Coles

and Tawn, 1994; Joe, 1994; de Haan and Ronde, 1998; Schlather and Tawn, 2003; Gardes and Girard,

2010; Dobler et al., 2012; Condon et al., 2015), financial risk (Embrechts et al., 1997; Poon et al., 2004;

Liu, 2013), av,iation safety (Einhmahl et al., 2009), and internet traffic modeling (Maulik et al., 2002;

Resnick and Rootzén, 2000), among others. This variety of applications illustrates how statistics of

extremes has made its way into several branches of applied statistics, causing a dramatic acceleration

in the developments of suitable methodologies over the past fifty years.

By definition, extreme values are unusual, meaning that estimates are often required for levels of

a process that are much higher (or smaller) than what has already been observed. This makes the

1



1.1. BACKGROUND AND LITERATURE REVIEW

extrapolation a necessary tool to provide answers in terms of modeling and prediction. The statistics

of extremes supplies a class of models to enable such extrapolation, whether we are interested in

representations and modeling techniques for extremes of a single or multiple processes.

In the context of marginal extreme value distributions, nonstationary model structures have been

widely studied (Coles, 2001, Chapter 6). The seminal paper of Davison and Smith (1990), popularized

the general approach of indexing the parameters of the extreme value distribution by a predictor. This

modeling setting can then be used in conjunction with regression techniques, and the results can be

extended to deal with serially dependent and seasonal data, which cover most of the practical situations

met with univariate series. This progress in terms of nonstationary modeling for marginal distributions

has not had a similar impetus in the bivariate setting. Some related results have been provided

by Eastoe (2009), Jonathan et al. (2014), de Carvalho and Davison (2014) and Huser and Genton

(2014), but none of them consider the evolution of the dependence structure as a modeling framework.

The gap between developments in nonstationary marginal and bivariate distributions represent the

main motivation for the developments made in this thesis, with emphasis on the modeling, smoothing

and regression of nonstationary bivariate extremes. In the remainder of this chapter we review some

key results in stationary and nonstationary univariate extreme value theory, as well as main concepts

and modeling strategies for bivariate extremes. We also outline some key ideas in regression analysis

in bivariate extremes, and give a small overview of multivariate extreme value theory.

1.1.1 Univariate extreme value theory

Asymptotic characterization of block maxima

Let {𝑌1, . . . , 𝑌𝑁} be a random sample from a distribution function 𝐹 and assume that we are interested

in the distribution of 𝑀𝑁 = max1≤𝑖≤𝑁{𝑌𝑖}. Theoretically, the distribution of 𝑀𝑁 can be derived exactly

for all values of 𝑁 :

P{𝑀𝑁 ≤ 𝑧} = P{𝑌1 ≤ 𝑧, . . . , 𝑌𝑁 ≤ 𝑧}

= P{𝑌1 ≤ 𝑧} × P{𝑌2 ≤ 𝑧} × · · · × P{𝑌𝑁 ≤ 𝑧}

= {𝐹 (𝑧)}𝑁 . (1.1)

2



1.1. BACKGROUND AND LITERATURE REVIEW

However, this result is not very useful, since the distribution function 𝐹 is typically unknown in practice.

One way to proceed, is to use standard statistical techniques to estimate 𝐹 from observed data, and

then substitute this estimate in (1.1). Unfortunately, as 𝑁 grows, small discrepancies in the estimate of

𝐹 can lead to huge discrepancies for 𝐹 𝑁 . Moreover, the distribution of 𝑀𝑁 degenerates to a point mass

on 𝑧+ = sup{𝑧 ∈ R : 𝐹 (𝑧) < 1} (the upper end-point of 𝐹 ) when 𝑁 goes to infinity. Alternatively,

we can borrow some ideas from the central limit theorem and look for suitable asymptotic families

of models for 𝐹 𝑁 . The following theorem, attributed to Fisher and Tippett (1928) and formalized

by Gnedenko (1948) is the key result in univariate Extreme Value Theory, and it can be seen as an

extreme value version of the central limit theorem.

Theorem 1 (Extremal types theorem). Let {𝑌1, . . . , 𝑌𝑁} be a random sample from a distribution 𝐹 .

Assume that there exist constants {𝑎𝑁 > 0} and {𝑏𝑁} such that

P
(︃

𝑀𝑁 − 𝑏𝑁

𝑎𝑁

≤ 𝑧

)︃
→ 𝐺(𝑧), 𝑁 → ∞,

where 𝐺 is a non-degenerate distribution function. Then, 𝐺 takes the form of a generalized extreme

value (GEV) distribution, which is defined by

𝐺(𝑧) = exp
[︃
−
{︂

1 + 𝜉
(︂

𝑧 − 𝜇

𝜎

)︂}︂−1/𝜉

+

]︃
, −∞ < 𝑧 < ∞, (1.2)

where −∞ < 𝜇 < ∞, 𝜎 > 0, −∞ < 𝜉 < ∞ and 𝑎+ = max{0, 𝑎}.

The distribution in (1.2) has three parameters: a location parameter, 𝜇; a scale parameter, 𝜎; and a

shape parameter, 𝜉. The GEV combines into a single expression three different distributions, obtained

through different values of the shape parameter: the heavy tailed Fréchet distribution is obtained

when 𝜉 > 0, the light tailed Weibull distribution is obtained when 𝜉 < 0, and the Gumbel distribution

with tails decaying exponentially arises when 𝜉 = 0, which is interpreted as the limit of (1.2) when

𝜉 → 0. When 𝐹 has 𝐺 as limiting distribution, we say that 𝐹 is in the domain of attraction of 𝐺.

Distributions lying in the domain of attraction of the Weibull distribution are, for example, the uniform

and beta distributions; for the Fréchet distribution, we have the inverse and log gamma distributions;

and for the Gumbel distribution, we have the normal, gamma, logistic, log normal, and exponential

3



1.1. BACKGROUND AND LITERATURE REVIEW

distributions (Beirlant et al., 2004, Chapter 2).

Theorem 1 is to block maxima what the central limit theorem is to the mean, in the sense that the

GEV provides a model for the limit distribution of block maxima. To apply Theorem 1, we need to

block the data into blocks of equal length, and fit the GEV distribution to the set of block maxima.

To implement this model for any particular dataset, the choice of block size is critical. If the blocks

are too small, the approximation by the limit model in Theorem 1 is not suitable, and leads to biased

estimates. On the other hand, few block maxima are generated if the blocks are large, leading to

large estimation variance. There is a standard practice of adopting blocks of length one year, but

this consideration does not always apply and exploratory techniques become necessary. Parameter

estimation is typically carried out through likelihood-based techniques, although different graphical

and moment-based techniques have also been proposed (Beirlant et al., 2004, Chapter 5). All in all,

the utility and adaptability to complex model-building makes the likelihood techniques a particularly

attractive approach. A potential difficulty with the use of likelihood methods concerns the regularity

conditions that are required for the usual asymptotic properties associated with the maximum likelihood

estimator (MLE). Since the end-points of the GEV distribution are functions of the parameter values

(for example, if 𝜉 < 0, then 𝜇 − 𝜎/𝜉 is an upper end-point), the GEV distribution does not meet the

classical regularity conditions. Smith (1985) studied this problem in detail and found the following

results:

∘ if 𝜉 > −0.5, MLEs have the usual asymptotic properties;

∘ if −1 < 𝜉 < −0.5, MLEs are generally obtainable by solving the score equation, but do not have

the usual asymptotic properties;

∘ if 𝜉 < −1, MLEs are unlikely to be obtainable by solving the score equation.

Although the last case is worrying, this situation rarely occurs in applications of extreme value mod-

eling, so in practice, the theoretical limitations of the maximum likelihood approach are usually no

obstacle. Assessing the goodness-of-fit of an extrapolation considering a GEV model is actually im-

possible, but some appreciation may be made based on the observed data, e.g., using probability and

quantile plots. For more details, see Coles (2001, p. 57).

The result in Theorem 1 can be reformulated in terms of the block minima, �̃�𝑁 = min1≤𝑖≤𝑁{𝑌𝑖},

4



1.1. BACKGROUND AND LITERATURE REVIEW

giving rise to the so-called GEV distribution for minima. Note that if 𝑍𝑖 = −𝑌𝑖 for 𝑖 = 1, . . . , 𝑁

and 𝑀𝑁 = max1≤𝑖≤𝑁{𝑍𝑖}, then �̃�𝑁 = −𝑀𝑁 , and the use of Theorem 1 leads to a valid asymptotic

distribution for �̃�𝑁 . Inference and model checking for maxima can be applied straightforwardly. More

details on asymptotic models for minima can be found in Coles (2001, p. 92).

As we noticed earlier, an implicit difficulty in any extreme value analysis is the limited amount

of data for model estimation, which can lead to large estimation variance. This issue motivates a

characterization of extreme value behavior that enables the modeling of data other than just block

maxima. In the following paragraphs we present an approach to extreme value analysis when other

extreme data, lower than the sample maximum, are available.

Threshold models

Suppose we have a collection of independent variables {𝑌1, . . . , 𝑌𝑁} with a common distribution function

𝐹 , and define extreme values as those 𝑌𝑖 that exceed some high threshold 𝑢. If we let 𝑌 be an arbitrary

term in the 𝑌𝑖 sequence, then the conditional survival function of the exceedances defined as

P{𝑌 > 𝑢 + 𝑦|𝑌 > 𝑢} = 1 − 𝐹 (𝑢 + 𝑦)
1 − 𝐹 (𝑢) , 𝑦 > 0, (1.3)

is a suitable description of the stochastic behavior of extreme events. As before, since 𝐹 is typically

unknown in practice, the distribution in (1.3) is also unknown. As in Theorem 1, we look for an

approximate family of distributions to characterize the behavior of (1.3) for high values of the threshold.

Such a result is stated in the following theorem.

Theorem 2. Let {𝑌1, . . . , 𝑌𝑁} be a random sample from a distribution 𝐹 and suppose that {𝑎𝑁 > 0},

{𝑏𝑁} are sequences of normalizing constants such that Theorem 1 holds. Then, as 𝑁 → ∞

P
(︃

𝑌𝑖 − 𝑏𝑁

𝑎𝑁

> 𝑦 + 𝑢

⃒⃒⃒⃒
𝑌𝑖 − 𝑏𝑁

𝑎𝑁

> 𝑢

)︃
→

(︃
1 + 𝜉𝑦

�̃�𝑢

)︃−1/𝜉

+
, 𝑦 > 0. (1.4)

The limiting distribution in (1.4) is known as the generalized Pareto (GP) distribution. The shape

parameter in (1.4) is the same as the one in (1.2), and the new scale parameter �̃�𝑢 > 0 is a function of

the threshold 𝑢, the shape parameter 𝜉, the GEV location parameter 𝜇 and the GEV scale parameter

5
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𝜎, specifically, �̃�𝑢 = 𝜎 + 𝜉(𝑢 − 𝜇).

Evaluation of the normalizing constants {𝑎𝑁 > 0} and {𝑏𝑁} used in Theorem 1 and 2 requires knowledge

of the exact distributional form of 𝐹 . However, since the main goal of Extreme Value Theory is

to develop inference for the tails that is independent of the underlying distribution, for purposes of

inference, the normalizing constants are usually absorbed into the GEV location and scale parameters.

If a GP distribution with parameters �̃�𝑢 and 𝜉 is a suitable model for exceedances of 𝑌 over a threshold

𝑢, then the result in (1.4) implies that

P(𝑌 > 𝑦) ≈ 𝜁𝑢

{︂
1 + 𝜉

(︂
𝑦 − 𝑢

�̃�𝑢

)︂}︂−1/𝜉

, (1.5)

with 𝜁𝑢 = P(𝑌 > 𝑢). Theorem 2 states that if the distribution of the block maxima can be approximated

by a GEV distribution, then there is a corresponding approximate distribution for threshold exceedances

within the GP family. To identify extreme events in this framework, we need to define a high threshold

𝑢. The issue of threshold choice is analogous to the choice of block size in the block maxima approach,

in the sense that it implies a balance between bias and variance. Even though the standard practice is to

adopt as low a threshold as possible, subject to the limit model providing a reasonable approximation,

we are far from a general criterion. Exploratory techniques and sensitivity analysis are helpful tools

in this process. Once the threshold selection is made, the parameters of the GP distribution can

be estimated by maximum likelihood, using numerical techniques. Standard errors and confidence

intervals may be obtained in the usual way from standard likelihood theory. For model checking, we

can use the same graphical techniques as in the asymptotic models for block maxima.

Point process representation

There are different ways of characterizing the extreme value behavior of a process, and a particular

useful formulation is derived from the theory of point processes. The importance of this representation

is that it provides an interpretation of extreme value behavior that unifies the two models introduced so

far. Although this representation is not explicitly used in later chapters, for convenience of the reader

we include a very brief and informal introduction on point processes, and provide the main result of

this representation. Further details on point processes can be found in and Coles (2001, Chapter 7).

6
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Let {𝑌𝑖 : 𝑖 ∈ I} represent the locations of points, indexed by a set I, occurring randomly in a state

space 𝑆. A point process 𝑃 counts the number of points in regions of 𝑆:

𝑃 (𝐴) =
∑︁
𝑖∈I

1(𝑌𝑖 ∈ 𝐴), 𝐴 ⊂ 𝑆.

The expected number of points in a set 𝐴 is given by the intensity measure Λ(𝐴) = E{𝑃 (𝐴)}. If

the state space 𝑆 is Euclidean space or a subset thereof and if the intensity measure Λ has a density

function 𝜆 : 𝑆 → [0, ∞), then 𝜆 is called the intensity function of the process.

A point process 𝑃 with intensity measure Λ is said to be a Poisson process if:

∘ For each set 𝐴 such that Λ(𝐴) < ∞, 𝑃 (𝐴) is a Poisson random variable with mean Λ(𝐴).

∘ For all positive integer 𝑘 and all disjoint sets 𝐴1, . . . , 𝐴𝑘, the random variables 𝑃 (𝐴1), . . . , 𝑃 (𝐴𝑘)

are independent.

A Poisson process on a (subset of) Euclidean space is called homogenous if its intensity function 𝜆 is

constant, 𝜆(𝑦) = 𝜆, and inhomogenous otherwise. The Poisson processes are the most common type of

point processes, and they are particularly relevant in Extreme Value Theory. The following theorem

provides the main result of the point process characterization.

Theorem 3. Let {𝑌1, . . . , 𝑌𝑁} be a random sample for which there are sequences of constants {𝑎𝑁 > 0}

and {𝑏𝑁} such that Theorem 1 holds. Let 𝑧− and 𝑧+ be the lower and upper endpoints of the GEV

distribution in (1.2), respectively. Then, the sequence of point processes

𝑃𝑁 =
{︂(︂

𝑖

𝑁 + 1 ,
𝑌𝑖 − 𝑏𝑁

𝑎𝑁

)︂
: 𝑖 = 1, . . . , 𝑁

}︂

converges on regions of the form (0, 1) × [𝑢, ∞), for any 𝑢 > 𝑧−, to a Poisson process, with intensity

measure on 𝐴 = [𝑡1, 𝑡2] × [𝑧, 𝑧+) given by

Λ(𝐴) = (𝑡2 − 𝑡1)
{︂

1 + 𝜉
(︂

𝑧 − 𝑢

𝜎

)︂}︂−1/𝜉

.

A main contribution of this thesis is the development of methodologies for modeling nonstationarity

in the extremal dependence structure. Therefore, a revision of terminology and methods developed for

7
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nonstationary sequences is essential. We devote the following section to a revision of the main results

for univariate nonstationary processes.

1.1.2 Extremes for nonstationary sequences

Roughly speaking, we say that a random process is nonstationary when its probabilistic characteristics

change over time. Such departures from the simple i.i.d. assumption made in the derivation of the

extreme value characterization, question the usefulness of the standard models. Even though under

certain circumstances we are able to apply the usual extreme value limiting models in the presence of

temporal dependence (Coles, 2001, p. 92), no such general theory has been provided for nonstationary

processes. In this setting, the usual approach is to use standard extreme value models as building

blocks, and then make improvements using different statistical techniques.

Consider a GEV model for {𝑌𝑡}𝑡≥1 with temporal structure in the location and scale parameters, i.e.,

𝑌𝑡 ∼ GEV(𝜇(𝑡), 𝜎(𝑡), 𝜉), 𝑡 ≥ 0. (1.6)

The extreme value shape parameter is difficult to estimate with precision, so it is usually unrealistic to

try modeling 𝜉 as a smooth function of time. Variations through time in the observed process may be

modeled as a linear trend in the location parameter:

𝜇(𝑡) = 𝛽0 + 𝛽1𝑡,

for parameters 𝛽0 and 𝛽1, or through a nonstationary scale parameter, e.g.,

𝜎(𝑡) = exp(𝛽0 + 𝛽1𝑡),

where we select an exponential link function to ensure the positivity of 𝜎.

There is a unity of structure in the above examples. In each case, the extreme value parameters can

8
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be written in the form

𝜃(𝑡) = ℎ(Y𝑇𝛽), (1.7)

where 𝜃 denotes either 𝜇 or 𝜎, ℎ is a specific link function, 𝛽 is a vector of regression parameters, and

Y is a vector of covariates. We can see some similarities between the class of models implied by (1.7)

and the generalized linear models (GLMs) introduced by Nelder and Wedderburn (1972). The theory

for GLMs is well developed and estimating algorithms are routinely provided in statistical softwares.

Unfortunately, standard results or computational tools are not directly transferable to the extreme

value context. The main difference is that the GLM family is restricted to distributions that are within

the exponential family of distributions; the standard extreme value models generally fall outside of this

family. Nonetheless, (1.7) applied to any of the parameters in a extreme value model provides a broad

and attractive family for representing nonstationarity in extreme value datasets.

Inference for nonstationary GEV models such as (1.6) can be conducted as follows. Parameter esti-

mation may be carried out through maximum likelihood, due to its adaptability to changes in model

structure. If 𝑦1, . . . , 𝑦𝑚 is a random sample from (1.6) and 𝛽 denotes the associated complete vector

of parameters, then the likelihood function is

𝐿(𝛽) =
𝑚∏︁

𝑡=1
𝑔(𝑦𝑡; 𝜇(𝑡), 𝜎(𝑡), 𝜉), (1.8)

where 𝑔(·; 𝜇(𝑡), 𝜎(𝑡), 𝜉) denotes the GEV density function with parameters 𝜇(𝑡), 𝜎(𝑡) and 𝜉. Numer-

ical techniques can be used to maximize (1.8), yielding the maximum estimator of 𝛽. Approximate

standard errors and confidence intervals follow in the usual way from the observed information matrix,

which can also be evaluated numerically. For the model choice, the basic principle is parsimony, i.e.,

obtaining the simplest model possible, that explains as much of the variation in the data as possible.

With the possibility of modeling any combination of the extreme value model parameters as functions

of time, there is a large catalogue of models to choose from. Nested models can be compared using

the deviance statistic, whereas non-nested models can be tested using a variety of modifications to the

deviance-baed criterion (see for instance, Cox and Hinkley, 1974). Finally, model diagnostics can be

9
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conducted similarly to the stationary case, although generally it is only possible to apply such diagnos-

tic checks to a standardized version of the data, conditional on the fitted parameter values. For more

details and examples about inference on extremes of nonstationary sequences, see Coles (2001, p. 108).

Although univariate extreme value theory offers a handy framework to develop inference for extreme

of a single process, many problems involving extreme events are inherently multivariate. We now turn

our attention to the bivariate setting, on which this thesis is devoted.

1.1.3 Bivariate extreme value theory

The study of bivariate extremes may be split into two components: the marginal distributions and

the dependence structure. We first model marginal distributions using univariate techniques and then,

after a transformation standardizing the margins to a common scale, we deal with the dependence

structure. Here we restrict our attention to the modeling of extremal dependence, but we emphasize

that marginal distribution modeling is an essential step to be able to characterize extremal dependence.

Asymptotic characterization of componentwise maxima

Let {(𝑌𝑖,1, 𝑌𝑖,2)}𝑁
𝑖=1 be a collection of independent and identically distributed vectors with distribu-

tion function 𝐹 (𝑦1, 𝑦2). Without loss of generality, assume that 𝐹 (𝑦1, 𝑦2) has unit Fréchet marginal

distributions, 𝐹1(𝑦) = 𝐹2(𝑦) = exp(−1/𝑦), 𝑦 > 0. If

𝑀1,𝑁 = max
1≤𝑖≤𝑁

{𝑌𝑖,1} and 𝑀2,𝑁 = max
1≤𝑖≤𝑁

{𝑌𝑖,2}, (1.9)

we say that M𝑁 = (𝑀1,𝑁 , 𝑀2,𝑁) is the vector of componentwise maxima. The asymptotic theory of

bivariate extremes begins by noticing that, for 𝑦 > 0, P(𝑀1,𝑁/𝑁 ≤ 𝑦) = P(𝑀2,𝑁/𝑁 ≤ 𝑦) = exp(−1/𝑦)

and therefore, we should consider the re-scaled vector (𝑀⋆
1,𝑁 , 𝑀⋆

2,𝑁) = 𝑁−1 (𝑀1,𝑁 , 𝑀2,𝑁). The following

result provides a bivariate analog to Theorem 1, characterizing the distribution of (𝑀⋆
1,𝑁 , 𝑀⋆

2,𝑁) as 𝑁

goes to infinity.

Theorem 4. Let {(𝑌𝑖,1, 𝑌𝑖,2)}𝑁
𝑖=1 be a sequence of independent identically distributed random vectors
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whose distribution function has unit Fréchet marginal distributions. Let (𝑀⋆
1,𝑁 , 𝑀⋆

2,𝑁) = 𝑁−1 (𝑀1,𝑁 , 𝑀2,𝑁),

with 𝑀1,𝑁 and 𝑀2,𝑁 defined as in (1.9). Then if

P(𝑀⋆
1,𝑁 ≤ 𝑦1, 𝑀⋆

2,𝑁 ≤ 𝑦2) → 𝐺(𝑦1, 𝑦2), 𝑁 → ∞, (1.10)

where 𝐺 is a non-degenerate distribution function, 𝐺 has the form

𝐺(𝑦1, 𝑦2) = exp {−𝑉 (𝑦1, 𝑦2)} ,

where

𝑉 (𝑦1, 𝑦2) = 2
∫︁

[0,1]
max

(︃
𝑤

𝑦1
,
1 − 𝑤

𝑦2

)︃
𝐻(d𝑤), (1.11)

and 𝐻 is a measure satisfying the following moment constraints

∫︁
[0,1]

𝐻(d𝑤) = 1,
∫︁

[0,1]
𝑤𝐻(d𝑤) = 1

2 . (1.12)

The family of distributions that arises as limit in Equation (1.10) is called the class of bivariate

extreme value distributions. The measure 𝐻 is called spectral measure, and is a probability distribution

on [0,1]. The function 𝑉 is called exponent measure. Specification of either 𝑉 or 𝐻 would characterizes

the dependence structure of the limiting distribution 𝐺. As in the univariate case, if 𝐹 has 𝐺 as limiting

distribution, we say that 𝐹 is in the domain of attraction of 𝐺. If 𝐻 is absolutely continuous with

density ℎ, the expression in (1.11) is simply

𝑉 (𝑦1, 𝑦2) = 2
∫︁ 1

0
max

(︃
𝑤

𝑦1
,
1 − 𝑤

𝑦2

)︃
ℎ(𝑤)d𝑤.

In this dissertation, we assume that 𝐻 is absolutely continuous. However, bivariate extreme value

distributions can also be generated by measures 𝐻 that are not absolutely continuous. Two limiting

cases are discussed in the following examples.

Example 1 (Independent variables). if 𝐻 is a measure that puts mass 0.5 on 𝑤 = 0 and 𝑤 = 1, then

11
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𝑉 (𝑦1, 𝑦2) = 𝑦−1
1 + 𝑦−1

2 and

𝐺(𝑦1, 𝑦2) = exp{−(𝑦−1
1 + 𝑦−1

2 )} = exp(−𝑦−1
1 ) exp(−𝑦−1

2 ), 𝑦1, 𝑦2 > 0. (1.13)

This situation is referred to as asymptotic independence, a boundary case that will be studied further

in this chapter.

Example 2 (Complete dependent variables). If 𝐻 is a measure that puts mass 1 on 𝑤 = 0.5, then

𝑉 (𝑦1, 𝑦2) = max(𝑦−1
1 , 𝑦−1

2 ) and

𝐺(𝑦1, 𝑦2) = exp{− max(𝑦−1
1 , 𝑦−1

2 )}, 𝑦1, 𝑦2 > 0. (1.14)

In this case, 𝐺 is the distribution function of variables that are completely dependent: 𝑌1 = 𝑌2 with

probability 1.

Although Theorem 4 is stated for random vectors with unit Fréchet margins, the result applies to any

other choice of marginal distributions. This particular choice is not so important from an asymptotic

point of view, but some useful properties can be more easily studied from a specific selection. Popular

choices include exponential, Gumbel, uniform, and Weibull distributions. Examples of other margins

employed in the literature can be found in Beirlant et al. (2004, p. 271).

The importance of the spectral measure 𝐻 is that it can be used to describe the extremal depen-

dence, and this can be understood through a pseudo-polar transformation, where we map {𝑌𝑖,1, 𝑌𝑖,2}𝑁
𝑖=1

to a pseudo-angular, pseudo-radial scale

(𝑊𝑖, 𝑅𝑖) =
(︂

𝑌𝑖,1

𝑌𝑖,1 + 𝑌𝑖,2
, 𝑌𝑖,1 + 𝑌𝑖,2

)︂
, 𝑖 = 1, . . . , 𝑁.

If 𝑊 and 𝑅 are general terms of {𝑊𝑖}𝑁
𝑖=1 and {𝑅𝑖}𝑁

𝑖=1 respectively, de Haan and Resnick (1977) showed

that the spectral measure is the asymptotic distribution of the ratios 𝑊 given that the sum 𝑅 is large,

i.e.,

𝑃 (𝑊 ∈ ·|𝑅 > 𝑡) → 𝐻(·), 𝑡 → ∞. (1.15)

Further details on the effect of the transformation from Cartesian to pseudo-polar coordinates, will be
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studied later in this chapter.

It can be shown that the convergence in (1.15) is equivalent to the weak convergence of (𝑀⋆
1,𝑁 , 𝑀⋆

2,𝑁)

to 𝐺, and therefore, it is not unreasonable to assert that 𝐻 provides relevant information on extremal

dependence.

Bivariate threshold excess model

As in the univariate case, there is an alternative representation of bivariate extremes that avoids the

wastefulness of data implied by the study of componentwise block maxima. Again, let {(𝑌𝑖,1, 𝑌𝑖,2)}𝑁
𝑖=1

be a collection of independent and identically distributed vectors with distribution function 𝐹 (𝑦1, 𝑦2).

The goal is to find a family of distributions which approximates 𝐹 on regions of the form 𝑦1 > 𝑢1,

𝑦2 > 𝑢2, for high enough thresholds 𝑢1 and 𝑢2. For these thresholds, the marginal distributions of 𝐹

have an approximation of the form (1.5), with parameters (𝜁1, 𝜎1, 𝜉1) and (𝜁2, 𝜎2, 𝜉2) respectively. Let

𝑌𝑗 = −
[︂

log
{︂

1 − 𝜁𝑗

(︂
1 + 𝜉𝑗(𝑌𝑗 − 𝑢𝑗)

𝜎𝑗

)︂−1/𝜉𝑗
}︂]︂−1

, 𝑗 = 1, 2. (1.16)

Then, (𝑌1, 𝑌2) has distribution function 𝐹 whose margins are approximately standard Fréchet for

𝑌𝑗 > 𝑢𝑗, 𝑗 = 1, 2. Note that if 𝑦1 and 𝑦2 are defined in terms of 𝑦1 and 𝑦2 as in (1.16), then

𝐹 (𝑦1, 𝑦2) = 𝐹 (𝑦1, 𝑦2) and, for large enough 𝑁 ,

𝐹 (𝑦1, 𝑦2) = {𝐹 𝑁(𝑦1, 𝑦2)}1/𝑁 ≈ [exp{−𝑉 (𝑦1/𝑁, 𝑦2/𝑁)}]1/𝑁 = exp{−𝑉 (𝑦1, 𝑦2)}.

It follows that

𝐹 (𝑦1, 𝑦2) ≈ 𝐺(𝑦1, 𝑦2) = exp{−𝑉 (𝑦1, 𝑦2)}, 𝑦1 > 𝑢1, 𝑦2 > 𝑢2. (1.17)

In other words, for large enough thresholds 𝑢1 and 𝑢2, we find that 𝐺(𝑦1, 𝑦2) is a suitable family which

approximates an arbitrary joint distribution 𝐹 (𝑦1, 𝑦2) on regions of the form 𝑦1 > 𝑢1, 𝑦2 > 𝑢2.

If a bivariate pair exceeds a specified threshold in just one of its components, then the model in (1.17)

is not appropriate. In this case, it is necessary to adopt methods like censored-likelihood (Ledford and

Tawn, 1996; Smith, 1994; Smith et al., 1997). General aspects of the difficulties in this setting can be
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found in Coles (2001, p. 155). More details on bivariate threshold exceedances can be found in Beirlant

et al. (2004, Sections 8.3 and 9.4).

Point process representation

As with the univariate approach, there is an alternative point process representation for bivariate

extremes, which can also be generalized for higher dimensions. We summarized the point process

characterization in the following theorem, which gives an interpretation of the spectral measure 𝐻.

Theorem 5. Let {(𝑦𝑖,1, 𝑦𝑖,2)}𝑁
𝑖=1 be a sequence of independent bivariate observations from a distribution

with unit Fréchet margins that satisfies the convergence result in theorem (4). Let {𝑃𝑁} be a sequence

of point processes defined by

𝑃𝑛 = {(𝑁−1𝑌1,1, 𝑁−1𝑌1,2), . . . , (𝑁−1𝑌𝑁,1, 𝑁−1𝑌𝑁,2)}.

Then, 𝑃𝑛
d→ 𝑃 on regions bounded from the origin (0, 0), where 𝑃 is a non-homogeneous Poisson

process on (0, ∞) × (0, ∞). Moreover, letting

𝑟 = 𝑦1 + 𝑦2 and 𝑤 = 𝑦1

𝑦1 + 𝑦2
,

the intensity function of 𝑃 is

𝜆(𝑟, 𝑤) = 2d𝐻(𝑤)
𝑟2 . (1.18)

To interpret the later result, note that 𝑟 is a measure of distance from the origin and 𝑤 measures

angle on a (0, 1] scale. Equation (1.18) implies that the intensity of the limiting process 𝑃 factorizes

across radial and angular components. In other words, the angular spread of points of 𝑃 is determined

by 𝐻, and is independent of radial distance. If 𝐻 has density ℎ, then ℎ determines the relative

frequency of event of different relative size. If extremes are near-independent, then ℎ(𝑤) is large close

to 𝑤 = 0 and 𝑤 = 1, and small elsewhere. In contrast, if dependence is very strong, ℎ(𝑤) is large close

to 𝑤 = 1/2. The general result in (1.18) allows to obtain the two limiting cases studied in Examples 1

and 2.
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Pickands dependence function and the extremal coefficient

Apart from the spectral measure 𝐻, various alternative expressions to describe the dependence structure

of 𝐺 have been proposed in the literature. One of such expressions is given by the Pickands dependence

function (Pickands, 1981), defined as

𝐴(𝑤) = 1 − 𝑤 + 2
∫︁ 𝑤

0
𝐻(𝑢)d𝑢, 𝑤 ∈ [0, 1]. (1.19)

It can be shown that 𝐺 is completely determined by its margins, say 𝐺1 and 𝐺2, and its Pickands

dependence function, 𝐴, through

𝐺(𝑦1, 𝑦2) = exp
[︂

log{𝐺1(𝑦1)𝐺2(𝑦2)}𝐴
{︂ log(𝐺2(𝑦2))

log(𝐺1(𝑦1)𝐺2(𝑦2))

}︂]︂
, 𝑦1, 𝑦2 > 0.

If 𝐺1 and 𝐺2 are unit Fréchet distributions, the above expression reduces to

𝐺(𝑦1, 𝑦2) = exp
{︂

− (𝑦−1
1 + 𝑦−1

2 )𝐴
(︂

𝑦1

𝑦1 + 𝑦2

)︂}︂
, 𝑦1, 𝑦2 > 0.

By the definition in (1.19), 𝐴(0) = 𝐴(1) = 1. In addition, we have that max{1 − 𝑤, 𝑤} ≤ 𝐴(𝑤) ≤ 1

and, most importantly, 𝐴(·) is convex within this region. The lower bound 𝐴(𝑤) = max{1 − 𝑤, 𝑤}

corresponds to complete dependent variables, with a measure 𝐻 that puts mass 1 on 𝑤 = 0.5 (see

Example 2). The upper bound 𝐴(𝑤) = 1 corresponds to independent variables, with a measure that

puts mass 0.5 on 𝑤 = 0 and 𝑤 = 1 (see Example 1). The class of dependence functions is a convex set,

which means that if 𝐴1, . . . , 𝐴𝑝 are dependence functions, then

𝐴(𝑤) =
𝑝∑︁

𝑖=1
𝜋𝑖𝐴𝑖(𝑤)

is a dependence function for 𝜋𝑖 ≥ 0 (𝑖 = 1, . . . , 𝑝) and ∑︀𝑝
𝑖=1 𝜋𝑖 = 1. Two interesting properties of the

variables 𝑌1 and 𝑌2 can be formulated in terms of 𝐴(𝑤):

1. It can be shown that the variables are exchangeable if and only if 𝐴(𝑤) is symmetric about 0.5,

2. the correlation between (𝑌1, 𝑌2) is 𝜌 =
∫︀ 1

0
d𝑤

{𝐴(𝑤)}2 −1, and is always nonnegative because 𝐴(𝑤) ≤ 1.
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Although the spectral measure and the Pickands dependence function are able to describe the

dependence structure of a bivariate extreme value distribution, their infinite-dimensional nature makes

them difficult to handle. Moreover, from an exploratory point of view, it is useful to account for

summary measures that can easily capture the main properties of the extremal behavior, to help us

understand the overall dependence strength. One such measure that has gained popularity is the

extremal coefficient

𝐶 = 2𝐴(1/2), (1.20)

which is bounded in 1 ≤ 𝐶 ≤ 2. Independence occurs only with 𝐶 = 2, whereas complete dependence

occurs only with 𝐶 = 1.

The problem of estimating a bivariate extreme value distribution can be formulated as how to

estimate the Pickands dependence function. A wide range of nonparametric estimators have been

proposed to estimate this function and, as a consequence, the extremal coefficient. Pickands itself

proposed an estimator (Pickands, 1981) that was later improved by Deheuvels (1991). A more recent

proposal can be found in Capéraà et al. (1997) and Gudendorf and Segers (2011, 2012). Examples

of Pickands dependence functions and extremal coefficients for some parametric models will be given

later in this chapter.

Asymptotic independence and asymptotic complete dependence

There are two limiting cases in the class of dependence structures of bivariate extreme value dis-

tributions, which arise either when the extremes of marginal variables are completly dependent or

rather independent. Sibuya (1960), defined the latter limiting case as follows: suppose that (𝑌1, 𝑌2)

is a bivariate random variable with identically distributed marginals. We say that the pair (𝑌1, 𝑌2) is

asymptotically independent if

lim
𝜏→𝜏+

P(𝑌1 > 𝜏 |𝑌2 > 𝜏) = 0, (1.21)

where 𝜏+ = sup{𝜏 ∈ R : P(𝑌𝑗 ≤ 𝜏) < 1, 𝑗 = 1, 2}. If the limit in (1.21) is a nonzero constant, the

corresponding limiting componentwise maxima are then dependent, and we say that 𝑌1 and 𝑌2 are

asymptotically dependent. Examples 1 and 2 are clear reflects of these two cases.

Asymptotic dependence is interesting from a theoretical point of view. Within this class, the assump-
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tions made so far in this section are reasonable, and Theorem 4 characterizes in a reasonable way, the

probabilities of joint extreme events. Asymptotic independence is particularly important in applica-

tions, mostly because many bivariate distributions lie in the domain of attraction of a bivariate extreme

value distribution with independent margins (Sibuya, 1960). This is the case, for example, for a ran-

dom vector {(𝑌𝑖,1, 𝑌𝑖,2)}𝑁
𝑖=1 with bivariate normal distribution, and correlation coefficient 𝜌 < 1. Under

asymptotic independence, fitting a model based on Theorem 4 will likely overestimate dependence on

extrapolation, since there is mis-placed assumption that the most extreme marginal events may occur

simultaneously. This makes the class of bivariate extreme value distributions rather inappropriate for

modeling data that exhibit association that gradually disappears at more and more extreme levels.

Statistical models for the general class of distributions for which (1.21) is true, have been developed

comparatively recently. Important contributions include in Ledford and Tawn (1996), Bortot and Tawn

(1998), and Bruun and Tawn (1998).

After all these examinations, we would like to easily discern whether a bivariate distribution belongs

to the class of asymptotically independent distributions. To do so, we turn our attention to a number

of coefficients that are able to produce the following:

∘ A measure useful in distinguishing asymptotic dependence from asymptotic independence.
∘ A measure of dependence strength within the class of asymptotically dependent distributions.
∘ A measure of extremal dependence within the class of asymptotically independent distributions.

∙ Coefficients of extremal dependence: asymptotic dependence

The limit in (1.21) can be generalized to the case where the marginal distribution functions, 𝐹1

and 𝐹2, are non-identical. Let

𝜒 = lim
𝑢→1

P(𝐹1(𝑌1) > 𝑢|𝐹2(𝑌2) > 𝑢). (1.22)

Loosely stated, (1.22) is the probability of one variable being extreme given that the other is

extreme. We already now that the variables are asymptotically independent when 𝜒 = 0, and

asymptotically dependent when 0 < 𝜒 ≤ 1. Furthermore, it is possible to show that if 𝐹1 and 𝐹2

are in the domain of attraction of univariate extreme value distributions 𝐺1 and 𝐺2 respectively,

then 𝜒 = 0 if and only if 𝐺 is in the domain of attraction of the bivariate extreme value distribution
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𝐺(𝑦1, 𝑦2) = 𝐺1(𝑦1)𝐺2(𝑦2). Within the class of asymptotically dependent variables, the value of 𝜒

increases with increasing degree of dependence at extreme levels.

Although 𝜒 is a natural summary of extremal dependence, it is more convenient to obtain 𝜒 as

the limit of an alternative (but asymptotically equivalent) function. If

𝜒(𝑢) = 2 − log P(𝐹1(𝑌1) < 𝑢, 𝐹2(𝑌2) < 𝑢)
log(𝑢) , 0 < 𝑢 < 1, (1.23)

then, it can be shown that for 𝑢 → 1

𝜒(𝑢) = 2 − 1 − P(𝐹1(𝑌1) < 𝑢, 𝐹2(𝑌2) < 𝑢)
1 − 𝑢

+ 𝑜(1) = P(𝐹2(𝑌2) > 𝑢|𝐹1(𝑌1) > 𝑢) + 𝑜(1),

whence 𝜒 = lim𝑢→1 𝜒(𝑢). The function 𝜒(𝑢) is bounded by

2 − log(max{2𝑢 − 1, 0})
log 𝑢

≤ 𝜒(𝑢) ≤ 1,

and is convenient not only because it provides the limit 𝜒, but also because it can be interpreted as

a quantile-dependent measure of dependence. In particular, the sign of 𝜒(𝑢) determines whether

the variables are positively or negatively associated at the quantile level 𝑢. For any distribution

falling in the class of bivariate extreme value distributions, 𝜒(𝑢) = 2−𝐶, where 𝐶 is the extremal

coefficient defined in (1.20). Therefore, 𝜒(𝑢) is constant in 𝑢 and its estimate provides a diagnostic

check for membership of the bivariate extreme value class. The simplicity of the formulation of

𝜒(𝑢) is a property of the bivariate extreme value distributions and does not always apply to other

distributions. Examples of dependence models where 𝜒(𝑢) is non-trivial can be found in Coles

et al. (1999).

∙ Coefficients of extremal dependence: asymptotic independence

We already highlighted the importance of the class of asymptotically independent distributions in

bivariate extreme modeling. Within this class, it is still possible to distinguish different degrees

of dependence at finite levels. By definition, 𝜒 = 0, so 𝜒 is unable to provide information on the

relative strength of dependence for such models. To overcome this situation, we define a second
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dependent measure, �̄�, based on a comparison of joint and marginal survivor functions of 𝐹1(𝑌1)

and 𝐹2(𝑌2). Let

�̄�(𝑢) = 2 log P(𝐹1(𝑌1) > 𝑢)
log P(𝐹1(𝑌1) > 𝑢, 𝐹2(𝑌2) > 𝑢) − 1 = 2 log(1 − 𝑢)

log P(𝐹1(𝑌1) > 𝑢, 𝐹2(𝑌2) > 𝑢) − 1, 0 < 𝑢 < 1.

(1.24)

Then −1 < �̄�(𝑢) ≤ 1 for all 0 < 𝑢 < 1. Analogous to 𝜒, and with the purpose of describing

extremal characteristics, we define

�̄� = lim
𝑢→1

�̄�(𝑢).

For asymptotically dependent variables �̄� = 1, and for asymptotically independent variables,

−1 < �̄� < 1, and �̄� provides a limiting measure that increases with dependence strength.

As a result, the pair (�̄�, 𝜒) provides informative and complementary information about the form

of extremal dependence. It can be used as a summary of extremal dependence in the following

sense:

– If �̄� = 1 and 0 < 𝜒 ≤ 1, the variables are asymptotically dependent and 𝜒 is a measure of

strength of dependence within the class of asymptotically dependent distributions.

– If −1 < �̄� < 1 and 𝜒 = 0, the variables are asymptotically independent and �̄� is a measure

of strength of dependence within the class of asymptotically independent distributions.

∙ The coefficient of tail dependence

This coefficient was introduced by Ledford and Tawn (1996) and is useful in distinguishing asymp-

totic dependence from asymptotic independence and, within the class of asymptotically indepen-

dent distributions, positive from negative association. Let 𝑍𝑗 = −1/ log 𝐹𝑗(𝑌𝑗), for 𝑗 = 1, 2. It is

easy to check that 𝑍1 and 𝑍2 have unit Fréchet distributions. To introduce this coefficient, Led-

ford and Tawn (1996) assume that the joint survivor function of 𝑍1 and 𝑍2 is a regularly varying

function, that is:

P(𝑍1 > 𝑧, 𝑍2 > 𝑧) = L(𝑧)𝑧−1/𝜂, 𝑧 > 0,
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and L is a slowly varying function, which means that lim𝑧→∞ L(𝑥𝑧)/L(𝑧) = 1 for all fixed 𝑥 > 0.

The number 𝜂 is a constant, called the coefficient of tail dependence, and is bounded in 0 < 𝜂 ≤ 1.

It can be shown that

lim
𝑧→∞

L(𝑧)𝑧1−1/𝜂 = 𝜒, lim
𝑢→1

�̄�(𝑢) = �̄� = 2𝜂 − 1,

provided the limits exist. As a consequence:

– If 𝜂 = 1 and lim𝑧→∞ L(𝑧) = 𝑐 for some 0 < 𝑐 ≤ 1, then �̄� = 1 and the variables are

asymptotically dependent of degree 𝜒 = 𝑐.

– If 0 < 𝜂 < 1 or if 𝜂 = 1 and lim𝑧→∞ L(𝑧) = 0, then 𝜒 = 0 and the variables are asymptotically

independent of degree �̄� = 2𝜂 − 1. Within this class, three types of independence can be

identified according to the sign of �̄�:

* If 1/2 < 𝜂 < 1 or 𝜂 = 1 and lim𝑧→∞ L(𝑧) = 0, there is positive association, which

means that observations for which both 𝑍1 afnd 𝑍2 exceed a large threshold 𝑧 occur

more frequently than under exact independence.

* If 𝜂 = 1/2, extremes of 𝑍1 and 𝑍2 are near independent and even exactly independent

in the case L(𝑧) = 1.

* If 0 < 𝜂 < 1/2, there is negative association, which means that observations for which

both 𝑍1 and 𝑍2 exceed a large threshold 𝑧 occur less frequently than under exact inde-

pendence.

To summarize, the degree of dependence between large values of 𝑍1 and 𝑍2 is determined by

𝜂, with increasing values of 𝜂 corresponding to stronger association. For a given 𝜂, the relative

strength of dependence is characterized by L.

Modeling the spectral measure

As we can observe from Equation (1.11), any measure 𝐻 on [0, 1] satisfying the mean constraint (1.12)

gives rise to a valid limit in (1.10). In other words, the limit family has no finite parametrization, and

the use of nonparametric methods seems a natural approach. Nonparametric techniques to estimate the
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spectral measure are a keystone of this dissertation, and the current models available in the literature

are presented at the end of this section. Nevertheless, to understand the historical development of

bivariate extreme value modeling, we believe it is necessary to begin with an outline of some parametric

alternatives proposed in the literature.

∙ Parametric models

The parametric approach is based in obtaining a small subset of the class of limit distributions

for 𝐺, which can flexibly adapt itself to the data at hand. This is carried out using parametric

sub-families of distributions for 𝐻 that leads to sub-families of distributions for 𝐺. Building

suitable models is not an easy task, since we need parametric families whose mean is parameter-

free, and for which the exponent measure is tractable. In the following examples, we describe

two parametric models that have been widely studied in the literature. We characterize their

dependence structure, as well as summary measures for extremal dependence studied before in

this chapter. We will refer to these two models in Chapters 2 and 3 when we conduct simulation

studies. Other parametric models as well as model construction methods can be found in Beirlant

et al. (2004, p. 300).

Example 3 (Logistic family). The logistic model (Coles, 2001, p. 146) is a popular model, based

on the spectral density

ℎ(𝑤) = 1
2

(︃
1
𝛼

− 1
)︃

{𝑤(1 − 𝑤)}−1−1/𝛼{𝑤−1/𝛼 + (1 − 𝑤)−1/𝛼}𝛼−2, 𝑤 ∈ (0, 1), (1.25)

where 𝛼 ∈ (0, 1] is the dependence parameter. The closer 𝛼 is to 0, the higher the level of extremal

dependence, while the closer 𝛼 is to 1, the closer we get to independence. The mean constraint

in (1.12) is satisfied since the model is symmetric about 𝑤 = 0.5. The bivariate extreme value

distribution induced by (3.6) is

𝐺(𝑦1, 𝑦2) = exp
{︂

−
(︂

𝑦
−1/𝛼
1 + 𝑦

−1/𝛼
2

)︂𝛼}︂
, 𝑦1, 𝑦2 > 0,

and as we can see, the model is exchangeable. The main reason for the popularity of the lo-

gistic family is its tractability; it covers all levels of dependence from independence to perfect
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dependence, and this can be understood by noticing that

lim
𝛼→1

𝐺(𝑦1, 𝑦2) = exp{−(𝑦−1
1 + 𝑦−1

2 )}, lim
𝛼→0

𝐺(𝑦1, 𝑦2) = exp{− max(𝑦−1
1 , 𝑦−1

2 )}.

This can be better illustrated through the Pickands dependence function

𝐴(𝑤) = {(1 − 𝑤)1/𝛼 + 𝑤1/𝛼}𝛼, 𝑤 ∈ (0, 1),

which is displayed in Figure 1-1 (a) for three values of the dependence parameter. The closer

𝐴(𝑤) is to its lower bound max{1−𝑤, 𝑤}, the closer the model is to complete dependence (𝛼 close

to 0), while the closer 𝐴(𝑤) is to its upper bound 1, the closer the model is to independence (𝛼

close to 1). The extremal coefficient is 𝐶 = 2𝛼 and the bivariate survivor function corresponding

to the unit Fréchet margins 𝑍𝑗 = −1/ log 𝐹𝑗(𝑌𝑗), 𝑗 = 1, 2, satisfies

P(𝑍1 > 𝑧, 𝑍2 > 𝑧) = (2 − 2𝛼)𝑧−1 + (22𝛼−1 − 1)𝑧−2 + 𝑜(𝑧−2), 𝑧 → ∞.

If 0 < 𝛼 < 1, we find a coefficient of tail dependence 𝜂 = 1 and a slowly varying function L

converging to 𝜒 = 2 − 2𝛼.

Example 4 (Dirichlet model). The Dirichlet model proposed by Coles and Tawn (1991) is an

asymmetric model, based on the spectral density

ℎ(𝑤) = 𝑎𝑏Γ(𝑎 + 𝑏 + 1)(𝑎𝑤)𝑎−1{𝑏(1 − 𝑤)}𝑏−1

2Γ(𝑎)Γ(𝑏𝑥){𝑎𝑤 + 𝑏(1 − 𝑤)}𝑎+𝑏+1 , 𝑤 ∈ (0, 1), (1.26)

where 𝑎, 𝑏 > 0. The Dirichlet model is symmetric only in the case 𝑎 = 𝑏. The corresponding

bivariate extreme value distribution is given by

𝐺(𝑦1, 𝑦2) = exp
[︁

− 𝑦−1
1 {1 − 𝐵(𝑞; 𝑎 + 1, 𝑏)} − 𝑦−1

2 𝐵(𝑞; 𝑎, 𝑏 + 1)
]︁
, 𝑦1, 𝑦2 > 0,

where 𝑞 = 𝑎𝑦1/(𝑎𝑦1 + 𝑏𝑦2) and 𝐵(𝑞; 𝑎, 𝑏) is the regularized incomplete beta function. If (𝑎, 𝑏) =
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(1, 1), the Pickands dependence function can be easily expressed as

𝐴(𝑤) = 1 − 𝑤(1 − 𝑤), 𝑤 ∈ (0, 1),

with an extremal coefficient 𝐶 = 3/2. The Pickands dependence function inherits the asymmetry

of the model, and is displayed in Figure 1-1 (b) for three different pairs of parameters.
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Figure 1-1. Pickands dependence functions: (a) logistic model with 𝛼 = 0.1 (black solid line), 𝛼 = 0.5
(blue dashed line), 𝛼 = 0.9 (green dotted line); (b) Dirichlet model with (𝑎, 𝑏) = (1, 1) (black solid line),
(𝑎, 𝑏) = (100, 1) (blue dashed line) and (𝑎, 𝑏) = (0.1, 10) (green dotted line).

Although some parametric models may offer a good balance between model flexibility and analyt-

ical tractability, they are far from covering the general class of bivariate extreme value distribu-

tions. Moreover, the simplicity of the models can lead to model mis-specification. As mentioned

before, the nonparametric nature of 𝐻 makes nonparametric methods a perhaps more natural

and reasonable approach. Nevertheless, it is not straightforward to constrain nonparametric es-

timators to satisfy functional constraints of the form (1.12). In the next section, we study three

nonparametric estimators of the spectral measure that have been proposed in the literature.

More details on nonparametric estimation of the spectral measure and on estimation of extremal

dependence, can be found in Kiriliouk et al. (2015).
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∙ Nonparametric estimation

As mentioned before, to understand the tail dependence structure of a random vector, we model

the joint tail of a bivariate distribution by modeling the marginal distributions and the dependence

structure separately. To estimate dependence at high levels, the spectral measure as defined

in (1.15) is particularly useful. In practice, we do not observe the pseudo-angles 𝑊𝑖, but we can

construct proxies by setting

̂︀𝑅𝑖 = ̂︀𝑌 ⋆
𝑖,1 + ̂︀𝑌 ⋆

𝑖,2,
̂︁𝑊𝑖 =

̂︀𝑌 ⋆
𝑖,1̂︀𝑌 ⋆

𝑖,1 + ̂︀𝑌 ⋆
𝑖,2

,

where ̂︀𝑌 ⋆
𝑖,1 = −1/ log ̂︀𝐹1(𝑌𝑖,1) and ̂︀𝑌 ⋆

𝑖,2 = −1/ log ̂︀𝐹2(𝑌𝑖,2) and ̂︀𝐹1 = ̂︀𝐹1,𝑁 , ̂︀𝐹2 = ̂︀𝐹2,𝑁 are estimators

of the marginal distribution functions 𝐹1 and 𝐹2 respectively. A robust choice for ̂︀𝐹𝑋 and ̂︀𝐹𝑌 is

the pair of univariate empirical distribution functions, normalized by 𝑁 + 1 rather than by 𝑁 to

avoid division by zero. In this case, ̂︀𝑌 ⋆
𝑖,1 and ̂︀𝑌 ⋆

𝑖,2 are functions of the ranks. For a high enough

threshold 𝑡𝑁 , the collection of angles {̂︁𝑊𝑖 : 𝑖 ∈ 𝐼𝑁} with 𝐼𝑁 = {𝑖 = 1, . . . , 𝑁 : ̂︀𝑅𝑖 > 𝑡𝑁} can be

regarded as an approximate sample from the spectral measure 𝐻. Parametric or nonparametric

inference on 𝐻 may then be based upon the sample {̂︁𝑊𝑖 : 𝑖 ∈ 𝐼𝑁}.

The spectral measure lies at the basis of nonparametric techniques and in this section, we study

three nonparametric estimators proposed in the literature. All three are of the form

�̃�𝑙(𝑤) =
∑︁

𝑖∈𝐼𝑁

̃︀𝑝𝑙,𝑖1{̂︁𝑊𝑖 ≤ 𝑤}, 𝑤 ∈ [0, 1], 𝑙 ∈ {1, 2, 3},

and the estimators distinguish themselves in the way the weights ̃︀𝑝𝑙,𝑖 are defined.

For the empirical spectral measure (Einhmahl et al., 2001), the weights are ̃︀𝑝1,𝑖 = 1/𝑛, where

𝑛 = |𝐼𝑁 | denotes the cardinality of the set 𝐼𝑁 , i.e., the number of extreme observations. The

estimator �̃�1 becomes an empirical version of (1.15), i.e.,

�̃�1(𝑤) = 1
𝑛

∑︁
𝑖∈𝐼𝑁

1{̂︁𝑊𝑖 ≤ 𝑤}, 𝑤 ∈ [0, 1].

This estimator does not necessarily satisfy the moment constraints in (1.12) and this is the
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motivation for the two other estimators, where the moment constraint is enforced by requiring

that ∑︀𝑖∈𝐼𝑁

̂︁𝑊𝑖̃︀𝑝𝑙,𝑖 = 1/2, for 𝑙 = 2, 3.

For the maximum empirical likelihood estimator (Einhmahl and Segers, 2009), �̃�2 has probability

masses ̃︀𝑝2,𝑖 solving the optimization problem

max
𝑝∈R𝑛

+

∑︁
𝑖∈𝐼𝑁

log 𝑝2,𝑖

s.t.
∑︁

𝑖∈𝐼𝑁

𝑝2,𝑖 = 1,
∑︁

𝑖∈𝐼𝑁

̂︁𝑊𝑖𝑝2,𝑖 = 1/2. (1.27)

We can see that, by construction, the weights ̃︀𝑝2,𝑖 satisfy the moment constraints and is implicitly

assumed that ̃︀𝑝2,𝑖 > 0. The optimization problem in (1.27) can be solved by the method of

Lagrange multipliers. In the nontrivial case where 1/2 is in the convex hull of {𝑊𝑖 : 𝑖 ∈ 𝐼𝑁}, the

solution is given by

̃︀𝑝2,𝑖 = 1
𝑛

1
1 + 𝜆{̂︁𝑊𝑖 − 1/2}

, 𝑖 ∈ 𝐼𝑁 ,

where 𝜆 ∈ R is the Lagrange multiplier associated to the second equality constraint in (1.27),

defined implicitly as the solution to the equation

1
𝑛

∑︁
𝑖∈𝐼𝑁

̂︁𝑊𝑖 − 1/2
1 + 𝜆(̂︁𝑊𝑖 − 1/2)

= 0,

(see, for instance, Owen, 2001, Chapter 3). Then, the maximum empirical likelihood estimator is

�̃�2(𝑤) =
∑︁

𝑖∈𝐼𝑁

1
𝑛{1 + 𝜆(̂︁𝑊𝑖 − 1/2)}

1{̂︁𝑊𝑖 ≤ 𝑤}, 𝑤 ∈ [0, 1].

Computation of �̃�2 is not simple since its expression is not free of Lagrange multipliers. This

also makes asymptotic theory less manageable. This complexity motivates the introduction of

the next estimator.

The Euclidean likelihood estimator (de Carvalho et al., 2013) satisfies the moment constraints

in (1.12) and is related with the maximum empirical likelihood estimator. The probability masses
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̃︀𝑝3,𝑖 solve the optimization problem

max
𝑝∈R𝑛

+
− 1

2
∑︁

𝑖∈𝐼𝑁

log(𝑛𝑝3,𝑖 − 1)2

s.t.
∑︁

𝑖∈𝐼𝑁

𝑝3,𝑖 = 1,
∑︁

𝑖∈𝐼𝑁

̂︁𝑊𝑖𝑝3,𝑖 = 1/2. (1.28)

This quadratic optimization problem with linear constraints can be solved explicitly with the

method of Lagrange multipliers, yielding

̃︀𝑝3,𝑖 = 1
𝑛

{1 − (𝑊 − 1/2)𝑆−2
𝑊 (̂︁𝑊𝑖 − 𝑊 )}, 𝑖 ∈ 𝐼𝑁 , (1.29)

where 𝑊 and 𝑆2
𝑊 denote the sample mean and sample variance of ̂︁𝑊𝑖, 𝑖 ∈ 𝐼𝑁 , respectively, that

is,

𝑊 = 1
𝑛

∑︁
𝑖∈𝐼𝑁

̂︁𝑊𝑖, 𝑆2
𝑊 = 1

𝑛

∑︁
𝑖∈𝐼𝑁

(̂︁𝑊𝑖 − 𝑊 )2.

The Euclidean likelihood estimator can then be written as

�̃�3(𝑤) =
∑︁

𝑖∈𝐼𝑁

1
𝑛

{1 − (𝑊 − 1/2)𝑆−2
𝑊 (̂︁𝑊𝑖 − 𝑊 )}1{̂︁𝑊𝑖 ≤ 𝑤}, 𝑤 ∈ [0, 1].

We can see that �̃�3 is especially convenient as the weights ̃︀𝑝3,𝑖 are given explicitly. The weights
̃︀𝑝3,𝑖 could be negative, but this does usually not occur as the weights are all nonnegative with

probability tending to one.

It is shown in Einhmahl and Segers (2009) and in de Carvalho et al. (2013) that �̃�2 and �̃�3 are

more efficient than �̃�1. Moreover, asymptotically, there is no difference between the maximum

empirical likelihood or maximum Euclidean likelihood estimators.

Example 5. Recall the bivariate logistic model from Example 3:

𝐺(𝑦1, 𝑦2) = exp
{︂

−
(︂

𝑦
−1/𝛼
1 + 𝑦

−1/𝛼
2

)︂𝛼}︂
, 𝑦1, 𝑦2 > 0.
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Figure 1-2. Trajectories of the empirical measure (dotted line), the maximum empirical likelihood es-
timator (dashed line), and the maximum Euclidean likelihood estimator (solid line). The solid grey line
corresponds to the true spectral measure of the bivariate logistic model with 𝛼 = 0.4 (left) and 𝛼 = 0.8
(right).

For this model, Figure 1-2 shows typical trajectories of the three nonparametric estimators. We

can see that the performance of the empirical spectral measure is better for lower values of 𝛼

(i.e., when the model is closer to complete dependence), although in both cases the maximum

Euclidean and empirical likelihood estimators perform better. We can also see the closeness of

the maximum Euclidean and empirical likelihood estimators.

By construction, the three estimators of the spectral measure are discrete. A smooth version

which still obeys the moment constraint in (1.12) can be obtained by smoothing the maximum

Euclidean or empirical likelihood estimator using kernel smoothing techniques (Chen, 1997; Hall

and Presnell, 1988), although some care is needed since the spectral measure is defined on a

compact interval. For the Euclidean empirical likelihood estimator, de Carvalho et al. (2013)

propose a smooth estimator by combining beta distributions with the weights (1.29). To ensure

that the estimated measure obeys the marginal moment constraint, it is imposed that the mean

of each smoother equals the observed pseudo-angles. For a sample of 𝑛 pseudo-angles, the smooth
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Euclidean spectral density is defined as

̃︀ℎ(𝑤) =
𝑛∑︁

𝑖=1
̃︀𝑝3,𝑖𝛽{𝑤; 𝑊𝑖𝜈, (1 − 𝑊𝑖)𝜈}, 𝑤 ∈ (0, 1),

where 𝜈 > 0 is a concentration parameter, asymptotically inversely proportional to the variance of

the kernel beta, and with the main role of controlling the amount of smoothing. The corresponding

smoothed spectral measure is defined as

�̃�(𝑤) =
∫︁ 𝑤

0
̃︀ℎ(𝑣)d𝑣 =

𝑛∑︁
𝑖=1

̃︀𝑝3,𝑖𝐵{𝑤; 𝑊𝑖𝜈, (1 − 𝑊𝑖)𝜈}, 𝑤 ∈ (0, 1),

where 𝐵(·; 𝑎, 𝑏) is the regularized incomplete beta function, with 𝑎, 𝑏 > 0. Note that since

∫︁ 1

0
𝑤̃︀ℎ(𝑤)d𝑤 =

𝑛∑︁
𝑖=1

̃︀𝑝3,𝑖

{︂
𝜈𝑊𝑖

𝜈𝑊𝑖 + (1 − 𝑊𝑖)𝜈

}︂
=

𝑛∑︁
𝑖=1

̃︀𝑝3,𝑖𝑊𝑖 = 1/2,

the mean constraint is satisfied.

Plug-in estimators can be immediately constructed using the smooth Euclidean spectral density

and measure. For the Pickands dependence function and the bivariate extreme value distribution

the estimates are

𝐴(𝑤) = 1 − 𝑤 + 2
𝑛∑︁

𝑖=1
̃︀𝑝3,𝑖

∫︁ 𝑤

0
𝐵{𝑢; 𝑊𝑖𝜈, (1 − 𝑊𝑖)𝜈}d𝑢, 𝑤 ∈ (0, 1),

�̃�(𝑦1, 𝑦2) = exp
{︂

− 2
𝑛∑︁

𝑖=1
̃︀𝑝3,𝑖

∫︁ 1

0
max

(︂
𝑢

𝑦1
,
1 − 𝑢

𝑦2

)︂
𝛽{𝑢; 𝑊𝑖𝜈, (1 − 𝑊𝑖)𝜈}d𝑢

}︂
, 𝑦1, 𝑦2 > 0.

1.1.4 Regression analysis in bivariate extremes

The aim of regression analysis is the description of a variable of primary interest (the response) in

terms of a set of covariates, and this is carried out through the construction of suitable mathematical

models. The regression model has been widely studied over the years and linear regression analysis is

one of the oldest and most used statistical techniques. The general linear model links the dependent

variable to the covariates in an approximate linear way, making the response distribution depend on
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the covariates through its mean. Many extensions of this model have been proposed over the past

years, unified by the GLM models, which provide an accessible framework for this kind of analysis.

When dealing with heavy-tailed distributions, the population moments may not be finite, and the

techniques for GLMs cannot be used for statistical analysis. Further, from an extreme value point of

view, the main interest is in describing conditional tail characteristics rather than modeling conditional

means.

The use of covariate information allow us to combine data sets originating from different sources,

resulting in opportunities for better point estimates and improved inference. In the univariate setting,

the method of block maxima fits the GEV to a sample of maxima, taking one or more of the GEV

parameters as a function of the covariates and the regression coefficients, similarly to the approach

in nonstationary sequences. Inference can be carried out also in a similar way to the nonstationary

sequences case, and goodness-of-fit assessment only requires a suitable transformation of the sample

of maxima to obtain identically distributed residuals to produce several kinds of diagnostic plots.

Regression for peaks over threshold models were introduced by Davison and Smith (1990). Here,

generalized Pareto distribution-based regression models are fitted to exceedances over a high threshold.

Similar to the approach followed with the GEV, the idea is to extend the generalized Pareto distribution

to a regression model by taking any of the parameters as a function of the covariates and the regression

coefficients.

Although the regression terminology has not been used in the bivariate setting, in the literature there

are two articles dealing with extremal dependence structures where covariate can be incorporated. The

first article correspond to the density ratio model introduced by de Carvalho and Davison (2014). This

is a semiparametric model for the case where several multivariate extremal distributions are linked

through the action of a covariate on an unspecified baseline distribution. The model links the spectral

distributions through a known weight function modulated by so-called tilting parameters. Specifically,

let 𝐻0, . . . , 𝐻𝐾 be the measures of interest, and assume that they are linked through an exponential

tilt, i.e.,

d𝐻𝑘(𝑤)
d𝐻0(𝑤) = exp{𝛼𝑘 + 𝛽𝑘𝑐(𝑤)}, 𝑘 = 0, . . . , 𝐾. (1.30)

29



1.1. BACKGROUND AND LITERATURE REVIEW

Here, 𝑐(𝑤) is a known distortion function and 𝛼 = (𝛼1, . . . , 𝛼𝐾)𝑇 and 𝛽 = (𝛽1, . . . , 𝛽𝐾)𝑇 are the tilting

parameters. Specifically, 𝛽 measures the dependence with respect to the baseline distribution 𝐻0, and

𝛼 is related to 𝛽 through the normalization and moments constraints

∫︁ 1

0
exp{𝛼𝑘 + 𝛽𝑘𝑐(𝑤)}d𝐻0(𝑤) = 1,

∫︁ 1

0
𝑤 exp{𝛼𝑘 + 𝛽𝑘𝑐(𝑤)}d𝐻0(𝑤) = 1/2, (1.31)

for 𝑘 = 0, . . . , 𝐾. Inference for this model can be carried out through an empirical likelihood approach,

based on the combined sample 𝑉 = {𝑣1, . . . ,𝑣𝑛} = {𝑤0,1, . . . , 𝑤0,𝑛0 , . . . , 𝑤𝐾,1, . . . , 𝑤𝐾,𝑛𝐾
}. The log

likelihood obtained from the model specification in (1.30) is

ℓ(𝛼,𝛽, 𝐻0) =
𝑛∑︁

𝑖=1
log 𝑝𝑖 +

𝐾∑︁
𝑘=0

𝑛𝑘∑︁
𝑗=1

{𝛼𝑘 + 𝛽𝑘𝑐(𝑤𝑘,𝑗)}, (1.32)

where 𝑝𝑖 = d𝐻0(𝑣𝑖) denotes the sizes in the jump of the baseline spectral distribution function 𝐻0 at

the observed 𝑣𝑖. Empirical likelihood estimation of the spectral density ratio model involves maximiz-

ing (1.32) subject to the empirical versions of constraints (1.31), i.e.,

𝑝𝑖 ≥ 0, 𝑣𝑖 ∈ (0, 1),
𝑛∑︁

𝑖=1
𝑝𝑖 = 1,

𝑛∑︁
𝑖=1

𝑝𝑖𝑣𝑖 = 1/2,

𝑛∑︁
𝑖=1

𝑝𝑖 exp{𝛼𝑘 + 𝛽𝑘𝑐(𝑣𝑖)} = 1,
𝑛∑︁

𝑖=1
𝑝𝑖𝑣𝑖 exp{𝛼𝑘 + 𝛽𝑘𝑐(𝑣𝑖)} = 1/2. (1.33)

This yields the estimator

̂︁𝐻𝑘(𝑤) =
𝑛∑︁

𝑖=1

𝐼(𝑣𝑖 ≤ 𝑤) exp{̂︀𝛼𝑘 + ̂︀𝛽𝑘𝑐(𝑣𝑖)}
𝜌0 + (𝑣𝑖 − 1/2) +∑︀𝐾

𝑘=1[exp{̂︀𝛼𝑘 + ̂︀𝛽𝑘𝑐(𝑣𝑖)}{𝜌𝑘 + ̂︀𝜆𝑘(𝑣𝑖 − 1/2)}]
,

where 𝑛 = ∑︀𝐾
𝑘=1 𝑛𝑘, 𝜌𝑘 = 𝑛𝑘/𝑛 and 𝜆 = (𝜆1, . . . , 𝜆𝐾)𝑇 denotes the Lagrange multipliers corresponding

to the constraints in (1.31).

Since the estimate of 𝐻𝑘 is based on 𝑛 = ∑︀𝐾
𝑘=0 𝑛𝑘, the model of de Carvalho and Davison (2014) allows

for borrowing strength across samples, but as posed by de Carvalho (2015), their approach requires a

substantial computational investment; in particular, inference entails intensive constrained optimiza-
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tion problems so that estimates of 𝐻𝑘 obey the empirical versions of the normalization and moment

constraints in (1.33).

A second article that includes covariates in the modeling of extremal dependence structures, correspond

to the nonstationary max-stable dependence structures developed by Huser and Genton (2014). The au-

thors propose a sensible nonstationary dependence model for the context of spatial extremes, where co-

variates can be incorporated. The model combines the nonstationary extremal 𝑡 model (Nikoloulopou-

los et al., 2009; Opitz, 2013; Thibaud and Opitz, 2014), which is a model proposed in the literature

for modeling spatial extremes within a copula framework, with nonstationary correlation functions,

specifically, the kernel convolution approach advocated by Paciorek (2006). To incorporate covariate

effects in the dependence structure at extreme levels, the authors propose modeling the covariance

matrices using the Paciorek (2006) approach, as functions of vector of covariates associated with each

location and vector of parameter measuring the importance of covariates. Since the full likelihood for

max-stable processes is intractable, the authors conduct inference using pairwise likelihoods (Lindsay,

1988; Varin et al., 2011). The nonstationary max-stable models fitted by the authors have proved to

provide a better fit with respect to the traditional stationary and isotropic max-stable counterpart,

although their attention is focused on componentwise maxima instead of peaks over threshold. This

somehow less efficient approach has its foundations in the complications inherent to threshold models

(threshold selection, modeling of temporal dependence, etc.) and the additional difficulties derived

from the nonstationarity context. We choose not to include further details on the Huser and Genton

(2014) model, since the spatial context is beyond the scope of this thesis, but we encourage the reader

to explore this interesting approach.

The methodologies developed in this dissertation are restricted to extremes of bivariate data, but

theoretically, the main results can be extended to a 𝑑-dimensional random sample, with 𝑑 > 2. The

feasibility of these extensions is discussed in Chapter 4. To have some insights on multivariate extremes,

the following section is devoted to the multivariate version of the domain of attraction problem, which

is to find a suitable family of multivariate distributions that approximate the distribution of properly

normalized componentwise maxima.
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1.1.5 Multivariate extreme value theory

Let {Y𝑖}𝑁
𝑖=1 be independent and identically distributed vectors of continuous random variables on R𝑑,

with distribution function 𝐹 . Without loss of generality, suppose that 𝐹 has unit Fréchet marginal

distributions. Pickands (1981) asserts that the limiting distribution of the componentwise standardized

maximum M𝑁 = 𝑁−1 max{Y1, . . . , Y𝑁}, which corresponds to the multivariate standardized version

of (1.9), is a 𝑑-dimensional extreme value distribution:

𝐺(y) = exp{−𝑉 (y)} = exp
{︂

− 𝑑
∫︁

Δ𝑑

max
(︂

𝑤1

𝑦1
, . . . ,

𝑤𝑑

𝑦𝑑

)︂
d𝐻(𝑤)

}︂
, y = (𝑦1, . . . , 𝑦𝑑) ∈ [0, ∞)𝑑.

(1.34)

Here 𝑉 is the exponent measure, and 𝐻 is the spectral distribution, defined on the unit simplex in R𝑑,

i.e., Δ𝑑 = {𝑤 ∈ [0, ∞)𝑑 : ∑︀𝑑
𝑗=1 𝑤𝑑 = 1}. 𝐻 satisfies the normalization and moment constraints

∫︁
Δ𝑑

d𝐻(𝑤) = 1,
∫︁

Δ𝑑

𝑤d𝐻(𝑤) = 𝑑−11𝑑, (1.35)

where 1𝑑 is the 𝑑-vector of ones. As in the bivariate case, the distribution 𝐻 determines the interaction

between joint extremes, and this can be understood through the pseudo-polar transformation 𝑊𝑖 =

𝑅−1
𝑖 Y𝑖, 𝑅𝑖 = ∑︀𝑑

𝑗=1 𝑊𝑖,𝑗. It can be shown that 𝑊𝑖 has measure 𝐻 on Δ𝑑 conditional on 𝑅𝑖 → ∞.

The limiting cases of independence and dependence in the 𝑑-dimensional setting have an analogous

interpretation to the bivariate setting (examples 1 and 2): extremal independence corresponds to a

spectral distribution placing equal masses 𝑑−1 at the vertices of Δ𝑑, yielding 𝐺(y) = exp
{︁

−∑︀𝑑
𝑗=1 𝑦−1

𝑗

}︁
,

whereas perfect extremal dependence corresponds to a spectral distribution having mass only at the

barycenter 𝑑−11𝑑 of Δ𝑑, and hence 𝐺(y) = exp
{︁

− 1/ min(𝑦1, . . . , 𝑦𝑑)
}︁
.

Then, 𝐺 is the limit distribution of properly normalized componentwise maxima of an independent

sample from 𝐹 , as the sample size tends to infinity. The margins of 𝐺, 𝐺𝑗, for 𝑗 = 1, . . . , 𝑑, are

univariate extreme value distribution functions. They have the corresponding margins, 𝐹𝑗, of 𝐹 in

their respective domains of attraction. Alternative representations of the dependence structure of 𝐺

are sometimes handy, and this is the case of the stable tail dependence function l, which can be defined
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for 𝑣 = (𝑣1, . . . , 𝑣𝑑)′ in terms of the spectral measure 𝐻 through

𝑙(𝑣) = 𝑉
(︂ 1

𝑣1
, . . . ,

1
𝑣𝑑

)︂
= 𝑑

∫︁
Δ𝑑

max(𝑤1𝑣1, . . . , 𝑤𝑑𝑣𝑑)𝐻(d𝑤), 𝑣 ∈ [0, ∞)𝑑.

The partial derivatives of 𝑙 can be used to compute the densities of the spectral measure 𝐻 on the 2𝑑

faces of the unit simplex Δ𝑑.

As in the bivariate case, there is a similar result in terms of the limit distribution of excesses over a

high multivariate threshold, which is beyond the scope of this dissertation. See (Beirlant et al., 2004,

p. 277) for a concise description of this representation. More details on multivariate extremes value

theory and applications can be found in (Beirlant et al., 2004, Chapters 8 and 9). Segers (2012) provides

a comprehensive account of the ways in which models for multivariate extremes can be described.

Further reading may be found in Kotz and Nadarajah (2000), Coles (2001), Drees (2001), Reiss and

Thomas (2001), and Fougeres (2004).

1.2 Motivation

The motivation for the developments of this thesis is twofold and is summarized in the following

sections.

1.2.1 Nonstationarity in bivariate extreme value distributions

Modeling nonstationarity in marginal distributions has been widely studied in applied extreme value

modeling (Coles, 2001, Chapter 6), but little effort has been made to extend this idea to more complex

settings. The simplest approach was popularized long ago by Davison and Smith (1990), and it is

based on indexing the location and scale parameters of the generalized extreme value distribution by

a predictor, 𝑥 ∈ X,

𝐺(𝑦; 𝜇𝑥, 𝜎𝑥, 𝜉) = exp[−{1 + 𝜉(𝑦 − 𝜇𝑥)/𝜎𝑥}−1/𝜉
+ ]. (1.36)

In the bivariate setting, much work has been done on developing dependence modeling frameworks,

but to the best of our knownledge, there is a scarcity of results in the nonstationary setting related

33



1.2. MOTIVATION

to extreme dependence structures changing according to a predictor. Some related results have been

provided by Eastoe (2009), who introduces a conditionally independent hierarchical model, Jonathan

et al. (2014), who develop methodology for including covariates in the model of Heffernan and Tawn

(2004), and the models of de Carvalho and Davison (2014) and Huser and Genton (2014) discussed

above. However, none of these results consider the evolution of the dependence structure as their

modeling framework.

The gap between the developments in nonstationary marginal distributions and bivariate distributions

is a problem that needs to be addressed. In particular, it is necessary to find a bivariate analogous

to the Davison and Smith (1990) setting in (1.36). This analogy comes on the heels of what we call

predictor-dependent spectral measure (de Carvalho, 2015) and is the basis of our modeling. It it also

necessary to produce suitable methodologies to estimate the predictor-depending spectral distribution,

in the sense that satisfy the functional constraint (1.12). These methodologies should be balanced

in a way that we account for desirable theoretical properties and easy and efficient computational

implementation. To address these issues, we study nonstationary from two prospects. First, we consider

a setting where several extreme observations are related to a unique value of the predictor. This

setting is motivated by a temperature analysis case study, where the dependence between extreme air

temperatures under the forest canopy and in a nearby open field at 14 sites in Switzerland is being

analyzed. In this case, the altitude of the 14 sites is used as predictor, and the aim is to assess how

extremely high temperatures in the open are related to those under the canopy. The second prospect is

related to pairs of observations, one corresponding to the predictor value and the other to the extreme

observation. This setting is particularly suited to assess temporal changes in extremal dependence

and is motivated by the work of Poon et al. (2003, 2004), who studied the dependence between stock

market returns in the US, UK, France, Germany, and Japan. Considering only the European markets,

they found that there was evidence for relatively strong left tail dependence, but most importantly, the

results in Poon et al. (2003) suggest that dependence is not stationary in time. In this case, our main

focus is to explore this nonstationarity using a full model for the time-varying dependence structure.
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1.2.2 Nonparametric estimation of the spectral density

A general review of applications of extreme values, from financial risk (Poon et al., 2003) to environ-

mental studies (Eastoe and Tawn, 2009), reveals the need to augment the literature on modeling the

spectral density. The application of bivariate extremes involves a number of choices that needs to be

made in order to analyze the data: Should we use parametric or nonparametric modeling? Should we

focus on block maxima or threshold exceedances? Do we account for asymptotic dependence or inde-

pendence? The latest developments have highlighted the difficulty in finding methodologies that are

universally applicable and able to answer to all of these questions automatically. Nevertheless, this is

not a reason to cease the search for better approaches or improvement of the already existing methods

in any of the choices mentioned before. Within the framework of asymptotic dependence, we propose a

fully nonparametric approach which is advantageous since neither the form of the bivariate distribution

nor the form of dependence on the covariate is assumed. Thereby, we augment the statistical methods

for modeling bivariate extreme values, allowing the incorporation of covariate information. This results

in the possibility to combine data sets originating from different sources, turning in opportunities for

better point estimates and improved inference.

1.3 Thesis outline

The work of this dissertation can be divided in two parts that have been developed inside a nonstation-

ary bivariate extreme value setting. Particularly, in the context of covariate or predictor-dependent

bivariate extremes. We present each part in individual chapters that can be read separately, since they

are self-contained in terms of notation, definitions, and results. For convenience of the reader, some

parts mentioned in the introduction may be repeated on later chapters.

Chapter 2 is devoted to developing our first predictor-dependent model, that allows us to assess

how extremal dependence can change over different values of a discrete predictor. For estimating our

model we propose two double kernel estimators (the second been a reweighed version of the first), which

can be seen as an extension of the Nadaraya–Watson estimator where the usual scalar responses are

replaced by mean-constrained densities on the unit simplex. We provide numerical experiments that
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show that our methods require a much lower computational investment than its closer competitor.

In Chapter 3 we propose our second predictor-dependent model, which is suitable to assess temporal

changes in extremal dependence. We consider as a substantial case study the evolution of extremal de-

pendence in some major European stock markets. We provide evidence that lead us to sustain that the

dependence is not stationary in time, and we explore this nonstationarity in a more complete manner

than has been done before. From a theoretical point of view, we introduce the notion of predictor-

dependent spectral measure, propose a nonparametric estimator and settled conditions for desirable

asymptotic properties. Details on practical implementation are also provided.

In Chapter 4 we discuss limitations of proposed models and comment on possible directions of

future research.
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2 Spectral density regression for bivariate extremes

2.1 Introduction

Modeling nonstationarity in marginal distributions has been the focus of much recent literature in

applied extreme value modelling. The simplest approach was popularized long ago by Davison and

Smith (1990), and it is based on indexing the location and scale parameters of the generalized extreme

value distribution by a predictor, say by considering

𝐺(𝜇𝑥,𝜎𝑥,𝜉)(𝑦) = exp[−{1 + 𝜉(𝑦 − 𝜇𝑥)/𝜎𝑥}−1/𝜉
+ ]. (2.1)

See also Coles (2001, Ch. 6), Chavez-Demoulin and Davison (2005), Eastoe and Tawn (2009), and

Chavez-Demoulin et al. (2015), for related approaches.

In areas such as environmental impact assessment or financial risk management, one is often con-

cerned in assessing how extreme outcomes of two or more variables are related, and the mathematical

basis for such modeling is that of statistics of bivariate extremes. In such contexts, extremal dependence

is often interpreted as a synonym of risk, and when modeling bivariate extremes we are naturally led to

the bivariate extreme value distribution. It is well known that the bivariate extreme value distribution,

depends on an infinite-dimensional parameter (𝐻) (Coles, 2001, Theorem 8.1), and it can be written

as

𝐺𝐻(𝑦1, 𝑦2) = exp
{︃

− 2
∫︁ 1

0
max

(︃
𝑤

𝑦1
,
1 − 𝑤

𝑦2

)︃
d𝐻(𝑤)

}︃
, (2.2)

for 𝑦1, 𝑦2 > 0, where 𝐻 is the so-called spectral distribution function, which is a distribution function
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on [0, 1] obeying the moment constraint

∫︁ 1

0
𝑤 d𝐻(𝑤) = 1/2. (2.3)

Roughly speaking, the more mass 𝐻 puts close to 1/2 the higher the level of extremal dependence,

whereas the more mass 𝐻 puts close to 0 and 1 the more independent the extremes are. Since the

object of interest in bivariate extremes is intrinsically nonparametric, nonparametric methods have

become a natural tool for estimation. A survey on nonparametric estimation of extremal dependence

can be found in Kiriliouk et al. (2015).

And how to model ‘nonstationary bivariate extremes’ if one must? Surprisingly, by comparison to

the marginal case, approaches to modelling nonstationarity in the extremal dependence structure have

received relatively little attention. However, in many settings of applied interest, it seems natural to

regard risk from a covariate-adjusted viewpoint, allowing for extremal dependence to increase/decrease

according to a covariate. But to develop ideas of covariate-adjusted risk using statistics of bivariate

extremes we need to allow for nonstationary extremal dependence structures, so to assess the dynamics

governing extremal dependence of pairs of variables of interest.

In this chapter we discuss methods for modeling nonstationary extremal dependence structures.

Our approach can be regarded as an analogue to the bivariate setting of the Davison–Smith approach

in (2.1), and it is based on indexing the parameter of the bivariate extreme value distribution (𝐻) with

a covariate, i.e. considering {𝐻𝑥 : 𝑥 ∈ X ⊂ R}, and taking

𝐺𝐻𝑥(𝑦1, 𝑦2) = exp
{︃

− 2
∫︁ 1

0
max

(︃
𝑤

𝑦1
,
1 − 𝑤

𝑦2

)︃
d𝐻𝑥(𝑤)

}︃
, (2.4)

for 𝑦1, 𝑦2 > 0. Obviously, the 𝐻𝑥—to which we refer as predictor-dependent spectral measures—will

need to obey the moment constraints (2.3), for every 𝑥, so that 𝐺𝐻𝑥 is a valid bivariate extreme value

distribution.

A main goal of this chapter is on modeling families of spectral densities indexed by a covariate, and

we refer to our approach as a spectral ‘density regression.’ In terms of estimation, we propose a non-

parametric estimator, that have connections with the Nadaraya–Watson estimator (Nadaraya, 1964;
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2.2. SPECTRAL DENSITY REGRESSION MODEL

Watson, 1964). While ‘density regression,’ could sound like a misnomer, we underscore that similar

terminology has been used on related topics for referring to contexts where the interest is in estimating

a predictor-dependent family of densities; see Dunson et al. (2007). A related approach to the one

discussed here has been recently proposed by de Carvalho and Davison (2014) who introduced a model

for the case where several bivariate extremal distributions are linked through the action of a covari-

ate. A challenge with their model is however that inference entails intensive constrained optimization

problems. In comparison with de Carvalho and Davison (2014) approach, our model avoids the need of

specifying a tilting function, it allows for straightforward extrapolation to unobserved covariate values,

it allows for estimation of covariate-adjusted spectral densities (and not only spectral measures), and

it is computationally straightforward. Another related approach is that of Huser and Genton (2014)

who use nonstationary max-stable dependence structures to develop nonstationary models for spatial

extremes in which covariates can be incorporated.

In Section 2.2 we introduce spectral density regression, propose a method for inference and es-

timation, and give details on computational implementation. A simulation study is conducted in

Section 2.3, while an application to extreme forest temperatures is given in Section 2.4. Section 2.5

offers conclusions. The Appendix includes additional empirical reports.

2.2 Spectral density regression model

2.2.1 Bivariate statistics of extremes and 𝐾-sample setting

Let {(𝑌𝑖,1, 𝑌𝑖,2)}𝑁
𝑖=1 be a sequence of independent identically distributed random vectors with unit

Fréchet marginal distributions, 𝐹1(𝑦) = 𝐹2(𝑦) = exp(−1/𝑦), for 𝑦 > 0. The underlying theory for

modeling bivariate extremes is based in the so-called Pickands’ (1981) representation theorem, a con-

vergence result which provides the limiting distribution of the componentwise standardized maximum,

(𝑀1,𝑁 , 𝑀2,𝑁) = 𝑁−1
(︂

max
𝑖=1,...,𝑁

{𝑌𝑖,1}, max
𝑖=1,...,𝑁

{𝑌𝑖,2}
)︂

.
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2.2. SPECTRAL DENSITY REGRESSION MODEL

Pickands (1981) established that

𝑃 (𝑀1,𝑁 6 𝑦1, 𝑀2,𝑁 6 𝑦2) → 𝐺𝐻(𝑦1, 𝑦2), (2.5)

as 𝑁 → ∞, where 𝑦1, 𝑦2 > 0, provided the limit exists and is non-degenerate; see also Coles (2001,

Theorem 8.1). Here 𝐺 is the bivariate extreme value distribution defined in (2.2) and is in one to one

correspondence with 𝐻, the spectral distribution function that is mean-constrained according to (2.3).

The spectral measure 𝐻 provides relevant information on extremal dependence, and can be used to

describe the extremal dependence structure of the random vector (𝑌1, 𝑌2). This can be understood

through a pseudo-polar transformation, where we map (𝑌1,1, 𝑌1,2), . . . , (𝑌𝑁,1, 𝑌𝑁,2), to pseudo-angular

and radial variates

(𝑊𝑖, 𝑅𝑖) =
(︃

𝑌𝑖,1

𝑌𝑖,1 + 𝑌𝑖,2
, 𝑌𝑖,1 + 𝑌𝑖,2

)︃
, 𝑖 = 1, . . . , 𝑁.

de Haan and Resnick (1977) showed that 𝑊𝑖 has measure 𝐻 on [0,1] conditional on 𝑅𝑖 → ∞. If 𝑊 and

𝑅 are general terms of the sequence {(𝑊𝑖, 𝑅𝑖)}𝑁
𝑖=1, the latter result tells us that when the radius 𝑅 is

large, the pseudo-angle 𝑊 is approximately distributed according to 𝐻, and approximately independent

of 𝑅. The limiting cases of the distribution 𝐻 are given by asymptotic independence, whereby all mass

is placed at the boundaries of [0, 1], giving 𝐺(𝑦1, 𝑦2) = exp{−(𝑦−1
1 +𝑦−1

2 )}, and by complete dependence,

whereby all mass is placed at the centre of the interval, yielding 𝐺(𝑦1, 𝑦2) = exp{− max
(︁
𝑦−1

1 , 𝑦−1
2

)︁
}.

We refer to situations where 𝐻 has mass away from the vertices as asymptotic dependence, and this

will be the framework of our modeling. Throughout we assume that 𝐻 is absolutely continuous with

spectral density ℎ(𝑤) = d𝐻(𝑤)/d𝑤.

Given a sample (𝑌1,1, 𝑌1,2), . . . , (𝑌𝑁,1, 𝑌𝑁,2), we may construct proxies for the unobservable pseudo-

angles 𝑊𝑖 by setting

(𝑊𝑖, 𝑅𝑖) =
(︃ ̂︀𝑌𝑖,1̂︀𝑌𝑖,1 + ̂︀𝑌𝑖,2

, ̂︀𝑌𝑖,1 + ̂︀𝑌𝑖,2

)︃
, 𝑖 = 1, . . . , 𝑁.

where ̂︀𝑌𝑖,1 = −1/{log ̂︀𝐹1(𝑌𝑖,1)}, ̂︀𝑌𝑖,2 = −1/{log ̂︀𝐹2(𝑌𝑖,2)},

and where ̂︀𝐹1 and ̂︀𝐹2 are estimators of the marginal distribution functions 𝐹1 and 𝐹2. A robust choice

for ̂︀𝐹1 and ̂︀𝐹2 is the pair of univariate empirical distribution functions, normalized by 𝑁 +1 rather than
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2.2. SPECTRAL DENSITY REGRESSION MODEL

by 𝑁 to avoid division by zero. For a high enough threshold 𝑢, the collection of angles {𝑊𝑖 : 𝑅𝑖 > 𝑢}

can be regarded as an approximate sample from the spectral measure 𝐻. Parametric or nonparametric

inference on 𝐻 may then be based upon the sample {𝑊𝑖 : 𝑅𝑖 > 𝑢}.

Similarly to de Carvalho and Davison (2011, 2014), below we work under the so-called 𝐾-population

setting for bivariate extremes. Indeed, our applied setting of interest in Section 2.4 is one where the

raw data consists of 𝐾 pairs,

(𝑌1,1,𝑘, 𝑌1,2,𝑘), . . . , (𝑌𝑁𝑘,1,𝑘, 𝑌𝑁𝑘,2,𝑘), 𝑘 = 1, . . . , 𝐾,

plus a covariate 𝑥𝑘, and by applying similar principles as discussed above, we end up with 𝐾 samples

of pseudo-angles, i.e we work with

w𝑘 = (𝑊1,𝑘, . . . , 𝑊𝑛𝑘,𝑘).

The w𝑘 should be regarded as an approximate sample of 𝑛𝑘 pseudo-angles from the spectral measure

corresponding to the 𝑘th population, 𝐻𝑘. Thus, in the 𝐾-sample setting for bivariate extremes, data

are of the type {(𝑥𝑘, w𝑘)}𝐾
𝑘=1. We assume that 𝐻𝑘 is absolutely continuous with spectral density

ℎ𝑘 = d𝐻𝑘/d𝑤. The combined sample size is denoted by 𝑛 = 𝑛1 + · · · + 𝑛𝐾 .

2.2.2 Predictor-dependent spectral measures

Formally, {𝐹𝑥 : 𝑥 ∈ X} is a set of predictor-dependent (henceforth pd) probability measures if the 𝐹𝑥

are probability measures indexed by a covariate 𝑥 ∈ X ⊆ R. Analogously, we say that the family

{𝐻𝑥 : 𝑥 ∈ X}

is a set of pd spectral measures if

∫︁ 1

0
d𝐻𝑥(𝑤) = 1,

∫︁ 1

0
𝑤 d𝐻𝑥(𝑤) = 1

2 , 𝑥 ∈ X. (2.6)

Pd spectral measures allow us to assess how extremal dependence evolves over a certain covariate 𝑥, i.e.,

they allow us to model nonstationary extremal dependence structures; further details on pd spectral
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Figure 2-1. (a) Histograms for set of pseudo-angles and (b) interpolated spectral surface. Both figures were generated
from ℎ𝑥(𝑤) = 𝛽(𝑤; 𝑥, 𝑥) with 𝑥 taking values in a grid between 0.85 and 2.

measures can be found in de Carvalho (2015, Section 2.3).

Suppose 𝐻𝑥 is absolutely continuous for all 𝑥 ∈ X. We define the pd spectral density as ℎ𝑥(𝑤) =

d𝐻𝑥(𝑤)/d𝑤, and following de Carvalho (2015) we refer to the set

{ℎ𝑥(𝑤) : 𝑤 ∈ [0, 1], 𝑥 ∈ X}

as the spectral surface. Spectral surfaces can be readily constructed from parametric models for the

spectral density; see, for instance, Coles (2001, Section 8.2.1). Examples of spectral surfaces can be

found in Figures. 2-1(b), 2-3, and 2-8.

By using pd spectral measures we are essentially indexing the parameter of the bivariate extreme

value distribution (𝐻) with a covariate, and thus the approach in (2.4) can be regarded as an analogue

of the Davison–Smith paradigm in (2.1), but for the bivariate setting.

In practice we need to obtain estimates which obey the marginal moment constraint, and which

define a density on the unit interval, for all 𝑥 ∈ X. It is challenging to construct nonparametric

estimators able to yield valid pd spectral densities. Indeed, any such estimator, ̂︀ℎ𝑥, needs to obey the

moment constraint, i.e.,
∫︀ 1

0 𝑤̂︀ℎ𝑥(𝑤) d𝑤 = 1/2, for all 𝑥 ∈ X. In the next section we introduce one such

estimator.
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2.2.3 Double kernel estimator

Figure 2-1 resumes key ideas underlying the construction of our estimator. Figure 2-1(a) shows his-

tograms for sets of pseudo-angles generated from ℎ𝑥(𝑤) = 𝛽(𝑤; 𝑥, 𝑥) with 𝑥 taking values in a grid

between 0.85 and 2. For each value of 𝑥 in the grid {𝑥𝑘}, we would like to estimate the associated

spectral density, and then interpolate for unobserved values of 𝑥, as shown in Figure 2-1(b).

Suppose that we have a method to compute ̃︀ℎ𝑘, the spectral densities estimate at every 𝑥𝑘; in

Figure 2-1(a) ̃︀ℎ𝑘 would correspond to the histogram estimates, but for reasons that will become obvious

below we will not work with these estimates. Estimation of the pd spectral density on the basis of data

available on the 𝐾-population setting, {(𝑥𝑘, w𝑘)}𝐾
𝑘=1, entails two challenges:

1. Although we want to estimate ℎ𝑥 at every 𝑥 ∈ X, we only have data at 𝑥1, . . . , 𝑥𝐾 .

2. We need to impose to ̂︀ℎ𝑥 and ̃︀ℎ𝑘 the corresponding moment constraints.

To estimate the spectral surface, ℎ𝑥, we propose the estimator

̂︀ℎ𝑥(𝑤) =
∑︀𝐾

𝑘=1 K𝑏(𝑥 − 𝑥𝑘)̃︀ℎ𝑘(𝑤)∑︀𝐾
𝑘=1 K𝑏(𝑥 − 𝑥𝑘)

, (2.7)

for 𝑤 ∈ (0, 1), where K𝑏 is a kernel density estimator and 𝑏 > 0 is a bandwidth parameter controling

smoothing in the 𝑥-direction. The estimator in (2.7) is similar to the well-known Nadaraya–Watson

estimator (Nadaraya, 1964; Watson, 1964), but here—contrary to the usual nonparametric regression

setting—the responses are spectral densities, and hence infinite-dimensional objects; further details on

kernel regression can be found in Wand and Jones (1994, Chapter 5). If the spectral density estimates

at every 𝑥𝑘 are such that ∫︁ 1

0
̃︀ℎ𝑘(𝑤) d𝑤 = 1,

∫︁ 1

0
𝑤̃︀ℎ𝑘(𝑤) d𝑤 = 1/2,

for 𝑘 = 1, . . . , 𝐾, then

∫︁ 1

0
̂︀ℎ𝑥(𝑤) d𝑤 =

∑︀𝐾
𝑘=1 K𝑏(𝑥 − 𝑥𝑘)

∫︀ 1
0
̃︀ℎ𝑘(𝑤) d𝑤∑︀𝐾

𝑘=1 K𝑏(𝑥 − 𝑥𝑘)
= 1,

∫︁ 1

0
𝑤̂︀ℎ𝑥(𝑤) d𝑤 =

∑︀𝐾
𝑘=1 K𝑏(𝑥 − 𝑥𝑘)

∫︀ 1
0 𝑤̃︀ℎ𝑘(𝑤) d𝑤∑︀𝐾

𝑘=1 K𝑏(𝑥 − 𝑥𝑘)
= 1/2.
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for all 𝑥 ∈ X. Put differently, valid spectral surfaces can be obtained from our estimator in (2.7)

if at every 𝑥𝑘 we estimate a valid spectral density, ̃︀ℎ𝑘, i.e. a density on [0, 1] obeying the moment

constraint. To ensure that each spectral density estimate, ̃︀ℎ𝑘, obeys the normalization and marginal

moment constraints, we use the smooth Euclidean likelihood estimator (de Carvalho et al., 2013), which

for a sample of 𝑛𝑘 pseudo-angles is defined as

̃︀ℎ𝑘(𝑤) =
𝑛𝑘∑︁
𝑖=1

̃︀𝑝𝑖,𝑘𝛽(𝑤; 𝑊𝑖,𝑘𝜈, (1 − 𝑊𝑖,𝑘)𝜈), (2.8)

for 𝑤 ∈ (0, 1), where
̃︀𝑝𝑖,𝑘 = 1

𝑛𝑘

{1 − (𝑊 𝑘 − 1/2)𝑆−2
𝑘 (𝑊𝑖,𝑘 − 𝑊 𝑘)}, (2.9)

for 𝑖 = 1, . . . , 𝑛𝑘 and 𝑘 = 1, . . . , 𝐾. Here, 𝑊 𝑘 and 𝑆2
𝑘 denote the sample mean and sample variance of

𝑊1,𝑘, . . . , 𝑊𝑛𝑘,𝑘, that is,

𝑊 𝑘 = 1
𝑛𝑘

𝑛𝑘∑︁
𝑖=1

𝑊𝑖,𝑘, 𝑆2
𝑘 = 1

𝑛𝑘

𝑛𝑘∑︁
𝑖=1

(𝑊𝑖,𝑘 − 𝑊 𝑘)2.

The parameter 𝜈 > 0 in (2.8) is a concentration parameter, responsible for controlling the amount of

smoothing, in the 𝑤-direction. A method for parameter selection using cross-validation is discussed in

Section 2.2.4. The estimator in (2.9) can be understood as an empirical likelihood-based kernel density

estimator (Chen, 1997); the weights in (2.9) differ from the usual 1/𝑛𝑘 appearing in kernel density

estimation, as they are obtained through an empirical likelihood-based method, in order to produce

estimates which obey the moment constraint. Specifically, the ̃︀𝑝𝑖,𝑘 in (2.9) are Euclidean likelihood

weights (Owen, 2001, pp. 63–66), i.e., are the solution to the optimization problem

max
p𝑘∈R𝑛𝑘

−1
2
∑︀𝑛𝑘

𝑖=1(𝑛𝑘 𝑝𝑖,𝑘 − 1)2

s.t. ∑︀𝑛𝑘
𝑖=1 𝑝𝑖,𝑘 = 1∑︀𝑛𝑘
𝑖=1 𝑊𝑖,𝑘𝑝𝑖,𝑘 = 1/2.

(2.10)

Finally, our estimator in (2.7) can be rewritten as a double kernel estimator
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̂︀ℎ𝑥(𝑤) =
∑︀𝐾

𝑘=1
∑︀𝑛𝑘

𝑖=1 ̃︀𝑝𝑖,𝑘K𝑏(𝑥 − 𝑥𝑘)𝛽(𝑤; 𝑊𝑖,𝑘𝜈, (1 − 𝑊𝑖,𝑘)𝜈)∑︀𝐾
𝑘=1 K𝑏(𝑥 − 𝑥𝑘)

. (2.11)

Next we provide details on practical implementation.

2.2.4 Details on implementation

We select the tuning parameters via leave-one-out cross-validation for each parameter separately.

Specifically, for the concentration parameter 𝜈 we choose

𝜈⋆ = arg min
𝜈>0

𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

− log{̃︀ℎ−𝑖(𝑊𝑖,𝑘)}, (2.12)

where ̃︀ℎ−𝑖(𝑤) =
∑︁
𝑗 ̸=𝑖

̃︀𝑝𝑗,𝑘𝛽(𝑤; 𝑊𝑗,𝑘𝜈, (1 − 𝑊𝑗,𝑘𝜈)),

whilst for the bandwidth 𝑏 we select

𝑏⋆ = arg min
𝑏>0

∫︁ 1

0

𝐾∑︁
𝑘=1

{̃︀ℎ𝑘(𝑤) − ̂︀ℎ−𝑘(𝑤)}2d𝑤, (2.13)

with ̂︀ℎ−𝑘(𝑤) =
∑︀

𝑗 ̸=𝑘 K𝑏(𝑥𝑗 − 𝑥𝑘)̃︀ℎ𝑗(𝑤)∑︀
𝑗 ̸=𝑘 K𝑏(𝑥𝑗 − 𝑥𝑘) .

In principle, K𝑏 should be a symmetric and unimodal density. While there are many kernel functions

that verify these basic requirements, it is well known that the choice of the kernel has little impact

on the corresponding estimators; see Wand and Jones (1994, Chapter 2) and references therein. In

practice, we use a normal kernel.

Next, we give computational details on how to implement the double kernel estimator using

k.smooth from the R package stats (R Core Team, 2014).
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Pseudocode for double kernel estimator

1. Compute 𝜈⋆ and 𝑏⋆ using optim according to (2.12) and (2.13), respectively.

2. Construct a grid {𝑤𝑗}𝐽
𝑗=1 ∈ (0, 1) and compute ̃︀ℎ𝑘(𝑤𝑗) according to (2.8).

3. for 𝑗 = 1, . . . , 𝐽 , do:

Compute ̂︀ℎ𝑥(𝑤𝑗) using ksmooth with data

{(𝑥𝑘, ̃︀ℎ𝑘(𝑤𝑗))}𝐾
𝑘=1.

2.3 Simulation study

2.3.1 Models, configurations, and preliminary experiments

We construct samples of pseudo-angles {w𝑘}𝐾
𝑘=1 from the Dirichlet spectral surface, a covariate-adjusted

extension of the Dirichlet model (Coles and Tawn, 1991), based on the pd spectral density

ℎ𝑥(𝑤) = 𝑎𝑥𝑏𝑥Γ(𝑎𝑥 + 𝑏𝑥 + 1)(𝑎𝑥𝑤)𝑎𝑥−1{𝑏𝑥(1 − 𝑤)}𝑏𝑥−1

2Γ(𝑎𝑥)Γ(𝑏𝑥){𝑎𝑥𝑤 + 𝑏𝑥(1 − 𝑤)}𝑎𝑥+𝑏𝑥+1 . (2.14)

Here 𝑎𝑥 : X ↦→ (0, ∞), 𝑏𝑥 : X ↦→ (0, ∞), and Γ(𝑡) =
∫︀∞

0 𝑥𝑡−1e−𝑥 d𝑥. The values of the parameters

in (2.14) are chosen to produce two scenarios: a symmetric Dirichlet spectral surface with (𝑎𝑥, 𝑏𝑥) =

(𝑥, 𝑥), where 𝑥 ∈ XsDir = [1.5, 4]; an asymmetric Dirichlet spectral surface with (𝑎𝑥, 𝑏𝑥) = (𝑥, 100),

where 𝑥 ∈ XaDir ∈ [0.9, 4]. For each of the two scenarios, we consider 𝐾 ∈ {20, 50, 100}, and for every

𝐾, the values for {𝑛𝑘}𝐾
𝑘=1 are chosen randomly according to two configurations, both based on the

actual number of pseudo-angles in the data application (see Table 2.2):

∙ Configuration 1: corresponds to 𝐾 sampled values from the number of pseudo-angles in the data

application.

∙ Configuration 2: samples 𝐾 values from the same set, but multiplied by a factor of 5.
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Figure 2-2. True (left) cross sections of the spectral surface and corresponding estimates (right) from the symmetric
(top) and asymmetric (bottom) Dirichlet predictor-dependent models, for 𝐾 = 20 values of the predictor and Configu-
ration 1.

This gives rise to six different simulation schemes for each of the two predictor-dependent models.

We start with a single-run experiment. Figure 2-2 shows true and estimated spectral densities from

the symmetric (top) and asymmetric (bottom) Dirichlet models described above, for 𝐾 = 20 values

of the predictor and Configuration 1. Spectral density estimates were computed using the smooth

Euclidean estimator in (2.8). If K𝑏 is chosen as a normal kernel with standard deviation 𝑏, and if

we smooth over all the predictor space using the double kernel estimator for both configurations and

𝐾 ∈ {20, 50, 100}, we obtain what is shown in Figure 2-3. Figure 2-3 corresponds to the symmetric

Dirichlet spectral surface, where extremal dependence increases as a function of the predictor. The

analogue for the asymmetric Dirichlet spectral surface is displayed in Figure 2-4

The single-run experiment in Figures 2-3 and 2-4 allows us to illustrate strengths and limitations

of the double kernel estimator. Pointwise estimation is troublesome at the edge of the predictor space,

due to boundary bias of K𝑏 which is a drawback of kernel-based estimators on bounded domains

(Hardle, 1990, Section 4.4, and references therein). The double kernel estimator seems to have more
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Figure 2-3. On the top: true spectral surface from the symmetric Dirichlet predictor-dependent model detailed in
Section 2.3.1, followed by spectral surface estimates for Configurations 1 (above) and 2 (below).
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Figure 2-4. On the top: true spectral surface from the asymmetric Dirichlet predictor-dependent model detailed in
Section 2.3.1, followed by estimate spectral surfaces for Configurations 1 (above) and 2 (below).

49



2.3. SIMULATION STUDY

Table 2.1. Mean integrated absolute error estimates of the spectral surface computed over 1000 samples for the
data-generating configurations discussed in Sect. 2.3.1.

Model Conf. 𝐾 = 20 𝐾 = 50 𝐾 = 100

Symmetric 1 0.2877 0.2785 0.2698
Dirichlet 2 0.2089 0.1897 0.1717
Asymmetric 1 0.4254 0.4158 0.4146
Dirichlet 2 0.2958 0.2940 0.2953⋆

difficulties estimating the asymmetric spectral surface, probably due to the need to recover a more

complicated surface. In spite of these limitations, our estimator recovers satisfactorily the shape of the

true spectral surface, and thus is able to reproduce satisfactorily the evolution of extremal dependence

over the predictor. Another interesting aspect is that the performance of the estimator seems to be

more sensitive to changes in 𝑛𝑘 (the number of pseudo-angles for every value of the predictor) rather

than changes in 𝐾 (the number of predictor values).

2.3.2 Simulation results

Cross sections of the spectral surface give rise to spectral densities for certain values of the predictor.

To assess the precision of the estimates, Figure 2-5 displays trajectories of 100 estimates of these cross

sections along with their Monte Carlo means, for 𝐾 = 100 and configuration 1 detailed above. These

trajectories allow us to illustrate the performance of our estimator under different dependence dynamics.

The top panel of Figure 2-5 displays the results for the symmetric Dirichlet spectral densities, where

we can see the limitations due to boundary bias that were discussed in Section 2.3.1, mostly for 𝑥 = 2.

The same plot shows that extremal dependence is overestimated by some of the simulations, whereas

it is slightly underestimated for 𝑥 = 3. The asymmetric Dirichlet spectral densities, presented in the

bottom pannel of Figure 2-5, display less dispersed estimates than their symmetric counterparts, and

the asymmetry does not seem to be a major issue. In the two sets of spectral densities, the estimator

shows a positive performance in recovering the different shapes of the densities, and Monte Carlo means

produce reasonable estimates.

Table 3.1 shows the performance results in terms of the mean integrated absolute error, computed
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Cross sections of symmetric Dirichlet spectral surface
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Cross sections of asymmetric Dirichlet spectral surface
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Figure 2-5. Trajectories of 100 randomly selected estimates of cross sections of the spectral surface (gray lines), using
𝐾 = 100 and configuration 1, as well as their corresponding true values (solid line) and Monte Carlo means (dashed
line).
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Figure 2-6. (a) Location of air temperature monitoring stations. For each site, air temperatures under the forest
canopy and in a nearby open field are available. (b) Scatterplots of pairs of temperatures using an altitude-varying color
palette measured in meters, for maxima in forest canopy versus open field.

over 1000 samples. Results confirm what we already observed for the single-run experiment in Fig-

ure 2-3; under the same configuration for 𝐾, changes in the number of pseudo-angles cause great

improvements in the performance of the estimator. On the opposite, if we fix the number of pseudo-

angles and increase 𝐾, gains are not as significant. Overall, simulations confirm that the double kernel

estimator produces reasonable estimates of the spectral surface. Monte Carlo mean spectral surfaces

are reported in the Appendix.

2.4 Extreme forest temperature illustration

2.4.1 Data description and preprocessing

The data were gathered from the Long-term Forest Ecosystem Research database maintained by LWF

(Langfristige Waldokosystem Forschung), and consist of air temperatures under the forest canopy and

in a nearby open field at 14 monitoring stations in Switzerland. (Figure 2-6(a)). The raw data consist

of a pair of covariates plus two series of air temperatures per site, measured in circular metal shelters

two meters above ground every 10 minutes since 1997.

We use the same preprocessing steps as in Ferrez et al. (2011); in particular, we take daily maxima
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Figure 2-7. Spectral density estimates using the smoothed Euclidean likelihood estimator in (2.8) in increasing order
of altitude. The associated pseudo-angles are plotted using a rug at the bottom of every plot.
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of the residual series resulting from removal of the annual cycle in both location and scale, i.e., we

subtract a periodic mean and divide by a periodic standard deviation. After thresholding the residuals

of each sample at the 98% empirical quantile, we reduce the initial 38.923 observations to 785 pairs of

residuals, one of the pairs being under the forest canopy and the other being in the open field. The

number of pseudo-angles in each site vary from 42 to 65, whereas altitude varies from 480 to 1900 m;

see Table 2.2 in Appendix.

2.4.2 Altitude-adjusted extremal dependence

Our aim here is to assess the dynamics governing the relation between extremely high temperatures

in the open and under the canopy over different altitudes. Our covariate of interest is thus altitude

(above sea level) of monitoring stations, and this is motivated by earlier experiments conducted by

Ferrez et al. (2011, p. 999) who suggested that extremal dependence between temperatures under the

canopy and in the open field could be linked to altitude.

We first estimate the extremal dependence of temperatures in every site. Figure 2-7 shows the

estimated spectral densities using the smooth Euclidean likelihood estimator in (2.8). We can see

clear changes in the dynamics of the extremal dependence. Altitudes between 1400 m and 1650 m

present more dispersion—as we can see for example in the spectral density estimate corresponding to

Beatenberg—but, in general, strong dependence of temperatures is noted in all sites.

Figure 2-8 shows the extremal dependence when we smooth through all altitudes between 480 m

and 1900 m using the double kernel estimator. All in all, we see substancial changes in the extremal

behavior, although it is not possible to identify a unique pattern that indicates a monotone evolution

of the dependence. In general, we see strong dependence for almost all altitudes, with the exception of

values between and 1400 m and 1650 m, where we can see more dispersion and consequently a decrease

in the extremal dependence.
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Figure 2-8. Spectral surface estimate using the double kernel estimator in (2.11); pseudo-angles are overlaid on the
bottom of the box.

2.5 Final remarks

We propose a density regression model that allows us to assess the changes in the extremal dependence

structure over the values of a discrete predictor. This is a first step to tackle the gap between the

developments in non-stationary marginal distributions and bivariate distributions. We perform infer-

ence by introducing a non-parametric double kernel estimator that smooths in two steps: first in the

extreme data direction using the Euclidean likelihood estimator of de Carvalho et al. (2013); and then

in the covariate direction through an approach similar to the Nadaraya–Watson estimator, but where

responses are spectral density estimates.

Our model is related to the spectral density ratio model of de Carvalho and Davison (2014) in

the sense that covariates can be incorporated, but rather than just linking extremal distributions, our

model assesses directly the evolution of extremal dependence. Furthermore, implementation of our

estimator is straightforward, and inference is computationally convenient.

We test our methods in a temperature data application where altitude is considered a variable of

interest. Results suggest an impact of the altitude on the extremal dependence of maximum tempera-

tures under the forest and on a open field, showing the need to consider nonstationarity in the extreme

value dependence structure.
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2.6 Appendix

2.6.1 Appendix A: Monte Carlo mean spectral surfaces

Figures 2-9 and 2-10 show Monte Carlo mean spectral surfaces for the two simulation scenarios described

in Section 2.3.
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Figure 2-9. On the top: true spectral surface from the symmetric Dirichlet predictor-dependent model detailed in
Section 2.3.1, followed by Monte Carlo mean spectral surfaces for configurations 1 (left) and 2 (right) with 𝐾 = 20
(second row), 𝐾 = 50 (third row) and 𝐾 = 100 (fourth row).
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Figure 2-10. On the top: true spectral surface from the asymmetric Dirichlet predictor-dependent model detailed
in Section 2.3.1, followed by Monte Carlo mean spectral surfaces for configurations 1 (left) and 2 (right) with 𝐾 = 20
(second row), 𝐾 = 50 (third row) and 𝐾 = 100 (fourth row).

2.6.2 Appendix A: Additional data application report

Locations of the monitoring stations, number of pseudo angles in each site and altitude can be found

in Table 2.2.
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Table 2.2. Locations of monitoring stations, along with the corresponding number of pseudo-angles and altitude.

Location 𝑛𝑘 Altitude (m)
Beatenberg 57 1500
Bettlachstock 54 1150
Celerina 53 1890
Chironico 45 1350
Isone 45 1200
Jussy 62 500
Lausanne 63 800
Nationalpark 59 1900
Neunkirch 41 600
Novaggio 65 950
Othmarsingen 57 490
Schänis 58 750
Visp 64 700
Vordemwald 61 480
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3 Time-Varying Extreme Value Dependence with
Application to Leading European Stock Markets

3.1 Introduction

In recent years, international stock markets have been registering unprecedented levels of turbulence.

Episodes such as the subprime crisis and the Greek debt crisis may have boosted this turbulence a little

further, and led many to fear a financial doomsday. The situation has been extraordinarily delicate in

Europe, where evidence of increasing extremal dependence was found by Poon et al. (2003, 2004) before

the most recent financial crisis. We look to update suitable parts of their analysis and in particular

analyze the time-varying extremal dependence in a more complete manner than has been done before.

To achieve this goal, we propose an approach for modeling temporal nonstationarity in the extreme

value dependence structure.

Statistical modeling of univariate extreme values has been in development since the 1970s (Natural

Environment Research Council, 1975). Fundamental to practical applications to complex problems

have been the development of methodology to account for nonstationarity in the distributions of in-

terest, which was first strongly advocated by Davison and Smith (1990). Typical approaches to this

problem are based around the generalized linear modeling idea of allowing the parameters of a marginal

distribution to depend on covariates; more flexible approaches involving generalized additive modeling

were introduced by Chavez-Demoulin and Davison (2005). Eastoe and Tawn (2009) present related

ideas where data are pre-processed according to their dependence on covariates.

Statistical methods for modeling multivariate extreme values were introduced by Tawn (1988), and

developed in Tawn (1990) and Coles and Tawn (1991). Since this time, much work has been done
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3.1. INTRODUCTION

on developing dependence modeling frameworks for extremes, yet surprisingly little has focused on

how to incorporate nonstationarity into the dependence structure. Exceptions include Eastoe (2009),

who introduces a conditionally independent hierarchical model, Jonathan et al. (2014), who develop

methodology for including covariates in the model of Heffernan and Tawn (2004), and de Carvalho and

Davison (2014), who develop a semiparametric model for settings where several multivariate extremal

distributions are linked through the action of a covariate on an unspecified baseline distribution. In

addition, Huser and Genton (2014) have also recently developed nonstationary models for spatial ex-

tremes. In this work we aim to augment the literature on modeling nonstationarity in the dependence

structure by proposing flexible methodology for a simple set-up. Working within a tail dependence

framework known as asymptotic dependence, we suppose that the relevant bivariate extreme value dis-

tribution evolves over a certain covariate of interest. The approach that we take is fully nonparametric,

which is advantageous since neither the form of the bivariate distribution at a given covariate, nor the

form of dependence on the covariate can be parametrically specified.

Our methodology is particularly suited to assessing temporal changes in extremal dependence, which

is the situation that we would like to investigate in our motivating example. Poon et al. (2003, 2004)

studied the dependence between stock market returns in the US, UK, France, Germany, and Japan.

The main focus of their works was to highlight that not all markets exhibit a sufficient strength of

tail dependence to be asymptotically dependent, and to propose alternative dependence summaries.

However, considering only the European markets, they noted that there was evidence for relatively

strong left tail dependence, and we also find evidence for asymptotic dependence in the left tails of

these major European markets. As noted by Poon et al. (2003), the dependence is not stationary

in time, and a main focus of this work is to explore this nonstationarity using a full model for the

time-varying dependence structure, rather than simply summary statistics.

In the next section we provide a background on dependence modeling for extreme values, and

introduce our proposed framework for incorporating nonstationarity. In Section 3.3 we introduce our

estimation and inference methods; numerical illustrations follow in Section 3.4. The focus of Section 3.5

is on applying the proposed methods to returns from three major European stock markets—using

CAC, DAX, and FTSE—to assess the evolution of their extremal dependence structure over time. We

conclude in Section 3.6.
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3.2 Predictor-dependent modeling for bivariate extremes

3.2.1 Bivariate statistics of extremes

Let {(𝑌𝑖,1, 𝑌𝑖,2)}𝑁
𝑖=1 be a collection of independent and identically distributed (iid) random vectors with

continuous marginal distributions 𝐹𝑌1 and 𝐹𝑌2 . We are concerned with assessments of the extremal

dependence between the components of the vectors, and thus without loss of generality we shall suppose

that they have standard Pareto margins, i.e., P(𝑌𝑗 > 𝑦) = 𝑦−1, for 𝑦 > 1 and 𝑗 = 1, 2. Let

(𝑀1,𝑁 , 𝑀2,𝑁) := 1
𝑁

(︂
max

16𝑖6𝑁
{𝑌𝑖,1}, max

16𝑖6𝑁
{𝑌𝑖,2}

)︂

be the standardized vector of componentwise maxima. Then if

P(𝑀1,𝑁 6 𝑦1, 𝑀2,𝑁 6 𝑦2) → 𝐺(𝑦1, 𝑦2), as 𝑁 → ∞, (3.1)

where 𝐺 is a non-degenerate distribution function, then the limit 𝐺 has the form

𝐺(𝑦1, 𝑦2) = exp
{︃

−2
∫︁

[0,1]
max

(︃
𝑤

𝑦1
,
1 − 𝑤

𝑦2

)︃
𝐻(d𝑤)

}︃
, (3.2)

where, 𝑦1, 𝑦2 > 0. Here, 𝐺(𝑦1, 𝑦2) is the so-called bivariate extreme value distribution and 𝐻 is a

probability measure—known as the spectral measure. A consequence of Pickands’ (1981) representation

theorem is that the spectral measure needs to obey the following marginal moment constraint

∫︁
[0,1]

𝑤 𝐻(d𝑤) = 1/2. (3.3)

See Coles (2001, Theorem 8.1). Let 𝑅 = 𝑌1 + 𝑌2 and 𝑊 = 𝑌1/(𝑌1 + 𝑌2). de Haan and Resnick (1977)

have shown that the convergence in (3.2) is equivalent to

P (𝑊 ∈ · | 𝑅 > 𝜏) → 𝐻(·), 𝜏 → ∞. (3.4)
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In practice, convergence (3.4) is more often useful than (3.2) and tells us that when the ‘radius’

𝑅 is large, the ‘pseudo-angles’ 𝑊 are approximately distributed according to 𝐻, and approximately

independent of 𝑅. The distribution of mass of 𝐻 on [0, 1] describes the extremal dependence structure of

the random vector (𝑌1, 𝑌2). The extreme cases of this distribution are given by asymptotic independence,

whereby all mass is placed at the vertices of [0, 1], giving 𝐺(𝑦1, 𝑦2) = exp{−(𝑦−1
1 + 𝑦−1

2 )}, and by

complete dependence, whereby all mass is placed at the center of the interval, yielding 𝐺(𝑦1, 𝑦2) =

exp{− max
(︁
𝑦−1

1 , 𝑦−1
2

)︁
}. We refer to situations where 𝐻 has mass away from the vertices as asymptotic

dependence and this will be the framework of our modeling. Nevertheless, asymptotic independence

is a relatively common situation in practice, and can be detected when 𝑅 and 𝑊 are not found to be

independent for any values of 𝑅, with the mass of 𝑊 moving closer to 0 and 1 as events become more

extreme. In this situation, no continuous models for 𝐻 will provide useful information on the extremal

dependence structure. Finally, a standard assumption for statistical modeling is that 𝐻 is absolutely

continuous with spectral density ℎ(𝑤) = d𝐻(𝑤)/d𝑤, and this will be our framework.

3.2.2 Predictor-dependent modeling framework

Formally, F = {𝐹𝑥 : 𝑥 ∈ X} is a set of pd (predictor-dependent) probability measures if the 𝐹𝑥 are

probability measures, indexed by a predictor 𝑥 ∈ X ⊆ R. Analogously, we define H = {𝐻𝑥 : 𝑥 ∈ X}

as a set of pd spectral measures on [0, 1] if the 𝐻𝑥 are probability measures satisfying

∫︁
[0,1]

𝑤𝐻𝑥(d𝑤) = 1/2, 𝑥 ∈ X. (3.5)

If 𝐻𝑥(𝑤) := 𝐻𝑥[0, 𝑤] is absolutely continuous, its pd spectral density is ℎ𝑥(𝑤) = d𝐻𝑥(𝑤)/d𝑤. Further

aspects of pd spectral measures are discussed in de Carvalho (2015).

Our main modeling object of interest will be the set of pd spectral densities {ℎ𝑥(𝑤) : 𝑤 ∈ [0, 1], 𝑥 ∈

X}, which we will refer to as the spectral surface. A simple spectral surface can be obtained with the

pd spectral density ℎ𝑥(𝑤) = 𝛽(𝑤; 𝜇𝑥, 𝜇𝑥), where 𝜇 : X ↦→ (0, ∞), and 𝛽(·; 𝑝, 𝑞) denotes the beta density

with shape parameters 𝑝, 𝑞 > 0. In Figure 3-1 (a), we represent a spectral surface based on this model,

with 𝜇𝑥 = 𝑥, for 𝑥 ∈ X = [0.5, 50]. As can be seen, larger values of the predictor 𝑥 lead to larger levels

of extremal dependence. Other spectral surfaces can be readily constructed from parametric models
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Figure 3-1. (a) Spectral surface from a predictor-dependent beta family, with 𝜇𝑥 = 𝑥 , for 𝑥 ∈ X = [0.5, 50].
(b) Spectral surface from a predictor-dependent logistic family, with 𝛼𝑥 = Φ(𝑥2), for 𝑥 ∈ X = [−3, 3].

for the spectral density.

Example 6 (pd logistic model). The logistic spectral surface is a covariate-adjusted extension of the

logistic model (Coles, 2001, p. 146), and it is based on the pd spectral density

ℎ𝑥(𝑤) = 1
2

(︃
1

𝛼𝑥

− 1
)︃

{𝑤(1 − 𝑤)}−1−1/𝛼𝑥{𝑤−1/𝛼𝑥 + (1 − 𝑤)−1/𝛼𝑥}𝛼𝑥−2, 𝑤 ∈ (0, 1), (3.6)

where 𝛼 : X ↦→ (0, 1]. The closer 𝛼𝑥 is to 0, the higher the level of extremal dependence, while the closer

𝛼𝑥 is to 1, the closer we get to independence. Spectral surfaces with simple ‘shapes’ can be obtained by

modeling 𝛼𝑥 with either a distribution function, 𝐹 (𝑥), or a survivor function, 1 − 𝐹 (𝑥). If 𝛼𝑥 = 𝐹 (𝑥),

the level of extremal dependence decreases as the predictor increases, whereas if 𝛼𝑥 = 1 − 𝐹 (𝑥), we

get closer to independence as the value of the predictor increases; more sophisticated shapes can be

obtained with 𝛼𝑥 = (𝐹 ∘ 𝐺)(𝑥), for a certain continuous function 𝐺 : X ↦→ R. In Figure 3-1 (b) we

represent the logistic spectral surface in (3.6) with 𝛼𝑥 = Φ(𝑥2), for 𝑥 ∈ X = [−3, 3], where Φ denotes

the standard normal distribution function.
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Example 7 (pd Dirichlet model). The Dirichlet spectral surface is a covariate-adjusted extension of

the Dirichlet model (Coles and Tawn, 1991), and it is based on the pd spectral density

ℎ𝑥(𝑤) = 𝑎𝑥𝑏𝑥Γ(𝑎𝑥 + 𝑏𝑥 + 1)(𝑎𝑥𝑤)𝑎𝑥−1{𝑏𝑥(1 − 𝑤)}𝑏𝑥−1

2Γ(𝑎𝑥)Γ(𝑏𝑥){𝑎𝑥𝑤 + 𝑏𝑥(1 − 𝑤)}𝑎𝑥+𝑏𝑥+1 , 𝑤 ∈ (0, 1), (3.7)

where 𝑎 : X ↦→ (0, ∞) and 𝑏 : X ↦→ (0, ∞). Spectral surfaces with simple shapes can be obtained with

𝑎𝑥 = 𝑏𝑥 = exp(𝑥), while if more complex dynamics are desirable, it can be based on 𝑎𝑥 = exp{A(𝑥)},

𝑏𝑥 = exp{B(𝑥)}, where A : X ↦→ R and B : X ↦→ R are continuous functions.

The basic idea of a pd spectral measure is not especially complicated, and inference for such a

model would be simple if: (i) we knew our data conformed to a particular parametric family, and (ii)

we knew precisely how that family depended on 𝑥. However, since we do not have knowledge of either

of these aspects, the natural approach to take is a nonparametric one. We describe our estimation

strategy in Section 3.3.

3.2.3 Related predictor-dependent objects of interest

Our estimation target {ℎ𝑥(𝑤) : 𝑤 ∈ [0, 1], 𝑥 ∈ X} can be used for constructing other objects of interest

when modeling bivariate extremes. For example, a pd version of Pickands (1981) dependence function

can be defined as

𝐴𝑥(𝑤) = 1 − 𝑤 + 2
∫︁ 𝑤

0
𝐻𝑥(𝑢) d𝑢, 𝑥 ∈ X, 𝑤 ∈ [0, 1],

leading to the pd extremal coefficient 𝐶𝑥 = 2𝐴𝑥(1/2). In addition, we can define the pd bivariate

extreme value (BEV) distribution as

𝐺𝑥(𝑦1, 𝑦2) = exp
{︃

−2
∫︁

[0,1]
max

(︃
𝑤

𝑦1
,
1 − 𝑤

𝑦2

)︃
𝐻𝑥(d𝑤)

}︃
, (3.8)

for 𝑥 ∈ X, and 𝑦1, 𝑦2 > 0.

Example 8. Using the pd spectral density from Example 6, we obtain 𝐴𝑥(𝑤) = {(1−𝑤)1/𝛼𝑥 +𝑤1/𝛼𝑥}𝛼𝑥
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and 𝐶𝑥 = 2𝛼𝑥 , while the logistic BEV spectral surface is based on the pd BEV,

𝐺𝑥(𝑦1, 𝑦2) = exp{−(𝑦−1/𝛼𝑥

1 + 𝑦
−1/𝛼𝑥

2 )𝛼𝑥}, 𝑥 ∈ X, 𝑦1, 𝑦2 > 0.

3.3 Estimation and inference

3.3.1 Derivation of pseudo-angles

Consider Equation (3.4). We are now supposing nonstationarity in the dependence structure such that

P (𝑊𝑥 ∈ · | 𝑅𝑥 > 𝜏) → 𝐻𝑥(·), 𝜏 → ∞, (3.9)

where we subscript the 𝑊 and 𝑅 by 𝑥 to denote the fact that the dependence structure depends on

𝑥. Note that we still assume Pareto margins, and this still yields a limiting Pareto distribution for the

radius 𝑅𝑥 for each 𝑥. Typically, when stationarity is assumed, one searches for a high threshold in 𝑅,

such that 𝑊 and 𝑅 are approximately independent above the threshold, and uses all 𝑊 associated to

threshold exceedances of 𝑅 for inference. Supposing that 𝑥 does not impact upon the rate of convergence

in the limit (3.9), we can do the same thing. However, for prudence, we assess the dependence of 𝑅𝑥

on 𝑥, and if any relationship is detected, then we threshold 𝑅𝑥 using parametric quantile regression

(Koenker, 2005), and take the corresponding 𝑊𝑥 for inference. Below we use 𝑛 to denote the number

of pseudo-angles that resulted from thresholding 𝑅𝑥𝑖
= 𝑌𝑥𝑖,1 + 𝑌𝑥𝑖,2, for 𝑖 = 1, . . . , 𝑁 . Further details

on the derivation of pseudo-angles for our data application can be found in Section 3.5.3.

We note that we are not allowing the margins to change over the predictor. This is however a

sensible modeling assumption for our data application, because returns are known to be approximately

stationary. Indeed, as posed by Resnick (2007, p. 7) “Returns have more attractive statistical properties

than prices such as stationarity.”
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3.3.2 Predictor-dependent spectral density estimation

Here we outline our estimator for the family of densities {ℎ𝑥(𝑤) : 𝑤 ∈ [0, 1], 𝑥 ∈ X}. Assume observa-

tions {𝑊𝑥𝑖
}𝑛

𝑖=1, where the covariates 𝑥𝑖 are either continuous or discrete; for ease of notation, below we

write 𝑊𝑖 to denote 𝑊𝑥𝑖
. Let 𝐾𝑏(𝑥) = (1/𝑏)𝐾(𝑥/𝑏) be a kernel with bandwidth 𝑏 > 0. For any 𝑥 ∈ X,

we define the estimator

̂︀ℎ𝑥(𝑤) =
𝑛∑︁

𝑖=1
𝜋𝑏,𝑖(𝑥)𝛽(𝑤; 𝜈𝑊𝑖𝜃𝑏(𝑥) + 𝜏, 𝜈{1 − 𝑊𝑖𝜃𝑏(𝑥)} + 𝜏), 𝑤 ∈ (0, 1), (3.10)

where

𝜃𝑏(𝑥) = 1/2∑︀𝑛
𝑖=1 𝜋𝑏,𝑖(𝑥)𝑊𝑖

, 𝜋𝑏,𝑖(𝑥) = 𝐾𝑏(𝑥 − 𝑥𝑖)∑︀𝑛
𝑗=1 𝐾𝑏(𝑥 − 𝑥𝑗)

, 𝑖 = 1, . . . , 𝑛.

The moment constraint (3.5) is satisfied, since

∫︁ 1

0
𝑤̂︀ℎ𝑥(𝑤) d𝑤 =

∑︀𝑛
𝑖=1 𝐾𝑏(𝑥 − 𝑥𝑖){𝜈𝑊𝑖𝜃𝑏(𝑥) + 𝜏}

(𝜈 + 2𝜏)∑︀𝑛
𝑖=1 𝐾𝑏(𝑥 − 𝑥𝑖)

= 𝜈/2 + 𝜏

𝜈 + 2𝜏
= 1/2,

for all valid 𝜏 > 0, upon substitution of 𝜃𝑏(𝑥).

The two kernels (𝐾𝑏 and 𝛽) and the three parameters involved in our estimator can be interpreted as

follows. The bandwidth 𝑏 is the scale parameter of the kernel 𝐾𝑏 and controls the amount of smoothing

in the 𝑥-direction. The choice of the kernel 𝐾𝑏 is subject to the typical considerations. In principle,

𝐾𝑏 should be symmetric and unimodal, since there is a sense in which density estimators based on

kernels that do not satisfy these requirements are inadmissible (Cline, 1988). While there are many

kernel functions that do satisfy these basic requirements, it is well known that the choice of the kernel

has little impact on the corresponding estimators; see Wand and Jones (1994, Ch. 2) and references

therein. The parameter 𝜈 is asymptotically inversely proportional to the variance of the kernel 𝛽 and

has the main role of controlling the amount of smoothing in the 𝑤-direction. The additional parameter

𝜏 has the role of adjusting slightly the center of the kernel, allowing more flexible estimation, whilst

not affecting the moment constraint. Note that 𝜏 = 0 yields a kernel with mean equal to 𝑊𝑖, whilst

𝜏 = 1 yields a kernel with mode 𝑊𝑖. In addition, 𝜃𝑏(𝑥) assesses by how much the pseudo-angles
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deviate from 1/2. To see this, note that 𝜃𝑏(𝑥) = (1/2)/̂︀E(𝑊𝑖), where ̂︀E(𝑊𝑖) = ∑︀𝑛
𝑖=1 𝜋𝑏,𝑖(𝑥)𝑊𝑖 is the

Nadaraya–Watson estimator (Nadaraya, 1964; Watson, 1964) of E(𝑊𝑥) =
∫︀

[0,1] 𝑤𝐻𝑥(d𝑤) = 1/2, for all

𝑥 ∈ X.

Plug-in estimators for the related pd objects of interest discussed in Section 3.2.3 can be readily

obtained; particularly

̂︁𝐻𝑥(𝑤) =
𝑛∑︁

𝑖=1
𝜋𝑏,𝑖(𝑥)𝐵(𝑤; 𝜈𝑊𝑖𝜃𝑏(𝑥) + 𝜏, 𝜈{1 − 𝑊𝑖𝜃𝑏(𝑥)} + 𝜏), 𝑤 ∈ (0, 1),

where 𝐵(𝑤; 𝑝, 𝑞) is the regularized incomplete beta function, with 𝑝, 𝑞 > 0; in addition, the plug-in

estimators for the pd Pickands dependence function, extremal coefficient, and bivariate extreme value

distribution can be written as

̂︀𝐴𝑥(𝑤) = 1 − 𝑤 + 2
𝑛∑︁

𝑖=1
𝜋𝑏,𝑖(𝑥)

∫︁ 𝑤

0
𝐵(𝑢; 𝜈𝑊𝑖𝜃𝑏(𝑥) + 𝜏, 𝜈{1 − 𝑊𝑖𝜃𝑏(𝑥)} + 𝜏) d𝑢,

̂︀𝐶𝑥 = 2 ̂︀𝐴𝑥(1/2) = 1 + 4
𝑛∑︁

𝑖=1
𝜋𝑏,𝑖(𝑥)

∫︁ 1/2

0
𝐵(𝑢; 𝜈𝑊𝑖𝜃𝑏(𝑥) + 𝜏, 𝜈{1 − 𝑊𝑖𝜃𝑏(𝑥)} + 𝜏) d𝑢,

̂︀𝐺𝑥(𝑦1, 𝑦2) = exp
{︃

− 2
∫︁ 1

0
max

(︃
𝑢

𝑦1
,
1 − 𝑢

𝑦2

)︃

×
𝑛∑︁

𝑖=1
𝜋𝑏,𝑖(𝑥)𝛽(𝑢; 𝜈𝑊𝑖𝜃𝑏(𝑥) + 𝜏, 𝜈{1 − 𝑊𝑖𝜃𝑏(𝑥)} + 𝜏) d𝑢

}︃
,

(3.11)

for 𝑥 ∈ X, and 𝑦1, 𝑦2 > 0.

3.3.3 Connections to smoothing on the unit interval

Kernel density estimation on the unit interval is a challenging problem; see Chen (1999), Jones and

Henderson (2007), de Carvalho et al. (2013), Geenens (2014), and the references therein. In this section

we comment on the connections of our estimator in (3.10), with the smooth Euclidean likelihood spectral

density of de Carvalho et al. (2013), which can be regarded as a moment constrained kernel density

estimator on the unit interval, in the sense that it obeys (3.3).

If all covariates 𝑥 take the same value, so that the estimation problem reduces to estimating the
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spectral density for an identically-distributed set of pseudo-angles {𝑊𝑖}𝑛
𝑖=1, then (3.10) becomes

̂︀ℎ(𝑤) = 1
𝑛

𝑛∑︁
𝑖=1

𝛽

(︃
𝑤; 𝜈

𝑊𝑖

2𝑊
+ 𝜏, 𝜈

{︃
1 − 𝑊𝑖

2𝑊

}︃
+ 𝜏

)︃
, 𝑤 ∈ (0, 1). (3.12)

Hence, our estimator in (3.12) has connections with the smooth Euclidean spectral density estimator

in de Carvalho et al. (2013, p. 1190), which is given by

̃︀ℎ(𝑤) = 1
𝑛

𝑛∑︁
𝑖=1

{1 − (𝑊 − 1/2)𝑆−2(𝑊𝑖 − 𝑊 )} 𝛽{𝑤; 𝑊𝑖𝜈, (1 − 𝑊𝑖)𝜈},

= 1
𝑛

𝑛∑︁
𝑖=1

𝛽{𝑤; 𝑊𝑖𝜈, (1 − 𝑊𝑖)𝜈} − 1
𝑛

𝑛∑︁
𝑖=1

(𝑊 − 1/2)𝑆−2(𝑊𝑖 − 𝑊 )}𝛽{𝑤; 𝑊𝑖𝜈, (1 − 𝑊𝑖)𝜈},

(3.13)

for 𝑤 ∈ (0, 1); here 𝑊 and 𝑆2 are the sample mean and sample variance of 𝑊1, . . . , 𝑊𝑛, that is,

𝑊 = 1
𝑛

𝑛∑︁
𝑖=1

𝑊𝑖, 𝑆2 = 1
𝑛

𝑛∑︁
𝑖=1

(𝑊𝑖 − 𝑊 )2.

A heuristic argument can be used to see the connection between (3.12) and (3.13), where for simplicity

we focus on the case 𝜏 = 0. The right-hand term in (3.13) is asymptotically negligible because

𝑊 = 1/2 + 𝑜𝑝(1), so that for large 𝑛, we have ̃︀ℎ(𝑤) ≈ 𝑛−1∑︀𝑛
𝑖=1 𝛽{𝑤; 𝑊𝑖𝜈, (1 − 𝑊𝑖)𝜈}; on the other

hand, we also have that for large 𝑛, ̂︀ℎ(𝑤) ≈ 𝑛−1∑︀𝑛
𝑖=1 𝛽{𝑤; 𝑊𝑖𝜈, (1 − 𝑊𝑖)𝜈}, since 𝑊 = 1/2 + 𝑜𝑝(1),

as 𝑛 → ∞. While both estimators obey the moment constraint (3.5), they impose it through different

approaches: our estimator enforces (3.3) by rescaling the pseudo-angles with a factor of (2𝑊 )−1; the

smooth Euclidean spectral density enforces (3.3) additively, through the right-hand term in (3.13).

3.3.4 Tuning parameter selection and bootstrap

We select the tuning parameters by 𝐾-fold cross-validation (Hastie et al., 2001, Section 7.10.1) using

the Kullback–Leibler criterion (Bowman, 1984). Specifically, let {𝑊1, . . . ,𝑊𝐾} be the full sample of

pseudo-angles split into 𝐾 blocks. In the analyses in Sections 3.4 and 3.5, we split the blocks according

the values of the accompanying covariate 𝑥, so that each 𝑊𝑘 = (𝑊𝑘,1, . . . , 𝑊𝑘,𝑛𝑘
) is in a similar part

of the covariate space. Letting ̂︀ℎ𝑥(−𝑘) denote the estimator leaving out the 𝑘th sample, 𝑊𝑘, of length
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𝑛𝑘, we select

(̂︀𝑏, ̂︀𝜈, ̂︀𝜏) = arg min
(𝑏,𝜈,𝜏)∈RX,𝑛

𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑗=1

− log ̂︀ℎ𝑥𝑘,𝑗(−𝑘)(𝑊𝑘,𝑗),

with

RX,𝑛 = {(𝑏, 𝜈, 𝜏) ∈ (0, ∞)3 : 𝜈𝑊𝑖𝜃𝑏(𝑥) + 𝜏 > 0, 𝜈{1 − 𝑊𝑖𝜃𝑏(𝑥)} + 𝜏 > 0, for 𝑖 = 1, . . . , 𝑛; 𝑥 ∈ X}

= {(𝑏, 𝜈, 𝜏) ∈ (0, ∞)3 : 𝜈{1 − 𝑊𝑖𝜃𝑏(𝑥)} + 𝜏 > 0, for 𝑖 = 1, . . . , 𝑛; 𝑥 ∈ X}. (3.14)

The constrained optimization yields well-defined estimates, since it guarantees the positivity of the beta

parameters in our estimator. The latter equality in (3.14) follows from noting that 𝜈𝑊𝑖𝜃𝑏(𝑥) + 𝜏 > 0,

for all 𝑥 ∈ X; further details on practical implementation of tuning parameter selection are given in

Section 3.4.2.

Cross sections of the spectral surface give rise to spectral densities for certain values of the covariate.

To measure the precision of the estimates, approximate confidence bands can be constructed through

a resampling cases bootstrap algorithm (Davison and Hinkley, 1997, Section 6.2.4), and we will adopt

this approach for constructing approximate confidence bands in Section 3.5. Specifically our resampling

cases bootstrap algorithm is as follows:

Resampling cases bootstrap

for 𝑟 = 1, . . . , 𝐵 do:

1. Sample 𝑗⋆
1 , . . . , 𝑗⋆

𝑛 with replacement from a discrete uniform distribution over {1, . . . , 𝑛}.

2. for 𝑖 = 1, . . . , 𝑛 do: set (𝑥⋆
𝑖 , 𝑊 ⋆

𝑖 ) = (𝑥𝑗⋆
𝑖
, 𝑊𝑗⋆

𝑖
).

3. Estimate tuning parameters (̂︀𝑏⋆, ̂︀𝜈⋆, ̂︀𝜏 ⋆).
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4. Estimate pd spectral density through (3.10), i.e., compute

̂︀ℎ𝑟
𝑥(𝑤) =

𝑛∑︁
𝑖=1

𝜋⋆̂︀𝑏⋆,𝑖
(𝑥)𝛽(𝑤; ̂︀𝜈⋆𝑊 ⋆

𝑖 𝜃̂︀𝑏⋆(𝑥) + ̂︀𝜏 ⋆, ̂︀𝜈⋆{1 − 𝑊 ⋆
𝑖 𝜃̂︀𝑏⋆(𝑥)} + ̂︀𝜏 ⋆), 𝑤 ∈ [0, 1],

where

𝜃⋆̂︀𝑏⋆(𝑥) = 1/2∑︀𝑛
𝑖=1 𝜋⋆̂︀𝑏⋆,𝑖

(𝑥)𝑊 ⋆
𝑖

, 𝜋⋆̂︀𝑏⋆,𝑖
(𝑥) =

𝐾̂︀𝑏⋆(𝑥 − 𝑥⋆
𝑖 )∑︀𝑛

𝑗=1 𝐾̂︀𝑏⋆(𝑥 − 𝑥⋆
𝑗)

, 𝑖 = 1, . . . , 𝑛.

Such confidence bands are indeed approximate as they do not reflect the uncertainty stemming from

transforming the data to the same margins.

3.4 Simulation study

3.4.1 Data-generating configurations and preliminary experiments

We study the performance of our methods under the logistic and Dirichlet pd models introduced

in Examples 6 and 7. Regarding the logistic spectral surface, we take 𝛼𝑥 = Φ(𝑥) and consider 𝑥 ∈

Xlogistic = [Φ−1(0.2), Φ−1(0.4)]. For the Dirichlet spectral surface we consider two scenarios: a symmetric

Dirichlet spectral surface with (𝑎𝑥, 𝑏𝑥) = (𝑥, 𝑥), for 𝑥 ∈ XsDir = [0.8, 4] and an asymmetric Dirichlet

spectral surface with (𝑎𝑥, 𝑏𝑥) = (𝑥, 100), for 𝑥 ∈ XaDir = [0.5, 2]. In Figure 3-2 we plot the true and

estimated spectral surfaces for the three cases described above on a single experiment with 𝑛 = 500. The

top panel of Figure 3-2 corresponds to the logistic spectral surface, where extremal dependence decreases

as a function of the predictor. The center panel shows the symmetric Dirichlet spectral surface, where

we observe weaker dependence for lower values of the covariate, whereas stronger dependence prevails

for higher values. Finally, an increasing asymmetric dependence dynamic is displayed in the bottom

panel, where we have plotted the asymmetric Dirichlet spectral surface.

The single run experiment in Figure 3-2 allows us to illustrate strengths and limitations of the

methods. Even though there is a good fit—which is discussed in further detail in Section 3.4.2—we

can anticipate from this figure that our estimator suffers from limitations inherent to kernel-based
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estimators. For example, pointwise estimation for the pd logistic model does not perform so well when

the spectral surface peaks at 𝑥 = Φ−1(0.2), but this is mostly due to the boundary bias of 𝐾𝑏 which is a

drawback of kernel-based estimators on bounded domains; see Hardle (1990, Section 4.4) and references

therein. For the pd Dirichlet models, the estimates are slightly less smooth due to the need to recover

more complicated surfaces. In particular, when the true spectral density is low, and thus there are few

data points, estimation will be naturally more challenging. In spite of these limitations, our estimator

successfully recovers the shape of the true spectral surface, and thus is able to reproduce accurately

the evolution of extremal dependence over the covariate.

3.4.2 Simulation results

For the simulation studies, we took 1000 samples of sizes 350 and 500 for the three pd models presented

in Section 3.4.1. For the samples of size 500, Figure 3-3 displays trajectories of 100 randomly selected

estimates of cross sections of the spectral surface (i.e., pd spectral density estimates at fixed values

of 𝑥) along with their Monte Carlo means. These trajectories allow us to illustrate the performance

of our estimator under different dependence dynamics. For instance, the top left and center right

panels in Figure 3-3 show the limitations due to boundary bias that was discussed in Section 3.4.1.

Indeed, our numerical experience suggests that the method’s performance tends to be better in the

center of the covariate space (center column of Figure 3-3), and that U-shaped spectral surfaces are in

general more difficult to estimate. The center panel corresponds to the symmetric Dirichlet spectral

model, which displays a good mean performance in the first two cases, but with some bias in the third

case. Finally, the asymmetric Dirichlet spectral model, presented in the bottom panel, displays more

dispersed estimates than for the other two models, although the Monte Carlo mean produces suitable

approximations. The asymmetry does not seem to be a major problem. Overall, for the three models,

the estimator displays reasonable performance in recovering the different shapes of the densities and

Monte Carlo means produce reliable estimates.

We assess the performance of our estimator using the mean integrated absolute error (MIAE),

MIAE = E
(︃∫︁

X

∫︁ 1

0
|̂︀ℎ𝑥(𝑤) − ℎ𝑥(𝑤)| d𝑤 d𝑥

)︃
. (3.15)
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Asymmetric Dirichlet spectral surface
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Figure 3-2. True spectral surfaces (left) and corresponding estimates (right). Top panel: pd logistic model with
𝛼𝑥 = Φ(𝑥), for 𝑥 ∈ Xlogistic = [Φ−1(0.2), Φ−1(0.4)]. Center panel: pd Symmetric Dirichlet model with (𝑎𝑥, 𝑏𝑥) = (𝑥, 𝑥),
for 𝑥 ∈ XsDir = [0.8, 4]. Bottom panel: pd Asymmetric Dirichlet model with (𝑎𝑥, 𝑏𝑥) = (𝑥, 100), for 𝑥 ∈ XaDir ∈ [0.5, 2].
The simulated pseudo-angles based on which the estimates on the right are produced are overlaid on the bottom of the
boxes.
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3.4. SIMULATION STUDY

Table 3.1. Mean integrated absolute error estimates computed over 1000 samples for the data-generating configurations
discussed in Section 3.4.1.

𝑛 pd Model Specification MIAE

350 Logistic 𝛼𝑥 = Φ(𝑥) 0.0832
Symmetric Dirichlet (𝑎𝑥, 𝑏𝑥) = (𝑥, 𝑥) 0.4042
Asymmetric Dirichlet (𝑎𝑥, 𝑏𝑥) = (𝑥, 100) 0.2736

500 Logistic 𝛼𝑥 = Φ(𝑥) 0.0750
Symmetric Dirichlet (𝑎𝑥, 𝑏𝑥) = (𝑥, 𝑥) 0.3664
Asymmetric Dirichlet (𝑎𝑥, 𝑏𝑥) = (𝑥, 100) 0.1879

and report the results in Table 3.1. Although we cannot compare MIAE across models due to the

different domains of the covariate, the figures demonstrate that performance increases with sample size

as one would anticipate. Overall, simulations confirm that our methods produce acceptably accurate

estimates of the spectral surface. Monte Carlo mean spectral surfaces are reported in the Appendix.

To conclude this section, we provide some practical implementation details on the tuning parameter

selection. Since optimization over RX,𝑛 (defined in Eq. (3.14)) is computationally expensive, we found

that RX,𝑛 can be well approximated by the set

R𝑛 = {(𝑏, 𝜈, 𝜏) ∈ (0, ∞)3 : 𝜈{1 − 𝑊𝑖𝜃𝑏(𝑥𝑗)} + 𝜏 > 0, for 𝑖, 𝑗 = 1, . . . , 𝑛},

i.e., a version determined only at the observed covariate values. Furthermore, for large 𝑛, unconstrained

optimization over (0, ∞)3 typically also performs well. We thus recommend the user to initially try

unconstrained optimization for large 𝑛, or optimization over R𝑛 for moderate 𝑛. Only if the resulting

parameter values do not yield a valid estimator over the study region of interest, then one needs to

implement the constrained optimization over RX,𝑛.
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Cross sections of symmetric Dirichlet spectral surface
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Cross sections of asymmetric Dirichlet spectral surface
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Figure 3-3. Trajectories of 100 randomly selected estimates of cross sections of the spectral surface (gray lines), as well
as their corresponding true values (solid line) and Monte Carlo means (dashed line).
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3.5. DYNAMICS OF JOINT EXTREMAL LOSSES IN LEADING EUROPEAN STOCK MARKETS

3.5 Dynamics of joint extremal losses in leading European

stock markets

3.5.1 Background and motivation for empirical analysis

In 1999, eleven European Union (EU) countries formed the Economic and Monetary Union (EMU),

which led them to adopt a common currency and monetary policy as well as the conduction of coordi-

nated economic policies.

The process of creation of EMU was the outcome of three stages of development, on which further

details can be found on the European Central Bank website:

https://www.ecb.europa.eu/ecb/history;

see also James (2012). To join the Eurozone (countries who adopted the Euro as their common

currency) member states had to qualify by meeting the criteria of the Maastricht Treaty in terms of

budget deficits, inflation, interest rates, and other monetary requirements. At the moment the Euro is

the single currency shared by 19 of the 28 EU members. The remaining 9 countries, including the UK,

are endowed with ‘opt-out’ clauses which exempts them from using the Euro as their currency. In recent

years there have been several studies providing evidence for an increased integration of European stock

markets, and the EMU has been frequently put forward as the causal driver for this increase, along

with some other determinants (Fratzscher, 2002; Kim et al., 2005; Hardouvelis et al., 2006; Büttner

and Hayo, 2011, and the references therein). Hardouvelis et al. (2006) found however that the UK, who

has chosen not entering the eurozone, showed no increase in stock market integration by that time.

Although there is a wealth of studies analyzing stock market integration over time, few attempts

have been made to ascertain the dynamics governing extreme value dependence of stock market returns

over time. An exception in this respect is the seminal paper of Poon et al. (2003), which provides

evidence of increasing levels of extremal dependence for three major stock markets within Europe

[CAC (France), DAX (Germany), and FTSE (UK)]. The subperiod analysis of Poon et al. (2003,

Section 3.3.2) is however exploratory, in the sense that they arbitrarily partitioned the sample period

into three periods, and thus estimation of extremal dependence on each period only takes data from
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that period into account.
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Figure 3-4. Scatterplots using a time-varying color palette for daily returns for CAC 40 (FR), DAX 30 (GR) and
FTSE 100 (UK) spanning the period from January 1, 1988 to January 1, 2014.

Below we apply our methods to address a similar question to that of Poon et al. (2003, 2004).

Specifically, one of our main interests is on disentangling the dynamics governing the dependence of

extreme losses on three leading European stock markets—using CAC, DAX, and FTSE—in recent

years. The motivation for choosing these markets is twofold: these are the stock markets of the

European economies member of G5; these are also the same European stock markets considered by

Poon et al. (2003, 2004). Moreover they display a stronger type of extremal dependence than some

of the other markets studied by Poon et al. (2003, 2004), i.e., asymptotic dependence as defined in

Section 3.2.1.

3.5.2 Data description and exploratory considerations

Our data consist of daily closing stock index levels of three leading European stock markets: CAC

40, DAX 30, and FTSE 100 (henceforth CAC, DAX, and FTSE). Index values were gathered from

Datastream in terms of local currency. Our sample period spans from January 1, 1988 to January 1,

2014 (𝑁 = 6784 observations), and hence it includes the Great Moderation (from the mid-1980s to 2007)

and Great Recession (December 2007 to June 2009) which are by all standards challenging modeling
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issues. Scatterplots of possible combinations of pairs of return series are displayed in Figure 3-4. This

figure is depicted using a time-varying color palette which allows us to uncover a higher frequency of

joint extremes over recent periods, thus suggesting that extremal dependence between returns may have

been increasing over time. This is in line with the findings of Poon et al. (2003, 2004). As mentioned in

Section 3.5.1 we choose to focus on extreme losses, and thus as a unit of analysis we use daily negative

returns, which can be used as proxies for losses in these markets.

To verify that our methods are sensible for modeling, we need to assess whether negative returns

are asymptotically dependent. As mentioned in Section 3.2.1, in the modeling of extreme events

two different classes of extreme value dependence can arise: asymptotic dependence and asymptotic

independence. Dependence between moderately large values can arise in both cases, but the very

largest values from each variable can occur together only under asymptotic dependence. To make

ideas concrete, let 𝑌1 and 𝑌2 be any two negative returns of interest, transformed to have unit Pareto

margins. Under an exploratory setting, two measures of tail dependence can be obtained to summarize

the strength of extremal dependence:

𝜒 = lim
𝜏→∞

P(𝑌1 > 𝜏 | 𝑌2 > 𝜏), 𝜒 = lim
𝜏→∞

2 log P(𝑌1 > 𝜏)
log P(𝑌1 > 𝜏, 𝑌2 > 𝜏) − 1.

Here, 𝜒 ∈ [0, 1] measures the strength of dependence within the class of asymptotically dependent

variables, whereas 𝜒 ∈ [−1, 1] is often used to measure the strength of dependence within the class of

asymptotically independent variables. Taken together, the pair (𝜒, 𝜒) provides a summary of extremal

dependence for the vector (𝑌1, 𝑌2). Asymptotic dependence implies 𝜒 = 0 and 𝜒 = 1. Roughly

speaking, if 𝜒 > 0 then we often speak about ‘positive extremal dependence,’ whereas if 𝜒 < 0 we use

the expression ‘negative extremal dependence.’ Indeed, for the bivariate normal dependence structure

𝜒 corresponds to Pearson correlation; see Heffernan (2000) for further examples.

In Figure 3-5 we present rolling window estimates of 𝜒 and 𝜒 with approximate 95% confidence

intervals, which is tantamount to the subperiod analysis of Poon et al. (2003, Section 3.3.2). Given

the large uncertainty entailed in the estimation of 𝜒 and 𝜒, interpretation of these plots is far from

being straightforward. Nevertheless, pointwise estimation for 𝜒 seems reasonably different from 0 for

the three pairs under study. Values for 𝜒 are closer to 1 as time passes, although for FTSE versus
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Figure 3-5. Rolling window estimates for 𝜒 (top) and 𝜒 (bottom), using a window of size 600 for CAC 40 (FR), DAX
30 (GR), and FTSE 100 (UK).

CAC there are some evidences of 𝜒 being close to 0 at about 2003. However, the values of 𝜒 start to

increase right after, quickly approaching 1.

3.5.3 Modeling time-varying extremal dependence

The time-varying color palette scatterplots in Figure 3-4 and the rolling window estimates in Figure 3-5

provide evidence of an increase in extremal dependence, but they are only exploratory. In this section

we complete the analysis from Section 3.5.2, by applying our predictor-modeling approach in order to

assess how the dependence structure of bivariate extreme losses in the CAC, DAX, and FTSE has been

evolving over recent years. Before we proceed any further, some comments regarding implementation

are necessary. As mentioned in Section 3.2, the data were transformed to standard Pareto margins.

This was done as follows. Given a sample of pairs of returns (𝑟1,1, 𝑟1,2), . . . , (𝑟𝑁,1, 𝑟𝑁,2), we constructed
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proxies for the unobservable pseudo-angles 𝑊𝑖 by setting

𝑊𝑖 = ̂︀𝑌𝑖,1/( ̂︀𝑌𝑖,1 + ̂︀𝑌𝑖,2), 𝑅𝑖 = ̂︀𝑌𝑖,1 + ̂︀𝑌𝑖,2,

where ̂︀𝑌𝑖,1 = 1/{1 − ̂︀𝐹𝑟1(𝑟𝑖,1)} and ̂︀𝑌𝑖,2 = 1/{1 − ̂︀𝐹𝑟2(𝑟𝑖,2)} and where ̂︀𝐹𝑟1 and ̂︀𝐹𝑟2 are estimators of the

marginal distribution functions 𝐹𝑟1 and 𝐹𝑟2 . A robust choice for ̂︀𝐹𝑟1 and ̂︀𝐹𝑟2 is the pair of univariate

empirical distribution functions, normalized by 𝑁+1 rather than by 𝑁 to avoid division by zero. Finally,

we proceed as described in Section 3.3.1. Evidence of dependence of the pseudo-radius on time was

found, and so we proceed under a nonstationary assumption. Specifically, we model the 95% quantile

of the pseudo-radius through parametric quantile regression, threshold the pseudo-radius according

to the fit, and use the associated pseudo-angles for inference. After thresholding, the number of

pseudo-angles is equal to 338, 340 and 339 for CAC–DAX, FTSE–CAC and FTSE–DAX, respectively.

The pseudo-angles corresponding to these observations are plotted in the two-dimensional bottom

plane in Figure 3-7. The tuning parameters (𝑏, 𝜈, 𝜏) were computed as discussed in Sections 3.3.4 and

3.4.2 and they are estimated as: (0.12, 11.49, 0.62) for CAC–DAX; (0.21, 6.42, 0.57) for FTSE–CAC;

(0.24, 11.03, 0.57) for FTSE–DAX.

In Figure 3-6 we plot cross sections of the spectral surface estimate at three important periods

on the EU agenda: i) Beginning of stage one of EMU (1 July, 1990); ii) beginning of stage three of

EMU (1 January, 1999); iii) activation of the assistance package for Greece (2 May, 2010), the first

country to be shut out of the bond market, which fostered the European sovereign debt crisis (Lane,

2012). The choice of landmarks i–iii) is arbitrary, but recall that our main interest is in describing

how extremal dependence may change, by comparing periods sufficiently apart in time. As can be

observed from the first column in Figure 3-6, at around 1990 the dependence between extreme losses

of CAC–DAX and FTSE–DAX was similar, exhibiting some evidence of extremal independence. The

second column in Figure 3-6 reveals that about a decade later this dynamic changed, and that extreme

losses of CAC–DAX and FTSE–DAX started to show some mild signs of extremal dependence. The

evidence for an increase in extremal dependence of losses in these pairs of markets is even more clear

at the beginning of the European sovereign debt crisis, as can be confirmed from the third column

in Figure 3-6. The dynamics of the dependence of bivariate extreme losses for the pair FTSE–CAC
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Figure 3-6. Cross sections of spectral surface estimates for CAC–DAX [top], FTSE–CAC [center], and FTSE–DAX
[bottom]. The first column corresponds to the beginning of stage one of EMU (1 July, 1990), the second column
corresponds to the beginning of stage three of EMU (1 January, 1999), and the third column corresponds to the time
of activation of the assistance package for Greece (2 May, 2010). Confidence bands were obtained through a resampling
cases bootstrap algorithm, with 𝐵 = 1000.

80



3.5. DYNAMICS OF JOINT EXTREMAL LOSSES IN LEADING EUROPEAN STOCK MARKETS

1990
1995

2000
2005

2010
0.0

0.2
0.4

0.6
0.8

1.0

0

0.5

1

1.5

2

Time
w

● ● ●● ●●● ● ●●●●● ●●●● ● ●●● ●● ●●●● ●● ●● ●●●● ●●● ●●●●●● ●● ●●●● ●●● ● ● ●●●●● ●●●● ●●● ●● ●● ●●●●● ● ● ●●●●● ●● ● ●●● ●● ●●●● ● ●● ●● ●● ●● ●● ●● ● ●● ● ● ●● ● ●● ● ●● ●●● ● ●● ●● ●● ●● ●●●● ●●●●● ●● ●●●● ● ● ●● ●●●●●● ●● ●●● ●● ●● ●● ●●● ● ●● ●●●●● ●●● ●● ●● ● ●●● ●●● ●●● ● ●● ● ●● ●● ●●●● ● ●●●● ● ● ●● ●●●● ● ●● ●● ●● ● ●●●● ● ●●● ●● ●●● ●● ●●●●● ●●● ● ●● ● ●●● ●● ●● ● ●●● ●● ●●● ●●● ● ●● ●●● ●●● ●● ● ●●● ●● ●●●● ●●● ●●●● ● ● ●● ● ●● ●● ●● ●● ●● ● ●● ● ●● ● ●● ●●
●● ●●

●●●
●

1990
1995

2000
2005

2010
0.0

0.2
0.4

0.6
0.8

1.0

0

0.5

1

1.5

2

Time
w

CAC 40 − DAX 30CAC 40 − DAX 30CAC 40 − DAX 30

S
pe

ct
ra

l S
ur

fa
ce

1990
1995

2000
2005

2010
0.0

0.2
0.4

0.6
0.8

1.0

0

0.5

1

1.5

2

Time
w

●●● ●●● ●● ● ●● ●● ●● ●●●● ● ●● ●●● ● ●● ● ●● ●● ● ●● ●●● ● ●● ● ●● ●● ● ●●● ●● ●● ● ●● ●● ● ● ●●●●● ● ● ●● ● ●●●●●● ● ●
● ● ●● ●● ●● ● ●● ● ●● ●● ●●● ●●● ●● ● ●● ●● ●● ● ●● ● ● ●● ●●● ● ●● ●● ● ●●● ● ●●● ● ● ●● ● ●● ● ●● ●● ●● ●● ●● ●● ● ●● ●● ●●● ●● ● ●●●● ● ●●● ●● ●● ●● ●●●● ●● ● ●●● ●●● ●● ●● ●●● ● ●●● ●●● ● ●● ●●● ●● ●●● ●●● ●● ●●● ●●● ● ●● ●●● ● ●● ●● ●●● ● ● ●●● ●● ● ●● ●● ● ● ●● ● ●● ● ●●● ● ●● ●●● ●● ●● ●●●● ●● ● ●●●● ●●● ●● ●● ●●●● ●●●●●● ●●●● ●●●●● ●● ●●●●● ●● ● ●● ●● ●● ●●● ●

● ●●
● ●

● ●

●

1990
1995

2000
2005

2010
0.0

0.2
0.4

0.6
0.8

1.0

0

0.5

1

1.5

2

Time
w

FTSE 100 − CAC 40FTSE 100 − CAC 40FTSE 100 − CAC 40

S
pe

ct
ra

l S
ur

fa
ce

1990
1995

2000
2005

2010
0.0

0.2
0.4

0.6
0.8

1.0

0

0.5

1

1.5

2

Time
w

●●●● ●●●● ●●●●●● ●● ●●● ●● ●● ● ●●● ●●●● ● ●●● ●● ●●● ●●● ●● ●●● ●●● ● ●●● ●● ● ●● ●●● ●● ●●● ●● ● ●● ●● ●● ● ●● ●●●● ●●● ● ●●● ● ●● ● ●●●● ●● ●●●● ●● ●●●● ● ●●●● ● ●● ●●● ●● ● ● ●●● ● ●● ●●● ●●●● ●●● ●●● ● ●● ●●●● ● ● ●●● ●● ●● ● ●● ●●●●● ● ●● ●● ●●● ●●●●● ● ●●● ●● ● ●●● ●●●● ●● ● ●● ●●●● ● ●● ● ● ●●●● ●●● ● ● ●●●● ●●● ●● ●●●● ● ● ●● ● ●● ● ●●● ● ●●● ●● ● ●●● ●●●●● ●● ●● ●● ● ●●● ● ●●●● ●● ●●●● ●●● ●● ● ● ●● ●● ●● ●● ● ● ●●● ●● ●● ●● ● ● ●●●●● ●● ● ●● ●● ●● ● ●● ●● ●●● ●●
●● ●●● ● ●●

1990
1995

2000
2005

2010
0.0

0.2
0.4

0.6
0.8

1.0

0

0.5

1

1.5

2

Time
w

FTSE 100 − DAX 30FTSE 100 − DAX 30FTSE 100 − DAX 30

S
pe

ct
ra

l S
ur

fa
ce

Figure 3-7. Spectral surfaces estimates for CAC–DAX, FTSE–CAC and FTSE–DAX, with pseudo-angles overlaid on
the bottom of the box.

are slightly more complex, but also show evidence of increasing levels at the onset of the European

sovereign debt crisis. Our findings may seem to contradict Hardouvelis et al. (2006)—who claimed

that the UK showed no increase in stock market integration—however we note that Hardouvelis et al.

(2006) did not assess extremal dependence. The confidence bands in Figure 3-6 were obtained through

the resampling cases bootstrap algorithm, with 𝐵 = 1000 resamples, detailed in Section 3.3.4.

Figure 3-6 provides only a few snapshots corresponding to landmarks i–iii). A more complete

portrait of the temporal changes in extremal dependence is provided by the spectral surface estimate

in Figure 3-7, from which the cross-sections in Figure 3-6 are derived.

All in all, we can clearly see the change from weaker dependence around 1990 to strong depen-

dence starting from 2005, thus suggesting that in recent decades there has been an increase in the

extremal dependence in the losses for these leading European stock markets. The pair CAC–DAX is

the one where extremal dependence peaks the most, thus suggesting a high level of synchronization

and comovement of extreme losses on those markets over recent years.

Similar conclusions can be drawn from Figure 3-8, where we plot the pd extremal coefficient as a

function of time, as defined in Section 3.2.3. The extremal coefficient is equal to 2 − 𝜒, and as such

is equal to 2 under asymptotic independence, and takes values in [1, 2) under asymptotic dependence.

Figure 3-8 permits the comparison with the results of Poon et al. (2004), who calculated 𝜒 over

subperiods. The red lines in Figure 3-8 represent the values from the analysis of Poon et al. for the

subperiod November 1990–November 2001 (cf Poon et al., 2004, Table 3). Specifically Poon et al.
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Ĉ
x

Figure 3-8. Predictor-dependent extremal coefficients. Confidence bands were obtained through a resampling cases
bootstrap algorithm, with 𝐵 = 1000. The red lines represent the values from the analysis of Poon et al. for the subperiod
November 1990–November 2001 (cf Poon et al., 2004, Table 3).

(2004) report the following values of 𝜒 for: CAC–DAX, 0.517 (0.037); FTSE–CAC, 0.532 (0.035) and

FTSE–DAX, 0.459 (0.039), with standard errors on parentheses. As can be seen from Figure 3-8, the

magnitudes of the extremal coefficients estimated by Poon et al. are slightly smaller than the estimates

we obtain, but are in reasonable agreement with uncertainty taken into account.

3.6 Final remarks

In this chapter, we develop methods for modeling nonstationary extremal dependence structures, moti-

vated by the need to assess the comovement of extreme losses on some leading European stock markets

over recent years. Although there are many studies analyzing stock market integration over time, few

attempts have been made to assess the dynamics of extreme value dependence of stock market returns

over time.

In a recent paper, de Carvalho and Davison (2014) develop the so-called spectral density ratio model,

which can be regarded as a related approach to model nonstationary extremal dependence structures.

While flexible, their approach is computationally demanding, and only applies to the setting where

there are multiple observations for each value of the predictor—and thus it is inappropriate for the

present setting of interest. Our methods are more resilient in the sense that they do not require a sample

of pseudo-angles per each observed covariate, but apply more generally to a regression setting where

82



3.7. APPENDIX

each covariate value may correspond to a single pseudo-angle. In common with any approach based

on multivariate extreme value distributions, a limitation with our methods is that it will overestimate

risk if data are asymptotically independent. The need for developing pd models able to cope with both

asymptotic dependence and asymptotic independence is of utmost importance.

3.7 Appendix

3.7.1 Appendix A: tuning parameter selection

Proposition 1. Define

RX,𝑛 = {(𝑏, 𝜈, 𝜏) ∈ (0, ∞)3 : 𝜈{1 − 𝑊𝑖𝜃𝑏(𝑥)} + 𝜏 > 0, for 𝑖 = 1, . . . , 𝑛, 𝑥 ∈ X},

R𝑛 = {(𝑏, 𝜈, 𝜏) ∈ (0, ∞)3 : 𝜈{1 − 𝑊𝑖𝜃𝑏(𝑥𝑗)} + 𝜏 > 0, for 𝑖, 𝑗 = 1, . . . , 𝑛}

and suppose that 𝑏 = 𝑏(𝑛) → 0, 𝜈 = 𝜈(𝑛) → ∞ and 𝜏 = 𝜏(𝑛) → 0 when 𝑛 → ∞. Then, as 𝑛 → ∞

𝜆(RX,𝑛 ∖ R𝑛) = 𝑜𝑝(1), and 𝜆((0, ∞)3 ∖ R𝑛) = 𝑜𝑝(1), (3.16)

where 𝜆(·) denotes the Lebesgue measure in R3.

Proof. The proofs for both convergences in (3.16) are similar. Here we outline the proof for the first

convergence.

𝜆(RX,𝑛 ∖ R𝑛) = 𝜆({(𝑏, 𝜈, 𝜏) ∈ (0, ∞)3 : 𝜈{1 − 𝑊𝑖𝜃𝑏(𝑥)} + 𝜏 > 0, for 𝑖 = 1, . . . , 𝑛, 𝑥 ∈ X and

𝜈{1 − 𝑊𝑖𝜃𝑏(𝑥𝑗)} + 𝜏 ≤ 0, for some 𝑖, 𝑗 = 1, . . . , 𝑛})

but according to lemma 2, when 𝑛 → ∞, 𝜃𝑏(𝑥) − 1 = 𝑜𝑝(1) and since 𝜈 → ∞ and 𝜏 → 0, we have that

𝜆({(𝑏, 𝜈, 𝜏) ∈ (0, ∞)3 : 𝜈{1 − 𝑊𝑖𝜃𝑏(𝑥𝑗)} + 𝜏 ≤ 0, for some 𝑖, 𝑗 = 1, . . . , 𝑛}) = 𝑜𝑝(1),

consequently, 𝜆(RX,𝑛 ∖ R𝑛) = 𝑜𝑝(1).
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3.7.2 Appendix B: Monte Carlo mean spectral surfaces

Figure 3-9 shows Monte Carlo mean spectral surfaces for the three simulation scenarios described in

Section 3.4.
Logistic spectral surface
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Figure 3-9. True spectral surfaces (left) and corresponding Monte Carlo means (right) resulting from the simulation
study in Section 3.4.
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3.7.3 Appendix D: supplementary data analysis reports

Recall that our data consist of daily closing stock index levels of three leading European stock markets:

CAC 40, DAX 30, and FTSE 100. Index values were gathered from Datastream in terms of local

currency. Our sample period spans from January 1, 1988 to January 1, 2014 (6784 observations).

Figure 3-10 shows the series of daily returns, whereas Table 3.2 presents summary statistics for CAC

40, DAX 30 and FTSE 100.

Figure 3-10. Daily returns for CAC 40 (FR), DAX 30 (GR) and FTSE 100(UK) spanning the period from January 1,
1988 to January 1, 2014.

Table 3.2. Summary statistics of the return series for the three stock markets indices: FTSE 100 (UK), CAC 40 (FR)
and DAX 30 (GR). The data span the period from January 1, 1988 to January 1, 2014.

Statistic Stock market index

UK FR GR

Mean 0 0 0

Std Deviation 0.011 0.014 0.014

Minimum -0.093 -0.095 -0.137

Maximum 0.094 0.106 0.108

Kurtosis 9.415 7.833 9.272

Skweness 0.135 -0.047 -0.255

85



3.7. APPENDIX

86



4 Conclusions and Further Modeling

In this thesis, we have addressed two different frameworks in the context of nonstationary bivariate

extremal dependence. In Chapter 2 we developed methodologies for a setting where different depen-

dence structures are related with different values of a predictor, whereas in Chapter 3 we worked in a

setting where the dependence is changing over the predictor. In both cases, we proposed methodologies

to estimate the predictor-dependent spectral density that produce mean-constraint estimators. This

chapter summarizes the main conclusions of this dissertation and gives directions of future work.

4.1 Conclusions

Bivariate statistics of extremes provides a natural framework for inference on the joint tail of a distri-

bution outside the sample region. The characterization of the asymptotic distribution of the joint tail

relies on the spectral measure defined in [0,1], whose distribution or density describe the dependence

among extremes. In this thesis, we have developed methodologies for modeling the spectral density of a

bivariate extreme value distribution which evolves over a predictor. We have done this, working within

a tail dependence framework known as asymptotic dependence, and assuming two different frameworks,

both related with the notion of predictor-dependent spectral measure. The first framework, detailed

in Chapter 2, considers the case where sets of extreme data are observed for every value of the predic-

tor. In this setting, spectral densities estimates can be constructed for every predictor value through

the smoothed Euclidean likelihood estimator (de Carvalho et al., 2013). Using smoothing techniques,

we are able to smooth over all the predictor space, producing estimates of the spectral densities for
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unobserved predictor values. This two-step inference technique gives rise to a double kernel estimator,

which similar to the Nadaraya–Watson estimator, but where responses are spectral density estimates.

Our model is related to the spectral density ratio model of de Carvalho and Davison (2014) in the sense

that covariates can be incorporated, but rather than just linking extremal distributions, our model as-

sesses directly the evolution of extremal dependence. Furthermore, implementation of our estimator is

straightforward, and inference is computationally convenient. We test our methods in a temperature

data application where altitude is considered a variable of interest. Results suggest an impact of the

altitude on the extremal dependence of maximum temperatures under the forest and on a open field,

showing the need to consider nonstationarity in the extreme value dependence structure.

The second framework of this dissertation, covered in Chapter 3, considered a setting where the depen-

dence is changing over the predictor and is particularly suited if we want to study temporal changes

in extremal dependence. The observed data consist of paired values of the predictors and the pseudo-

angles. This data setting produces methods that are more complex, since we can no longer divide the

estimation and the parameter selection processes, as we did in Chapter 2. Nevertheless, these methods

are more resilient in the sense that they do not require a sample of pseudo-angles per each observed

covariate value, but apply more generally to a regression setting where to each covariate value may

correspond to a single pseudo-angle. Our work is motivated by the results of Poon et al. (2003) and

Poon et al. (2004) who studied the dependence between stock market returns in the US, UK, France,

Germany, and Japan. The main focus of their works was to highlight that not all markets exhibit

a sufficient strength of tail dependence to be asymptotically dependent, and to propose alternative

dependence summaries. However, considering only the European markets, they noted that there was

evidence for relatively strong left tail dependence, and we also find evidence for asymptotic dependence

in the left tails of these major European markets. As noted by Poon et al. (2003), the dependence is

not stationary in time. Our main focus was to explore this nonstationarity using a full model for the

time-varying dependence structure, rather than simply summary statistics. As in Chapter 2, we char-

acterize the dependence structure through the spectral density. Our model generates time-dependent

spectral density estimates based on a double kernel estimator, which smooths simultaneously in both

the predictor and the pseudo-angle directions.

We have made a first attempt to address the gap between the developments in nonstationary
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marginal distributions and bivariate distributions, by proposing two computationally compelling re-

gression models for the spectral density of a bivariate extreme value distribution that allows us to

include nonstationarity in the dependence structure of extreme values. Although both models deal

with nonstationary, they are built for different scenarios. Our first methodology applies to the setting

where there are several pseudo-angles corresponding to the same value of the predictor, whereas the

second one is particularly suited to assessing temporal changes in extremal dependence. Both models

are shown to succeed in describing extremal dependence when we work under an asymptotic depen-

dence assumption, but, as with any approach based on multivariate extreme value distributions, both

models overestimate risk if data are asymptotically independent. In the time-dependent model, we

do not assume marginal nonstationary distributions, meaning that we do not allow for the margins to

change over the predictor. However, this is a sensible modeling assumption for our data application, be-

cause returns are known to be approximately stationary. Finally, this work focused on componentwise

maxima, but wastefulness of data can be avoided by using models for high threshold exceedances. The

efficiency of this approach comes with additional drawbacks, such as the selection of a suitable thresh-

old and the suitability of extremal models at low levels, all of this being magnified by the difficulty of

working under a nonstationary setting.

4.2 Further Modeling

The methodologies presented in this thesis can be applied to different contexts in extreme data appli-

cations and extended in several directions. Some of the future works that may be derived from this

dissertation are detailed below.

Spatial extremes and high threshold exceedances

Bivariate sequences arise naturally in many real-life data contexts, such as environmental phenomena.

When the sequences are accompanied by a spatial dimension, the interest is in the modeling of the

spatial dependence within extreme events in continuous space based on observations recorded on a grid.

Inspired by the data application of Chapter 2, a sensible approach is to consider spatial modeling, for

which max-stable processes (de Haan, 1984) are natural models. More efficient approaches can also be
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achieved by considering high threshold exceedances. The models of Huser and Genton (2014) and Huser

and Davison (2014) could be an appropriate way to proceed in this respect, avoiding the wastefulness

of data and allowing for other covariates to be introduced in the model.

Bayesian methodology

Considering the often low amount of information available in extreme value analyses, it is natural to

consider other sources of information, like prior information about the variable under study or related

covariates. In this context, Bayesian methods supply a complete paradigm for statistical inference,

providing a set of interesting additional statistical tools, such as posterior prediction. Bayesian inference

in extreme value analysis can be carried out from a parametric point of view, but a more appealing

framework can be based on Bayesian nonparametrics, since the extreme value dependence structures

are infinite-dimensional. In the bivariate setting, the novel work of Guillote et al. (2011) take a step

into that direction, proposing Bayesian inference using a censored likelihood approach, with a prior

distribution for the spectral measure concentrated on a countable union of finite dimensional families

of smooth spectral measures which is dense in the set of all spectral measures. Nevertheless, its

generalization to arbitrary dimensions is not straightforward. A second possible direction is based on

approximation of the spectral measure by a mixture of Dirichlet distributions. This approximation in

theoretically valid in arbitrary dimension, but the moment constraint makes Bayesian inference very

challenging in greater dimension. Sabourin and Naveau (2014) proposed a reparametrization of the

Dirichlet mixture model that turns to be unconstrained, and so it can be used in a Bayesian framework

to infer the extremal dependence structure. A third direction is based on recent developments for

density estimation on compact sets. Barrientos et al. (2012) proposed models for sets of predictor-

dependent probability distributions with bounded domain. Application of these models to extreme

value analysis is restricted to the imposition of the moment constraint.

Models for asymptotic independence

As described in Section 3.6, a major drawback of models for multivariate extremes is the classical as-

sumption of asymptotic dependence. Ledford and Tawn (1997) introduced a versatile model to bridge
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the gap between asymptotic dependence and independence, but the need for developing more models

able to cope with both asymptotic dependence and asymptotic independence is of utmost importance.

In the nonstationary context, the hidden angular measure of Ramos and Ledford (2009) can be ex-

tended to a predictor-dependent version. Issues related with asymptotic dependence versus asymptotic

independence in spatial processes can be addressed with the approach of Ancona-Navarrete and Tawn

(2000).

Higher dimensional setting

Conceptually, it is not difficult to see how to generalize the approaches in Chapters 2 and 3 to arbitrary

dimensions. However, from a practical point of view, there are some serious obstacles to be overcome.

The spectral measure is an arbitrary probability measure on the (𝑑 − 1)-dimensional unit simplex

satisfying the moment constraints in (1.35), and it may have density on each of the 2𝑑 − 1 faces of

the unit simplex Coles and Tawn (1991). Double kernel estimators in Sections 2.2.3 and 3.3.2 can be

extended by replacing the beta kernel by Dirichlet kernels defined on R𝑑−1. The moment constraint

problem can be overcome by careful selection of the Dirichlet parameters. Efficient methodologies

should be also proposed for numerical computations.
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