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Eduardo Rodŕıguez Faúndez

Tesis sometida como requisito para optar al grado de

Doctor en Estad́ıstica

Pontificia Universidad Católica de Chile,
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Chapter 1

Introduction

In 1948, Neyman and Scott (1948) introduced a set of statistical models

parameterized by two types of parameters: the incidental parameters and the

structural parameters. The incidental parameters increase with the sample

size and, consequently, can be viewed as individual characteristics of the

statistical units. The structural parameters are parameters upon which all

individuals (of the sample) depend and, consequently, their dimension does

not depends on the sample size. As an example, consider the first statistical

model analyzed by Neyman and Scott (1948):

Xij ∼ N (µi, σ
2) j = 1, . . . ,m, i = 1, . . . , n,

where m is fixed and {Xij : 1 ≤ i ≤ n, 1 ≤ j ≤ m} are mutually indepen-

dent. In this case, the statistical model (or likelihood function) is indexed

by (µ1, . . . , µn, σ
2) ∈ Rn × R+; here, the incidental parameters are the µi’s,

whereas the structural parameter is σ2. Statistical models involving inci-

dental parameters are, therefore, characterized by having a parameter space

1
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which increases with the sample size. For this class of models, Neyman and

Scott (1948) showed that the maximum likelihood estimator (MLE) of the

structural parameters is inconsistent due to the presence of the incidental pa-

rameters. In the statistical literature, this problem is known as the incidental

problem; see Lancaster (2000).

A relevant example of the incidental problem is the Rasch model, which

is widely used in educational measurement and psychometrics. The Rasch

model assumes that the probability that a person answers correctly an item

depends on two factors: a person-specific factor and an item-specific factor;

the incidental parameters correspond to the person-specific factor; see Rasch

(1960b). For two items, Andersen (1980) proved that the item-specific factor

estimate is inconsistent. Thereafter, Ghosh (1995) extended the proof to an

arbitrary number of items, using an argument by contradiction.

The incidental problem opened two approaches to its solution. The first

consists in factorizing the likelihood function (which is indexed by structural

and incidental parameters) into two factors in such way that one of the factors

only depends on the structural parameters; for details, see Pfanzagl (1993).

This factorization can be performed if there exists a sufficient statistic for

the incidental parameters (when the structural parameters are fixed). In the

case of the Rasch model, this is possible because the total score of a person is

a sufficient statistic for the person-specific factor (when the item-specific fac-

tors are fixed); see (Chapter 6 Andersen, 1980). A second approach consists

in considering the incidental parameters as realization of an iid process. Typ-

ically, this process is considered as a latent process generating person-specific

latent factors. The statistical model, which refers to the observable variables
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only, can be obtained after integrating out the latent variables; the parame-

ters indexing this statistical model include the item-specific factors as well as

the parameters indexing the latent distribution. Kiefer and Wolfowitz (1956)

and Pfanzagl (1970) proved that the MLE of these parameters are consistent

provided they are identified. In general, this condition is difficult to verify

because the statistical model typically doesn’t have a closed form and, con-

sequently, the identification problem reduces to verify the invertibility of an

integral operator.

This doctoral dissertation deals with the incidental problem in the context

of educational measurement, more precisely when a test includes items with

partial credit. A popular statistical model to analyze this kind of data is the

so-called Partial Credit Model (PCM); see Master (1982).

These models can be considered as an extension of the Rasch model. Since

the framework of the Rasch model (with person-specific effects specified as

unknown parameters) creates an example of the incidental problem, it seems

natural that this is inherited by the PCM. The question is how to verify

such a conjecture. This dissertation focus its attention on this question and

not only attempts to answer it, but also tries to explain why the incidental

problem is produced. In this dissertation it is claimed that the reason is

that the MLE of the structural parameters is equivalent to the MLE of the

parameters of a misspecified statistical model, which is called SSB-model, and

will be defined later. This material is discussed in Chapter 2.

For the Rasch model, there exist bias correction factors which success-

fully help to “repair” that inconsistency; see Haberman (1977) and Ander-

sen (1980). Taking advantage of the similarity between a Rasch model and
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a PCM, Master and Wright (1997) show, through simulations studies, that

such correction factors work in the PCM context. In this dissertation, the

results of this simulation study are confirmed; to do it, specific SAS codes

were produced to compute the MLE of the PCM and its SSB-version. It

should be mentioned that the codes are extremely efficient from a compu-

tational point of view. A natural question is, therefore, the following: in

which context the MLE of the parameters of the SSB-version of the PCM

(and their corrections) are useful? To answer this question, a simulation

study is performed to compare the MLE of the item-specific parameters of a

PCM model obtained after integrating out the person-specific factors, with

the item-specific factors estimated under the SSB-version of the PCM. It is

shown that, when the distribution generating the person-specific factors is

correctly specified, both estimators are very similar. Furthermore, in the case

where the distribution generating the person-specific factors is misspecified ,

it is shown that the estimators of the item-specific factors obtained with the

SSB-version of the PCM are quite similar to the true item-specific factors.

A theoretical explanation for these findings is also provided. This material

is also developed in Chapter 2.

Taking into account that the item-specific factors can efficiently be esti-

mated using the SSB-version of the PCM, this dissertation illustrates their

use in specific application of educational measurement. Thus, in Chapter 2,

it is studied the structure of the item parameters of a Chilean mathemat-

ics test with items partially scored. In Chapter 3, it is shown how a PCM

can be reduced to a Linear Logistic Test Model (LLTM); see Fischer (1973).

These models are used to evaluate if the items of a test are answered fol-
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lowing specific sub-tasks or cognitive operations. To illustrate this aspect,

the cognitive content of a Chilean test (the SEPA test) was evaluated using

the SSB-version of the LLTM. A specific SAS-code was developed, which is

very efficient from a computational point of view. A similar application was

developed using a Rasch Poisson Count Model; the details are provided in

Appendix B.

The SAS-codes are gathered in the Appendices. Appendix A contains

some matrix theory needed in the theoretical development of Chapter 2.



Chapter 2

A Pseudo likelihood Aproach

to the Partial Credit Model

2.1 Introduction

2.1.1 Partial Credit Model: Model Specification and

Parameter Interpretation

The Partial Credit Model (PCM) is a unidimensional parametric item re-

sponse theory (IRT) model for the analysis of responses recorded in two or

more ordered categories; see Master (1982) and Master and Wright (1997).

For each item these ordered categories correspond to ordered levels of per-

formance on each item (partial success) and thereby awards partial credit

for each answer. The usual motivation for partial credit scoring is the hope

that it will lead to a more precise estimate of a person’s ability than a simple

pass/fail score. Suppose, for instance, that a person is asked to solve the

6
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following problem (taken from Master, 1982):
√

7.5/0.3 − 16. The correct

answer is obtained after computing
√

9; it corresponds to the highest level of

performance. This is getting after mastering two additional levels: the first

one corresponds to solve 7.5/0.3, which is equal to 25; the second one, which

supposes to master the first level, corresponds to solve the difference 25−16,

which is equal to 9. Thus, the item categories, along with the corresponding

partial scores, are the following:

Failed . . . . . . 0

7.5/0.3 = 25 . . . . . . 1

25− 16 = 9 . . . . . . 2
√

9 = 3 . . . . . . 3

The PCM is specified as follows: consider the responses of n persons to a

sequence of k items, I1, . . . , Ii, . . . , Ik. Each person may respond to item Ii in

m+1 (m ≥ 1) ordered categories. The response of person v to item Ii will be

represented by a selection vector x′vi = (xvi0, . . . , xvih, . . . , xvim), where xvi

is an observation from the random variable Xvi defined as follows: Xvih = 1

if the correct answer is in category h, and Xvih = 0 otherwise. The model

assumes that, for each item, the subject chooses one and only one of the

m + 1 categories. The probability function of the PCM is, therefore, given

by

pvih
.
= P (Xvih = 1) =

exp

(
hθv −

h∑
g=0

βig

)
m∑
z=0

exp

(
zθv −

z∑
g=0

βig

) , h = 0, 1, . . . ,m, (2.1.1)

where θv is a person parameter representing the ability of person v, whereas

βih correspond to the difficulty of category h of the item Ii. The model is
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completed by assuming that the {Xvih : v = 1, . . . , n; i = 1, . . . , k; h =

0, . . . ,m} are mutually independent.

Following San Mart́ın et al. (2009), the parameters of interest should be

distinguished from the identified parameters. In the case of a PCM, the iden-

tified parameters correspond to the probabilities {pvih : v = 1, . . . , n; i =

1, . . . , k; h = 0, . . . ,m} because each Xvih is distributed according to a

Bernoulli distribution of parameter pvih and the mapping pvih 7−→ Bern (pvih)

is injective. The parameters of interest are {θv, βih : v = 1, . . . , n; i =

1, . . . , k; h = 0, . . . ,m}. To identify the parameters of interest, an injective

relationship between them and the identified parametrization should be es-

tablished. The identified quotients pvih/(pvih + pvi,h−1) satisfy the following

identity (see Master, 1982):

pvih
pvih + pvi,h−1

=
exp(θv − βih)

1 + exp(θv − βih)
h = 1, . . . ,m. (2.1.2)

Consequently, βi0 (for i = 1, . . . , k) should be fixed at 0; if not, we would have

parameters that are not related to the identified parameters. Furthermore,

for each v and i, the differences θv − βih for h = 1, . . . ,m are identified;

therefore, a linear restriction is needed to identify (θv, βih) for h = 1, . . . ,m.

In this chapter, the following identification restriction is used:

βi0 = 0 for i = 1, , . . . , k; β11 = 0. (2.1.3)

Under this restriction, there remains n+k(m−1)−1 parameters of interest.

The identification restrictions (2.1.3) also allows us to statistically inter-

pret the parameters of interest; see San Mart́ın et al. (2009). As a matter of

fact, the restriction β11 = 0 implies that

θv = ln

(
pv11

pv10

)
, v = 1, . . . , n. (2.1.4)



9

Thus, what it is commonly called “ability of person v” corresponds to the

logarithm of the ratio between his/her probability to correctly answer the

standard item 1 in category 1 and the probability to correctly answer the

standard item 1 in category 0. This means that if the individual characteristic

θv > 0 (respect. < 0), then his/her probability to correctly answer item 1 in

category 1 is greater (respect. lesser) than his/her probability to correctly

answer item 1 in category 0.

Similarly, for each item i and each category h ≥ 2, what it is typically

called “difficulty of item i in category h” corresponds to

βih = θv − ln

(
pvih
pvi,h−1

)
= ln

(
pv11

pv10

· pvi,h−1

pvih

)
. (2.1.5)

Therefore, βih > β11 = 0 has a precise meaning in terms of probability of

correctly answer items in specific categories, namely

pvi,h−1

pvih
>
pv10

pv11

, h = 2, . . . ,m.

Two remarks should be added. First, the statistical interpretation of

the parameters θv and βih always involves two categories of an item. Sec-

ondly, abilities and difficulties are in the same scale, namely the logarithm of

probability ratios; see equations (2.1.4) and (2.1.5). Thus, the simultaneous

representation ability-difficulty has an explicit statistical meaning: βih > θv

means that pvi,h−1 > pvih, that is, the probability that person v correctly

answers item i in category h − 1 is greater than his/her probability to cor-

rectly answer the same item in category h. In applications this simultaneous

representation is crucial, particularly in criterion-referenced measurements;

for details, see Berk (1970); Livinston and Zieky (1989); Cizek (2001).
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2.1.2 Estimation procedures in the context of IRT mod-

els

IRT models are typically estimated using three different approaches: joint

maximum likelihood (JML), conditional maximum likelihood (CML) and

marginal maximum likelihood (MML). The first two approaches consider the

θv’s as parameters. The JML-approach is the general maximum likelihood

estimation method (MLE) applied to the estimation of the parameters of

interest. In the context of the Rasch model, it has a number of drawbacks

(see Embretson and Reise, 2000, pp. 209-210), one of them being the in-

consistency of the difficulty parameters estimates as the number of persons

grows (for details, see Andersen, 1980; Ghosh, 1995); as was mentioned in the

introduction this is an example of the famous incidental parameter problem

(see Neyman and Scott, 1948; Lancaster, 2000). Nevertheless, bias correcting

factors have been proposed (see Haberman, 1977; Andersen, 1980), provid-

ing empirical evidence that the corrected estimators (denoted as BC-JMLE)

work well for a large number of items. The CML-approach uses the fact

that the sum score is a sufficient statistic for the ability parameter θv (when

the difficulty parameters are “fixed”). This leads to factorize the likelihood

into two factors: one corresponds to the conditional distribution given the

sum score parameterized by the difficulty parameters only; the other one

corresponds to the marginal distribution of the sum score parameterized by

both the person parameters and the difficulty parameters. The difficulty pa-

rameters are estimated maximizing the conditional likelihood given the total

score. The abilities can be estimated in a second step from the marginal

distribution of the sum score after substituting the difficulty parameters by
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their estimates. The MML considers the abilities as mutually independent

random variables with a common distribution F φ, typically normal. In this

case, model (2.1.1) is viewed as a conditional distribution given θv, and the

estimation is focused on the difficulty parameters and the parameter φ in-

dexing F . These parameters are consistently estimated provided they are

identified by the observations (see, e.g., Kiefer and Wolfowitz, 1956). The

abilities are finally estimated using an Empirical Bayes procedure. For de-

tails and references, see De Boeck and Wilson (2004) and Baker and Kim

(2004).

2.1.3 Estimation procedures for the PCM

These approaches have also been implemented for the PCM (Master and

Wright, 1997; Baker and Kim, 2004). In particular, the JML procedure is still

widely used in practice in computer programs such as QUEST (Adams and

Khoo, 1993) and WINSTEPS (Linacre and Wright, 2000). In this context,

Bertoli-Barsotti (2005) provides a necessary and sufficient condition for the

existence and uniqueness of the JMLE of both the person parameters and the

difficulty parameters. Taking advantage on the structural similarity between

the Rasch model and the PCM, the related literature widely accepts (without

a formal proof) that the inconsistency of the JMLE for the Rasch model is

inherited by the PCM. Accordingly, correction factors similar to that used

for the Rasch model have been proposed for the PCM. Master and Wright

(1997) shows, suggest that such correction factors work well when compared

with the CML-estimator.
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2.1.4 Purpose of this chapter

The first concern of this chapter is to explain why the JMLE of the PCM

does not work correctly. It is actually shown that the JMLE of the PCM

is equivalent to the MLE of a misspecified model, which is called SSB (sum

score based)-model. Broadly speaking, the SSB-model is obtained from the

PCM after replacing the person parameter θv by a proxy of it based on

the sum score of person v (that is, the observed score obtained by person

v when answering all the items). The model obtained in this way actually

is a conditional model given the sum score; the incorrectness of the SSB-

model comes from the fact that it is explicitly treated as a marginal model

rather than as a conditional model. Following the terminology introduced by

Besag (1974, 1975), the SSB-model corresponds to a pseudo-likelihood; the

MLE obtained from the SSB-model will be denoted as SSBE. It is proved

that JMLE = SSBE; the inconsistency of the JMLE is accordingly explained

by the fact that it is equal to the MLE of an incorrect model, namely the

SSB-model. Exact relationships between the estimated standard errors for

the PCM and its SSB-version are also obtained. Thus, a complete statistical

description of a pseudo-likelihood (in our case, the SSB-model) in terms of

the original statistical model (in our case, the PCM) is provided.

Due to the inconsistency problems of the JMLE, PCM are also estimated

using a MML-approach. This requires to specify the distribution generating

the person abilities Fϕ, typically a normal distribution N (0, ϕ2). The sta-

tistical model –obtained after integrating out the person abilities– is indexed

by the difficulty parameters βih and the parameter ϕ; we call this marginal

model structural PCM. The person abilities are typically estimated using
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an Empirical Bayes procedure. In this context, the simultaneous represen-

tation of abilities and difficulties mentioned in Section 2.1.1 is meaningless

although the corresponding estimations belong to the sample space (i.e. they

are functions of the observations), and can accordingly be compared. Taking

into account the relevance in applications of such a representation, it should

be asked under which conditions the abilities and difficulties estimated in the

context of a structural PCM can be considered simultaneously represented.

This is the second concern of this chapter, which is discussed in Section 2.5.

This chapter is organized as follows: the SSB-formulation of the PCM

is developed in Section 2.2. The equality between the JMLE and the SSBE

is proved in Section 2.3, whereas the relationships between the correspond-

ing standard errors are established in Section 2.4. Section 2.5 composes

SSB-estimates with MML-estimates and suggest a way in which BC-SSB-

estimates are useful.

2.2 SSB-formulation of the Partial Credit Model

Let θ′ = (θ1, . . . , θn) and β′ = (β′1, β
′
2, . . . , β

′
k), where β′i = (βi0, βi1, . . . , βim),

with i = 1, . . . , k. It can easily be verified that the log-likelihood of the PCM

is given by

lJMLE(θ,β) =
n∑
v=1

θv

m∑
h=0

hxv+h −
k∑
i=1

m∑
h=0

βih

m∑
w=h

x+iw −GJMLE(θ,β),

(2.2.1)

where GJMLE(θ,β) =
k∑
i=1

n∑
v=1

log

[
m∑
z=0

exp

(
zθv −

z∑
g=0

βig

)]
. It follows that
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the sufficient statistic for (θv, βih) is given by

(
m∑
h=0

hxv+h,
m∑
w=h

x+iw

)
.

From the exponential family theory, it is well known that all persons

having the same total score Xv++ =
∑m

h=0 hxv+h have the same estimation

for their abilities. Thus, a total score t ∈ {0, . . . ,mk} can be considered as

a proxy of the abilities of persons having a total score Xv++ = t. The SSB-

formulation of the PCM is based on this fact. More precisely, the SSB-model

corresponding to the PCM is obtained by replacing the θv in (2.1.1) by a

γt ∈ R when v ∈ It = {v : Xv++ = t}, with t ∈ {0, . . . ,mk}. Thus,

pvih
.
= P (Xvih = 1) =

exp

(
hγt −

h∑
g=0

βig

)
m∑
z=0

exp

(
zγt −

z∑
g=0

βig

) , h = 0, 1, . . . ,m, for all v ∈ It,

(2.2.2)

where γt represents a proxy of the ability of a person v who obtained a

sum score Xv++ = t. It is still assumed that {Xvih : v = 1, . . . , n, i =

1, . . . , k, , h = 0, . . . ,m} are mutually independent. This model is called

SSB-model.

Let Ntih be a random variable indicating the number of persons with a

sum score equal to t who correctly answered the step h for the item i; let also

nt be the number of persons with a sum score equal to t. Using a sufficiency

reduction, model (2.2.2) can equivalently be rewritten as
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Nti
′ ∼ Mult (nt, (p

t
i0, . . . , p

t
im)), t = 0, . . . ,mk, i = 1, . . . , k, ⊥⊥

t,i
N ′

ti,

(2.2.3)

where Nti
′ = (Nti0, . . . , Ntim), ⊥⊥

t,i
Nti

′ stands for the mutual independence of

{Nti
′ : t = 0, . . . ,mk, i = 1, . . . , k}, and for t = 1, . . . ,mk − 1, i = 1, . . . , k

and h = 0, . . . ,m,

ptih
.
= pvih when v ∈ It, (2.2.4)

namely the probability that a person with sum score equal to t correctly

answers the step h for the item i. It can be noticed that in (2.2.3) and

(2.2.4) the total score t = 0 and t = mk have been excluded in order to avoid

infinite estimates. In the SSB-method, these cases are associated with an

absence of randomness, since all the xvih are equal to 0 for Xv++ = 0 and to

1 for Xv++ = mk, respectively; they thus provide no information about the

difficulty parameters βih.

Similarly to the PCM, the identification restrictions of the SSB-model

are given by (2.1.3). Accordingly, the SSB-model involves t + km − 1 free

parameters. Since t < n, the number of parameters to be estimated using the

SSB-model is smaller than the quantity of parameter of the original PCM.

These parameters are estimated using the corresponding log-likelihood, which

is given by

lSSBE(γ,β) =
mk−1∑
t=1

γt

m∑
h=0

hnt+h −
k∑
i=1

m∑
h=0

βih

m∑
w=h

n+iw −GSSBE(γ,β),

(2.2.5)
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where γ ′ = (γ1, . . . , γt, . . . , γmk−1) and

GSSBE(γ,β) =
mk−1∑
t=1

k∑
i=1

nt log

[
m∑
z=0

exp

(
zγt −

z∑
g=0

βig

)]
.

The sufficient statistic for (γt, βih) is, therefore, given by

(
m∑
h=0

hnt+h,

m∑
w=h

n+iw

)
.

Let us finish this section pointing out that the γt’s are not properly pa-

rameters because they are data dependent through of t, whereas the θv’s in

the PCM are actually incidental parameters. More precisely, for each t γt

depends on the random variable Xv++, but in the SSB-model γt is not longer

treated as a random variable, but as a fixed (but unknown) constant. Not only

this fact shows that the SSB-model is a misspecified one, but also that the

misspecification arises from ignoring the randomness involved in defining the

groups It by the sum scores, and the resulting correlation between Xvih and

the Xv++. The SSB version of PCM can be viewed as a pseudo-likelihood in

the sense of Besag (1974, 1975).

2.3 Equality of the JMLE and the SSBE

In this section we prove that JMLE = SSBE. Both models (2.1.1) and

(2.2.3) belong to the exponential family; therefore, the corresponding like-

lihood equations have a unique solution. This uniqueness property means

that we need only to verify that the JMLE satisfies the SSB-likelihood equa-

tions. The conclusion follows from the uniqueness of the MLE. Let us start

by examining the JML-equations:
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JML-equations: Since (2.1.1) belongs to the exponential family, the equations

are grouped into two sets: (a.1) E

(
m∑
h=0

hXv+h

)
=

m∑
h=0

hxv+h, v = 1, . . . , n;

and (b.1) E

(
m∑
w=h

X+iw

)
=

m∑
w=h

x+iw, i = 1, . . . , k, h = 0, . . . ,m. These

equations can respectively be rewritten as

m∑
h=0

h

k∑
i=1

pvih(θv,β) =
m∑
h=0

hxv+h, v = 1, . . . , n. (2.3.1)

m∑
w=h

n∑
v=1

pviw(θv, βiw) =
m∑
w=h

x+iw, i = 1, . . . , k; h = 0, . . . ,m. (2.3.2)

It follows that θ̂v is the unique solution of
m∑
h=0

h
k∑
i=1

pvih(η, β̂) =
m∑
h=0

hxv+h

for all η ∈ R. Denoting by θ̃t = θ̃t(β̂) the unique real number satisfying

m∑
h=0

h
k∑
i=1

pvih(θ̃t(β̂), β̂) = t, t ∈ T = {t|0 < t < mk}, (2.3.3)

θ̂v and θ̃t are linked through the following relation:

θ̂v = θ̃t(β̂) if v ∈ It =

{
v

∣∣∣∣ m∑
h=0

hXv+h = t

}
. (2.3.4)

Substituting the JMLE in (2.3.1), we obtain that

m∑
w=h

∑
t∈T

ntpvih(θ̃t(β̂), β̂ih) =
m∑
w=h

x+iw i = 1, . . . , k; h = 0, . . . ,m. (2.3.5)

Since the likelihood equations have a unique solution, the JMLE for the PCM

is fully characterized by equations (2.3.3), (2.3.4) and (2.3.5).
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SSB-likelihood equations: Since (2.2.4) belongs to the exponential family,

the likelihood equations are grouped into two sets: (a.2) E

(
m∑
h=0

hNt+h

)
=

m∑
h=0

hnt+h, t ∈ T = {t|0 < t < mk}; and (b.2) E

(
m∑
w=h

N+iw

)
=

m∑
w=h

n+iw,

i = 1, . . . , k, h = 0, . . . ,m. These equations can respectively be rewritten as

follows:

nt

m∑
h=0

h
k∑
i=1

ptih(γt,β) =
m∑
h=0

hnt+h, t ∈ T . (2.3.6)

m∑
w=h

∑
t∈T

ntp
t
iw(γt, βih) =

m∑
w=h

n+iw, i = 1, . . . , k, h = 0, . . . ,m. (2.3.7)

Equality between the SSBE and the JMLE: To verify that θ̃t(β̂) and β̂ih are

solutions of (2.3.6) and (2.3.7) we only need to use two simple facts:

(i)
m∑
h=0

hnt+h = tnt; (ii)
m∑
w=h

n+ih =
m∑
w=h

x+ih.

The second fact is true by equations (2.3.5) and (2.3.7); the first one comes

from the following equality:

m∑
h=0

hnt+h =
∑
v∈It

k∑
i=1

m∑
h=0

hxvih =
∑
v∈It

m∑
h=0

hxv+h =
∑
v∈It

t = tnt

�

This ends the proof.

Remark 1. It is important to remark that, when computing the expectations

in equations (a.2) and (b.2), it is explicitly ignored that the total score t is
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a random variable. It is rather assumed to be a constant; this fact precisely

leads to consider the SSB-model as a pseudo-likelihood; furthermore, when

fitting the SSB-model, the γt ’s are treated as constant, and not as random

variables.

The SSBE is an unusual instance of pseudo-likelihood estimate, since it

agrees exactly with the MLE for the original PCM. This equality implies

that the SSBE does not eliminate the inconsistency of the β̂ih, even though

this cannot now be attributed to the presence of incidental parameters. The

source of the inconsistency is that the SSBE is actually derived from the

misspecified model (2.2.2). Reversing the argument, the inconsistency of the

β̂ih in the PCM can be explained by the fact that the JMLE coincides with

the MLE of a misspecified model.

2.4 Relationships between the standard er-

rors of the JMLE and the SSBE

In which sense the equality of the point estimates established in Section 2.3

can be extended to the corresponding (asymptotic) standard errors? This

question is motivated by the fact that the Fisher Information Matrices of

both the PCM and its SSB-version are related. It is expected, therefore,

that their inverses are related and, consequently, the (asymptotic) standard

errors too. In this section we establish exact relationships between them

using a technique sketched in del Pino et al. (2008). We motivate the kind

of relationships we want to establish through an example. A relevant aspect

is that these inverse matrices are theoretically obtained without imposing



20

additional hypotheses leading to a simplification of the structure of the Fisher

Information Matrices (as done, for instance, by Baker and Kim, 2004). To

derive the main results some mathematical machinery is developed, which is

explained in Appendix A.

2.4.1 Relationships between the information matrices

The (asymptotic) standard errors of SSBE and JMLE are the square root

diagonal elements of the inverses of the corresponding information matrices.

Since (2.1.1) and (2.2.2) are generalized linear models, their information ma-

trices coincide with the negative Hessian of the corresponding log-likelihoods

(McCullagh and Nelder, 1989). When evaluated at the MLE we denote these

matrices by IJMLE and ISSBE, respectively. Under the identification restric-

tion (2.1.3), the IJMLE is given by
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[IJMLE]vv =

k∑
i=1

m∑
z=1

z2 exp

zγ̂t − z∑
g=1

β̂ig

+

m−1∑
w=1

m−w∑
j=1

w2 exp

(2j + w)γ̂t − 2

j∑
q=1

β̂iq −
w+j∑
r=j+1

β̂ir


 m∑
z=0

exp

zγ̂t − z∑
g=1

β̂ig

2
, v ∈ It.

[IJMLE]vv′ = 0, v 6= v′.

[IJMLE]ih,v =

m∑
z=h

z exp

zγ̂t − z∑
g=1

β̂ig

+

h−1∑
j=1

m−j∑
w=h−j

w2 exp

(2j + w)γ̂t − 2

j∑
q=1

β̂iq −
w+j∑
r=j+1

β̂ir


 m∑
z=0

exp

zγ̂t − z∑
g=1

β̂ig

2
,

i = 1, . . . , k;h = 1, . . . ,m, excluding the pair(i = 1, h = 1).

[IJMLE]ih,ih′ =
∑
t∈T

nt

 m∑
w=h′

exp

wγ̂t − w∑
j=1

β̂ij

1 +

h−1∑
w=1

exp

wγ̂t − w∑
j=1

β̂ij


 m∑
z=0

exp

zγ̂t − z∑
g=1

β̂ig

2
, i = 1, . . . , k;h = 1, . . . ,m;h ≤ h′.

[IJMLE]iz,i′z′ = 0, i 6= i′. (2.4.1)

Here, we defined
∑0

w=1 Dw = 0, where Dw is an algebraic expression in w.

Performing similar computations for ISSBE and comparing with (2.4.1) we

obtain the following key relationships:

[ISSBE]tt = nt[IJMLE]vv, t = 1, . . . ,mk − 1; v ∈ It.

[ISSBE]tt′ = 0 , t 6= t′, t = 1, . . . ,mk − 1.

[ISSBE]ih,t = nt[IJMLE]ih,v, i = 1, . . . , k;h = 1, . . . ,m; t = 1, . . . ,mk − 1; v ∈ It.

[ISSBE]ih,ih′ = [IJMLE]ih,ih′ , i = 1, . . . , k;h = 1, . . . ,m;h ≤ h′.

[ISSBE]ih,i′h′ = 0, i 6= i′ , i = 1, . . . , k. (2.4.2)
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2.4.2 Relationships between the standard errors

Illustration

Let us start this section with the following illustration: consider n = 10

persons, k = 5 items and m = 2 categories. Consider the following pattern

responses:

Y1 = (0, 2, 1, 1, 0), Y2 = (1, 0, 1, 1, 1), Y3 = (2, 2, 1, 1, 1), Y4 = (2, 2, 2, 0, 2),
Y5 = (1, 2, 1, 2, 1), Y6 = (1, 0, 1, 0, 0), Y7 = (0, 1, 1, 0, 0), Y8 = (1, 0, 0, 2, 0),
Y9 = (1, 1, 1, 0, 1), Y10 = (1, 1, 1, 1, 0).

These patterns have not being simulated, but have been arbitrary selected;

this does not represent any disadvantage since we are looking for exact re-

lationships between the standard errors. As mentioned in Section 2.2, the

SSBE can efficient be obtained if the data are represented as in Table 2.1. Us-

ing the identification restriction (2.1.3), the variance-covariance matrix I−1
SSBE

is automatically obtained through the PROC NLIN procedure detailed in Ap-

pendix C. Since there are five different total scores, the first five columns

(and five rows) of I−1
SSBE correspond to γ̂2, γ̂3, γ̂4, γ̂7, γ̂8. Moreover, since we

are considering k = 5 items with h = 2 steps, the second nine columns (and

nine rows) correspond to β̂12, β̂21, . . . , β̂52. The corresponding Fisher Infor-

mation Matrix evaluated at the MLE is the inverse of I−1
SSBE, namely ISSBE.

Both matrices are shown on page 27.

Using the Fisher Information Matrix ISSBE, along with the information

provided by the nt, namely n2 = 2, n3 = 1, n4 = 4, n7 = 2 and n8 = 1, equal-

ity (2.4.2) leads to obtain the Fisher Information Matrix IJMLE corresponding

to the JMLE; its inverse I−1
JMLE corresponds to the variance-covariance matrix

of the JMLE of the PCM. Both matrices are shown on page 28. These ma-
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Table 2.1: Data matrix used for fitting the SSB-model n = 10, k = 5 and
h = 2

t i nt nti1 nti2
2 1 2 1 0
2 2 2 1 0
2 3 2 2 0
2 4 2 0 0
2 5 2 0 0
3 1 1 1 0
3 2 1 0 0
3 3 1 0 0
3 4 1 0 1
3 5 1 0 0
4 1 4 3 0
4 2 4 2 1
4 3 4 4 0
4 4 4 3 0
4 5 4 2 0
7 1 2 1 1
7 2 2 0 2
7 3 2 2 0
7 4 2 1 1
7 5 2 2 0
8 1 1 0 1
8 2 1 0 1
8 3 1 0 1
8 4 1 0 0
8 5 1 0 1
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trices agree exactly with that obtained after directly fitting the PCM with te

SAS procedure PROC NLIN and inverting the estimated covariance matrix.

The n(2k − 1) person-item combinations and the n + (2k − 1) parameters

generate a n(2k− 1)× (n+ (2k− 1)) design matrix, which after applying the

identifiability restriction is reduced by one column; this is the design matrix

which was used for fitting the model. The first 10 diagonal elements of I−1
JMLE

correspond to the estimated variances of the θ̂v’s. There are only 5 different

values; the number of repetitions for each of these values is determined by

the nt’s, namely n2 = 2, n3 = 1, n4 = 4, n7 = 2 and n8 = 1.

In this example, the following relationships between I−1
SSBE and I−1

JMLE can

be observed:

1. The block corresponding to the correlations between β̂ih and γ̂t in I−1
SSBE

is equal to the corresponding block in I−1
JMLE.

2. The variance-covariance matrices of the β̂ih’s are equal in both matrices.

In particular, s.e.(β̂ih) are identical for the SSBE and the JMLE.

3. When nt = 1, the variance of γ̂t is equal to the variance of θ̂v for v ∈ It.

Thus V ar(γ̂3) = V ar(θ̂8) = 1.348 and V ar(γ̂8) = V ar(θ̂4) = 2.277.

4. When nt > 1, the following inequalities are satisfied:
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s.e.(θ̂v)

s.e.(γ̂2)
=

1.447

1.002
≤
√
n2 =

√
2, v ∈ I2 = {6, 7};

s.e.(θ̂v)

s.e.(γ̂4)
=

1.348

0.914
≤
√
n7 =

√
4, v ∈ I4 = {1, 2, 9, 10};

s.e.(θ̂v)

s.e.(γ̂7)
=

1.945

1.577
≤
√
n4 =

√
2, v ∈ I7 = {3, 5}.

Main results

The relationships previously illustrated are always valid. As a matter of

fact, given that IJMLE and ISSBE are related through equation (2.4.2), we

can derive a relationship between the standard errors. In order to do so,

Appendix A introduces a particular class of partitioned matrices, denoted as

C(n), where n is a vector of integers which are used to define the sub-blocks

of the corresponding matrix. It can easily be verified that IJMLE belongs to

this class with T = m = k − 1. Using Theorem A.5.1, the following results

are obtained:

s.e.(β̂ih) are identical for the SSBE and the JMLE. (2.4.3)

(
s.e.(θ̂v)

)2

= (s.e.(γ̂t))
2 +

nt − 1

[ISSBE]tt
= (s.e.(γ̂t))

2 +
nt − 1

nt[IJMLE]vv
. (2.4.4)

1√
[IJMLE]vv × s.e.(γ̂t)

≤ s.e.(θ̂v)

s.e.(γ̂t)
≤
√
nt ∀v ∈ It; t = 1, . . . ,mk − 1.

(2.4.5)
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Table 2.2: Computation of (s.e.(θ̂v))
2 from (s.e.(γ̂t))

2 with v ∈ It using
(2.4.4)

t nt [ISSBE]tt (s.e.(γ̂t))
2 (nt − 1)/ [ISSBE]tt (s.e.(θ̂v))

2

2 2 2.247 1.002 0.445 1.447
3 1 1.444 1.348 0 1.348
4 4 6.440 0.914 0.466 1.380
7 2 2.713 1.577 0.369 1.945
8 1 1.150 2.277 0 2.277

From these relationships it can be concluded that, for v ∈ It, s.e.(θ̂v) ≥

s.e.(γ̂t), with equality only attained when there is just one examinee with a

sum score equal to t. The upper bound in (2.4.5) is a useful approximation to

s.e.(θ̂v), since it tends to be quite sharp for large-scale test with many items.

Moreover, (2.4.5) implies that 1/
√

[IJMLE]vv ≤ s.e.(θ̂v); here 1/
√

[IJMLE]vv

coincides with the estimated standard error when then parameter estimated

are taken as if they were the true values.

To end this subsection, let us illustrate the equality (2.4.4) with the same

example above-mentionated. In Table 2.2 the values of 1.447, 1.348, 1.380,

1.945 and 2.277 for
(
s.e.(θ̂v)

)2

are identical to the five values on the diagonal

of the upper left part of the variance-covariance I−1
JMLE matrix shown on page

28.
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2.4.3 Numerical Illustration of the Main Results

Let us illustrate the previous theoretical results using a Chilean data set

called SIES (Sistema de Ingreso a la eduación superior). The data set corre-

sponds to an experimental test applied in 2003. The test was couched in the

context of a project leading to implement a new entrance university national

test (for details, see Bravo and Manzi, 2004). As a part of this project, a

polychotomous test in Mathematics was produced. The test composed of 30

items was applied to 1,090 examinees; each item has 5 alternatives: only one

alternative corresponds to 2 points; 7 items contains two alternatives cor-

responding to 1 point; 23 items contains only one alternative scored with 1

points. Consequently, the items have two steps or categories. The reliability

of the test was 0.724.

As it was mentioned in Section 2.2, examinees with total score equal to

0 or equal to the maximum were excluded, remaining 1,088 students. A

random sample of size 50 was used. The estimates and the corresponding

estimated standard errors of the difficulty parameters for each item and for

each step are gathered in Table 2.3; they were computed using both a JML-

approach and a SSB-approach. As expected, estimates and the estimated

standard errors are equal.

The estimates for the ability parameters, along with their respective esti-

mated standard errors, can be found in Table 2.4; they also were computed

using both approaches. Several facts can be verified:

1. When nt = 1, as it is the case for t = 2, t = 23 and t = 32, the

estimated standard errors are equal.
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Table 2.3: JMLE and SSBE for the difficulty parameters, along with the
corresponding estimated standard errors

JMLE SSBE

item i β̂i1 s.e(β̂i1) β̂i2 s.e(β̂i2) β̂i1 s.e(β̂i1) β̂i2 s.e.(β̂i2)
1 0 0 −0, 5619 0, 8221 0 0 −0, 5619 0, 8221
2 −1, 0689 0, 4921 −0, 1059 0, 6109 −1, 0689 0, 4921 −0, 1059 0, 6109
3 0, 0278 0, 5929 −2, 3078 0, 6120 0, 0278 0, 5929 −2, 3078 0, 6120
4 −0, 0178 0, 5942 −2, 3738 0, 6092 −0, 0178 0, 5942 −2, 3738 0, 6092
5 −1, 0076 0, 5006 −0, 6528 0, 5691 −1, 0076 0, 5006 −0, 6528 0, 5691
6 −1, 2177 0, 5026 −0, 8168 0, 5471 −1, 2177 0, 5026 −0, 8168 0, 5471
7 −1, 5700 0, 5519 −1, 9611 0, 5162 −1, 5700 0, 5519 −1, 9611 0, 5162
8 −2, 4255 0, 5070 0, 8630 0, 6560 −2, 4255 0, 5070 0, 8630 0, 6560
9 1, 2121 0, 7117 −1, 9922 0, 7932 1, 2121 0, 7117 −1, 9922 0, 7932

10 0, 5681 0, 6129 −1, 7677 0, 6803 0, 5681 0, 6129 −1, 7677 0, 6803
11 1, 2468 0, 7113 −1, 8245 0, 8084 1, 2468 0, 7113 −1, 8245 0, 8084
12 −0, 7356 0, 5960 −2, 7000 0, 5724 −0, 7356 0, 5960 −2, 7000 0, 5724
13 −0, 5593 0, 5252 −1, 3253 0, 5693 −0, 5593 0, 5252 −1, 3253 0, 5693
14 0, 8149 0, 8344 −3, 9363 0, 8275 0, 8149 0, 8344 −3, 9363 0, 8275
15 −0, 7016 0, 5298 −1, 5768 0, 5538 −0, 7016 0, 5298 −1, 5768 0, 5538
16 −0, 6423 0, 5180 −1, 1452 0, 5695 −0, 6423 0, 5180 −1, 1452 0, 5695
17 −0, 6083 0, 5689 −2, 3268 0, 5645 −0, 6083 0, 5689 −2, 3268 0, 5645
18 1, 1025 0, 6492 0, 3241 1, 1860 1, 1025 0, 6492 0, 3241 1, 1860
19 −1, 0125 0, 5551 −2, 1627 0, 5399 −1, 0125 0, 5551 −2, 1627 0, 5399
20 −0, 8679 0, 4963 −0, 2147 0, 6168 −0, 8679 0, 4963 −0, 2147 0, 6168
21 −1, 4417 0, 4851 0, 5449 0, 6668 −1, 4417 0, 4851 0, 5449 0, 6668
22 1, 5424 0, 8211 −2, 7872 0, 8670 1, 5424 0, 8211 −2, 7872 0, 8670
23 −0, 6993 0, 5039 −0, 5048 0, 6045 −0, 6993 0, 5039 −0, 5048 0, 6045
24 −0, 4595 0, 5469 −1, 8437 0, 5681 −0, 4595 0, 5469 −1, 8437 0, 5681
25 1, 8165 0, 8191 −1, 0654 1, 0754 1, 8165 0, 8191 −1, 0654 1, 0754
26 1, 1771 0, 7120 −2, 1387 0, 7815 1, 1771 0, 7120 −2, 1387 0, 7815
27 0, 5681 0, 6129 −1, 7677 0, 6803 0, 5681 0, 6129 −1, 7677 0, 6803
28 0, 9957 0, 7144 −2, 6822 0, 7488 0, 9957 0, 7144 −2, 6822 0, 7488
29 1, 3155 0, 7108 −1, 3904 0, 8591 1, 3155 0, 7108 −1, 3904 0, 8591
30 0, 3147 0, 5634 −0, 8028 0, 7043 0, 3147 0, 5634 −0, 8028 0, 7043
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Table 2.4: JMLE and SSBE for the ability parameters, and the corresponding
standard errors

t nt γ̂t s.e.(γ̂t) θ̂i s.e.(θ̂v) s.e.(θ̂v)/s.e.(γ̂t)
√
nt

2 1 −3, 4443 0, 7709 −3, 4443 0, 7709 1, 0000 1, 0000
6 1 −2, 4757 0, 5373 −2, 4757 0, 5373 1, 0000 1, 0000
9 1 −2, 1145 0, 4934 −2, 1145 0, 4934 1, 0000 1, 0000

10 2 −2, 0178 0, 4342 −2, 0178 0, 4846 1, 1161 1, 4142
11 2 −1, 9287 0, 4303 −1, 9287 0, 4775 1, 1097 1, 4142
12 1 −1, 8457 0, 4717 −1, 8457 0, 4717 1, 0000 1, 0000
13 1 −1, 7678 0, 4668 −1, 7678 0, 4668 1, 0000 1, 0000
14 3 −1, 6940 0, 4076 −1, 6940 0, 4627 1, 1352 1, 7321
15 5 −1, 6238 0, 3948 −1, 6238 0, 4592 1, 1631 2, 2361
16 3 −1, 5565 0, 4051 −1, 5565 0, 4562 1, 1261 1, 7321
17 4 −1, 4917 0, 3976 −1, 4917 0, 4536 1, 1408 2, 0000
18 2 −1, 4291 0, 4159 −1, 4291 0, 4514 1, 0854 1, 4142
19 3 −1, 3684 0, 4026 −1, 3684 0, 4495 1, 1165 1, 7321
20 4 −1, 3092 0, 3960 −1, 3092 0, 4479 1, 1311 2, 0000
21 5 −1, 2514 0, 3920 −1, 2514 0, 4465 1, 1390 2, 2361
22 1 −1, 1948 0, 4453 −1, 1948 0, 4453 1, 0000 1, 0000
23 3 −1, 1392 0, 4008 −1, 1392 0, 4443 1, 1085 1, 7321
28 1 −0, 8709 0, 4418 −0, 8709 0, 4418 1, 0000 1, 0000
31 1 −0, 7133 0, 4420 −0, 7133 0, 4420 1, 0000 1, 0000
32 1 −0, 6607 0, 4424 −0, 6607 0, 4424 1, 0000 1, 0000
33 2 −0, 6077 0, 4119 −0, 6077 0, 4429 1, 0753 1, 4142
37 1 −0, 3911 0, 4465 −0, 3911 0, 4465 1, 0000 1, 0000
38 1 −0, 3349 0, 4479 −0, 3349 0, 4479 1, 0000 1, 0000
39 1 −0, 2777 0, 4495 −0, 2777 0, 4495 1, 0000 1, 0000

2. When nt > 1, then s.e.(θ̂v) > s.e.(γ̂t) when v ∈ It, as can be verified in

Table 2.4.

3. The upper bound derived in (2.4.5) is sharp.

4. The mapping t 7−→ γ̂t is increasing.
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2.5 Simultaneous representation of item and

person parameters when using a struc-

tural PCM

Typically, using a pseudo-likelihood and maximizing it may in some cases

be a useful method for obtaining point estimates; examples are Besag (1974)

in the context of lattice spatial data and, more recently, Rabe-Hasketh and

Skrondal (2006) in the context of multilevel models for complex survey data.

In the case considered in this chapter, the SSB-formulation of the PCM not

only helps to explain the inconsistency of the JMLE, but also provides a

computationally efficient way to obtain the SSB-estimators; its efficiency is

practically independent on both the number of items and the number of

persons. Moreover, it can be computed using a SAS code which is provided

in Appendix C.

The concern of this section is take advantage of this computational effi-

ciency of the SSB-method and to use it in some specific application. Con-

cretely, the question which is explored in this section is the following: under

which conditions the simultaneous representation of both person and items

parameters is valid when these parameters are estimated using the MMLE

procedure?. This question has sense in a standard-setting procedure, which

is explained in Section 2.5.1. In the context of polytomous data, we propose

a standard setting procedure, which produces an ability for the minimal

competent student; it is denoted as θ̂MCS. The idea is to assume different

true distributions generating the individual abilities; with them, different

patterns are simulated and both person and items parameters are estimated
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using a SSB-procedure and a MMLE-procedure. The latter one is performed

using NLMIXED, as tipically done is psychometrics (see Tuerlinckx et al.

(2004)); this SAS procedure assumes that individual abilities are normally

distributed. With these results, persons are classified following two different

way:

1) comparing the θ̂SSBE with θ̂MCS

2) comparing the θ̂MMLE with θ̂MCS

The previous two classifications are compared and therefore the pertinence

of a simultaneous representation of both the θ̂MMLE and β̂MMLE can be

evaluated. The simulation study is detailed in Section 2.5.2; the standard

setting procedure for polythomous data is explained in Section 2.5.1; and a

discussion of the results is gathered in section 2.5.3.

The θ̂MCS is computed using a book-mark procedure (explained later);

from a statistical point of view, θ̂MCS depends on the difficulty parameters.

Therefore, a second concern of this section is to explore which is the impact

of the misspecification of the distribution of random effects (i.e. individual

abilities) on the estimates of the difficulty parameters.

2.5.1 Standard setting and criterion-referenced mea-

surement

The SSB-estimators could be useful when respondents are categorized in dif-

ferent levels of proficiency with respect to a particular criterion or set of

criteria. The categories are most often dichotomous, like in classifying mas-

ters and non-masters, but they can also be polytomous, like in grading the
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performance on an exam. Most standard setting methods rely on a contin-

uum view of mastery (Meskauskas, 1976): mastering a trait or educational

objective is conceived as a gradual process. A cutoff point on the continuum

indicates the point of sufficient proficiency to be classified as a master. Judg-

ments of experts are used to determine the cutoff points on the observed test

score scale. In an examinee-centered method, judges classify respondents

into masters, non-masters and/or borderline cases. The cutoff score is set by

determining the point on the observed test score scale that is most consistent

with these classifications. In a test-centered method, like for example that of

Angoff (1971), judges review the items in the test, by rating the probability

of success that is expected from masters of the domain. The cutoff on the

test score scale is set at the sum of the expected performances on the items

of the test.

The continuum view of mastery implies that the acquisition of the un-

derlying trait or ability measured by the criterion-referenced test consists in

a progression along a continuum. Hence, when a criterion-referenced test

is administered to a heterogeneous sample of respondents, one can expect

that the respondents are ordered along one dimension. This assumption is

implicit in the use of the observed test score as an indication of the level

of proficiency on the measured criterion. However, it can also be inferred

from the continuum view of mastery that the items of a criterion-referenced

test can in principle be ordered along the same continuum as a function of

their difficulty. This idea of ordering the items along the same continuum

as the persons seems to be implicit in Glaser (1963)’s original chapter on
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criterion-referenced measurement: “the standard against which a student’s

performance is compared . . . is the behavior which defines each point along

the achievement continuum” (Glaser, 1963, p. 519). By consequence, “along

such a continuum of attainment, a student’s score on a criterion-reference

measure provides explicit information as to what the individual can or can-

not do” Glaser (1963, p. 519-520).

The assumption of ordering both respondents and items on the same

continuum naturally leads to unidimensional IRT models as the adequate

formalization of the continuum view of mastery. In these models, persons

and items are positioned on the same continuum on the basis of their ability

and difficulty, respectively, so that their positions can be compared directly;

for details, see Janssen et al. (2000). However, this procedure is valid in

an IRT model where the abilities are viewed as unknown parameters. As a

matter of fact, for the PCM, equality (2.1.2) implies that

ln

(
pvih
pvi,h−1

)
= θv − βih v = 1, . . . , n; i = 1, . . . , k; h = 0, . . . ,m.

This means that the difference between a person parameter and an item

parameter is in the logarithmic scale, a ratio between the probabilities pvih

and pvi,h−1. Thus, if θv > βih, then pvih > pvi.h−1 i.e. the person parameter

θv is greater than the difficulty of category h of item i if and only if the

probability that person v answers correctly item i at category h is greater

than the probability to correctly answers the same item at category h− 1.

IRT models have been used for criterion-referenced measurement, as well

as a part of a standard setting procedure. In general, given that a criterion-

referenced measure for defining mastery in a certain domain conforms to a
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Table 2.5: True item-parameters for the simulation study

Item step 1 step 2 Item step 1 step 2
1 0 -0,8846 16 -0,9026 -1,2425
2 -0,5737 -0,6807 17 0,5005 -2,6542
3 -0,8371 -1,739 18 0,5912 -1,115
4 0,3182 -2,2671 19 -0,6525 -1,4034
5 -0,1427 -1,4991 20 -0,842 -0,6935
6 -1,7522 -0,2252 21 -1,7916 -0,0251
7 -1,176 -2,1133 22 0,5752 -2,4872
8 -2,7895 0,4789 23 -0,1844 -0,959
9 0,1304 -1,2041 24 -0,4154 -1,6914

10 0,1971 -0,7849 25 1,6767 -0,6138
11 1,5895 -2,0216 26 2,1879 -3,4323
12 -0,2968 -2,7038 27 1,4663 -2,7424
13 -0,9942 -0,7677 28 0,5005 -2,6542
14 0,7367 -4,0345 29 0,6224 -0,8203
15 -1,1721 -1,4317 30 -0,0345 -1,0737

unidimensional IRT model, one could proceed in two ways to set a standard,

just like in the existing methods using the observed test score scale. In an

examinee-centered approach, one could determine the cutoff as a function of

the performance of a selected group of respondents. In a test-centered ap-

proach, one could determine the cutoff as a function of the expected average

performance of a master on the items.

2.5.2 Design of the Simulation Study

A simulation study consisting of the following four parts was performed:

(a) A test composed of k = 30 items, each of them with h = 2 categories,

was considered. The “true” difficulties correspond to the estimates of

the item parameters obtained with SSBE method with a sample of 50

students taken from the SIES test; see Table 2.5.
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(b) n = 200 individual abilities were generated from specific distributions,

which were different from a normal distribution N (µ, σ2).

(c) From (a) and (b), the corresponding patterns responses were generated

using the PCM.

(d) Using the patterns responses obtained in (c) both items parameters and

abilities were estimated by means of two estimation procedures: (i)

NLMIXED (from SAS) with N(0, σ2) as the distribution of the abili-

ties; (ii) SSB-method as implemented in SAS. As it is well known, the

estimations of the abilities obtained with the NLMIXED are computed

with an Empirical Bayes procedure.

It is relevant to make explicit the random-effects specification of the PCM.

Let

βi = (βi0, . . . , βim)′ for i = 1, . . . , k

Xv = (Xv1, . . . , Xvk)
′ for v = 1, . . . , n

where Xvi = (Xvi0, . . . , Xvim)′. The hypotheses underlying the PCM can be

written as follows:

(i) Xvi depends on (θv, βi) according to equation (2.1.1).

(ii) For each person v, his/her responses {Xvi, . . . , Xvk} are mutually inde-

pendent conditionally on (θv, β1, . . . , βk). This is the so-called Axiom

of Local Independence. It means that the process generating Xvi con-

ditionally on
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(Xv1, . . . , Xv,i−1, Xv,i+1, . . . , Xvk, θv, β1, . . . βk) only depends on (θv, β1, . . . , βk);

that is, the responses of person v to the items only depends on his/her

ability θv and on the difficulty parameters. In the classical literature,

this was called the Hypothesis of the Common Cause; see Laplace

(1820) and Reichenbach (1956). For details on the Axiom of Local

Independence, see Lazarsfeld (1950).

(iii) X1, . . . , Xn are mutually independent given θ1, . . . , θv, β1, . . . , βk. This

means that once the abilities and difficulties are known, the responses

of the examinees are mutually independent.

(iv) (θi | ϕ)
i.i.d∼ Fϕ, where F is a known probability distribution parameter-

ized with ϕ ∈ Φ.

(v) ϕ⊥⊥(β1, . . . , βk).

In order to grasp the meaning of condition (v), two comments should be

added:

1. From (i) and (ii), it follows that

Xv⊥⊥ϕ | θv, β1, . . . , βk (2.5.1)

Similarly, from (iv) it follows that

θv⊥⊥ β1, . . . , βk | ϕ (2.5.2)

Condition (2.5.1) means that the parameters (β1, . . . , βk) are sufficient

to describe the conditional process Xv given θv. Condition (2.5.2)
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means that ϕ is sufficient to describe the marginal process generat-

ing θv.

In this context , ϕ⊥⊥ β1, . . . , βk defines a cut (see Barndorff-Nielsen

(1978); Florens et al. (1990a), Chapter 3); this means that the con-

ditional process and the marginal process are cutted in the sense that

the parameters describing both the conditional and the marginal pro-

cesses are not functionally related.

2. In condition (v) the prior distributions are left unspecified. The only

relevant aspect here is the structure of the specification, and not the

computation of posterior distribution. Therefore, this way of specifying

the model is also valid from a sampling-theory framework. In fact,

condition (v) could be replaced by a variation-free property, but in

most of the cases, it is difficult to characterized it; for details, see

Engle et al. (1983).

The hypotheses above-mentioned imply that X1, . . . , Xn are mutually

independent with a common distribution given by

P [Xv = xv | β1, . . . , βk, ϕ] =

∫
R

∏
i=i

P [Xv = xv | βi, θ]Fϕ(dθ)] (2.5.3)

where P [Xv = xv | βi, θ] should be computed using (2.1.1). For a proof,

see Mouchart and San Martin (2003).

The SAS-procedure NLMIXED uses (2.5.3) to estimated the param-

eters of interest. In our case , we use Fϕ as a N(0, σ2). To fit the

model, some identification restriction is needed. In fact, it can be

proved that (β1, . . . , βk, σ
2) is identified by X1; it is enough to apply
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the arguments developed by San Mart́ın and Rolin (2007) to equation

(2.1.2) (θv | σ2) ∼ N(0, σ2) in order to identify (βih, σ
2).

Using the above-mentioned simulation design, three studies were performed,

each with a different distribution for the abilities or random effects (see step

(b) above):

Normal distribution N (−0.2, 1)

Mixture of Normal Distributions with equal weights 0.5N (−2.7, 1.3) + 0.5N (1.5, 1.2)

Mixture of Normal Distributions with different weights 0.7N (−1.9, 1.8) + 0.3N (2.5, 1.3).

The parameters of these distributions were chosen in such a way that the

true-β values -see step (a) above- lies where the mass of the distribution is

0.9 (±). The individual abilities were generated as follows: For mixtures

of normal distribution pN(µ1, σ
2
1) + (1 − p)N(µ2, σ

2
2), first a u ∼ U(0, 1) is

generated. Secondly, if u < p, the θ is generated from a N(µ1, σ
2
1); if not, θ

is generated from a N(µ2, σ
2
2).

For the mixture normal distributions, steps (c) and (d) were replicated

N = 10 times, whereas for the normal distribution N = 50 replications were

performed. The focus of the simulation studies is to compare estimations

of the difficulties and the individual abilities obtained with the SSB-method

(with bias-corrected factors) and the NLMIXED procedure. Consequently,

we are interested in comparing these estimations for each replication, and not

to compare Monte-Carlo estimators. Furthermore, each replication does not

show the same total scores and, accordingly, if the abilities estimations were

computed using the Monte-Carlo procedure, then each would be based on a

different number of replications. Therefore, contingency tables comparing the
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classifications induced by the MMLE and SSBE were generated; thereafter

an average contingency table was obtained. Let us finally mention that each

NLMIXED procedure, including the Empirical Bayes computation, took 3

hours in a PC Intel(R) Xeon(TM) CPU 3.00 GHz 1.00 of RAM.

2.5.3 Discussion of the results I: difficulty parameters

From the simulation study, two types of findings need to be discussed: that

related with the β-estimates , and that related with the θ-estimates. For the

three different distributions of the random effects, the β-estimates obtained

by both the MML method and the SSB method are practically invariant

between them, and also very near to the true difficulties. Taking into account

that the β-estimates are monotonic functions of the empirical difficulties,

the correlation between β̂SSBE and β̂MMLE is almost 1. However , this is not

enough to empirically prove an almost perfect agreement between β̂SSBE and

β̂MMLE.

A way to compare β̂SSBE and β̂MMLE is through the distances between

difficulties, namely β̂SSBE,ih − β̂SSBE,i−1,h and β̂MMLE,ih − β̂MMLE,i−1,h (for

example, see figure 2.1 and 2.2 for both methods). This is the right way to

make a comparison because both difficulties and abilities are represented in

an interval scale; the role of the identification restriction is to fix the 0 of the

scale .

The invariance of the estimations of the difficulty parameters with respect

to the misspecification of the distribution of the individual abilities is due to

the sufficiency of total score with respect to ϕ. In fact, from the exponential

family theory it follows that Xv++ is sufficient for θv (when the β’s are fixed).
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with different weights, SSB-Method

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2 3

−
2

−
1

0
1

2
3

Difficulty of items, step 1; MML−Method

beta true

be
ta

 M
M

LE

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2

−
3

−
2

−
1

0
1

2
3

Difficulty of items, step 1; MML−Method

beta true

be
ta

 M
M

LE

Figure 2.2: beta-true vs beta-MMLE to the Mixture of Normal Distributions
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43

This can be written as

Xv⊥⊥ θv | Xv++, β1, . . . , βk (2.5.4)

On the other hand

Xv⊥⊥ϕ | θv, β1, . . . , βk; (2.5.5)

but Xv++ is a function of Xv. It follows that

(Xv, Xv++)⊥⊥ϕ | θv, β1, . . . , βk, (2.5.6)

which in turn implies that

Xv⊥⊥ϕ | θv, Xv++, β1, . . . , βk, (2.5.7)

2.5.4 and 2.5.7 are equivalent to

Xv⊥⊥ϕ, θv | Xv++, β1, . . . , βk, (2.5.8)

which implies that

Xv⊥⊥ϕ | Xv++, β1, . . . , βk. (2.5.9)

That is Xv++ is a sufficient statistic for ϕ given β1, . . . , βk. Let us remark

that classical sufficiency and Bayesian sufficiency are equivalent for all prior

distribution, for details, see Florens et al. (1990b).

Therefore, the likelihood (for one person) obtained after integrating out the

random effect θv can be factorized as
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P [Xv = xv | ϕ, β1, . . . , βk] = P [Xv = xv | Xv++, β1, . . . , βk]×

×
∫
P [Xv++ = t | θ, β1, . . . , βk] · Fϕ(dθ)

Thus, the conditional likelihood P [Xv = xv | Xv++,β1,...,βk ] only provides

information on the β’s, and consequently the misspecification of Fϕ does not

affect their estimation.

Let us remark that, in the statistical literature, it is known (also through

simulations) that the estimation of the fixed effects (in our case, the difficulty

parameters) are robust with respect to the miss-specification of the distribu-

tion of the random effects(in our case, the individual difficulties); see Agresti

et al. (2004), Heagerty and Kurland (2001), Verbeke and Lesaffre (1996).

Taking into account these considerations, the BC-SSBE of the difficulty

parameters can in practice be used to describe the structure of the test. The

computational efficiency of the BC-SSBE is an advantage for this kind of

descriptions.

Let us illustrate this issue with the estimations of the difficulty parameters

of the SIES-test reported at Table 2.3. It can be verified that 7 items satisfy

the condition that β̂i1 < β̂i2, that is, the first step of the item is more easy

than the second step.

There are 23 items such that β̂i1 > β̂i2, that is, the first step of the item

is more difficult than the second step. Now when β̂i1 > β̂i2, the Category

Probability Curves (CPC) for the step 1, namely Pi1(· | θv), is “flatter”.

which means that a good deal of ability is necessary to obtain a “high”

probability of answering correctly step 1 of the item.



45

When β̂i1 < β̂i2, the CPC for the step 1 is “stteper”, thus a “not too

much ” ability is necessary to obtain a “high” probability of answering step

1 correctly.

Thus , it can be concluded that the Mathematics-SIES test is a difficult test

because for 23 items step 1 more difficult than step 2.

2.5.4 Discussion of the results II: person parameters

The concern of this section is to compare classifications of persons using both

their θ̂-estimates and their θ-true abilities. To do it, we simulate a standard

setting procedure. The basic ideas are the following:

1. A set of judges receive the items ordered by difficulty.

2. They are asked to put a mark on the item they consider a minimal

competent student should answer.

3. It is assumed in the literature that the minimal competent student an-

swer this item with a probability of 0.67 or 0.70 or 0.85. Thus, judge-

ment of each judge can be transformed into the ability of a minimal

competent student by solving the following equation:

exp

(
2θv −

2∑
g=0

βig

)
2∑
z=0

exp

(
zθv −

z∑
g=0

βig

) ≤ 0.7 (2.5.10)

In this application we suppose that all the judges arrive at the same θ̂MCS.

In practice, this value is obtained as the median of different θ̂MCS, or other
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tendency measure. Moreover, we compute the θ̂MCS assuming that the prob-

ability (2.5.10) is at most equal to 0.70. Once the θ̂MCS is obtained, we

compute the classifications induced by θ̂SSBE and θ̂MML with the true clas-

sifications (based on the true abilities). If the estimated ability θ̂MC is such

that θ̂MC ≤ 0.7, we say that the corresponding examinee Fails the selection

test; in other case, we say that he/she Passes. Similarly, for the true-ability.

Tables 2.6 , 2.7 and 2.8 show the average of the simulations previously

described. The reported results were computed using two types of true dis-

tributions: mixture of normal distributions and a normal distribution. These

tables should be read as follows: in Table 2.6, consider the first row. 88.53%

of the examinees who failed (taking into account their true scores) were clas-

sified as failed examinees taking into account their abilities estimated

MML-procedure; the 11.47% corresponds, therefore, to the proportion of

failed examinees (w.r.t. their true scores) who were classified as passed

examinees when they are classified using their abilities estimated with

the MML-procedure. Similarly, for the abilities estimated with the SSB-

procedure. Tables 2.6 , 2.7 and 2.8 reported classifications of examinees with

respect to two items: item 18 and item 3. The difficulty of these items ap-

proximatively corresponds to the solution of equation (2.5.10) for 0.67 and

0.70, respectively.

Tables 2.6 and 2.7 report the results when the true distribution generating

the abilities is estimated under the /wrong) assumption that this distribution

is normal. It can be seen that, for item 18, the classifications performed

with the SSB-procedure are better than those performed with the MML-

procedure. However, for item 3, the opposite holds true. More precisely, the
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Table 2.6: Mixture of Normal Distributions with different weights

Item 18
MML SSBE

True Fail Pass Fail Pass
Fail 88.53% 11.47% 98.64% 1.51%
Pass 0% 100% 7.75% 95.35%

Item 3
True Fail Pass Fail Pass
Fail 72.12% 27.88% 97.48% 3.14%
Pass 0% 100% 5.90% 95.28%

Table 2.7: Mixture of Normal Distributions with equal weights

Item 18
MML SSBE

True Fail Pass Fail Pass
Fail 87.84% 12.16% 96.42% 3.97%
Pass 0% 100% 7.63% 95.35%

Item 3
True Fail Pass Fail Pass
Fail 86.92% 13.08% 97.48% 3.67%
Pass 0% 100% 4.96% 97.52%

SSB-procedure seems better than the MML-procedure when classifying failed

examinees, whereas when classifying passed examinees the MML-procedure

is better. Table 2.8 shows the results when the true distribution is normal,

in which case the conclusions are similar.

These results show, therefore, that the estimators of the random effects

when compared with the SSB-estimators are in general bad when compared

with the true values. Non-parametric procedures seem to be unescapable,

but this subject is outside the limits of this research.
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Table 2.8: Normal Distribution

Item 18
MML SSBE

True Fail Pass Fail Pass
Fail 75.49% 24.51% 87.34% 12.92%
Pass 1.94% 99.05% 7.25% 93.62%

Item 3
True Fail Pass Fail Pass
Fail 75.49% 24.51% 87.34% 12.92%
Pass 1.94% 99.05% 7.25% 93.62%

2.6 Concluding Remarks

This chapter deals with the use and limitations of a pseudo-likelihood esti-

mation method which can be employed as an alternative for a common es-

timation method used for the JML formulation of the Partial Credit Model.

The first result is that the alternative method, the sum score based estima-

tion (SSBE), provides point estimates which are proven to be identical to

those of the JMLE. The equality of the point estimates allows the JMLE to

be interpreted as a pseudo-likelihood estimate, and this offers some insight

in the features of the JMLE for the Rasch model.

The second result is that the standard errors for the JMLE and the SSBE

are equal for the difficulties, but not for the abilities. The equality for the

difficulties is rather surprising, since in pseudo-likelihood estimation the stan-

dard errors typically do not agree with those of the MLE for the true model.

As far as the abilities are concerned, an exact formula relating the standard

error of the JMLE to that of the SSBE is provided. This is supplemented by

upper and lower bounds on the ratio between the two standard errors, one
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of which is quite sharp.

In order to obtain the results for the standard errors, a special class of

patterned partitioned matrices has been defined and it has been shown how

to obtain their inverses efficiently, something that may be useful beyond its

application to this paper. Moreover, the Fisher Information Matrix evaluated

at the JMLE can be exactly recovered from the estimated covariance matrix

of the SSBE.

The relationships established in this paper are not only of theoretical

interest, but they have also a practical value. They imply that standard

software for the estimation of generalized linear models (GLM) can be used

for the joint maximum likelihood estimation without a complicated set up

to estimate an ability parameter for each person. The standard errors and

information matrix for the JMLE estimates of the individual abilities can be

obtained through rather simple equations starting from the SSBE results. In

particular, the SSB-estimators helped us to compare the estimations of the

difficulty parameters with that obtained when the abilities are interpreted

as a latent variable and their distribution is misspecified. Through simula-

tions, we prove that these estimators are quite similar. Using the jargon of

generalized linear mixed models, we would say that the estimation of the

fixed effects is robust with respect to the misspecification of the distribution

of the random effects. We also offer a theoretical justification of this fact.

A similar comparison was performed between the MLE of the abilities with

the predictions of them using an Empirical Bayes procedure. The simula-

tion results show that these estimators are not robust with respect to the

misspecification of the distribution of the random effects.



Chapter 3

A Pseudo likelihood Aproach to

the Linear Logistic Test Model

3.1 Introduction

The Linear Logistic Test Model (LLTM) can be considered a particular case

of a Rasch model in the sense that the probability of answering correctly

an item depends on both an individual ability and a difficulty parameter,

but the difficulty is explained by a set of sub-task difficulties. As a matter

of fact, when a Rasch model is considered, the difficulty parameters can be

ordered in an interval scale and, therefore, it is possible to describe these

difficulties. However, a Rasch model can not tell us why such an item is

more difficult than such other one. The LLTM is intended to answer this

question. Each item is associated to specific cognitive operations or subtasks

which are necessary to master in order to correctly answer the item. These

tasks or cognitive operations are actually an explanation of the difficulty of

50



51

the item.

In this chapter, the LLTM is reduced to a SSB-model. As a corollary

of the results obtained in Chapter 2, it is shown that the SSB-estimators

of both the difficulty parameters and the item parameters are equivalent to

the MLE of a misspecified model. To do it, it is enough to show how the

LLTM can be reduced to a PCM. These issues are discussed in Section 3.2.

In order to save a material produced before the developments of Chapter 2,

Section 3.3. gathers the derivations dealing with the relationships between

the standard errors of the SSB-estimators with that of the JML-estimators.

The reader could skip this section without affecting his/her comprehension

of this work.

In any case, the main contribution of this chapter deals with a practical

use of the SSB-estimation. In fact, as discussed in the last chapter, the

SSB-estimators of the difficulty parameters are practically equivalent to the

estimators obtained through the marginal maximum likelihood; and both

are practically equal to the true values. Furthermore, the SSB-method is

computationally very efficient. Therefore, the SSB-method for the LLTM

can be used to perform a post-hoc evaluation of the content of the items.

More explicitly, suppose we applied a test and we get the results. Typically,

we are interesting in analyzing the internal structure of the items. This leads

to compute the reliability of the test, to analyze the properties of the items

(empirical difficulties, item-test correlation and so on). A complementary

analysis could be the post-hoc evaluation of their difficulty. In fact, the items-

builders and/or external judges can be asked on specific cognitive operations

or sub-tasks which are necessary to correctly answer the items. Thus, a
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matrix where the rows represent items and the columns represent sub-tasks

is defined in such a way that an entry equal to 1 means that the respective

items involves a specific sub-tasks.

The idea is to verify whether the cognitive-structure of the items can be

empirically sustained. To do it, the Rasch-difficulties are estimated using

the SSB-procedure. In parallel, the sub-tasks difficulties are also computed

using the SSB-procedure developed in this chapter. Once the latters are

obtained, LLTM-difficulties are getting and, therefore, can be compared with

the Rasch-difficulties. If a good agreement is obtained, it can be concluded

that the cognitive-structure of the items is empirically sustained.

This type of applications is useful when the content of an item need to be

empirically evaluated. By this way, the accent moves from an analysis at the

individual side to an analysis at the item side. At the individual side, it is

typically studied whether the latent trait is well measured by the items; to do

it, factor-analysis techniques and reliability are typically used. The analysis

we are proposing in this chapter could be viewed as a complementary one. It

must be confessed that the items should be constructed following the LLTM

philosophy: first, to define a pool of cognitive operations or subtasks; and

thereafter to map items to these subtasks. The empirical evaluation way

we are suggesting in this chapter could be useful to evaluate the pertinence

of the cognitive-operations pool. Unfortunately, in Chile (and probably in

international assessment programs), the items are constructed taking into

account the Bloom-taxonomy (1957) or variations of it, these focus their

attention on the latent trait it is supposed to be measured by the test. But

such a construction could be evaluated at the item level following the way
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above-proposed.

In this chapter we illustrate both ways, namely a test where the items

were constructed after subtasks were defined; and a test where the items were

evaluated using the LLTM philosophy after their construction. The first one

is taken from Fischer (1973) and developed in Section 3.4.1; the second one

was performed using the SEPA-test and two judges which did a codification

of the SEPA-Mathematics test applied to 4-th and 5-th level in 2007; this

material is developed in Section 3.4.2.

3.2 Link between PCM and LLTM

3.2.1 Model formulation

As discussed in Chapter 2, the probability function for the PCM is given by

pvih ≡ P (Xvih = 1) =

exp

(
hθv −

h∑
g=0

βig

)
m∑
z=0

exp

(
zθv −

z∑
g=0

βig

) , h = 0, 1, . . . ,m (3.2.1)

where θv is a person parameter and βih correspond to the difficulty parameter

of category h of item i.

If we consider m = 1 y βig = βj1 =

p∑
l=1

wjlαl + c, we have, that;

pvj ≡ P (Xvj = 1) =
exp (θv − βj1)

1∑
z=0

exp

(
zθv −

z∑
g=0

βi1

) (3.2.2)
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By convention, βi0 = 0 y
0∑
g=0

βi1 = 0, then

pvj = pvj ≡ P (Xvj = 1) =

exp

(
θv −

p∑
l=1

wjlαl + c

)

1 + exp

(
θv −

p∑
l=1

wjlαl + c

)
which corresponds to the probability to answers correctly an item j for the

LLTM.

Here θv is the ability of the individual v, αl, l = 1, . . . , p, is the difficulty

of the cognitive operation l, wjl is the hypothetical frequencies with which

each component l influences the solution of the each item j, and c is the

usual additive normalization constant.

When

βj =

p∑
l=1

wjlαl + c, j = 1, . . . , k (3.2.3)

we have the RM.

3.2.2 Identification

It clear that the model is unidentified, so we need to impose a restriction,

typically
k∑
j=1

βj = 0. If we replace this condition in (3.2.3) we obtain

c = −1

k

k∑
j=1

p∑
l=1

wjlαl

and then the difficulty of the item j is given by

βj =

p∑
l=1

αl (wjl − w·l) (3.2.4)
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where w·l = 1
k

k∑
j=1

wjl.

However , it is difficult to interpret the difference wjl−w·l, particularly when

wjl ∈ {0, 1}. A way to provide a more interpretable parametrization and to

get simplicity is to fix the difficulty of an item at 0, for instance β1 = 0; it

follows that

βj =

p∑
l=1

αl (wjl − w1l) (3.2.5)

Other possibility is to impose c = 0 and
∑
j

βj = 0. In such a case, the

structure (in terms of tasks or cognitive operation) of, say, the last item need

to be equal to −
∑
j

∑
l

αlwjl. This is clearly difficult to build. This explains

why, in principle, c 6= 0.

3.2.3 The formulation of the SSB in the context of the

LLTM

Let Ntj be the the random variable that indicates the number of persons

with a sum score t who give a correct response to item j. The SSB model is

given by:

Ntj are mutually independent, with Ntj ∼ Bin(nt, p
t
j),

logit(ptj) = γt −
p∑
l=1

αl (wjl − w·l) , t = 1, . . . , k − 1; j = 1, . . . , k (3.2.6)
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where nt is the number of persons with sum score t, γt represents a proxy of

the ability of an examinee i obtaining a sum score equal to t and ptj is the

probability of a person with sum score t to give a correct response to item j.

3.2.4 JMLE and SSBE

As discussed in Chapter 2, the JMLE of the parameters of interest for the

PCM are equivalent to the MLE of a misspecified model, namely the SSBE-

formulation of the PCM. This model actually is a conditional model given

the individual total score, but it is explicitly forgotten this aspect and the

model is accordingly treated as a marginal one. This explains why the JMLE

for the PCM is ill- pased. The same conclusion can be drawn for the LLTM;

this conclusion directly follows from the fact that the LLTM can be reduced

to the PCM

3.3 Standard errors for the SSBE and JMLE

Not only the JMLE is related to the SSBE for the LLTM, but also the cor-

responding standard errors. Such relationships straight forward follow both

the relationship between the PCM and its SSB-formulation and that between

PCM and LLTM. However, while this research was developed, the first rela-

tionship between an IRT model and a SSB-formulation was studied for the

LLTM. Thereafter, we noticed that the treatment of the PCM was enough

to explain why the JMLE for an IRT model with separated individual and

item parameters (for the terminology, see Rasch (1960a) is ill- conditioned.

In spite of that, we collect the corresponding relationships between the stan-
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dard errors for the SSBE and JMLE in the context of the LLTM is this

section. The reader, however, can skips it without his/her comprehension of

the research.

3.3.1 Relationships between the information matrices

Let u(η) = log(1 + eη). The log-likelihood function for the JMLE can be

written as

lJMLE(θ, α) =
n∑
l=1

xi+θi −
k∑
j=1

x+j

(
p∑
l=1

(wjl − w·l)αl

)
−GJMLE(θ, α),

where GJMLE(θ, α) =
n∑
i=1

k∑
j=1

u(θi − βj).

For the SSBE

lSSBE(γ, α) =
k−1∑
t=1

k∑
j=1

ntj(γt − βj)−GSSBE(γ, α),

where GSSBE(γ, α) =
k−1∑
t=1

nt

k∑
j=1

u(γt − βj).

The matrices IJMLE and ISSBE are the evaluation of the MLE and these

matrices of information reduce to the negative Hessianas of GJMLE and

GSSBE respectively.

Since point estimates of the JMLE and SSBE coincide, let us write

η̂ij = θ̂i−
p∑
l=1

(wjl − w·l) α̂l = γ̂t−
p∑
l=1

(wjl − w·l) α̂l, with i ∈ It = {i|Xi+ = t},
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t ∈ T = {t|0 < t < k, It 6= ∅}.

For i ∈ It, denote by vtj the variance of Xij evaluated at the MLE. Then

u′′(η̂ij) = vtj =
e

γ̂t−

p∑
l=1

(wjl − w·l) α̂l

1 + e

γ̂t−

p∑
l=1

(wjl − w·l)α̂l


2 .

We assume l 6= l′ and t 6= t′ then

[IJMLE]ii = vt+, i ∈ It, [IJMLE]ii′ = 0, i 6= i′

[IJMLE]ll =
k∑
j=1

(wjl − w·l)2
k−1∑
t=1

ntvtj, 1 ≤ l ≤ p

[IJMLE]ll′ =
k∑
j=1

[(wjl − w·l) (wjl′ − w·l′)]
k−1∑
t=1

ntvtj, 1 ≤ l 6= l′ ≤ p

[IJMLE]il = −
k∑
j=1

(wjl − w·l) vtj, 1 ≤ t, 1 ≤ l ≤ p

[IJMLE]il = [IJMLE]li, 1 ≤ t, 1 ≤ l ≤ p. (3.3.1)

Performing similar computations for ISSBE yields
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[ISSBE]tt = ntvt+, 1 ≤ t < k, [ISSBE]tt′ = 0, 1 ≤ t 6= t′ < k

[ISSBE]ll =
k∑
j=1

(wjl − w·l)2
k−1∑
t=1

ntvtj, 1 ≤ l ≤ p

[ISSBE]ll′ =
k∑
j=1

[(wjl − w·l) (wjl′ − w·l′)]
k−1∑
t=1

ntvtj, 1 ≤ l 6= l′ ≤ p

[ISSBE]tl = −nt
k∑
j=1

(wjl − w·l) vtj, 1 ≤ t, 1 ≤ l ≤ p

[ISSBE]tl = [ISSBE]lt, 1 ≤ t, 1 ≤ l ≤ p. (3.3.2)

Comparing (5) with (6) we obtain the following key relationships:

[ISSBE]tt = nt[IJMLE]tt, i ∈ It, 1 ≤ t < k, [ISSBE]tt′ = 0, 1 ≤ t 6= t′ < k

[ISSBE]ll = [IJMLE]ll, 1 ≤ l ≤ p [ISSBE]ll′ = [IJMLE]ll′ 1 ≤ l 6= l′ ≤ p

[ISSBE]tl = nt[IJMLE]il, i ∈ It, 1 ≤ t, 1 ≤ l ≤ p (3.3.3)

Therefore IJMLE ∈ C(n). Using Theorem A.5.1 of Appendix A , it follows

that (
s.e.(θ̂i)

)2

= (s.e.(γ̂t))
2 +

nt − 1

[ISSBE]tt
(3.3.4)

and the bounds

1
√
vt+
≤ s.e.(θ̂i) ≤

√
nt · s.e.(γ̂t). (3.3.5)
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Table 3.1: Subtask, Estimation via JMLE and SSBE

No. task αSSBE s.e.αSSBE αJMLE s.e.αJMLE

1 0, 3314 0, 1431 0, 3314 0, 1431
2 −0, 0687 0, 0730 −0, 0687 0, 0730
3 0, 2712 0, 0659 0, 2712 0, 0659
4 1, 8747 0, 0884 1, 8747 0, 0884
5 0, 7841 0, 0774 0, 7841 0, 0774
6 0, 9113 0, 0603 0, 9113 0, 0603
7 0, 0138 0, 0738 0, 0138 0, 0738
8 0, 4009 0, 0760 0, 4009 0, 0760

3.4 Applications to real data sets

3.4.1 Ilustration 1

A test was applied to 287 student of secondary school in Austria (see Fis-

cher (1973)). The test was composed of 29 items dealing with derivatives.

To solve them, 8 tasks are involved: (1) differentiation of the polynomial,

(2) product rule, (3) quotient rule, (4) compound functions, (5) sin(x), (6)

cos(x), (7) exp(x) and (8) ln(x).

Example of items:

Item 1

x3(x2 + 1)5 , Involves tasks 1, 2 y 4

Item 2

x2−3
5x+4

, Involves tasks 1 y 3

Table 3.1 shows the results of the 8 tasks together with their respective

standard errors; it can be observed that the estimates are identical for both
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the JMLE and the SSBE and the the same holds true for their standard

errors.

Table 3.2 shows that θ̂i = γ̂t with i ∈ It = {i|Yi+ = t},t ∈ T = {t|0 < t <

k, It 6= ∅}. In particular, the bound (3.3.5) is clearly illustrated. Note that

for t = 28 and t = 29, the data set do not present patterns responses.

Table 3.3 shows the β̂ as estimated by the Rasch Model; β̂∗ is the recon-

struction of the difficulties starting from the α̂’s, where these are estimated

with the SSB method; β̂p are the “true value” (see Fischer, 1973), β̂c is the

bias correction proposed by Haberman (1977, pp.834-835) and the weights

wjl are those involved in each item.

The SSBE and JMLE of the α’s are identical -as in the previous section-.

The advantage of the SSBE is its computational efficiency. Let us provide

same comments on the results. The more difficult task for students is the

differentiation of composite function because 2, 8% of the θ̂i’s are greater

than the difficulty of this task; whereas the more easy tasks for students in

the product rule: 70.63% are greater than it. The more difficult item in this

test is the question 29; it is composed of the three more difficult substask,

namely the composite function the derivative of sin and that of cos.

The correlation between the difficulties estimated with the Rasch Model

and with the LLTM is 0.99359; see also figure 3.1. Therefore, the explanation

of the difficulties through the tasks is pretty well sustained empirically.
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Table 3.2: Estimation ability via JMLE and SSBE

t nt γ̂t s.e.γ̂t θ̂i s.e.θ̂i s.e.θ̂i/s.e.γ̂t
√
nt

1 1 −3, 679 1.0348 −3, 679 1.0348 1, 0000 1, 0000
2 1 −2, 915 0.7555 −2, 915 0.7555 1, 0000 1, 0000
3 3 −2, 440 0.3673 −2, 440 0.6357 1, 7307 1, 7321
4 8 −2, 081 0.2008 −2, 081 0.5664 2, 8207 2, 8284
5 6 −1, 788 0.2130 −1, 788 0.5207 2, 4446 2, 4495
6 10 −1, 534 0.1548 −1, 534 0.4882 3, 1537 3, 1623
7 13 −1, 308 0.1291 −1, 308 0.4641 3, 5949 3, 6056
8 17 −1, 101 0.1084 −1, 101 0.4456 4, 1107 4, 1231
9 8 −0, 909 0.1527 −0, 909 0.4314 2, 8251 2, 8284

10 17 −0, 728 0.1021 −0, 728 0.4204 4, 1175 4, 1231
11 18 −0, 555 0.0972 −0, 555 0.4121 4, 2397 4, 2426
12 12 −0, 388 0.1173 −0, 388 0.4060 3, 4612 3, 4641
13 19 −0, 225 0.0923 −0, 225 0.4019 4, 3543 4, 3589
14 13 −0, 064 0.1109 −0, 064 0.3997 3, 6041 3, 6056
15 19 0, 095 0.0916 0, 095 0.3991 4, 3570 4, 3589
16 19 0, 255 0.0919 0, 255 0.4004 4, 3569 4, 3589
17 14 0, 416 0.1079 0, 416 0.4035 3, 7396 3, 7417
18 14 0, 581 0.1093 0, 581 0.4085 3, 7374 3, 7417
19 17 0, 750 0.1011 0, 750 0.4159 4, 1137 4, 1231
20 16 0, 927 0.1068 0, 927 0.4259 3, 9878 4, 0000
21 11 1, 114 0.1327 1, 114 0.4392 3, 3097 3, 3166
22 10 1, 314 0.1448 1, 314 0.4568 3, 1547 3, 1623
23 4 1, 533 0.2404 1, 533 0.4803 1, 9979 2, 0000
24 8 1, 779 0.1816 1, 779 0.5124 2, 8216 2, 8284
25 3 2, 064 0.3224 2, 064 0.5579 1, 7305 1, 7321
26 4 2, 412 0.3140 2, 412 0.6274 1, 9981 2, 0000
27 1 2, 877 0.7481 2, 877 0.7481 1, 0000 1, 0000
28 0 − − − − − −
29 1 − − − − − −
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Table 3.3: Reconstruction of the difficulties

item β̂ β̂∗ β̂p β̂c wjl
1 −0, 270 −0, 262 −0, 204 −0, 253 1 1 0 1 0 0 0 0
2 −1, 807 −1, 796 −1, 604 −1, 735 1 0 1 0 0 0 0 0
3 −0, 148 −0, 193 −0, 143 −0, 186 1 0 0 1 0 0 0 0
4 0, 077 0, 078 0, 146 0, 076 1 0 1 1 0 0 0 0
5 −0, 339 −0, 193 −0, 143 −0, 186 1 0 0 1 0 0 0 0
6 −0, 846 −0, 772 −0, 768 −0, 746 0 1 0 0 1 1 0 0
7 −1, 160 −1, 012 −0, 977 −0, 977 1 0 1 0 1 0 0 0
8 −0, 131 −0, 101 −0, 219 −0, 098 1 0 1 0 1 1 0 0
9 1, 136 0, 990 0, 905 0, 955 1 0 1 1 0 1 0 0

10 0, 719 0, 718 0, 615 0, 694 1 0 0 1 0 1 0 0
11 1, 012 0, 862 0, 773 0, 833 1 0 1 1 1 0 0 0
12 −0, 322 −0, 179 −0, 163 −0, 173 1 0 0 1 0 0 1 0
13 −0, 079 −0, 179 −0, 163 −0, 173 1 0 0 1 0 0 1 0
14 −1, 729 −1, 783 −1, 623 −1, 721 1 0 1 0 0 0 1 0
15 0, 757 0, 664 0, 535 0, 641 1 1 0 1 0 1 1 0
16 0, 007 0, 092 0, 127 0, 089 1 0 1 1 0 0 1 0
17 0, 181 0, 208 0, 245 0, 201 1 0 0 1 0 0 0 1
18 0, 571 0, 479 0, 534 0, 463 1 0 1 1 0 0 0 1
19 0, 268 0, 208 0, 245 0, 201 1 0 0 1 0 0 0 1
20 −1, 079 −1, 156 −1, 007 −1, 116 0 1 0 0 0 1 0 1
21 0, 834 1, 051 0, 943 1, 014 1 1 0 1 0 1 0 1
22 0, 776 0, 718 0, 615 0, 694 1 0 0 1 0 1 0 0
23 −1, 202 −1, 352 −1, 328 −1, 306 1 1 0 0 1 0 0 0
24 0, 645 0, 591 0, 483 0, 571 1 0 0 1 1 0 0 0
25 −0, 270 −0, 262 −0, 204 −0, 253 1 1 0 1 0 0 0 0
26 −0, 010 0, 078 0, 146 0, 076 1 0 1 1 0 0 0 0
27 1, 032 0, 990 0, 905 0, 955 1 0 1 1 0 1 0 0
28 −0, 270 −0, 262 −0, 204 −0, 253 1 1 0 1 0 0 0 0
29 1, 646 1, 774 1, 531 1, 713 1 0 1 1 1 1 0 0
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Figure 3.1: Difficulty of items, beta-RASCH vs beta-LLTM ; Ilustration 1
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Table 3.4: Percentage of students that exceeds the subtask

Subtasks Percentage
differentiation of the polynomial 35.66%
product rule 70.63%
quotient rule 35.66%
compount functions 2.80%
sin(x) 19.93%
cos(x) 19.93%
exp(x) 48.95%
ln(x) 35.66%

3.4.2 Ilustration 2

The SEPA test is an instrument generated by the Measurement Center MIDE

UC in the context of a value-added project. The test is applied to the eight

different levels of primary school.

In the context of the present research, we evaluated the content of a SEPA

test using the LLTM-approach. More specifically we used the Mathematics

SEPA-test applied to examinees of the 4-th level of primary school.

After defining a set of substasks , the items of the test were linked with them.

This linkage procedure was performed through 2 judges; after in good agree-

ment (measured using the Kappa-statistics), a Q-matrix was constructed the

entries of this matrix are the wjl depend in equation (3.2.3). This matrix

satisfies the equality

Qα + c11 = β

where β = (β1, . . . , βk) are the difficulty parameters, and α = (α1, . . . , αl)
′

are the substask difficulties.

By identifiability, it is needed that l ≤ k, that is the number of substasks
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should be at mats equal to the number of items. This means that k = 40

items are explained with only l = 14 substasks. In other words, the explana-

tion consists in a dimensional reduction, as typically done in Factor Analysis.

14 subtasks/strategies (see summary figure 3.5) will be considered, which

are potentially presentin the items. For this purpose they will be divided

into 7 concepts:

1. Knowledge: It refers to the need of managing some concepts or proce-

dures to be able to correctly respond to the item.

Mathematical knowledge:

a) Mathematical Conceptual Knowledge (CCM): It is necessary to

manage mathematical concepts such as sequence, formation pat-

tern, ratio, decomposition, predecessor, successor, etc. to be able

to solve the problem.

b) Information Management Conceptual Knowledge (CCMI): It is

necessary to manage concepts related to information management

such as interpretation of graphics or tables to solve the problem.

c) Geometric Conceptual Knowledge (CCMG): It s necessary to man-

age concepts related to geometry such as area, perimeter, to be

able to solve the problem.

d) Procedural Mathematical Knowledge (CPM): It refers to the need

of managing some mathematical procedures such as fraction oper-
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ations (amplification, simplification, comparison) or area, perime-

ter to be able to solve the item.

Mathematical Non Conceptual Knowledge (CCNM): It is necessary to

manage non mathematical concepts to be able to solve the item; for

instance: century, liter, measures in general.

2. Translation: It refers to the need of translating certain concepts into

mathematical terms to be able to solve the item.

a) Translation from verbal to numeric (TVN): It is necessary to

translate verbal information into mathematical terms or opera-

tions to be able to correctly solve the exercise.

b) Translation of figural into numeric (TFN): It is necessary to trans-

late certain figural information into numeric terms (graphic inter-

pretation, etc.)

3. Working with space elements (TE): The item demands working with

space elements such as geometric networks, element displacement, to

be correctly solved.

4. To dismiss irrelevant numeric information (NR): In this case the prob-

lem offers numeric data which are irrelevant for the solution of the

problem, which the subject must be able to dismiss to correctly solve

the exercise.

5. To perform a mathematical operation: It is necessary when the solution

of the item requires the application of some mathematical operation,

addition, subtraction, division, or multiplication.
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a) To perform a mathematical operation of addition or subtraction

(OSR): The problem requires an addition or subtraction to be

solved.

b) To perform a mathematical operation of multiplication or division

(OMD): The problem requires a multiplication or division to be

solved.

6. Type of problem: It refers to the type of exercise to be solved; fractions

or integers.

a) Fraction (FRC): The exercise presented implies working with frac-

tions.

b) Integer Numbers: The exercise presented implies working with

integer numbers.

7. Way of solving the problem: The exercise offers more than one solution

strategy (MES): The item can be solved in two or more different ways.

As an example, we will observe the item 18: At an ice-cream parlor, Carlos

ordered three quarter liter of ice-cream. Which of the following statements

is correct?

(a) Carlos ordered more than three liters of ice-cream.

(b) Carlos ordered less than a liter of ice-cream.

(c) Carlos ordered exactly a liter of ice-cream.

(d) Carlos ordered exactly three liters of ice-cream.
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Table 3.5: Subtasks used in the SEPA test

NAME CODE
Mathematics Conceptual Knowledge CCMA
Conceptual Knowledge Information Management CCMI
Geometric Conceptual Knowledge CCMG
Mathematical Procedural Knowledge CPM
Conceptual Knowledge nonmathematical CCNM
Working with spatial elements TE
Translation of verbal to numerical TVN
Translation of figural to numerical TFN
Discard irrelevant numerical information NR
Execute mathematical operations of addition or subtraction OSR
Execute mathematical operations of multiplication or division OMD
Fractions FRC
Integers ENT
Exercise has more than one alternative solution MES

In this item, judges determined that tasks involved are: Mathematical

Conceptual Knowledge (CCMA) and fractions (FRC). Results from estimates

were obtained via SSB, Table 3.6 shows these results: here it can be observed

that both estimates are considered moderately difficult, α̂CCMA = 0.6404 and

α̂FRC = 0.5668, the most difficult cognitive sub task for students is given by

Geometric Conceptual Knowledge (CCMG) and the least difficult is The

exercise offers more than one solution alternative (MES) with α̂CCMG =

1.0915 and α̂MES = −0.4503 respectively.

When reconstructing the difficulties of items through sub tasks estimated

in LLTM, it was found that there was not the precision obtained when sub

tasks are previously generated (see table 3.6) as compared to estimates from

RASCH model. Correlation of difficulties of these two models is 0.78 (see

Figure 3.2). It is worth mention that judges test several combinations of pres-
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Table 3.6: Estimation subtasks and Percentage of teachers that exceeds the
subtask

Subtasks Estimation-SSBE S.E Percentage LLTM Percentage RASCH
CCMI 0.8496 0.0876 18.89% 10.62%
CCMA 0.6404 0.0842 26.14% 13.32%
CCMG 1.0915 0.0842 13.32% 7.59%
CPM 0.7617 0.0776 18.89% 11.63%
CCNM 0.5997 0.091 26.14% 13.32%
TVN -0.0394 0.0639 57.34% 30.02%
TF 0.7334 0.0535 22.26% 11.63%
TE -0.1738 0.0976 64.76% 33.56%
NR 0.1076 0.0755 40.98% 26.14%
OSR 0.0511 0.0409 48.9% 26.14%
OMD 0.4798 0.0435 30.02% 14.67%
FRC 0.5668 0.0828 26.14% 14.67%
ENT -0.0257 0.0719 57.34% 30.02%
MES -0.4503 0.0946 79.42% 48.9%

ences of sub tasks, obtaining no important correlation. Figures 3.3 and 3.4

show a little bias towards the left on the part of LLTM in reference to model

RASCH, which implies that items are considered less difficult for students

in LLTM; this makes certain students appearing more skilful than they are

when taking into account the estimates with model RASCH. Anyway, what is

relevant is that the explanation proposed by judges related to tasks involved

in each item is a good one, since the correlation between the descriptive

estimates (that is those calculated with model RASCH) and explanatory es-

timates (that is those calculated with model LLTM) is equal to 0.78, though

for this model family, the estimates of fix effects are rather good when com-

pared with real values (in spite of an eventual bad specification of distribution

generating individual skills), results obtained can be used to evaluate the con-
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Figure 3.2: Difficulty of items, beta-RASCH vs beta-LLTM ; Ilustration 2

tents of a test. In this way, for instance, such certain items can be chosen

whose descriptive and explanatory difficulty is very different and eventually

correct that item or simply rule it out from the test. In other words, we have

a procedure (SSBE procedure) which due to its Computational quickness,

can be used on-line to evaluate cognitive processes underlying an item.

On estimates of skills, correlation between these two models is very good,

reaching 0.99 (see Figure 3.5), but as it happens with difficulty estimates,
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Figure 3.5: Individual Ability; theta-Rasch vs theta-LLTM

there is a little bias which makes students getting a certain mastery of cogni-

tive operation without being a master. Table 3.6 clearly shows that students

in LLTM are better classified at a higher percentage than in model RASCH.

3.4.3 Discussion

One of the advantages of SSB estimations is that the number of subjects sub-

mitted to the test is fairly irrelevant. This is due to the fact that the sufficient
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statistic of ability concentrates this information. This minimizes the compu-

tational cost in comparison to a traditional methods like the MML, where

the cost of getting the estimates increases susbtantially with the number of

subjects. Using the LLTM model instead of the RASCH model provides us

with information about the underlying difficulties in the subtasks presented

in the items. In this regard, Illustration 1 shows more precisely the conve-

nience of previously shaping the subtasks, since, as can be seen in Illustration

2 some biases can result which would imply the bad classification of reaching

or not certain knowledge of individuals.

Besides this practical use of the SSB-version of the LLTM model, let

us emphasize that our results are valid for a large set of statistical models

belonging to the exponential family. As a matter of fact, as it is shown

in this chapter and in Appendix B, the PCM can be particularized into

several specific models belonging to the exponential family. All these models

involve incidental parameters and it is shown that their MLE is equivalent to

the MLE of a pseudo-likelihood in Besag’s sense. It is important to remark

that these results are not in contradiction with the exponential-family theory

dealing with the MLE. In fact, when incidental parameters are involved, the

parameter space is a function of the sample size and the exponential-family

theory of the MLE assumes that the parameter space is fixed for all sample

sizes.



Appendix A

A class of partitioned matrices

A.1 Introduction

The main purpose of this appendix is to provide an explicit formula for the

inverse of a class of partitioned matrices, whose form is motivated by the

Fisher information matrices IJMLE and ISSBE of the PCM model and its

SSB-formulation; for examples, see pages 27 and 28. The content of this

Appendix is a detailed explanation of what was sketched by del Pino et al.

(2008).

Let us introduce some notation to deal with these patterned matrices.

Letting Sk = {1, . . . , k}, an entry Crr′ of a squared matrix of order k can be

identified with the value of a function defined on Sk × Sk. An integer array

n = (n1, . . . , nT+1), with
∑T+1

i=1 ni = k, induces a partition of Sk:

(
{1, . . . , n1}, {n1 + 1, . . . , n1 + n2}, . . . ,

{
T∑
i=1

ni + 1, . . . ,
T+1∑
i=1

ni

})
.
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The increasing order of the integers which appear in each subset of the par-

tition should be respected. In turn this partition induces a block pattern for

C, as illustrated by the matrices IJMLE and I−1
JMLE at page 28. Finally, r ∈ Sk

is in one to one correspondence with the pair (t, s), where t labels one subset

in the partition and s identifies its s-th element. In this way, we may write

Crr′ = c(t, s; t′, s′) for some function c with four integer arguments. Take for

instance matrix C = I−1
JMLE at page 28. There n = (2, 1, 4, 2, 1, 9) and T = 5.

The element C49 = 0.870 corresponds to the third subset of the partition

(t = 2) and its first element (s = 1), and to the fourth subset of the partition

(t′ = 4) and its first element (s′ = 1). Therefore, we write C49 = c(3, 2; 4, 2).

A.2 The class C(n)

The blocks of the patterned matrix as those of pages 27 and 28 satisfy a large

number of equality constraints. The behavior is different between t ≤ T and

t = T + 1, and so we rewrite the local index s as j, and similarly s′ as j′. We

also write n =
∑T

i=1 ni and m = nT+1. With this convention, the constraints

essentially convey the idea that the local indices (s, s′) do not affect the entry

values of the matrix. There is however one exception, namely that for t = t′,

it is relevant whether these local indices are equal or not.

An alternative way of expressing this idea is that the values of the function

c may be written as values of functions with fewer arguments, and this is what

is done in the following definition.

Definition A.2.1. Let t 6= t′ ≤ T. A square matrix C of order m + n is

said to belong to the class C(n) (or just C ∈ C(n)) if there exist functions
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d, e, u, v satisfying c(t, s; t, s) = d(t) with 1 ≤ s ≤ nt; c(t, s; t, s
′) = e(t, t)

for 1 ≤ s 6= s′ ≤ nt; c(t, s; t
′, s′) = e(t, t′) with 1 ≤ s ≤ nt and 1 ≤ s′ ≤

nt′; c(t, s;T + 1, j′) = u(t, j′); and c(T + 1, j; t′, s′) = v(t, j). The values

c(T + 1, j;T + 1, j′) are arbitrary.

CS(n) is the subclass formed by all symmetric matrices in C(n), in which

case v = u and e(t, t′) = e(t′, t). CS0(n) is the subclass of CS(n) determined

by the constraint e = 0.

Theorem A.2.1. If a nonsingular C belongs to the class C(n) then also its

inverse does. The same holds for CS(n).

A.3 The bar-operation

Let us introduce the bar-operation which transforms a (n + m) × (n + m)

matrix C ∈ CS0(n) into a square matrix C of (T + m)× (T + m) according

to

Ct,t = ntdt, t ∈ ST
Ct,t′ = 0, t 6= t′ ∈ ST

Ct,T+j′ = nt u(t, j′), t ∈ ST , j′ ∈ Sm
CT+j,T+j′ = c(T + 1, j;T + 1, j′), j, j′ ∈ Sm.

(A.3.1)

Clearly C determines C uniquely. If C is written in the following partitioned

form

C =

 D A

A′ H

 , (A.3.2)
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with Dn×n, Hm×m and An×m, then C is also written in partitioned form by

attaching the bar sign to the submatrices, that is,

C(T+m)×(T+m) =

 D A

A
′
H

 . (A.3.3)

By definition, H = H. For instance, let C = IJMLE as given at page 28, then

C is given by

C =



2.248 0 0 0 0 −0.484 −0.392 −0.360 −0.256 −0.044 −0.146 −0.018 −0.028 −0.006
0 1.444 0 0 0 −0.317 −0.123 −0.256 −0.206 −0.053 −0.190 −0.020 −0.045 −0.013
0 0 6.440 0 0 −1.128 −0.296 −1.108 −1.028 −0.392 −1.176 −0.148 −0.400 −0.132
0 0 0 2.712 0 −0.054 −0.022 −0.160 −0.278 −0.512 −0.316 −0.348 −0.554 −0.420
0 0 0 0 1.150 −0.006 −0.005 −0.027 −0.064 −0.229 −0.081 −0.238 −0.225 −0.265

−0.484 −0.317 −1.128 −0.054 −0.006 1.501 0 0 0 0 0.488 0 0 0
−0.392 −0.123 −0.296 −0.022 −0.005 0 0.817 0 0 0 0 0.023 0 0
−0.360 −0.256 −1.108 −0.160 −0.027 0 0 1.687 0 0 0 0 0.221 0
−0.256 −0.206 −1.028 −0.278 −0.064 0 0 0 1.697 0 0 0 0 0.136
−0.044 −0.053 −0.392 −0.512 −0.229 0 0 0 0 1.120 0 0 0 0
−0.146 −0.190 −1.176 −0.316 −0.081 0.488 0 0 0 0 1.419 0 0 0
−0.018 −0.020 −0.148 −0.348 −0.238 0 0.023 0 0 0 0 0.749 0 0
−0.028 −0.045 −0.400 −0.554 −0.225 0 0 0.221 0 0 0 0 1.031 0
−0.006 −0.013 −0.132 −0.420 −0.265 0 0 0 0.136 0 0 0 0 0.701



.

The following proposition will be used in the proof of Theorem A.5.1:

Proposition A.3.1. If C ∈ CS(n) is positive definite, so is C.

A.4 The tilde-operation

Let C ∈ CS(n) be a matrix of orden m+n partitioned as (A.3.2). The tilde-

operation is applied to the block A. A matrix Ã of order T ×m is obtained,

which is defined as follows:

Ãtj′ = u(t, j′) t ∈ ST , j′ ∈ Sm,

where u(t, j′) = c(t, s;T + 1, j′) as given at Definition A.2.1. In order words,

Ãtj′ coincide with the j′-th column of the t block of A. As an example,
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consider the matrix C = I−1
JMLE shown at page 28. In this case, T = 5 and

m = 9. Therefore, Ã is given by

Ã =



0.738 0.800 0.699 0.680 0.717 0.625 0.651 0.639 0.646

0.783 0.747 0.774 0.770 0.838 0.765 0.767 0.760 0.764

0.780 0.740 0.818 0.838 0.955 0.890 0.878 0.888 0.886

0.744 0.760 0.820 0.911 1.351 1.059 1.328 1.343 1.442

0.752 0.762 0.812 0.896 1.429 1.064 1.512 1.413 1.649


.

A.5 Main results

The final objective is to obtain a convenient formula for C−1 when C ∈

CS0(n). By Theorem A.2.1, C−1 ∈ C(n). Let us consider C partitioned as

in (A.3.2) and C partitioned as in (A.3.3). Their corresponding inverses are

partitioned as follows:

C−1 =

 X B

B′ W

 , C
−1

=

 E F

F ′ S

 ,
where X is of n× n, B is of n×m, H and S are of m×m, E is of T × T ,

and F is of T ×m.

Theorem A.5.1. For the matrices C, C−1, C and C
−1

, the following rela-

tionships are true:

(i) W = S.

(ii) F = B̃.
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(iii) For any nonsingular matrix A, denote by Aij the ij-entry of its inverse.

For a given r ≤ n, let t be determined by:

r =
t−1∑
i=1

ni + s, with 1 ≤ s ≤ nt.

Then

Crr = C
tt

+
nt − 1

ntdt
, for r ∈ Sn. (A.5.1)

(iv) If C ∈ CS0(n) is positive definite then

1

dt
≤ Crr ≤ nt · C

tt
, for r ∈ Sn. (A.5.2)

A.6 Proofs

Proof of Theorem A.2.1: The first n rows and columns of the matrix C

form T natural groups of size nt, t ∈ ST . Performing the same permutation

Pt for the rows and columns in the t-th group produces a matrix PtCP
′
t . But

this operation is equivalent to performing a permutation of the elements of

{
∑t−1

k=1 nk + 1, . . . ,
∑t

k=1 nk}, before evaluating the function c(t, s; t′, s′). This

shows that C ∈ C(n) if, and only if, PtCP
′
t = C for all such permutations

matrices. Since P ′t = P−1
t it follows that

PtC
−1P ′t =

[
(P ′t)

−1CP−1
t

]−1
= (PtCP

′
t)
−1 = C−1.

For CS(n) just use the fact that the inverse of a symmetric matrix is also

symmetric.
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�

Proof of Proposition A.3.1: yn+m×1 is a C(n)-vector if their entries are

constant within the T sets that partition Sn. This means that there exist

a function f satisfying yr = f(t), for r ≤ n. For yn+m×1 define yT+m×1

with entries yi = f(i), i ≤ T and yT+j = yn+j, 1 ≤ j ≤ m. Straightforward

computations show that y′Cy = yCy. Since C is positive definite, y′Cy > 0,

for all y 6= 0 and it follows that yCy > 0 for all y 6= 0.

�

Proof of Theorem A.5.1: Denote by Ik the identity matrix of order k.

Then the key relationships follow from C C−1 = I(n+m)×(n+m) and C (C)−1 =

I(T+m)×(T+m), where the multiplications are performed using the partitioned

form.

• Proof of (i): The standard formula for an inverse partitioned matrix yields

W = (H−A′D−1A)−1 and S = (H−A′(D)−1A)−1. The entries jj′ of A′D−1A

and A
′
D
−1
A are∑

r

1

dt
ãtj ãtj′ =

T∑
t=1

1

dt

nt∑
s=1

ãtj ãtj′ =
T∑
t=1

nt
dt
ãtj ãtj′

and

T∑
t=1

1

ntdt
(ntãtj)(ntãtj′) =

T∑
t=1

nt
dt
ãtj ãtj′ ,

respectively. The equality of these two expressions impliesA′D−1A = A
′
D
−1
A

and hence W = S.

• Proof of (ii): From CC−1 = I(n+m)×(n+m) it follows that (DB + AW )ij =

DiiBij +
∑m

s=1AisWsj = dtbtj +
∑m

s=1 ãtsWsj = 0. Similarly, C(C)−1 =
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I(T+m)×(T+m) andW = S yield the equivalent equation ntdtFtj+
∑m

s=1 ntãtsWsj =

0. Therefore, Ftj = btj for all t, j. Therefore, F = B̃.

• Proof of (iii): By definition, (C−1)rr = Xrr ≡ d∗t and [(C)−1]tt ≡ Ett.

We must then show that d∗t = Ett + nt−1
Dt

. Now, DX + AB′ = In×n implies

(DX)rr + (AB′)rr = 1 and so dtd
∗
t + u(t, t) = 1, where ut =

∑
s ãtsb̃ts.

Similarly, (DE) + A F ′ = DE + A B̃′ = IT×T , yields ntdtEtt + ntu(t, t) =

1, t ∈ ST . Eliminating ut from these two equations, (A.5.1) is obtained.

• Proof of (iv): Since C ∈ C(n) is positive definite, then by Proposition

A.3.1 C is also positive definite. For any positive define M, the inequality

1
Mii
≤ M ii holds. Applying it to (M = C, i = r ≤ n) and (M = C, t ≤ T )

yields 1
dt
≤ Crr and 1

ntdt
≤ C

tt
respectively. Multiplying the second inequality

by nt − 1, adding C
tt

to both sides, and using (A.5.1) the upper bound in

(A.5.2) follows.

�



Appendix B

Rasch Poisson Count Model

B.1 Introduction

The Rasch Poisson Count model (RPCM) was developed by Rasch (1960a)

(see also Lord and Novick (1968)) in the context of testing the reading ability

of persons. The model assumes that the reading of each word of a text

constitutes an independent Bernoulli trial with the probability of an error on

that word being some small value that depends on the difficulty of the word.

Denoting the probability of an error by examinee p on a fixed word in text i by

γpi, Rasch (1960a) assumed that it can be expressed as the ratio γpi = δi/ξp

of a test difficulty parameter δi ∈ R+ and an ability parameter ξp ∈ R+. For

computational convenience the reparametrization βi = − ln(δi) ∈ R and θp =

− ln(ξp) ∈ R is typically used; by so doing, it is avoided to work on bounded

parameter spaces. Using the approximation of a Poisson distribution by a

sum of independent distributed Bernoulli random variables (see Lord and

Novick (1968), section 21.3) and assuming that the values of γpi are constant

84
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within a text, Rasch (1960a) concluded that the number of misreadings Ypi of

an examinee p when reading the text i is distributed according to a Poisson

distribution of parameter

λpi =
γi
ξp

= exp(θp − βj); p = 1, . . . , n; i = 1, . . . , K (B.1.1)

The specification is completed by assuming that {Ypi : 1 ≤ i ≤ K; 1 ≤

p ≤ g} are mutually independent. The Rasch Poisson Count Model (RPCM)

is, therefore, parameterized by (γ1, . . . , γK ; ξ1, . . . , ξn) ∈ RK
+ ×Rn

+ or, equiva-

lently by (β1, . . . , βK ; θ1, . . . , θn) ∈ RK ×Rn. Nevertheless, as is well known,

these parameters are not identified, so an identification restriction is needed;

typically the most difficult text is taken as a point of reference by choosing

a value of γ1 = 1 (or, equivalently, β1 = 0); (see Rasch (1960a)). Due to the

fact that the individual abilities are considered as unknown parameters, we

refer to this specification as the fixed-effects specification of the RPCM.

B.2 Link between PCM and RPCM

Rasch Poisson Count Model(RPCM) is represented as, Yij the number of

errors the individual i makes when reading the text j, the model is given by:

Yij ∼ Poisson(λij) , i = 1, . . . , n; j = 1, . . . , k ;λij = exp(θi − βj) (B.2.1)

where θi is the ability of individual i in the item with difficulty βj. Its

likelihood function is given by:

P (Yij = y) =
exp(y(θi − βj))

y! exp(exp(θi − βj))
, y = 0, 1, . . . ,∞ (B.2.2)
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Now this model (RPCM) can be expressed as PCM, if replacing the following

terms in B.2.2 we have; y! =

y∏
z=1

z = exp

(
y∑
z=1

log(z)

)
and we define βj = βj1

we have:

exp(y(θi − βj1))

y!
= exp

(
y(θi − βj1)−

y∑
z=1

log(z)

)

And if we consider βj0 = 0 and βij = βj1 + log j for j > 0 we have:

exp(y(θi − βj1))

y! exp(exp(θi − βj1))
=

exp

(
jθi −

j∑
z=0

βjz

)
∞∑
w=0

exp(w(θi − βj1))

k!

=

exp

(
jθi −

j∑
z=0

βjz

)
∞∑
w=0

exp

(
wθi −

w∑
z=0

βjz

) , j = 0, 1, . . . ,∞

Which gives the probability function of PCM. The log-likelihood function is

given by:

lJMLE(θ,β) =
n∑
i=1

θiyi+ −
k∑
j=1

βjy+j −
n∑
i=1

k∑
j=1

log(yij!)−
n∑
i=1

k∑
j=1

exp(θi − βj)

here sufficient statistics are (θi, βj) = (yi+, y+j) =

(
n∑
i=1

yij,

k∑
j=1

yij

)
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B.3 SSB version of the Rasch Poisson Count

Model

B.3.1 Model formulation

Ntj represents the number of individuals having t errors when reading the

text j. The model is given by:

Ntj ∼ Poisson(ntλtj) , t = 1, 2, . . . ,∞; j = 1, . . . , k; λtj = exp(γt − βj),

where nt is the number of people with t score, γt represents the proxy of

ability of an individual i obtaining a score equal to t and ptj is the probability

of a person with t score giving a response y to item j

ptj =
(nt exp(γt − βj))ntj

ntj! exp(nt exp(γt − βj))
,

The log-likelihood function is given by:

lSSBE(γ,β) =
∞∑
t=1

γt

k∑
j=1

ntj −
k∑
j=1

βj

∞∑
t=1

ntj +
∞∑
t=1

k∑
j=1

ntj log(nt)−
∞∑
t=1

k∑
j=1

nt exp(γt − βj)

−
∞∑
t=1

k∑
j=1

log(ntj!)

here sufficient statistics are (γt, βj) = (nt+, n+j) =

(
k∑
j=1

ntj,
∞∑
t=1

ntj

)
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B.4 Applications to real data sets

B.4.1 Illustration, Evaluation of Teacher Talk

Consider data about evaluation of teacher talk of first-cycle teachers, first to

fourth grades of Elementary School, who work on public schools in Chile, in

Language subject. We will illustrate a test for 118 students and 14 items.

The purpose of this study is quantifying the performance of teachers on the

questions they make and the follow ups on student’s interventions, to control

the flux of the class or check information. This study about communicational

performance of teachers will be considered both from the point of view of

teacher’s ability and the difficulty imposed by every type of question on the

teacher and follow up; the component of difficulty of the task to be performed

will be divided in three groups:

Elicitation, when the teacher intends to cause physical or psychic im-

mediate responses on student or students.

Exhibition, when the teacher gives information to boys and girls looking

for no immediate reaction from them.

Follow up, It is a tracking performed by the teacher to student’s response

to the questions made to a student, a group, or to the class as a whole.
The next picture shows all the 14 difficulties to be studied:
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Demand
Control
Information

Elicitation Implement
Elaborate
Review
Opinion
The teacher delivers information content

Exhibition The teacher delivers information about cognitive processes to perform
The teacher delivers information about the specific tasks to perform
Monosyllable/Neutral

Follow up Repeat
Evaluate
Reformulate

Let’s define as Yij the number of times that teacher i performs the task

j, i = 1, . . . , n; j = 1, . . . , k, this random variable is distributed Yij
∣∣θi, βj ∼

Poisson(exp(θi − βj)), where θi is the ability of teacher i and βj is the diffi-

culty of task j.

B.4.2 Results

In Table B.1 we can see that least difficult tasks to be performed by the

teacher are two from Elicitation: Control (β2 = −0.9315) and Implemen-

tation (β4 = −0.9928 and a Follow Up which is repeated (β12 = −0.9373).

The most difficult is cognitive processes (β9 = 1.7554). This means that it is

easier for the teacher to evaluate if students are following the class and or-

ganize some tasks, train students in language to make them use their verbal

abilities, and respond to student contribution partially or completely repeat-

ing their answer. Here almost every teacher reaches this level of difficulty.

The most difficult task for teacher was to give information about cognitive

processes to be performed or being performed during the session: It includes
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Table B.1: MMLE and SSBE for the difficulty parameters, along with the
corresponding estimated standard errors

Tarea Item β̂ssbe s.essbe β̂mml s.emml %-ssbe %-mml
Demand 1 0 - 0 - 93,22 93,22
Control 2 -0,9315 0,059 -0,9315 0,059 98,31 100,000
Information 3 -0,6438 0,061 -0,6438 0,061 94,92 99,150

Elicitation Implement 4 -0,9928 0,058 -0,9928 0,058 98,31 100,000
Elaborate 5 0,5745 0,083 0,5745 0,083 84,75 85,590
Review 6 0,9933 0,096 0,9933 0,096 64,41 64,410
Opinion 7 0,1957 0,074 0,1957 0,074 91,53 93,220
Content Information 8 0,1206 0,073 0,1206 0,072 93,22 93,220

Exposición Information cognitive processes 9 1,7554 0,129 1,7554 0,129 7,63 4,230
Information tasks to be performed 10 -0,7378 0,060 -0,7378 0,060 96,61 99,150
Monosyllable/Neutral 11 0,5702 0,083 0,5702 0,083 85,6 85,590
Repeat 12 -0,9373 0,059 -0,9373 0,059 98,31 100,000

Follow ups Evaluate 13 -0,1844 0,067 -0,1844 0,067 93,22 94,920
Reformulate 14 -0,6068 0,062 -0,6068 0,062 94,92 99,150

every type of expressions that do not relate to discipline contents, but talk

about what will be done or is being made in the session in terms of cognitive

processes or strategies involved and their difficulty level. In this task, a small

percentage of teachers reach or master this difficulty.

Difficulties estimates β̂′s are exactly the same for both methods. In re-

lation to teacher abilities, although the correlation of both methods is very

high (0.9903), in MML an estimation shrinking is produced at extremes (see

Figure B.1) and studies of simulation in chapter refcPCM make us think

that in the case of being forced to choose some type of methodology, SSBE

presents two important advantages: firstly, it reaches a high percentage of

real values; secondly the delay time of estimation results is low, no matter

the number of individuals; that is, the computational cost is minimal.
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Appendix C

SAS code for fitting the

SSB-version

C.1 PCM

Let k be total number of items, ntih indicating the number of persons with

a sum score equal to t who answer correctly the step h for the item i and nt

the number of persons with a sum score equal t.
The original data set need to be reduced to a design matrix of the follow-

92
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ing form:

data file =



col1 col2 . . . coln col(n + 1) . . . col(n + k) nti1 nti2 nt
1 n111 n112 n1
1 Ik n121 n122 n1
...

...
1 n1k1 n1k2 n1

1 n211 n212 n2
1 Ik n221 n222 n2
...

...
1 n2k1 n2k2 n2

. . .
...

...
1 nt11 nt12 nt
1 Ik nt21 nt22 nt
...

...
1 n2k1 ntk2 nt



The SAS-procedure needed to fit the SSB-version of PCM is the following:

proc nlin data=name_data maxiter=1000 sigsq=1;
like = 0;
PARMS b1_2-b1_k=0 b2_1-b2_k=0 theta1-thetan=0;
theta=theta1*COL1+theta2*COL2+...+thetan*COLn;
b1_1=0;
beta1=b1_1*COL(n+1)+b1_2*COL(n+2)+...+b1_k*COL(n+k);
beta2=b2_1*COL(n+1)+b2_2*COL(n+2)+...+b2_k*COL(n+k);
exp1=exp(theta-beta1);
exp2=exp(2*theta-beta1-beta2);
denom=1+exp1+exp2;
p1=1/denom;
p2=exp1/denom;
p3=exp2/denom;
model like = sqrt(- 2 * ( nti1*log(p2)+nti2*log(p3)+(nt-nti1-nti2)*log(p1) ) );
run;
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C.2 LLTM

Let k be total number of items, ntj the random variable that indicates the

number of persons with a sum score t , nt the number of persons with a sum

score equal t and L the number the subtaks.

The original data set need to be reduced to a design matrix of the follow-

ing form:

data file =



col1 col2 . . . coln col(n + 1) . . . col(n + L) ntj nt
1 n11 n1
1 Ik n12 n1
...

...
1 n1k n1

1 n21 n2
1 Ik n22 n2
...

...
1 n2k n2

. . .
...

...
1 nt1 nt
1 Ik nt2 nt
...

...
1 n2k nt



The SAS-procedure needed to fit the SSB-version of PCM is the following:

proc nlin data=name_data maxiter=1000 sigsq=1;

like = 0;

PARMS alpha1-alphaL=0 theta1-thetan=0;

theta=theta1*COL1+theta2*COL2+...+thetan*COLn;

alpha=alpha1*COL(n+1)+alpha2*COL(n+2)+...+alphaL*COL(n+L);

exp=exp(theta-alpha);
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model like=sqrt(-2*(ntj*log(exp/(1+exp) )+(nt-ntj)*log(1/(1+exp))));

run;

C.3 RPCM

Let k be total number of text, ntj represents the number of individuals who

have t errors they make while reading the text j.

The original data set need to be reduced to a design matrix of the follow-

ing form:

data file =



col1 col2 . . . coln col(n + 1) . . . col(n + k) ntj nt
1 n11 n1
1 Ik n12 n1
...

...
1 n1k n1

1 n21 n2
1 Ik n22 n2
...

...
1 n2k n2

. . .
...

...
1 nt1 nt
1 Ik nt2 nt
...

...
1 n2k nt



The SAS-procedure needed to fit the SSB-version of PCM is the following:

proc nlin data=name_data maxiter=1000 sigsq=1;

like = 0;

PARMS beta2-betak=0 theta1-thetan=1;
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theta=theta1*COL1+theta2*COL2+...+thetan*COLn;

beta1=0;

beta=beta1*COL(n+1)+beta2*COL(n+2)+...+betak*COL(n+k);;

exp=exp(theta-beta);

th=theta-beta;

model like=sqrt(-2*(ntj*log(nt)+ntj*th-log(fact(ntj))-nt*exp));

run;

Let us remark that, when we have a large number of examinees, it is necessary

to implement a SAS-procedure to get the design matrix.
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Laplace, P. S. (1820). Théorie Analytique des Probabilités. Paris: Mme. Ve.

Courcier, Imprimeur-Libraire pour les Mathématiques.
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