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Abstract

As the complexity of many scientific problems grows, the niaagand analysis of data com-
ing from these problems requires of increasingly soplastid statistical models. The constant
search of such models has been one of the major stimulussieaureh in Bayesian nonparamet-
ric (BNP) methods. This dissertation presents advanceBliBodels for predictor—dependent
distributions (or density regression) by studying one efrtmost important properties (support)
and proposing a novel class of these models. In order to xttkze the dissertation, an initial
chapter is included presenting a literature review and soasé&c concepts which are useful to
understand the main reasons that motivated this work. Tre@s®ns are also included in this
chapter. Because this project is based on two different sydhle dissertation has been divided
in two pieces that are self—-contained and included in twieht chapters, 2 and 3.

In the fist part, Chapter 2, we study the support properti€ichlet process—based mod-
els for sets of predictor—-dependent probability distidmg. Exploiting the connection between
copulas and stochastic processes, we provide an altezrtfinition of MacEachern’s depen-
dent Dirichlet processes. Based on this definition, we pi@gufficient conditions for the full
weak support of different versions of the process. In paldic we show that under mild con-
ditions on the copula functions, the version where only tingpsrt points or the weights are

dependent on predictors have full weak support. In additaealso characterize the Hellinger

viii



CONTENTS

and Kullback—Leibler support of mixtures induced by thdeti#nt versions of the dependent
Dirichlet process. A generalization of the results for tlemeral class of dependent stick—
breaking processes is also provided.

In the second part, Chapter 3, we propose a novel probabilityel for sets of predictor—
dependent probability distributions with bounded domdihe proposal corresponds to an ex-
tension of the Dirichlet—Bernstein prior by using deperidaick—breaking processes. Ap-
pealing theoretical properties such as full support, caty, marginal distribution, correlation
structure, and consistency of the posterior distributi@nstudied. Practicable special cases of
the general model are discussed and illustrated using atedubnd real-life data. The simu-
lated data is also used to compare the proposed methoda@yysting methods.

Finally, Chapter 4 summarizes the dissertation and dissugsssible generalizations and

future work.



List of Figures

3.1

3.2

Simulated data - Scenarion (= 500): True (continuous line) and posterior
mean (dotted line) for the conditional density. A band carged using the
95%point-wise HPD intervals is presented in gray. Pang|qd (g) and (j),
(b), (e), (h) and (k), and (c), (f), (i) and (I) display the uds for the best DBPP
model {DBPP2), the best LDDP model (LDDP2), both regarding thevestizd
L., distance, and the weight dependent DP for four values of thdigor,
respectively. . . . . . . . e
Simulated data - Scenario ik (= 500): True (continuous line) and posterior
mean (dotted line) for the conditional density. A band carged using the
95%point-wise HPD intervals is presented in gray. Pang|qdy (g) and (j),
(b), (e), (h) and (k), and (c), (f), (i) and (I) display the uds for the best DBPP
model {DBPP1), the best LDDP model (LDDP1), both regarding thevestizd
L., distance, and the weight dependent DP for four values of thdigtor,

respectively. . . . . . .. e



LIST OF FIGURES

3.3

3.4

3.5

B.1

Simulated data - Scenario Ith (= 500): True (continuous line) and poste-
rior mean (dotted line) for the conditional density. A bammhstructed using

the 95%point-wise HPD intervals is presented in gray. RPasl (d), (g) and

@), (b), (e), (h) and (k), and (c), (f), (i) and (l) displayehesults for the best
DBPP model ¢{DBPP2), the best LDDP model (LDDP1), both regarding the
estimatedL,, distance, and the weight dependent DP for four values of the
predictor, respectively. . . . .. ... L L 77
Proportion of food ILDBPP model. Panels (a), (b), (c), (d), (e) and (f) display
the posterior mean (dashed line) and a 95% point-wise HPD (grey area)

for the conditional density at socioeconomic level low-|daw, medium-low,
medium, medium-high and high, respectively, underédbBBPP model. The
posterior mean under the parametric beta regression medalen as a solid

line for comparison purposes. . . . . . . . . . o e e 80
Proportion of hygienic wast¢/LDBPP model. Panels (a), (b), (c), (d), (e) and
(f) display the posterior mean (dashed line) and a 95% pwis¢- HPD band
(grey area) for the conditional density at socioeconomelléow-low, low,

medium-low, medium, medium-high and high, respectivatger thef/LDBPP

Simulated data - Scenario# (= 250): True (continuous line) and posterior
mean (dotted line) for the conditional density. A band carged using the
95%point-wise HPD intervals is presented in gray. Pangls(¢, (g) and
@, (b), (e), (h) and (k), and (c), (f), (i) and (l) displayehesults for the best
DBPP model (LDBPP1), the best LDDP model (LDDP1), both rdomy the
estimated.; distance, and the weight dependent DP for four values ofiiie p

dictor, respectively. . . . . . . .. 139

Xi



LIST OF FIGURES

B.2

B.3

B.4

B.5

Simulated data - Scenario# (= 500): True (continuous line) and posterior
mean (dotted line) for the conditional density. A band carged using the
95%point—-wise HPD intervals is presented in gray. Pangls(@, (g) and

@, (b), (e), (h) and (k), and (c), (f), (i) and (l) displayehesults for the best
DBPP model (LDBPP1), the best LDDP model (LDDP2), both rdoey the
estimated.; distance, and the weight dependent DP for four values ofitie p
dictor, respectively. . . . . . ... 140
Simulated data - Scenarios (= 1000): True (continuous line) and posterior
mean (dotted line) for the conditional density. A band cargded using the
95%point—-wise HPD intervals is presented in gray. Pangls(@, (g) and

@, (b), (e), (h) and (k), and (c), (f), (i) and (l) displayehesults for the best
DBPP model (LDBPP1), the best LDDP model (LDDP2), both rdomey the
estimated.; distance, and the weight dependent DP for four values ofitie p
dictor, respectively. . . . . . . .. 141
Simulated data - Scenario b (= 250): True (continuous line) and posterior
mean (dotted line) for the conditional density. A band carged using the
95%point—-wise HPD intervals is presented in gray. Pangls(@, (g) and

@, (b), (e), (h) and (k), and (c), (f), (i) and () displayehesults for the best
DBPP model (\LDBPP1), the best LDDP model (LDDP2), both regarding the
estimated., distance, and the weight dependent DP for four values ofitie p
dictor, respectively. . . . . . . .. 142
Simulated data - Scenario Ik (= 500): True (continuous line) and posterior
mean (dotted line) for the conditional density. A band carged using the
95%point—wise HPD intervals is presented in gray. Pangls(@, (g) and

@, (b), (e), (h) and (k), and (c), (f), (i) and (l) displayehesults for the best
DBPP model ("LDBPP1), the best LDDP model (LDDP1), both regarding the
estimated.; distance, and the weight dependent DP for four values ofitie p

dictor, respectively. . . . . . ... 143

Xii



LIST OF FIGURES

B.6

B.7

B.8

B.9

Simulated data - Scenario th (= 1000): True (continuous line) and poste-
rior mean (dotted line) for the conditional density. A bammhstructed using

the 95%point—wise HPD intervals is presented in gray. Raf@8| (d), (g) and

@), (b), (e), (h) and (k), and (c), (f), (i) and (l) displayehesults for the best
DBPP model (LDBPP1), the best LDDP model (LDDP1), both rdomey the
estimated.; distance, and the weight dependent DP for four values ofitie p
dictor, respectively. . . . . . ... 144
Simulated data - Scenario Ilth (= 250): True (continuous line) and poste-
rior mean (dotted line) for the conditional density. A bamhstructed using

the 95%point—wise HPD intervals is presented in gray. Raf@8| (d), (g) and

@), (b), (e), (h) and (k), and (c), (f), (i) and () displayehesults for the best
DBPP model (LDBPP1), the best LDDP model (LDDP1), both rdomey the
estimated.; distance, and the weight dependent DP for four values ofitie p
dictor, respectively. . . . . . ... 145
Simulated data - Scenario Ilh (= 500): True (continuous line) and poste-
rior mean (dotted line) for the conditional density. A barmmhstructed using

the 95%point—wise HPD intervals is presented in gray. Raf@8| (d), (g) and

(@), (b), (e), (h) and (k), and (c), (f), (i) and (l) displayehesults for the best
DBPP model (LDBPP1), the best LDDP model (LDDP1), both rdoey the
estimated.; distance, and the weight dependent DP for four values ofitie p
dictor, respectively. . . . . . ... 146
Simulated data - Scenario Ik (= 1000): True (continuous line) and poste-
rior mean (dotted line) for the conditional density. A bammhstructed using

the 95%point—wise HPD intervals is presented in gray. Raf@) (d), (g) and

(@), (b), (e), (h) and (k), and (c), (f), (i) and (l) displayehesults for the best
DBPP model (LDBPP1), the best LDDP model (LDDP1), both rdomey the
estimated.; distance, and the weight dependent DP for four values ofitie p

dictor, respectively. . . . . . ... 147

Xiii



LIST OF FIGURES

B.10 Simulated data - Scenariosn (= 250): True (continuous line) and posterior
mean (dotted line) for the conditional density. A band carged using the
95%point—-wise HPD intervals is presented in gray. Pangls(@, (g) and
@, (b), (e), (h) and (k), and (c), (f), (i) and (l) displayehesults for the best
DBPP model {LDBPP2), the best LDDP model (LDDP1), both regarding the
estimatedL,, distance, and the weight dependent DP for four values of the
predictor, respectively. . . . .. ... L L 148

B.11 Simulated data - Scenariosn (= 500): True (continuous line) and posterior
mean (dotted line) for the conditional density. A band carged using the
95%point—wise HPD intervals is presented in gray. Pangls(@, (g) and
@, (b), (e), (h) and (k), and (c), (f), (i) and (l) displayehesults for the best
DBPP model {LDBPP2), the best LDDP model (LDDP2), both regarding the
estimatedL,, distance, and the weight dependent DP for four values of the
predictor, respectively. . . . . . ... L 149

B.12 Simulated data - Scenarionl & 1000): True (continuous line) and posterior
mean (dotted line) for the conditional density. A band carged using the
95%point—-wise HPD intervals is presented in gray. Pangls(@, (g) and
@, (b), (e), (h) and (k), and (c), (f), (i) and (l) displayehesults for the best
DBPP model (LDBPP2), the best LDDP model (LDDP1), both rdomey the
estimatedL,, distance, and the weight dependent DP for four values of the
predictor, respectively. . . . .. ... L 150

B.13 Simulated data - Scenario b (= 250): True (continuous line) and posterior
mean (dotted line) for the conditional density. A band carged using the
95%point—wise HPD intervals is presented in gray. Pangls(@&, (g) and
@, (b), (e), (h) and (k), and (c), (f), (i) and (l) displayehesults for the best
DBPP model ("LDBPP1), the best LDDP model (LDDP1), both regarding the
estimatedL,, distance, and the weight dependent DP for four values of the

predictor, respectively. . . . . . . . ... 151

Xiv



LIST OF FIGURES

B.14 Simulated data - Scenario b (= 500): True (continuous line) and posterior
mean (dotted line) for the conditional density. A band carged using the
95%point—wise HPD intervals is presented in gray. Pangls(@, (g) and
@, (b), (e), (h) and (k), and (c), (f), (i) and (l) displayehesults for the best
DBPP model {LDBPP1), the best LDDP model (LDDP1), both regarding the
estimatedL,, distance, and the weight dependent DP for four values of the
predictor, respectively. . . . . . ... L 152

B.15 Simulated data - Scenario Il & 1000): True (continuous line) and posterior
mean (dotted line) for the conditional density. A band carged using the
95%point—-wise HPD intervals is presented in gray. Pangls(@, (g) and
@), (b), (e), (h) and (k), and (c), (f), (i) and (l) displayehesults for the best
DBPP model (LDBPP1), the best LDDP model (LDDP1), both rdoey the
estimatedL,, distance, and the weight dependent DP for four values of the
predictor, respectively. . . . . . .. ... 153

B.16 Simulated data - Scenario Itk (= 250): True (continuous line) and posterior
mean (dotted line) for the conditional density. A band carged using the
95%point—-wise HPD intervals is presented in gray. Pangls(@, (g) and
@, (b), (e), (h) and (k), and (c), (f), (i) and (l) displayehesults for the best
DBPP model (\LDBPP1), the best LDDP model (LDDP1), both regarding the
estimatedL,, distance, and the weight dependent DP for four values of the
predictor, respectively. . . . . . ... L 154

B.17 Simulated data - Scenario Itk (= 500): True (continuous line) and posterior
mean (dotted line) for the conditional density. A band carged using the
95%point—wise HPD intervals is presented in gray. Pangls(@&, (g) and
@, (b), (e), (h) and (k), and (c), (f), (i) and (l) displayehesults for the best
DBPP model (\LDBPP2), the best LDDP model (LDDP1), both regarding the
estimatedL,, distance, and the weight dependent DP for four values of the

predictor, respectively. . . . . . . . ... 155

XV



LIST OF FIGURES

B.18 Simulated data - Scenario Il & 1000): True (continuous line) and posterior
mean (dotted line) for the conditional density. A band carged using the
95%point—-wise HPD intervals is presented in gray. Pangls(@, (g) and
@, (b), (e), (h) and (k), and (c), (f), (i) and (l) displayehesults for the best
DBPP model {LDBPP2), the best LDDP model (LDDP1), both regarding the
estimatedL,, distance, and the weight dependent DP for four values of the
predictor, respectively. . . . .. ... L L 156

B.19 Proportion of food - LDBPP model. Panels (a), (b), (d), (e) and (f) display
the posterior mean (dashed line) and a 95% point-wise HPD (grey area)
for the conditional density at socioeconomic level low-|daw, medium-low,
medium, medium-high and high, respectively, under the LBBRodel. The
posterior mean under the parametric beta regression medalen as a solid
line for comparison purposes. . . . . . . . . . . e e 157

B.20 Proportion of food wLDBPP model. Panels (a), (b), (c), (d), (e) and (f) display
the posterior mean (dashed line) and a 95% point-wise HPD (grey area)
for the conditional density at socioeconomic level low-|daw, medium-low,
medium, medium-high and high, respectively, undertth®BPP model. The
posterior mean under the parametric beta regression medalen as a solid
line for comparison purposes. . . . . . . . . . o e e e e 158

B.21 Proportion of hygienic waste - LDBPP model. Panels(@),(c), (d), (e) and
(f) display the posterior mean (dashed line) and a 95% peis¢- HPD band
(grey area) for the conditional density at socioeconomelléow-low, low,

medium-low, medium, medium-high and high, respectivehger the LDBPP

B.22 Proportion of hygienic wastesLDBPP model. Panels (a), (b), (c), (d), (e) and
(f) display the posterior mean (dashed line) and a 95% peis¢- HPD band
(grey area) for the conditional density at socioeconomvelléow-low, low,

medium-low, medium, medium-high and high, respectivetger theewLDBPP

XVi






List of Tables

3.1 Simulated data: Truemodels. . . . . . . .. .. ... .. ... ... ... 70
3.2 Simulated data: Estimatéd, (integrated’,) for each model, under the differ-

ent simulation scenarios and samplesizes. . . . . ... ... ... .. .. 74

XVviil






Chapter 1

Introduction

1.1 Background and literature review

1.1.1 The general context

The definition and study of theoretical properties of praligbmodels defined on infinite -
dimensional spaces have received increasing attentidreistatistical literature because these
models are the basis for the Bayesian nonparametric (BN#rgkzation of finite-dimensional
statistical models (see, e.g., Ghosh & Ramamoorthi, 2008jeM& Quintana, 2004; Hjort
et al., 2010). These generalizations allow the user to gadeinflexibility and robustness
against mis-specification of a parametric statistical ha8IP models are specified by defin-
ing a stochastic process whose trajectories belong to aifumat spaceg, such as the space of
all probability measures defined on a given measurable spaedaw governing such a process
is then used as a prior distribution for a functional paramnigt the Bayesian framework.

The increase in applications of BNP methods in the stagisliterature has been motivated

largely by the availability of simple and efficient methods posterior computation in Dirichlet



1.1. BACKGROUND AND LITERATURE REVIEW

process mixture (DPM) models (Ferguson, 1983; Lo, 1984)e DPM models incorporate
Dirichlet process (DP) priors (Ferguson, 1973, 1974) fanponents in Bayesian hierarchical
models, resulting in an extremely flexible class of modelsie Do the flexibility and ease in
implementation, DPM models are now routinely implementea wide variety of applications,
ranging from machine learning to genomics (see, e.g. Hjoat.e2010). Furthermore, a rich
theoretical literature about support, posterior conaisteand rates of convergence (Lo, 1984;
Ghosal et al., 1999; Lijoi et al., 2005; Ghosal & Van der Vad@07) justify the use of DPM
models for inference in single density estimation problems

Let G be the space of all probability measures, with density.vi.ebesgue measure, defined
on an appropriate measurable spages(5)), with S C R?, and where3(5) is the Borelo—
field. A DPM model for density estimation isG-valued stochastic process, defined on an
appropriated probability spa¢@, A, P), such that for almost every € (2, the density function
of GG is given by

gy | Fw /wy, do), y €S, (1.1)

where (-, #) is a continuous density function @, S), for everyd € ©,© C R?, andF'is a
DP, whose sample paths are probability measures defin¢®.ds(0)), with B(0) being the
Borel o—field. If ' is DP with parameteré)M, Fy), whereM € R and Fy is a probability
measure oi©, B(0)), written ast” | M, F, ~ DP(MF,), then the trajectories of the process

can be a.s. represented by the following stick-breakingesgmtation (Sethuraman, 1994):

- iwiégi(B), B € B(O), (1.2)

wheredy(-) is the Dirac measure & w; = V; [[,_,(1 = V;), with V; | M = % Beta(1, M), and

0; | Fo ot Fy. Discussion of properties and applications of DP can bedotor instance, in

Ferguson (1973, 1974), Korwar & Hollander (1973), Anton(a874), Blackwell & MacQueen
(1973), Cifarelli & Regazzini (1990), Hanson et al. (2003)ort & Ongaro (2005), Hjort et al.
(2010) and in references therein. Recent work in BNP mod&tsdoncentrated on different

generalizations of the problem, which are described in the sections.

2



1.1. BACKGROUND AND LITERATURE REVIEW

1.1.2 Alternatives to Dirichlet process mixing

Alternative discrete probability models to the DP have beemsidered. Some examples are
members of the general class of species sampling models)(B8dduced by Pitman (1996).
The class of SSM includes as special cases the DP and thelimatvandom measures (Nieto-
Barajas et al., 2004), among many others. Members of this clan be represented in the form
G(B) =32 wide,(B) + (1 = >272, widg,(B)) Go(B), B € B(O), where, the atom& areiid
random variables with common distributic#,, 6; i Gy, which are assumed independent of
the non-negative random weights. The weightsw, are constrained such that,~, w;, < 1
a.s. The name of the class is motivated by the interpretafidine parameters; thah weight
w; is interpreted as the relative frequency of itiespecies in a species’ list present in a certain
population, and); is interpreted as the tag assigned to that speciés, if, w; = 1 the SSM is
called proper and the corresponding prior random proligiieasure= is a.s. discrete. Some
examples of SSM are the Dirichlet-multinomial processesl{dle & Secchi, 1995), the DP
(Muliere & Tardella, 1998), the normalized inverse Gausgieocesses (Lijoi et al., 2005), and
the beta two-parameter processes (Ishwaran & Zarepou®)200

Perhaps one of the best known examples of the SSM is thelstizking process (Ishwaran
& James, 2001). A discrete random probability measure offah@ (1.2) is called a stick-
breaking process it; = V;[[,_,(1 = V;), Vi | M nd Beta(a;, b;), andd; | Fy “ R, where
{a;}i>1 and{b; };>, are sequences of positive numbers. These random weightdefine a
proper SSM if and only iy ", Ellog(1 — V;)] = —oo. In particular, there are two specific
stick-breaking process that have been well studied: thielidat process (Ferguson, 1973, 1974)
wherea;, = 1 andb;, = M, and the two parameter Poisson-Dirichlet processes (Rita895,
1996; Pitman & Yor, 1997; Ishwaran & James, 2001) where 1 — ¢ andb; = M + ai (with

0<a<l1, M > —a).

1.1.3 Continuous and absolutely continuous random probakity measures

Alternatives formulations of the problem have been consddy using BNP models which

admit directly continuous and absolutely continuous thatrons, thus avoiding the convolu-
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tion with a continuous kernel to generate probability measwith density w.r.t. Lebesgue
measure. Some examples are the general class of tail-ineegses (Freedman, 1963; Fabius,
1964; Ferguson, 1974), Polya trees (Ferguson, 1974; Maeatdil., 1992; Lavine, 1992, 1994),
mixtures of Polya trees (Lavine, 1992; Hanson & Johnson226f@anson, 2006; Christensen
et al., 2008; Jara et al., 2009), randomized Polya treedfid 1999, 2002; Paddock et al.,
2003), Gaussian processes (O’Hagan, 1992; Angers & Deldynh892), Wavelets (Muller &
Vidakovic, 1998), logistic Gaussian processes (Tokdar &€bh 2007, see, e.g.), and quantile
pyramids (Hjort & Walker, 2009).

1.1.4 Models for related probability measures

Generalizations of (1.1) and (1.2) have been proposed tmamodate dependence of the data
on predictors. To date, most of the extensions have focusedmstructions that generalize the

DPM model by considering

oy | 2, Fo(w)) = / by, 0)Fo(w)(d8), y € 5, (1.3)

whereg(y | =, F,) is a conditional density indexed by the value of a continuprelictor

r € X C R, and the dependence is introduced through the mixing pililyaibheasureF’,. In
this case, the parametric spagecorresponds to the product space giveri by . P(5), where
P(S) is the space of all probability measures defined 8m3(5)). Notice that the inferential
problem is related to the modeling of the collection of pegati-dependent probability measures
{F, 2z € X}.

Some of the earliest developments on dependent DP modeadaiegahin Cifarelli & Regazz-
ini (1978), who defined dependence across related randosumessby introducing a regression
for the baseline measure of marginally DP distributed ramdoeasures. A more flexible con-
struction was proposed by MacEachern (1999, 2000), cdflediependent Dirichlet process
(DDP). The key idea behind the DDP is to create a set of mdtgibé-distributed random
measures and to introduce dependence by modifying thelsteaking representation of each

element in the set. Specifically, MacEachern (1999, 2000¢igdized expression (1.2) by as-
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suming
Fo(B) =Y wi(z)0,)(B), BEB, (1.4)
i=1
where the point massés(x), i = 1,..., are independent stochastic processes with index set

j<i[1 — Vj(x)], with V;(z), | = 1,..., be-

ing independent stochastic processes with indexsanhd Beta(1, M) marginal distribution.

X, and the weights take the form;(z) = V;(z)[]

MacEachern (2000) also studied a version of the processpséttiictor-independent weights,
Fy(B) = >, widg,)(B). Versions of the predictor-independent weights DDP hawenbe
successfully applied in a variety of applications (see, Bgylorio et al., 2004; Gelfand et al.,
2005; Jara et al., 2010). Other extensions of the DP for wigalith related probability dis-
tributions include the DPM mixture of normals model for tln distribution of the response
and predictors (Muller et al., 1996), the hierarchical taie of DPM (Mdller et al., 2004),
the hierarchical DP (Teh et al., 2006), the order-based DDBein(Griffin & Steel, 2006), the
nested DP (Rodriguez et al., 2008), the kernel-stick brepibunson & Park, 2008), among
many others. Based on a different formulation of the coaddl density estimation problem,
Tokdar et al. (2010) and Jara & Hanson (2011) proposed aligas to convolutions of depen-
dent stick-breaking approaches of the form (1.3) and (Whjch yield conditional probability
measures with density w.r.t. Lebesgue measure withouteld af convolutions.

The development of any BNP model always has to keep in mirtdlieee are some proper-
ties which are expected to be satisfied by the model. In threafawodels for related probability
measures, it is expected that the following properties aoessarily met: (i) the support of the
prior distribution induced by the procegs/, : = € X} should be large; (ii) a continuity
property in the sense that, converges, at least in probability, @®,, , asz — xo; (iii)
increasing (and decreasing) dependencé& phind G, with decreasing (increasing) distance
between: andx,; and (iv) posterior computation can proceed efficientlptigh a straightfor-
ward MCMC algorithm. A commonly studied property, but notessarily expected, is given
by, (v) the marginal distribution of7,, ideally follows a familiar distribution at any given level

of the predictorz. Since the parametric space corresponds to a product shacgudy of the
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support property requires to consider generalizationhi@fstandard topologies for spaces of

singles probability measures. The next section discussae aspects related to this property.

1.1.5 Support property in models for related probability measures

The support of a probability measure, also known as topoédgupport, is defined as the
smallest closed set with probability one. Here, the paramspaceG must be endowed with
a topology and the collection of all Borel sets Grforms theo—algebra where the prior dis-
tribution is defined. It is said that a probability measurs fdl support, given a topology, if
G is its topological support. In this context, a probabilitgasure satisfies the large support
property if its support contains a sufficiently large amooin¢lements ofj. This property can
be considered a minimum requirement and almost a “necessadition” for a nonparametric
model to be considered “nonparametric”, because it ensha¢s nonparametric prior does not
assign too much mass on small or restricted sets of probatvigasures. This property is also
important because itis a typically required condition f@guentist consistency of the posterior
distribution.

As was discussed above, the definition of the support of fmibtyamodels depends on the
choice of the topology. These topologies are usually defthesigh a base of open neigh-
borhoods. In the context of models for related probabiligasures, the most natural topolo-
gies that could be considered are weak prodigtproduct,v-integratedZ, and L., where
qg=1,...,00andv is a probability measure defined on t€, 5(X')). A brief description of
these topologies is given below:

Let P (S)* = L., P (S) be the product space formed by all the sets of predictor—
dependent probability distributions of the forfil/, : x € X'}, where for everyr € X, H,
is a probability measure defined 08, B(S)). Product spaces are commonly equipped with
a natural topology called the product topology, which ismdi as the coarsest topology for
which all the projection H, : « € X} — H,,, ©o € X, are continuous. In this context,
the notion of the continuity in the weak arig, product topology is given by the weak con-

vergence of probability measures and fhe-distance between density functions, respectively.
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)* must be restricted to sets of

Notice that for thel, product topology the product spagg(S
predictor—dependent probability distributions such foateveryxz € X', H, has density w.r.t
Lebesgue measure. Although the product topology can beuaah&hoice in product spaces,
it is not the only one. Any product space can be identified wiime space of functions, and
any notion of distance between those functions can be useduoe a topology on this space.
Here, the elements & (S)* are identified with functions of the form — H,, and thus, the

v-integratedL, and L., topologies are induced by the metrics,

Ay, (&> Poya s Hy) — /X / pe(y) — ho(y)|" dyo(de),

and

dpy, (x> Ppyx— H,) = supsup [p.(y) — he(y)],
zeX yes

respectively, and where for everye X, p, andh, is the density w.r.t. Lebesgue measure of
P, and H,, respectively. Again, the spad%(S)X must be restricted so that these metrics are
well defined.

Notice that the topologies presented above can be definedghra base of open neighbor-
hoods. Therefore, to show that under a specific topologyseh&1 C P (S)X is the support of
a particular prior distribution defined dn (S)X, it is necessary to show that, for the topology
being consideredM is a closed set, and for every open basic s&tthe prior probability of
the set\/ (| M is positive.

Although the formal definition of support depends on the @ered topology, there exists
an important kind of support that may not be interpreted io@ological sense, namely the
Kullback—Leibler support. The topological sense is lostehese the Kullback—Leibler diver-
gence is asymmetric and not a metric. The importance of thopart arises from the fact that
it is required to show the consistency of the posterior iflistron. The characterization of this
support is done using a similar strategy to that used in tapchl spaces. Specifically, we say
that{H, : z € X} € P (S)" belongs to the Kullback—Leibler support, if every neightimod
of {H, : = € X} has positive prior probability, where such neighbourhdualge been defined

using the Kullback—Leibler divergence.
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1.2 Motivation

The motivation for the developments of this thesis is sunmedrin the following two sections.

1.2.1 Characterizing the support in models for related prolability mea-

sures.

Although there exists a wide variety of probability modeis ifelated probability distributions,
there is a scarcity of results characterizing the suppati@proposed processes. Some recent
results have been provided by Pati et al. (2011) and Noretsl&s (2011), in the context of
dependent mixtures of Gaussians induced by probit stigaking processes (Chung & Dun-
son, 2009), and dependent mixtures of location—scaleilalisons induced by finite mixing
distributions (Norets, 2010) and kernel stick—breakingcpsses (Dunson & Park, 2008), re-
spectively. However, these results have been obtainedefyr specific BNP models and they
could not be easily extended to a broader class of models.th&@noesult was provided by
MacEachern (1999, 2000), who partially characterized thmoert of the DDP, leaving a gap
with regard to this property.

The lack of results that provide conditions, necessary fiicgnt, to ensure the property
of large support in models for related probability measisem issue that deserves to be ad-
dressed. In particular, it is necessary to determine camditthat characterize the support of
dependent processes that serve as mixing probability mesgdor instance the DDP, and to
study its relationship with the support of mixtures indutgdhese processes. Given the con-
text above, one of the developments of this thesis was ntetivey making a contribution
addressed to study the support of some of the most populaglsfut related probability mea-
sures. In particular, we study the support of the DDP and riggret stick—breaking process,
and its relationship with the support of mixture models iceli by them. The weak product,
L, product and Kullback-Leibler product support are congden this study. The use of prod-
uct topologies allows us to define the DDP or the stick—bregkrocess in terms of processes
whose laws are entirely determined by their respectivesfiditnensional distributions. More-

over, given the connection between copulas and stochastegses, we are also able to define

8
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the DDP and the stick—breaking process now using the steiptovided by copulas.

1.2.2 A BNP model for bounded density regression.

In practice, it is becoming more common to deal with regmsgiroblems where the observed
data have complex structures and where the use of standaistisal methods is limited. De-
pending on the complexity, we can find different alternativethods to deal with this kind of
data, including the increasingly popular BNP methods. is tbntext, there is a rich variety of
models for related probability distributions that haverbpeoposed. The list is huge but the un-
derlying challenge is the same. Some examples include tHed&cEachern (1999, 2000), the
DPM mixture of normals model for the joint distribution oktihesponse and predictors (Muller
etal., 1996), the hierarchical mixture of DPM (Miller et 004), the order—based DDP model
(Griffin & Steel, 2006), the predictor-dependent weightexiture of DP (Dunson et al., 2007),
the kernel—stick breaking (Dunson & Park, 2008), the presttitk breaking processes (Chung
& Dunson, 2009; Rodriguez & Dunson, 2009), the dependent §k& model (Quintana, 2010),
the Geometric stick-breaking processes for continuaus-{Mena et al., 2011), among many
others.

To the best of our knowledge, all of the previous (and mangahapproaches have consid-
ered models for densities on the real line and none haveddausdensities defined on a known
closed interval of the real lind/, u], —oco < I < u < co. In principle, all these models could be
applied if the data were suitably transformed. Since sletatansformations mean considering
bijective functions, implying that the edges of the intérvandu, are identified with-oo and
oo, it follows that the transformed densities would not be defion the edges of the domain,
i.e, atl andu. A natural solution to deal with this issue would consist efiding the values of
the transformed densities evaluatedatdu, as the right-hand limit dtand left-hand limit at:,
respectively. However, this solution has two importanadisantages:« it is hard to compute
these limits in practice; and£) the limits could be equal to infinity, implying an unbounded
likelihood function if at least one of the observations isi@dqo!/ or u. The unboundedness of

likelihood might be controlled by the prior distributionjtamposing restrictions on the prior is
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not a really easy task to do in this context. Therefore, nobased on transformations should
be used with some care, especially in cases where a part datheassociated to the response
variable are concentrated on the edges of the interval.

In this context, the lack of BNP models for related prob&pidlistributions where the re-
sponse variable belongs to a closed interval of the reaiditige main motivation to propose a
novel BNP model addressed to fill this gap. Here, we proposdBNP model for predictor—
dependent probability distributions well defined on a ctbisgerval, which satisfies the desired

properties (i)-(v), section 1.1.4.

1.3 Outline of this dissertation

The work in this thesis can be divided in two parts that havenb#eveloped inside a BNP
framework, in particular, in the context of probability nedsl for predictor-dependent proba-
bility distributions. Each part is presented in individahhpters, to be precise in chapters 2 and
3, which can be read independently because they are seHioed in terms of the notation and
abbreviations. Both chapters include an introductionetigyment and a final section with the
conclusions and future work. The outline of this disseotats as follows.

In Chapter 2, we provide an alternative characterizatiothefweak support of the two
versions of MacEachern’s DDP, namely, a version where baights and support points are
functions of the predictors, and a version where only theetppoints are functions of the
predictors. We also characterize the weak support of aorersithe DDP model where only
the weights depend on predictors. In addition, we also peosufficient conditions for the full
Hellinger support of mixture models induced by DDP priorsg @haracterize their Kulback—
Leibler support. Our results are based on an alternativeitiefi of MacEachern’s DDP, which
exploits the connection between stochastic processes gndas. Specifically, families of
copulas are used to define the finite dimensional distribstod stochastic processes with given
marginal distributions. The alternative formulation o€tBDP makes explicit the parameters
of the process, and their role on the support properties.

In Chapter 3, we propose a novel probability model for setgreflictor—-dependent prob-

10
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ability distributions with bounded domain. Dependentlsticeaking processes are used to
extend the Dirichlet—-Bernstein prior proposed by Petrd®®9a,b). Theoretical properties as-
sociated with the proposal, such as continuity, correfasitsucture, support and consistency
of the posterior distribution, are studied. In particuldwe weak product/., product, L,
Kullback—Leibler product andy—integrated and..,, Kullback—Leibler support were charac-
terized for the proposal model. Practicable special cabéiseogeneral model are discussed
and illustrated using simulated and real data. The simaildéta is also used to compare the
proposed methodology to existing methods.

In Chapter 4, we provide a review of the results presentedignRissertation, and discuss
possible directions of future research. A final appendiXaiois proofs of theorems, technical

results and figures showing some of the estimated densities.
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Chapter 2

On the support of MacEachern’s dependent Dirichlet

processes and extensions

This chapter has been published as:

BARRIENTOS, A. F., ARA , A. & QUINTANA , F. A. (2012). On the support of MacEach-

ern’s dependent Drichlet processes and extensBangesian Analysig 277-310.
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2.1 Introduction

This paper focuses on the support properties of probabhildgtels for sets of predictor-dependent
probability measures,G, : x € £}, where theGG,’s are probability measures defined on a
common measurable space .’) and indexed by a&—dimensional vector of predictoise 2.
The problem of defining probability models of this kind haseiged increasing recent at-
tention in the Bayesian literature, motivated by the cartiton of nhonparametric priors for
the conditional densities estimation problem. To date, hmeffort has focused on construc-
tions that generalize the widely used class of Dirichletcpes (DP) priors (Ferguson, 1973,
1974), and, consequently, the class of DP mixture modelg{Sen, 1983; Lo, 1984; Esco-
bar & West, 1995) for single density estimation. A randombafaility measures is said to
be a DP with parametersy, Gy), wherea € R = [0, +00) and G, is a probability mea-
sure on(S,.7), written asG | «, Gy ~ DP(aG)), if for any measurable nontrivial partition
{B,:1 <1< k}of S, thevecto{G(B;) : 1 <[ < k} has a Dirichlet distribution with pa-
rameter§aGy(By), . ..,aGo(By)). Itfollows thatG(B) | a, Gy ~ BetdaGy(B), aGy(B°)),
and thereforeF[G(B) | o, Go| = Go(B) andVar|G(B) | a, Go] = Go(B)Go(B)/(a + 1).
These results show the role 6f and«, namely, thatz is centered around, and thatx is a
precision parameter.

An early reference on predictor—-dependent DP models is&liif& Regazzini (1978), who
defined a model for related probability measures by introdpa regression model in the cen-
tering measure of a collection of independent DP random ameasThis approach is used, for
example, by Muliere & Petrone (1993), who considered a linegression model for the center-
ing distributionG? = N (2/3, 0?), wherez € R?, 3 € R? is a vector of regression coefficients,
andN (i, o%) stands for a normal distribution with mearmand variance?, respectively. Similar
models were discussed by Mira & Petrone (1996) and Giudial.€2003). Linking nonpara-
metric models through the centering distribution, howgherits the nature of the dependence
of the process. A more flexible construction, the dependémthdet process (DDP), was pro-
posed by MacEachern (1999, 2000). The key idea behind theiBBi construction of a set

of random measures that are marginally (i.e. for every ptsgiredictor value) DP—distributed
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random measures. In this framework, dependence is inteatiticough a modification of the
stick—breaking representation of each element in the $€t. [la, Gy ~ DP(aGy), then the
trajectories of the process can be almost surely represdiytehe following stick—breaking

representation provided by Sethuraman (1994):
G(B) =Y Wb, (B), Be .7, (2.1)
i=1

wheredy(-) is the Dirac measure & W; = V;[[,_,(1 — Vj) forall i > 1, with V; | « i
Beta 1, «), andb; | Gy “ G,. MacEachern (1999, 2000) generalized expression (2.1) by

considering
=1

where the support points(z), i = 1,..., are independent stochastic processes with index set
2" andG marginal distributions, and the weights take the fétiz) = Vi(z) [[,_,[1-V;(2)],
where{V;(z) : i > 1} are independent stochastic processes with indeZsand Betg1, «,)
marginal distributions.

MacEachern (2000) showed that the DDP exists and can hdwedak support, provided a
flexible specification for the point mass proces&gs$z) : = € £} and simple conditions for
the weight processdd/;(z) : © € 2"} are assumed. Based on the latter result, he also proposed
a version of the process with predictor-independent wejght(B) = >, W;dy, ) (B),
called the single weights DDP model. Versions of the singtegivts DDP have been applied to
ANOVA (De lorio et al., 2004), survival (De lorio et al., 200%ara et al., 2010), spatial model-
ing (Gelfand et al., 2005), functional data (Dunson & HeagriA006), time series (Caron et al.,
2008), discriminant analysis (De la Cruz et al., 2007), anyitudinal data analysis (Muller
et al., 2005). We refer the reader to Muller et al. (1996)n&an et al. (2007), Dunson & Park
(2008), and Chung & Dunson (2009), and references thereimther DP—based models for
related probability distributions.

Although there exists a wide variety of probability modeds felated probability distribu-
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tions, there is a scarcity of results characterizing theetipof the proposed processes. The
large support is a minimum requirement and almost a “necgssadition” for a nonparamet-
ric model to be considered “nonparametric”, because itiessinat a nonparametric prior does
not assign too much mass on small sets of probability messuites property is also important
because it is a typically required condition for frequentisnsistency of the posterior distribu-
tion. Some recent results have been provided by Pati etGl1(j2and Norets & Pelenis (2011),
in the context of dependent mixtures of Gaussians inducqutdiyit stick—breaking processes
(Chung & Dunson, 2009), and dependent mixtures of locaticale distributions induced by
finite mixing distributions (Norets, 2010) and kernel stibkeaking processes (Dunson & Park,
2008), respectively.

In this paper we provide an alternative characterizatiomhef weak support of the two
versions of MacEachern’s DDP discussed above, namely, ssovewhere both weights and
support points are functions of the predictors, and a veraioere only the support points are
functions of the predictors. We also characterize the weglpart of a version of the DDP
model where only the weights depend on predictors. Finalyprovide sufficient conditions
for the full Hellinger support of mixture models induced b{pP priors, and characterize their
Kulback-Leibler support. Our results are based on an ateendefinition of MacEachern’s
DDP, which exploits the connection between stochasticge®es and copulas. Specifically,
families of copulas are used to define the finite dimensioiséiidutions of stochastic processes
with given marginal distributions. The alternative forratibn of the DDP makes explicit the
parameters of the process, and their role on the supporegiep. The rest of this paper is
organized as follows. Section 2.2 provides the alternal@#nition of MacEachern’s DDP.
Section 2.3 contains the main results about the supporteofd@nous DDP versions, as well
as extensions to more general stick—breaking constrigctidrgeneral discussion and possible

future research lines are given in Section 2.4.

2.2 MacEachern’s dependent Dirichlet processes

MacEachern (1999, 2000) defined the DDP by using transfaomsof independent stochastic
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processes. Let, = {a, :z € 27} be a set such that, for everye 27, o, € R, and let
GY% = {GY: 2 € 27} be a set of probability distributions with support % .%). Let Z%. =
{Zi(z):x € 2}, i € N, be independent and identically distributed real-valuestgsses
with marginal distribution 77 : « € 2°}. Similarly, letZ}. = {Z)(z) 12 € 27}, i € N,
be independent and identically distributed real-valuext@sses with marginal distributions
{FY .2z e 2}. Foreveryz € 2, letT) : R — [0,1] andT? : R — S be transformations
that specify a mapping ot} (z) into V;(z), and Z?(z) into 6;(x), respectively. Furthermore,
setTy, = {TV :x € '} andT?, = {T? : x € 2'}. In MacEachern’s definition, the DDP is
parameterized by

(o {2537, 2537, T T5).

To induce the desired marginal distributions of the weigini support point processes, MacEach-
ern defined the transformations as a composition of ap@tEpnmeasurable mappings. Specif-
ically, for everyz € 2, he wroteT! = B! o FY andT? = G ' o F’, whereB;' and

G

xT

" are the inverse cumulative density function (CDF) of theaBetr,,) distribution and??,
respectively.

We provide an alternative definition of MacEachern’s DDR &hxlicitly exploits the con-
nection between copulas and stochastic processes. Theithesiis that many properties of
stochastic processes can be characterized by their fimbengional distributions. Therefore,
copulas can be used for their analysis. Note however, thatymancepts associated with
stochastic processes are stronger than the finite—dimeigiestribution approach. In order
to make this paper self—-contained, we provide below a bigfugsion about the definition of

stochastic processes through the specification of finitedgional copula functions.

2.2.1 Copulas and stochastic processes

Copulas are functions that are useful for describing ancerstanding the dependence struc-
ture between random variables. The basic idea is the abdiggxpress a multivariate dis-
tribution as a function of its marginal distributions. M is a d—variate CDF with marginal

CDF's given byF, .. ., Fy, then by Sklar's theorem (Sklar, 1959), there exists a @furiction
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C :[0,1]" — [0,1] such thatH (¢, ..., ts) = C(Fi(t1),..., Fy(ty), forall ty,... t4 € R,
and this representation is unique if the marginal distidng are absolutely continuous w.r.t.
Lebesgue measure. Thus by the probability integral tranmsfa copula function is d-variate
CDF on|[0, 1]* with uniform marginals or0, 1], which fully captures the dependence among the
associated random variables, irrespective of the mardistalbutions. Examples and properties
of copulas can be found, for example, in Joe (1997).

Under certain regularity conditions a stochastic procesompletely characterized by its
finite—dimensional distributions. Therefore, it is po$siband useful- to use copulas to de-
fine stochastic processes with given marginal distribgtiolhe basic idea is to specify the
collection of finite dimensional distributions of a procéssough a collection of copulas and
marginal distributions. The following result is a straifgimvard consequence of Kolmogorov’s

consistency theorem (Kolmogorov, 1933, page 29) and ofrSklzeorem (Sklar, 1959).

Corollary 2.1. LetGy = {Cy,..zy: T1,...,24 € 2 ,d > 1} be a collection of copula func-
tions andZ, = {F, : = € 2} a collection of one—dimensional probability distributede-
fined on a common measurable spaée #(7)), whereZ C R. Assume that for every in-

tegerd > 1, xy,...,20q € 2, u; € [0,1],7 = 1,...,d, k € {1,...,d}, and permutation

m = (m,...,my) Of {1,...,d}, the elements i, satisfy the following consistency condi-
tions:
() Cuyoeg (wry oo yua) = Cop ap (Uny, .. U, ), @N
(i) Coyrwy (g, ooty L Uggr, oy ug) =
le,...,mk717mk+1 ..... Tq (u17 s ,U/k_l, uk—i—lu s ,Ud) .

Then there exists a probability spa@®, <7, P) and a stochastic process

Y 2 xQ—= A,
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such that

P{weQ:Y (x,w) <ty,....Y (vg,w) < tq} = Coyny (Foy (t1) .o, Foy (ta)) s

foranyty,...,t; € R.

Notice that conditions (i) and (ii) above correspond to th&nition of a consistent system
of probability measures, applied to probability measuesfgéd on appropriate unitary hyper—
cubes. Notice also that finite—dimensional distributioh$0o1]—valued stochastic processes
necessarily satisfy conditions (i) and (ii), i.e., theynfoa consistent system of probability mea-
sures. Kolmogorov's consistency theorem states that csalye if the sample space is a subset
of the real line, every consistent family of measures is @t tae family of finite—dimensional
distributions of some stochastic process. Since the yriggver—cube is a subset of a Euclidean
space, Kolmogorov’s consistency theorem implies thatyefemily of distributions satisfy-
ing conditions (i) and (ii), is the family of finite—dimensial distributions of arj0, 1]-valued
stochastic process.

A consequence of the previous result is that it is possibietéwpret a stochastic process in
terms of a simpler process of uniform variables transfortmgethe marginal distributions via
a quantile mapping. The use of copulas to define stochasieepses was first considered by
Darsow et al. (1992), who studied the connection betweerkdgporocesses and copulas, and
provided necessary and sufficient conditions for a proaels Markovian, based on the copula
family. Although in an approach completely different to three considered here, copulas have
been used to define dependent Bayesian nonparametric nioydg[sifani & Lijoi (2010) and
Leisen & Lijoi (2011). These authors consider a Lévy copwolalefine dependent versions
of neutral to the right and two—parameter Poisson—Dirightecesses (Pitman & Yor, 1997),
respectively.

From a practical point of view, it is easy to specify a famifycopulas satisfying conditions
(i) and (ii) in Corollary 2.1. An obvious approach is to catei the family of copula functions
arising from the finite—dimensional distributions of knoand tractable stochastic processes.

The family of copula functions associated with Gaussiat+-&tudent processes could be con-
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sidered as natural candidates in many applications fortwRicC R?. The finite—dimensional

copula functions of Gaussian processes are given by

where®yg,, . ., is the CDF of ad—variate normal distribution with mean zero, variance one

and correlation matriR (z1, . . ., z4), arising from the corresponding correlation function, and
® is the CDF of a standard normal distribution.

In the context of longitudinal or spatial modeling, natuwhbices for correlation functions
are the Matérn, powered exponential and spherical. Theerles of the correlation matrix

induced by the Matérn covariance function are given by

T T

R(z1,...,%4) 3 ) = {2"‘_1I‘(/4)}_1 (M) K, (M) 7

wherex € RT, 7 € R and.7,(-) is the modified Bessel function of order(Abramowitz &
Stegun, 1964). The elements of the correlation matrix utftepowered exponential covari-

ance function are given by

Ty — Xj k
R(zy,... 7~Td)(i,j) = exp {— (@) } :

wherex € (0,2] andT € R*. Finally, the elements of the correlation matrix inducedtivsy

spherical covariance function are given by

3
3 ( lzizzjll2 1 ([zi=zjll2 i
1_5(% + 3 % , |f||$i—l’j||2§7‘,

0, if ||z —zj||2 > T,

R([L’l, e ,xd)(i,j) =

wherer € RT.
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2.2.2 The alternative definition

Let ¢y- and %% be two sets of copulas satisfying the consistency conditafrCorollary 2.1.
As earlier, letay = {a, : * € 2°} be a set such that, for everye 27, a, € RJ, and let
GY% ={GY: x € 2} be a set of probability measures defined on a common meassdxte
(S,.7), whereS C R?, q € N, and.¥ = #(S) is the Borelo—field of S. Finally, letZ (S) be

the set of all Borel probability measures defined sn.e).

Definition 2.1. Let {G, : € 2"} be a &7 (S)—valued stochastic process on an appropriate
probability space(?, <7, P) such that:

(i) Vi, V4, ... are independent stochastic processes of the figrm2™ x Q — [0,1],7 > 1,
with common finite dimensional distributions determinedhsyset of copulag’)- and

the set of Beta marginal distributions with parametérso, ), {Beta(1l,a,) : z € Z'}.

(ii) 0,05, ...are independent stochastic processes of the form2” x Q — S, i > 1, with
common finite dimensional distributions determined by gt@tcopulass’- and the set

of marginal distributions?, .

(i) Foreveryx € 27, B € . and almost every € ),

G (z,w) (B) = Z {% (z.0) [ [0V (f@w)]} 0g:(z.) (B) -

Jj<i

Such a process? = {G, = G (z,-) : = € 2"} will be referred to as a dependent Dirichlet

process with parametefgv,-, €%, ¢, G, and denoted bPDP(avy-, €%, €Y, G% ).

In what follows, two simplifications of the general definitiof the process will be of in-
terest. If the stochastic processes in (i) of Definition 2elraplaced by independent and iden-
tically distributed Betél, o) random variables, witlw > 0, the process will be referred to
as “single weights” DDP. This is to emphasize the fact thatwieights in the stick—breaking

representation (iii) of Definition 2.1, are not indexed bggtictorsz.
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Definition 2.2. Let {G, : « € 2"} be a & (S)—valued stochastic process on an appropriate
probability space(?, <7, P) such that:

(i) Vi, Vs, ... are independent random variables of the fovin: Q@ — [0,1], ¢ > 1, with

common Beta distribution with parametéis «).

(ii) 01,05, ...are independent stochastic processes of the torm2” x Q — S, i > 1, with
common finite dimensional distributions determined by gt@tcopulass’- and the set

of marginal distributions=9, .

(i) Foreveryx € 2, B € . and almost every € ),

G (z,w)(B) =) {m- @][n-v (W)]} Op:(z) (B) -

i=1 j<i

Such a process? = {G, = G (z,-) : x € 2"} will be referred to as a single weights depen-

dent Dirichlet process with parametefs, ¢, G% ), and denoted bwDDP(«, 6%, GY%).

The second simplification is when the stochastic process@g of Definition 2.1 are re-
placed by independent random vectors with common distdbu®, whereG® is supported
on the measurable spatg .#). In this case the process will be referred to as “single atoms
DDP, to emphasize the fact that the support points in th&-dtieaking representation are not

indexed by predictors.

Definition 2.3. Let {G, : =z € 2} be a.#? (S)—valued stochastic process on an appropriate
probability spacg (2, <7, P) such that:

(i) Vi, Vs, ... are independent stochastic processes of the figrm2™ x Q2 — [0,1],7 > 1,
with common finite dimensional distributions determinedheyset of copulag’y- and

the set of Beta marginal distributions with parametérsa,.), {Beta(1, o) : z € 2}.

(i) 01,05, ...are independent—valued random variables/vectois> 1, with common dis-
tribution G°.
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(iii) Foreveryz € 27, B € . and almost every < (2,

Gxw)(B)=) {% (@) [J0 -V (Lw)]} 0, (B) .-

i=1 j<i

Such a process? = {G, = G (z,-) : x € 2"} will be referred to as a single atoms dependent

Dirichlet process with parametefs»-, ¢, G°), and denoted b§DDP(ay-, €y, G°).

2.3 The main results

2.3.1 Preliminaries

As is widely known, the definition of the support of probatyilmodels on functional spaces
depends on the choice of a “distance” defining the basic heidgioods. The results presented
here are based on three different notions of distance batpeability measures. Theorems
2.1 through 2.3 below are based on neighborhoods created asy distance that metrizes the
weak star topology, namely, any distanGe such that, for two probability measurésand
G, defined on a common measurable spate(G,,, F) — 0 if and only if G,, converges
weakly to F' asn goes to infinity. If F andG are probability measures absolutely continuous
with respect to a common dominating measure, strongermeotbdistance can be considered.
The results summarized in Theorems 2.4 and 2.5 are basedigithoeghoods created using
the Hellinger distance, which is topologically equivalemthe L; distance, and the Kullback—
Leibler divergence, respectively. ffandg are versions of the densities BfandG with respect

to a dominating measure respectively, thd.; distance, Hellinger distance and the Kullback—

Leibler divergence are defined by

a1, (f. 9) = / F) — g@)IA(dy),

du(f.9) = [ (VW) - Vo)) M)
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and

da(f.9) = [ )10 (%) A(dy),

respectively.
The support of a probability measuredefined on a space of probability measures is the

smallest closed set gF~measure one, sa&y(u), which can be expressed as
Clp) =A{F: p(N(F)) > 0,Ve > 0},

whereN (F') = {G : d(F,G) < €}, with d being any notion of “distance”. The different types
of “metrics” discussed above, therefore, induce diffetgpés of supports. Lety, (1), Cr, (1),
Cy(p) andCrr(p) be the supportinduced iy, d;,, dy anddg ., respectively. The relation-
ships among these different supports are completely debgetle relationships between the
different “metrics”. Sincel; convergence implies weak convergence, the topology gtatera
by any distance metrizing the weak convergence (e.g., thichBrov or Lévy metric) is coarser
than the one generated by the distance, i.e.Cy (1) O Cr, (). Hellinger distance is equiv-
alent to thel, distance sincé, (f, g) < d%(f,g) < 4dr,(f, g), which implies thaCp (1) =

Cr, (p). Finally, the relation between thg distance and Kullback—Leibler divergence is given

by the inequalitylx . (f, 9) > 3dz, (f, g), implying thatCy, (1) = Cr (1) O Crerp).

2.3.2 Weak support of dependent Dirichlet processes

Let 2 (S)” be the set of all? (S)—valued functions defined oft". Let % {,@ (S)%} be the
Borel o-field generated by the product topology of weak convergenhe support of the DDP
is the smallest closed set i {32 (S)'%} with P o #~'-measure one.

Assume tha® C S is the support of:?, for everyz € 2. The following theorem provides
sufficient conditions under whick” (©)” is the weak support of the DDP, whef@ (©)” is
the set of all?? (©)—valued functions defined an, with &7 (©) being the set of all probability
measures defined d®, #(0)).

Theorem 2.1.Let {G, : z € 2’} be aDDP (avy, 65, €y, GY% ). If €5 and ¢} are col-
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lections of copulas with positive density w.r.t. Lebesgeasure, on the appropriate unitary
hyper—cubes, therw”? (@)‘% is the weak support of the process, i.e., the DDP has full weak

support.

Proof: The proof has two parts. The first part shows that a sufficiendition for the full
weak support result is that the process assigns positiieapility mass to a product space
of particular simplices. The second part of the proof shdwet the DDP assigns positive
probability mass to that product space of simplices.

Let 2, = {P":ze€ 2} € 2 (0)” be a collection of probability measures with sup-
port contained io. Let{#,.},., C & (©)” be a sequence of such collections, satisfy-
ing the condition that for al: € 27, P? “ady p whenn —s oo, where P, is a prob-
ability measure. Sincé is closed andP” “““%’ p,, Portmanteau’s theorem implies that
P, (©) > limsup, P"(©), for everyz € 2. It follows that % (6)” is a closed set. Now, let
0% = [L,c4 ©. Since® is the support of7?, for everyz € 2, it follows that

P{wEQ:Gi(-,w)G@%, i:1,2,...}:1,

P{w €Q:G(hw) e @(@)%} — 1.

To show that? (©)” is the smallest closed set wifho .72’ ~'—measure one, it suffices to prove
that any basic open set i (©)” has positiveP o .#~'—measure. Now, it is easy to see that
the measure of a basic open setfét’ : z € 2} € & (©)” is equal to the measure of a set

of the form

T

I1 {Pxi €2(0): ‘/fijdpl‘i - /fijdpfi

=1

<€i7j:17"'7Ki}7 (22)

wherez,,...,zp € 2, T andK,;,7 = 1,...,T, are positive integers;;,« = 1,...,T, and
j=1,..., K;, are bounded continuous functions and: = 1,...,7, are positive constants.
To show that neighborhoods of the form (2.2) have positiedability mass, it suffices to show

they contain certain subset—neighborhoods with positredgbility mass. In particular, we
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consider subset—neighborhoods of probability measuréshvene absolutely continuous w.r.t.

the corresponding centering distributions and that adwpfdrm

U(QJBN" Qrw{Aij} 6*)_
H{leeﬁ )| :cz( ij)_Ql’i(Aij”<€*7j:1"'mi}7

where(),,, is a probability measure absolutely continuous V\G;ti., t=1,...,7,An, ..., Aim,
C © are measurable sets with,,—null boundary, and* > 0. For discrete centering distribu-
tionsGY ,...,GY, , the existence of a subset-neighborhood),,, . . ., Q.,, {Ai;} , €*) of the
set (2.2) is immediately ensured. The case of centeringlulisions that are absolutely contin-
uous w.r.t. Lebesgue measure follows after Lemma A.1 in AppeA.

Next, borrowing the trick in Ferguson (1973), for eaghe {0, 1}, we define set®

I/11...I/mTT

as
T m;

AV”
V1 LeVmpT

i=1j=1

WhereA1 is interpreted asl;; andA0 is interpreted asl;;. Note that

Bus.cmpr }
{ 11---YmpT I/ije{o,l} ?

is a measurable partition éf such that

Aij - U BVll---VmTT'
{v11, Vi vij=1}
It follows that sets of the form

T
H{sz e Z(©

=1

<

-'L'z (BV11~~~VmTT> - sz (BV11~~~VmTT>

T
=S my *
2 2=t le ,V (Vll,...,VmTT)},
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are contained itV (Q.,, . .., Qu,p, {A4i}, €°). To simplify the notation, set

J, = {VH e VT Gg (BVllmeTT) > 0} ,

and let)M be a bijective mapping froni, to {0, ..., k}, wherek is the cardinality of/, minus

1. Therefore Ay = B, forall v € J,. Now, set

Sy, = (w(xi70), . 7w(xi,k)) = (le (Ao) s sz (Ak)) eANp,1=1,....T,

where A, = {(wo, coowg) rw; > 0,1=0,...k, Zf:o w; = 1} is the k-simplex, and, for

1=1,...,T, set
B (sy,,€) = {(wo,...,wk) € Ayt Wia, jy — € < Wj <w(mi,j)+e,j:(),...,k},
wheree = 2- Xi=1™¢* Note that

{fweQ:[G(r,w),...,G(zr,w)] €U (Quy,- -, Qups {Aij},€)} 2
{we Q:[G(x;,w)(Ao),...,G(z;,w) (Ar)] € B(8s,,€),i=1,...,T}.

Thus, to show that (2.2) has positifie-measure, it suffices to show that
P{weQ:[G(z;w)(Ao),...,G(z;,w)(Ar)] € B(sz,,€),i=1,..., T} >0. (2.3)

Now, consider a subsé&X, C 2, such that for every € ), the following conditions are met:

(A1) Fori=1,...,T,

€ €
Wai0) ~ 5 < Vi (25,w) < Wg,0) + 5
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(A.2) Fori=1,...,Tandj =1,...,k—1,

W(z;,j) — 5 Wiz, 5) + 5
< V; 1 (.CL’Z, ) .
Hl<]+1 (1 W ('r“ w)) o Hl<]+1 ( ‘/l (mu W))
(A.3) Fori=1,...,T,
1= 32 W (w,w) — § 1= 35 W (@, w)

< Vi (5% )

Hl<k+1 (1 -V (xiv W)) Hl<k+1 ( -V (Iiv W)Y

where forj =1,...,k — 1,

Wio (i) = V (i) [ (1= Vi (@0))

1<j

(A.4) Forj =0,...,k,

[9j+1 (ZL’l, OJ) e ,9j+1 (ZL’T, (.U)] € A;F

Now, to prove the theorem, it suffices to show tidfw : w € Qq}) > 0. Itis easy to see that

if assumptions (A.1) — (A.4) hold, thenfor=1, ..., T,
G (z;,w) (Ag),...,G (x;,w) (Ak)] € B (84, €) .
It then follows from the DDP definition that

PlweQ : [G(zy,w)(Ag),...,G (v, w)(Ar)] € B(Sy;,€),i=1,...,T} >
P{weq: [V(:cl,w),...,‘/}(xT,w)]GQ;‘-’,jzl,...,k—i—l}x

k+1

HP{weQ (z1,w),....0; (xp,w)] € AT} x

H P{weQ V; (21, w), ...,Vj(xT,w)]E[O,l]T}x

j=k+2

H P{weQ:[0;(z1,w),....0; (zr,w)] € ©"},

j=k+2
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where,

w
Jj+1

T € €
W(z;j) — 3 W(z;,5) T 5
Hl<j+1 (1 -V (xiv W)) Hl<j+1 (1 -V (Iiv w))

=1
forj=1,...,k—1,and
Qt/l:—i—l = Q‘Ig—i-l (vl (xlvw)v"'vvk (xTu(")))

L= Wi (w) — £ 1= W (3, w)
Hl<k+1 (1= Vi(w5,w)) Hz<k+1( —Vi(zi,w)) |

By the definition of the process,

P{w €[V (v1,w),....V; (ar,w)] € [0,1]T} — 1,

and
PlweQ:[0;(z1,w),...,0; (zr,w)] €O} = 1.

It follows that

PlweQ : [G(zy,w)(Ag),...,G (v, w)(Ar)] € B(Sy,,€),i=1,...,T} >
P{wGQ:[Vj(ajl,w),...,Vj(xT,w)] EQ;-J,jzl,...,k:—l—l} X

k+1

HP{wEQ (x1,w), ..., 0; (xp,w) EAT }

Since by assumptio#;- is a collection of copulas with positive density w.r.t. Legae mea-
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sure, the non—singularity of the Beta distribution impliest

P{weQ: [V;(r,w),. V(xT, )]EQ;’,jzl,...,/{;—l—l}:

) Y
\%4
[ / ,,,,, () P () Vi dvadv > 0,
Q1 7/ Qa2(v1) Qr41(V1,- Vi)

.....

(2.4)

wheref) . (v;),j=1,...,k+ 1,is the density function of

.....

C;/l :ET(B(vl |1, 00,),...,B(vr | 1,0.,)),

.....

with B(- | a,b) denoting the CDF of a Beta distribution with parameters). Finally, since
by assumptior’s- is a collection of copulas with positive density w.r.t. Leae measure and,

forallz € 27, © is the topological support a@?, it follows that

P{weQ:[0;(x1,w),....0; (x7,w) EATl}—

/IA?1 (9) d0§1 xT (Gg1 (91) yrt ngT (QT)) > 0’

.....

wherel,(+) is the indicator function for the set. This completes the proof of the theoreim.

The successful results obtained in applications of thelsingights DDP in a variety of
applications (see, e.g. De lorio et al., 2004; Muller et 2005; De lorio et al., 2009; Gelfand
etal., 2005; De la Cruz et al., 2007; Jara et al., 2010), stgyat simplified versions of the DDP
can be specified to have large support. The following thegremwides sufficient conditions

under which? (@)% is the weak support of the single—weights DDP.

Theorem 2.2.Let{G, : x € 2} be awDDP («a, ¢, G% ). If €% is a collection of copulas
with positive density w.r.t. Lebesgue measure, on the gpiai@ unitary hyper—cubes, then

S (@)’%V is the weak support of the process.

Proof: Using a similar reasoning as in the proof of Theorem 2.1, fiices to prove (2.3), that
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PlweQ:[G(xnw)(Ao),....G(zi,w) (A)] € B(ss.€),i=1,...,T} > 0.

As in the proof of Theorem 2.1, we consider constraints ferelements of the wDDP that
imply the previous relation. Since the rational numbersdamese inR, there existV/;, m;; € N
suchthatfor =1,...,7,andj =0,....k— 1,

€ my; €

Waig) = 7 < M, < W) +

Now, let N = M; x ... x My andn;; = m;; Hl# M;. It follows that, fori = 1,...,7T, and
j=0,... k-1,

Therefore, for any

N
(pl,---,pN)EAN_lz{(U]l,---,UJN):'lUZ'ZO, 1§Z§N72w221}7

i=1
that verifies
1 € 1
e < < — fort=1,...,N,
N aN Pyt o
we have
140
€ €
W(z;,0) — 5 < Zpl < W(x;,0) +5,1=1, 7T7
=1
and
Nij
€
W(g;j) — 5 < Z D < Wiz, ) T 55
I=nij—1)+1

fori=1,...,Tandj=1,... . k— 1.
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On the other hand, let(:, [) be a mapping such that

’
0 if lénio

1 if Nio < [ < N0 + N1
. . )
: k—2 k-1

k—1 if Zk’:o Nigr < [ < Zk’:o Mg

1=1,...,T,andl = 1,..., N. Note that the previous function defines a possible pathiier t
functionst; (-,w), 6(-,w), . .. through the measurable sets, . . ., A;.
The required constraints are defined next. Consider a s@gset 2, such that for every

w € Q the following conditions are met:

(B.1) Forl =1,
%_ﬁ<w“)<%+4§v
(B.2) Foril=2,...,N —1,
L _ e Ly e
M=) - o= viw)

(B.3) Forl = N,

where forl = 1,2,. ..

Wici(w) = Vilw) [T = Vo)l

<t

(B.4) Fori=1,...,Tandl=1,..., N,

(9[ (xl, w) e 91 ($T, w)) - Aa(l,l) X ... X Aa(T,l)-
Now, to prove the theorem, it suffices to show tldfw : w € y}) > 0. It is easy to see that
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if assumptions (B.1) — (B.4) hold, then, foe=1,...,T,
G (z;,w) (Ag),...,G (x;,w) (Ag)] € B (sy,,€) -
Thus, from the definition of the wDDP, it follows that

P{weQ : [G(x;,w)(Ag),...,G(z;,w)(Ar)] € B(Sy,,€),i=1,...,T} >
Plwe:Vi(w) e, l=1,... N} x
N
HP{w cQ: 0 (r1,w),....0 (xp,w)] € Agapy X ... an(T,l)} X
I=1

ﬁ P{weQ:V (w)€l0,1]} x

[=N+1

I[[ Plwea:bi(ziw),....0/(zr,w)] €O},

[=N+1

where,

Qv |L_ < 1,
V"IN 4NN 4N |’

Q= Qi {Viw), ..., Vi(w)}
[ 1 _ e L+L }
N AN N " AN ’

Hl’<l+1 (1- Vl’(“’))’ Hl’<l+1 (1 =V (w))

l=1,...,N—-2,and

Ay = Q3 {Vi(w),..., VN-1(w))
L= Wew) =5 1= 3305 Waw)
Hl’<N (1=Vi(w)) ~ Hl’<N (1 =V (w))

From the definition of the procesB,{w € 2 :V, (w) € [0,1],l € N} =1, and

P{weQ: [0 (z1,w),...,0 (zr,w) € ©T,1 € N} = 1.
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It follows that

P{weQ : [G(z5,w)(Ag),...,G(x;,w)(Ar)] € B(sy,,€),i=1,...,T} >

P{lwe:Vi(w)e@,l=1,...,N} x

N
HP{CU e [Ql (xl,w),...,él (xT,w)] € Aa(l,l) X ... X Aa(T,l)}-

=1

The non—singularity of the Beta distribution implies that
P{lwe:Vi(w)e@,l=1,...,N} >0. (2.5)

Finally, since by assumptio#’. is a collection of copulas with positive density w.r.t.

Lebesgue measure and, forale 2", © is the topological support @&, it follows that

P{WGQ : [el ([L’l,W),...,el (xva)] 614171—1} =

which completes the proof. 0J

In the search of a parsimonious model, the previous resoMtsthat full weak support holds
for the single—weights DDP for which only the atoms are stili@a flexible specification. The
following theorem provides sufficient conditions under @hiz? (©)” is the weak support of

the single—atoms DDP.

Theorem 2.3.Let{G, : z € 2"} be adDDP (a4, €}, G°), where the support af, is ©. If
%y is a collection of copulas with positive density w.r.t. tdoeegue measure, on the appropri-

ate unitary hyper—cubes, then the support of the proces? Qé))%.

Proof: In analogy with the proofs of Theorems 2.1 and 2.2, it sufftogzrove (2.3), that is

P{we Q:[G(x;,w)(Ao),...,G(z;,w) (Ap)] € B(sg,,€),i=1,...,T} > 0.
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Consider a subsél, C (2, such that for every € (), the following conditions are met:

(C1) Fori=1,...,T,

(C2) Fori=1,....,Tandj=1,...,k—1,

_ Wz, ) T 5 .
Hl<j+1 (1 =V (25,w))

€
Wizij) — 3

Hl<j+1 (1 =V (25,w))

< ‘/j-i-l (1’,’, w)

(C.3) Fori=1,...,T,

1= Y02y Wy (i, w) — § 1= 0w (@, w)
< Via (x5, w) < 7
[Lcrar (1= Vi(zi,w)) [Lcpis (1 =Vi(z5,w))

where,
Wiy (zi,w) = Vj (2, 0) [ (1 = Vi (25, w)) |

1<j

forj=1,...,k—1.

(C.4) Forj =0,...,k,
9j+1((d) € Aj.

Now, to prove the theorem, it suffices to show thdfw : w € Qq}) > 0. Itis easy to see that

if assumptions (C.1) — (C.4) hold, then, foe= 1,...,T,

[G (xbw) (AO) ). '7G(xivw> (Ak)] €B (S-Ti7€)'
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Thus, from the definition of théDDP, it follows that

PlweQ : [G(anw)(Ao),...,G(zi,w) (Ay)] € B(se,€),i=1,...,T} >

P{wGQ:[Vj(:)sl,w),...,\/j(:)scp,w)]EQ;?,jzl,...,k:—l—l}x
k+1
[[Pilwe:6;(w) e A} x

7j=1

H P{weQ:6;(w) €O},

j=k+2

where,

T
. € €
1= H [w(mi,O) ~ 5 W) + 5] )

i=1

Vi (21, w))

5 Wz 5) 5 ]

Z-I:[ [Hl<y+1 ] IZ%W)) Hl<]+1 (1 =Vi(zi,w))

w —
j+1—Q1V1$1,

forj=1,...,k—1,and

le:-i-l = QLI:-H (vl ($1, )7 Vk(xTv ))
_ 1= Wy (mw) =5 1= Wi (,w)
Hl<k+1( —Vi(zi,w)) ' Hl<k+1( —Vi(zs,w)) |

By the definition of the proces#, {w € 2 : 0, (w) € ©,j € N} =1, and

P{weQ Vi (21,0), ...,V (or, w)] 6[0,1]T,jeN}:1.
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It follows that

P{weQ : [G(x;,w)(Ag),...,G(z;,w)(Ar)] € B(Sy,,€),i=1,...,T} >

P{WGQ:[‘/j(xl,W),...,‘/;'(xT,W)]GQ;J,j:]_,...,k—Fl}X
k+1
[[Plwe:6;(w) e A}

i=1

Since by assumptio#’}- is a collection of copulas with positive density w.r.t. Legae mea-

sure, the non—singularity of the Beta distribution impliest

P{weQ:[V;(z1,w),- - ,Vj(xT,w)]GQ;J,jzl,...,k:%—l}:

// / ey (V) Y (Vie1) AV - - - dvadvy > 0.
Q1 JQ2(v1) Qr+1(Vi, Vi)

(2.6)
Finally, since® is the topological support af?, it follows that
P{weQ:0;(w)e A1} >0,
which completes the proof of the theorem. O

2.3.3 The support of dependent Dirichlet process mixture maels

As in the case of DPs, the discrete nature of DDPs impliesthiegt cannot be used as a prob-
ability model for sets of predictor—-dependent densitiestadard approach to deal with this
problem is to define a mixture of smooth densities based o Such an approach was
pioneered by Lo (1984) in the context of single density eatian problems. For ever§ € O,

let (-, ) be a probability density function, whef@ C R? now denotes a parameter set. A
predictor-dependent mixture model is obtained by considef(- | G.) = [, (-, 0)G(db).
These mixtures can form a very rich family. For instance,ltdoation and scale mixture of

the formo~'k (=£), for some fixed density, may approximate any density in tié—sense
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if o is allowed to approach to 0. Thus, a prior on the set of predidependent densities
{f: : x € 2"} may be induced by placing some of the versions of the DDP pridhe set of
related mixing distribution$G, : = € 27}.

The following theorem shows that under simple conditiongrenkernek), the full weak
support of the different versions of DDPs ensures the largjértger support of the correspond-

ing DDP mixture model.

Theorem 2.4. Let ¢ be a non—negative valued function defined on the product unslale
space? x ©, B(¥)® A (0)), where C R" is the sample space with corresponding Borel
o—field #(#), © C R? is the parameter space with corresponding Barefield #(©) and
B(Y) @ $(O) denotes the produet—field on% x ©. Assume that> satisfies the following

conditions:

() [, ¥ (y,0)X(dy) = 1foreveryd € © and somer—finite measure\ on (%, % (%)).
(i) 0 +— v (y,0)is bounded, continuous and (©)—measurable for every € %'.
(iii) At least one of the following conditions hold:

(iii.a) Foreverye > 0andy, € ¢, there existd(e, yo) > 0, such that

[y — yo| < (€, v0),

then
sup |¢ (y,0) — ¥ (yo,0)| < e.

0cO

(iii.b) For any compact seik’ C # andr > 0, the family of mappings

{0 (y0):ye K},

defined onB(0, ), is uniformly equicontinuous, whemg(0,r) denotes a closed

L'—norm ball of radius- and centered at 0, that is,

B0,r)={0cO: |0 <r}.
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If {G,: 2z e 2} isaDPP, awDDP or a §DDP, satisfying the conditions of Theorem 2.1, 2.2

or 2.3, respectively, then the Hellinger support of the paxc

{/@w(-ﬁ)Gm(de):xe%},
x rf{/w Pxe%@)},

whereZ(0) is the space of all probability measures defined &n#(0)).

Proof: The proof uses a similar reasoning to the one of Section 3jmi &t al. (2004). In
what follows, we consider the Borel-field generated by the product topology induced by the
HeIIinger metric. Itis easy to see that the measure of a logsn set fo{fﬁi S 3&”} where

= ¥ (-,0) P2 (d0) and{P? : x € 2’} € 2 (©)” ,is equal to the measure of a set of

the form

b (5,0) Poy (d6) — £ ()| A (dy) < e, Py, € 2 <@>} @

wheree > 0, zq, ...,z € 27, and) is ac-finite measure of%', B (¥)).

To show that the DDP mixture model assigns positive prolighiiass to sets of the form
(2.7), we construct a weak neighborhood arodiy : = € 2°} € 2 (0)” such that every
element in it satisfies (2.7). This is done by appropriatetyring the bounded and continuous
functions that determine the weak neighborhood.

Let v, p andn be positive constants. Fix a compact &gt C £ (%) such that

e (Y) A (dy) <

€
e 8’

and define

hgy (0) = ¢(y, 0) X (dy),
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fori =1,...,T. Foranyp andv, itis possible to define a closed ball of the fofs{0, r — v) =
{0 €0 6|, <r—v}, for somer > v such thatP? [B(0,r —v)] < p. Now, choose

continuous functiona?,, such that, for = 1,..., T,

for everyf € ©. Note that condition (iii.a) (by continuity) or (iii.b) (bfrzela—Ascoli’'s theo-
rem) implies that the family of functions) (v, ) : y € K,,} onB (0, r) is a totally bounded set.
Thus, givery), we can find a partitiom; 4, ..., A; ,, of K, and pointsz;; € A;1,..., 2, €
A, », such that

sup  sup [¢ (y,0) — ¥ (2,0) <n
YE€Ai; 0eB(0,r)

foreachi=1,...,Tandj =1,...,n,. Finally,fori =1,...,Tandj =1,...,n,, define
hild- (6) =k (Zi,j,6> .

All the hﬁj functions considered above are continuous and boundedce\ato that some of

these functions may depend oy, p andn. Define now the following family of sets

[[{r.e2@©):

! ! 0
‘/hi7jldPxi — /hi,jldPxi

for v > 0. We will show that for appropriate choices 9f v, r, and p, every collection

<1/,l:O,1,j0:1,2,1§j1§nl}, (28)

{P,,, ..., P..} in sets of the form (2.8), satisfies

/{'VZ/

[oworp - <y>\ Ady) < e.
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for i =1,...,T. Note that

/.

[0 p. -5 <y>\x<dy> - [ |frworiam-n <y>\A<dy>

K¢
T

-
Ko,

fori =1,...,7. Now note that if| [ h?,dP,, — [ hY,dP? | < v, then

[owor. - <y>\ A(dy).

/hgldPxi <v+ / O dP? < v+ é

by the definition of2? |, and therefore,

/K;Z,

[0 b - g <y>’ s < [aar, s [ 13

€
—. 2.9
v+ 1 (2.9)

IN

In addition, note that

.

[ow.op - <y>\ A(dy) < By + B+ By (2.10)

where,
Bl - Z/
j=1 7 Aij
v (Ky,)

<

/e b (2.0) Py, (d6) — / 6 (215, 0) P° (d0)| A (dy)

/ hdP,, - / BLdP?

A (dy)
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B, = ;/A] @w(zim@) Py, (df) —/G)Q/J(y,e) p) (d@)')\(dy)
Z [ o = 0 P2 @)

. // ¥ (20,0) + 4 (4, 6)] P2, (d6) A (dy)

< A )+M pA(K )t p

IN

-----

By = Z/

[oGuor- [vuor >' (dy).

Now, since
P [Bo.nf] <vr [muapt <o+ P [Bor =0 <vs

it follows that

Bgsz/ /( 55,0) = ¥ (3,0)| P, (d0) A (dy)

+ Z/ /( s 0) 0 9,0)] P (40) A )
< A (Ky,) + My, (v+ p) AN(Ky,) + v+ p.
Finally, by (2.9) and (2.10), if

€
8 maxj<;<r {)\ ( xz)}’

n=

€

Y7 (2 + max;<icr { Mo A (Ky,)})
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and
o €
7 Smaxicier {(1+ Mo A (L))
then [, | fo ¥ (y.0) Py, (d8) — f2 (y)| A (dy) < e. Sincee > 0 is arbitrary, the proof is com-
plete. O

If stronger assumptions are placed ©nit is possible to show that DDP mixture models
have large Kullback—Leibler support. Specifically, we ddesthe case where¢ belongs to
an n—dimensional location-scale family of the forni-,6) = 0"k (=), wherek (-) is a
probability density function defined oR"™, 1 = (1, ..., 1) IS ann—dimensional location
vector, andr € R*. The following result characterizes the Kullback—Leildeipport of the

resulting DDP mixture models.

Theorem 2.5. Assume that’ belongs to a location—scale family(-, ) = 0"k (=£), where

w = (p1,-.., 1) IS ann—dimensional vector, and € R*. Letk be a non—-negative valued

function defined o x ©, A(%') ® A(0)), where? C R" is the sample space with corre-

sponding Boreb—field #(#) and® C R" x R is the parameter space with corresponding

Borel o—field #(©). Assumé: satisfies the following conditions:

(i) & (-) is bounded, continuous and strictly positive,

(i) there existsl; > 0 such thatk (z) decreases as moves away from outside the ball

{z ||| < L1}, where|| - || is the Lo—norm,

(iif) there existsl, > 0 such thafy_" , z; (agt(;)

) k(2)' < —1, for ||z]| > b,
t=z
(iv) whenn > 2,k (z) = o (]|z||) as||z|| — oo.

Furthermore, assume the elementgjf} : 7 =1,..., 7T} satisfy the following conditions:

(v) forsomeM € R*,0 < f2 (y) < M, for everyy € R",

Vi) [ f2 (y)log (f2 (y))dy < oo,

. £2.)
(vi) for somes > 0. f fr, (v)log <inf“<l;~/{f£.<t)}) e
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(viii) there existsy > 0, such that| [ f2 (y)logk (2y|y||") dy| < oo and such that for any
a € R"andb € R*, we havef f2 (y) [logk (452)] dy < oo.

If {G, : v € 2} is aDPP, awDDP or a #{DDP, whereR" x R* is the support of the
corresponding centering distributions, and satisfying tilonditions of Theorem 2.1, 2.2 or 2.3,

respectively, then

P{wEQ:dKL [/ ¢(-,9)G(xi,w)(d9),f:§i < €, izl,...,T} > 0,
RP xR+

fore > 0.

Proof: A direct application of Theorem 2 in Wu & Ghosal (2008), ingglithat there exist a

probability measuré’; and a weak neighborhodf,, such that

o (Y) €
0 1 i
[, 2o T b0 P @) | 2

n + ¢ y? E- €
fO 1 R xR T;

foreveryP,, € #,, andi = 1,...,T. Next note that

dia | [ wtopaa); 1) < [ e [ T d9>] 0

Janyrr ¥ (y,6) Py, (d6)
0 1 X i d
+/@ fr,(y)log [IRHXWW%@) (o) | Y

and from Theorems 2.1, 2.2 and 2.3, it follows that

P{wEQ:dKL [/ @D(-,@)G(mi,w)(d@),f;] <, izl,...,T} >
R xR+
P{weQ: (G(z1,w),...,G(xr,w)) € Wy X ... X #pr} >0,

which completes the proof. O
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Notice that the conditions of Theorem 2.5 are satisfied fostrobthe important location—
scale kernels. In fact, Wu & Ghosal (2008) show that condgi@i) — (iv) are satisfied by the

normal, skew—normal, double—exponential, logistic &&ludent kernels.

2.3.4 Extensions to more general dependent processes

Although the previous results about the support of modeaisdilections of probability dis-
tributions are focused on MacEachern’s DDP, similar resc#tn be obtained for more gen-
eral dependent processes. Natural candidates for thetaefiof dependent processes include
the general class of stick—breaking (SB) processes, whidhdes the DP, the two—parameter
Poisson-Dirichlet processes (Pitman & Yor, 1997), the tveda-parameter processes (Ishwaran
& James, 2001) and the geometric stick—breaking procedsesa et al., 2011), as important
special cases. A SB probability measure is given by expyreg&.1), but where the beta dis-
tribution associated with the SB construction of the wesgten be replaced by any collection
of distributions defined on the unit intervidl, 1] such that the resulting weights add up to one

almost surely. Specifically, the weights are giveniby = V; [[._,(1 — V}), for everyi > 1,

1<t
whereV; | H; ind H;, with H; being a probability measure d@, 1], for every: € N, and such

that
> oW (2.11)

Notice that, under an SB prior, it can be shown that a necgssat sufficient condition for
expression (2.11) to hold is that ~ | log (1 — Ey, (V;)) = —o0.

For everyi € N, let %;f be a set of copulas satisfying the consistency conditiotoobdl-
lary 2.1 and set’) , = {%, : i € N}. Foreveryi € N, let ¥} = {H,) : v € 2"} be acol-
lection of probability distributions defined ¢f0, 1], ([0, 1])) and set/, 5y = { ¥, : i € N}.

Definition 2.4. Let {G, : « € 2"} be a % (S)—valued stochastic process on an appropriate
probability space(?, <7, P) such that:

(i) Vi, Vs, ... are independent stochastic processes of the figrm2™ x Q — [0,1],7 > 1,
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with finite dimensional distributions determined by thecs‘etopulas‘@‘? and the set of

marginal distributionsf{,‘/ﬁ, such that, for every € 27,
Y log [1 — En,, ., (Vi(z,))| = =00,
=1

(ii) 0,05, ...are independent stochastic processes of the form2” x Q — S, i > 1, with
common finite dimensional distributions determined by &t@tcopulass’- and the set

of marginal distributiong7%,..

(iii) Foreveryz € 27, B € . and almost every < (2,

G (o) (B) =Y {w @) [In-V; <x,w>1} Snioio (B).

j<i

Such a process? = {G, =G (z,-):x € 2} will be referred to as a dependent stick—
breaking process with paramete{’)- , €%, ¥, . G%), and denoted bpSBM(¢’) , €,
7/,9‘?,1\17 G%”) .

As in the DDP case, two simplifications of the general debnitof the DSBP can be con-
sidered. If the stochastic processes in (i) of Definition&e& replaced by independent random
variables with label-specific distributiof;, then the process will be referred to as “single
weights” DSBP, to emphasize the fact that the weights inftilck-sbreaking representation (iii)
of Definition 2.4, are not indexed by predictarsin this case, the process is parameterized by
(4%, 7, G% ), and denoted by wDSB®R, %", G% ), where¥;{ = {H, : i € N} isacol-
lection of probability distributions of), 1], such that condition (2.11) holds. If the stochastic
processes in (ii) of Definition 2.4 are replaced by indepehdandom vectors with common
distributionG", whereG? is supported on the measurable spages’), then the process will
be referred to as “single atoms” DSBP, to emphasize the Fattthe support points in the
stick—breaking representation are not indexed by prediato This version of the process is
parameterized by}, ¥ . G°), and denoted byDSBR( %7 , ¥ . G°).
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Theorem 2.6.Let{G, : = € 27} be aDSBN(% . 6%, V3, G% ). If © C S is the support

of GY, for everyz € 27, %&K,N and ¢4 are collections of copulas with positive density w.r.t.
Lebesgue measure, on the appropriate unitary hyper—cuaes for everyi € N, the elements
in 7,/ have positive density df, 1], then % (@)’%V is the weak support of the process, i.e., the
DSBPhas full weak support.

Proof: The proof follows similar arguments to the ones of Theorein 3pecifically, it is only

needed to replace

|4
AR e () Ly (k) v dvade,
Q1 7/ Qa2(v1) Qr41(V1,- Vi)

.....

R () L (e v dvadvs
Q1 JQ2(v1) Qr+1(Vi,. -, Vi)

.....

.....

CXZ T (Hl}m ((07 'Ul]) Y Hi,Z’T ((07 'UT])) :

.....

The non-singularity of thé/; .y’s and of the associated copula functions imply that, forgve
1 €N,

P{WGQ 1'1, , V(IL’T, )]EQ;J,]:L,/{?—Fl}:

/ / / ..... T ( ) ka,J.r..l,mT (Vk-i-l) dvk-i—l o dVZdvl > 0.
Q1 JQ2(v1) Qrr1(vi,

Theorem 2.7.Let{G, : € 2"} be awDSBP(¢%-, %/, G% ). If © C S'is the support o672,
for everyz € 27, ¢ is a collection of copulas with positive density w.r.t. Leipge measure,
on the appropriate unitary hyper—cubes, and, for evieeyN, H; has positive density o, 1],
then2 (©)” is the weak support of the process, i.e., Wi2SBPhas full weak support.
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Proof: The non-singularity of théi;’s implies that condition (2.5) holds, for evefyc N.

The rest of the proof remains the same as for Theorem 2.2. O

Theorem 2.8.Let {G, : © € 2} be adDSBP(¢y- y, ¥, . G°), where® is the support of
Go. If €y is a collection of copulas with positive density w.r.t. tcbkegue measure, on
the appropriate unitary hyper—cubes, and, for every N, the elements iﬂ/g‘f have positive

density on0, 1], then the support of the processds (©)”

Proof: The proof follows similar arguments to the ones of Theore® &.is only needed to

replace

/ / / ..... T (Vl) T f;/; ..... T (Vk—i-l) dvk-‘rl T dV2dV1,
1JQ2(v1) Qr+1(V1y,VE)

.....

\%
/ / / ..... T (Vl) T mf,+1,:v (Vk—i-l) dvk-‘rl T dV2dV1,
1 2(v1) Qr+1(V1,ey Vi)

.....

wherefY:  (v;),j=1,....k+1,is the density function of
CJ‘U/;Z T (Hi7$1 ((07 Ul]) R Hi,:BT ((07 UT])) :

.....

The non-singularity of thé/; ,y’s and of the associated copula functions imply that, forgve

1 €N,

P{WGQ V!L'l, : V(IL’T, )]EQ;J,]:L,/{?—Fl}:
/ / / ..... or (V1) SR (Vi) AV - - dvadvy > 0.
1/ Q2(v1) Qr+1(ve,

Since the proofs of Theorems 2.4 and 2.5 depend on the dememildng distributions
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through their weak support only, the results are also validfe different versions of the DSBP.

Thus, the following theorems are stated without any proof.

Theorem 2.9. Let ¢ be a non—negative valued function defined on the product unelale
space(? x ©,B(¥)® AB(0)), where? C R" is the sample space with corresponding Borel
o—field #(#) and© C R? is the parameter space with corresponding Barefield #(0).
Assume that) satisfies conditions (i) — (iii) of Theorem 2.4.{f/, : + € 2"} is a DSBP, a
wDSBP or 8DSBP, satisfying the conditions of Theorem 2.6, 2.7 or 28pectively, then the
Hellinger support of the procesis(, ¢ (-,0) G, (d0) : x € 2} is

11 {/@¢(~,9)P$(d8):Px € 9(@)},

zed
whereZ(0©) is the space of all probability measures defined &n#(0)).

Theorem 2.10.Assume that belongs to a location—scale family(-, ) = o~k (=), where

w = (p1,-.., 1) IS ann—dimensional vector, and € R*. Letk be a non—-negative valued
function defined o x ©, Z(#') ® #(0)), where% C R" is the sample space with corre-
sponding Boreb—field #(#) and® C R" x R is the parameter space with corresponding
Borel o—field #(0). Assumé: satisfies conditions (i) — (iv) of Theorem 2.5 and that the ele
ments in{f) :i=1,...,T} satisfy conditions (v) — (viii) of Theorem 2.5{If, : = € 2"} is

a DSBP, a wDSBP or 8DSBP, wheréR" x R* is the support of the corresponding centering

distributions, and satisfying the conditions of Theoref 2.7 or 2.8, respectively, then

P{wEQ:dKL [/ ¢(-,9)G(xi,w)(d9),fi < €, izl,...,T} > 0,
Rn xR+

fore > 0.

2.4 Concluding remarks and future research

We have studied the support properties of DDP and DDP mixtuvdels, as well as those

of more general dependent stick—breaking processes. Bgitrg the connection between
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copulas and stochastic processes, we have provided soifftcieditions for weak and Hellinger
support of models based on DDP’s. We have also charactetizeldullback—Leibler support
of mixture models induced by DDP’s and showed that the residh be generalized for the
class of dependent stick—breaking processes. Severanerd the DDP were considered, in
particular a version where only the weights are indexed bypitedictors. The results suggest
that we may consider parsimonious models that index onlywtbights or only the support
points by the predictors, while retaining the appealingosupproperties of a full DDP model.
This opens new possibilities for the development of singlerns DDP models, for which there
is a scarcity of literature. In particular, a back—to—backparison of these simplified models
is of interest.

The results on the support of MacEachern’s DDP, DSBP and itiehiced mixture models
provided here can be useful for studying frequentist asgtigoproperties of the posterior dis-
tribution in these models. In fact, using the same strateigypted in Norets & Pelenis (2011)
and Pati et al. (2011), the weak and strong consistency adiffexent versions of MacEach-
ern’s DDP and DSBP mixture models could be anticipated. &laeshors study the frequentist
consistency of the posterior distribution of the inducadtjmodel for responses and predictors,
(y, ), under iid sampling. Therefore, the asymptotic propeniesided by these authors are
based on the consistency results for single density estmptoblems. Our approach differs
from these works in that we adopt a conditional frameworktiefresponses given the predic-
tors), which implies the need to work with product spaces Jtdy of the asymptotic behavior

in the conditional context is also of interest and is the satopf ongoing research.
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Chapter 3

Fully nonparametric regression for bounded data using

dependent Bernstein polynomials

This chapter has been submitted for publication as:

BARRIENTOS, A. F., ARA , A. & QUINTANA , F. A. (2012). Fully nonparametric regres-

sion for bounded data using dependent Bernstein polynendabmitted
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3.1 Introduction

This paper deals with the problem of defining a fully nonpagtio regression model for a
continuous response variable with bounded suppo#t [[, u], —co < | < u < +o0, based
on a set of predictorg € 2 C RP. The nonparametric regression model is induced by
assumingy | G "% G, whereG, is a probability measure defined of, ul, B([l,u])),
and by defining a probability model for the set of predictependent continuous probability
distributions? = {G, : * € 2"}, allowing the complete shape of the element&db change
flexibly with the values ofc.

The problem of defining priors over related random probgbdistributions has received
increasing attention over the past few years. To date, mificit bas focused on constructions
that generalize the widely used class of Dirichlet process$(Ferguson, 1973, 1974). Some
exceptions are Tokdar et al. (2010), Karabatsos & Walket120Trippa et al. (2011) and Jara &
Hanson (2011), who proposed models based on logistic Gauggicesses, on infinite ordered-
category probit regressions, on dependent beta procesddsiliree processes, respectively.
MacEachern (1999, 2000) proposed the dependent Diricideeps (DDP) to define a full joint
model on the se¥, where marginally every7, € ¢ is a Dirichlet process. The key idea
behind the DDP is to introduce dependence by modifying tivk-treaking representation of
each element in the set. Specifically, MacEachern (19990)20®@posed to consider discrete

random measures of the form

where B is a measurable set in an appropriate space, the point maés¢s: = 1, ..., are
independent stochastic processes with index%etand the weights take the form;(x) =
Vi(z) I1,.[1 — Vi(z)], with Vi(z), i = 1,..., being independent stochastic processes with
index setZ” andbeta(1, M) marginal distribution. MacEachern (2000) also studiedraioe

of the process with predictor-independent weiglits(B) = > .~ w;dp,«)(B), and showed

that this version of the model has full support when flexibdnpmass processes are consid-
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ered. Versions of the predictor-independent weights DD leeen successfully applied to
ANOVA (De lorio et al., 2004), survival (De lorio et al., 200%ara et al., 2010), spatial model-
ing (Gelfand et al., 2005), functional data (Dunson & HeagriA006), time series (Caron et al.,
2006), discriminant analysis (De la Cruz et al., 2007), amyitudinal data analysis (Muller
et al., 2005).

Other extensions of the DP for dealing with related prolgbdistributions include the
DPM mixture of normals model for the joint distribution oftinesponse and predictors (Muller
et al., 1996), the hierarchical mixture of DPM (Mdller et,&004), the hierarchical DP (Teh
et al., 2006), the order-based DDP model (Griffin & Steel,&0the nested DP (Rodriguez
et al., 2008), the predictor-dependent weighted mixtui@®{Dunson et al., 2007), the kernel-
stick breaking process (Dunson & Park, 2008), the matibkdbreaking process (Dunson
et al., 2008), the local DP (Chung & Dunson, 2011), the Isgiitk breaking processes (Ren
et al., 2011), the probit-stick breaking processes (Churigufison, 2009; Rodriguez & Dun-
son, 2011), the clustex- model (Muller & Quintana, 2010), the PPMx model (Mulleradt,
2011), and the dependent skew DP model (Quintana, 2010n@many others. Dependent
neutral to the right processes and correlated two-pararRetisson-Dirichlet processes have
been proposed by Epifani & Lijoi (2010) and Leisen & Lijoi (D), respectively, by consid-
ering suitable Lévy copulas. The general class of depdnu®malized completely random
measures has been discussed, for instance, by Nipoti (20t1)ijoi et al. (2012).

To the best of our knowledge, all of the existing approacle® iocussed on densities on
the real line, considering dependent mixtures of Gaussiaties. While the normal kernel is
a sensible choice in such settings, its usefulness is réithied when considering densities
on a known bounded interval. Even though an appropriatesfitamation could be applied
to the data for the sake of the analysis using standard puoegdthe estimates based on a
normal kernel suffers from boundary effectd ahdu. Since appropriate transformations mean
considering bijective functions, implying that the edgéshe interval,l andu, are identified
with —oco and oo, it follows that the transformed densities would not be defion the edges
of the domain, i.e, atandu. Therefore, models based on transformations should bewvasied

some care, especially in cases where a part of the data awsbtd the response variable are
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concentrated on the edges of the interval. In contrast,|#ss of models considered here is not
restricted to any particular type of boundary behavior, srithus more appropriated for data
sets which are concentrated at the edges of the responsarsupp

In the context of single density estimation problems, Retr(1999a,b) and Kottas (2006)
proposed models for probability distributions supportadio 1] and[0, 7], respectively. In re-
lated work, Robert & Rousseau (2003) developed a goodndgswdthod using beta mixtures
with unknown number of components, and Mallick & Gelfand94Pand Gelfand & Mallick
(1995) considered mixtures of beta distribution functibmsnodel random monotonic func-
tions. We extend the class of Dirichlet-Bernstein prior&efrone (1999a,b), to deal with sets
of predictor-dependents probability distributions withuimded support.

The rest of the paper is organized as follows. Random Bemptdynomials are briefly
described in Section 3.2, so as to make the discussion seHioed. Section 3.3 introduces the
general version of the proposed model and its main theatgtioperties are established. Proofs
of these results are provided in an accompanying supplememiaterial file. Simplifications of
the general model class are discussed in Section 3.4. Thelsna illustrated and compared
to the existing methods using simulated data in Sectiorvghigh also contains the results of a

real-life data analysis. A final discussion section conegutthe article.

3.2 Random Bernstein polynomials

Bernstein polynomials were introduced by Bernstein (19@2)ive a proof of Weiertrass’ ap-
proximation theorem. 17 : [0, 1] — R, the associated Bernstein polynomial of degtde

given by

¥ A .
P(ylk, G) = ZG J/k) ( , ) y(1—y)"7yelol] 3.1)
j

If G is the CDF of a probability measure defined on the unit infethen (3.1) is also a CDF

on [0, 1] and represents a mixture of beta distributiong7(6) = 0, its density function is given
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by
k
bp(y | k,G) =D wisBly | j,k—i+1), (3.2)
j=1

wherew; , = G(j/k) — G((j — 1)/k), andB(-|a, b) stands for a beta density with parameters
andb. For a single-density estimation problem, Petrone (199 $apposed a hierarchical prior,
called the Bernstein polynomial prior (BPP). This constdta random density given by (3.2),
wherek has probability mass functiom and givenk, wy, = (wyx, ..., wgx) has distribution

Hj. on the simplex

Petrone (1999a,b) referred to (3.2) as the Bernstein palyedalensity with parametersand

wy, and showed that j§ assigns positive mass to all naturals, and the density,aé positive

for any point inA, then the weak support of the BPP is the space of all prolabileasures

on ([0,1], % ([0,1])). Letting(;, = M (Go(j/k) — Go((j —1)/k)), 5 = 1,...,k, Gy being a
probability distribution on(0, 1] and M being a positive constant, Petrone (1999a,b) used the

fact that assuming

Wy = (ka, o ,wk7k) ~ DiriCh'Gt(CLk, ey Ck,k))

is equivalent to assume th@tfollows a Dirichlet process (DP) priofy | M, Gy ~ DP(MG)).
Petrone (1999a,b) refers to the later model as the BernBieichlet prior (BDP), and discussed

a Markov chain Monte Carlo (MCMC) algorithm to scan its postedistribution. Petrone &
Wasserman (2002) studied the consistency of the postastibdition for BPP. They showed
that under the same conditions that guarantee the full wepgast of the prior, the posterior
distribution is weakly consistent at any bounded contirsudensity orj0, 1]. Furthermore, they
showed that under tail conditions grthe posterior is consistent with respect to the Hellinger

metric.
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3.3 The general model

3.3.1 The definition

Suppose that we observe regression datg,y;) : i« = 1,...,n}, wherex; € 2~ C RP
is ap-dimensional vector of predictors apgis a continuous/, u|-valued outcome. Since the
bounded support of the response variable can be rescalegluait interval, we will assume that
[ = 0 andu = 1 without loss of generality. To introduce dependence in #melom probability
measures with bounded support, we replace the DP mixinghdisbn in the definition of
the BDP prior by a dependent stick-breaking process, whidefined by using transformed
stochastic processes indexed by predictors 2. Let ¥V = {v, : ® € 2’} and.Z = {h, :

x € 2} be two sets of known bijective continuous functions, sudt for everyxz € 27,
vy : R — [0,1] andh, : R — (0, 1], and such that for every € R, v,(a) andh,(a)
are continuous functions af. Let 27 (|0, 1]) be the set of all probability measures defined on
([0,1], ([0, 1})).

Definition 3.1. Let ¥ and.»# be two set of functions as before. t= {G(z,w) : x € 27}
be a# (|0, 1])-valued stochastic process on an appropriate probabiligice (€2, <7, P) such
that:

(i) m, 19, ..., are independent and identically distributed real-vals¢achastic processes of
the formn, : 2" x Q@ — R, i > 1, with law indexed by a finite-dimensional parameter

¥, and marginal distributiong F, : « € 27}.

(i) =z, 2, ..., are independent and identically distributed real-valsolchastic processes of
the formz; : 2" x Q — R, i > 1, with law indexed by a finite-dimensional parameter

¥, and marginal distribution§ H,, : « € 27}.

(ii) k:Q — Nisadiscrete random variable with distribution indexed Hin&e-dimensional

parameterh.

(iv) For everyx € 2 and almost everyw € , the density function of7(x,w), wW.r.t.
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Lebesgue measure, is given by the following dependentmaixtieta densities:
g(@,w)() = wj(@,w)B (- | [k(w)8;(@,w)], k(w) — [k(w)d;(@,w)] + 1), (3.3)
j=1
where[-] denotes the ceiling functiofi; (z, w) = hs(z;(x,w)), and

wj(@,w) = vg {n;(@, )} [T 11 = ve {mi(2,w)}].

1<j

The processy = {G, = G(x,w) : * € 2}, will be referred to as dependent Bernstein poly-
nomial process with parametefs, ¥, ¥,, 7', 7¢), and denoted bp BPP(\, ¥, W, ¥ J7).

Notice that, for everw € 2, expression (3.3) is indeed a density w.r.t. Lebesgue neasu

since, for everyr € 27,

> log[l = Er, (v {ni(z,-)})] = —oo,

i=1

which is a sufficient and necessary condition for the weigihésdd up to one with probability
one. In addition, it follows immediately from Definition 3that the trajectories of the process

are sets of Bernstein polynomial densities. In fact, (3quivalent to

k(w
g(x,w)(-) = f Wi, w)B (- [ j, k(w) —j +1),
j=1
whereW;(z,w) = 37 wi(x, w)I{0;(x,w) }{[kw)o (@w)=j}» With I{-} 4 being the indicator
function for the setd.

The choice of the transformation functiottSand.”Z” induce interesting properties of the
DBPP. For instance, it is easy to show that if, for everg 2", the elements ir¢” are such that
ve(-) = B7Y(Fg() | 1, M,) and the elements ig#’ are such that,(-) = G, (H,(-)), with
B~!(-| a, b) being the inverse CDF of a beta distribution with parameters), then marginally
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G, follows a Bernstein-Dirichlet prior with parametérs M., Gy ), for everyx € 27, thatis
Gm | )\7 Mma GOm ~ BDP()\7 M:m GOm)a

whereF,(-) stands for the CDF of the marginal distributiorgfx, -), for everyi € N, M, €
RS = [0,+00), Gy, is the inverse CDF of a probability measure defined@n] and H,(-)
stands for the CDF of the marginal distributionpfz, -), for every: € N.

Under the same assumptions, it also follows that, for angrgive N,

E{G4(B,) | k} = Z%m/@ ),j,y<1—y> (3.4)

and

k k 2
Var{Gg(By) | k} = — {ch,ky (Zc gk, y)e(d, k, )) }, (3.5)
where B, = [0,y], ¢(j, k,y) = S.1 e zmy 1 — y)F L e(0,k, ) = 0, ande(j, k, ) =
Goz(j/k) = Goa((j — 1)/k).

3.3.2 The association structure and continuity of the proces

The characteristics of the stochastic processes used inift®fi3.1 determine important prop-
erties of the resulting DBPP. Natural choices for longihadior spatial modeling are appropriate
Gaussian processes. Regardless of the specific choicesglod almost surely (a.s.) continuous
stochastic processes ensures that the DBPP is a.s. camgifrom the left and has a limit from

the right. The following theorem is proved in the Section BAppendix B).

Theorem 3.1.Let {G,:x € £} ~ DBPP(\, U, W, ¥ ). If for every; € N, the

stochastic processeg and z; are P-a.s. continuous, then for evefy;}5° C £, such that
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limj_>+oo T —> T € Z andxﬂ < xq, = 1, ey Dy

lim  sup  |Ga,(B) — Gg(B)| =0, P-ass,

I+ Bes([0,1])
thatis, G, converges’-a.s. in total variation norm t@x,,, whenz; — x; . In addition, for
every{z;};° C £, such thalim; , .. x; — xy € 2 andz;; > xq, [ = 1,...,p, there

exists a random probability measure gf, 1], %([0, 1])), Gx,, such that

im  sup [Ga,(B) — Ggo(B)| =0, P-as,

J=+ee pes((0,1])

thatis,G,, converges’-a.s. in total variation norm tc@mo, whenz; — .

The association structure of DBPP is completely determimethe dependence structure
of the stochastic processes used in Definition 3.1. Genaedytical expressions for the cor-
relation function are not possible to derive because th@euwle on the specific laws of the
associated stochastic processes. However, we show tlult; omld conditions on the stochas-
tic processes defining the DBPP, the correlation betweendiresponding random measures
approaches to one as the predictor values get closer. Tlogviiog theorem is proved in the
Section B.1 (Appendix B).

Theorem 3.2.Let{G, : ¢ € &} ~ DBPP(\, ¥, W,, ¥, 7). If for every{zx,}°, withz; €
Z', such thatlim; ., xz; — xo € 2, we havez;(zx;,-) =, zi(xo, -) and n;(z;, ) =N
ni(xo, -), asj — +oo, then, for ally € (0, 1),

lim p[Gla;,)(B,). Glwo, )(B,)] = 1.

Jj—+oo

wherep(A, B) denotes the Pearson correlation betweeand B, and B, = [0, y|.

If the stochastic processes defining the DBPP are such tagiatinwvise finite-dimensional
distributions converge to the product of the correspondiagginal distributions as the Eu-
clidean distance between the predictors grows larger,uhder mild conditions on the center-

ing distributions of the DBPP the correlation between theesponding random measures can
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approach to zero. The following theorem, proved in the $adi.1 (Appendix B), shows that
under the assumptions previously discussed for the DBRPn#rginal covariance between the
random measures is equal to the covariance between thdicoatlexpectations of the random

measures, given the degree of the Bernstein polynomial.

Theorem 3.3.Let {G, :x € 2} ~ DBPP(\, ¥, W,, ¥, #). Asumme that there exists
a constanty > 0 such that ifz,, x; € 2 and|jz; — @2 > v, thenCov [I1, @, ).},
Lz )easy] = 0@NdCov (L (ar yeast: Linses)eany] = 0, for everyA;, Ay, A;, Ay € B(R).
Assume also that for every,, x, € 2 such that||x; — x»|| > v, and for every sequence
{(x1;, ;) }5° € 272, such thallim;_, oo (21, T2;) = (@1, T2), We have(z; (x5, -), zi(xa;, )
5 (i@, ), z(@a, ) and (@1, ), (@5, ) = (@1, ), mi(wa, ), @S j —> +0o.
Then, for every, € [0, 1],
lim Cov[G(@1;,-)(By), G, )(By)] =

Jj—+oo
k() k()
Cov Zagwl (Apry) BIN(L| k(-), ), ZG;M (Apky) BIN(L| (), y)

=1 =1

whereB, = [0,y], A;x = [0,1/k], G}, stands for the marginal probability measuretfz, -)
and BIN( - | k,y) stands for the probability mass function of the binomiatritisition with
parametersk, y).

Remark 3.1. It is easy to see that if thBBPPis specified such that the marginal distribution
of k£ is degenerated, then the correlation between the corredipgrrandom measures goes to
zero, sincéim;_, o, Cov [G(x1;,-)(By), G(x2;, -)(By)] = 0.

Remark 3.2. If the DBPPIs specified such that;, = Gf,,, then

lim Cov [G(w1;,-)(By), G(x2,-)(By)] = 0,

Jj—+oo
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since

lim Cov [G(x1;,)(By), G(x25, - )( = Var

Jj—+0o0o

Remark 3.3. If G¢,,, or G¢,, is theU (0, 1) distribution, then

lim Couv [G(w1;,-)(By), G(x2,-)(By)] =0,

Jj—+oo

since

=1 j=1 (

k() k(-) j k() | |
ZGOmt (Alk: ) BIN l | k‘ ]{;— yj(l _ y)kz(.)_j =y,
J

which is constant as a function bffor t = 1 or 2, and everyy € [0, 1].

Although the trajectories of the DBPP are a.s. continuoosfthe left only, its autocor-
relation function is continuous under mild conditions or #tochastic processes defining the
DBPP. The following theorem is proved in the Section B.1 (&pgix B).

Theorem 3.4. Let{G,:x € 2} ~ DBPP(\ ¥, ¥, ¥, ). Assume that for every
{(.’Elj, ng)}cl’o C %2, such thalimj_>+oo(:l:1j, CEQj) = (.’El, 2132) < %2, we have thatzi(wlj, '),

2@y, ) 2 (21, ), 2i(@a, ) @NA (0 (@15, ), 0@y, ) b (a(@1, ), i@, -)), @S —

+o00. Then, for every € [0, 1],

lim p[G(@1;,-)(By), G(®25,-)(By)] = p[G(x1,-)(By), G(x2,-)(By)]

Jj—o0

whereB, = [0, y].

3.3.3 The support of the process

Large support is an important and basic property that ang&8ap nonparametric model should

ideally possess. In fact, assigning positive mass to neidtdmds of any collection of probabil-
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ity distributions{ F, : * € 2"} is a minimum requirement (and almost a “necessary” property
for a model to be considered “nonparametric”. This properglso important because it is typ-
ically a required condition for frequentist consistencyled posterior distribution. As is widely
known, the definition of the support of probability modelsonctional spaces strongly depends
on the choice of a “distance” defining the basic neighborlkoddherefore, it is first necessary
to make explicit the topology under consideration. Theltsguresented here are based on gen-
eralizations of standard topologies for spaces of singbaiility measures. Specifically, we
consider the weak product topolody,, product topology and.., topology.

A sub-base of the weak product topology for the spat€0,1])” = [loco 2 ([0,1]),is

given by sets of the formB}. | ({Fy : ® € 2'}) = [ e AV, (Fi), Where
fexo \T ) T .
{Pw e 2(10,1]) : ‘fm faP — [, fdFs| < e}, ifxec 2 x=m,

for every continuous and bounded functipnx, € 2" ande > 0. The following theorem
provides sufficient conditions fa#? ([0,1])” to be the support of the DBPP under the weak
product topology, that is, it provides sufficient condisamder whichZ? (|0, 1])‘9’/ is the small-
est closet set of” o ¢~!-measure one under the weak product topology. The proofeof th

theorem is given in the Section B.1 (Appendix B).

Theorem 3.5.Let{G, : x € Z°} ~ DBPP(\, W, Wy, ¥ 7). If for every(x,,...,x,4) €
24, d > 1, the joint distribution of(n;(x1,-),...,ni(xq,-)) and (z;(xy,-),. .., zi(x4, "))
have full support orR%, and k(-) has full support orlN, then 2 ([0,1])” is the support of

{Gy : ¢ € 2"} under the weak product topology.

LetZ ([0,1]) € £ ([0, 1]) be the set of all probability measures defined(on1] , % ([0, 1]))
that are absolutely continuous w.r.t. Lebesgue measure/gindontinuous density function on
[0,1]. A sub-base of thé., product topology for the space ([0,1])” = [[,., 2 ([0,1]), is
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given by sets of the fornB/ s ({F : x € 27}) = [[,cp Als, (Fz), where

0 €,Z0

Ak

€,0

(F,) 2([0,1]), ifx e 2, x # x,
T P e 2(01) s supyepn I (v) — o) < ¢}, e 2z =,

wherep,, and f, denote the densities &, and F, w.r.t. Lebesgue measure, respectively. The
following theorem shows that, under the same assumptiofis@drem 3.52 ([0,1])” is the
support of the DBPP under thie,, product support. The proof of the following theorem is
provided in the Section B.1 (Appendix B).

Theorem 3.6.Let{G, : ¢ € 2} ~ DBPP(\, ¥, W, ¥ 7). Ifforeveryz,,...,x, € 2,
d > 1, the joint distributions of n;(x1, ), ..., ni(x4, -)) @and (z;(xy, -), . . ., zi(x4, -)) have full
support onR?, andk(-) has full support olN, thenZ (|0, 1])3Z isthe supportofG,, : x € 27}
under theL, product topology.

If stronger assumptions on the predictor sp&eand the parameter space are imposed, a
stronger support property.(,) can be obtained. Specifically, assume that the predicturesp

2 is a compact set and consider the sub-spac¢®, 1))” ¢ 2 ([0,1])” , where
7 ([0,1))" = {{Fw ze 2 e 2(0,1)” : (g, &) — fuly)is continuou%,

with f,, denoting the density of, € Z ([0, 1]) w.r.t. Lebesgue measure. A base of the
topology for the spac# ([0,1))” = 1., Z ([0, 1)), is given by sets of the form

Bi~({Fo:we 27}) = {{Pw we 2} e7(0,1)" :sup sup |pa(y) — faly)] < 6},

me'%/ ye [071}

wheree > 0 and, for everyx € 2, p, and f, denote the densities af, and F, w.r.t.
Lebesgue measure, respectively. The following theoreoygat in the Section B.1 (Appendix
B), provides sufficient conditions fa# ([0, 1])” to be the support of the DBPP under the
topology.

Theorem 3.7.Let{G, : x € 2} ~ DBPP(\, ¥, Wy, ¥ 7). If 2 is a compact sets(-)
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has full support orN, and the processes used in the definition of the DBPP are suathfor

any|0, 1]-valued continuous function defined &r, f, ande > 0, we have that

Ploe: s ualnew) - f@)] <cp >0,

e

and
P {w € Q:sup |he(zi(x,w)) — f(x)| < e} > 0,

el

thenZ (0,1])” is the support of G, : © € 2"} under theL.. topology.

An important consequence of the previous theorem is thaDBIRP can assign positive
mass to arbitrarily small neighborhoods of any collectibpmbability measure$@,. : « €
2} € 2([0,1])”, based on the supremum over the predictor space of Kullbaitker (KL)
divergences between the predictor-dependent probabikysures. The following corollary is

proved in the Section B.1 (Appendix B).

Corollary 3.1. Let{G, : x € Z'} ~ DBPP(\, ¥y, ¥y, ¥ ). Assume that?” is a compact
set, k(-) has full support orN, and that the processes used in the definition of the DBPP are

such that, for any > 0 and|0, 1]-valued continuous functiofidefined onZ", we have

Ploe: s ualnew) - f@)] <cp >0,

xe
and
P {w € Q:sup |he(zi(x,w)) — f(x)| < e} > 0.
xeZ
Then,

P {w €N 21615/01 qz(y) log (%) dy < e} > 0,

for everye > 0 and every{Q, : = € 2} € 2(]0,1]), with density function$q, : = € 2°}.
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3.3.4 The asymptotic behavior of the posterior distribution

Let ) be the true probability measure generating the predictoith, density w.r.t. a corre-
spondings-additive measure denoted hy Suppose that the response variable and predictors
are drawn independently from a probability distributiortteé formmg(y, ) = q(x)q(y | ),
whereq(y | =) denotes a fixed conditional density dh 1], z € 2. LetmU)(y,x) =
q(x)g(x,-)(y) be the random joint distribution for the response and ptedicarising when
g(x,-)(y) is given by (3.3). Since the KL divergence betweenand a realizatiom:“) of the
implied joint distribution under the DBPP can be boundedHh®/supremum over the predictor

space of KL divergences between the predictor-dependehapility measures,

KL(mg,m“) = / mo(y, x log( fy’”") )dydw
[0,1] @) (y, x)
(v |

q
= /q(ﬂi)/ qo(y | x)log :
X [0,1] g(x

|

512 )0
o [ v 12)oe (G (?w;fy))) o

IN

it follows that, for every > 0,

P{wEQ:sup/ qo(y\m)log<m)dy<5}
€2 J[0,1] g(w7w)(y)
> P{we Q:KL(mg,m"“) <4},

> 0,

under the assumptions of Theorem 3.7 and Corollary 3.1. ,ThysSchwartz’'s theorem
(Schwartz, 1965) it follows that the posterior distributi@ssociated with the random joint dis-
tribution induced by the DBPP model is weakly consisterat ih, the posterior measure of any
weak neighborhood, of any joint distribution of the form(y, ) = q(x)qo(y | «), converges

to 1 as the sample size goes to infinity. This result is sunredrin the following theorem.

Theorem 3.8.Let{G, : ¢ € 2} ~ DBPP(\, W, W,, ¥, ). Assume that?” is a compact

set, k(-) has full support orlN, and that the processes used in the definition of the DBPP are
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such that, for any > 0 and|0, 1]-valued continuous functiofidefined onZ", we have

P {w € Q:sup |vg(ni(x,w)) — f(x)] < 6} > 0,
el

and
P {w € Q:sup |hg(zi(x,w)) — f(x)] < 6} > 0.

ze?
Then the posterior distribution associated with the randomt distribution induced by the
DBPP model,n) (y,x) = q(x)g(x,-)(y), whereq is the density generating the predictors,
is weakly consistent at any joint distribution of the form(y, ) = ¢(x)q(y | x), where
{oo(-|z) e 2} e 2(0,1)".

3.4 Simplified versions of the general model

In the search of parsimonious models, itis of interest takkmtnether simplified versions of the
general model class proposed in the previous section netagt of its appealing properties. In
this section we study two simplifications of the general niotiess, by considering dependent-
stick breaking processes where only the support points lgrtba weights are indexed by the

predictors.

3.4.1 ThewDBPP

We first consider the case where the dependence in the plibpabeasures with bounded
support involves a dependent stick-breaking process withncon weights across probability
measures, and support points given by stochastic proceske®d by predictorg € 2. The

resulting process is referred to as ‘single weights’ DBP#& @enoted byvDBPP.

Definition 3.2. Let s be a set of functions as before. $t= {G(z,w):xz € 2} be a
Z ([0, 1])-valued stochastic process on an appropriate probabilitce((2, <7, P) such that:

(i) vi,ve,...areindependent random variables of the farm Q@ — [0, 1], ¢ > 1, and with

common distribution indexed by a finite-dimensional parame.
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(ii) =z, 2, ..., are independent and identically distributed real-valsolchastic processes of
the formz; : 2" x Q — R, i > 1, with law indexed by a finite-dimensional parameter

¥, and marginal distribution§ H,, : « € 27}.

(i) k:Q — Nisadiscrete random variable with distribution indexed Hinge-dimensional

parameterh.

(iv) For everyx € 2 and almost everyw € , the density function of7(x,w), w.r.t.

Lebesgue measure, is given by a common-weights dependémtenaf beta densities,
g(:v,w)() = Zw](w)ﬂ ( | [k(@)ej(m,W)—l,k(W) - [k‘(w)é’](m,wﬂ + 1) )
j=1
where[-] denotes the ceiling functiofi;(z, w) = h,(z;(x,w)), and

w(w) = v;(w) [T 11 = valw)].
1<j
The process? = {G, = G(z,w): x € 2} will be referred to as ‘single-weights’ depen-
dent Bernstein polynomial process with parameters\, ¥,, 7#’), and denoted by DBPP(«,
A\, Wy, JC).

As shown in the Section B.2 (Appendix B), under equivalestuagptions on the parameters
defining the process, the ‘single weights’ DBPP retains #aihe properties shown for the

general version of the model,

3.4.2 ThedDBPP

We now consider the case where the dependence in the pribpaielasures is introduced via
the use of dependent stick-breaking processes with comoqmuost points across probability
measures, and weights corresponding to stochastic pescassexed by predictors € 2.

The resulting process is referred to as ‘single atoms’ DBRPdenoted by DBPP.
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3.4. SIMPLIFIED VERSIONS OF THE GENERAL MODEL

Definition 3.3. Let ¥" be a set of functions as before. ¢t = {G(x,w):x € 2} be a
Z ([0, 1])-valued stochastic process on an appropriate probabilitce((2, <7, P) such that:

(i) m,ne, ..., are independent and identically distributed real-valstachastic processes of
the formn,; : 2" x Q@ — R, i > 1, with law indexed by a finite-dimensional parameter
¥, and marginal distribution§ F, : « € 2}.

(i) 61,0,,..., are independent random variables of the fa#m 2 — [0,1], 7 > 1, and

with common distributiodr.

(i) k:Q — Nisadiscrete random variable with distribution indexed Hinge-dimensional

parameteri.

(iv) For everyx € 2 and almost everyw € , the density function of7(x,w), wW.r.t.

Lebesgue measure, is given by a dependent mixture of betdiden

g9(x,w)() = ng’(%w)ﬁ(' | TE(W);(w)], k(W) = [K(@)dj(w)] + 1), (3.6)

where[-| denotes the ceiling function and

wj(@,w) = vg {n;(@, )} [T 11 = ve {mi(2,w)}].

i<j

The processy = {G, = G(z,w) : x € 2"} will be referred to as ‘single-atoms’ dependent
Bernstein polynomial process with parametéxs¥,, ¥, GGy), and denoted b§DBPP (), ¥4,
vV, Go).

As shown in the Section B.3 (Appendix B), the properties ef'#ingle atoms’ DBPP have
some interesting differences with the general model clasghe one hand, tiOBPP has full
support under the three topologies we considered, and steipor distribution is also weakly
consistent. In addition, the correlation of correspondiagdom measures has identical be-

havior when the predictor values get close, and the comeldtinction is also continuous as
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a function of the predictors. On the other hand, howeverctreelation between the associ-
ated random measures when the predictor values are farrapattes a different limit, and it

is difficult to establish conditions on the prior specificatiensuring that this limit is zero. An-
other interesting property of ttfDBPP compared to the general model class is that the use
of a.s. continuous stochastic processes in the weightsuigiess a.s. continuity of the ‘single
atoms’ DBPP (and not only from the left). The following theoris proved in the Section B.4
(Appendix B).

Theorem 3.9.Let {G, : x € 2} ~ DBPP(\, ¥y, 7, Gy). Assume that for every € N,
the stochastic procesg; is P-a.s. continuous. Then, for evefy,;}° C 27, such that

limj_>+oo T, —> Ty € 2z,

lim  sup |Gy, (B) — Ga(B)| =0, P-as,

J=+ee pes((0,1))

for everyx, € 27, thatis,G,, converges”-a.s. in total variation norm td-,,, asx; — x.

3.5 lllustrations

We illustrate the behavior of the models with simulated azal-tife data. In these illustrations
we consider special cases of the general models, wheredttigestic processes used in the def-
inition of the DBPP correspond to Gaussian processes grigam linear (in the coefficients)
regression models, with random and normally distributegffaients. The computational im-
plementation of the models is based on MCMC methods. The M@MGrithms can be based
on a finite dimensional approximation of the dependent ditegaking process, or on the use
of the slice sampler (Walker, 2007) or the retrospectivemanalgorithm (Papaspiliopoulos &
Roberts, 2008). A full description of the MCMC implementatiused here is given in Section
B.5 (Appendix B). User-friendly functions implementingee methods were written in com-

piled language and incorporated into the R library DPpaekdgra, 2007; Jara et al., 2011).
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3.5.1 Simulated data

To illustrate the performance of the proposed models andrgpare them to the existing meth-
ods, nine simulated data sets were generated; one for edufeefdifferent scenarios and three
sample sizes(= 250, n = 500 andn = 1, 000). In all cases, a single continuous covariate
was considered, with values generated fromifli@, 1) distribution. The three different scenar-
ios are given in Table 3.1. They represent varying degreesroplexity and shapes asvaries

in the predictor space. All models exhibit a multi-modal &eébr. The conditional distributions
for Scenario | have a bi-modal behavior for low values of thedpctor, and the modes merge as
the predictor value increases. The conditional distringifor Scenario Il have positive density
at 1, whilef (y | x) — 0 asy — 0, for everyz € (0,1). Finally, the conditional distributions
for Scenario Il have positive density at 0 and 1, for everg (0,1). Additionally, a central
mode is also present, and the density value at the mode seges the value of the predictor

increases.

Table 3.1: Simulated data: True models.

Scenario Conditional density
| f(y|z)=05xBetay [ 20, 1.1 + 20z) + 0.5 x Betdy | 1.1 + 5z, 5).
I f(y|z)=0.5xBetay | 20,1.1 + 20(x + 0.27)) + 0.5 x Beta(y | 1.1+ 5(x + 0.27), 1).
I f(y|z)=0.3xBetay | 1,10) + 0.5 x Betay | 1.1 + 20z, 8) + 0.2 x Beta(y | 10,1).

Particular cases of the general models were consideredsoyrisg

v(+) = ho() = exp{-}/ (1 + exp{-}),

for everyz € (0,1). Furthermore, we considered Gaussian processes (GP) gefhmtion
of the models, by exploiting the connection between GP amehli models. Specifically, we
assume thaw;(z,w) = d,(z)"v!(w) and~](-) | p",S" & N,, (u",S"), and thatz; (z,w) =
d.(z)Tvi(w) and~i(+) | p*, S* w N, (n?,8%),i =1,2,..., whered,(z) andd.(z) arer;-
andr,-dimensional design vectors, respectively, includingéinand/or non-linear functions of

the predictore. The corresponding versions of the DBPP using this spetditare referred to
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as linear DBPP (LDBPP), linearDBPP (LDBPP) and lineadDBPP @LDBPP). The model

specification was completed by assuming

k| XA ~ PoissoiiA) [},

p’ | md, Sl ~ N, (m{,S), S"| v, " ~IW,, (V1,¥"),

75 | mg, Sg ~ N, (m(z)vs(z))v S | v~ IW,, (Vzv‘I’Z)v

v | o Beta1,0), ;| a,b" Betaa,b),
wherel/W,(v, A) denotes the-dimensional inverted-Wishart distribution with degreééree-
domwv and scale matri.

Two versions of each linear DBPP model were considered. isioe 1, we setl, (z) =
(1,2)" and/ord (z) = (1,2)T. In version 2, random B-splines regression models (seeEé-g
ers & Marx, 1996; Lang & Brezger, 2004) were considered. isi¢tased, (z) = (1, ¢4 (x), ...,
Ye(x))" andlord,(z) = (1,¢1(x),...,ve(z))”, wherey,(z) corresponds to thgth B-spline
basis function evaluated at The models were fit by assuming= 25, m{ = 0,,, m§ = 0,,,

Sy =225x1,,S; =225 x1,, v =r +2,v° =ry+2anda = a = b = 1. For each

simulated dataset, one Markov chain was generated comgletconservative total number of
110,000 scans of the Markov chain cycle described in AppeBdif the supplementary mate-
rial. Standard tests (not shown), as implemented in the BAIBrRry (Smith, 2007), suggested
convergence of the chains. Because of storage limitatibagull chain was subsampled every
10 iterations, after a burn-in period of 10,000 samplesive g reduced chain of length 10,000.

For comparison purposes, we considered the linear depebd@hlet process (LDDP) of
De lorio et al. (2004, 2009) and the weight dependent Dietprocess (WDDP) of Miller

et al. (1996). For the approach of Muller et al. (1996), wesider the multivariate extension of
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the univariate Dirichlet process mixture of normals moddtscobar & West (1995) to fit the
complete transformed data;, = (log(y:/(1 — :)), ;)" , and focus on the conditional densities
f(y | =) arising from the model. The Dirichlet process mixture maddejiven by

w; | py, X S No (g, 35) (1, 35) | @n ~ Q1, Q1| My, Qo ~ DP (My,Qo1),
where the baseline distributid@py; is the conjugate normal-inverted-Wishart (IW) distrilouti
Qo = Ny (1 | my, kg ' S) IW, (X | 1, ¥4). To complete the model specification, the follow-
ing hyper-priors were assumed?; | agi,bp1 ~ I (ap1,b01), m; | my, Sy ~ Ny (mg, Ss),
Ko | T, T ~ I (7’1/2,7’2/2), and\111 | Vo, Wy ~ IW, (1/2, ‘I’Q) The LDDP, on the other hand,

can be represented as Dirichlet process mixture of lineah@ coefficients) regression models

log(ys/ (1 = y)) | vir 02 ™ N (d(;),,02)

iid

(75,07) | Q2 ~ Q2, Q2| Mz, Qo2 ~ DP (Ms,Qu2),

whered(z) is ars-dimensional design vector, respectively, including &nand/or non-linear
functions of the predictor, andQp; = N, (v | py, 2y) T (072 | 51/2,5,/2). The LDDP
model specification is completed with the following hypeieps: M | ag2, boz ~ T (a2, boz),

8o | Toys Toy ~ T(76,/2,7,/2), by | @, A ~ N, (a, A), andX, | vy, W, ~ IW,, (14, P,,).
Marginalized versions of Dirichlet process-based modedsaviit, where(); and(), are inte-
grated out, using standard algorithms to fit Dirichlet psscaixture models. Credible intervals
for the conditional densities in this case were obtainethfMCMC samples using the-DP
approach proposed by Muliere & Tardella (1998), witk= 0.01. Two versions of the LDDP
were considered. Model LDDP1 corresponds to a mixture eflimegression models, that is,
d(z) = (1,2)T. Model LDDP2 corresponds to a mixture of B-splines regmssiodels, where
d(z) = (1,¢1(x),. .., vs(z))”. The MCMC specification was similar to the DBPP models and
the prior specification was as in Jara et al. (2011).

The discrepancy between estimatﬁt(i; | ), and true modelf (- | x), was measured using
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an estimate to thé.., <EOO> distance,
Low = maxmacx | F (g | 20) = f (g | 20)|.

which is based on grid of equally-spaced values of the resppm, }} and of the predictor

{x;}F. In addition, we also considered the estimate to the intedth, distance(I/L), given
by

Y

~ 11 &R E
T = 577 20 2 [T a0 = £ o 1)

Table 3.2 shows the values f(froo and fil for each model, scenario and sample size.
The results indicate that the best version of our model ofdpeaed the competitors for every
scenario and sample size, using both the and I/El criteria. As expected, behavior of the
models was similar under Scenario I, the least problematithie competitors of our proposed
model, because there is no boundary problem. However, tindeauof versions of the proposed
model outperforming the competitors tends to increase thighsample size; forn = 1,000,
three out of six versions of the proposed model outperforthedompetitors under the,, and
1L, criteria. When the boundary problem was present (Scentdrax 111), 5 or 6 (out of 6)
of the versions of the proposed model outperformed the cttopeusing the most demanding
criteria; theL.. value for the worst competitor was as high as 72 times theespanding value
for the best version of the proposed model.

The posterior inferences for the conditional densitiesvatbthat for each scenario, sample
size and version of the proposed model, the estimates pomdsapproximately to the true
densities. In most of the cases, the true model was comypletelered by 95% point-wise
highest probability density (HPD) bands, and the qualityhef estimation improved as the
sample size increases. Under Scenarios Il and Ill, pooltsasere obtained using the LDDP
and WDDP models. Indeed, the density estimates divergestaniially from the true densities
at the extremes of the support, confirming that these modelsat suitable for this type of
behavior. Figures 3.1, 3.2 and 3.3 illustrate these findingsey show, for the sample size

n = 500, the predictive density, evaluated in a grid of size 200 at f@lues of the predictor for
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Table 3.2: Simulated data: Estimatéd, (integratedl;) for each model, under the different
simulation scenarios and sample sizes.

Simulation Scenario
I 1] 11
Model n =250 n=>500 n=1000 n =250 n=>500 n= 1000 n =250 n =500 n=1000

[DBPP1 _ 6.19 6.57 6.02 1.09 2.83 0.89 2.78 3.25 2.76
(0.20) (0.16)  (0.13) (0.16)  (0.17)  (0.11) (0.24) (0.16) 1@

~ LDBPP2 459 644 380 276 359 343 538 218 2.73
(0.27)  (0.19)  (0.15) (0.24)  (0.20)  (0.15) (0.35) (0.18) 1{

“wLDBPP1i ™ 630 T 750 757 T 101" " 439 " T191 T 244 T 241 T 2.98
(0.24) (0.23)  (0.21) (0.16)  (0.16)  (0.12) (0.25) (0.22) 1

“wLDBPP2 ™~ 725 T 7833 T 448 T 409 " 189 T 245 T ° 740 T 186 2.44
(0.27) (0.23)  (0.17) (0.23) (0.18)  (0.12) (0.42) (0.18) 16)

“ALDBPP1 628  6.26  6.34 148 133 106 295 248 2.73
(0.25)  (0.19)  (0.16) (0.27)  (0.20)  (0.17) (0.31) (0.23) 1

“gLDBPP2 391 610 677 193 316 263 344 427 1.88
(0.28) (0.18)  (0.19) (0.27) (0.21)  (0.14) (0.33) (0.22) 1@)

"LDDP1 " 666 753 T 743 7 1927 " 462 T 289 77 26147~ 348 ™ 3.74
(0.24) (0.22)  (0.20) 0.20) (0.17)  (0.12) (0.38) (0.24) 1@

"LDDP2 T 3462 T 7638 2265 1 59.48 ~ 1522 " 26.12 138.29 ~ "103.31 " 60.54
(0.32) (0.20)  (0.18) (0.28) (0.25)  (0.14) (058)  (0.24) 2@

~ WDDP 452 68 668 2879 915 305 170.06  8.01 - 4.75
(0.26) (0.17)  (0.17) 0.34) (0.27)  (0.13) (0.50)  (0.24) 2@

the best version of the proposed model and LDDP model, argptd theL.. criteria, and the
WDDP model. The results for the remaining sample sizes aengn Section B.6 (Appendix
B).

We note that these results are for one random sample froncylartmodels, and conclu-
sions should be drawn carefully. Nonetheless, these exanaal show that the class of DBPP
models is highly flexible and that misleading results can li@ioed by using transformations

of the data along with flexible models for data defined on tla¢Inee.
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Figure 3.1: Simulated data - Scenariol £ 500): True (continuous line) and posterior mean
(dotted line) for the conditional density. A band consteactising the 95%point-wise HPD
intervals is presented in gray. Panels (a), (d), (g) andl)),(e), (h) and (k), and (c), (f), (i)
and (I) display the results for the best DBPP mod8IBPP2), the best LDDP model (LDDP2),
both regarding the estimatdd,, distance, and the weight dependent DP for four values of the

predictor, respectively.
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Figure 3.2: Simulated data - Scenariosnl £ 500): True (continuous line) and posterior mean
(dotted line) for the conditional density. A band consteactising the 95%point-wise HPD
intervals is presented in gray. Panels (a), (d), (g) andl)),(e), (h) and (k), and (c), (f), (i)
and () display the results for the best DBPP mod8IBPP1), the best LDDP model (LDDP1),
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(dotted line) for the conditional density. A band consteactising the 95%point-wise HPD
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3.5.2 Solid waste data

We consider data about residentially generated solid wastee city of Santiago de Cali,
Colombia. The dataset contains information ab2ig block sides and was collected to es-
timate the per capita daily production and characterinatifosolid waste in the city. The solid
waste in each of the58 block sides was separated in different kinds of materialsluding
food, hygienic waste, glass, metal and plastic. The propwstof these materials were reg-
istered for each block side. In addition, the socio-ecomdenel of the houses associated to
each block side was registered. The socioeconomic statsigmeaped in an ordinal scale of
six levels: low-low, low, medium-low, medium, medium-highd high. We refer the reader to
Klinger et al. (2009) for more details about these data.

The proportion of food and hygienic waste were considere@gsisonse variables. In both
cases, the socio-economic level was used as a discretetoreds in the previous section,
linear approximations to the general models were fit to the,day assuming = 25, m{ =
mi = 0, S; = S§ = 2.25 x I, 7 = v* = 8§ anda = a = b = 1. For each model, one
Markov chain was generated completing a conservative motadber of 110,000 scans of the
Markov chain cycle described in Appendix E of the suppleragntnaterial. Standard tests
(not shown), as implemented in the BOA R library (Smith, 208éggested convergence of the
chains. Because of storage limitations, the full chain widsampled every 10 iterations, after
a burn-in period of 10,000 samples, to give a reduced chdength 10,000.

For comparison purposes, the parametric beta regressiaelmariginally proposed by
Ferrari & Cribari-Neto (2004) and later extended by Simaa.g2010), was also fit to the data.
The beta regression model proposed by Simas et al. (201%eis gy

yi | ey, y* ~ Beta{p (27v") ¢ (x74?)  [1 — p (&l 4")] 6 (x7~7) } .

wherep (zfy") = [1+ exp (—:viny“)}_l and¢ (z]v?) = exp (] ~?). The model specifi-

cation was completed by assuming
A | m* T ~ Ng (m* x 16,7 x Ig)
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'y¢|m¢,7¢~]\76 (m¢ X 16,T¢XI6),

m* mgvsg ~ N(mg,sg), T | 7-Ou ~ U(O,TOM),

m? | mgvsg ~ N(mg,sg), il | 7_(? ~ U(Ong))a

wherem); = m§ = 0, s* = s? = 2.25 and7}' = 7 = 10. Model comparison was performed
using the log pseudo marginal likelihood (LPML), develofsdGeisser & Eddy (1979) and
further considered by Gelfand & Dey (1994). The log pseudaymal likelihood for model\/
is defined as LPMb; = >°7 log pas (y; | y=), wherepy, (y; | y=) is the posterior predic-
tive distribution for observation;, based on the datgl =", under model\/, with y!=? being
the observed data vector after removing itheobservation. Models with larger LPML values
are to be preferred. The individual cross-validation prede densities, known as conditional
predictive ordinates (CPO), were also used. The CPOs nettseiinfluence of individual ob-
servations and are often used as predictive model checkilg.t The method suggested by
Gelfand & Dey (1994) was used to obtain estimates of CPCs$itadifrom the MCMC output.

For the proportion of food the three versions of the DBPP rhbdkaved in a similar man-
ner and outperformed the parametric beta regression meutgj the LPML criteria. The LPML
values were13.09, 212.12 and215.26 for the LDBPPwLDBPP anddLDBPP models, respec-
tively. The LPML for the parametric model wa85.3. The conditional density estimates were
similar across DBPP models, in agreement with what we pusiydound using the LPML cri-
terion. More importantly, substantial differences betw#ee DBPP models and the parametric
beta regression model were observed, and the disagreemeesdses with the socioeconomic
level in the corresponding ordinal scale. Figure 3.4 digpthae results for théLDBPP model
for the six socioeconomic level. The results for the remmegiBPP models are given in Section
B.7 (Appendix B).

For the proportion of hygienic waste data, the DBPP modetsved again a similar be-

havior regarding both, LPML and the posterior inference onditional densities. The LPML
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Figure 3.4: Proportion of food#LDBPP model. Panels (a), (b), (c), (d), (e) and (f) displag th
posterior mean (dashed line) and a 95% point-wise HPD bamy @ea) for the conditional
density at socioeconomic level low-low, low, medium-lowedium, medium-high and high, re-
spectively, under theLDBPP model. The posterior mean under the parametric bgtagsion
model is given as a solid line for comparison purposes.
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values were 420.78, 422.72 and 421.92 for LDBRRPBPP and/LDBPP models, respec-
tively. Figure 3.5 show the posterior inferences for thedibonal densities at the different
socioeconomic levels, under tieEDBPP model. The results for the remaining DBPP models
are given in in Section B.8 (Appendix B). The results cleahpw an important departure from
the beta assumption. Specifically, the positive densityead and the existence of a central
mode observed for socioeconomic levels low-low, low, mediand medium-low cannot be
obtained from a beta model.

The positive density observed at zero for the proportionygiiénic waste can be explained
by the existence of zero values in the dataset. In fact, Isecatithat, we were not able to fit
the beta regression model to these data; the beta distnitigtnot always well defined at zero
or one. A possible solution would be to consider a constthpsameter space for the model,

such as
{(’y“,’yd’) eR?:p (a:T'y“) o (wT'yd’) L= (mT'y“)]é (mT7¢) >1,Vxe %} )

However, this solution would imply that for eveny € 27, the conditional density would be
a.s. equal to zero on the extreme values of the domain, whkiclearly not supported by the
data and we did not pursue that option here. This illustratesher advantage of the proposed
class of models, namely that by construction, they are eadwasll defined at every value of the

unitary interval.

3.6 Concluding Remarks
We have proposed a novel class of probability models fordgtedictor-dependent probability
distributions with bounded domain. The proposal corredpdn an extension of the Dirichlet-
Bernstein prior by using dependent stick-breaking prazesthe proposed class of models has
appealing theoretical properties such as full supportticoity, known marginal distribution,
well behaved correlation function, and its posterior disttion is consistent.

By using practicable special cases, the main advantagdseqgiroposed class of models

were illustrated using simulated and real-life data. Tlseilts suggest that the proposed models
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Figure 3.5: Proportion of hygienic wast¢=DBPP model. Panels (a), (b), (c), (d), (e) and (f)
display the posterior mean (dashed line) and a 95% poirg-tWRRD band (grey area) for the
conditional density at socioeconomic level low-low, lowedmum-low, medium, medium-high

and high, respectively, under tieDBPP model.
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can outperform Bayesian nonparametric models for resgaesined on the real line and the
use of transformations, even when the boundary problentigresent. The results also suggest
a clear advantage of the proposed class of models over pair@aiernatives.

The extension of the class of models for dealing with multate bounded responses and/or
mixed bounded and unbounded responses is the subject ohgngsearch. The extension for

response vectors defined on a corresponding simplex istessubject of ongoing research.
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Chapter 4

Conclusions and future work

In this dissertation, we have addressed two different tojpithe context of Bayesian nonpara-
metric (BNP) models for predictor—dependent probabiligasures. In Chapter 2, we studied
the property of large support of MacEachern’s dependentiidet processes and extensions,
using an alternative definition based on copulas. In Chahtere proposed a novel probabil-
ity model for sets of predictor—dependent probability msttions with bounded domain. This
Chapter summarizes the main conclusions of this dissentaid gives some directions of fu-

ture work.

4.1 Conclusions

Two main focuses have been developed in this dissertahermiin conclusions for each one
are described below. In the first part, we focused on the stlidize support properties of
dependent Dirichlet process (DDP) and DDP mixture modslsyell as those of more general
dependent stick—breaking processes. The connection éetwvapulas and stochastic processes

served to provide sufficient conditions for weak, Hellingexd Kullback—Leibler support of
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models based on DDP’s and general dependent stick—brepkingsses. Those conditions
were related to the support of the finite—dimensional distrons of the stochastic processes and
the kernel used to define the mixture models. We also stubessitpport of simplified versions
of the DDP, in particular, versions where only the weightsonly the support points were
indexed by the predictors. The results we obtained showagcathy of the considered versions
of the DDP maintains the large support property. In otherdspthe use of more parsimonious
models does not necessarily imply a reduction of the suppdis is an important conclusion
since in practice it is more common to use dependent pros@gsere only the weights or only
the support points are indexed by the predictors.

The second focus of this dissertation was to propose a néast of probability models
for sets of predictor—dependent probability distribusevhose domain is a closed interval. The
use of dependent stick—breaking processes allowed to gefie® class of dependent processes
which extend the Dirichlet—Bernstein prior proposed byr&tet (1999a,b). The proposed pro-
cess was called dependent Bernstein polynomial (DBPP).N&eexd that the DBPP satisfies
the properties of full support, continuity, known margidadtribution, well behaved correlation
function, and consistency of the posterior distribution.ifportant feature of the DBPP is that
its trajectories are collections of densities well-definadh closed interval. This feature allows
the DBPP to be used in applications where the observatidosidpéo a closed and bounded
interval, including the case where some of these obsenaéitce concentrated in at least one of
the edges of the interval. We also considered two simplifezdions of the DBPP where only
the weights or only the support points were indexed by thdipters. These versions satisfied
the same properties as the general case.

Additionally, we showed the advantages of our proposal tplyépg the DBPP to simu-
lated and real-life data and comparing the results to thbsereed with other approaches. The
approaches included beta regression models and BNP madetddted probability measures
defined on the real line. These BNP models were applied byywsirappropriate transforma-
tion of the data. From the comparisons, one concluded teairtbposed models can outperform
those BNP and parametric approaches. Although the perfarenaf the proposed model, com-

pared to other approaches, was the best in all the considesedrios, it was clearly much better
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in scenarios where some of the observations were concedhtiragt least one of the edges of
the interval. The DBPP model and its simplified versionsedrout to be an attractive non-

parametric alternative in the context of regression amafps bounded data. This model can be
easily used since user-friendly functions implementireggthmethods were written in compiled

language and incorporated into the R library DPpackage,(2&07; Jara et al., 2011).

4.2 Future work

The results presented in this dissertation can be appliéiffevent contexts and extended in
several directions. Some of the future works derived ofdissertation are described below.

As a extension of Chapter 2, we plan to consider strongetages and to study the support
of general dependent processes under such topologies ditioad we also plan to study the
support of real-valued proccess which are defined as lim@abmations of some design vector
of the predictors and where the coefficients of the comhbnatiare assumed random. The
motivation here is given by the fact that those kind of prgessare commonly used in practice
to induce dependence.

The future work derived from Chapter 3 is focused in two défg directions. The first one
is motivated by educational data. Here, assumingthat 1 tests have been previously and
sequentially applied to a group of students, the aim is tdiptéor each student the proportion
of correctly answered questions of tiieth test. In order to propose a novel BNP model for
such aim, our future plan is to include an autoregressivepom@ant in the DBPP following
a similar approach to that used by Di Lucca et al. (2012). ®uoisd focus is to extend the
DBPP model by replacing the predictor—dependent mixturegta distributions by predictor—
dependent mixtures of Dirichlet distributions. The idetoislevelop a BNP model for related
probability measures whose density functions, w.r.t. Isghe measure, are defined on the

k—dimensional simplex spacésg< N. This topic is subject of current research.
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Appendix A

Supplementary Material for Chapter 2

Lemma A.1. Let & (©) be the space of all probability measures defined ©n#(0)). Let

G, be an absolutely continuous probability measure w.r.t.dsgfue measure, with suppéit

Let

U(Po,fl,...,fk,E): {PE c@(@) : ‘/fldp—/fldpo < €, Zzlk}
be a weak neighborhood &f) € &7 (0), wheree is a positive constantanf},i = 1,..., k, are
bounded continuous functions. Then there exists a probabieasure inJ (P, fi, ..., fr, €)

which is absolutely continuous w. ;.

Proof: Since the set of all probability measures whose supportéirate subsets of a dense
set in© is dense in# (O) (Parthasarathy, 1967, page 44), there exists a probatvibysure
Q" (") = 3L, W;by, (-), whereN € N, (Wy,...., Wy) € Ay, with Ay = {w;,..., wy :
w; > 0,0 =1,...,N, Zf\il w; = 1} denoting theN—simplex, and different support points
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01,...,0y € ©, such that

‘ [ e~ [ rar

In addition, there exists an open ball of radius- 0, denoted byB (¢;, §), such that for every
6 € B(0;,0), with B(6,,6)( B (0;,6) = 0, for everyl # j, fi(0) satisfies the following

<§,i:1,...,k.

relation
€

£ 09) = 53 < i (0) < fi(65) + 5

Now, let@ be a probability measure with density function given by

q(0) = Z C—](SIB(ej,ame (0),

j=1 Y

wherecy, s denotes the Lebesgue measurebdi;, d) (| © and,(-) is the indicator function

of the setA. It follows that

Wi fi (0;) = W; <fi (65) + 6 ) =

o
€
Wit 0) = [ RO a0 < W,50) =W, (10 ~ 57
and
Wit 6)~ [ i0)q0)ds| < 5

B(€j75)

which implies that

'/fidQ*_/fi (0)q(0)do <§; W; fi (Qj)—/B(W) fi(0)q(0)do| < %
Thus,
‘ [ e~ [ ran| < ' [ e~ [ sar, +' [ rdq- [ raqr| <
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and thereforeQ) € U (P, f1,- - -, fx, €). Moreover, the support @ is contained ird, i.e.,@

is an absolutely continuous probability measure Wid. OJ
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Appendix B

Supplementary Material for Chapter 3

B.1 Proofs of theoretical results associated with the DBPP

Proof of Theorem 3.1

Since the elements of” are continuous functions of and, for every; € N, 5, is a P-a.s.
continuous stochastic process, it follows that— v,(n;(x,-)) andz — w;(x,-), j € N,
are P—a.s. continuous functions. Similarly, since the element&” are continuous functions
of x and, for everyj € N, z; is a P—as continuous stochastic process, it follows that>
hx(zi(z,-)), € N, is aP—-a.s. continuous function.

Now, since the ceiling function is continuous from the lefidait has a limit from the
right, it follows that, for almost everw € Q and every{my)}m , with 2 € 27, such

j=1
thatlimj_>+oo wgl) =Xy € 4 andxé-m < xgm, m = 1, o Py

lim [k(w)ei (a;g”,wﬂ = Tk(w)b; (z0,w)] .

Jj—+oo
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Furthermore, for almost evety € 2 and every{wg.’")} ,witha” € 27, such thatim, .

i=1

:cy) =z € 2" andz},, > wg,, forsomem = 1,.. ., p, it follows that

lim [k(w):(2",w)] = [k(w)d(a0,w)]® =

Jj—+o0o 7

J it k(w)0i(xo,w) € (7 —1,7)
j+1 if k(w)b(xg,w) =J

Therefore, by the Lebesgue’s dominated convergence timedréollows that the density w.r.t.
Lebesgue measure 6f,, is P—a.s. continuous from the left and it has a limit from the tigh

i.e., for everyy € [0, 1],

P{weez lim g(2",w)(y) = g(xo,w)(y), lim g@yaw)(y):g<r><w0,w)<y)}:1,

Jj—+oo Jj—+oo

where
9" (@0, w)(y) = wawo,w)mm T (w)0i (0, W)™, k(w) — [k(w)bi(x0,w)]" +1).

Finally, let G")(z,,w) be a probability measure with density functigh)(z,,w). A direct
application of Scheffe’s theorem implies that
P {w eQ: lim  sup |GV, w)(B) - G(my,w)(B)| =0,
J=1%0 Bes([0,1])
lim  sup [G(@l,w)(B) — GO (xy,w)(B)| = o} —1,

J=+% Bes([0,1])

which completes the proof of the theorem. O
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Proof of Theorem 3.2

Notice that for every € [0, 1] and everyr € 27,

k
E{G(z,-)(By) |k} = E {Z [E™ (@, ) ()] BIN(L | £, )

=1

- zk:E{F* ) | k}BIN (| k,y),

where,BIN(- | k,y) stands for the probability mass function of a binomial disttion with

parametersgk, y), and

Z wi(®, ) {0:(2, )} ko, @, <1y-

Now, notice that the independence of the stochastic presemsd the i.i.d. property of the

1
— ZE{wz VY E{1{0:(x, )} rro, @<ty | K

= E{I{0i(z, )} o @<y | F}
= Gop (ALk),

corresponding elements, imply that

E{F(z,) (1) | k} = {Zw O, )} (1w6:(, 1<)

where, A, = [0,1/k] andG§, stands for the marginal probability measurédf, -), for every

1 € N. It follows that

E{GL(B)) |k} = ZG (A; ) BIN(I | k, ).
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Applying a similar reasoning, it follows that, for every x, € 2" and everyy € [0, 1],

E{Ga(By)Gay(By) | b} =
D0 |20 B Juwi(@o, )} G (A X An i)
Z E {wi<m> ‘)wil (.’130, )} Ggw(Ahk)GSaco (All,k)

1=1,l1=1 Li=1,i1i

B(l7l1 | k7y)+

B(l7l1 | kuy)a

where,B(l, 1 | k,y) = BIN(I | k,y) x BIN(l; | k,y) andGj , ., corresponds to the marginal

distribution of (6;(x, -), 0;(xo, -)). In particular, forr = x,,

E{Gx(B,)*

Syl
—
Il

k [e'e)
> [ > E{wi, Jw;, (@, )} Gow(Ark) Goa( A i) | B(LL | E,y).
=1,y =1 Li=1,i1i

Now, since the elements of are continuous functions af and, for everyi € N and every
{z;}3°, with z; € 27, such thatlim;_, . x; — ¢ € 2, n;(x, ) converges in distribution
to n;(xo,-) asj — +oo, it follows thatw;(x;,-) converges in distribution ta;(x, -), as
Jj — 400, and thate — E {w;(z, )}, ¢ — E{w;(z,-)*} andz — F {w;(x, )w;, (xo, )}
are continuous functions. On the other hand, since the eltsé.7” are continuous functions
of  and, for every € N and every{z,}°, witha; € 27, suchthatim; ,  x; — x, € £,
zi(x,-) converges in distribution te;(x,, -), asj — +oo, it follows thatd;(x;, -) converges

in distribution to#;(x,-), asj — +oo. Now a few applications of Lebesgue dominated
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convergence theorem imply that

lim E{G,,( Z lim E{Ga,(B,)? |1} Plwe Q: kw) =1},

J—>+00 Jj—>+00

= ZE{GmO(By)2 |1} Plw e Q:k(w) =1},

= £ {Gwo(By)2} )

lim B {Gy,(B,)Gay(B,)} = Z lim E{Gy,(B,)Ga(B,) | 1} P{lw e Q: k(w) =1},

Jj—+o0 Jj—>+00

= ZE{GmO(ByY |1} P{lw € Q: k(w) =1},

= E{Ga(B,)"},
and
JEEEOOE{G y>} = E{Gxy(By)}
which completes the proof of the theorem. O

Proof of Theorem 3.3

Notice that for every functiorf; : 2" x &2 — [0,1] andg,;; : 2" — [0,1},i =1,2,j =1, 2,
it follows that

| fi(@1, @2) f2(@1, 22) — g11 (1) g12(22) g21 (21) g2 (2) |
= |f1($1, 1‘2) (5131, 1‘2) + fl(wla 532)921(531)922(332) - 911(1131)912(302)921(1'1)922(1'2)| )
< fl(wla 532) |f2($1, 1‘2) - 921(3’51)922(1'2)| + 921(331)922(332) |f1(1'17 532) - 911($1)912($2)| )

< |fol1, @2) — go1(®1)go2(2)| + | fr(T1, 22) — g11(21) gr2(T2)] .
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The previous result implies that, for evety;, x,; € 2,

|E (G (15, )(By), Gy, )(By) | k] = E[G(w1;,-)(By) | k] E{G (9, )(By) | k]
- Z Z K [wi(wlj’ .>wi1 (Csz, )] |:I[{27£“}E [H{Gi(w1j,')€AL,k}:| B |:H{9i1 (wzj,')eAll,k}]

I=1,l1=14=1,i1=1

+ Limin B [H{(ei(wljv')vgil(w2jv‘))€Al,k><All,k}:|] B(l L | k,y)

Y

E [H{Gi(mlj,-)eAhk}] E |::[[{921 (mgj,-)EAllyk}i| B(l7 ll | k?y)

< D> B [wil@y, Jwi (a5, )] — E [wi(®@a, )] E [ws, (25, )]

I=1,01=1i=1,i1=1
k 00
t ‘E [H{(ei(wlj7‘)79i(‘1’2j7'))6Al,kXAll,k}:| —E [H{9i(w1j,~)6Al,k}] b [H{tgi(wzj,-)eAll,k}] )
I=1,51=1 i=1

where, B(I,1; | k,y) = BIN(l | k,y) x BIN(I; | k,y). Now, since the elements of are
continuous functions af and, for every, i; € N, w;(x1;, -)w;, (25, -) is a continuous function
of {(T}Z‘(.’Elj, '), ni(m2j7 ))}ll, = max{i, il}, it follows that

im |E [wi(@1), Jwi, (225, )] — E [wi(y, )] E [wi, (295, )| = 0.

J]—00

On the other hand, since the elementsi&fare continuous functions af and, for every € N,

it follows that

Jlggo ’E []I{(Gi(961]‘,')791'(9623'7-))6141,1@XAll,k}} —E [H{ei(mljf)eAl,k}] E [H{ei(mQj")eAll,k}] ’ =0.
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Thus, by Lebesgue’s dominated convergence theorem,aislthat

lim [Cov (G, ) (By), Glay. ) (By) | H]
= lim |E[G(@,)(B,) G, )(B,) | K] = E (G, )(B,) | K E{G (@ )(B,) | K],
=0,

for everyk € N, and, therefore,

lim Couv [G(@1;,-)(By), G(@, ) (By)]

J]—00

= jli_)rgoE [Cov [G(x1j,)(By), G(x25, ) (By) | k]
+ lim Cov [E [G(;,-)(B,) | k], E[G(x;,-)(B,) | K],

j—o0

v [hm Cov (Glany, )(By), Glasy, ) (By) | k@

#Cou | lim E[G(ey. ) (5) |, i E[Gley.)(5,) 1]
— Cov [E[Gla1.)(B,) | . E[Glaa.)(B,) | H].

where, for everye € 2,

E[G(x,-)(By) | k] = ZGém (Arg) ( ]; ) y' (1 =y,

ZG (Aux) BIN(I | k),

which completes the proof of the theorem. O

Proof of Theorem 3.4

Since the elements of” are continuous functions ot and, for everyi € N and every

{(.’Elj, ng)}cfo, with Z1j, T2 € %, such thatimj_>+oo(w1j, ng) = (:131, CCQ), with T, Ty € %,
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it follows that

(772‘(3313'7 ')7 ni<m2j7 ))7
andn;(x;;, -) converges in distribution to
(772‘(3317 ‘)7 Zi<w27 ))7

and n;(x,, -), respectively, ag — +oo, for [ = 1,2. It also follows that(x;, ;) —
E{wi(x, )}, (x1,x2) — E{w(z,-)?}, | = 1,2, and(x1, ) — E{w;(x1, )w;, (22, )}
are continuous functions, for eveiyi; € N.

On the other hand, since the elementsi/fare continuous functions af and, for every
i € Nand every{(x;, xa;) }7°, With 1, 25; € 27, such thatim;_, (215, x2;) = (1, T2),

with &, x5, € 27, it follows that

(zi(21), ), zi(®25, 7)),
andz;(z,;, -) converges in distribution to

(zi(®1, ), 2i(®2, +)),

and z;(x,, -), respectively, ag — +oo, for [ = 1,2. Finally, since the correlatiory,

is a continuous function oF {w;(x;, )}, E{w;(x;,)*}, E{wi(xy, - )ws, (z2,-)}, Gbg, (Ajik)

and G ., 2, (Ajk X Aj k), i,i,k € N, 4,51 € {1,...,k} andl = 1,2, then (z;, z2)
plG(zy,-)(B,), G(x2,-)(B,)] is also a continuous function. O

Proof of Theorem 3.5

To prove the theorem it is sufficient to show that any set ofithge for the product topology

of weak convergence has positiyeo ¥4 ~'-measure. LetV/ = [] U, be a set of the base,
el

wherelU,, is a basic open set of the weak topology ([0, 1]) andU,, = £2([0, 1]) for all but

finitely manyzx in 2". Itis easy to see that the measure of a basic open sétfpr x € 27} €
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2 ([0,1])” is equal to the measure of a set of the form

<€i7j:17--->Ki}7

11 {Pmi € 2 ([0,1]) : ‘/fz’jdpmi - /fidemi

i=1

wherexz,,...,.xp € &, TandK;,: = 1,...,T, are positive integersf;;, : = 1,...,7T,j =
1,..., K;, are bounded continuous functions and = 1, ..., 7T, are positive constants. Now
notice that from Lemma 1 in Barrientos et al. (2012), it falothat for even®,.. € ([0, 1)),

there existg);, € Z2([0,1]), absolutely continuous w.r.t. Lebesgue measure, such that

'/fidewi —/fz‘j

Thus, for almost every < ),

'/fijdG(%w) _/fideaci < ‘/fijdG(wiaw)—/fide;i

Setd;; (w) = | [ fi;dG(m;,w) — [ fi;dQ, |. Now, borrowing the trick in Petrone (1999a), it

+€i/2-

follows that

Y

%-(w)é‘ / fdG 1, / fodH (Q,, (@)M [ ot (@ b)) - [ fyaa,
= ()+d (k(w)

whereH (Q,, , k(w)) is the measure associated with the Bernstein polynomiatgfesk (w)
of the measuré),, . SinceH (Q,, , k') converges weakly t@’, , ask’ — +oo, it follows that

there existsi, € N such that, for almost every € Q such thatk(w) > ko, d.) (k(w)) < <.
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On the other hand, it is easy to see that, for everg N,

k1
dj(w) = 0) > Wi, w, k) (y | Lk — L+ 1) dy
=1
! b -1 1
[aoy e (G g])swn-1rva.
L I—1 1
< - . l _ 1
< [ 2t @ (G ]) IR0k e
et -1 1
< Mij/ Z Wiz, w, k1) — Q. ((k—ak—D‘ﬂ(yU’kl—H-l)dy»
I 1Rl
< M;jky Nig,, (w),

where,Wi(z,w, k) = 372 wi(z, ) [{0;(x,w) } k6, (@.w)1=1}» Mij = Supyep ) | fii(y)|, and

v (4]

thend () Si=1,...,T,j=1,..., K, Itfollows that,

P{w €Q: '/fz’jdG(CCiaw) - /fidemi

Y PlweR: Npp(w) € ——i=1,.,T, j=1,.... K k(w) =k p.
AM
k1>ko

Thus, if N, (w) <

<ei,izl,...,T,j:l,...,KZ}Z

Now, since by assumption the joint distribution(@f(x1, -), ..., n:(xq4, ) and(z;(x4, ), . . .,

(x4, -)) have full support ofiR?, for everyzx, ..., x4, € 2°¢, d > 1, andk(-) has full support

onN, then Theorem 6 in Barrientos et al. (2012) ensures that

€ - . 4 _
P{OJGQ Nzk1( )_2M kl,'L—l,...,T,]—l,...,KZ, k:(w) ]{?1}>0,
which completes the proof of the theorem. 0J
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Proof of Theorem 3.6

Foreveryl’ > landi = 1,...,7T, letQ,, € 2([0,1]). Now, a simple application of the

triangle inequality implies that, far= 1, ..., 7, and almost every € (),

sup |g(zi, w)(y) — ¢ (v)] < sup |g(@i, w)(y) —bp(y | k(w), Qu,)| +
y€([0,1] y€[0,1]

sup |[bp(y | k(w), Qz;) — Gz, (¥)] -

y€[0,1]

Now, the continuity ofg,, implies that it can be uniformly approximated by the density
the Bernstein polynomial of),., (see, Petrone & Wasserman, 2002, Theorem 2). Thus, for

1=1,...,K,ande > 0, there existg, € N, such that

sup |bp(y | ko, Qz,) — o, (y)| < €/2.
y€[0,1]

On the other hand, it is easy to see that,ifer1, ..., K, and everyk; € N,

k1

sup |g(zs,w)(y) —bp(y | k1, Qu,) Wi(xi, w, k)B (y [ 1,k =1+ 1)

y€[0,1] y€[0,1]

N (1-1 1
—ZQ%<(k—lak—l}>5(y|lak1—l+l)

Y

where,W(x,w, k) = > 7=, wi(x, w) [{0:(2, W) } {140, (w.w)] =1} »

M= sup sup B(y|lki—1+1),
le{1,....,k1} y€[0,1]

and

lE{l ..... kl}

Nig, (w) = max  |Wi(x;,w, ki) — Qu, ((l;—ll, kil]) ' )
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It follows that if Vi, (w) < 5357 andk(w) = ki > ko then,

sup |g<mivw)(y) - bp(y ‘ k((’u)?sz)‘ < 6/27

ye[ovl}
and
sup |g(wi7w)(y) — Az, (y)‘ < €,
yE[O,l]
fori =1,...,7T. Now, it is easy to show that

P{w €Q: sup |g(xi,w)(y) — Gz, (y)| <€, i = 1,...,T} >

y€[0,1]

€
Z P{w € Q: Ny, (w) < 4Mk:1’Z: ..., T k(w) = kl}.
k1>ko
Finally, since by assumption the joint distribution@f(x, -), . . ., ni(x4, -)) and(z; (1, -), . . .,
2i(x4, -)) have full support oi?, for everyz,, ..., z, € 2°¢,d > 1, andk(-) has full support

onN, then Theorem 6 in Barrientos et al. (2012) ensures that

€ .
P{wEQ:Nikl(w) < QMkl,Zzl,...,T,k(w):kl} > 0,

which completes the proof of the theorem. O

Proof of Theorem 3.7
The following Lemma, proved below, is used in the proof ofttmeorem.

Lemma B.1. If 2° C R? is a compact set anflG, : € 2'} € Z([0,1])”, then, for every

e > 0 there exists, € N such that fork > k,

sup sup |bp(y | k,Gz) — 92(y)| < e
e yel0,1]

Now, let{Q, : € 2'} € 2([0,1])*, with density functiong ¢, : € 2°}. An application
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of the triangle inequality implies that, for everye 27, y € [0, 1] and almost every € (),

l9(x, w)(y) — ¢ ()] < [bp(y | k, Qe) — ¢2(y)| + |g(x,w)(y) — bp(y | £, Qz)] -

By Lemma B.1, it follows that there existg € N such that

sup sup |bp(y | ko, Qz) — ¢2(y)| <
xe 2 yel0,1]

N

On the other hand, note that for evetrye 2, k; € N and almost every € ),

k1
> Wi, w, ki)B (|l by — 1+ 1)
=1

sup [g(x,w)(y) —bp(y | k1, Q)| = sup
ye[O,l} ye[ovl}

M I 1-1
ki’ Kk

Y

[—1
< Mk max}Wl(m,w,kl)—Qw(l }

k' ky

where,Wj(x,w, k1) = 72 wi(x, w) I{0i(x,w) } (110, (@)=} @Nd

M= sup sup B(yll,ks—1+1).
1€{1,....k1} y€0,1]

Now, consider a subsét, C (2, such that for almost every € (), the following conditions

are met:

e Fori=1,..., ko,

2l — 1 1
he , — < —.
Sup |ha (2@, w)) = =) <
e Forl =1,
l €
b ) - T 07 7 S .
sup v (m(z,w)) —Q (( kOD) oM (2 — 1)
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e Forl=2,..., ko,

sup [vs ((, ) — Ll < —
xe 1_22;11Qw((13_073k;0}> 2koM (2F0 — 1)

[} k(w) == k’o.

Then for almost every € €, it follows that

€
sup sup |g(x,w)(y) —bp(y | k, Qz)| < 3
xze2 yel0,1]

and, therefore,
P {w € Q:sup sup |g(z,w)(y) — q(y)| < 6} >
xeZ ye0,1]

HP{wGQ sup

I—1 el

-1 1
< — > X
2k _4k0}

i) - @ (0] )| < g =1

ko Qa (5 5
EP{WGQ jgg; 1_Zi féi(gk}7>jm])'<2ko (;ko_l)}x

ha (21 (2, w)) =

P{w € : sup
xed

vz (10 (®, w)) —

PlweQ: klw)=ko}.

Now, since
SN 20—1
2ko
1
and

@ (& =)

-onee (G w])

€T —
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l=2,..., ko, are continuous functions, it follows that
20 —1 1
PsweQ:sup |hy(z(x,w)) — < — 5 X
H { e R T 4k:o}

1 €
ploco mp it -0 (o] )| < s}
@ (& 7]) :
P Q- - <
lll w el oup va(m(w)) = = S Qe (2 552])] P @ =)
> 0.

Finally, sincek(-) has full support olN, then

zeZ yel0,1]

P {w € Q:sup sup |g(x,w)(y) — q=(y)] < e} >0,

which completes the proof of the theorem. O

Proof of Lemma B.1

Let{Q, : x € 2} € 2([0,1])*, with density functiong ¢, : = € 2}, and assume, without
loss of generality, that?” = [0, 1]. Notice thatg,(y) can be seen as a joint density function
defined onZ" x [0, 1], whose marginal distribution fae is uniform. Now, let

k1

i/ky

S ool Qukdibla ik - i+ 1
(i—1)/k1

be the density of the multivariate Bernstein polynomiahef joint distributiony,.(y) of degrees

k andky, (k, k) € N2. Therefore, an extension of the Weierstrass approximadtienrem

ensures that for every> 0, there exist$, € N such that

sup sup
xeZ yE[O,l]

Z/kﬁl .
/kl
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for everyk > ko andk; > ky. On the other hand, note that

k1 i/kl
bp(y | Qa >—Z/( ' bp(y | Qo K)dtB(a | ik — i+ 1)
i=1 1— 1 k‘l
k J/k i/k1
<[ a ST ()dzde(@ | iy — i+ 1)| e | 4.k~ + 1)
j=1 (j— 1/k (i—=1)/k1 J(5—1)/

Thus, sincey™ | ik f”k Ih q:(z)dzdtp(x | i,ky — i+ 1) is the Bernstein polynomial of

(i=1)/k1 J(j—1)
Jlk
/ qz(2)dz,
(G-D/k

it follows that there existé, € N, such that for a fixed and everyk; > ko,

ilk i/k1
/ dz— / / (2)dzdtf(x | i,k —i+ 1) <
=1/ D/kr J(G-1)/

Finally, if £ = ko andk; = max{k, 7@0}, then a simple application of the triangle inequality

€

su su
p b %2

Je{l ...k} e

implies that,

i/k1
bp(y | Q. k) — g2(®)] < [bp(y | Qu. k) Z/ o DR | Qo e by =)

i/k1
Z/ by | Qu, k)dtB(m | i,k — i+ 1),

1)/k1

<

which completes the proof of the lemma. The extension of theffor the case wher&l” is

identified with[0, 1], p > 1, is straightforward; it is only needed to replace

i/k1
(2)dzdtB(x | i,ky — i+ 1)
(i—=1)/k1 J(j—1)/
by the corresponding multivariate Bernstein polynomial. O
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Proof of Corollary 3.1

Let {Q, : ¢ € 2°} € 2(|[0,1]), with density functiong ¢, : « € 2°}. From Theorem 7, it
follows that for every > 0, there exists a subsgf C (2 with positive P-measure, such that

for everyy € [0, 1], x € 2 and almost every € €,

l9(x,w)(y) — q=(y)| <,

which implies that

Now, since(x, y) — ¢(y) is continuous on the compact s@t x [0, 1], it follows that

sup sup ¢z(y) < oo.
xc 2 yel0,1]

Furthermore, if we assume that

f inf >0
inf yéﬂ) ; 4z(y) > 0,

it follows that there exisf\/;(¢) > 0 and M,(e) < oo, such thatM;(e) < e u())z 7 < Ms(e).
Since the logarithm function defined i, (¢), M2 (¢€)] is uniformly continuous and bounded,
and M, (¢) and M(¢) are decreasing and increasing as functions oéspectively, it follows

that, for every’ > 0, there existg > 0 such that

P {w € Q: sup KL(¢g, g(x,w)) < e'} >

xeZ a
e yel0,1]

P {w € Q:sup sup |g(x,w)(y) — ¢(y)| < e} > 0,

whereKL(q, g) fo y) log < ) dy. Now consider the case whaif . - infycp.1] ¢2(v)
= 0. By using a similar reasoning as in the proof of Theorem 2 ¢fdPe & Wasserman (2002),

it is possible to ensure that for every> 0, there exist > 0, ¢ > 0 and(), C €, such that for
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everyx € 2 and almost every € (),

KL(q,, g(x,w)) <€,

implying that

KL(gs, g(@,w)) < (C+1)10g C + C |[KL{gh. g(@,w)) + V/KL{dj, g, w))]| < €'
whereg;(y) = C~'qz(y) V é andC = [, ¢z(y) V 6 dy. Note that by definition

inf inf ¢ >0
J?xyé%vuqm(y) :

and, therefore,

P {w € Q: sup KL(¢,, g(z,w)) < e*} > P {w € Q: sup KL(¢g, 9(x,w)) < 6/} > 0,
e el

which completes the proof. O

B.2 Properties of thewDBPP

In this section we adapt the results derived for the genemaento the special case of the

wDBPP. The proofs closely follow those given in Section B.1.

Theorem B.1.Let{G, : © € 2} ~ wDBPP(\, ¥y, 77, «). If for everyj € N, the stochastic
processeg; are P—a.s. continuous, then for evefy;}7° C 2, such thatlim;_, ., x; —

.’Eoe%andl’jlgxol,lzl,...,p,

lim  sup |Gy, (B) — Gao(B)| =0, P-as,

J=+0 Beg((0,1])

thatis,G,, converges’—a.s. in total variation norm té-,,,, whenx; — x, . In addition, for

every{z,}* C 4, such thalim;_,  , x; — xo € Z andz; > zy, forsome =1,...,p,
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there exists a random probability measure (@ 1], %([0, 1])), Gx,, such that

im  sup |Ga,(B) — Gay(B)| =0, P-as,

J=+°0 Bes([0,1])
thatis,G,, converges’—a.s. in total variation norm tGry,, Whenz; — x.

PROOE Since the elements of#” are continuous functions af and, for every; € N, z;
is a P—as continuous stochastic process, it follows that> h.(z;(x,-)), j € N, is aP-a.s.
continuous function. Also, since the ceiling function imtinuous from the left and it has a limit
from the right, it follows that, for almost every € 2 and every{a:y)}oo  with 2! e 2,

j=1
such thatim;_, ) = z, € 2" andz),, < o, m=1,....p,

lim [k(w)@ (mg”,wﬂ = [k(w)b; (z0,w)] -

Jj—+oo

Furthermore, for almost evety € 2 and every{wg.”} ,witha” € 27, such thatim, .
j=1

my) =z € 2" andz},, > g, forsomem = 1,..., p, it follows that

lm [k(w)0; (2", w)] = [k(w)d;(zo, w)]" = J it k(w)bi(zo,w) € (4 - 1,7) .

j—+oo I J+1if k(w)bi(xo, w) = j

Therefore, by the Lebesgue’s dominated convergence timedréollows that the density w.r.t.
Lebesgue measure 6f,, is P—a.s. continuous from the left and it has a limit from the tigh

other words, that for every € [0, 1],

P {w € Q: lim gV w)(y) = g(zo,w)(y), lim g(=\” w)(y) = g(”(wo,w)(y)} =1,

Jj——+oo Jj—+oo

where
9" (@0, w)(y) = ij(wo,w)ﬁ(yl [k(w)0i (a9, w) 1", k(w) = [k(w)(z,w)]") +1).

Finally, let G (x,,w) be a probability measure with density functigh)(z,,w). A direct
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application of Scheffe’s theorem implies that

J=+% Bes([0,1])

p {w eQ: lim  sup |G, w)(B) = Glxo,w)(B)| =0,

lim_ sup \G(wg”,w)(B)—G<’”><wo,w><B>|=o}=1,

J=+% Bes((0,1])
which completes the proof of the theorem. O

Theorem B.2. Let{G, : * € 2"} ~ wDBPP(\, ¥y, 77, ). If for every{x,}° C £, such
thatlim; ,,x; — x, € 2, we havez(x;,-) Z, zi(xo, ), aSj — +oo, then, for all
y € (0,1),

lim p[G(x;,)(By), G(xo,)(By)] = 1,

Jj—+0o0

wherep(A, B) denotes the Pearson correlation betweeand B, and B, = [0, y|.

k
= Y E{F*(x,-) ()| k} BIN( | k,1),
=1

PrROOF Notice that for every € [0,1] and everyr € 2,

E{G(z,-)(By) |k} = E {Z [F™ (@, ) ()] BIN(L | &, 1)

=1

where BIN(- | k, y) stands for binomial distribution with parametétsy), and

F(x,-) () = sz(~)1{9z’($v ACRIENE

Now, notice that the independence of the stochastic presemsd the i.i.d. property of the
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corresponding elements, imply that

E{F(z,-) () [k} = {Zw {02, ) Hiro,@,1<iy

i
= ZE{wz ()} E{T{0:(z, )} (ros 1<ty | K}

= E{f{91 T, ) ko 1<ty | K}
= Gog (Ag),

where, A, = [0, j/k] andG¢,, stands for the marginal probability measuré g, -), for every

1 € N. It follows that
E{G4(B,) | k} = ZG (Ag) BIN(L | K, 1).

Applying a similar reasoning, it follows that, for every x, € 2" and everyy € [0, 1],

k

E{Ge(By)Gay(By) | K} = Z Z EA{wi ()} G§ g me (Ark % Auy i)

l Ik‘,y)

+ Z Z E {wl()w“()} Ggm(Al,k)Gémo(All,k)
Li=1,i1 i

B( l Ik‘y)

where,B(1,1; | k,y) = B(L | k,y)B(ly | k,y) andG;;

0,x,x0

corresponds to the marginal distri-

bution of (0;(x, -), 6;(xo, -)). In particular, forr = x,,

o0

> E{wi(-)} Goa(ALr)

i=1

BIN(I|k, y)? +

E{Go(B,)? |k} = Y

=1

Z [ Z E{wi<'>wi1('>}G0m<Al,k)G0m<Al1,k)

1= i=1,i1 41

B(lly | k.y).

1
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Now, since the elements o¥ are continuous functions aof and, for everyi € N and every
{z;}3°, with z; € 27, such thatim;_,, . x; — zy € Z, z;(x, ) converges in distribution
to z;(xo,-) asj — +oo, it follows thaté,(x;,-) converges in distribution té;(x, -), as

j — +oo. Now a few applications of Lebesgue dominated convergdraareém imply that

lim E{G,(B,)’} = > lim E{G/(B,)" |1} P{lweQ:k(w)=1}

Jj—>+00

= Y E{G4(B,) |1} Plw e Q: k(w) =1},

= E {Gwo(By)Z} )

lim B {Ga,(B,)Gay(B,)} = f: lim B {Gy,(By)Gay(B,) | 1} P{lw € Q: k(w) =1},

j—r+o0 Jj—+Foo
= iE{GmO(By)2 | 1} P{w € Q: k(w) =1},
=1
= E{G4(B,)*},
and
Jim E{Ge,(B))} = E{Gay(B,)}
which completes the proof of the theorem. OJ

Theorem B.3.Let{G, : x € 2} ~ wDBPP(\, ¥y, 7, o). Asumme that there exists a posi-
tive constanty such thatite,, z, € 2" and||z;—x2|| > 7, thenCov [, @, yea}s Lz (@a,)eas}] =
0, for everyA;, A, € #A(R). Assume also that for evemy, x, € 2" such that|xz; — x| > 7,
and for every sequencx;, x2;)}° C 272, such thatlim;_, oo (1, x2;) = (x1,x2), We

have that(z;(z1;, ), zi(x2;, -)) N (zi(x1,-), zi(x2,-)), @S j —> +oo. Then, for every
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y € [0,1],

lim Cov [G(zy),)(B,), G(xey,-)(By)] =

J—+0o0
k(-) k(-)
Cov ZGSml (Avkey) BIN(L (), ), ZG&;Q (Avkey) BIN( | E(), y)
=1 =1

where B, = [0,y], Ajx.) = [0,{/k(-)], G§, stands for the marginal probability measure of
01(x, ) and BIN(- | k,y) stands for the probability mass function of the binomiatritisition
with parametersk, ).

ProOOF. Notice that for everye,;, x,; € 2,

E[G(21,-)(By), G(®,)(By) | k] = E[G(@1;,-)(By) | ] E{G(@,-)(By) | k]

k 00
= Z ' Z Ewi(-)wi, ()] £ [H{(gi(wljf)ﬂil(w2j7'))eAl,kXAll,k}] B(l, 1y | k,y)

_ Zk: i E[wi() B [wi (V) E [Ty seant] B (Lo @aenniy | BOE | E.9).

I=1,l1=1i=1,i1=1

where,B(1,1; | k,y) = BIN(l | k,y) x BIN(l; | k,y). Now, since the elements o are
continuous functions at and, for everyi € N, it follows that

jh_,I?oE [H{(Gi(mlj7')79i(m2j7'))€Al,kXAll,k}] =k [H{Gi(mlf)GAl,k}] E [H{Gi(mz,')GAzl,k}]

and

JIEEOE [H{Gi(mljf)eAl,k}} B [H{Gi(m%v')eAll,k}} =E [H{ei(ml,')eAl,k}} B [H{ei(m%')eAll,k}} )
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Thus, by Lebesgue’s dominated convergence theorem

lim B [G(wy;,-)(By), G(@a,)(By) | k] = E[G(@1;,-)(By) | k] E{G(22;,-)(By) | K]

- 3 BGLL | ky) Z E [H{ei(ml,,)em}] E [H{wmz,-)eml,k}] E s ()ws, ()]
= Y BULIRY Y B Nean)] F Lo wanean o] B i) Bl ()
= Z B(lvll ‘ kvy) ‘ Z E [H{Gz‘(m,')eAz,k}] b [H{eil(w%‘)EAll,k}] Cov[wi()’wil(.)]
= B(l7ll ‘ k’y>E [H{91($1,')€Az,k}] [ {91(932 JEAL k}] Cov [Z wl Zw“ ]
for everyk € N, and therefore,
Jim Cov [G(215,)(B,), G(xaj, ) (By)]
— lim E[Cov [G(@;, )(B,). Glaay.)(B,) | K]
+ lim Cov [E|G(@1;,-)(By) | k], E[G(2;,-)(By) | k]

Jj—o0

"y {nm Cov [y, )(B,), Gl )(B,) | k]}

+Cov L_lgEO E (G, )(By) | K], im B [G(xs;,)(By) | k]}
= Cov [E[G(x1,-)(By) | k|, E[G(22,-)(By) | k]]

where for everye € 27,

F|G(=x, Z (Ark) ( I; ) y' (1 —y)*

which completes the proof of the theorem. O

TheoremB.4.Let{G, : x € 2"} ~ wDBPP(\, ¥y, 7, ). Assume that for evefyx,;, xs;) }°
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C %2, such thalimj_>+oo(m1j, ZBQJ') = (ml, ZBQ) € %2, we have tha([z,-(mlj, '), Zi(ng, )) ﬁ)

(zi(x1,-), zi(x2, ), @Sj —> +00. Then, for every = [0, 1],

lim p[G(@1;,-)(By), G(®s5,-)(By)] = p[G(@1,-)(By), G2, ) (By)],

Jj—00
whereB, = [0, y].

PROOF. Since the elements of# are continuous functions af and, for every; € N, and
every {(z;, x2;)}5°, With x1;,25; € 27, such thatlim; . (x1;, Z2;) = (21, 22), With
x1,x2 € A, it follows that (z; (x4, ), zi(xa;, -)) and z;(x;;, -) converges in distribution to
(zi(x1, ), zi(x2, ) and z;(xy, -), respectively, ag — +oo, for [ = 1,2. Finally, since
the correlationp, is a continuous function of5, (A4;x) andGj ,, ., (Ajx X Aj k), k € N,
J.j1 €{1,...,k}andl = 1,2, it follows that(x, z2) — p [G(z1,-)(B,), G(x2, ) (B,)] is also

a continuous function. O

Theorem B.5. Let{G, : ¢ € 2"} ~ wDBPP(\, ¥y, 57, ). If for everyzx,,...,xy € 279,

d > 1, the joint distribution of(z;(x1, ), ..., zi(x4, -)) has full support oriR?, and k(-) has
full support onN, then.2 ([0,1])” is the support of G, : € 2"} under the weak product
topology.

PROOF The proof is similar to the one of Theorem 3.5. In this case,

(x,w, k) Zwl ML{0i (2, W) } k0, (2,0)] =1}

Now, the non—singularity of the beta distribution, the asptions that the joint distribution of

(zi(x1, )y, zi(Tgy )

has full support oiR¢, for everyzx:, ..., x4 € 2°¢, d > 1, and thatk(-) has full support ofN,
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imply that

P{w €Q: ‘/fz’jdG(%w) - /fide:m

Y PlweQ: Ny (W) S i—yi=1,.. T, j=1,... Kykw) =k { >0,
k1>ko 4M2J kl

<%i:anﬂj:anm}2

by Theorem 6 in Barrientos et al. (2012), which completegptioef of the theorem. 0J

Theorem B.6. Let{G, : x € 2} ~ wDBPP(\, ¥y, 57, ). If for everyzx,,...,xy € 279,
d > 1, the joint distribution of(z,-(ml, Y, ..., zi(zg, ) has full support oiR?, andk(-) has full
support or, thenZ ([0, 1]) is the supportof G, : « € 2"} under theL, product topology.

PROOF The proof is similar to the one of Theorem 3.6. In this case,
Wi(x,w, k) sz MH{0:(2, W) Y 1k0,(2,0)] =1} -
Now, the non—singularity of the beta distribution, the asptions that the joint distribution of

(zi(x1,°), ..., zi(xg,-))

has full support oR?, for everyzx,, ..., x4 € 27, d > 1, and thatk(-) has full support o,
imply that

P{w € Q: sup |g(xi,w)(y) — ¢z, (y)| <€, i = 1,...,T} >

y€[0,1]

€
P Q: N, < =1..... T k =
kZ%O {w € ik (W) < 4Mk:1’l oo T k(w) kl} >0,

by Theorem 6 in Barrientos et al. (2012), which completesptioef of the theorem. 0J

Theorem B.7. Let{G, : x € 2} ~ wDBPP(\, ¥y, 57, ). If 2" is a compact set;(-) has

full support onN, and the processes used in the definition oftfEBPP are such that, for any
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0, 1]—valued continuous function defined 8, f, ande > 0,

P {w € Q:sup |hg(zi(z,w)) — f(x)] < e} > 0,
xel

thenZ ([0,1])” is the support of G, : & € 2"} under theL., topology.

PROOF Let{Q, : z € 2} € 2([0,1))%, with density functions{¢, : € 2°}. An
application of the triangle inequality implies that, foreyx € 27, y € [0, 1] and almost every

w € €,

l9(x, w)(y) — ()] < [bp(y | k, Qe) — ¢2(y)| + |g(x,w)(y) — bp(y | £k, Qz)] -

By Lemma B.1, it follows that there existg € N such that

N

sup sup |bp(y | ko, Qz) — ¢=(y)| <
xc 2 yel0,1]

Now, notice that for every € 27,
ko

> Wi(w,w, ko)B (yll ko — 1+ 1)
=1

ko I 1-1
ko' ko

sup |g(x,w)(y) —bp(y | ko, Qz)| = sup
ye[O,l} ye[ovl}

Y

AN
=
=
=
o
»

Y

[ -1
) VVl(m,W,ko) — Qg (k—oa k—o}

where,W,(x, w, ko) = 3272, wi(w)I{0;(2,w) } k6, (z.)1=1y @N

M= sup sup B(yll,ko—1+1).
1€{1,....ko} y€[0,1]

Sincex — Q, <kio, %} is a continuous function, then for eatk {1, ..., ko} there exist step

functions of the form

my
Si(z) = Z aj Lo, (),
=1
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I = 1,..., ko, where,m; is a natural numbera;,}"", are positive numbers,2;,}™ is a
partition of 2", each.Z;, has positive Lebesgue measure, &nds the indicator function of the

setA, such that for every: € 27, 3.1, S)(x) = 1, and

sup  sup
e 1e{l,... . ko}

[ -1 €
— — < X
Si(@) = Qa (k:o’ ko } ‘ = UMk
Notice that the above step functions, in turn, can be expdeas a discrete measure of the form

m

Sl(:v) = Z mzl{él(w)}{!—koéz(mﬂ:l}’

i=1

m

wherem is a natural number{«w;},”, are positive numbers such that < (0 ) and

_€
7 8Mkqg

S ;= 1, 6;(x) is a continuous functioni,= 1, ..., m, such that the set
{we X kobi(®) =1, 1=1,... k, izl,...,m}

has zero Lebesgue measure. Therefore, it is possible toestigiexistence of a positive con-

stant,y, such that isup,c ,-

0, (x,w) — éi(m)) < ~, then
‘[k‘o@i(m,wﬂ _ [k:oéi(m)}) <1.

Furthermore, if for some;,i, € {1,...,m} andl € {1,...,ko}, there exise z? ¢ 2

such that

koeil (w(l)) = ]{ZoéiQ (w(2)) = l,

then there exist!", z{" z{? z{” € 2 such that

min{mgl), mél)} < mgl) < max{:vgl), :vgl)},

min{w§2), :vgz)} < m?) < max{:vgz), mgz)}
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and

<m1n{:c1 L2V}, max{x!" ,mgl)}) m (min{wgz),wg)},max{:cgz),mgz)}) = 0.

Now, consider a subsél, C 2, such that for almost every € €, the following conditions

are met:
e Fori=1,...,m,
sup | (21(@,w)) — Oi(x)| <~
xe 2
e Fori =1,
~ €
‘Ui(w) wz| = 8Mk‘0(2m _ 1)
e Fori=2,...,m,
® o ‘
Vil\W) — - <
1= 8Mko(2m — 1)
 k(w) = ko.
Then for almost every € €, it follows that
S €
te ko) Wilz, w, ko) = z:: ()} rhodin—uy | < S Ik

wich implies that

€
sup sup |g(z,w)(y) —bp(y | k, Qz)| < 3
xc 2 yel0,1]
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and, therefore,

e yel0,1]

ﬁP{w € Q) : sup
i=1

e

€
s —w;| <
P{w €0 y(w) —wy| < Shol (2 — 1)} X

ﬁP{wEQ: v;(w) —

PlweQ:k(w) = k.

P{w € Q:sup sup |g(z,w)(y) — g (y)] < 6} >

b (. ) ~ Ba)| < 7}

Now, note that the continuity of the functiofig;}7, and the non—singularity of the beta distri-

bution imply that

HP{wGQ: sup
i=1

e

€
P Q:ui(w) —w| <
{we |vi(w) — W] 8/€0M(2m—1)} X

ha (212, w)) — éi(:c)‘ < 7} X

ﬁP{weQ: vi(w) — ’

w
> 0.

——
Hj<l 1- 23:1 wj

Finally, sincek(-) has full support orN, it follows that

P {w € Q:sup sup |g(x,w)(y) — q(y)| < e} > 0,

xze2 yel0,1]

which completes the proof of the theorem.

O

Theorem B.8. Let {G, : x € 2} ~ wDBPP(\, ¥y, 57, «). Assume that?” is a compact

set,k(+) has full support orN, and the processes used in the definition ofithE3PP are such
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that, for anye > 0 and|0, 1]-valued continuous functiofidefined onZ", we have

P {w € Q:sup |hg(zi(x,w)) — f(x)] < e} > 0.
xeZ

Then, X
P {w eQ: 333/0 ¢z (y) log <%) dy > e} > 0,

for everye > 0 and every{Q, : € 2} € 2(|0,1]), with density function$q, : € 2°}.
PROOF This proof is similar to the one of Corollary 3.1.

Theorem B.9. Let {G, : x € 2} ~ wDBPP(\, ¥,, 57, ). Assume that?” is a compact
set,k(-) has full support orN, and the processes used in the definition ofithE3PP are such

that, for anye > 0 and|0, 1]-valued continuous functiofidefined onZ", we have

P {w € Q:sup |hg(zi(x,w)) — f(x)| < e} > 0.

xeZ

Then the posterior distribution associated with the randomt distribution induced by the
wDBPP model,m") (y, x) = q(x)g(x, -)(y), whereq is the density generating the predictors,
is weakly consistent at any joint distribution of the form(y, z) = q(x)q(y | x), where
{w(-|x):ze2}e7(0,1)".

PROOF This proof is similar to the one of Theorem 3.8 (given in th@imdocument).

B.3 Properties of thedDBPP

In this appendix we adapt the results derived for the gemeaalel to the special case of the

ODBPP. The proofs closely follow those given in Section B.1.

Theorem B.10.Let{G, : x € 2} ~ 6DBPP(\, ¥4, 7, Gy). If for every{zx;}* C 2", such
thatlim; ,,x; — xy € 2, we havey,(x;, ) N ni(xo, ), @aSj — +o0, then, for all
y € (0,1),

lim p[G(x;,)(By), G(xo,)(By)] = 1,

Jj—+o0o
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B.3. PROPERTIES OF THEDBPP

wherep(A, B) denotes the Pearson correlation betweeand B, and B, = [0, y|.

k

= ZE{F* 1) | KYBIN( | k,y),

PROOF. Notice that for every € [0, 1] and everyr € 2,

k
E{G(z,-)(By) |k} = E {Z [E™ (@, ) ()] BIN(L | £, )

=1

where,BIN(- | k,y) stands for the probability mass function of the binomiatritisition with

parametersgk, y), and

sz VL0 () } rwo:()1<y-

Now, notice that the independence of the stochastic presemsd the i.i.d. property of the

}
— ZE{wZ D} E{I0:C) o<y | K

= E{I{6:()}mo.c1<ny | K}
= G(] (Al,k) )

corresponding elements, imply that

E{F(z,-)() | k} = {Zw DIL0: () Hwos 1<ty

whereA, , = [0,1/k]. It follows that

k
E{G(B,) |k} = > Go(Ax)BIN(|k,1).

=1
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Applying a similar reasoning, it follows that for every x, € 2 and everyy € [0, 1],

k

E{Ga(B,)Gay(B,) | k} = Z

k 00
+ Z [ Z E {’UJZ(CE, ')U)Z‘l (:130, )} Go(Al,k)G0<Al17k)
I=1,l1=1 Li=1,i1#i
B(l,1; | k,y),

ZE{wl Ywi(@o, )} Go(Ar) | BIN(L | k,y)?

1

where,B(1,1; | k,y) = BIN(l | k,y) x BIN(I; | k,y). In particular, forz = z,

E{G.(B,)* | k} = Z ZE {wi(e,-)*} Go(Arg) | BIN(L | k,y)* +

=1

Z [Z EA{wi(z, )wi, (2, )} Go(Aik)Go(Ai k)

I=1,l1=1 Li=1,i17i

Now, since the elements of are continuous functions af and, for everyi € N and every
{z;}3°, with z; € 27, such thatim;_, . x; — ¢ € 2, n;(x, ) converges in distribution
to n;(xo,-) asj — +oo, it follows that w;(x;, -) converges in distribution ta;(xo,-) as
j — +oc and thate — E {w;(x,")}, z — E {w;(x,-)*} andx — E {w;(x, )w;, (x,-)} are

continuous functions. Now, a few applications of Lebesgamitiated convergence theorem

imply that
i B{Go,(BF} = 3 lim E{Ga(B)7 |1} Plo €2 kw) =1}
=

= Y E{G4(B,) |1} Plw e Q: k(w) =1},

= ET{Gmo(By>2} )
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lim E{Gqa,(By)Gay(By)} = i lim E{Gq,(By)Gay(By) | 1} P{w e Q: k(w) =1},

Jj—>+00 Jj—+00

- ZE{Gwo(By)Z | 1} P{w € Q: k(w) =1},

= ET{Gm()(By)2} )

and
JEE:OOE {G y)} =F {Gmo(By)} )
which completes the proof of the theorem. O

Theorem B.11.Let{G, : ® € Z2'} ~ §DBPP(\, ¥, ¥, G,). Asumme that there exists a con-
stanty > O suchthatitc,—x, € 2 and||@;—x:|| > v, thenCov (L, (21, )e 41} L (@sy,)e s} ]

= 0, for everyA;, A, € #A(R). Assume also that;, x, € 2 such that for everyz; — x| >

7, and for every sequendéx;, x2;)}5° C 272, such thafim; o (z1;, z2;) = (z1, x2), We
have(n;(x1;, ), ni(x2;, -)) = (ni(z1, ), ni(x2,-)), asj — +o0. Then, for every € [0, 1],

lim Cov[G(xj,-)(By), Gz, )(B,)] =

Jj——+oo

iP{weQ:k(w):t}

Z B(l,L | t,y) ZE [wi(@1, )| Elw;(x, )] Cov [H{ei(.)eAl,t}vH{ei(-)eAll,t}}

I=1,l1=1 i=1
k()
+Cov | Y Go (A) BIN(L | k(- ZGO Apry) BIN( | k(-), )
=1
whereB, = [0,y], A; .y = [0,1/k(-)], BIN(- | k, y) stands for the probability mass function of
the binomial distribution with parametets, y) and B(l, 1, | k,y) = BIN( | k,y) x BIN({; |

k,y).
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ProOOF. Notice that, for everye,;, zs; € 2,

EG(w1;,-)(By), Gy, ) (By) k] = E[G(215,-)(By) | kK] E{G(255,-)(By) | K]

Now, since the elements of” are continuous functions af and, for everyi,i; € N,
w;(x 1, - )w;, (xo;, ) is @ continuous function of (n;(z1;, ), ni(x2;, )}, | = max{i, i}, it
follows that

lim E [wi(@1;, - )wi, (25, )] = E w1, )] E [w;, (22, )]

and
lim Ewi(x1), )] E [wi, (225, )] = E[wi(x1, )] B [w;, (T2, -)] .

j—o00

Thus, by Lebesgue’s dominated convergence theorem,atslthat

lim Cov [G(xy;,-)(By), G(xa;,-)(By) | K

H: Jim B (G, )(By), Gway, ) (By) | K] = B[G(ay, ) (By) K] E{G(x2,)(B,) | K
_ lzid By | 1,11, k) iziﬂ E[wi(zy, )| Elw;, (@2, )] E {H{eiwem,k}ﬂ{eh<->eAzl,k}}
- Z Bly | 1.1, k) f E [wi(1, )] E [wi (@2, )] B Lo et | B Lo, ren 1]
- Z Bly| 1,h, k) i E [wi(@s, ) Elwi, (22,)] Cov [Ty a v Teo ey o)
- 121]: 3 By | 1,11, k) 2 E [wy(@:, )| E[wi(s, )] Cov [H{eic)em,k}v H{emeAzl,k}} '

On the other hand, the covariance between the conditiomeatations ofZ(x;, -)(B,) and
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G(zo;,-)(B,) givenk is of the form,

lim Cov [B[G(x1,-)(By) K], E [G (25, ) (By)| K]
~ Cou |l B (Gl )(B)| ], i B [G(e, )(B) |
= Cov[E[G(z1,-)(By)| k], E[G(22,-)(By) | k]

where for everyr € 27,

which completes the proof of the theorem. 0J

Theorem B.12.Let{G, : x € 2"} ~ §DBPP(\, ¥y, 7, G,). Assume for ever(x;, ;) }°
C 22, suchthatim;_, ;oo (21, To;) = (21, @) € 22, we have thatn, (z:;, -), mi(as;, -)) —
(mi(x1, ), ni(x2, ), asj — +oo. Then, for every = [0, 1],

lim p [G (@15, -)(By), G(®5,)(By)] = p[G(@1,-)(By), Gz, ) (By)],

j—o0
whereB, = [0, y|.

PROOF. Since the elements of are continuous functions af and, for everyi € N and every
{(21;, 225) }3°, Withxy;, 2o € 27, suchthatim,_, (21, 2;) = (1, 22), With a1, 25 € 2,
it follows that

(i(@ 1z, ), mi(xay, ),
and n;(x;;, -) converges in distribution t@n;(x1, -), n:i(x2, -)) and n;(x;,-), respectively, as
j — 400, forl =1, 2. Italso follows thatx,, x5) — E {w;(x;, )}, (x1, 22) — E {w;(xy, -)*},
[l =1,2,and(xy, x) — E {w;(x, )w;, (x2,-)} are continuous functions, for everyi; € N.

Finally, since the correlatiom, is a continuous function of {w;(x;, )}, F {w;(x;,-)?*} and
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E{w;(x, - )w;, (z2,-)}, 4,41 € N, andl = 1,2, it follows that
(@1, @) = p[G(@1,-)(By), G(x2,-)(By)]

is also a continuous function. O

Theorem B.13.Let{G, : x € 2} ~ DBPP(\, ¥, ¥, Gy). If for everyzx,,..., x4y € 27,
d > 1, the joint distribution of ;(x1, -), . . ., mi(x4, -)) has full support oiR?¢, and,k(-) and G
have full support otN and(0, 1], respectively, the” ([0, 1])‘% isthe supportofG, : x € 2}

under the weak product topology.

PROOFE The proof is similar to the one of Theorem 3.5. In this caBé(x,w,k) =
Yoo wi(@, w) I{0;(w) }rrro,wy1=y-  Now, since by assumption the joint distribution of
(ni(x1,-),...,ni(xq,-)) has full support oR?, for everyz,,..., x4y € 2°¢, d > 1, and, k(")
andG have full support ofN and(0, 1], respectively, then Theorem 6 in Barrientos et al. (2012)

ensures that

P{w €N '/f,-jdG(m,-,w) —/fz'jd@xz—

<€Z‘,izl,...,T,jzl,...,Ki}Z

€ . .
Z P{wEQ:Nikl(w) < 4Mijk1,z:1,...,T, J :1,...,Ki,k(w):k‘1} > 0,

k1>ko

which completes the proof of the theorem. O

Theorem B.14.Let{G, : x € 2} ~ DBPP(\, ¥, ¥, Gy). If for everyzx,,..., x4y € 27,
d > 1, the joint distribution of;(x1, -), . . ., mi(x4, -)) has full support oiR?¢, and,k(-) and G
have full support oiN and (0, 1], respectively, thety ([0, 1])5” isthe supportofG, : x € 27}
under theL, product topology.

PROOF The proof is similar to the one of Theorem 3.6. In this case,
Wi, w, k) = wi(@, w)I{6:(w) ko, @)1=t
=1

Now, since by assumption the joint distribution(@f(x1, -), ..., n:;(x4,-)) has full support on
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RY, for everyz,,...,xzys € 2°% d > 1, and,k(-) and G, have full support oilN and (0, 1],

respectively, it follows that

P{w €Q: sup |g(xi,w)(y) — ¢z, (y)| <€, i = 1,...,T} >

y€[0,1]

by Theorem 6 in Barrientos et al. (2012), which completesptioef of the theorem. 0J

Theorem B.15.Let{G, : ¢ € 2} ~ 6DBPP(\, ¥, 7, Gy). If 2" is a compact set;7, and
k(-) have full support olN and (0, 1], respectively, and the processes used in the definition of
the/DBPP are such that, for any > 0 and|0, 1]—valued continuous functiohdefined on%’,

we have that
P {w € O sup Jua(m(@,w)) — ()] < } -0,

e

thenZ ([0,1])” is the support of G, : & € 2} under theL., topology.

PROOF The proof is similar to the one of Theorem 3.7. In this catsis, sufficient to consider

a subsef), C 2, such that for every € €, the following conditions are met:

Forl=1,..., ko,

[0,(w)ko] = L.

Forl =1,

P 0o (m(@,0)) = Qs ((0 kLD ) < N 1)

Forl=2,..., ko,

@ (=) :

sup |vg (11(@,w)) — . < .
wed ’ -y, ((/3_0 ED = 2koM (2% — 1)
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Then, for almost every € €, it follows that

€
sup sup |g(z,w)(y) —bp(y | k, Qz)| < 3
xe2 yel0,1]

and, thus,

P {w € Q:sup sup |g(x,w)(y) — ¢=(v)| < e} >

zeZ ye0,1]

ko
[[P{weQ: [0(w)ko] =1} x
=1

e (0 2| s}

@ (& 7)) : }
Vg (M (22, w)) — - Zé_:ll 0. ((kjo, ]k01]> | < koM (2k0 — 1)
P{weQ: k(w)=ko}.

P{w € Q: sup
xed

HP{wGQ sup

1—2 el

Now, note that since

e (o))
@ ((6-=)

-onee (G w])

l=2,..., ko, are continuous functions, it follows that

st - @ (0] )| < gerrae—s )

@ (& ))

Vg (T, w)) — [y, ((% %D | = 2k0M(;ko — 1)}

and

€T —

P {w € Q) : sup
xeZ

1—2 el

ko
HP w € ) sup

> 0.
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Finally, sinceG, andk(-) have full support ori0, 1] andN, respectively, then

P {w € Q:sup sup [g(x,w)(y) — gz(y)| < 6} >0,
z€2 yel0,1]

which completes the proof of the theorem. 0J

Theorem B.16.Let{G, : x € 2} ~ 6DBPP(\, ¥, 7, Gy). Assume that?” is a compact
set,GGo and k(-) have full support oiN and (0, 1], respectively, and the processes used in the
definition of theyDBPP are such that, for any > 0 and|0, 1]-valued continuous functiofi

defined onZ", we have that

P {w eQ: jgg; |vg(ni(x,w)) — f(x)] < e} > 0.

Then,
1
P {w € Q) : sup / qz(y) log (L@)) dy > 6} > 0,
ze2 Jo g(x,w)(y)

for everye > 0 and every{Q, : € 2} € 2(|0,1]), with density function$q, : € 2°}.
PROOF This proof is similar to the one of Corollary 3.1.

Theorem B.17.Let{G, : x € &} ~ DBPP(\, Wy, 7, Gy). Assume that?” is a compact
set,GGo and k(-) have full support oiN and (0, 1], respectively, and the processes used in the
definition of the#DBPP are such that, for any > 0 and [0, 1]-valued continuous functiof

defined onZ", we have that

Plue: s ulnew) - f@)] <cp >0

e

Then the posterior distribution associated with the randomt distribution induced by the
thetaDBPP model,m) (y, x) = q(x)g(x, -)(y), whereq is the density generating the predic-
tors, is weakly consistent at any joint distribution of thenfim(y, ) = ¢(x)q(y | x), where
{w(-|x):ze2}e7(0,1])”.

PROOF This proof is similar to the one of Theorem 3.8 (given in theimdocument).
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B.4 Proof of Theorem 3.9

Since the elements of are continuous functions af and, for every; € N, n; is a P-as
continuous stochastic process, it follows that— v,(n;(x,-)) andz — w;(x,-), j € N,
are P—a.s. continuous functions. A direct application of Lehesg dominated convergence
theorem implies that the density, w.r.t. Lebesgue measfi(&,, is P—a.s. continuous, i.e., for
everyy € [0, 1],

Ploen: tim glaw)) = gl | -1

Jj—+0o0

Now, by Scheffe’s theorem, it follows that

P{wEQ: lim sup |G(xj,w)(B)— G(xp,w)(B)] :0,} =1,

J=+% Bes([0,1])

which completes the proof of the theorem. O

B.5 MCMC schemes forDBPPmModels

In this appendix we provide a description of the MCMC impletagion used to draw samples
from the posterior distributions of the LDBPRLDBPP anddLDBPP models. The compu-
tational implementation was based on a finite dimensionalag@mation to the corresponding
dependent stick—breaking processes, where the numbentf le the infinite series representa-
tions was truncated to a valié. The MCMC algorithms correspond to a Gibbs sampler, which
combines, in the cases where the conditional distributamesnot of conjugate, slice (Neal,
2003) and Metropolis—Hastings (Tierney, 1994) algorithifise specific implementations for

each model are given next.
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MCMC scheme for the LDBPP model

To update the regression coefficieni, ..., ¥4 1,75, .., %, we used the multivariate slice

sampling algorithm proposed by Neal (2003). In this casectinditional distribution is given
by

fo (7717,...,7}7\, 1,7{,...,7%]...) o

n N-1
11 { > 0 riy) TL o) 8 0| [ (Ao 5)] o [ (5] + 1)

7=1 I<j

+ H [1—q (i, )] B (yi | [k h(da(z)Tv%) ],k — [k A (da(2:)Tv%) ] + 1)}

X
]
»

o]
z—’a
l\')lr—t

2

)—-
/—\
l\DI)—t

u") (877" (v - w7 - i (87" (v; - uz)} :

7j=1 7=1

whereq (z;,7;) = h(d,(z:)"v7). Let YooY+ Y, be the current value of the
regression coefficients, and,, w. € R*. The algorithm begins by drawing a random number
to ~ U <O, fo <1717,...,1;7V_1,1§,...,17V | )) and by defining

L} =a] —wjUj, Ri=al+w], j=1.. . N-1,

Z — &% — w?U* = AF z
Lj_lj wJUJ’ RJ lj_'_w]’

j=1,...,N,

WhereU;? andU; are drawn from the; andr,-dimensional uniform distributiond/,., (0, 1)

andU,, (0, 1), respectively. Then, the following steps are repeated netv coefficient values,

i AR Y-, Y, are accepted:

Step (i): DrawU7 andU3 from U, (0, 1) andU,, (0, 1), respectively, and define
=L!+U/(R!-L7), j=1,...,.N—1,

and

¥ =L:+U:(R:—L3), j=1,...,N.
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If tog < fo (7717, S AT P -t I ) then accept these new coefficient values and

stop the algorithm. Otherwise, go to the next step.

Step (ii): Lety, 7 75 75 B L

i L, R and L, be thel-th component of the vectol;?ﬁ;?, it

7;, R}, L], R} andLj, respectively. Then,

—forj=1,...,N-1landl =1,...,m,if 7}, < lgz' then setl, = lgz; else, set
R;']l :lgl'

—forj =1,...,N;andl = 1,...,m, if 75, < liz’ then setl? = 1;1; else, set

z z
R = o

To update the polynomial degrele, we used a Metropolis-.Hastings step, where the pro-

posal distribution is given bY) (kpew | koid) = Podgk,y—13 (knew) + (1 — 20)thy 13 (Fnew)
po € (0,1). Finally, the full conditional distributions for the hyperarameters”, p*, S” and

S* are conjugate. For mean vectors, these are given by

pl| .~
N-1

Ny, ([(38)1 + (N =187 {(Sg)lug +(sm)~! ’74 6™+ (v - 1)(3’7)1]1> :

J=1

and
1 N —1
P Ny [ (S5 NS T (S5 T g + (ST DAL (85 T+ NS T
j=1
respectively. For covariance matrices, the full condiisrare given by

N—-1
S"|... o~ IW, ((N—1)+u",\1'"+z(u"—v?)T(u"—V?)>

=1

and

N
Sz| ~ IVVT2 (N—FVZ’IIIZ—FZ(MZ_,YJZ)T([,LZ—’YJZ)>7

Jj=1
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respectively.

MCMC scheme for the wLDBPP model

To update the parameters, ..., vn_1,75,...,Yx, We used the multivariate slice sampling

algorithm proposed by Neal (2003). In this case, the coowiti distribution is given by

Jo(vn, ooyt N L)
H {Z o [T =) B (wi | [k b (da(e) ™) ] k= [k b (de(z)"v;)] +1)
j=1 I<j
+ T =w) B (i | [k b (dala) ™) ] k= [k R (da(z:)vi) ] + 1)}
I<N
1 N N-1
xexp{—§Z(7§ ) (SZ) }XH (1—u)” -1
j=1 j=1
Letvy,...,un_1,7]:---, 7 De the current value of the parameters, and take w,) €

(0, 1)xR*. The algorithm begins by drawing a random numfer U (0, fo (v1, ..., vn-1,77,
-yY% | -..)), and by defining

Li=v;, —wiU/, R;=v,+wj, j=1,...,N—1,

LZ»:')/JZ,—wJZ»Uj, R§:1§+w;, j=1,...,N,

whereU; andU? are drawn from ai/(0, 1) andU,, (0, 1) distribution, respectively. Then, the
following steps are repeated until new value of the pararsgte, ..., on_1,77, ..., YV, ale

accepted:

Step (i): DrawU; andU? from anU (0, 1) andU,, (0, 1) distribution, respectively, and define

v, =LY+ U (RY-LY), j=1,...,N—1,
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and
=L+ U;(R;-L;), j=1,...,N.

If to6 < fo(vi,..,on—1,75,--.,Y% | --.), then accept these new values and stop the

algorithm. Otherwise, go to the next step.

Step (ii): Let%l,yl,R" L

ji L R5, and L5, be thel-th component of the vectey;, 7, R}, L}, R?

andL?, respectively. Then,

—forj=1,...,N - 1,if v; <w;, thensetl; = v;; else, sef?! = v;.
—forj =1,...,N,andl = 1,...,r, if 75 < Lz-z' then setl?, = Lz'z; else, set

zZ z
le - ljl'

Finally, the polynomial degreé, and the hyper—parameters, andS*, were updated using

the same steps described for the LDBPP model.

MCMC scheme for the )LDBPP model

To update the parametetg’, ..., v%_;.61,...,0n, we used the multivariate slice sampling

algorithm proposed by Neal (2003). In this case, the coowfti distribution is given by

fO(717,...,")’7\7_1,91,...,QN|...) X

Y
n N-1
H{ g (zi,v;) [T = a (i v)] B (vi | Tk 61k — [k 6,1 +1)
+ 00— a @iy By | [k 6],k — [k 6x] +1)}

N

1 N-1 T

xexp{—i (7] — ") (sm~ (7] — p" }Heall—el
whereq (z;,v;) = h(d,(z;:)"~7). Let Yo% 504, -, Oy be the current values of the

parameters and taKe,, wy) € R x (0, 1). The algorithm begins by drawing a random number
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to~ U (0, fo (7], ., Yk_1.01,....0x | ...)), and by defining
L?zlg—w?U?, R?:137+w;7, j=1,...,N—1,

6 __ z770 0 __ z N
LJ—Q]_U}]U], RJ—QJ—F’(UJ, j—l,...,N7

whereU’ andU? are drawn from a/,., (0,1) andU (0, 1) distribution, respectively. Then, the
following steps are repeated until new value of the pararsgtg, ..., 7% _,,01,...,0x, are

accepted:

Step (i): DrawU? andU? from anl/,, (0, 1) andU (0, 1) distribution, respectively, and define
¥ =L!+U!(R!-L"), j=1,....N—1,

and

0,=LY+U; (RI—L}), j=1,...,N.

If to < fo (7], v%_1,01,...,0n | ...), then accept these new values and stop the

algorithm. Otherwise, go to the next step.

Step (ii): Letlg? , ¥ 1) and L7, be thel-th component of the vectq;?ﬁ;?, R} andL, respec-

tively. Then,

—forj=1,...,N—-1landl =1,...,r,if 7}, < v then setl, = v else, set
R =

—forj=1,...,N,andl =1,...,1,if ; < 0;, then setl;, = 0;; else, seRR? = 0,.

Finally, the polynomial degreé, and the hyper-parameteys? andS”, were updated using the

same steps described for the LDBPP model.
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B.6 Additional simulation results
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Figure B.1: Simulated data - Scenarioil £ 250): True (continuous line) and posterior mean
(dotted line) for the conditional density. A band consteactising the 95%point—-wise HPD
intervals is presented in gray. Panels (a), (d), (g) andl)),(e), (h) and (k), and (c), (f), (i)
and (1) display the results for the best DBPP model (LDBPB1E pest LDDP model (LDDP1),
both regarding the estimated distance, and the weight dependent DP for four values of the

ict tively.
predictor, respectively 139
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Figure B.2: Simulated data - Scenariail £ 500): True (continuous line) and posterior mean
(dotted line) for the conditional density. A band constedactising the 95%point-wise HPD
intervals is presented in gray. Panels (a), (d), (g) andH)),(e), (h) and (k), and (c), (f), (i)
and (1) display the results for the best DBPP model (LDBP&1E pest LDDP model (LDDP2),

both regarding the estimated distance, and the weight dependent DP for four values of the

predictor, respectively.
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Figure B.3: Simulated data - Scenariol£€ 1000): True (continuous line) and posterior mean
(dotted line) for the conditional density. A band consteactising the 95%point—-wise HPD
intervals is presented in gray. Panels (a), (d), (g) andl)),(e), (h) and (k), and (c), (f), (i)
and (1) display the results for the best DBPP model (LDBP&1E pest LDDP model (LDDP2),
both regarding the estimated distance, and the weight dependent DP for four values of the

predictor, respectively.
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Figure B.4: Simulated data - Scenariol £ 250): True (continuous line) and posterior mean
(dotted line) for the conditional density. A band consteactising the 95%point—-wise HPD
intervals is presented in gray. Panels (a), (d), (g) andu)),(e), (h) and (k), and (c), (), (i) and
() display the results for the best DBPP modeLDBPP1), the best LDDP model (LDDP2),

both regarding the estimated distance, and the weight dependent DP for four values of the
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Figure B.5: Simulated data - Scenariol £ 500): True (continuous line) and posterior mean
(dotted line) for the conditional density. A band consteactising the 95%point—-wise HPD
intervals is presented in gray. Panels (a), (d), (g) andu)),(e), (h) and (k), and (c), (), (i) and
() display the results for the best DBPP modeLDBPP1), the best LDDP model (LDDP1),

both regarding the estimated distance, and the weight dependent DP for four values of the
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Figure B.6: Simulated data - Scenariotl £ 1000): True (continuous line) and posterior mean
(dotted line) for the conditional density. A band consteactising the 95%point—-wise HPD
intervals is presented in gray. Panels (a), (d), (g) andH)),(e), (h) and (k), and (c), (f), (i)
and (1) display the results for the best DBPP model (LDBP&1E pest LDDP model (LDDP1),
both regarding the estimated distance, and the weight dependent DP for four values of the

predictor, respectively.
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Figure B.7: Simulated data - Scenario il £ 250): True (continuous line) and posterior mean
(dotted line) for the conditional density. A band constedactising the 95%point-wise HPD
intervals is presented in gray. Panels (a), (d), (g) andH)),(e), (h) and (k), and (c), (f), (i)
and (1) display the results for the best DBPP model (LDBP&1E pest LDDP model (LDDP1),

both regarding the estimated distance, and the weight dependent DP for four values of the
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Figure B.8: Simulated data - Scenario il £ 500): True (continuous line) and posterior mean
(dotted line) for the conditional density. A band constedactising the 95%point-wise HPD
intervals is presented in gray. Panels (a), (d), (g) andH)),(e), (h) and (k), and (c), (f), (i)
and (1) display the results for the best DBPP model (LDBP&1E pest LDDP model (LDDP1),

both regarding the estimated distance, and the weight dependent DP for four values of the

predictor, respectively.
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Figure B.9: Simulated data - Scenario IH & 1000): True (continuous line) and posterior
mean (dotted line) for the conditional density. A band carged using the 95%point—wise
HPD intervals is presented in gray. Panels (a), (d), (g) andk), (e), (h) and (k), and (c),
(M, () and (I) display the results for the best DBPP moddDBPP1), the best LDDP model
(LDDP1), both regarding the estimatdd distance, and the weight dependent DP for four

values of the predictor, respectively.
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Figure B.10: Simulated data - Scenariml-£ 250): True (continuous line) and posterior mean
(dotted line) for the conditional density. A band consteactising the 95%point—-wise HPD
intervals is presented in gray. Panels (a), (d), (g) andu)),(e), (h) and (k), and (c), (f), (i) and
() display the results for the best DBPP moddlDBPP2), the best LDDP model (LDDP1),

both regarding the estimatedd,, distance, and the weight dependent DP for four values of the

predictor, respectively.
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Figure B.11: Simulated data - Scenarial-€ 500): True (continuous line) and posterior mean
(dotted line) for the conditional density. A band consteactising the 95%point—-wise HPD
intervals is presented in gray. Panels (a), (d), (g) andu)),(e), (h) and (k), and (c), (f), (i) and
() display the results for the best DBPP moddlDBPP2), the best LDDP model (LDDP2),

both regarding the estimatedd,, distance, and the weight dependent DP for four values of the

predictor, respectively.
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Figure B.12: Simulated data - Scenarionl € 1000): True (continuous line) and posterior
mean (dotted line) for the conditional density. A band carged using the 95%point—wise
HPD intervals is presented in gray. Panels (a), (d), (g) #ndk), (e), (h) and (k), and (c),
(M, () and (I) display the results for the best DBPP moddDBPP2), the best LDDP model
(LDDP1), both regarding the estimatéd, distance, and the weight dependent DP for four

values of the predictor, respectively.
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(dotted line) for the conditional density. A band consteactising the 95%point-wise HPD
intervals is presented in gray. Panels (a), (d), (g) andu)),(e), (h) and (k), and (c), (f), (i) and
() display the results for the best DBPP modeLDBPP1), the best LDDP model (LDDP1),

both regarding the estimatedd,, distance, and the weight dependent DP for four values of the
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Figure B.14: Simulated data - Scenariorl£ 500): True (continuous line) and posterior mean
(dotted line) for the conditional density. A band consteactising the 95%point-wise HPD
intervals is presented in gray. Panels (a), (d), (g) andu)),(e), (h) and (k), and (c), (f), (i) and
() display the results for the best DBPP moddlDBPP1), the best LDDP model (LDDP1),

both regarding the estimatedd,, distance, and the weight dependent DP for four values of the
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Figure B.15: Simulated data - Scenario il & 1000): True (continuous line) and posterior
mean (dotted line) for the conditional density. A band carged using the 95%point—wise
HPD intervals is presented in gray. Panels (a), (d), (g) #ndk), (e), (h) and (k), and (c),
(M, () and (I) display the results for the best DBPP moddDBPP1), the best LDDP model
(LDDP1), both regarding the estimatéd,, distance, and the weight dependent DP for four

values of the predictor, respectively.
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Figure B.16: Simulated data - Scenario Il & 250): True (continuous line) and posterior
mean (dotted line) for the conditional density. A band carged using the 95%point—wise
HPD intervals is presented in gray. Panels (a), (d), (g) #ndk), (e), (h) and (k), and (c),
(M, (1) and (1) display the results for the best DBPP modellDBPP1), the best LDDP model
(LDDP1), both regarding the estimatéd,, distance, and the weight dependent DP for four

values of the predictor, respectively.
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Figure B.17: Simulated data - Scenario Il & 500): True (continuous line) and posterior
mean (dotted line) for the conditional density. A band carged using the 95%point—wise
HPD intervals is presented in gray. Panels (a), (d), (g) #ndk), (e), (h) and (k), and (c),
(M, (1) and (1) display the results for the best DBPP modellDBPP2), the best LDDP model
(LDDP1), both regarding the estimatéd,, distance, and the weight dependent DP for four

values of the predictor, respectively.
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Figure B.18: Simulated data - Scenario il & 1000): True (continuous line) and posterior
mean (dotted line) for the conditional density. A band carged using the 95%point—wise
HPD intervals is presented in gray. Panels (a), (d), (g) #ndk), (e), (h) and (k), and (c),
(M, () and (1) display the results for the best DBPP modil¥BPP2), the best LDDP model
(LDDP1), both regarding the estimatéd, distance, and the weight dependent DP for four

values of the predictor, respectively.
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B.7 Additional results for the proportion of food
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Figure B.19: Proportion of food - LDBPP model. Panels (a), (®©), (d), (e) and (f) display the
posterior mean (dashed line) and a 95% point-wise HPD bamy @rea) for the conditional
density at socioeconomic level low-low, low, medium-lowedium, medium-high and high,
respectively, under the LDBPP model. The posterior meaewthe parametric beta regression

model is given as a solid line for comparison purposes.
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Figure B.20: Proportion of foodwLDBPP model. Panels (a), (b), (c), (d), (e) and (f) display
the posterior mean (dashed line) and a 95% point-wise HPD (@ary area) for the conditional
density at socioeconomic level low-low, low, medium-loweaium, medium-high and high, re-
spectively, under the LDBPP model. The posterior mean under the parametric bgtassion

model is given as a solid line for comparison purposes.
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B.8 Additional results for the proportion of hygienic waste
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Figure B.21: Proportion of hygienic waste - LDBPP model. &auifa), (b), (c), (d), (e) and (f)
display the posterior mean (dashed line) and a 95% poirg-WRD band (grey area) for the
conditional density at socioeconomic level low-low, lowedium-low, medium, medium-high

and high, respectively, under the LDBPP model.
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Figure B.22: Proportion of hygienic wasterL DBPP model. Panels (a), (b), (c), (d), (e) and
(f) display the posterior mean (dashed line) and a 95% peis¢-HPD band (grey area) for the
conditional density at socioeconomic level low-low, lowedium-low, medium, medium-high

and high, respectively, under the. DBPP model.
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