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Abstract

As the complexity of many scientific problems grows, the modelling and analysis of data com-

ing from these problems requires of increasingly sophisticated statistical models. The constant

search of such models has been one of the major stimulus for research in Bayesian nonparamet-

ric (BNP) methods. This dissertation presents advances in BNP models for predictor–dependent

distributions (or density regression) by studying one of their most important properties (support)

and proposing a novel class of these models. In order to contextualize the dissertation, an initial

chapter is included presenting a literature review and somebasic concepts which are useful to

understand the main reasons that motivated this work. Thosereasons are also included in this

chapter. Because this project is based on two different works, the dissertation has been divided

in two pieces that are self–contained and included in two different chapters, 2 and 3.

In the fist part, Chapter 2, we study the support properties ofDirichlet process–based mod-

els for sets of predictor–dependent probability distributions. Exploiting the connection between

copulas and stochastic processes, we provide an alternative definition of MacEachern’s depen-

dent Dirichlet processes. Based on this definition, we provide sufficient conditions for the full

weak support of different versions of the process. In particular, we show that under mild con-

ditions on the copula functions, the version where only the support points or the weights are

dependent on predictors have full weak support. In addition, we also characterize the Hellinger

viii



CONTENTS

and Kullback–Leibler support of mixtures induced by the different versions of the dependent

Dirichlet process. A generalization of the results for the general class of dependent stick–

breaking processes is also provided.

In the second part, Chapter 3, we propose a novel probabilitymodel for sets of predictor–

dependent probability distributions with bounded domain.The proposal corresponds to an ex-

tension of the Dirichlet–Bernstein prior by using dependent stick–breaking processes. Ap-

pealing theoretical properties such as full support, continuity, marginal distribution, correlation

structure, and consistency of the posterior distribution are studied. Practicable special cases of

the general model are discussed and illustrated using simulated and real–life data. The simu-

lated data is also used to compare the proposed methodology to existing methods.

Finally, Chapter 4 summarizes the dissertation and discusses possible generalizations and

future work.

ix



List of Figures

3.1 Simulated data - Scenario I (n = 500): True (continuous line) and posterior

mean (dotted line) for the conditional density. A band constructed using the

95%point-wise HPD intervals is presented in gray. Panels (a), (d), (g) and (j),

(b), (e), (h) and (k), and (c), (f), (i) and (l) display the results for the best DBPP

model (θDBPP2), the best LDDP model (LDDP2), both regarding the estimated

L∞ distance, and the weight dependent DP for four values of the predictor,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 Simulated data - Scenario II (n = 500): True (continuous line) and posterior

mean (dotted line) for the conditional density. A band constructed using the

95%point-wise HPD intervals is presented in gray. Panels (a), (d), (g) and (j),

(b), (e), (h) and (k), and (c), (f), (i) and (l) display the results for the best DBPP

model (θDBPP1), the best LDDP model (LDDP1), both regarding the estimated

L∞ distance, and the weight dependent DP for four values of the predictor,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

x



LIST OF FIGURES

3.3 Simulated data - Scenario III (n = 500): True (continuous line) and poste-

rior mean (dotted line) for the conditional density. A band constructed using

the 95%point-wise HPD intervals is presented in gray. Panels (a), (d), (g) and

(j), (b), (e), (h) and (k), and (c), (f), (i) and (l) display the results for the best

DBPP model (wDBPP2), the best LDDP model (LDDP1), both regarding the

estimatedL∞ distance, and the weight dependent DP for four values of the

predictor, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 77

3.4 Proportion of food -θLDBPP model. Panels (a), (b), (c), (d), (e) and (f) display

the posterior mean (dashed line) and a 95% point-wise HPD band (grey area)

for the conditional density at socioeconomic level low-low, low, medium-low,

medium, medium-high and high, respectively, under theθLDBPP model. The

posterior mean under the parametric beta regression model is given as a solid

line for comparison purposes. . . . . . . . . . . . . . . . . . . . . . . . . .. . 80

3.5 Proportion of hygienic waste -θLDBPP model. Panels (a), (b), (c), (d), (e) and

(f) display the posterior mean (dashed line) and a 95% point-wise HPD band

(grey area) for the conditional density at socioeconomic level low-low, low,

medium-low, medium, medium-high and high, respectively, under theθLDBPP

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B.1 Simulated data - Scenario I (n = 250): True (continuous line) and posterior

mean (dotted line) for the conditional density. A band constructed using the

95%point–wise HPD intervals is presented in gray. Panels (a), (d), (g) and

(j), (b), (e), (h) and (k), and (c), (f), (i) and (l) display the results for the best

DBPP model (LDBPP1), the best LDDP model (LDDP1), both regarding the

estimatedL1 distance, and the weight dependent DP for four values of the pre-

dictor, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 139

xi



LIST OF FIGURES

B.2 Simulated data - Scenario I (n = 500): True (continuous line) and posterior

mean (dotted line) for the conditional density. A band constructed using the

95%point–wise HPD intervals is presented in gray. Panels (a), (d), (g) and

(j), (b), (e), (h) and (k), and (c), (f), (i) and (l) display the results for the best

DBPP model (LDBPP1), the best LDDP model (LDDP2), both regarding the

estimatedL1 distance, and the weight dependent DP for four values of the pre-

dictor, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 140

B.3 Simulated data - Scenario I (n = 1000): True (continuous line) and posterior

mean (dotted line) for the conditional density. A band constructed using the

95%point–wise HPD intervals is presented in gray. Panels (a), (d), (g) and

(j), (b), (e), (h) and (k), and (c), (f), (i) and (l) display the results for the best

DBPP model (LDBPP1), the best LDDP model (LDDP2), both regarding the

estimatedL1 distance, and the weight dependent DP for four values of the pre-

dictor, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 141

B.4 Simulated data - Scenario II (n = 250): True (continuous line) and posterior

mean (dotted line) for the conditional density. A band constructed using the

95%point–wise HPD intervals is presented in gray. Panels (a), (d), (g) and

(j), (b), (e), (h) and (k), and (c), (f), (i) and (l) display the results for the best

DBPP model (wLDBPP1), the best LDDP model (LDDP2), both regarding the

estimatedL1 distance, and the weight dependent DP for four values of the pre-

dictor, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 142

B.5 Simulated data - Scenario II (n = 500): True (continuous line) and posterior

mean (dotted line) for the conditional density. A band constructed using the

95%point–wise HPD intervals is presented in gray. Panels (a), (d), (g) and

(j), (b), (e), (h) and (k), and (c), (f), (i) and (l) display the results for the best

DBPP model (wLDBPP1), the best LDDP model (LDDP1), both regarding the

estimatedL1 distance, and the weight dependent DP for four values of the pre-

dictor, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 143

xii



LIST OF FIGURES

B.6 Simulated data - Scenario II (n = 1000): True (continuous line) and poste-

rior mean (dotted line) for the conditional density. A band constructed using

the 95%point–wise HPD intervals is presented in gray. Panels (a), (d), (g) and

(j), (b), (e), (h) and (k), and (c), (f), (i) and (l) display the results for the best

DBPP model (LDBPP1), the best LDDP model (LDDP1), both regarding the

estimatedL1 distance, and the weight dependent DP for four values of the pre-

dictor, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 144

B.7 Simulated data - Scenario III (n = 250): True (continuous line) and poste-

rior mean (dotted line) for the conditional density. A band constructed using

the 95%point–wise HPD intervals is presented in gray. Panels (a), (d), (g) and

(j), (b), (e), (h) and (k), and (c), (f), (i) and (l) display the results for the best

DBPP model (LDBPP1), the best LDDP model (LDDP1), both regarding the

estimatedL1 distance, and the weight dependent DP for four values of the pre-

dictor, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 145

B.8 Simulated data - Scenario III (n = 500): True (continuous line) and poste-

rior mean (dotted line) for the conditional density. A band constructed using

the 95%point–wise HPD intervals is presented in gray. Panels (a), (d), (g) and

(j), (b), (e), (h) and (k), and (c), (f), (i) and (l) display the results for the best

DBPP model (LDBPP1), the best LDDP model (LDDP1), both regarding the

estimatedL1 distance, and the weight dependent DP for four values of the pre-

dictor, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 146

B.9 Simulated data - Scenario III (n = 1000): True (continuous line) and poste-

rior mean (dotted line) for the conditional density. A band constructed using

the 95%point–wise HPD intervals is presented in gray. Panels (a), (d), (g) and

(j), (b), (e), (h) and (k), and (c), (f), (i) and (l) display the results for the best

DBPP model (LDBPP1), the best LDDP model (LDDP1), both regarding the

estimatedL1 distance, and the weight dependent DP for four values of the pre-

dictor, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 147

xiii



LIST OF FIGURES

B.10 Simulated data - Scenario I (n = 250): True (continuous line) and posterior

mean (dotted line) for the conditional density. A band constructed using the

95%point–wise HPD intervals is presented in gray. Panels (a), (d), (g) and

(j), (b), (e), (h) and (k), and (c), (f), (i) and (l) display the results for the best

DBPP model (θLDBPP2), the best LDDP model (LDDP1), both regarding the

estimatedL∞ distance, and the weight dependent DP for four values of the

predictor, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 148

B.11 Simulated data - Scenario I (n = 500): True (continuous line) and posterior

mean (dotted line) for the conditional density. A band constructed using the

95%point–wise HPD intervals is presented in gray. Panels (a), (d), (g) and

(j), (b), (e), (h) and (k), and (c), (f), (i) and (l) display the results for the best

DBPP model (θLDBPP2), the best LDDP model (LDDP2), both regarding the

estimatedL∞ distance, and the weight dependent DP for four values of the

predictor, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 149

B.12 Simulated data - Scenario I (n = 1000): True (continuous line) and posterior

mean (dotted line) for the conditional density. A band constructed using the

95%point–wise HPD intervals is presented in gray. Panels (a), (d), (g) and

(j), (b), (e), (h) and (k), and (c), (f), (i) and (l) display the results for the best

DBPP model (LDBPP2), the best LDDP model (LDDP1), both regarding the

estimatedL∞ distance, and the weight dependent DP for four values of the

predictor, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 150

B.13 Simulated data - Scenario II (n = 250): True (continuous line) and posterior

mean (dotted line) for the conditional density. A band constructed using the

95%point–wise HPD intervals is presented in gray. Panels (a), (d), (g) and

(j), (b), (e), (h) and (k), and (c), (f), (i) and (l) display the results for the best

DBPP model (wLDBPP1), the best LDDP model (LDDP1), both regarding the

estimatedL∞ distance, and the weight dependent DP for four values of the

predictor, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 151

xiv



LIST OF FIGURES

B.14 Simulated data - Scenario II (n = 500): True (continuous line) and posterior

mean (dotted line) for the conditional density. A band constructed using the

95%point–wise HPD intervals is presented in gray. Panels (a), (d), (g) and

(j), (b), (e), (h) and (k), and (c), (f), (i) and (l) display the results for the best

DBPP model (θLDBPP1), the best LDDP model (LDDP1), both regarding the

estimatedL∞ distance, and the weight dependent DP for four values of the

predictor, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 152

B.15 Simulated data - Scenario III (n = 1000): True (continuous line) and posterior

mean (dotted line) for the conditional density. A band constructed using the

95%point–wise HPD intervals is presented in gray. Panels (a), (d), (g) and

(j), (b), (e), (h) and (k), and (c), (f), (i) and (l) display the results for the best

DBPP model (LDBPP1), the best LDDP model (LDDP1), both regarding the

estimatedL∞ distance, and the weight dependent DP for four values of the

predictor, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 153

B.16 Simulated data - Scenario III (n = 250): True (continuous line) and posterior

mean (dotted line) for the conditional density. A band constructed using the

95%point–wise HPD intervals is presented in gray. Panels (a), (d), (g) and

(j), (b), (e), (h) and (k), and (c), (f), (i) and (l) display the results for the best

DBPP model (wLDBPP1), the best LDDP model (LDDP1), both regarding the

estimatedL∞ distance, and the weight dependent DP for four values of the

predictor, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 154

B.17 Simulated data - Scenario III (n = 500): True (continuous line) and posterior

mean (dotted line) for the conditional density. A band constructed using the

95%point–wise HPD intervals is presented in gray. Panels (a), (d), (g) and

(j), (b), (e), (h) and (k), and (c), (f), (i) and (l) display the results for the best

DBPP model (wLDBPP2), the best LDDP model (LDDP1), both regarding the

estimatedL∞ distance, and the weight dependent DP for four values of the

predictor, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 155

xv



LIST OF FIGURES

B.18 Simulated data - Scenario III (n = 1000): True (continuous line) and posterior

mean (dotted line) for the conditional density. A band constructed using the

95%point–wise HPD intervals is presented in gray. Panels (a), (d), (g) and

(j), (b), (e), (h) and (k), and (c), (f), (i) and (l) display the results for the best

DBPP model (θLDBPP2), the best LDDP model (LDDP1), both regarding the

estimatedL∞ distance, and the weight dependent DP for four values of the

predictor, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 156

B.19 Proportion of food - LDBPP model. Panels (a), (b), (c), (d), (e) and (f) display

the posterior mean (dashed line) and a 95% point-wise HPD band (grey area)

for the conditional density at socioeconomic level low-low, low, medium-low,

medium, medium-high and high, respectively, under the LDBPP model. The

posterior mean under the parametric beta regression model is given as a solid

line for comparison purposes. . . . . . . . . . . . . . . . . . . . . . . . . .. . 157

B.20 Proportion of food -wLDBPP model. Panels (a), (b), (c), (d), (e) and (f) display

the posterior mean (dashed line) and a 95% point-wise HPD band (grey area)

for the conditional density at socioeconomic level low-low, low, medium-low,

medium, medium-high and high, respectively, under thewLDBPP model. The

posterior mean under the parametric beta regression model is given as a solid

line for comparison purposes. . . . . . . . . . . . . . . . . . . . . . . . . .. . 158

B.21 Proportion of hygienic waste - LDBPP model. Panels (a),(b), (c), (d), (e) and

(f) display the posterior mean (dashed line) and a 95% point-wise HPD band

(grey area) for the conditional density at socioeconomic level low-low, low,

medium-low, medium, medium-high and high, respectively, under the LDBPP

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

B.22 Proportion of hygienic waste -wLDBPP model. Panels (a), (b), (c), (d), (e) and

(f) display the posterior mean (dashed line) and a 95% point-wise HPD band

(grey area) for the conditional density at socioeconomic level low-low, low,

medium-low, medium, medium-high and high, respectively, under thewLDBPP

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

xvi





List of Tables

3.1 Simulated data: True models. . . . . . . . . . . . . . . . . . . . . . . .. . . . 70

3.2 Simulated data: EstimatedL∞ (integratedL1) for each model, under the differ-

ent simulation scenarios and sample sizes. . . . . . . . . . . . . . .. . . . . . 74

xviii





Chapter 1

Introduction

1.1 Background and literature review

1.1.1 The general context

The definition and study of theoretical properties of probability models defined on infinite -

dimensional spaces have received increasing attention in the statistical literature because these

models are the basis for the Bayesian nonparametric (BNP) generalization of finite-dimensional

statistical models (see, e.g., Ghosh & Ramamoorthi, 2003; Müller & Quintana, 2004; Hjort

et al., 2010). These generalizations allow the user to gain model flexibility and robustness

against mis-specification of a parametric statistical model. BNP models are specified by defin-

ing a stochastic process whose trajectories belong to a functional space,G, such as the space of

all probability measures defined on a given measurable space. The law governing such a process

is then used as a prior distribution for a functional parameter in the Bayesian framework.

The increase in applications of BNP methods in the statistical literature has been motivated

largely by the availability of simple and efficient methods for posterior computation in Dirichlet
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1.1. BACKGROUND AND LITERATURE REVIEW

process mixture (DPM) models (Ferguson, 1983; Lo, 1984). The DPM models incorporate

Dirichlet process (DP) priors (Ferguson, 1973, 1974) for components in Bayesian hierarchical

models, resulting in an extremely flexible class of models. Due to the flexibility and ease in

implementation, DPM models are now routinely implemented in a wide variety of applications,

ranging from machine learning to genomics (see, e.g. Hjort et al., 2010). Furthermore, a rich

theoretical literature about support, posterior consistency and rates of convergence (Lo, 1984;

Ghosal et al., 1999; Lijoi et al., 2005; Ghosal & Van der Vaart, 2007) justify the use of DPM

models for inference in single density estimation problems.

LetG be the space of all probability measures, with density w.r.t. Lebesgue measure, defined

on an appropriate measurable space(S,B(S)), with S ⊆ R
q, and whereB(S) is the Borelσ–

field. A DPM model for density estimation is aG–valued stochastic process,G, defined on an

appropriated probability space(Ω,A, P ), such that for almost everyω ∈ Ω, the density function

of G is given by

g(y | F (ω)) =

∫

Θ

ψ(y, θ)F (ω)(dθ), y ∈ S, (1.1)

whereψ(·, θ) is a continuous density function on(S,S), for everyθ ∈ Θ, Θ ⊆ R
q, andF is a

DP, whose sample paths are probability measures defined on(Θ,B(Θ)), with B(Θ) being the

Borel σ–field. If F is DP with parameters(M,F0), whereM ∈ R
+
0 andF0 is a probability

measure on(Θ,B(Θ)), written asF | M,F0 ∼ DP (MF0), then the trajectories of the process

can be a.s. represented by the following stick-breaking representation (Sethuraman, 1994):

F (B) =
∞∑

i=1

wiδθi(B), B ∈ B(Θ), (1.2)

whereδθ(·) is the Dirac measure atθ, wi = Vi
∏

j<i(1− Vj), with Vi | M
iid
∼ Beta(1,M), and

θi | F0
iid
∼ F0. Discussion of properties and applications of DP can be found, for instance, in

Ferguson (1973, 1974), Korwar & Hollander (1973), Antoniak(1974), Blackwell & MacQueen

(1973), Cifarelli & Regazzini (1990), Hanson et al. (2005),Hjort & Ongaro (2005), Hjort et al.

(2010) and in references therein. Recent work in BNP models has concentrated on different

generalizations of the problem, which are described in the next sections.

2
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1.1.2 Alternatives to Dirichlet process mixing

Alternative discrete probability models to the DP have beenconsidered. Some examples are

members of the general class of species sampling models (SSM) introduced by Pitman (1996).

The class of SSM includes as special cases the DP and the normalized random measures (Nieto-

Barajas et al., 2004), among many others. Members of this class can be represented in the form

G(B) =
∑∞

i=1wiδθi(B)+ (1−
∑∞

i=1wiδθi(B))G0(B),B ∈ B(Θ), where, the atomsθi areiid

random variables with common distributionG0, θi
iid
∼ G0, which are assumed independent of

the non-negative random weightswi. The weightswi are constrained such that
∑∞

i=1wi ≤ 1

a.s. The name of the class is motivated by the interpretationof the parameters; theith weight

wi is interpreted as the relative frequency of theith species in a species’ list present in a certain

population, andθi is interpreted as the tag assigned to that species. If
∑∞

i=1wi = 1 the SSM is

called proper and the corresponding prior random probability measureG is a.s. discrete. Some

examples of SSM are the Dirichlet-multinomial processes (Muliere & Secchi, 1995), theǫ-DP

(Muliere & Tardella, 1998), the normalized inverse Gaussian processes (Lijoi et al., 2005), and

the beta two-parameter processes (Ishwaran & Zarepour, 2000).

Perhaps one of the best known examples of the SSM is the stick-breaking process (Ishwaran

& James, 2001). A discrete random probability measure of theform (1.2) is called a stick-

breaking process ifωi = Vi
∏

j<i(1 − Vj), Vi | M
ind
∼ Beta(ai, bi), andθi | F0

iid
∼ F0, where

{ai}i≥1 and{bi}i≥1 are sequences of positive numbers. These random weights,ωi, define a

proper SSM if and only if
∑

i≥1E[log(1 − Vi)] = −∞. In particular, there are two specific

stick-breaking process that have been well studied: the Dirichlet process (Ferguson, 1973, 1974)

whereai = 1 andbi = M , and the two parameter Poisson-Dirichlet processes (Pitman, 1995,

1996; Pitman & Yor, 1997; Ishwaran & James, 2001) whereai = 1− a andbi =M + ai (with

0 ≤ a ≤ 1, M > −a).

1.1.3 Continuous and absolutely continuous random probability measures

Alternatives formulations of the problem have been considered by using BNP models which

admit directly continuous and absolutely continuous distributions, thus avoiding the convolu-
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1.1. BACKGROUND AND LITERATURE REVIEW

tion with a continuous kernel to generate probability measures with density w.r.t. Lebesgue

measure. Some examples are the general class of tail-free processes (Freedman, 1963; Fabius,

1964; Ferguson, 1974), Polya trees (Ferguson, 1974; Mauldin et al., 1992; Lavine, 1992, 1994),

mixtures of Polya trees (Lavine, 1992; Hanson & Johnson, 2002; Hanson, 2006; Christensen

et al., 2008; Jara et al., 2009), randomized Polya trees (Paddock, 1999, 2002; Paddock et al.,

2003), Gaussian processes (O’Hagan, 1992; Angers & Delampady, 1992), Wavelets (Müller &

Vidakovic, 1998), logistic Gaussian processes (Tokdar & Ghosh, 2007, see, e.g.), and quantile

pyramids (Hjort & Walker, 2009).

1.1.4 Models for related probability measures

Generalizations of (1.1) and (1.2) have been proposed to accommodate dependence of the data

on predictors. To date, most of the extensions have focused on constructions that generalize the

DPM model by considering

g(y | x, Fx(ω)) =

∫

Θ

ψ(y, θ)Fx(ω)(dθ), y ∈ S, (1.3)

whereg(y | x, Fx) is a conditional density indexed by the value of a continuouspredictor

x ∈ X ⊂ R, and the dependence is introduced through the mixing probability measureFx. In

this case, the parametric space,G, corresponds to the product space given by
∏

x∈X P(S), where

P(S) is the space of all probability measures defined on(S,B(S)). Notice that the inferential

problem is related to the modeling of the collection of predictor-dependent probability measures

{Fx : x ∈ X}.

Some of the earliest developments on dependent DP models appeared in Cifarelli & Regazz-

ini (1978), who defined dependence across related random measures by introducing a regression

for the baseline measure of marginally DP distributed random measures. A more flexible con-

struction was proposed by MacEachern (1999, 2000), called the dependent Dirichlet process

(DDP). The key idea behind the DDP is to create a set of marginally DP-distributed random

measures and to introduce dependence by modifying the stick-breaking representation of each

element in the set. Specifically, MacEachern (1999, 2000) generalized expression (1.2) by as-
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suming

Fx(B) =
∞∑

i=1

wi(x)δθi(x)(B), B ∈ B, (1.4)

where the point massesθi(x), i = 1, . . ., are independent stochastic processes with index set

X , and the weights take the formwi(x) = Vi(x)
∏

j<i[1 − Vj(x)], with Vi(x), l = 1, . . ., be-

ing independent stochastic processes with index setX andBeta(1,M) marginal distribution.

MacEachern (2000) also studied a version of the process withpredictor-independent weights,

Fx(B) =
∑∞

i=1wiδθi(x)(B). Versions of the predictor-independent weights DDP have been

successfully applied in a variety of applications (see, e.g. De Iorio et al., 2004; Gelfand et al.,

2005; Jara et al., 2010). Other extensions of the DP for dealing with related probability dis-

tributions include the DPM mixture of normals model for the joint distribution of the response

and predictors (Müller et al., 1996), the hierarchical mixture of DPM (Müller et al., 2004),

the hierarchical DP (Teh et al., 2006), the order-based DDP model (Griffin & Steel, 2006), the

nested DP (Rodriguez et al., 2008), the kernel-stick breaking (Dunson & Park, 2008), among

many others. Based on a different formulation of the conditional density estimation problem,

Tokdar et al. (2010) and Jara & Hanson (2011) proposed alternatives to convolutions of depen-

dent stick-breaking approaches of the form (1.3) and (1.4),which yield conditional probability

measures with density w.r.t. Lebesgue measure without the need of convolutions.

The development of any BNP model always has to keep in mind that there are some proper-

ties which are expected to be satisfied by the model. In the case of models for related probability

measures, it is expected that the following properties are necessarily met: (i) the support of the

prior distribution induced by the process{Gx : x ∈ X} should be large; (ii) a continuity

property in the sense thatGx converges, at least in probability, toGx0 , asx −→ x0; (iii)

increasing (and decreasing) dependence ofGx andGx0 with decreasing (increasing) distance

betweenx andx0; and (iv) posterior computation can proceed efficiently through a straightfor-

ward MCMC algorithm. A commonly studied property, but not necessarily expected, is given

by, (v) the marginal distribution ofGx ideally follows a familiar distribution at any given level

of the predictorx. Since the parametric space corresponds to a product space,the study of the
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support property requires to consider generalizations of the standard topologies for spaces of

singles probability measures. The next section discusses some aspects related to this property.

1.1.5 Support property in models for related probability measures

The support of a probability measure, also known as topological support, is defined as the

smallest closed set with probability one. Here, the parametric spaceG must be endowed with

a topology and the collection of all Borel sets onG forms theσ–algebra where the prior dis-

tribution is defined. It is said that a probability measure has full support, given a topology, if

G is its topological support. In this context, a probability measure satisfies the large support

property if its support contains a sufficiently large amountof elements ofG. This property can

be considered a minimum requirement and almost a “necessarycondition” for a nonparametric

model to be considered “nonparametric”, because it ensuresthat a nonparametric prior does not

assign too much mass on small or restricted sets of probability measures. This property is also

important because it is a typically required condition for frequentist consistency of the posterior

distribution.

As was discussed above, the definition of the support of probability models depends on the

choice of the topology. These topologies are usually definedthrough a base of open neigh-

borhoods. In the context of models for related probability measures, the most natural topolo-

gies that could be considered are weak product,Lq product,ν-integratedLq andL∞, where

q = 1, . . . ,∞ andν is a probability measure defined on the(X ,B(X )). A brief description of

these topologies is given below:

Let P (S)X =
∏

x∈X P (S) be the product space formed by all the sets of predictor–

dependent probability distributions of the form{Hx : x ∈ X}, where for everyx ∈ X , Hx

is a probability measure defined on(S,B(S)). Product spaces are commonly equipped with

a natural topology called the product topology, which is defined as the coarsest topology for

which all the projections{Hx : x ∈ X} 7→ Hx0 , x0 ∈ X , are continuous. In this context,

the notion of the continuity in the weak andLq product topology is given by the weak con-

vergence of probability measures and theLq–distance between density functions, respectively.
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Notice that for theLq product topology the product spaceP (S)X must be restricted to sets of

predictor–dependent probability distributions such thatfor everyx ∈ X , Hx has density w.r.t

Lebesgue measure. Although the product topology can be a natural choice in product spaces,

it is not the only one. Any product space can be identified withsome space of functions, and

any notion of distance between those functions can be used toinduce a topology on this space.

Here, the elements ofP (S)X are identified with functions of the formx 7→ Hx, and thus, the

ν-integratedLq andL∞ topologies are induced by the metrics,

dν,Lq
(x 7→ Px, x 7→ Hx) =

∫

X

∫

S

|px(y)− hx(y)|
q dyν(dx),

and

dL∞ (x 7→ Px, x 7→ Hx) = sup
x∈X

sup
y∈S

|px(y)− hx(y)| ,

respectively, and where for everyx ∈ X , px andhx is the density w.r.t. Lebesgue measure of

Px andHx, respectively. Again, the spaceP (S)X must be restricted so that these metrics are

well defined.

Notice that the topologies presented above can be defined through a base of open neighbor-

hoods. Therefore, to show that under a specific topology, thesetM ⊆ P (S)X is the support of

a particular prior distribution defined onP (S)X , it is necessary to show that, for the topology

being considered,M is a closed set, and for every open basic set,N , the prior probability of

the setN
⋂
M is positive.

Although the formal definition of support depends on the considered topology, there exists

an important kind of support that may not be interpreted in a topological sense, namely the

Kullback–Leibler support. The topological sense is lost because the Kullback–Leibler diver-

gence is asymmetric and not a metric. The importance of this support arises from the fact that

it is required to show the consistency of the posterior distribution. The characterization of this

support is done using a similar strategy to that used in topological spaces. Specifically, we say

that{Hx : x ∈ X} ∈ P (S)X belongs to the Kullback–Leibler support, if every neighbourhood

of {Hx : x ∈ X} has positive prior probability, where such neighbourhoodshave been defined

using the Kullback–Leibler divergence.

7



1.2. MOTIVATION

1.2 Motivation

The motivation for the developments of this thesis is summarized in the following two sections.

1.2.1 Characterizing the support in models for related probability mea-

sures.

Although there exists a wide variety of probability models for related probability distributions,

there is a scarcity of results characterizing the support ofthe proposed processes. Some recent

results have been provided by Pati et al. (2011) and Norets & Pelenis (2011), in the context of

dependent mixtures of Gaussians induced by probit stick–breaking processes (Chung & Dun-

son, 2009), and dependent mixtures of location–scale distributions induced by finite mixing

distributions (Norets, 2010) and kernel stick–breaking processes (Dunson & Park, 2008), re-

spectively. However, these results have been obtained for very specific BNP models and they

could not be easily extended to a broader class of models. Another result was provided by

MacEachern (1999, 2000), who partially characterized the support of the DDP, leaving a gap

with regard to this property.

The lack of results that provide conditions, necessary or sufficient, to ensure the property

of large support in models for related probability measuresis an issue that deserves to be ad-

dressed. In particular, it is necessary to determine conditions that characterize the support of

dependent processes that serve as mixing probability measures, for instance the DDP, and to

study its relationship with the support of mixtures inducedby these processes. Given the con-

text above, one of the developments of this thesis was motivated by making a contribution

addressed to study the support of some of the most popular models for related probability mea-

sures. In particular, we study the support of the DDP and dependent stick–breaking process,

and its relationship with the support of mixture models induced by them. The weak product,

L1 product and Kullback-Leibler product support are considered in this study. The use of prod-

uct topologies allows us to define the DDP or the stick–breaking process in terms of processes

whose laws are entirely determined by their respective finite dimensional distributions. More-

over, given the connection between copulas and stochastic processes, we are also able to define

8
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the DDP and the stick–breaking process now using the structure provided by copulas.

1.2.2 A BNP model for bounded density regression.

In practice, it is becoming more common to deal with regression problems where the observed

data have complex structures and where the use of standard statistical methods is limited. De-

pending on the complexity, we can find different alternativemethods to deal with this kind of

data, including the increasingly popular BNP methods. In this context, there is a rich variety of

models for related probability distributions that have been proposed. The list is huge but the un-

derlying challenge is the same. Some examples include the DDP MacEachern (1999, 2000), the

DPM mixture of normals model for the joint distribution of the response and predictors (Müller

et al., 1996), the hierarchical mixture of DPM (Müller et al., 2004), the order–based DDP model

(Griffin & Steel, 2006), the predictor–dependent weighted mixture of DP (Dunson et al., 2007),

the kernel–stick breaking (Dunson & Park, 2008), the probit–stick breaking processes (Chung

& Dunson, 2009; Rodriguez & Dunson, 2009), the dependent skew DP model (Quintana, 2010),

the Geometric stick-breaking processes for continuous-time (Mena et al., 2011), among many

others.

To the best of our knowledge, all of the previous (and many others) approaches have consid-

ered models for densities on the real line and none have focused on densities defined on a known

closed interval of the real line,[l, u], −∞ < l < u <∞. In principle, all these models could be

applied if the data were suitably transformed. Since suitable transformations mean considering

bijective functions, implying that the edges of the interval, l andu, are identified with−∞ and

∞, it follows that the transformed densities would not be defined on the edges of the domain,

i.e, atl andu. A natural solution to deal with this issue would consist of defining the values of

the transformed densities evaluated atl andu, as the right-hand limit atl and left-hand limit atu,

respectively. However, this solution has two important disadvantages: (∗) it is hard to compute

these limits in practice; and (∗∗) the limits could be equal to infinity, implying an unbounded

likelihood function if at least one of the observations is equal to l or u. The unboundedness of

likelihood might be controlled by the prior distribution; but imposing restrictions on the prior is
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not a really easy task to do in this context. Therefore, models based on transformations should

be used with some care, especially in cases where a part of thedata associated to the response

variable are concentrated on the edges of the interval.

In this context, the lack of BNP models for related probability distributions where the re-

sponse variable belongs to a closed interval of the real lineis the main motivation to propose a

novel BNP model addressed to fill this gap. Here, we proposed an BNP model for predictor–

dependent probability distributions well defined on a closed interval, which satisfies the desired

properties (i)-(v), section 1.1.4.

1.3 Outline of this dissertation

The work in this thesis can be divided in two parts that have been developed inside a BNP

framework, in particular, in the context of probability models for predictor–dependent proba-

bility distributions. Each part is presented in individualchapters, to be precise in chapters 2 and

3, which can be read independently because they are self-contained in terms of the notation and

abbreviations. Both chapters include an introduction, development and a final section with the

conclusions and future work. The outline of this dissertation is as follows.

In Chapter 2, we provide an alternative characterization ofthe weak support of the two

versions of MacEachern’s DDP, namely, a version where both weights and support points are

functions of the predictors, and a version where only the support points are functions of the

predictors. We also characterize the weak support of a version of the DDP model where only

the weights depend on predictors. In addition, we also provide sufficient conditions for the full

Hellinger support of mixture models induced by DDP priors, and characterize their Kulback–

Leibler support. Our results are based on an alternative definition of MacEachern’s DDP, which

exploits the connection between stochastic processes and copulas. Specifically, families of

copulas are used to define the finite dimensional distributions of stochastic processes with given

marginal distributions. The alternative formulation of the DDP makes explicit the parameters

of the process, and their role on the support properties.

In Chapter 3, we propose a novel probability model for sets ofpredictor–dependent prob-
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ability distributions with bounded domain. Dependent stick-breaking processes are used to

extend the Dirichlet–Bernstein prior proposed by Petrone (1999a,b). Theoretical properties as-

sociated with the proposal, such as continuity, correlation structure, support and consistency

of the posterior distribution, are studied. In particular,the weak product,L∞ product,L∞,

Kullback–Leibler product and,ν–integrated andL∞ Kullback–Leibler support were charac-

terized for the proposal model. Practicable special cases of the general model are discussed

and illustrated using simulated and real data. The simulated data is also used to compare the

proposed methodology to existing methods.

In Chapter 4, we provide a review of the results presented in this Dissertation, and discuss

possible directions of future research. A final appendix contains proofs of theorems, technical

results and figures showing some of the estimated densities.

11





Chapter 2

On the support of MacEachern’s dependent Dirichlet

processes and extensions

This chapter has been published as:

BARRIENTOS , A. F., JARA , A. & QUINTANA , F. A. (2012). On the support of MacEach-

ern’s dependent Drichlet processes and extensions.Bayesian Analysis7 277–310.
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2.1 Introduction

This paper focuses on the support properties of probabilitymodels for sets of predictor–dependent

probability measures,{Gx : x ∈ X }, where theGx’s are probability measures defined on a

common measurable space(S,S ) and indexed by ap–dimensional vector of predictorsx ∈ X .

The problem of defining probability models of this kind has received increasing recent at-

tention in the Bayesian literature, motivated by the construction of nonparametric priors for

the conditional densities estimation problem. To date, much effort has focused on construc-

tions that generalize the widely used class of Dirichlet process (DP) priors (Ferguson, 1973,

1974), and, consequently, the class of DP mixture models (Ferguson, 1983; Lo, 1984; Esco-

bar & West, 1995) for single density estimation. A random probability measureG is said to

be a DP with parameters(α,G0), whereα ∈ R
+
0 = [0,+∞) andG0 is a probability mea-

sure on(S,S ), written asG | α,G0 ∼ DP (αG0), if for any measurable nontrivial partition

{Bl : 1 ≤ l ≤ k} of S, the vector{G(Bl) : 1 ≤ l ≤ k} has a Dirichlet distribution with pa-

rameters(αG0(B1), . . . , αG0(Bk)). It follows thatG(B) | α,G0 ∼ Beta(αG0(B), αG0(B
c)),

and therefore,E[G(B) | α,G0] = G0(B) andV ar[G(B) | α,G0] = G0(B)G0(B
c)/(α + 1).

These results show the role ofG0 andα, namely, thatG is centered aroundG0 and thatα is a

precision parameter.

An early reference on predictor–dependent DP models is Cifarelli & Regazzini (1978), who

defined a model for related probability measures by introducing a regression model in the cen-

tering measure of a collection of independent DP random measures. This approach is used, for

example, by Muliere & Petrone (1993), who considered a linear regression model for the center-

ing distributionG0
x ≡ N(x′β, σ2), wherex ∈ R

p, β ∈ R
p is a vector of regression coefficients,

andN(µ, σ2) stands for a normal distribution with meanµ and varianceσ2, respectively. Similar

models were discussed by Mira & Petrone (1996) and Giudici etal. (2003). Linking nonpara-

metric models through the centering distribution, however, limits the nature of the dependence

of the process. A more flexible construction, the dependent Dirichlet process (DDP), was pro-

posed by MacEachern (1999, 2000). The key idea behind the DDPis the construction of a set

of random measures that are marginally (i.e. for every possible predictor value) DP–distributed
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random measures. In this framework, dependence is introduced through a modification of the

stick–breaking representation of each element in the set. If G | α,G0 ∼ DP (αG0), then the

trajectories of the process can be almost surely represented by the following stick–breaking

representation provided by Sethuraman (1994):

G(B) =

∞∑

i=1

Wiδθi(B), B ∈ S , (2.1)

whereδθ(·) is the Dirac measure atθ, Wi = Vi
∏

j<i(1 − Vj) for all i ≥ 1, with Vi | α
iid
∼

Beta(1, α), andθi | G0
iid
∼ G0. MacEachern (1999, 2000) generalized expression (2.1) by

considering

Gx(B) =
∞∑

i=1

Wi(x)δθi(x)(B), B ∈ S ,

where the support pointsθi(x), i = 1, . . ., are independent stochastic processes with index set

X andG0
x marginal distributions, and the weights take the formWi(x) = Vi(x)

∏
j<i[1−Vj(x)],

where{Vi(x) : i ≥ 1} are independent stochastic processes with index setX and Beta(1, αx)

marginal distributions.

MacEachern (2000) showed that the DDP exists and can have full weak support, provided a

flexible specification for the point mass processes{θi(x) : x ∈ X } and simple conditions for

the weight processes{Vi(x) : x ∈ X } are assumed. Based on the latter result, he also proposed

a version of the process with predictor–independent weights, Gx(B) =
∑∞

i=1Wiδθi(x)(B),

called the single weights DDP model. Versions of the single weights DDP have been applied to

ANOVA (De Iorio et al., 2004), survival (De Iorio et al., 2009; Jara et al., 2010), spatial model-

ing (Gelfand et al., 2005), functional data (Dunson & Herring, 2006), time series (Caron et al.,

2008), discriminant analysis (De la Cruz et al., 2007), and longitudinal data analysis (Müller

et al., 2005). We refer the reader to Müller et al. (1996), Dunson et al. (2007), Dunson & Park

(2008), and Chung & Dunson (2009), and references therein, for other DP–based models for

related probability distributions.

Although there exists a wide variety of probability models for related probability distribu-
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tions, there is a scarcity of results characterizing the support of the proposed processes. The

large support is a minimum requirement and almost a “necessary condition” for a nonparamet-

ric model to be considered “nonparametric”, because it ensures that a nonparametric prior does

not assign too much mass on small sets of probability measures. This property is also important

because it is a typically required condition for frequentist consistency of the posterior distribu-

tion. Some recent results have been provided by Pati et al. (2011) and Norets & Pelenis (2011),

in the context of dependent mixtures of Gaussians induced byprobit stick–breaking processes

(Chung & Dunson, 2009), and dependent mixtures of location–scale distributions induced by

finite mixing distributions (Norets, 2010) and kernel stick–breaking processes (Dunson & Park,

2008), respectively.

In this paper we provide an alternative characterization ofthe weak support of the two

versions of MacEachern’s DDP discussed above, namely, a version where both weights and

support points are functions of the predictors, and a version where only the support points are

functions of the predictors. We also characterize the weak support of a version of the DDP

model where only the weights depend on predictors. Finally,we provide sufficient conditions

for the full Hellinger support of mixture models induced by DDP priors, and characterize their

Kulback–Leibler support. Our results are based on an alternative definition of MacEachern’s

DDP, which exploits the connection between stochastic processes and copulas. Specifically,

families of copulas are used to define the finite dimensional distributions of stochastic processes

with given marginal distributions. The alternative formulation of the DDP makes explicit the

parameters of the process, and their role on the support properties. The rest of this paper is

organized as follows. Section 2.2 provides the alternativedefinition of MacEachern’s DDP.

Section 2.3 contains the main results about the support of the various DDP versions, as well

as extensions to more general stick–breaking constructions. A general discussion and possible

future research lines are given in Section 2.4.

2.2 MacEachern’s dependent Dirichlet processes

MacEachern (1999, 2000) defined the DDP by using transformations of independent stochastic
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processes. LetαX = {αx : x ∈ X } be a set such that, for everyx ∈ X , αx ∈ R
+
0 , and let

G0
X

= {G0
x : x ∈ X } be a set of probability distributions with support on(S,S ). LetZθi

X
=

{
Zθ

i (x) : x ∈ X
}

, i ∈ N, be independent and identically distributed real–valued processes

with marginal distributions
{
F θ
x : x ∈ X

}
. Similarly, letZVi

X
=
{
ZV

i (x) : x ∈ X
}

, i ∈ N,

be independent and identically distributed real–valued processes with marginal distributions
{
F V
x : x ∈ X

}
. For everyx ∈ X , letT V

x : R −→ [0, 1] andT θ
x : R −→ S be transformations

that specify a mapping ofZV
i (x) into Vi(x), andZθ

i (x) into θi(x), respectively. Furthermore,

setT V
X

=
{
T V
x : x ∈ X

}
andT θ

X
=
{
T θ
x : x ∈ X

}
. In MacEachern’s definition, the DDP is

parameterized by (
αX ,

{
ZVi

X

}∞
i=1

,
{
Zθi

X

}∞
i=1

, T V
X
, T θ

X

)
.

To induce the desired marginal distributions of the weightsand support point processes, MacEach-

ern defined the transformations as a composition of appropriate measurable mappings. Specif-

ically, for everyx ∈ X , he wroteT V
x = B−1

x ◦ F V
x andT θ

x = G0−1

x ◦ F θ
x , whereB−1

x and

G0−1

x are the inverse cumulative density function (CDF) of the Beta(1, αx) distribution andG0
x,

respectively.

We provide an alternative definition of MacEachern’s DDP that explicitly exploits the con-

nection between copulas and stochastic processes. The basic idea is that many properties of

stochastic processes can be characterized by their finite–dimensional distributions. Therefore,

copulas can be used for their analysis. Note however, that many concepts associated with

stochastic processes are stronger than the finite–dimensional distribution approach. In order

to make this paper self–contained, we provide below a brief discussion about the definition of

stochastic processes through the specification of finite dimensional copula functions.

2.2.1 Copulas and stochastic processes

Copulas are functions that are useful for describing and understanding the dependence struc-

ture between random variables. The basic idea is the abilityto express a multivariate dis-

tribution as a function of its marginal distributions. IfH is a d–variate CDF with marginal

CDF’s given byF1, . . . , Fd, then by Sklar’s theorem (Sklar, 1959), there exists a copula function
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C : [0, 1]d −→ [0, 1] such thatH(t1, . . . , td) = C(F1(t1), . . . , Fd(td)), for all t1, . . . , td ∈ R,

and this representation is unique if the marginal distributions are absolutely continuous w.r.t.

Lebesgue measure. Thus by the probability integral transform, a copula function is ad–variate

CDF on[0, 1]d with uniform marginals on[0, 1], which fully captures the dependence among the

associated random variables, irrespective of the marginaldistributions. Examples and properties

of copulas can be found, for example, in Joe (1997).

Under certain regularity conditions a stochastic process is completely characterized by its

finite–dimensional distributions. Therefore, it is possible –and useful– to use copulas to de-

fine stochastic processes with given marginal distributions. The basic idea is to specify the

collection of finite dimensional distributions of a processthrough a collection of copulas and

marginal distributions. The following result is a straightforward consequence of Kolmogorov’s

consistency theorem (Kolmogorov, 1933, page 29) and of Sklar’s theorem (Sklar, 1959).

Corollary 2.1. Let CX = {Cx1,...,xd
: x1, . . . , xd ∈ X , d > 1} be a collection of copula func-

tions andDX = {Fx : x ∈ X } a collection of one–dimensional probability distributions de-

fined on a common measurable space(D ,B(D)), whereD ⊆ R. Assume that for every in-

tegerd > 1, x1, . . . , xd ∈ X , ui ∈ [0, 1], i = 1, . . . , d, k ∈ {1, . . . , d}, and permutation

π = (π1, . . . , πd) of {1, . . . , d}, the elements inCX satisfy the following consistency condi-

tions:

(i) Cx1,...,xd
(u1, . . . , ud) = Cxπ1 ,...,xπd

(uπ1, . . . , uπd
), and

(ii) Cx1,...,xd
(u1, . . . , uk−1, 1, uk+1, . . . , ud) =

Cx1,...,xk−1,xk+1,...,xd
(u1, . . . , uk−1, uk+1, . . . , ud) .

Then there exists a probability space(Ω,A , P ) and a stochastic process

Y : X × Ω → ∆,
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such that

P {ω ∈ Ω : Y (x1, ω) ≤ t1, . . . , Y (xd, ω) ≤ td} = Cx1,...,xd
(Fx1 (t1) , . . . , Fxd

(td)) ,

for anyt1, . . . , td ∈ R.

Notice that conditions (i) and (ii) above correspond to the definition of a consistent system

of probability measures, applied to probability measures defined on appropriate unitary hyper–

cubes. Notice also that finite–dimensional distributions of [0, 1]–valued stochastic processes

necessarily satisfy conditions (i) and (ii), i.e., they form a consistent system of probability mea-

sures. Kolmogorov’s consistency theorem states that conversely, if the sample space is a subset

of the real line, every consistent family of measures is in fact the family of finite–dimensional

distributions of some stochastic process. Since the unitary hyper–cube is a subset of a Euclidean

space, Kolmogorov’s consistency theorem implies that every family of distributions satisfy-

ing conditions (i) and (ii), is the family of finite–dimensional distributions of an[0, 1]–valued

stochastic process.

A consequence of the previous result is that it is possible tointerpret a stochastic process in

terms of a simpler process of uniform variables transformedby the marginal distributions via

a quantile mapping. The use of copulas to define stochastic processes was first considered by

Darsow et al. (1992), who studied the connection between Markov processes and copulas, and

provided necessary and sufficient conditions for a process to be Markovian, based on the copula

family. Although in an approach completely different to theone considered here, copulas have

been used to define dependent Bayesian nonparametric modelsby Epifani & Lijoi (2010) and

Leisen & Lijoi (2011). These authors consider a Lévy copulato define dependent versions

of neutral to the right and two–parameter Poisson–Dirichlet processes (Pitman & Yor, 1997),

respectively.

From a practical point of view, it is easy to specify a family of copulas satisfying conditions

(i) and (ii) in Corollary 2.1. An obvious approach is to consider the family of copula functions

arising from the finite–dimensional distributions of knownand tractable stochastic processes.

The family of copula functions associated with Gaussian ort–Student processes could be con-
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sidered as natural candidates in many applications for which X ⊆ R
p. The finite–dimensional

copula functions of Gaussian processes are given by

Cx1,...,xd
(u1, . . . , ud) = ΦR(x1,...,xd)(Φ

−1(u1), . . . ,Φ
−1(ud)),

whereΦR(x1,...,xd) is the CDF of ad–variate normal distribution with mean zero, variance one

and correlation matrixR(x1, . . . , xd), arising from the corresponding correlation function, and

Φ is the CDF of a standard normal distribution.

In the context of longitudinal or spatial modeling, naturalchoices for correlation functions

are the Matérn, powered exponential and spherical. The elements of the correlation matrix

induced by the Matérn covariance function are given by

R(x1, . . . , xd)(i,j) =
{
2κ−1Γ(κ)

}−1
(
||xi − xj ||2

τ

)κ

Kκ

(
||xi − xj ||2

τ

)
,

whereκ ∈ R
+, τ ∈ R

+ andKκ(·) is the modified Bessel function of orderκ (Abramowitz &

Stegun, 1964). The elements of the correlation matrix underthe powered exponential covari-

ance function are given by

R(x1, . . . , xd)(i,j) = exp

{
−

(
||xi − xj ||2

τ

)κ}
,

whereκ ∈ (0, 2] andτ ∈ R
+. Finally, the elements of the correlation matrix induced bythe

spherical covariance function are given by

R(x1, . . . , xd)(i,j) =





1− 3
2

(
||xi−xj ||2

τ

)
+ 1

2

(
||xi−xj ||2

τ

)3
, if ||xi − xj ||2 ≤ τ,

0, if ||xi − xj ||2 > τ,

whereτ ∈ R
+.
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2.2.2 The alternative definition

Let C V
X

andC θ
X

be two sets of copulas satisfying the consistency conditions of Corollary 2.1.

As earlier, letαX = {αx : x ∈ X } be a set such that, for everyx ∈ X , αx ∈ R
+
0 , and let

G0
X

= {G0
x : x ∈ X } be a set of probability measures defined on a common measurable space

(S,S ), whereS ⊆ R
q, q ∈ N, andS = B(S) is the Borelσ–field ofS. Finally, letP (S) be

the set of all Borel probability measures defined on(S,S ).

Definition 2.1. Let {Gx : x ∈ X } be aP (S)–valued stochastic process on an appropriate

probability space(Ω,A , P ) such that:

(i) V1, V2, . . . are independent stochastic processes of the formVi : X × Ω → [0, 1], i ≥ 1,

with common finite dimensional distributions determined bythe set of copulasC V
X

and

the set of Beta marginal distributions with parameters(1, αx), {Beta(1, αx) : x ∈ X }.

(ii) θ1, θ2, . . . are independent stochastic processes of the formθi : X × Ω → S, i ≥ 1, with

common finite dimensional distributions determined by the set of copulasC θ
X

and the set

of marginal distributionsG0
X

.

(iii) For everyx ∈ X ,B ∈ S and almost everyω ∈ Ω,

G (x, ω) (B) =

∞∑

i=1

{
Vi (x, ω)

∏

j<i

[1− Vj (x, ω)]

}
δθi(x,ω) (B) .

Such a processH = {Gx
.
= G (x, ·) : x ∈ X } will be referred to as a dependent Dirichlet

process with parameters
(
αX ,C

θ
X
,C V

X
, G0

X

)
, and denoted byDDP

(
αX ,C

θ
X
,C V

X
, G0

X

)
.

In what follows, two simplifications of the general definition of the process will be of in-

terest. If the stochastic processes in (i) of Definition 2.1 are replaced by independent and iden-

tically distributed Beta(1, α) random variables, withα > 0, the process will be referred to

as “single weights” DDP. This is to emphasize the fact that the weights in the stick–breaking

representation (iii) of Definition 2.1, are not indexed by predictorsx.

21



2.2. MACEACHERN’S DEPENDENT DIRICHLET PROCESSES

Definition 2.2. Let {Gx : x ∈ X } be aP (S)–valued stochastic process on an appropriate

probability space(Ω,A , P ) such that:

(i) V1, V2, . . . are independent random variables of the formVi : Ω → [0, 1], i ≥ 1, with

common Beta distribution with parameters(1, α).

(ii) θ1, θ2, . . . are independent stochastic processes of the formθi : X × Ω → S, i ≥ 1, with

common finite dimensional distributions determined by the set of copulasC θ
X

and the set

of marginal distributionsG0
X

.

(iii) For everyx ∈ X ,B ∈ S and almost everyω ∈ Ω,

G (x, ω) (B) =

∞∑

i=1

{
Vi (ω)

∏

j<i

[1− Vj (ω)]

}
δθi(x,ω) (B) .

Such a processH = {Gx
.
= G (x, ·) : x ∈ X } will be referred to as a single weights depen-

dent Dirichlet process with parameters
(
α,C θ

X
, G0

X

)
, and denoted bywDDP

(
α,C θ

X
, G0

X
).

The second simplification is when the stochastic processes in (ii) of Definition 2.1 are re-

placed by independent random vectors with common distribution G0, whereG0 is supported

on the measurable space(S,S ). In this case the process will be referred to as “single atoms”

DDP, to emphasize the fact that the support points in the stick–breaking representation are not

indexed by predictorsx.

Definition 2.3. Let {Gx : x ∈ X } be aP (S)–valued stochastic process on an appropriate

probability space(Ω,A , P ) such that:

(i) V1, V2, . . . are independent stochastic processes of the formVi : X × Ω → [0, 1], i ≥ 1,

with common finite dimensional distributions determined bythe set of copulasC V
X

and

the set of Beta marginal distributions with parameters(1, αx), {Beta(1, αx) : x ∈ X }.

(ii) θ1, θ2, . . . are independentS–valued random variables/vectors,i ≥ 1, with common dis-

tributionG0.
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(iii) For everyx ∈ X ,B ∈ S and almost everyω ∈ Ω,

G (x, ω) (B) =
∞∑

i=1

{
Vi (x, ω)

∏

j<i

[1− Vj (x, ω)]

}
δθi(ω) (B) .

Such a processH = {Gx
.
= G (x, ·) : x ∈ X } will be referred to as a single atoms dependent

Dirichlet process with parameters
(
αX ,C

V
X
, G0

)
, and denoted byθDDP

(
αX ,C

V
X
, G0).

2.3 The main results

2.3.1 Preliminaries

As is widely known, the definition of the support of probability models on functional spaces

depends on the choice of a “distance” defining the basic neighborhoods. The results presented

here are based on three different notions of distance between probability measures. Theorems

2.1 through 2.3 below are based on neighborhoods created using any distance that metrizes the

weak star topology, namely, any distancedW such that, for two probability measuresF and

Gn defined on a common measurable space,dW (Gn, F ) −→ 0 if and only if Gn converges

weakly toF asn goes to infinity. IfF andG are probability measures absolutely continuous

with respect to a common dominating measure, stronger notions of distance can be considered.

The results summarized in Theorems 2.4 and 2.5 are based on neighborhoods created using

the Hellinger distance, which is topologically equivalentto theL1 distance, and the Kullback–

Leibler divergence, respectively. Iff andg are versions of the densities ofF andGwith respect

to a dominating measureλ, respectively, theL1 distance, Hellinger distance and the Kullback–

Leibler divergence are defined by

dL1(f, g) =

∫
|f(y)− g(y)|λ(dy),

dH(f, g) =

∫ (√
f(y)−

√
g(y)

)2
λ(dy),
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and

dKL(f, g) =

∫
f(y) log

(
f(y)

g(y)

)
λ(dy),

respectively.

The support of a probability measureµ defined on a space of probability measures is the

smallest closed set ofµ–measure one, sayC(µ), which can be expressed as

C(µ) = {F : µ(Nǫ(F )) > 0, ∀ǫ > 0} ,

whereNǫ(F ) = {G : d(F,G) < ǫ}, with d being any notion of “distance”. The different types

of “metrics” discussed above, therefore, induce differenttypes of supports. LetCW (µ),CL1(µ),

CH(µ) andCKL(µ) be the support induced bydW , dL1, dH anddKL, respectively. The relation-

ships among these different supports are completely definedby the relationships between the

different “metrics”. SinceL1 convergence implies weak convergence, the topology generated

by any distance metrizing the weak convergence (e.g., the Prokhorov or Lévy metric) is coarser

than the one generated by theL1 distance, i.e.,CW (µ) ⊃ CL1(µ). Hellinger distance is equiv-

alent to theL1 distance sincedL1(f, g) ≤ d2H(f, g) ≤ 4dL1(f, g), which implies thatCH(µ) =

CL1(µ). Finally, the relation between theL1 distance and Kullback–Leibler divergence is given

by the inequalitydKL(f, g) ≥
1
4
dL1(f, g), implying thatCL1(µ) = CH(µ) ⊃ CKL(µ).

2.3.2 Weak support of dependent Dirichlet processes

Let P (S)X be the set of allP (S)–valued functions defined onX . LetB
{
P (S)X

}
be the

Borelσ-field generated by the product topology of weak convergence. The support of the DDP

is the smallest closed set inB
{
P (S)X

}
with P ◦ H −1–measure one.

Assume thatΘ ⊆ S is the support ofG0
x, for everyx ∈ X . The following theorem provides

sufficient conditions under whichP (Θ)X is the weak support of the DDP, whereP (Θ)X is

the set of allP (Θ)–valued functions defined onΘ, with P (Θ) being the set of all probability

measures defined on(Θ,B(Θ)).

Theorem 2.1. Let {Gx : x ∈ X } be aDDP
(
αX ,C

θ
X
,C V

X
, G0

X

)
. If C θ

X
and C V

X
are col-
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lections of copulas with positive density w.r.t. Lebesgue measure, on the appropriate unitary

hyper–cubes, thenP (Θ)X is the weak support of the process, i.e., the DDP has full weak

support.

Proof: The proof has two parts. The first part shows that a sufficient condition for the full

weak support result is that the process assigns positive probability mass to a product space

of particular simplices. The second part of the proof shows that the DDP assigns positive

probability mass to that product space of simplices.

Let Pn = {P n
x : x ∈ X } ∈ P (Θ)X be a collection of probability measures with sup-

port contained inΘ. Let {Pn}n≥1 ⊂ P (Θ)X be a sequence of such collections, satisfy-

ing the condition that for allx ∈ X , P n
x

weakly
−→ Px, whenn −→ ∞, wherePx is a prob-

ability measure. SinceS is closed andP n
x

weakly
−→ Px, Portmanteau’s theorem implies that

Px (Θ) ≥ lim supn P
n
x (Θ), for everyx ∈ X . It follows thatP (Θ)X is a closed set. Now, let

ΘX =
∏

x∈X
Θ. SinceΘ is the support ofG0

x, for everyx ∈ X , it follows that

P
{
ω ∈ Ω : θi (·, ω) ∈ ΘX , i = 1, 2, . . .

}
= 1,

i.e.,

P
{
ω ∈ Ω : G(·, ω) ∈ P (Θ)X

}
= 1.

To show thatP (Θ)X is the smallest closed set withP ◦H −1–measure one, it suffices to prove

that any basic open set inP (Θ)X has positiveP ◦ H −1–measure. Now, it is easy to see that

the measure of a basic open set for{P 0
x : x ∈ X } ∈ P (Θ)X is equal to the measure of a set

of the form

T∏

i=1

{
Pxi

∈ P (Θ) :

∣∣∣∣
∫
fijdPxi

−

∫
fijdP

0
xi

∣∣∣∣ < ǫi, j = 1, . . . , Ki

}
, (2.2)

wherex1, . . . , xT ∈ X , T andKi, i = 1, . . . , T , are positive integers,fij, i = 1, . . . , T , and

j = 1, . . . , Ki, are bounded continuous functions andǫi, i = 1, . . . , T , are positive constants.

To show that neighborhoods of the form (2.2) have positive probability mass, it suffices to show

they contain certain subset–neighborhoods with positive probability mass. In particular, we
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consider subset–neighborhoods of probability measures which are absolutely continuous w.r.t.

the corresponding centering distributions and that adopt the form

U (Qx1 , . . . , QxT
, {Aij} , ǫ

∗) =
T∏

i=1

{Pxi
∈ P (Θ) : |Pxi

(Aij)−Qxi
(Aij)| < ǫ∗, j = 1 . . .mi} ,

whereQxi
is a probability measure absolutely continuous w.r.t.G0

xi
, i = 1, . . . , T ,Ai1, . . . , Aimi

⊆ Θ are measurable sets withQxi
–null boundary, andǫ∗ > 0. For discrete centering distribu-

tionsG0
x1
, . . . , G0

xT
, the existence of a subset–neighborhoodU (Qx1 , . . . , QxT

, {Aij} , ǫ∗) of the

set (2.2) is immediately ensured. The case of centering distributions that are absolutely contin-

uous w.r.t. Lebesgue measure follows after Lemma A.1 in Appendix A.

Next, borrowing the trick in Ferguson (1973), for eachνij ∈ {0, 1}, we define setsBν11...νmT T

as

Bν11...νmT T
=

T⋂

i=1

mi⋂

j=1

A
νij
ij ,

whereA1
ij is interpreted asAij andA0

ij is interpreted asAc
ij. Note that

{
Bν11...νmT T

}
νij∈{0,1}

,

is a measurable partition ofΘ such that

Aij =
⋃

{ν11,...,νmT : νij=1}

Bν11...νmT T
.

It follows that sets of the form

T∏

i=1

{
Pxi

∈ P (Θ) :
∣∣∣Pxi

(
Bν11...νmTT

)
−Qxi

(
Bν11...νmT T

)∣∣∣ <

2−
∑T

l=1 mlǫ∗, ∀ (ν11, . . . , νmT T )
}
,
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are contained inU (Qx1 , . . . , QxT
, {Aij} , ǫ∗). To simplify the notation, set

Jν =
{
ν11 . . . νmT T : G0

x

(
Bν11...νmT T

)
> 0
}
,

and letM be a bijective mapping fromJν to {0, . . . , k}, wherek is the cardinality ofJν minus

1. Therefore,AM(ν) = Bν , for all ν ∈ Jν . Now, set

sxi
=
(
w(xi,0), . . . , w(xi,k)

)
= (Qxi

(A0) , . . . , Qxi
(Ak)) ∈ ∆k, i = 1, . . . , T,

where∆k =
{
(w0, . . . , wk) : wi ≥ 0, i = 0, . . . , k,

∑k
i=0wi = 1

}
is thek-simplex, and, for

i = 1, . . . , T , set

B (sxi
, ǫ) =

{
(w0, . . . , wk) ∈ ∆k : w(xi,j) − ǫ < wj < w(xi,j) + ǫ, j = 0, . . . , k

}
,

whereǫ = 2−
∑T

l=1 mlǫ∗. Note that

{ω ∈ Ω : [G (x1, ω) , . . . , G (xT , ω)] ∈ U (Qx1 , . . . , QxT
, {Aij} , ǫ)} ⊇

{ω ∈ Ω : [G (xi, ω) (A0) , . . . , G (xi, ω) (Ak)] ∈ B (sxi
, ǫ) , i = 1, . . . , T} .

Thus, to show that (2.2) has positiveP–measure, it suffices to show that

P {ω ∈ Ω : [G (xi, ω) (A0) , . . . , G (xi, ω) (Ak)] ∈ B (sxi
, ǫ) , i = 1, . . . , T} > 0. (2.3)

Now, consider a subsetΩ0 ⊆ Ω, such that for everyω ∈ Ω0 the following conditions are met:

(A.1) For i = 1, . . . , T ,

w(xi,0) −
ǫ

2
< V1 (xi, ω) < w(xi,0) +

ǫ

2
.
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(A.2) For i = 1, . . . , T andj = 1, . . . , k − 1,

w(xi,j) −
ǫ
2∏

l<j+1 (1− Vl (xi, ω))
< Vj+1 (xi, ω) <

w(xi,j) +
ǫ
2∏

l<j+1 (1− Vl (xi, ω))
.

(A.3) For i = 1, . . . , T ,

1−
∑k−1

j=0 Wj (xi, ω)−
ǫ
2∏

l<k+1 (1− Vl (xi, ω))
< Vk+1 (xi, ω) <

1−
∑k−1

j=0 Wj (xi, ω)∏
l<k+1 (1− Vl (xi, ω))

,

where forj = 1, . . . , k − 1,

Wj−1 (xi, ω) = Vj (xi, ω)
∏

l<j

(1− Vl (xi, ω)) .

(A.4) Forj = 0, . . . , k,

[θj+1 (x1, ω) , . . . , θj+1 (xT , ω)] ∈ AT
j .

Now, to prove the theorem, it suffices to show thatP ({ω : ω ∈ Ω0}) > 0. It is easy to see that

if assumptions (A.1) – (A.4) hold, then fori = 1, . . . , T ,

[G (xi, ω) (A0) , . . . , G (xi, ω) (Ak)] ∈ B (sxi
, ǫ) .

It then follows from the DDP definition that

P {ω ∈ Ω : [G (xi, ω) (A0) , . . . , G (xi, ω) (Ak)] ∈ B (sxi
, ǫ) , i = 1, . . . , T} ≥

P
{
ω ∈ Ω : [Vj (x1, ω) , . . . , Vj (xT , ω)] ∈ Qω

j , j = 1, . . . , k + 1
}
×

k+1∏

j=1

P
{
ω ∈ Ω : [θj (x1, ω) , . . . , θj (xT , ω)] ∈ AT

j−1

}
×

∞∏

j=k+2

P
{
ω ∈ Ω : [Vj (x1, ω) , . . . , Vj (xT , ω)] ∈ [0, 1]T

}
×

∞∏

j=k+2

P
{
ω ∈ Ω : [θj (x1, ω) , . . . , θj (xT , ω)] ∈ ΘT

}
,
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where,

Qω
1 =

T∏

i=1

[
w(xi,0) −

ǫ

2
, w(xi,0) +

ǫ

2

]
,

Qω
j+1 = Qω

j+1 (V1 (x1, ω) , . . . , Vj (xT , ω))

=
T∏

i=1

[
w(xi,j) −

ǫ
2∏

l<j+1 (1− Vl (xi, ω))
,

w(xi,j) +
ǫ
2∏

l<j+1 (1− Vl (xi, ω))

]
,

for j = 1, . . . , k − 1, and

Qω
k+1 = Qω

k+1 (V1 (x1, ω) , . . . , Vk (xT , ω))

=
T∏

i=1

[
1−

∑k−1
j=0 Wj (xi, ω)−

ǫ
2∏

l<k+1 (1− Vl (xi, ω))
,

1−
∑k−1

j=0 Wj (xi, ω)∏
l<k+1 (1− Vl (xi, ω))

]
.

By the definition of the process,

P
{
ω ∈ Ω : [Vj (x1, ω) , . . . , Vj (xT , ω)] ∈ [0, 1]T

}
= 1,

and

P
{
ω ∈ Ω : [θj (x1, ω) , . . . , θj (xT , ω)] ∈ ΘT

}
= 1.

It follows that

P {ω ∈ Ω : [G (xi, ω) (A0) , . . . , G (xi, ω) (Ak)] ∈ B (sxi
, ǫ) , i = 1, . . . , T} ≥

P
{
ω ∈ Ω : [Vj (x1, ω) , . . . , Vj (xT , ω)] ∈ Qω

j , j = 1, . . . , k + 1
}
×

k+1∏

j=1

P
{
ω ∈ Ω : [θj (x1, ω) , . . . , θj (xT , ω)] ∈ AT

j−1

}
.

Since by assumptionC V
X

is a collection of copulas with positive density w.r.t. Lebesgue mea-
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sure, the non–singularity of the Beta distribution impliesthat

P {ω ∈ Ω : [Vj (x1, ω) , . . . , Vj (xT , ω)] ∈ Qω
j , j = 1, . . . , k + 1

}
=∫

Q1

∫

Q2(v1)

· · ·

∫

Qk+1(v1,...,vk)

fV
x1,...,xT

(v1) · · · f
V
x1,...,xT

(vk+1) dvk+1 · · · dv2dv1 > 0,

(2.4)

wherefV
x1,...,xT

(vj), j = 1, . . . , k + 1, is the density function of

CV
x1,...,xT

(B (v1 | 1, αx1) , . . . ,B (vT | 1, αxT
)) ,

with B(· | a, b) denoting the CDF of a Beta distribution with parameters(a, b). Finally, since

by assumptionC θ
X

is a collection of copulas with positive density w.r.t. Lebesgue measure and,

for all x ∈ X , Θ is the topological support ofG0
x, it follows that

P {ω ∈ Ω : [θj (x1, ω) , . . . , θj (xT , ω)] ∈ AT
j−1

}
=∫

IAT
j−1

(θ) dCθ
x1,...,xT

(
G0

x1
(θ1) , . . . , G

0
xT

(θT )
)
> 0,

whereIA(·) is the indicator function for the setA. This completes the proof of the theorem.�

The successful results obtained in applications of the single weights DDP in a variety of

applications (see, e.g. De Iorio et al., 2004; Müller et al., 2005; De Iorio et al., 2009; Gelfand

et al., 2005; De la Cruz et al., 2007; Jara et al., 2010), suggest that simplified versions of the DDP

can be specified to have large support. The following theoremprovides sufficient conditions

under whichP (Θ)X is the weak support of the single–weights DDP.

Theorem 2.2. Let {Gx : x ∈ X } be awDDP
(
α,C θ

X
, G0

X

)
. If C θ

X
is a collection of copulas

with positive density w.r.t. Lebesgue measure, on the appropriate unitary hyper–cubes, then

P (Θ)X is the weak support of the process.

Proof: Using a similar reasoning as in the proof of Theorem 2.1, it suffices to prove (2.3), that
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is

P {ω ∈ Ω : [G (xi, ω) (A0) , . . . , G (xi, ω) (Ak)] ∈ B (sxi
, ǫ) , i = 1, . . . , T} > 0.

As in the proof of Theorem 2.1, we consider constraints for the elements of the wDDP that

imply the previous relation. Since the rational numbers aredense inR, there existMi, mij ∈ N

such that fori = 1, . . . , T , andj = 0, . . . , k − 1,

w(xi,j) −
ǫ

4
<
mij

Mi
< w(xi,j) +

ǫ

4
.

Now, letN = M1 × . . . ×MT andnij = mij

∏
l 6=iMl. It follows that, fori = 1, . . . , T , and

j = 0, . . . , k − 1,

w(xi,j) −
ǫ

4
<
nij

N
< w(xi,j) +

ǫ

4
.

Therefore, for any

(p1, . . . , pN) ∈ ∆N−1 =

{
(w1, . . . , wN) : wi ≥ 0, 1 ≤ i ≤ N,

N∑

i=1

wi = 1

}
,

that verifies
1

N
−

ǫ

4N
< pl <

1

N
+

ǫ

4N
, for l = 1, . . . , N ,

we have

w(xi,0) −
ǫ

2
<

ni0∑

l=1

pl < w(xi,0) +
ǫ

2
, i = 1, . . . , T,

and

w(xi,j) −
ǫ

2
<

nij∑

l=ni(j−1)+1

pl < w(xi,j) +
ǫ

2
,

for i = 1, . . . , T andj = 1, . . . , k − 1.
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On the other hand, leta(i, l) be a mapping such that

a(i, l) =





0 if l ≤ ni0

1 if ni0 < l ≤ ni0 + ni1

...
...

...

k − 1 if
∑k−2

k′=0 nik′ < l ≤
∑k−1

k′=0 nik′

k if
∑k−1

k′=0 nik′ < l ≤ N

,

i = 1, . . . , T , andl = 1, . . . , N . Note that the previous function defines a possible path for the

functionsθ1(·, ω), θ2(·, ω), . . . through the measurable setsA0, . . . , Ak.

The required constraints are defined next. Consider a subsetΩ0 ⊆ Ω, such that for every

ω ∈ Ω0 the following conditions are met:

(B.1) Forl = 1,
1

N
−

ǫ

4N
< Vl(ω) <

1

N
+

ǫ

4N
.

(B.2) Forl = 2, . . . , N − 1,

1
N
− ǫ

4N∏
l′<l (1− Vl′(ω))

< Vl(ω) <
1
N
+ ǫ

4N∏
l′<l (1− Vl′(ω))

.

(B.3) Forl = N ,
1−

∑N−1
l′=1 Wl′(ω)−

ǫ
2∏

l′<N (1− Vl′(ω))
< Vl(ω) <

1−
∑N−1

l′=1 Wl′(ω)∏
l′<N (1− Vl′(ω))

,

where forl = 1, 2, . . .

Wl−1(ω) = Vl(ω)
∏

l′<l

[1− Vl′(ω)] .

(B.4) Fori = 1, . . . , T andl = 1, . . . , N ,

(θl (x1, ω) , . . . , θl (xT , ω)) ∈ Aa(1,l) × . . .× Aa(T,l).

Now, to prove the theorem, it suffices to show thatP ({ω : ω ∈ Ω0}) > 0. It is easy to see that
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if assumptions (B.1) – (B.4) hold, then, fori = 1, . . . , T ,

[G (xi, ω) (A0) , . . . , G (xi, ω) (Ak)] ∈ B (sxi
, ǫ) .

Thus, from the definition of the wDDP, it follows that

P {ω ∈ Ω : [G (xi, ω) (A0) , . . . , G (xi, ω) (Ak)] ∈ B (sxi
, ǫ) , i = 1, . . . , T} ≥

P {ω ∈ Ω : Vl (ω) ∈ Qω
l , l = 1, . . . , N} ×

N∏

l=1

P
{
ω ∈ Ω : [θl (x1, ω) , . . . , θl (xT , ω)] ∈ Aa(1,l) × . . .× Aa(T,l)

}
×

∞∏

l=N+1

P {ω ∈ Ω : Vl (ω) ∈ [0, 1]} ×

∞∏

l=N+1

P
{
ω ∈ Ω : [θl (x1, ω) , . . . , θl (xT , ω)] ∈ ΘT

}
,

where,

Qω
1 =

[
1

N
−

ǫ

4N
,
1

N
+

ǫ

4N

]
,

Qω
l+1 = Qω

l+1 {V1(ω), . . . , Vl(ω)}

=

[ 1
N
− ǫ

4N∏
l′<l+1 (1− Vl′(ω))

,
1
N
+ ǫ

4N∏
l′<l+1 (1− Vl′(ω))

]
,

l = 1, . . . , N − 2, and

Qω
N = Qω

N {V1(ω), . . . , VN−1(ω))

=

[
1−

∑N−1
l′=1 Wl′(ω)−

ǫ
2∏

l′<N (1− Vl′(ω))
,
1−

∑N−1
l′=1 W′l(ω)∏

l′<N (1− Vl′(ω))

]
.

From the definition of the process,P {ω ∈ Ω : Vl (ω) ∈ [0, 1] , l ∈ N} = 1, and

P
{
ω ∈ Ω : [θl (x1, ω) , . . . , θl (xT , ω)] ∈ ΘT , l ∈ N

}
= 1.
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It follows that

P {ω ∈ Ω : [G (xi, ω) (A0) , . . . , G (xi, ω) (Ak)] ∈ B (sxi
, ǫ) , i = 1, . . . , T} ≥

P {ω ∈ Ω : Vl (ω) ∈ Qω
l , l = 1, . . . , N} ×

N∏

l=1

P
{
ω ∈ Ω : [θl (x1, ω) , . . . , θl (xT , ω)] ∈ Aa(1,l) × . . .× Aa(T,l)

}
.

The non–singularity of the Beta distribution implies that

P {ω ∈ Ω : Vl (ω) ∈ Qω
l , l = 1, . . . , N} > 0. (2.5)

Finally, since by assumptionC θ
X

is a collection of copulas with positive density w.r.t.

Lebesgue measure and, for allx ∈ X , Θ is the topological support ofG0
x, it follows that

P {ω ∈ Ω : [θl (x1, ω) , . . . , θl (xT , ω)] ∈ AT
l−1

}
=∫

IAT
l−1

(θ) dCθ
x1,...,xT

(
G0

x1
(θ1) , . . . , G

0
xT

(θT )
)
> 0,

which completes the proof. �

In the search of a parsimonious model, the previous result shows that full weak support holds

for the single–weights DDP for which only the atoms are subject to a flexible specification. The

following theorem provides sufficient conditions under which P (Θ)X is the weak support of

the single–atoms DDP.

Theorem 2.3. Let {Gx : x ∈ X } be aθDDP
(
αX ,C

V
X
, G0

)
, where the support ofG0 is Θ. If

C V
X

is a collection of copulas with positive density w.r.t. to Lebesgue measure, on the appropri-

ate unitary hyper–cubes, then the support of the process isP (Θ)X .

Proof: In analogy with the proofs of Theorems 2.1 and 2.2, it sufficesto prove (2.3), that is

P {ω ∈ Ω : [G (xi, ω) (A0) , . . . , G (xi, ω) (Ak)] ∈ B (sxi
, ǫ) , i = 1, . . . , T} > 0.
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Consider a subsetΩ0 ⊆ Ω, such that for everyω ∈ Ω0 the following conditions are met:

(C.1) Fori = 1, . . . , T ,

w(xi,0) −
ǫ

2
< V1 (xi, ω) < w(xi,0) +

ǫ

2
.

(C.2) Fori = 1, . . . , T andj = 1, . . . , k − 1,

w(xi,j) −
ǫ
2∏

l<j+1 (1− Vl (xi, ω))
< Vj+1 (xi, ω) <

w(xi,j) +
ǫ
2∏

l<j+1 (1− Vl (xi, ω))
.

(C.3) Fori = 1, . . . , T ,

1−
∑k−1

j=0 Wj (xi, ω)−
ǫ
2∏

l<k+1 (1− Vl (xi, ω))
< Vk+1 (xi, ω) <

1−
∑k−1

j=0 Wj (xi, ω)∏
l<k+1 (1− Vl (xi, ω))

,

where,

Wj−1 (xi, ω) = Vj (xi, ω)
∏

l<j

(1− Vl (xi, ω)) ,

for j = 1, . . . , k − 1.

(C.4) Forj = 0, . . . , k,

θj+1(ω) ∈ Aj .

Now, to prove the theorem, it suffices to show thatP ({ω : ω ∈ Ω0}) > 0. It is easy to see that

if assumptions (C.1) – (C.4) hold, then, fori = 1, . . . , T ,

[G (xi, ω) (A0) , . . . , G (xi, ω) (Ak)] ∈ B (sxi
, ǫ) .
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Thus, from the definition of theθDDP, it follows that

P {ω ∈ Ω : [G (xi, ω) (A0) , . . . , G (xi, ω) (Ak)] ∈ B (sxi
, ǫ) , i = 1, . . . , T} ≥

P
{
ω ∈ Ω : [Vj (x1, ω) , . . . , Vj (xT , ω)] ∈ Qω

j , j = 1, . . . , k + 1
}
×

k+1∏

j=1

P {ω ∈ Ω : θj (ω) ∈ Aj−1} ×

∞∏

j=k+2

P
{
ω ∈ Ω : [Vj (x1, ω) , . . . , Vj (xT , ω)] ∈ [0, 1]T

}
×

∞∏

j=k+2

P {ω ∈ Ω : θj (ω) ∈ Θ} ,

where,

Qω
1 =

T∏

i=1

[
w(xi,0) −

ǫ

2
, w(xi,0) +

ǫ

2

]
,

Qω
j+1 = Qω

j+1 (V1 (x1, ω) , . . . , Vj (xT , ω))

=
T∏

i=1

[
w(xi,j) −

ǫ
2∏

l<j+1 (1− Vl (xi, ω))
,

w(xi,j) +
ǫ
2∏

l<j+1 (1− Vl (xi, ω))

]
,

for j = 1, . . . , k − 1, and

Qω
k+1 = Qω

k+1 (V1 (x1, ω) , . . . , Vk (xT , ω))

=
T∏

i=1

[
1−

∑k−1
j=0 Wj (xi, ω)−

ǫ
2∏

l<k+1 (1− Vl (xi, ω))
,

1−
∑k−1

j=0 Wj (xi, ω)∏
l<k+1 (1− Vl (xi, ω))

]
.

By the definition of the process,P {ω ∈ Ω : θj (ω) ∈ Θ, j ∈ N} = 1, and

P
{
ω ∈ Ω : [Vj (x1, ω) , . . . , Vj (xT , ω)] ∈ [0, 1]T , j ∈ N

}
= 1.
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It follows that

P {ω ∈ Ω : [G (xi, ω) (A0) , . . . , G (xi, ω) (Ak)] ∈ B (sxi
, ǫ) , i = 1, . . . , T} ≥

P
{
ω ∈ Ω : [Vj (x1, ω) , . . . , Vj (xT , ω)] ∈ Qω

j , j = 1, . . . , k + 1
}
×

k+1∏

j=1

P {ω ∈ Ω : θj (ω) ∈ Aj−1} .

Since by assumptionC V
X

is a collection of copulas with positive density w.r.t. Lebesgue mea-

sure, the non–singularity of the Beta distribution impliesthat

P {ω ∈ Ω : [Vj (x1, ω) , · · · , Vj (xT , ω)] ∈ Qω
j , j = 1, . . . , k + 1

}
=∫

Q1

∫

Q2(v1)

· · ·

∫

Qk+1(v1,··· ,vk)

fV
x1,...,xT

(v1) · · · f
V
x1,...,xT

(vk+1) dvk+1 · · · dv2dv1 > 0.

(2.6)

Finally, sinceΘ is the topological support ofG0, it follows that

P {ω ∈ Ω : θj (ω) ∈ Aj−1} > 0,

which completes the proof of the theorem. �

2.3.3 The support of dependent Dirichlet process mixture models

As in the case of DPs, the discrete nature of DDPs implies thatthey cannot be used as a prob-

ability model for sets of predictor–dependent densities. Astandard approach to deal with this

problem is to define a mixture of smooth densities based on theDDP. Such an approach was

pioneered by Lo (1984) in the context of single density estimation problems. For everyθ ∈ Θ,

let ψ(·, θ) be a probability density function, whereΘ ⊆ R
q now denotes a parameter set. A

predictor–dependent mixture model is obtained by considering fx(· | Gx) =
∫
Θ
ψ(·, θ)Gx(dθ).

These mixtures can form a very rich family. For instance, thelocation and scale mixture of

the formσ−1k
(
· −µ
σ

)
, for some fixed densityk, may approximate any density in theL1–sense
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if σ is allowed to approach to 0. Thus, a prior on the set of predictor–dependent densities

{fx : x ∈ X } may be induced by placing some of the versions of the DDP prioron the set of

related mixing distributions{Gx : x ∈ X }.

The following theorem shows that under simple conditions onthe kernelψ, the full weak

support of the different versions of DDPs ensures the large Hellinger support of the correspond-

ing DDP mixture model.

Theorem 2.4. Let ψ be a non–negative valued function defined on the product measurable

space(Y ×Θ,B(Y )⊗B(Θ)), whereY ⊆ R
n is the sample space with corresponding Borel

σ–fieldB(Y ), Θ ⊆ R
q is the parameter space with corresponding Borelσ–fieldB(Θ) and

B(Y ) ⊗ B(Θ) denotes the productσ–field onY × Θ. Assume thatψ satisfies the following

conditions:

(i)
∫

Y
ψ (y, θ)λ (dy) = 1 for everyθ ∈ Θ and someσ–finite measureλ on (Y ,B (Y )).

(ii) θ 7→ ψ (y, θ) is bounded, continuous andB (Θ)–measurable for everyy ∈ Y .

(iii) At least one of the following conditions hold:

(iii.a) For everyǫ > 0 andy0 ∈ Y , there existsδ(ǫ, y0) > 0, such that

|y − y0| ≤ δ(ǫ, y0),

then

sup
θ∈Θ

|ψ (y, θ)− ψ (y0, θ)| < ǫ.

(iii.b) For any compact setK ⊂ Y andr > 0, the family of mappings

{θ 7→ ψ (y, θ) : y ∈ K} ,

defined onB(0, r), is uniformly equicontinuous, whereB(0, r) denotes a closed

L1–norm ball of radiusr and centered at 0, that is,

B(0, r) ≡ {θ ∈ Θ : ‖θ‖1 ≤ r} .
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If {Gx : x ∈ X } is a DPP, a wDDP or a θDDP, satisfying the conditions of Theorem 2.1, 2.2

or 2.3, respectively, then the Hellinger support of the process

{∫

Θ

ψ (·, θ)Gx (dθ) : x ∈ X

}
,

is
∏

x∈X

{∫

Θ

ψ (·, θ)Px (dθ) : Px ∈ P(Θ)

}
,

whereP(Θ) is the space of all probability measures defined on(Θ,B(Θ)).

Proof: The proof uses a similar reasoning to the one of Section 3 in Lijoi et al. (2004). In

what follows, we consider the Borelσ–field generated by the product topology induced by the

Hellinger metric. It is easy to see that the measure of a basicopen set for
{
f 0
xi
: x ∈ X

}
, where

f 0
xi
(·) =

∫
Θ
ψ (·, θ)P 0

xi
(dθ) and{P 0

x : x ∈ X } ∈ P (Θ)X , is equal to the measure of a set of

the form

T∏

i=1

{∫

Θ

ψ (·, θ)Pxi
(dθ) :

∫

Y

∣∣∣∣
∫

Θ

ψ (y, θ)Pxi
(dθ)− f 0

xi
(y)

∣∣∣∣λ (dy) < ǫ, Pxi
∈ P (Θ)

}
, (2.7)

whereǫ > 0, x1, . . . , xT ∈ X , andλ is aσ-finite measure on(Y ,B (Y )).

To show that the DDP mixture model assigns positive probability mass to sets of the form

(2.7), we construct a weak neighborhood around{P 0
x : x ∈ X } ∈ P (Θ)X such that every

element in it satisfies (2.7). This is done by appropriately defining the bounded and continuous

functions that determine the weak neighborhood.

Let ν, ρ andη be positive constants. Fix a compact setKxi
⊂ B (Y ) such that

∫

Kc
xi

f 0
xi
(y)λ (dy) <

ǫ

8
,

and define

h0i,1 (θ) =

∫

Kc
xi

ψ (y, θ)λ (dy) ,
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for i = 1, . . . , T . For anyρ andν, it is possible to define a closed ball of the formB (0, r − ν) =

{θ ∈ Θ : ‖θ‖1 ≤ r − ν}, for somer > ν such thatP 0
xi

[
B (0, r − ν)c

]
≤ ρ. Now, choose

continuous functionsh0i,2, such that, fori = 1, . . . , T ,

IB(0,r)c (θ) ≤ h0i,2 (θ) ≤ IB(0,r−ν)c (θ) ,

for everyθ ∈ Θ. Note that condition (iii.a) (by continuity) or (iii.b) (byArzelà–Ascoli’s theo-

rem) implies that the family of functions{ψ (y, ·) : y ∈ Kxi
} onB (0, r) is a totally bounded set.

Thus, givenη, we can find a partitionAi,1, . . . , Ai,ni
of Kxi

and pointszi,1 ∈ Ai,1, . . . , zi,ni
∈

Ai,ni
such that

sup
y∈Ai,j

sup
θ∈B(0,r)

|ψ (y, θ)− ψ (zi,j , θ)| < η

for eachi = 1, . . . , T andj = 1, . . . , ni. Finally, for i = 1, . . . , T andj = 1, . . . , ni, define

h1i,j (θ) = k (zi,j , θ) .

All the hki,j functions considered above are continuous and bounded. Notice also that some of

these functions may depend onν, r, ρ andη. Define now the following family of sets

T∏

i=1

{Pxi
∈ P (Θ) :

∣∣∣∣
∫
hli,jldPxi

−

∫
hli,jldP

0
xi

∣∣∣∣ < ν, l = 0, 1, j0 = 1, 2, 1 ≤ j1 ≤ ni

}
, (2.8)

for ν > 0. We will show that for appropriate choices ofη, ν, r, andρ, every collection

{Px1, . . . , PxT
} in sets of the form (2.8), satisfies

∫

Y

∣∣∣∣
∫

Θ

ψ (y, θ)Pxi
(dθ)− f 0

xi
(y)

∣∣∣∣λ (dy) < ǫ,
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for i = 1, . . . , T . Note that

∫

Y

∣∣∣∣
∫

Θ

ψ (y, θ)Pxi
(dθ)− f 0

xi
(y)

∣∣∣∣λ (dy) =

∫

Kc
xi

∣∣∣∣
∫

Θ

ψ (y, θ)Pxi
(dθ)− f 0

xi
(y)

∣∣∣∣λ (dy)

+

∫

Kxi

∣∣∣∣
∫

Θ

ψ (y, θ)Pxi
(dθ)− f 0

xi
(y)

∣∣∣∣λ (dy) ,

for i = 1, . . . , T . Now note that if
∣∣∫ h0i,1dPxi

−
∫
h0i,1dP

0
xi

∣∣ < ν, then

∫
h0i,1dPxi

< ν +

∫
h0i,1dP

0
xi
≤ ν +

ǫ

8
,

by the definition ofh0i,1, and therefore,

∫

Kc
xi

∣∣∣∣
∫

Θ

ψ (y, θ)Pxi
(dθ)− f 0

xi
(y)

∣∣∣∣λ (dy) ≤

∫
h0i,1dPxi

+

∫

Kc
xi

f 0
xi
(y)λ (dy)

≤ ν +
ǫ

4
. (2.9)

In addition, note that

∫

Kxi

∣∣∣∣
∫

Θ

ψ (y, θ)Pxi
(dθ)− f 0

xi
(y)

∣∣∣∣λ (dy) ≤ B1 +B2 +B3 (2.10)

where,

B1 =

ni∑

j=1

∫

Ai,j

∣∣∣∣
∫

Θ

ψ (zi,j, θ)Pxi
(dθ)−

∫

Θ

ψ (zi,j, θ)P
0
xi
(dθ)

∣∣∣∣λ (dy)

=

ni∑

j=1

∫

Ai,j

∣∣∣∣
∫
h1i,jdPxi

−

∫
h1i,jdP

0
xi

∣∣∣∣λ (dy)

≤ νλ (Kxi
) ,
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B2 =

ni∑

j=1

∫

Ai,j

∣∣∣∣
∫

Θ

ψ (zi,j , θ)P
0
xi
(dθ)−

∫

Θ

ψ (y, θ)P 0
xi
(dθ)

∣∣∣∣λ (dy)

≤
ni∑

j=1

∫

Ai,j

∫

B(0,r−δ)

|ψ (zi,j , y)− ψ (y, θ)|P 0
xi
(dθ)λ (dy)

+

ni∑

j=1

∫

Ai,j

∫

B(0,r−δ)C
[ψ (zi,j , θ) + ψ (y, θ)]P 0

xi
(dθ)λ (dy)

≤ ηλ (Kxi
) +Mxi

ρλ (Kxi
) + ρ,

where,Mxi
= maxj∈{1,...,ni} supθ ψ (zi,j , θ), and

B3 =

ni∑

j=1

∫

Ai,j

∣∣∣∣
∫

Θ

ψ (zi,j , θ)Pxi
(dθ)−

∫

Θ

ψ (y, θ)Pxi
(dθ)

∣∣∣∣λ (dy) .

Now, since

Pxi

[
B (0, r)C

]
≤ ν +

∫
h0i,2dP

0
xi
≤ ν + P 0

xi

[
B (0, r − ν)C

]
≤ ν + ρ,

it follows that

B3 ≤
ni∑

j=1

∫

Ai,j

∫

B(0,r)

|ψ (zi,j , θ)− ψ (y, θ)|Pxi
(dθ)λ (dy)

+

ni∑

j=1

∫

Ai,j

∫

B(0,r)C
[ψ (zi,j , θ) + ψ (y, θ)]Pxi

(dθ)λ (dy)

≤ ηλ (Kxi
) +Mxi

(ν + ρ) λ (Kxi
) + ν + ρ.

Finally, by (2.9) and (2.10), if

η =
ǫ

8max1≤i≤T {λ (Kxi
)}
,

ν =
ǫ

4 (2 + max1≤i≤T {Mxi
λ (Kxi

)})
,
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and

ρ =
ǫ

8max1≤i≤T {(1 +Mxi
λ (Kxi

))}
,

then
∫

Y

∣∣∫
Θ
ψ (y, θ)Pxi

(dθ)− f 0
xi
(y)
∣∣λ (dy) ≤ ǫ. Sinceǫ > 0 is arbitrary, the proof is com-

plete. �

If stronger assumptions are placed onψ, it is possible to show that DDP mixture models

have large Kullback–Leibler support. Specifically, we consider the case whereψ belongs to

an n–dimensional location–scale family of the formψ(·, θ) = σ−nk
(
· −µ
σ

)
, wherek (·) is a

probability density function defined onRn, µ = (µ1, . . . , µn) is ann–dimensional location

vector, andσ ∈ R
+. The following result characterizes the Kullback–Leiblersupport of the

resulting DDP mixture models.

Theorem 2.5.Assume thatψ belongs to a location–scale family,ψ(·, θ) = σ−nk
(
· −µ
σ

)
, where

µ = (µ1, . . . , µn) is ann–dimensional vector, andσ ∈ R
+. Let k be a non–negative valued

function defined on(Y ×Θ,B(Y )⊗ B(Θ)), whereY ⊆ R
n is the sample space with corre-

sponding Borelσ–fieldB(Y ) andΘ ⊆ R
n × R

+ is the parameter space with corresponding

Borelσ–fieldB(Θ). Assumek satisfies the following conditions:

(i) k (·) is bounded, continuous and strictly positive,

(ii) there existsl1 > 0 such thatk (z) decreases asz moves away from0 outside the ball

{z : ‖z‖ < l1}, where|| · || is theL2–norm,

(iii) there existsl2 > 0 such that
∑n

j=1 zj

(
∂k(t)
∂tj

∣∣∣
t=z

)
k(z)−1 < −1, for ‖z‖ ≥ l2,

(iv) whenn ≥ 2, k (z) = o (‖z‖) as‖z‖ −→ ∞.

Furthermore, assume the elements in{f 0
xi
: i = 1, . . . , T} satisfy the following conditions:

(v) for someM ∈ R
+, 0 < f 0

xi
(y) ≤M , for everyy ∈ R

n,

(vi)
∫
f 0
xi
(y) log

(
f 0
xi
(y)
)
dy <∞,

(vii) for someδ > 0,
∫
f 0
xi
(y) log

(
f0
xi
(y)

inf||y−t||<δ{f0
xi
(t)}

)
dy <∞,
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(viii) there existsη > 0, such that
∣∣∫ f 0

xi
(y) log k (2y‖y‖η) dy

∣∣ < ∞ and such that for any

a ∈ R
n andb ∈ R

+, we have
∫
f 0
xi
(y)
∣∣log k

(
y−a
b

)∣∣ dy <∞.

If {Gx : x ∈ X } is a DPP, a wDDP or a θDDP, whereRn × R
+ is the support of the

corresponding centering distributions, and satisfying the conditions of Theorem 2.1, 2.2 or 2.3,

respectively, then

P

{
ω ∈ Ω : dKL

[∫

Rn×R+

ψ (·, θ)G (xi, ω) (dθ) , f
0
xi

]
< ǫ, i = 1, . . . , T

}
> 0,

for ǫ > 0.

Proof: A direct application of Theorem 2 in Wu & Ghosal (2008), implies that there exist a

probability measureP ǫ
xi

and a weak neighborhoodWxi
such that

∫

Y

f 0
xi
(y) log

[
f 0
xi
(y)∫

Rn×R+ ψ (y, θ)P ǫ
xi
(dθ)

]
dy <

ǫ

2
,

and ∫

Y

f 0
xi
(y) log

[∫
Rn×R+ ψ (y, θ)P ǫ

xi
(dθ)∫

Rn×R+ ψ (y, θ)Pxi
(dθ)

]
dy <

ǫ

2
,

for everyPxi
∈ Wxi

andi = 1, . . . , T . Next note that

dKL

[∫

Rn×R+

ψ (·, θ)Pxi
(dθ) ; f 0

xi

]
<

∫

Y

f 0
xi
(y) log

[
f 0
xi
(y)∫

Rn×R+ ψ (y, θ)P ǫ
xi
(dθ)

]
dy

+

∫

Y

f 0
xi
(y) log

[∫
Rn×R+ ψ (y, θ)P ǫ

xi
(dθ)∫

Rn×R+ ψ (y, θ)Pxi
(dθ)

]
dy,

and from Theorems 2.1, 2.2 and 2.3, it follows that

P

{
ω ∈ Ω : dKL

[∫

Rn×R+

ψ (·, θ)G (xi, ω) (dθ) , f
0
xi

]
< ǫ, i = 1, . . . , T

}
≥

P {ω ∈ Ω : (G (x1, ω) , . . . , G (xT , ω)) ∈ Wx1 × . . .× WxT
} > 0,

which completes the proof. �
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Notice that the conditions of Theorem 2.5 are satisfied for most of the important location–

scale kernels. In fact, Wu & Ghosal (2008) show that conditions (i) – (iv) are satisfied by the

normal, skew–normal, double–exponential, logistic andt-Student kernels.

2.3.4 Extensions to more general dependent processes

Although the previous results about the support of models for collections of probability dis-

tributions are focused on MacEachern’s DDP, similar results can be obtained for more gen-

eral dependent processes. Natural candidates for the definition of dependent processes include

the general class of stick–breaking (SB) processes, which includes the DP, the two–parameter

Poisson–Dirichlet processes (Pitman & Yor, 1997), the betatwo–parameter processes (Ishwaran

& James, 2001) and the geometric stick–breaking processes (Mena et al., 2011), as important

special cases. A SB probability measure is given by expression (2.1), but where the beta dis-

tribution associated with the SB construction of the weights can be replaced by any collection

of distributions defined on the unit interval[0, 1] such that the resulting weights add up to one

almost surely. Specifically, the weights are given byWi = Vi
∏

j<i(1 − Vj), for everyi ≥ 1,

whereVi | Hi
ind
∼ Hi, with Hi being a probability measure on[0, 1], for everyi ∈ N, and such

that

∞∑

i=1

Wi
a.s.
= 1. (2.11)

Notice that, under an SB prior, it can be shown that a necessary and sufficient condition for

expression (2.11) to hold is that
∑∞

i=1 log (1− EHi
(Vi)) = −∞.

For everyi ∈ N, let C Vi

X
be a set of copulas satisfying the consistency conditions ofCorol-

lary 2.1 and setC V
X ,N =

{
C

Vi

X
: i ∈ N

}
. For everyi ∈ N, letV Vi

X
= {H(i,x) : x ∈ X } be a col-

lection of probability distributions defined on([0, 1],B([0, 1])) and setVX ,N =
{
V

Vi

X
: i ∈ N

}
.

Definition 2.4. Let {Gx : x ∈ X } be aP (S)–valued stochastic process on an appropriate

probability space(Ω,A , P ) such that:

(i) V1, V2, . . . are independent stochastic processes of the formVi : X × Ω → [0, 1], i ≥ 1,
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with finite dimensional distributions determined by the setof copulasC Vi

X
and the set of

marginal distributionsV Vi

X
, such that, for everyx ∈ X ,

∞∑

i=1

log
[
1−EH(i,x)

(Vi(x, ·))
]
= −∞.

(ii) θ1, θ2, . . . are independent stochastic processes of the formθi : X × Ω → S, i ≥ 1, with

common finite dimensional distributions determined by the set of copulasC θ
X

and the set

of marginal distributionsG0
X

.

(iii) For everyx ∈ X ,B ∈ S and almost everyω ∈ Ω,

G (x, ω) (B) =

∞∑

i=1

{
Vi (x, ω)

∏

j<i

[1− Vj (x, ω)]

}
δθi(x,ω) (B) .

Such a processH = {Gx
.
= G (x, ·) : x ∈ X } will be referred to as a dependent stick–

breaking process with parameters
(
C V

X ,N,C
θ
X
,V V

X ,N, G
0
X

)
, and denoted byDSBP

(
C V

X ,N,C
θ
X
,

V V
X ,N, G

0
X

)
.

As in the DDP case, two simplifications of the general definition of the DSBP can be con-

sidered. If the stochastic processes in (i) of Definition 2.4are replaced by independent random

variables with label–specific distributionHi, then the process will be referred to as “single

weights” DSBP, to emphasize the fact that the weights in the stick–breaking representation (iii)

of Definition 2.4, are not indexed by predictorsx. In this case, the process is parameterized by
(
C θ

X
,V V

N
, G0

X

)
, and denoted by wDSBP

(
C θ

X
,V V

N
, G0

X

)
, whereV V

N
= {Hi : i ∈ N} is a col-

lection of probability distributions on[0, 1], such that condition (2.11) holds. If the stochastic

processes in (ii) of Definition 2.4 are replaced by independent random vectors with common

distributionG0, whereG0 is supported on the measurable space(S,S ), then the process will

be referred to as “single atoms” DSBP, to emphasize the fact that the support points in the

stick–breaking representation are not indexed by predictors x. This version of the process is

parameterized by
(
C V

X ,N,V
V

X ,N, G
0
)
, and denoted byθDSBP

(
C V

X ,N,V
V

X ,N, G
0
)
.
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Theorem 2.6.Let {Gx : x ∈ X } be aDSBP
(
C V

X ,N,C
θ
X
,V V

X ,N, G
0
X

)
. If Θ ⊆ S is the support

of G0
x, for everyx ∈ X , C V

X ,N andC θ
X

are collections of copulas with positive density w.r.t.

Lebesgue measure, on the appropriate unitary hyper–cubes,and, for everyi ∈ N, the elements

in V
Vi

X
have positive density on[0, 1], thenP (Θ)X is the weak support of the process, i.e., the

DSBPhas full weak support.

Proof: The proof follows similar arguments to the ones of Theorem 2.1. Specifically, it is only

needed to replace

∫

Q1

∫

Q2(v1)

· · ·

∫

Qk+1(v1,...,vk)

fV
x1,...,xT

(v1) · · · f
V
x1,...,xT

(vk+1) dvk+1 · · · dv2dv1,

in expression (2.4) by

∫

Q1

∫

Q2(v1)

· · ·

∫

Qk+1(v1,...,vk)

fV1
x1,...,xT

(v1) · · · f
Vk+1
x1,...,xT

(vk+1) dvk+1 · · · dv2dv1,

wherefVi
x1,...,xT

(vj), j = 1, . . . , k + 1, is the density function of

CVi
x1,...,xT

(Hi,x1 ((0, v1]) , . . . , Hi,xT
((0, vT ])) .

The non–singularity of theH(i,x)’s and of the associated copula functions imply that, for every

i ∈ N,

P {ω ∈ Ω : [Vj (x1, ω) , · · · , Vj (xT , ω)] ∈ Qω
j , j = 1, . . . , k + 1

}
=∫

Q1

∫

Q2(v1)

· · ·

∫

Qk+1(v1,··· ,vk)

fV1
x1,...,xT

(v1) · · · f
Vk+1
x1,...,xT

(vk+1) dvk+1 · · · dv2dv1 > 0.

�

Theorem 2.7.Let{Gx : x ∈ X } be awDSBP
(
C θ

X
,V V

N
, G0

X

)
. If Θ ⊆ S is the support ofG0

x,

for everyx ∈ X , C θ
X

is a collection of copulas with positive density w.r.t. Lebesgue measure,

on the appropriate unitary hyper–cubes, and, for everyi ∈ N,Hi has positive density on[0, 1],

thenP (Θ)X is the weak support of the process, i.e., thewDSBPhas full weak support.
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Proof: The non–singularity of theH(i)’s implies that condition (2.5) holds, for everyi ∈ N.

The rest of the proof remains the same as for Theorem 2.2. �

Theorem 2.8. Let {Gx : x ∈ X } be aθDSBP
(
C V

X ,N,V
V

X ,N, G
0
)
, whereΘ is the support of

G0. If C V
X ,N is a collection of copulas with positive density w.r.t. to Lebesgue measure, on

the appropriate unitary hyper–cubes, and, for everyi ∈ N, the elements inV Vi

X
have positive

density on[0, 1], then the support of the process isP (Θ)X .

Proof: The proof follows similar arguments to the ones of Theorem 2.3. It is only needed to

replace

∫

Q1

∫

Q2(v1)

· · ·

∫

Qk+1(v1,...,vk)

fV
x1,...,xT

(v1) · · · f
V
x1,...,xT

(vk+1) dvk+1 · · · dv2dv1,

in expression (2.6) by

∫

Q1

∫

Q2(v1)

· · ·

∫

Qk+1(v1,...,vk)

fV1
x1,...,xT

(v1) · · · f
Vk+1
x1,...,xT

(vk+1) dvk+1 · · · dv2dv1,

wherefVi
x1,...,xT

(vj), j = 1, . . . , k + 1, is the density function of

CVi
x1,...,xT

(Hi,x1 ((0, v1]) , . . . , Hi,xT
((0, vT ])) .

The non–singularity of theH(i,x)’s and of the associated copula functions imply that, for every

i ∈ N,

P {ω ∈ Ω : [Vj (x1, ω) , · · · , Vj (xT , ω)] ∈ Qω
j , j = 1, . . . , k + 1

}
=∫

Q1

∫

Q2(v1)

· · ·

∫

Qk+1(v1,··· ,vk)

fV1
x1,...,xT

(v1) · · · f
Vk+1
x1,...,xT

(vk+1) dvk+1 · · · dv2dv1 > 0.

�

Since the proofs of Theorems 2.4 and 2.5 depend on the dependent mixing distributions
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through their weak support only, the results are also valid for the different versions of the DSBP.

Thus, the following theorems are stated without any proof.

Theorem 2.9. Let ψ be a non–negative valued function defined on the product measurable

space(Y ×Θ,B(Y )⊗B(Θ)), whereY ⊆ R
n is the sample space with corresponding Borel

σ–fieldB(Y ) andΘ ⊆ R
q is the parameter space with corresponding Borelσ–field B(Θ).

Assume thatψ satisfies conditions (i) – (iii) of Theorem 2.4. If{Gx : x ∈ X } is a DSBP, a

wDSBP or aθDSBP, satisfying the conditions of Theorem 2.6, 2.7 or 2.8, respectively, then the

Hellinger support of the process
{∫

Θ
ψ (·, θ)Gx (dθ) : x ∈ X

}
is

∏

x∈X

{∫

Θ

ψ (·, θ)Px (dθ) : Px ∈ P(Θ)

}
,

whereP(Θ) is the space of all probability measures defined on(Θ,B(Θ)).

Theorem 2.10.Assume thatψ belongs to a location–scale family,ψ(·, θ) = σ−nk
(
· −µ
σ

)
, where

µ = (µ1, . . . , µn) is ann–dimensional vector, andσ ∈ R
+. Let k be a non–negative valued

function defined on(Y ×Θ,B(Y )⊗ B(Θ)), whereY ⊆ R
n is the sample space with corre-

sponding Borelσ–fieldB(Y ) andΘ ⊆ R
n × R

+ is the parameter space with corresponding

Borel σ–fieldB(Θ). Assumek satisfies conditions (i) – (iv) of Theorem 2.5 and that the ele-

ments in{f 0
xi
: i = 1, . . . , T} satisfy conditions (v) – (viii) of Theorem 2.5. If{Gx : x ∈ X } is

a DSBP, a wDSBP or aθDSBP, whereRn × R
+ is the support of the corresponding centering

distributions, and satisfying the conditions of Theorem 2.6, 2.7 or 2.8, respectively, then

P

{
ω ∈ Ω : dKL

[∫

Rn×R+

ψ (·, θ)G (xi, ω) (dθ) , f
0
xi

]
< ǫ, i = 1, . . . , T

}
> 0,

for ǫ > 0.

2.4 Concluding remarks and future research

We have studied the support properties of DDP and DDP mixturemodels, as well as those

of more general dependent stick–breaking processes. By exploiting the connection between
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copulas and stochastic processes, we have provided sufficient conditions for weak and Hellinger

support of models based on DDP’s. We have also characterizedthe Kullback–Leibler support

of mixture models induced by DDP’s and showed that the results can be generalized for the

class of dependent stick–breaking processes. Several versions of the DDP were considered, in

particular a version where only the weights are indexed by the predictors. The results suggest

that we may consider parsimonious models that index only theweights or only the support

points by the predictors, while retaining the appealing support properties of a full DDP model.

This opens new possibilities for the development of single–atoms DDP models, for which there

is a scarcity of literature. In particular, a back–to–back comparison of these simplified models

is of interest.

The results on the support of MacEachern’s DDP, DSBP and their induced mixture models

provided here can be useful for studying frequentist asymptotic properties of the posterior dis-

tribution in these models. In fact, using the same strategy adopted in Norets & Pelenis (2011)

and Pati et al. (2011), the weak and strong consistency of thedifferent versions of MacEach-

ern’s DDP and DSBP mixture models could be anticipated. These authors study the frequentist

consistency of the posterior distribution of the induced joint model for responses and predictors,

(y, x), under iid sampling. Therefore, the asymptotic propertiesprovided by these authors are

based on the consistency results for single density estimation problems. Our approach differs

from these works in that we adopt a conditional framework (ofthe responses given the predic-

tors), which implies the need to work with product spaces. The study of the asymptotic behavior

in the conditional context is also of interest and is the subject of ongoing research.
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Chapter 3

Fully nonparametric regression for bounded data using

dependent Bernstein polynomials

This chapter has been submitted for publication as:

BARRIENTOS , A. F., JARA , A. & QUINTANA , F. A. (2012). Fully nonparametric regres-

sion for bounded data using dependent Bernstein polynomials. Submitted.
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3.1. INTRODUCTION

3.1 Introduction

This paper deals with the problem of defining a fully nonparametric regression model for a

continuous response variable with bounded supporty ∈ [l, u], −∞ < l < u < +∞, based

on a set of predictorsx ∈ X ⊆ R
p. The nonparametric regression model is induced by

assumingy | Gx

ind.
∼ Gx, whereGx is a probability measure defined on([l, u],B([l, u])),

and by defining a probability model for the set of predictor-dependent continuous probability

distributionsG = {Gx : x ∈ X }, allowing the complete shape of the elements ofG to change

flexibly with the values ofx.

The problem of defining priors over related random probability distributions has received

increasing attention over the past few years. To date, much effort has focused on constructions

that generalize the widely used class of Dirichlet process priors (Ferguson, 1973, 1974). Some

exceptions are Tokdar et al. (2010), Karabatsos & Walker (2011), Trippa et al. (2011) and Jara &

Hanson (2011), who proposed models based on logistic Gaussian processes, on infinite ordered-

category probit regressions, on dependent beta processes and tailfree processes, respectively.

MacEachern (1999, 2000) proposed the dependent Dirichlet process (DDP) to define a full joint

model on the setG , where marginally everyGx ∈ G is a Dirichlet process. The key idea

behind the DDP is to introduce dependence by modifying the stick-breaking representation of

each element in the set. Specifically, MacEachern (1999, 2000) proposed to consider discrete

random measures of the form

Gx(B) =
∞∑

i=1

wi(x)δθi(x)(B),

whereB is a measurable set in an appropriate space, the point massesθi(x), i = 1, . . ., are

independent stochastic processes with index setX , and the weights take the formwi(x) =

Vi(x)
∏

j<i[1 − Vj(x)], with Vi(x), i = 1, . . ., being independent stochastic processes with

index setX andbeta(1,M) marginal distribution. MacEachern (2000) also studied a version

of the process with predictor-independent weights,Gx(B) =
∑∞

i=1wiδθi(x)(B), and showed

that this version of the model has full support when flexible point mass processes are consid-
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ered. Versions of the predictor-independent weights DDP have been successfully applied to

ANOVA (De Iorio et al., 2004), survival (De Iorio et al., 2009; Jara et al., 2010), spatial model-

ing (Gelfand et al., 2005), functional data (Dunson & Herring, 2006), time series (Caron et al.,

2006), discriminant analysis (De la Cruz et al., 2007), and longitudinal data analysis (Müller

et al., 2005).

Other extensions of the DP for dealing with related probability distributions include the

DPM mixture of normals model for the joint distribution of the response and predictors (Müller

et al., 1996), the hierarchical mixture of DPM (Müller et al., 2004), the hierarchical DP (Teh

et al., 2006), the order-based DDP model (Griffin & Steel, 2006), the nested DP (Rodriguez

et al., 2008), the predictor-dependent weighted mixture ofDP (Dunson et al., 2007), the kernel-

stick breaking process (Dunson & Park, 2008), the matrix-stick breaking process (Dunson

et al., 2008), the local DP (Chung & Dunson, 2011), the logit-stick breaking processes (Ren

et al., 2011), the probit-stick breaking processes (Chung &Dunson, 2009; Rodrı́guez & Dun-

son, 2011), the cluster-X model (Müller & Quintana, 2010), the PPMx model (Müller etal.,

2011), and the dependent skew DP model (Quintana, 2010), among many others. Dependent

neutral to the right processes and correlated two-parameter Poisson-Dirichlet processes have

been proposed by Epifani & Lijoi (2010) and Leisen & Lijoi (2011), respectively, by consid-

ering suitable Lévy copulas. The general class of dependent normalized completely random

measures has been discussed, for instance, by Nipoti (2011)and Lijoi et al. (2012).

To the best of our knowledge, all of the existing approaches have focussed on densities on

the real line, considering dependent mixtures of Gaussian models. While the normal kernel is

a sensible choice in such settings, its usefulness is ratherlimited when considering densities

on a known bounded interval. Even though an appropriate transformation could be applied

to the data for the sake of the analysis using standard procedures, the estimates based on a

normal kernel suffers from boundary effects atl andu. Since appropriate transformations mean

considering bijective functions, implying that the edges of the interval,l andu, are identified

with −∞ and∞, it follows that the transformed densities would not be defined on the edges

of the domain, i.e, atl andu. Therefore, models based on transformations should be usedwith

some care, especially in cases where a part of the data associated to the response variable are
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concentrated on the edges of the interval. In contrast, the class of models considered here is not

restricted to any particular type of boundary behavior, andis thus more appropriated for data

sets which are concentrated at the edges of the response support.

In the context of single density estimation problems, Petrone (1999a,b) and Kottas (2006)

proposed models for probability distributions supported on [0, 1] and[0, T ], respectively. In re-

lated work, Robert & Rousseau (2003) developed a goodness offit method using beta mixtures

with unknown number of components, and Mallick & Gelfand (1994) and Gelfand & Mallick

(1995) considered mixtures of beta distribution functionsto model random monotonic func-

tions. We extend the class of Dirichlet-Bernstein priors ofPetrone (1999a,b), to deal with sets

of predictor-dependents probability distributions with bounded support.

The rest of the paper is organized as follows. Random Bernstein polynomials are briefly

described in Section 3.2, so as to make the discussion self contained. Section 3.3 introduces the

general version of the proposed model and its main theoretical properties are established. Proofs

of these results are provided in an accompanying supplementary material file. Simplifications of

the general model class are discussed in Section 3.4. The models are illustrated and compared

to the existing methods using simulated data in Section 3.5,which also contains the results of a

real-life data analysis. A final discussion section concludes the article.

3.2 Random Bernstein polynomials

Bernstein polynomials were introduced by Bernstein (1912)to give a proof of Weiertrass’ ap-

proximation theorem. IfG : [0, 1] −→ R, the associated Bernstein polynomial of degreek is

given by

BP(y|k,G) =
k∑

j=0

G(j/k)


 k

j


 yj(1− y)k−j, y ∈ [0, 1]. (3.1)

If G is the CDF of a probability measure defined on the unit interval, then (3.1) is also a CDF

on [0, 1] and represents a mixture of beta distributions. IfG(0) = 0, its density function is given
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by

bp(y | k,G) =
k∑

j=1

wj,kβ(y | j, k − j + 1), (3.2)

wherewj,k = G(j/k)−G((j − 1)/k), andβ(·|a, b) stands for a beta density with parametersa

andb. For a single-density estimation problem, Petrone (1999a,b) proposed a hierarchical prior,

called the Bernstein polynomial prior (BPP). This consistsof a random density given by (3.2),

wherek has probability mass functionρ, and givenk, wk = (w1,k, . . . , wk,k) has distribution

Hk on the simplex

∆k−1 =

{
(w1, . . . , wk) ∈ R

k : 0 ≤ wj ≤ 1, j = 1, . . . , k,

k∑

j=1

wj = 1

}
.

Petrone (1999a,b) referred to (3.2) as the Bernstein polynomial density with parametersk and

wk, and showed that ifρ assigns positive mass to all naturals, and the density ofHk is positive

for any point in∆k, then the weak support of the BPP is the space of all probability measures

on ([0, 1] ,B ([0, 1])). Lettingζj,k = M (G0(j/k)−G0((j − 1)/k)), j = 1, . . . , k, G0 being a

probability distribution on(0, 1] andM being a positive constant, Petrone (1999a,b) used the

fact that assuming

wk = (w1,k, . . . , wk,k) ∼ Dirichlet(ζ1,k, . . . , ζk,k),

is equivalent to assume thatG follows a Dirichlet process (DP) prior,G | M,G0 ∼ DP (MG0).

Petrone (1999a,b) refers to the later model as the Bernstein-Dirichlet prior (BDP), and discussed

a Markov chain Monte Carlo (MCMC) algorithm to scan its posterior distribution. Petrone &

Wasserman (2002) studied the consistency of the posterior distribution for BPP. They showed

that under the same conditions that guarantee the full weak support of the prior, the posterior

distribution is weakly consistent at any bounded continuous density on[0, 1]. Furthermore, they

showed that under tail conditions onρ the posterior is consistent with respect to the Hellinger

metric.
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3.3 The general model

3.3.1 The definition

Suppose that we observe regression data{(xi, yi) : i = 1, . . . , n}, wherexi ∈ X ⊆ R
p

is ap-dimensional vector of predictors andyi is a continuous[l, u]-valued outcome. Since the

bounded support of the response variable can be rescaled to the unit interval, we will assume that

l = 0 andu = 1 without loss of generality. To introduce dependence in the random probability

measures with bounded support, we replace the DP mixing distribution in the definition of

the BDP prior by a dependent stick-breaking process, which is defined by using transformed

stochastic processes indexed by predictorsx ∈ X . Let V = {vx : x ∈ X } andH = {hx :

x ∈ X } be two sets of known bijective continuous functions, such that for everyx ∈ X ,

vx : R −→ [0, 1] andhx : R −→ (0, 1], and such that for everya ∈ R, vx(a) andhx(a)

are continuous functions ofx. Let P ([0, 1]) be the set of all probability measures defined on

([0, 1] ,B ([0, 1])).

Definition 3.1. Let V andH be two set of functions as before. LetG = {G(x, ω) : x ∈ X }

be aP ([0, 1])-valued stochastic process on an appropriate probability space(Ω,A , P ) such

that:

(i) η1, η2, . . ., are independent and identically distributed real-valuedstochastic processes of

the formηi : X × Ω −→ R, i ≥ 1, with law indexed by a finite-dimensional parameter

Ψ1 and marginal distributions{Fx : x ∈ X }.

(ii) z1, z2, . . ., are independent and identically distributed real-valuedstochastic processes of

the formzi : X × Ω −→ R, i ≥ 1, with law indexed by a finite-dimensional parameter

Ψ2 and marginal distributions{Hx : x ∈ X }.

(iii) k : Ω −→ N is a discrete random variable with distribution indexed by afinite-dimensional

parameterλ.

(iv) For everyx ∈ X and almost everyω ∈ Ω, the density function ofG(x, ω), w.r.t.
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Lebesgue measure, is given by the following dependent mixture of beta densities:

g(x, ω)(·) =
∞∑

j=1

wj(x, ω)β (· | ⌈k(ω)θj(x, ω)⌉, k(ω)− ⌈k(ω)θj(x, ω)⌉+ 1) , (3.3)

where⌈·⌉ denotes the ceiling function,θj(x, ω) = hx(zj(x, ω)), and

wj(x, ω) = vx {ηj(x, ω)}
∏

i<j

[1− vx {ηi(x, ω)}] .

The process,G = {Gx

.
= G(x, ω) : x ∈ X }, will be referred to as dependent Bernstein poly-

nomial process with parameters(λ,Ψ1,Ψ2,V ,H ), and denoted byDBPP(λ,Ψ1,Ψ2,V ,H ).

Notice that, for everyω ∈ Ω, expression (3.3) is indeed a density w.r.t. Lebesgue measure

since, for everyx ∈ X ,

∞∑

i=1

log [1−EFx
(vx {ηi(x, ·)})] = −∞,

which is a sufficient and necessary condition for the weightsto add up to one with probability

one. In addition, it follows immediately from Definition 3.1that the trajectories of the process

are sets of Bernstein polynomial densities. In fact, (3.3) is equivalent to

g(x, ω)(·) =

k(ω)∑

j=1

Wj(x, ω)β (· | j, k(ω)− j + 1) ,

whereWj(x, ω) =
∑∞

i=1wi(x, ω)I{θi(x, ω)}{⌈k(ω)θi(x,ω)⌉=j}, with I{·}A being the indicator

function for the setA.

The choice of the transformation functionsV andH induce interesting properties of the

DBPP. For instance, it is easy to show that if, for everyx ∈ X , the elements inV are such that

vx(·) = B−1(Fx(·) | 1,Mx) and the elements inH are such thathx(·) = G−1
0,x(Hx(·)), with

B−1(· | a, b) being the inverse CDF of a beta distribution with parameters(a, b), then marginally
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Gx follows a Bernstein-Dirichlet prior with parameters(λ,Mx, G0,x), for everyx ∈ X , that is

Gx | λ,Mx, G0x ∼ BDP(λ,Mx, G0x),

whereFx(·) stands for the CDF of the marginal distribution ofηi(x, ·), for everyi ∈ N, Mx ∈

R
+
0 = [0,+∞), G−1

0x is the inverse CDF of a probability measure defined on(0, 1] andHx(·)

stands for the CDF of the marginal distribution ofzi(x, ·), for everyi ∈ N.

Under the same assumptions, it also follows that, for any givenk ∈ N,

E {Gx(By) | k} =

k∑

j=0

G0x(j/k)
k!

(k − j)!j!
yj(1− y)k−j, (3.4)

and

V ar {Gx(By) | k} =
1

Mx





k∑

j=0

c(j, k, y)2ε(j, k,x)−

(
k∑

j=0

c(j, k, y)ε(j, k,x)

)2


 , (3.5)

whereBy = [0, y], c(j, k, y) =
∑k

l=j
k!

(k−l)!l!
yl(1 − y)k−l, ε(0, k,x) = 0, andε(j, k,x) =

G0x(j/k)−G0x((j − 1)/k).

3.3.2 The association structure and continuity of the process

The characteristics of the stochastic processes used in Definition 3.1 determine important prop-

erties of the resulting DBPP. Natural choices for longitudinal or spatial modeling are appropriate

Gaussian processes. Regardless of the specific choice, the use of almost surely (a.s.) continuous

stochastic processes ensures that the DBPP is a.s. continuous from the left and has a limit from

the right. The following theorem is proved in the Section B.1(Appendix B).

Theorem 3.1. Let {Gx : x ∈ X } ∼ DBPP(λ,Ψ1,Ψ2,V ,H ). If for every j ∈ N, the

stochastic processesηj and zj are P -a.s. continuous, then for every{xj}∞1 ⊂ X , such that
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limj→+∞xj −→ x0 ∈ X andxjl ≤ x0l, l = 1, . . . , p,

lim
j→+∞

sup
B∈B([0,1])

|Gxj
(B)−Gx0(B)| = 0, P -a.s.,

that is,Gxj
convergesP -a.s. in total variation norm toGx0 , whenxj −→ x−

0 . In addition, for

every{xj}∞1 ⊂ X , such thatlimj→+∞xj −→ x0 ∈ X andxjl ≥ x0l, l = 1, . . . , p, there

exists a random probability measure on([0, 1],B([0, 1])), G̃x0
, such that

lim
j→+∞

sup
B∈B([0,1])

|Gxj
(B)− G̃x0

(B)| = 0, P -a.s.,

that is,Gxj
convergesP -a.s. in total variation norm tõGx0 , whenxj −→ x+

0 .

The association structure of DBPP is completely determinedby the dependence structure

of the stochastic processes used in Definition 3.1. General analytical expressions for the cor-

relation function are not possible to derive because they depend on the specific laws of the

associated stochastic processes. However, we show that, under mild conditions on the stochas-

tic processes defining the DBPP, the correlation between thecorresponding random measures

approaches to one as the predictor values get closer. The following theorem is proved in the

Section B.1 (Appendix B).

Theorem 3.2.Let{Gx : x ∈ X } ∼ DBPP(λ,Ψ1,Ψ2,V ,H ). If for every{xj}∞1 , withxj ∈

X , such thatlimj→+∞xj −→ x0 ∈ X , we havezi(xj, ·)
L
−→ zi(x0, ·) and ηi(xj , ·)

L
−→

ηi(x0, ·), asj −→ +∞, then, for ally ∈ (0, 1),

lim
j→+∞

ρ [G(xj , ·)(By), G(x0, ·)(By)] = 1,

whereρ(A,B) denotes the Pearson correlation betweenA andB, andBy = [0, y].

If the stochastic processes defining the DBPP are such that the pairwise finite-dimensional

distributions converge to the product of the correspondingmarginal distributions as the Eu-

clidean distance between the predictors grows larger, thenunder mild conditions on the center-

ing distributions of the DBPP the correlation between the corresponding random measures can
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approach to zero. The following theorem, proved in the Section B.1 (Appendix B), shows that

under the assumptions previously discussed for the DBPP, the marginal covariance between the

random measures is equal to the covariance between the conditional expectations of the random

measures, given the degree of the Bernstein polynomial.

Theorem 3.3. Let {Gx : x ∈ X } ∼ DBPP(λ,Ψ1,Ψ2,V ,H ). Asumme that there exists

a constantγ > 0 such that ifx1,x2 ∈ X and ‖x1 − x2‖ > γ, thenCov
[
I{zi(x1,·)∈A1},

I{zi(x2,·)∈A2}

]
= 0 andCov

[
I{ηi(x1,·)∈A3}, I{ηi(x2,·)∈A4}

]
= 0, for everyA1, A2, A3, A4 ∈ B(R).

Assume also that for everyx1,x2 ∈ X such that‖x1 − x2‖ > γ, and for every sequence

{(x1j ,x2j)}∞1 ⊂ X 2, such thatlimj→+∞(x1j ,x2j) = (x1,x2), we have(zi(x1j , ·), zi(x2j , ·))
L
−→ (zi(x1, ·), zi(x2, ·)) and (ηi(x1j , ·), ηi(x2j , ·))

L
−→ (ηi(x1, ·), ηi(x2, ·)), as j −→ +∞.

Then, for everyy ∈ [0, 1],

lim
j→+∞

Cov [G(x1j , ·)(By), G(x2j, ·)(By)] =

Cov




k(·)∑

l=1

G∗
0x1

(
Al,k(·)

)
BIN(l | k(·), y),

k(·)∑

l=1

G∗
0x2

(
Al,k(·)

)
BIN(l | k(·), y)




whereBy = [0, y], Al,k = [0, l/k], G∗
0x stands for the marginal probability measure ofθi(x, ·)

andBIN( · | k, y) stands for the probability mass function of the binomial distribution with

parameters(k, y).

Remark 3.1. It is easy to see that if theDBPP is specified such that the marginal distribution

of k is degenerated, then the correlation between the corresponding random measures goes to

zero, sincelimj→+∞Cov [G(x1j, ·)(By), G(x2j , ·)(By)] = 0.

Remark 3.2. If theDBPPis specified such thatG∗
0x1

= G∗
0x2

, then

lim
j→+∞

Cov [G(x1j , ·)(By), G(x2j , ·)(By)] ≥ 0,
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since

lim
j→+∞

Cov [G(x1j, ·)(By), G(x2j , ·)(By)] = V ar




k(·)∑

l=1

G∗
0x1

(
Al,k(·)

)
BIN(l | k(·), y)


 .

Remark 3.3. If G∗
0x1

or G∗
0x2

is theU(0, 1) distribution, then

lim
j→+∞

Cov [G(x1j, ·)(By), G(x2j , ·)(By)] = 0,

since

k(·)∑

l=1

G∗
0xt

(
Al,k(·)

)
BIN(l | k(·), y) =

k(·)∑

j=1

j

k(·)


 k(·)

j


 yj(1− y)k(·)−j = y,

which is constant as a function ofk for t = 1 or 2, and everyy ∈ [0, 1].

Although the trajectories of the DBPP are a.s. continuous from the left only, its autocor-

relation function is continuous under mild conditions on the stochastic processes defining the

DBPP. The following theorem is proved in the Section B.1 (Appendix B).

Theorem 3.4. Let {Gx : x ∈ X } ∼ DBPP(λ,Ψ1,Ψ2,V ,H ). Assume that for every

{(x1j ,x2j)}∞1 ⊂ X 2, such thatlimj→+∞(x1j ,x2j) = (x1,x2) ∈ X 2, we have that(zi(x1j , ·),

zi(x2j, ·))
L
−→ (zi(x1, ·), zi(x2, ·)) and(ηi(x1j , ·), ηi(x2j, ·))

L
−→ (ηi(x1, ·), ηi(x2, ·)), asj −→

+∞. Then, for everyy ∈ [0, 1],

lim
j→∞

ρ [G(x1j , ·)(By), G(x2j, ·)(By)] = ρ [G(x1, ·)(By), G(x2, ·)(By)] ,

whereBy = [0, y].

3.3.3 The support of the process

Large support is an important and basic property that any Bayesian nonparametric model should

ideally possess. In fact, assigning positive mass to neighborhoods of any collection of probabil-
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ity distributions{Fx : x ∈ X } is a minimum requirement (and almost a “necessary” property)

for a model to be considered “nonparametric”. This propertyis also important because it is typ-

ically a required condition for frequentist consistency ofthe posterior distribution. As is widely

known, the definition of the support of probability models onfunctional spaces strongly depends

on the choice of a “distance” defining the basic neighborhoods. Therefore, it is first necessary

to make explicit the topology under consideration. The results presented here are based on gen-

eralizations of standard topologies for spaces of single probability measures. Specifically, we

consider the weak product topology,L∞ product topology andL∞ topology.

A sub-base of the weak product topology for the spaceP ([0, 1])X =
∏

x∈X
P ([0, 1]), is

given by sets of the formBW
f,ǫ,x0

({Fx : x ∈ X }) =
∏

x∈X
∆W

f,ǫ,x0
(Fx), where

∆W
f,ǫ,x0

(Fx) =





P([0, 1]), if x ∈ X ,x 6= x0,{
Px ∈ P([0, 1]) :

∣∣∣
∫
[0,1]

fdP −
∫
[0,1]

fdFx

∣∣∣ < ǫ
}
, if x ∈ X ,x = x0,

for every continuous and bounded functionf , x0 ∈ X and ǫ > 0. The following theorem

provides sufficient conditions forP ([0, 1])X to be the support of the DBPP under the weak

product topology, that is, it provides sufficient conditions under whichP ([0, 1])X is the small-

est closet set ofP ◦ G −1-measure one under the weak product topology. The proof of the

theorem is given in the Section B.1 (Appendix B).

Theorem 3.5. Let {Gx : x ∈ X } ∼ DBPP(λ,Ψ1,Ψ2,V ,H ). If for every(x1, . . . ,xd) ∈

X d, d ≥ 1, the joint distribution of(ηi(x1, ·), . . . , ηi(xd, ·)) and (zi(x1, ·), . . . , zi(xd, ·))

have full support onRd, and k(·) has full support onN, thenP ([0, 1])X is the support of

{Gx : x ∈ X } under the weak product topology.

LetD ([0, 1]) ⊂ P ([0, 1]) be the set of all probability measures defined on([0, 1] ,B ([0, 1]))

that are absolutely continuous w.r.t. Lebesgue measure andwith continuous density function on

[0, 1]. A sub-base of theL∞ product topology for the spaceD ([0, 1])X =
∏

x∈X
D ([0, 1]), is
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given by sets of the formBL∞
ǫ,x0

({Fx : x ∈ X }) =
∏

x∈X
∆L∞

ǫ,x0
(Fx), where

∆L∞
ǫ,x0

(Fx) =





D([0, 1]), if x ∈ X ,x 6= x0,
{
Px ∈ D([0, 1]) : supy∈[0,1] |px(y)− fx(y)| < ǫ

}
, if x ∈ X ,x = x0,

wherepx andfx denote the densities ofPx andFx w.r.t. Lebesgue measure, respectively. The

following theorem shows that, under the same assumptions ofTheorem 3.5,D ([0, 1])X is the

support of the DBPP under theL∞ product support. The proof of the following theorem is

provided in the Section B.1 (Appendix B).

Theorem 3.6.Let{Gx : x ∈ X } ∼ DBPP(λ,Ψ1,Ψ2,V ,H ). If for everyx1, . . . ,xd ∈ X d,

d ≥ 1, the joint distributions of(ηi(x1, ·), . . . , ηi(xd, ·)) and(zi(x1, ·), . . . , zi(xd, ·)) have full

support onRd, andk(·) has full support onN, thenD ([0, 1])X is the support of{Gx : x ∈ X }

under theL∞ product topology.

If stronger assumptions on the predictor spaceX and the parameter space are imposed, a

stronger support property (L∞) can be obtained. Specifically, assume that the predictor space

X is a compact set and consider the sub-spaceD̃ ([0, 1])X ⊂ D ([0, 1])X , where

D̃ ([0, 1])X =
{
{Fx : x ∈ X } ∈ D ([0, 1])X : (y,x) −→ fx(y) is continuous

}
,

with fx denoting the density ofFx ∈ D ([0, 1]) w.r.t. Lebesgue measure. A base of theL∞

topology for the spaceD ([0, 1])X =
∏

x∈X
D ([0, 1]), is given by sets of the form

BL∞
ǫ ({Fx : x ∈ X }) =

{
{Px : x ∈ X } ∈ D ([0, 1])X : sup

x∈X

sup
y∈[0,1]

|px(y)− fx(y)| < ǫ

}
,

where ǫ > 0 and, for everyx ∈ X , px and fx denote the densities ofPx andFx w.r.t.

Lebesgue measure, respectively. The following theorem, proved in the Section B.1 (Appendix

B), provides sufficient conditions for̃D ([0, 1])X to be the support of the DBPP under theL∞

topology.

Theorem 3.7. Let {Gx : x ∈ X } ∼ DBPP(λ,Ψ1,Ψ2,V ,H ). If X is a compact set,k(·)
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has full support onN, and the processes used in the definition of the DBPP are such that, for

any[0, 1]-valued continuous function defined onX , f , andǫ > 0, we have that

P

{
ω ∈ Ω : sup

x∈X

|vx(ηi(x, ω))− f(x)| < ǫ

}
> 0,

and

P

{
ω ∈ Ω : sup

x∈X

|hx(zi(x, ω))− f(x)| < ǫ

}
> 0,

thenD̃ ([0, 1])X is the support of{Gx : x ∈ X } under theL∞ topology.

An important consequence of the previous theorem is that theDBPP can assign positive

mass to arbitrarily small neighborhoods of any collection of probability measures{Qx : x ∈

X } ∈ D̃ ([0, 1])X , based on the supremum over the predictor space of Kullback-Leibler (KL)

divergences between the predictor-dependent probabilitymeasures. The following corollary is

proved in the Section B.1 (Appendix B).

Corollary 3.1. Let{Gx : x ∈ X } ∼ DBPP(λ,Ψ1,Ψ2,V ,H ). Assume thatX is a compact

set,k(·) has full support onN, and that the processes used in the definition of the DBPP are

such that, for anyǫ > 0 and[0, 1]-valued continuous functionf defined onX , we have

P

{
ω ∈ Ω : sup

x∈X

|vx(ηi(x, ω))− f(x)| < ǫ

}
> 0,

and

P

{
ω ∈ Ω : sup

x∈X

|hx(zi(x, ω))− f(x)| < ǫ

}
> 0.

Then,

P

{
ω ∈ Ω : sup

x∈X

∫ 1

0

qx(y) log

(
qx(y)

g(x, ω)(y)

)
dy < ǫ

}
> 0,

for everyǫ > 0 and every{Qx : x ∈ X } ∈ D̃([0, 1]), with density functions{qx : x ∈ X }.
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3.3.4 The asymptotic behavior of the posterior distribution

Let Q be the true probability measure generating the predictors,with density w.r.t. a corre-

spondingσ-additive measure denoted byq. Suppose that the response variable and predictors

are drawn independently from a probability distribution ofthe formm0(y,x) = q(x)q0(y | x),

whereq0(y | x) denotes a fixed conditional density on[0, 1], x ∈ X . Let m(·)(y,x) =

q(x)g(x, ·)(y) be the random joint distribution for the response and predictors arising when

g(x, ·)(y) is given by (3.3). Since the KL divergence betweenm0 and a realizationm(ω) of the

implied joint distribution under the DBPP can be bounded by the supremum over the predictor

space of KL divergences between the predictor-dependent probability measures,

KL(m0, m
(ω)) =

∫

X

∫

[0,1]

m0(y,x) log

(
m0(y,x)

m(ω)(y,x)

)
dydx,

=

∫

X

q(x)

∫

[0,1]

q0(y | x) log

(
q0(y | x)

g(x, ω)(y)

)
dydx,

≤ sup
x∈X

∫

[0,1]

q0(y | x) log

(
q0(y | x)

g(x, ω)(y)

)
dy,

it follows that, for everyδ > 0,

P

{
ω ∈ Ω : sup

x∈X

∫

[0,1]

q0(y | x) log

(
q0(y | x)

g(x, ω)(y)

)
dy < δ

}

≥ P
{
ω ∈ Ω : KL(m0, m

(ω)) < δ
}
,

> 0,

under the assumptions of Theorem 3.7 and Corollary 3.1. Thus, by Schwartz’s theorem

(Schwartz, 1965) it follows that the posterior distribution associated with the random joint dis-

tribution induced by the DBPP model is weakly consistent, that is, the posterior measure of any

weak neighborhood, of any joint distribution of the formm0(y,x) = q(x)q0(y | x), converges

to 1 as the sample size goes to infinity. This result is summarized in the following theorem.

Theorem 3.8.Let {Gx : x ∈ X } ∼ DBPP(λ,Ψ1,Ψ2,V ,H ). Assume thatX is a compact

set,k(·) has full support onN, and that the processes used in the definition of the DBPP are
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such that, for anyǫ > 0 and[0, 1]-valued continuous functionf defined onX , we have

P

{
ω ∈ Ω : sup

x∈X

|vx(ηi(x, ω))− f(x)| < ǫ

}
> 0,

and

P

{
ω ∈ Ω : sup

x∈X

|hx(zi(x, ω))− f(x)| < ǫ

}
> 0.

Then the posterior distribution associated with the randomjoint distribution induced by the

DBPP model,m(·)(y,x) = q(x)g(x, ·)(y), whereq is the density generating the predictors,

is weakly consistent at any joint distribution of the formm0(y,x) = q(x)q0(y | x), where

{q0(· | x) : x ∈ X } ∈ D̃ ([0, 1])X .

3.4 Simplified versions of the general model

In the search of parsimonious models, it is of interest to know whether simplified versions of the

general model class proposed in the previous section retainmost of its appealing properties. In

this section we study two simplifications of the general model class, by considering dependent-

stick breaking processes where only the support points or only the weights are indexed by the

predictors.

3.4.1 ThewDBPP

We first consider the case where the dependence in the probability measures with bounded

support involves a dependent stick-breaking process with common weights across probability

measures, and support points given by stochastic processesindexed by predictorsx ∈ X . The

resulting process is referred to as ‘single weights’ DBPP and denoted bywDBPP.

Definition 3.2. Let H be a set of functions as before. LetG = {G(x, ω) : x ∈ X } be a

P ([0, 1])-valued stochastic process on an appropriate probability space(Ω,A , P ) such that:

(i) v1, v2, . . . are independent random variables of the formvi : Ω −→ [0, 1], i ≥ 1, and with

common distribution indexed by a finite-dimensional parameterα.
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(ii) z1, z2, . . ., are independent and identically distributed real-valuedstochastic processes of

the formzi : X × Ω −→ R, i ≥ 1, with law indexed by a finite-dimensional parameter

Ψ2 and marginal distributions{Hx : x ∈ X }.

(iii) k : Ω −→ N is a discrete random variable with distribution indexed by afinite-dimensional

parameterλ.

(iv) For everyx ∈ X and almost everyω ∈ Ω, the density function ofG(x, ω), w.r.t.

Lebesgue measure, is given by a common-weights dependent mixture of beta densities,

g(x, ω)(·) =
∞∑

j=1

wj(ω)β (· | ⌈k(ω)θj(x, ω)⌉, k(ω)− ⌈k(ω)θj(x, ω)⌉+ 1) ,

where⌈·⌉ denotes the ceiling function,θj(x, ω) = hx(zj(x, ω)), and

wj(ω) = vj(ω)
∏

i<j

[1− vi(ω)] .

The processG = {Gx

.
= G(x, ω) : x ∈ X } will be referred to as ‘single-weights’ depen-

dent Bernstein polynomial process with parameters(α, λ,Ψ2,H ), and denoted bywDBPP(α,

λ,Ψ2,H ).

As shown in the Section B.2 (Appendix B), under equivalent assumptions on the parameters

defining the process, the ‘single weights’ DBPP retains all of the properties shown for the

general version of the model,

3.4.2 TheθDBPP

We now consider the case where the dependence in the probability measures is introduced via

the use of dependent stick-breaking processes with common support points across probability

measures, and weights corresponding to stochastic processes indexed by predictorsx ∈ X .

The resulting process is referred to as ‘single atoms’ DBPP and denoted byθDBPP.
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Definition 3.3. Let V be a set of functions as before. LetG = {G(x, ω) : x ∈ X } be a

P ([0, 1])-valued stochastic process on an appropriate probability space(Ω,A , P ) such that:

(i) η1, η2, . . ., are independent and identically distributed real-valuedstochastic processes of

the formηi : X × Ω −→ R, i ≥ 1, with law indexed by a finite-dimensional parameter

Ψ1 and marginal distributions{Fx : x ∈ X }.

(ii) θ1, θ2, . . ., are independent random variables of the formθi : Ω −→ [0, 1], i ≥ 1, and

with common distributionG0.

(iii) k : Ω −→ N is a discrete random variable with distribution indexed by afinite-dimensional

parameterλ.

(iv) For everyx ∈ X and almost everyω ∈ Ω, the density function ofG(x, ω), w.r.t.

Lebesgue measure, is given by a dependent mixture of beta densities,

g(x, ω)(·) =
∞∑

j=1

wj(x, ω)β (· | ⌈k(ω)θj(ω)⌉, k(ω)− ⌈k(ω)θj(ω)⌉+ 1) , (3.6)

where⌈·⌉ denotes the ceiling function and

wj(x, ω) = vx {ηj(x, ω)}
∏

i<j

[1− vx {ηi(x, ω)}] .

The processG = {Gx

.
= G(x, ω) : x ∈ X } will be referred to as ‘single-atoms’ dependent

Bernstein polynomial process with parameters(λ,Ψ1,V , G0), and denoted byθDBPP(λ,Ψ1,

V , G0).

As shown in the Section B.3 (Appendix B), the properties of the ‘single atoms’ DBPP have

some interesting differences with the general model class.On the one hand, theθDBPP has full

support under the three topologies we considered, and its posterior distribution is also weakly

consistent. In addition, the correlation of correspondingrandom measures has identical be-

havior when the predictor values get close, and the correlation function is also continuous as
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a function of the predictors. On the other hand, however, thecorrelation between the associ-

ated random measures when the predictor values are far apartreaches a different limit, and it

is difficult to establish conditions on the prior specification ensuring that this limit is zero. An-

other interesting property of theθDBPP compared to the general model class is that the use

of a.s. continuous stochastic processes in the weights guarantees a.s. continuity of the ‘single

atoms’ DBPP (and not only from the left). The following theorem is proved in the Section B.4

(Appendix B).

Theorem 3.9. Let {Gx : x ∈ X } ∼ θDBPP(λ,Ψ1,V , G0). Assume that for everyj ∈ N,

the stochastic processηj is P -a.s. continuous. Then, for every{xj}∞1 ⊂ X , such that

limj→+∞xj −→ x0 ∈ X ,

lim
j→+∞

sup
B∈B([0,1])

|Gxj
(B)−Gx0(B)| = 0, P -a.s.,

for everyx0 ∈ X , that is,Gxj
convergesP -a.s. in total variation norm toGx0 , asxj −→ x0.

3.5 Illustrations

We illustrate the behavior of the models with simulated and real-life data. In these illustrations

we consider special cases of the general models, where the stochastic processes used in the def-

inition of the DBPP correspond to Gaussian processes arising from linear (in the coefficients)

regression models, with random and normally distributed coefficients. The computational im-

plementation of the models is based on MCMC methods. The MCMCalgorithms can be based

on a finite dimensional approximation of the dependent sitck-breaking process, or on the use

of the slice sampler (Walker, 2007) or the retrospective sampler algorithm (Papaspiliopoulos &

Roberts, 2008). A full description of the MCMC implementation used here is given in Section

B.5 (Appendix B). User-friendly functions implementing these methods were written in com-

piled language and incorporated into the R library DPpackage (Jara, 2007; Jara et al., 2011).
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3.5.1 Simulated data

To illustrate the performance of the proposed models and to compare them to the existing meth-

ods, nine simulated data sets were generated; one for each ofthree different scenarios and three

sample sizes (n = 250, n = 500 andn = 1, 000). In all cases, a single continuous covariatex

was considered, with values generated from theU(0, 1) distribution. The three different scenar-

ios are given in Table 3.1. They represent varying degrees ofcomplexity and shapes asx varies

in the predictor space. All models exhibit a multi-modal behavior. The conditional distributions

for Scenario I have a bi-modal behavior for low values of the predictor, and the modes merge as

the predictor value increases. The conditional distributions for Scenario II have positive density

at 1, whilef (y | x) → 0 asy → 0, for everyx ∈ (0, 1). Finally, the conditional distributions

for Scenario III have positive density at 0 and 1, for everyx ∈ (0, 1). Additionally, a central

mode is also present, and the density value at the mode increases as the value of the predictor

increases.

Table 3.1: Simulated data: True models.

Scenario Conditional density
I f (y | x) = 0.5× Beta(y | 20, 1.1 + 20x) + 0.5× Beta(y | 1.1 + 5x, 5).
II f (y | x) = 0.5× Beta(y | 20, 1.1 + 20(x+ 0.27)) + 0.5× Beta(y | 1.1 + 5(x+ 0.27), 1).
III f (y | x) = 0.3× Beta(y | 1, 10) + 0.5× Beta(y | 1.1 + 20x, 8) + 0.2× Beta(y | 10, 1).

Particular cases of the general models were considered by assuming

vx(·) = hx(·) = exp{·}/ (1 + exp{·}) ,

for everyx ∈ (0, 1). Furthermore, we considered Gaussian processes (GP) in thedefinition

of the models, by exploiting the connection between GP and linear models. Specifically, we

assume thatηi(x, ω) = dη(x)
Tγ

η
i (ω) andγη

i (·) | µη,Sη iid
∼ Nr1 (µ

η,Sη), and thatzi(x, ω) =

dz(x)
Tγz

i (ω) andγz
i (·) | µ

z,Sz iid
∼ Nr2 (µ

z,Sz), i = 1, 2, . . ., wheredη(x) anddz(x) arer1-

andr2-dimensional design vectors, respectively, including linear and/or non-linear functions of

the predictorx. The corresponding versions of the DBPP using this specification are referred to
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as linear DBPP (LDBPP), linearwDBPP (wLDBPP) and linearθDBPP (θLDBPP). The model

specification was completed by assuming

k | λ ∼ Poisson(λ)I{k>1},

µη | mη
0,S

η
0 ∼ Nr1 (m

η
0,S

η
0) , Sη | νη,Ψη ∼ IWr1 (ν

η,Ψη) ,

µz | mz
0,S

z
0 ∼ Nr2 (m

z
0,S

z
0) , Sz | νz,Ψz ∼ IWr2 (ν

z,Ψz) ,

vj | α
iid
∼ Beta(1, α), θj | a, b

iid
∼ Beta(a, b),

whereIWr(ν,A) denotes ther-dimensional inverted-Wishart distribution with degreesof free-

domν and scale matrixA.

Two versions of each linear DBPP model were considered. In version 1, we setdη(x) =

(1, x)T and/ordz(x) = (1, x)T . In version 2, random B-splines regression models (see, e.g. Eil-

ers & Marx, 1996; Lang & Brezger, 2004) were considered. In this case,dη(x) = (1, ψ1(x), . . . ,

ψ6(x))
T and/ordz(x) = (1, ψ1(x), . . . , ψ6(x))

T , whereψj(x) corresponds to thejth B-spline

basis function evaluated atx. The models were fit by assumingλ = 25, mη
0 = 0r1, m

z
0 = 0r2,

S
η
0 = 2.25 × Ir1, S

z
0 = 2.25 × Ir2, ν

η = r1 + 2, νz = r2 + 2 andα = a = b = 1. For each

simulated dataset, one Markov chain was generated completing a conservative total number of

110,000 scans of the Markov chain cycle described in Appendix E of the supplementary mate-

rial. Standard tests (not shown), as implemented in the BOA Rlibrary (Smith, 2007), suggested

convergence of the chains. Because of storage limitations,the full chain was subsampled every

10 iterations, after a burn-in period of 10,000 samples, to give a reduced chain of length 10,000.

For comparison purposes, we considered the linear dependent Dirichlet process (LDDP) of

De Iorio et al. (2004, 2009) and the weight dependent Dirichlet process (WDDP) of Müller

et al. (1996). For the approach of Müller et al. (1996), we consider the multivariate extension of
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the univariate Dirichlet process mixture of normals model of Escobar & West (1995) to fit the

complete transformed datawi = (log(yi/(1− yi)), xi)
T , and focus on the conditional densities

f(y | x) arising from the model. The Dirichlet process mixture modelis given by

wi | µi,Σi
ind.
∼ N2 (µi,Σi) , (µ,Σi) | Q1

iid
∼ Q1, Q1 | M1, Q01 ∼ DP (M1, Q01) ,

where the baseline distributionQ01 is the conjugate normal-inverted-Wishart (IW) distribution

Q01 ≡ N2

(
µ | m1, κ

−1
0 Σ

)
IW2 (Σ | ν1,Ψ1). To complete the model specification, the follow-

ing hyper-priors were assumed:M1 | a01, b01 ∼ Γ (a01, b01), m1 | m2,S2 ∼ N2 (m2,S2),

κ0 | τ1, τ2 ∼ Γ (τ1/2, τ2/2), andΨ1 | ν2,Ψ2 ∼ IW2 (ν2,Ψ2). The LDDP, on the other hand,

can be represented as Dirichlet process mixture of linear (in the coefficients) regression models

log(yi/(1− yi)) | γi, σ
2
i

ind.
∼ N

(
d(xi)

Tγi, σ
2
i

)
,

(
γi, σ

2
i

)
| Q2

iid
∼ Q2, Q2 |M2, Q02 ∼ DP (M2, Q02) ,

whered(x) is a r3-dimensional design vector, respectively, including linear and/or non-linear

functions of the predictorx, andQ02 ≡ Nr3

(
γ | µ

γ
,Σγ

)
Γ (σ−2 | s1/2, s2/2). The LDDP

model specification is completed with the following hyper-priors: M2 | a02, b02 ∼ Γ (a02, b02),

s2 | τs1 , τs2 ∼ Γ(τs1/2, τs2/2), µγ
| a,A ∼ Nr3 (a,A), andΣγ | νγ ,Ψγ ∼ IWr3 (νγ ,Ψγ).

Marginalized versions of Dirichlet process-based models were fit, whereQ1 andQ2 are inte-

grated out, using standard algorithms to fit Dirichlet process mixture models. Credible intervals

for the conditional densities in this case were obtained from MCMC samples using theǫ−DP

approach proposed by Muliere & Tardella (1998), withǫ = 0.01. Two versions of the LDDP

were considered. Model LDDP1 corresponds to a mixture of linear regression models, that is,

d(x) = (1, x)T . Model LDDP2 corresponds to a mixture of B-splines regression models, where

d(x) = (1, ψ1(x), . . . , ψ6(x))
T . The MCMC specification was similar to the DBPP models and

the prior specification was as in Jara et al. (2011).

The discrepancy between estimated,f̂ (· | x), and true model,f (· | x), was measured using
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an estimate to theL∞

(
L̂∞

)
distance,

L̂∞ = max
l

max
m

∣∣∣f̂ (ym | xl)− f (ym | xl)
∣∣∣ ,

which is based on grid of equally-spaced values of the response{ym}M1 and of the predictor

{xl}L1 . In addition, we also considered the estimate to the integrated-L1 distance
(
ÎL1

)
, given

by

ÎL1 =
1

M

1

L

L∑

l=1

M∑

m=1

∣∣∣f̂ (ym | xl)− f (ym | xl)
∣∣∣ ,

Table 3.2 shows the values for̂L∞ and ÎL1 for each model, scenario and sample size.

The results indicate that the best version of our model outperformed the competitors for every

scenario and sample size, using both theL̂∞ and ÎL1 criteria. As expected, behavior of the

models was similar under Scenario I, the least problematic for the competitors of our proposed

model, because there is no boundary problem. However, the number of versions of the proposed

model outperforming the competitors tends to increase withthe sample size; forn = 1, 000,

three out of six versions of the proposed model outperformedthe competitors under thêL∞ and

ÎL1 criteria. When the boundary problem was present (ScenariosII and III), 5 or 6 (out of 6)

of the versions of the proposed model outperformed the competitors using the most demanding

criteria; theL̂∞ value for the worst competitor was as high as 72 times the corresponding value

for the best version of the proposed model.

The posterior inferences for the conditional densities showed that for each scenario, sample

size and version of the proposed model, the estimates correspond approximately to the true

densities. In most of the cases, the true model was completely covered by 95% point-wise

highest probability density (HPD) bands, and the quality ofthe estimation improved as the

sample size increases. Under Scenarios II and III, poor results were obtained using the LDDP

and WDDP models. Indeed, the density estimates diverged substantially from the true densities

at the extremes of the support, confirming that these models are not suitable for this type of

behavior. Figures 3.1, 3.2 and 3.3 illustrate these findings. They show, for the sample size

n = 500, the predictive density, evaluated in a grid of size 200 at four values of the predictor for
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Table 3.2: Simulated data: EstimatedL∞ (integratedL1) for each model, under the different
simulation scenarios and sample sizes.

Simulation Scenario
I II III

Model n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000
LDBPP1 6.19 6.57 6.92 1.09 2.83 0.89 2.78 3.25 2.76

(0.20) (0.16) (0.13) (0.16) (0.17) (0.11) (0.24) (0.16) (0.13)
LDBPP2 4.59 6.44 3.80 2.76 3.59 3.43 5.38 2.18 2.73

(0.27) (0.19) (0.15) (0.24) (0.20) (0.15) (0.35) (0.18) (0.17)
wLDBPP1 6.30 7.50 7.57 1.01 1.39 1.91 2.44 2.41 2.98

(0.24) (0.23) (0.21) (0.16) (0.16) (0.12) (0.25) (0.22) (0.17)
wLDBPP2 7.25 8.33 4.48 4.09 1.89 2.45 7.40 1.86 2.44

(0.27) (0.23) (0.17) (0.23) (0.18) (0.12) (0.42) (0.18) (0.15)
θLDBPP1 6.28 6.26 6.34 1.48 1.33 1.06 2.95 2.48 2.73

(0.25) (0.19) (0.16) (0.27) (0.20) (0.17) (0.31) (0.23) (0.17)
θLDBPP2 3.91 6.10 6.77 1.93 3.16 2.63 3.44 4.27 1.88

(0.28) (0.18) (0.19) (0.27) (0.21) (0.14) (0.33) (0.22) (0.19)
LDDP1 6.66 7.53 7.43 19.27 4.62 2.89 26.14 3.48 3.74

(0.24) (0.22) (0.20) (0.20) (0.17) (0.12) (0.38) (0.24) (0.19)
LDDP2 34.62 6.38 22.65 59.48 15.22 26.12 138.29 103.31 60.54

(0.32) (0.20) (0.18) (0.28) (0.25) (0.14) (0.58) (0.24) (0.20)
WDDP 4.52 6.86 6.68 28.79 9.15 3.05 170.06 8.01 4.75

(0.26) (0.17) (0.17) (0.34) (0.27) (0.13) (0.50) (0.24) (0.20)

the best version of the proposed model and LDDP model, according to theL̂∞ criteria, and the

WDDP model. The results for the remaining sample sizes are given in Section B.6 (Appendix

B).

We note that these results are for one random sample from particular models, and conclu-

sions should be drawn carefully. Nonetheless, these examples do show that the class of DBPP

models is highly flexible and that misleading results can be obtained by using transformations

of the data along with flexible models for data defined on the real line.
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Figure 3.1: Simulated data - Scenario I (n = 500): True (continuous line) and posterior mean

(dotted line) for the conditional density. A band constructed using the 95%point-wise HPD

intervals is presented in gray. Panels (a), (d), (g) and (j),(b), (e), (h) and (k), and (c), (f), (i)

and (l) display the results for the best DBPP model (θDBPP2), the best LDDP model (LDDP2),

both regarding the estimatedL∞ distance, and the weight dependent DP for four values of the

predictor, respectively.
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Figure 3.2: Simulated data - Scenario II (n = 500): True (continuous line) and posterior mean

(dotted line) for the conditional density. A band constructed using the 95%point-wise HPD

intervals is presented in gray. Panels (a), (d), (g) and (j),(b), (e), (h) and (k), and (c), (f), (i)

and (l) display the results for the best DBPP model (θDBPP1), the best LDDP model (LDDP1),

both regarding the estimatedL∞ distance, and the weight dependent DP for four values of the

predictor, respectively.
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Figure 3.3: Simulated data - Scenario III (n = 500): True (continuous line) and posterior mean

(dotted line) for the conditional density. A band constructed using the 95%point-wise HPD

intervals is presented in gray. Panels (a), (d), (g) and (j),(b), (e), (h) and (k), and (c), (f), (i) and

(l) display the results for the best DBPP model (wDBPP2), the best LDDP model (LDDP1),

both regarding the estimatedL∞ distance, and the weight dependent DP for four values of the

predictor, respectively.
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3.5.2 Solid waste data

We consider data about residentially generated solid wastein the city of Santiago de Cali,

Colombia. The dataset contains information about258 block sides and was collected to es-

timate the per capita daily production and characterization of solid waste in the city. The solid

waste in each of the258 block sides was separated in different kinds of materials, including

food, hygienic waste, glass, metal and plastic. The proportions of these materials were reg-

istered for each block side. In addition, the socio-economic level of the houses associated to

each block side was registered. The socioeconomic status was grouped in an ordinal scale of

six levels: low-low, low, medium-low, medium, medium-highand high. We refer the reader to

Klinger et al. (2009) for more details about these data.

The proportion of food and hygienic waste were considered asresponse variables. In both

cases, the socio-economic level was used as a discrete predictor. As in the previous section,

linear approximations to the general models were fit to the data, by assumingλ = 25, mη
0 =

mz
0 = 06, S

η
0 = Sz

0 = 2.25 × I6, νη = νz = 8 andα = a = b = 1. For each model, one

Markov chain was generated completing a conservative totalnumber of 110,000 scans of the

Markov chain cycle described in Appendix E of the supplementary material. Standard tests

(not shown), as implemented in the BOA R library (Smith, 2007), suggested convergence of the

chains. Because of storage limitations, the full chain was subsampled every 10 iterations, after

a burn-in period of 10,000 samples, to give a reduced chain oflength 10,000.

For comparison purposes, the parametric beta regression model, originally proposed by

Ferrari & Cribari-Neto (2004) and later extended by Simas etal. (2010), was also fit to the data.

The beta regression model proposed by Simas et al. (2010) is given by

yi | xi,γ
µ,γφ ind

∼ Beta
{
µ
(
xT
i γ

µ
)
φ
(
xT
i γ

φ
)
,
[
1− µ

(
xT
i γ

µ
)]
φ
(
xT
i γ

φ
)}
,

whereµ
(
xT
i γ

µ
)
=
[
1 + exp

(
−xT

i γ
µ
)]−1

andφ
(
xT
i γ

φ
)
= exp

(
xT
i γ

φ
)
. The model specifi-

cation was completed by assuming

γµ | mµ, τµ ∼ N6 (m
µ × 16, τ

µ × I6) ,
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γφ | mφ, τφ ∼ N6

(
mφ × 16, τ

φ × I6
)
,

mµ | mµ
0 , s

µ
0 ∼ N(mµ

0 , s
µ
0), τ

µ | τµ0 ∼ U(0, τµ0 ),

mφ | mφ
0 , s

φ
0 ∼ N(mφ

0 , s
φ
0), τ

φ | τφ0 ∼ U(0, τφ0 ),

wheremµ
0 = mφ

0 = 0, sµ = sφ = 2.25 andτµ0 = τφ0 = 10. Model comparison was performed

using the log pseudo marginal likelihood (LPML), developedby Geisser & Eddy (1979) and

further considered by Gelfand & Dey (1994). The log pseudo marginal likelihood for modelM

is defined as LPMLM =
∑n

i=1 log pM
(
yi | y[−i]

)
, wherepM

(
yi | y[−i]

)
is the posterior predic-

tive distribution for observationyi, based on the datay[−i], under modelM , with y[−i] being

the observed data vector after removing theith observation. Models with larger LPML values

are to be preferred. The individual cross-validation predictive densities, known as conditional

predictive ordinates (CPO), were also used. The CPOs measure the influence of individual ob-

servations and are often used as predictive model checking tools. The method suggested by

Gelfand & Dey (1994) was used to obtain estimates of CPO statistics from the MCMC output.

For the proportion of food the three versions of the DBPP model behaved in a similar man-

ner and outperformed the parametric beta regression model using the LPML criteria. The LPML

values were213.09, 212.12 and215.26 for the LDBPP,wLDBPP andθLDBPP models, respec-

tively. The LPML for the parametric model was205.3. The conditional density estimates were

similar across DBPP models, in agreement with what we previously found using the LPML cri-

terion. More importantly, substantial differences between the DBPP models and the parametric

beta regression model were observed, and the disagreement increases with the socioeconomic

level in the corresponding ordinal scale. Figure 3.4 displays the results for theθLDBPP model

for the six socioeconomic level. The results for the remaining DBPP models are given in Section

B.7 (Appendix B).

For the proportion of hygienic waste data, the DBPP models showed again a similar be-

havior regarding both, LPML and the posterior inference on conditional densities. The LPML
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Figure 3.4: Proportion of food -θLDBPP model. Panels (a), (b), (c), (d), (e) and (f) display the
posterior mean (dashed line) and a 95% point-wise HPD band (grey area) for the conditional
density at socioeconomic level low-low, low, medium-low, medium, medium-high and high, re-
spectively, under theθLDBPP model. The posterior mean under the parametric beta regression
model is given as a solid line for comparison purposes.

80



3.6. CONCLUDING REMARKS

values were 420.78, 422.72 and 421.92 for LDBPP,wLDBPP andθLDBPP models, respec-

tively. Figure 3.5 show the posterior inferences for the conditional densities at the different

socioeconomic levels, under theθLDBPP model. The results for the remaining DBPP models

are given in in Section B.8 (Appendix B). The results clearlyshow an important departure from

the beta assumption. Specifically, the positive density at zero and the existence of a central

mode observed for socioeconomic levels low-low, low, medium and medium-low cannot be

obtained from a beta model.

The positive density observed at zero for the proportion of hygienic waste can be explained

by the existence of zero values in the dataset. In fact, because of that, we were not able to fit

the beta regression model to these data; the beta distribution is not always well defined at zero

or one. A possible solution would be to consider a constrained parameter space for the model,

such as

{(
γµ,γφ

)
∈ R

12 : µ
(
xTγµ

)
φ
(
xTγφ

)
, [1− µ

(
xTγµ

)
]φ
(
xTγφ

)
≥ 1, ∀ x ∈ X

}
.

However, this solution would imply that for everyx ∈ X , the conditional density would be

a.s. equal to zero on the extreme values of the domain, which is clearly not supported by the

data and we did not pursue that option here. This illustratesanother advantage of the proposed

class of models, namely that by construction, they are always well defined at every value of the

unitary interval.

3.6 Concluding Remarks
We have proposed a novel class of probability models for setsof predictor-dependent probability

distributions with bounded domain. The proposal corresponds to an extension of the Dirichlet-

Bernstein prior by using dependent stick-breaking processes. The proposed class of models has

appealing theoretical properties such as full support, continuity, known marginal distribution,

well behaved correlation function, and its posterior distribution is consistent.

By using practicable special cases, the main advantages of the proposed class of models

were illustrated using simulated and real-life data. The results suggest that the proposed models
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Figure 3.5: Proportion of hygienic waste -θLDBPP model. Panels (a), (b), (c), (d), (e) and (f)
display the posterior mean (dashed line) and a 95% point-wise HPD band (grey area) for the
conditional density at socioeconomic level low-low, low, medium-low, medium, medium-high
and high, respectively, under theθLDBPP model.
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can outperform Bayesian nonparametric models for responses defined on the real line and the

use of transformations, even when the boundary problem is not present. The results also suggest

a clear advantage of the proposed class of models over parametric alternatives.

The extension of the class of models for dealing with multivariate bounded responses and/or

mixed bounded and unbounded responses is the subject of ongoing research. The extension for

response vectors defined on a corresponding simplex is also the subject of ongoing research.
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Chapter 4

Conclusions and future work

In this dissertation, we have addressed two different topics in the context of Bayesian nonpara-

metric (BNP) models for predictor–dependent probability measures. In Chapter 2, we studied

the property of large support of MacEachern’s dependent Dirichlet processes and extensions,

using an alternative definition based on copulas. In Chapter3, we proposed a novel probabil-

ity model for sets of predictor–dependent probability distributions with bounded domain. This

Chapter summarizes the main conclusions of this dissertation and gives some directions of fu-

ture work.

4.1 Conclusions

Two main focuses have been developed in this dissertation, the main conclusions for each one

are described below. In the first part, we focused on the studyof the support properties of

dependent Dirichlet process (DDP) and DDP mixture models, as well as those of more general

dependent stick–breaking processes. The connection between copulas and stochastic processes

served to provide sufficient conditions for weak, Hellingerand Kullback–Leibler support of
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models based on DDP’s and general dependent stick–breakingprocesses. Those conditions

were related to the support of the finite–dimensional distributions of the stochastic processes and

the kernel used to define the mixture models. We also studied the support of simplified versions

of the DDP, in particular, versions where only the weights oronly the support points were

indexed by the predictors. The results we obtained showed that any of the considered versions

of the DDP maintains the large support property. In other words, the use of more parsimonious

models does not necessarily imply a reduction of the support. This is an important conclusion

since in practice it is more common to use dependent processes where only the weights or only

the support points are indexed by the predictors.

The second focus of this dissertation was to propose a novel class of probability models

for sets of predictor–dependent probability distributions whose domain is a closed interval. The

use of dependent stick–breaking processes allowed to definea new class of dependent processes

which extend the Dirichlet–Bernstein prior proposed by Petrone (1999a,b). The proposed pro-

cess was called dependent Bernstein polynomial (DBPP). We showed that the DBPP satisfies

the properties of full support, continuity, known marginaldistribution, well behaved correlation

function, and consistency of the posterior distribution. An important feature of the DBPP is that

its trajectories are collections of densities well-definedon a closed interval. This feature allows

the DBPP to be used in applications where the observations belong to a closed and bounded

interval, including the case where some of these observations are concentrated in at least one of

the edges of the interval. We also considered two simplified versions of the DBPP where only

the weights or only the support points were indexed by the predictors. These versions satisfied

the same properties as the general case.

Additionally, we showed the advantages of our proposal by applying the DBPP to simu-

lated and real–life data and comparing the results to those obtained with other approaches. The

approaches included beta regression models and BNP models for related probability measures

defined on the real line. These BNP models were applied by using an appropriate transforma-

tion of the data. From the comparisons, one concluded that the proposed models can outperform

those BNP and parametric approaches. Although the performance of the proposed model, com-

pared to other approaches, was the best in all the consideredscenarios, it was clearly much better
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in scenarios where some of the observations were concentrated in at least one of the edges of

the interval. The DBPP model and its simplified versions turned out to be an attractive non-

parametric alternative in the context of regression analysis for bounded data. This model can be

easily used since user-friendly functions implementing these methods were written in compiled

language and incorporated into the R library DPpackage (Jara, 2007; Jara et al., 2011).

4.2 Future work

The results presented in this dissertation can be applied todifferent contexts and extended in

several directions. Some of the future works derived of thisdissertation are described below.

As a extension of Chapter 2, we plan to consider stronger topologies and to study the support

of general dependent processes under such topologies. In addition, we also plan to study the

support of real–valued proccess which are defined as linear combinations of some design vector

of the predictors and where the coefficients of the combinations are assumed random. The

motivation here is given by the fact that those kind of processes are commonly used in practice

to induce dependence.

The future work derived from Chapter 3 is focused in two different directions. The first one

is motivated by educational data. Here, assuming thatT − 1 tests have been previously and

sequentially applied to a group of students, the aim is to predict for each student the proportion

of correctly answered questions of theT -th test. In order to propose a novel BNP model for

such aim, our future plan is to include an autoregressive component in the DBPP following

a similar approach to that used by Di Lucca et al. (2012). The second focus is to extend the

DBPP model by replacing the predictor–dependent mixtures of beta distributions by predictor–

dependent mixtures of Dirichlet distributions. The idea isto develop a BNP model for related

probability measures whose density functions, w.r.t. Lebesgue measure, are defined on the

k–dimensional simplex spaces,k ∈ N. This topic is subject of current research.
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Appendix A

Supplementary Material for Chapter 2

Lemma A.1. Let P (Θ) be the space of all probability measures defined on(Θ,B(Θ)). Let

G0 be an absolutely continuous probability measure w.r.t. Lebesgue measure, with supportΘ.

Let

U (P0, f1, . . . , fk, ǫ) =

{
P ∈ P (Θ) :

∣∣∣∣
∫
fidP −

∫
fidP0

∣∣∣∣ < ǫ, i = 1 . . . k

}

be a weak neighborhood ofP0 ∈ P (Θ), whereǫ is a positive constant andfi, i = 1, . . . , k, are

bounded continuous functions. Then there exists a probability measure inU (P0, f1, . . . , fk, ǫ)

which is absolutely continuous w.r.t.G0.

Proof: Since the set of all probability measures whose supports arefinite subsets of a dense

set inΘ is dense inP (Θ) (Parthasarathy, 1967, page 44), there exists a probabilitymeasure

Q∗ (·) =
∑N

j=1Wjδθj (·), whereN ∈ N, (W1, . . . ,WN) ∈ ∆N , with ∆N = {w1, . . . , wN :

wi ≥ 0, i = 1, . . . , N,
∑N

i=1wi = 1} denoting theN–simplex, and different support points
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θ1, . . . , θN ∈ Θ, such that

∣∣∣∣
∫
fidQ

∗ −

∫
fidP0

∣∣∣∣ <
ǫ

2
, i = 1, . . . , k.

In addition, there exists an open ball of radiusδ > 0, denoted byB (θj , δ), such that for every

θ ∈ B (θj, δ), with B (θl, δ)
⋂
B (θj , δ) = ∅, for every l 6= j, fi(θ) satisfies the following

relation

fi (θj)−
ǫ

2N
< fi (θ) < fi (θj) +

ǫ

2N
.

Now, letQ be a probability measure with density function given by

q (θ) =
N∑

j=1

Wj

cθj ,δ
IB(θj ,δ)

⋂
Θ (θ) ,

wherecθj ,δ denotes the Lebesgue measure ofB (θj , δ)
⋂
Θ andIA(·) is the indicator function

of the setA. It follows that

Wjfi (θj)−Wj

(
fi (θj) +

ǫ

2N

)
<

Wjfi (θj)−

∫

B(θj ,δ)

fi (θ) q (θ) dθ < Wjfi (θj)−Wj

(
fi (θj)−

ǫ

2N

)
,

and ∣∣∣∣∣Wjfi (θj)−

∫

B(θj ,δ)

fi (θ) q (θ) dθ

∣∣∣∣∣ <
ǫ

2N
,

which implies that

∣∣∣∣
∫
fidQ

∗ −

∫
fi (θ) q (θ) dθ

∣∣∣∣ <
N∑

j=1

∣∣∣∣∣Wjfi (θj)−

∫

B(θj ,δ)

fi (θ) q (θ) dθ

∣∣∣∣∣ <
ǫ

2
.

Thus,

∣∣∣∣
∫
fidQ−

∫
fidP0

∣∣∣∣ ≤
∣∣∣∣
∫
fidQ

∗ −

∫
fidP0

∣∣∣∣ +
∣∣∣∣
∫
fidQ−

∫
fidQ

∗

∣∣∣∣ ≤ ǫ,
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and therefore,Q ∈ U (P0, f1, . . . , fk, ǫ). Moreover, the support ofQ is contained inΘ, i.e.,Q

is an absolutely continuous probability measure w.r.t.G0. �
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Appendix B

Supplementary Material for Chapter 3

B.1 Proofs of theoretical results associated with the DBPP

Proof of Theorem 3.1

Since the elements ofV are continuous functions ofx and, for everyj ∈ N, ηj is aP–a.s.

continuous stochastic process, it follows thatx 7→ vx(ηj(x, ·)) andx 7→ wj(x, ·), j ∈ N,

areP–a.s. continuous functions. Similarly, since the elementsof H are continuous functions

of x and, for everyj ∈ N, zj is aP–as continuous stochastic process, it follows thatx 7→

hx(zj(x, ·)), j ∈ N, is aP–a.s. continuous function.

Now, since the ceiling function is continuous from the left and it has a limit from the

right, it follows that, for almost everyω ∈ Ω and every
{
x
(l)
j

}∞

j=1
, with x

(l)
j ∈ X , such

thatlimj→+∞ x
(l)
j = x0 ∈ X andxljm ≤ x0m,m = 1, . . . , p,

lim
j→+∞

⌈
k(ω)θi

(
x
(l)
j , ω

)⌉
= ⌈k(ω)θi (x0, ω)⌉ .
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Furthermore, for almost everyω ∈ Ω and every
{
x
(r)
j

}∞

j=1
, with x

(r)
j ∈ X , such thatlimj→+∞

x
(r)
j = x0 ∈ X andxrjm ≥ x0m, for somem = 1, . . . , p, it follows that

lim
j→+∞

⌈k(ω)θi(x
(r)
j , ω)⌉ = ⌈k(ω)θi(x0, ω)⌉

(r) :=





j if k(ω)θi(x0, ω) ∈ (j − 1, j)

j + 1 if k(ω)θi(x0, ω) = j
.

Therefore, by the Lebesgue’s dominated convergence theorem, it follows that the density w.r.t.

Lebesgue measure ofGx, is P–a.s. continuous from the left and it has a limit from the right,

i.e., for everyy ∈ [0, 1],

P

{
ω ∈ Ω : lim

j→+∞
g(x

(l)
j , ω)(y) = g(x0, ω)(y), lim

j→+∞
g(x

(r)
j , ω)(y) = g(r)(x0, ω)(y)

}
= 1,

where

g(r)(x0, ω)(y) =
∞∑

i=1

wj(x0, ω)β(y|⌈k(ω)θi(x0, ω)⌉
(r), k(ω)− ⌈k(ω)θi(x0, ω)⌉

(r) + 1).

Finally, letG(r)(x0, ω) be a probability measure with density functiong(r)(x0, ω). A direct

application of Scheffe’s theorem implies that

P

{
ω ∈ Ω : lim

j→+∞
sup

B∈B([0,1])

|G(x(l)
j , ω)(B)−G(x0, ω)(B)| = 0,

lim
j→+∞

sup
B∈B([0,1])

|G(x(r)
j , ω)(B)−G(r)(x0, ω)(B)| = 0

}
= 1,

which completes the proof of the theorem. �
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Proof of Theorem 3.2

Notice that for everyy ∈ [0, 1] and everyx ∈ X ,

E {G(x, ·)(By) | k} = E

{
k∑

l=1

[F ∗(x, ·)(l)] BIN(l | k, y)

∣∣∣∣∣ k
}
,

=
k∑

l=1

E {F ∗(x, ·) (l) | k}BIN (l | k, y) ,

where,BIN(· | k, y) stands for the probability mass function of a binomial distribution with

parameters(k, y), and

F ∗(x, ·) (l) =
∞∑

i=1

wi(x, ·)I{θi(x, ·)}{⌈kθi(x,·)⌉≤l}.

Now, notice that the independence of the stochastic processes and the i.i.d. property of the

corresponding elements, imply that

E {F ∗(x, ·) (l) | k} = E

{
∞∑

i=1

wi(x, ·)I{θi(x, ·)}{⌈kθi(x,·)⌉≤l}

∣∣∣∣∣ k
}
,

=
∞∑

i=1

E {wi(x, ·)}E
{
I{θi(x, ·)}{⌈kθi(x,·)⌉≤l}

∣∣ k
}
,

= E
{
I{θ1(x, ·)}{⌈kθ1(x,·)⌉≤l}

∣∣ k
}
,

= G∗
0x (Al,k) ,

where,Al,k = [0, l/k] andG∗
0x stands for the marginal probability measure ofθi(x, ·), for every

i ∈ N. It follows that

E {Gx(By) | k} =

k∑

l=1

G∗
0x (Aj,k) BIN(l | k, y).
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Applying a similar reasoning, it follows that, for everyx,x0 ∈ X and everyy ∈ [0, 1],

E {Gx(By)Gx0(By) | k} =
k∑

l=1,l1=1

[
∞∑

i=1

E {wi(x, ·)wi(x0, ·)}G
∗
0,x,x0

(Al,k ×Al1,k)

]
B̄(l, l1 | k, y) +

k∑

l=1,l1=1

[
∞∑

i=1,i1 6=i

E {wi(x, ·)wi1(x0, ·)}G
∗
0x(Al,k)G

∗
0x0

(Al1,k)

]
B̄(l, l1 | k, y),

where,B̄(l, l1 | k, y) = BIN(l | k, y)× BIN(l1 | k, y) andG∗
0,x,x0

corresponds to the marginal

distribution of(θi(x, ·), θi(x0, ·)). In particular, forx = x0,

E
{
Gx(By)

2 | k
}
=

k∑

l=1

[
∞∑

i=1

E
{
wi(x, ·)

2
}
G0x(Al,k)

]
BIN(l | k, y)2 +

k∑

l=1,l1=1

[
∞∑

i=1,i1 6=i

E {wi(x, ·)wi1(x, ·)}G0x(Al,k)G0x(Al1,k)

]
B̄(l, l1 | k, y).

Now, since the elements ofV are continuous functions ofx and, for everyi ∈ N and every

{xj}∞1 , with xj ∈ X , such thatlimj→+∞xj −→ x0 ∈ X , ηi(x, ·) converges in distribution

to ηi(x0, ·) as j −→ +∞, it follows thatwi(xj , ·) converges in distribution towi(x0, ·), as

j −→ +∞, and thatx 7→ E {wi(x, ·)}, x 7→ E {wi(x, ·)
2} andx 7→ E {wi(x, ·)wi1(x0, ·)}

are continuous functions. On the other hand, since the elements ofH are continuous functions

of x and, for everyi ∈ N and every{xj}∞1 , withxj ∈ X , such thatlimj→+∞xj −→ x0 ∈ X ,

zi(x, ·) converges in distribution tozi(x0, ·), asj −→ +∞, it follows thatθi(xj, ·) converges

in distribution toθi(x0, ·), as j −→ +∞. Now a few applications of Lebesgue dominated
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convergence theorem imply that

lim
j−→+∞

E
{
Gxj

(By)
2
}

=
∞∑

l=1

lim
j−→+∞

E
{
Gxj

(By)
2
∣∣ l
}
P{ω ∈ Ω : k(ω) = l},

=

∞∑

l=1

E
{
Gx0(By)

2
∣∣ l
}
P{ω ∈ Ω : k(ω) = l},

= E
{
Gx0

(By)
2
}
,

lim
j−→+∞

E
{
Gxj

(By)Gx0(By)
}

=

∞∑

l=1

lim
j−→+∞

E
{
Gxj

(By)Gx0(By)
∣∣ l
}
P{ω ∈ Ω : k(ω) = l},

=
∞∑

l=1

E
{
Gx0(By)

2
∣∣ l
}
P{ω ∈ Ω : k(ω) = l},

= E
{
Gx0(By)

2
}
,

and

lim
j−→+∞

E
{
Gxj

(By)
}
= E {Gx0(By)} ,

which completes the proof of the theorem. �

Proof of Theorem 3.3

Notice that for every functionfi : X ×X −→ [0, 1] andgij : X −→ [0, 1], i = 1, 2, j = 1, 2,

it follows that

|f1(x1,x2)f2(x1,x2)− g11(x1)g12(x2)g21(x1)g22(x2)|

= |f1(x1,x2)f2(x1,x2)± f1(x1,x2)g21(x1)g22(x2)− g11(x1)g12(x2)g21(x1)g22(x2)| ,

≤ f1(x1,x2) |f2(x1,x2)− g21(x1)g22(x2)|+ g21(x1)g22(x2) |f1(x1,x2)− g11(x1)g12(x2)| ,

≤ |f2(x1,x2)− g21(x1)g22(x2)|+ |f1(x1,x2)− g11(x1)g12(x2)| .
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The previous result implies that, for everyx1j,x2j ∈ X ,

|E [G(x1j , ·)(By), G(x2j , ·)(By) | k]−E [G(x1j , ·)(By) | k]E {G(x2j , ·)(By) | k]|

=

∣∣∣∣∣
k∑

l=1,l1=1

∞∑

i=1,i1=1

E [wi(x1j , ·)wi1(x2j, ·)]
[
I{i 6=i1}E

[
I{θi(x1j ,·)∈Al,k}

]
E
[
I{θi1 (x2j ,·)∈Al1,k}

]

+ I{i=i1}E
[
I{(θi(x1j ,·),θi1(x2j ,·))∈Al,k×Al1,k}

]]
B̄(l, l1 | k, y)

−
k∑

l=1,l1=1

∞∑

i=1,i1=1

E [wi(x1j , ·)]E [wi1(x2j , ·)]

k∑

l=1,l1=1

E
[
I{θi(x1j ,·)∈Al,k}

]
E
[
I{θi1 (x2j ,·)∈Al1,k}

]
B̄(l, l1 | k, y)

∣∣∣∣∣ ,

≤
k∑

l=1,l1=1

∞∑

i=1,i1=1

|E [wi(x1j , ·)wi1(x2j, ·)]− E [wi(x1j , ·)]E [wi1(x2j, ·)]|

+

k∑

l=1,l1=1

∞∑

i=1

∣∣∣E
[
I{(θi(x1j ,·),θi(x2j ,·))∈Al,k×Al1,k}

]
− E

[
I{θi(x1j ,·)∈Al,k}

]
E
[
I{θi(x2j ,·)∈Al1,k}

]∣∣∣ ,

where,B̄(l, l1 | k, y) = BIN(l | k, y) × BIN(l1 | k, y). Now, since the elements ofV are

continuous functions ofx and, for everyi, i1 ∈ N,wi(x1j , ·)wi1(x2j , ·) is a continuous function

of {(ηi(x1j , ·), ηi(x2j , ·))}l1, l = max{i, i1}, it follows that

lim
j→∞

|E [wi(x1j , ·)wi1(x2j , ·)]− E [wi(x1j , ·)]E [wi1(x2j , ·)]| = 0.

On the other hand, since the elements ofH are continuous functions ofx and, for everyi ∈ N,

it follows that

lim
j→∞

∣∣∣E
[
I{(θi(x1j ,·),θi(x2j ,·))∈Al,k×Al1,k}

]
− E

[
I{θi(x1j ,·)∈Al,k}

]
E
[
I{θi(x2j ,·)∈Al1,k}

]∣∣∣ = 0.
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Thus, by Lebesgue’s dominated convergence theorem, it follows that

lim
j→∞

|Cov [G(x1j , ·)(By), G(x2j , ·)(By) | k]|

= lim
j→∞

|E [G(x1j , ·)(By)G(x2j , ·)(By) | k]− E [G(x1j , ·)(By) | k]E {G(x2j , ·)(By) | k]| ,

= 0,

for everyk ∈ N, and, therefore,

lim
j→∞

Cov [G(x1j , ·)(By), G(x2j , ·)(By)]

= lim
j→∞

E [Cov [G(x1j , ·)(By), G(x2j , ·)(By) | k]]

+ lim
j→∞

Cov [E [G(x1j , ·)(By) | k] , E [G(x2j , ·)(By) | k]] ,

= E

[
lim
j→∞

Cov [G(x1j , ·)(By), G(x2j , ·)(By) | k]

]

+Cov

[
lim
j→∞

E [G(x1j , ·)(By) | k] , lim
j→∞

E [G(x2j , ·)(By) | k]

]
,

= Cov [E [G(x1, ·)(By) | k] , E [G(x2, ·)(By) | k]] ,

where, for everyx ∈ X ,

E [G(x, ·)(By) | k] =
k∑

l=1

G∗
0x (Al,k)


 k

l


 yl(1− y)k−l,

≡
k∑

l=1

G∗
0x (Al,k) BIN(l | k, y),

which completes the proof of the theorem. �

Proof of Theorem 3.4

Since the elements ofV are continuous functions ofx and, for everyi ∈ N and every

{(x1j ,x2j)}∞1 , withx1j ,x2j ∈ X , such thatlimj→+∞(x1j ,x2j) = (x1,x2), withx1,x2 ∈ X ,
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it follows that

(ηi(x1j , ·), ηi(x2j, ·)),

andηi(xlj , ·) converges in distribution to

(ηi(x1, ·), zi(x2, ·)),

and ηi(xl, ·), respectively, asj −→ +∞, for l = 1, 2. It also follows that(x1,x2) 7→

E {wi(xl, ·)}, (x1,x2) 7→ E {wi(xl, ·)
2}, l = 1, 2, and(x1,x2) 7→ E {wi(x1, ·)wi1(x2, ·)}

are continuous functions, for everyi, i1 ∈ N.

On the other hand, since the elements ofH are continuous functions ofx and, for every

i ∈ N and every{(x1j ,x2j)}∞1 , with x1j ,x2j ∈ X , such thatlimj→+∞(x1j ,x2j) = (x1,x2),

with x1,x2 ∈ X , it follows that

(zi(x1j , ·), zi(x2j , ·)),

andzi(xlj , ·) converges in distribution to

(zi(x1, ·), zi(x2, ·)),

and zi(xl, ·), respectively, asj −→ +∞, for l = 1, 2. Finally, since the correlation,ρ,

is a continuous function ofE {wi(xl, ·)}, E {wi(xl, ·)2}, E {wi(x1, ·)wi1(x2, ·)}, G∗
0xl

(Aj,k)

andG∗
0,x1,x2

(Aj,k × Aj1,k), i, i1, k ∈ N, j, j1 ∈ {1, . . . , k} and l = 1, 2, then (x1,x2) 7→

ρ [G(x1, ·)(By), G(x2, ·)(By)] is also a continuous function. �

Proof of Theorem 3.5

To prove the theorem it is sufficient to show that any set of thebase for the product topology

of weak convergence has positiveP ◦ G −1–measure. LetU =
∏

x∈X

Ux be a set of the base,

whereUx is a basic open set of the weak topology forP([0, 1]) andUx = P([0, 1]) for all but

finitely manyx in X . It is easy to see that the measure of a basic open set for{Qx : x ∈ X } ∈

100



B.1. PROOFS OF THEORETICAL RESULTS ASSOCIATED WITH THE DBPP

P ([0, 1])X is equal to the measure of a set of the form

T∏

i=1

{
Pxi

∈ P ([0, 1]) :

∣∣∣∣
∫
fijdPxi

−

∫
fijdQxi

∣∣∣∣ < ǫi, j = 1, . . . , Ki

}
,

wherex1, . . . ,xT ∈ X , T andKi, i = 1, . . . , T , are positive integers,fij , i = 1, . . . , T , j =

1, . . . , Ki, are bounded continuous functions andǫi, i = 1, . . . , T , are positive constants. Now

notice that from Lemma 1 in Barrientos et al. (2012), it follows that for everyQxi
∈ P([0, 1]),

there existsQ′
xi

∈ P([0, 1]), absolutely continuous w.r.t. Lebesgue measure, such that

∣∣∣∣
∫
fijdQxi

−

∫
fijdQ

′
xi

∣∣∣∣ ≤ ǫi/2.

Thus, for almost everyω ∈ Ω,

∣∣∣∣
∫
fijdG(xi, ω)−

∫
fijdQxi

∣∣∣∣ ≤
∣∣∣∣
∫
fijdG(xi, ω)−

∫
fijdQ

′
xi

∣∣∣∣ + ǫi/2.

Setdij (ω) =
∣∣∫ fijdG(xi, ω)−

∫
fijdQ

′
xi

∣∣. Now, borrowing the trick in Petrone (1999a), it

follows that

dij (ω) ≤

∣∣∣∣
∫
fijdG(xi, ω)−

∫
fijdH

(
Q′

xi
, k(ω)

)∣∣∣∣+
∣∣∣∣
∫
fijdH

(
Q′

xi
, k(ω)

)
−

∫
fijdQ

′
xi

∣∣∣∣ ,

≡ d
(1)
ij (ω) + d

(2)
ij (k(ω)) ,

whereH
(
Q′

xi
, k(ω)

)
is the measure associated with the Bernstein polynomial of degreek(ω)

of the measureQ′
xi

. SinceH
(
Q′

xi
, k′
)

converges weakly toQ′
xi

, ask′ −→ +∞, it follows that

there existsk0 ∈ N such that, for almost everyω ∈ Ω such thatk(ω) > k0, d
(2)
ij (k(ω)) ≤ ǫi

4
.

101



B.1. PROOFS OF THEORETICAL RESULTS ASSOCIATED WITH THE DBPP

On the other hand, it is easy to see that, for everyk1 ∈ N,

d
(1)
ij (ω) =

∣∣∣∣∣

∫ 1

0

fij(y)

k1∑

l=1

Wl(xi, ω, k1)β (y | l, k1 − l + 1) dy

−

∫ 1

0

fij(y)

k1∑

l=1

Q′
xi

((
l − 1

k1
,
l

k1

])
β (y|l, k1 − l + 1) dy

∣∣∣∣∣ ,

≤

∫ 1

0

k1∑

l=1

∣∣∣∣Wl(xi, ω, k1)−Q′
xi

((
l − 1

k1
,
l

k1

])∣∣∣∣ |fi,j(y)|β (y | l, k1 − l + 1) dy,

≤ Mij

∫ 1

0

k1∑

l=1

∣∣∣∣Wl(xi, ω, k1)−Q′
xi

((
l − 1

k1
,
l

k1

])∣∣∣∣β (y | l, k1 − l + 1) dy,

≤ Mijk1Nik1(ω),

where,Wl(x, ω, k) =
∑∞

i=1wi(x, ω)I{θi(x, ω)}{⌈kθi(x,ω)⌉=l},Mij = supy∈[0,1] |fij(y)| , and

Nik1(ω) = max
l∈{1,...,k1}

∣∣∣∣Wl(xi, ω, k1)−Qxi

((
l − 1

k1
,
l

k1

])∣∣∣∣ .

Thus, ifNik1(ω) ≤
ǫi

4Mijk1
, thend(1)ij (ω) ≤

ǫi
4
, i = 1, . . . , T , j = 1, . . . , Ki. It follows that,

P

{
ω ∈ Ω :

∣∣∣∣
∫
fijdG(xi, ω)−

∫
fijdQxi

∣∣∣∣ < ǫi, i = 1, . . . , T, j = 1, . . . , Ki

}
≥

∑

k1>k0

P

{
ω ∈ Ω : Nik1(ω) ≤

ǫi
4Mijk1

, i = 1, . . . , T, j = 1, . . . , Ki, k(ω) = k1

}
.

Now, since by assumption the joint distribution of(ηi(x1, ·), . . . , ηi(xd, ·)) and(zi(x1, ·), . . . ,

zi(xd, ·)) have full support onRd, for everyx1, . . . ,xd ∈ X d, d ≥ 1, andk(·) has full support

onN, then Theorem 6 in Barrientos et al. (2012) ensures that

P

{
ω ∈ Ω : Nik1(ω) ≤

ǫi
2Mijk1

, i = 1, . . . , T, j = 1, . . . , Ki, k(ω) = k1

}
> 0,

which completes the proof of the theorem. �
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Proof of Theorem 3.6

For everyT ≥ 1 and i = 1, . . . , T , let Qxi
∈ D([0, 1]). Now, a simple application of the

triangle inequality implies that, fori = 1, . . . , T , and almost everyω ∈ Ω,

sup
y∈[0,1]

|g(xi, ω)(y)− qxi
(y)| ≤ sup

y∈[0,1]

|g(xi, ω)(y)− bp(y | k(ω), Qxi
)|+

sup
y∈[0,1]

|bp(y | k(ω), Qxi
)− qxi

(y)| .

Now, the continuity ofqxi
implies that it can be uniformly approximated by the densityof

the Bernstein polynomial ofQxi
(see, Petrone & Wasserman, 2002, Theorem 2). Thus, for

i = 1, . . . , K, andǫ > 0, there existsk0 ∈ N, such that

sup
y∈[0,1]

|bp(y | k0, Qxi
)− qxi

(y)| < ǫ/2.

On the other hand, it is easy to see that, fori = 1, . . . , K, and everyk1 ∈ N,

sup
y∈[0,1]

|g(xi, ω)(y)− bp(y | k1, Qxi
)| = sup

y∈[0,1]

∣∣∣∣∣
k1∑

l=1

Wl(xi, ω, k1)β (y | l, k1 − l + 1)

−
k1∑

l=1

Q′
xi

((
l − 1

k1
,
l

k1

])
β (y|l, k1 − l + 1)

∣∣∣∣∣ ,

≤ Mk1Nik1(ω),

where,Wl(x, ω, k) =
∑∞

i=1wi(x, ω)I{θi(x, ω)}{⌈kθi(x,ω)⌉=l},

M = sup
l∈{1,...,k1}

sup
y∈[0,1]

β (y | l, k1 − l + 1) ,

and

Nik1(ω) = max
l∈{1,...,k1}

∣∣∣∣Wl(xi, ω, k1)−Qxi

((
l − 1

k1
,
l

k1

])∣∣∣∣ .
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It follows that ifNik1(ω) <
ǫ

2Mk1
andk(ω) = k1 ≥ k0 then,

sup
y∈[0,1]

|g(xi, ω)(y)− bp(y | k(ω), Qxi
)| ≤ ǫ/2,

and

sup
y∈[0,1]

|g(xi, ω)(y)− qxi
(y)| ≤ ǫ,

for i = 1, . . . , T . Now, it is easy to show that

P

{
ω ∈ Ω : sup

y∈[0,1]

|g(xi, ω)(y)− qxi
(y)| < ǫ, i = 1, . . . , T

}
≥

∑

k1≥k0

P

{
ω ∈ Ω : Nik1(ω) ≤

ǫ

4Mk1
, i = 1, . . . , T, k(ω) = k1

}
.

Finally, since by assumption the joint distribution of(ηi(x1, ·), . . . , ηi(xd, ·)) and(zi(x1, ·), . . . ,

zi(xd, ·)) have full support onRd, for everyx1, . . . ,xd ∈ X d, d ≥ 1, andk(·) has full support

onN, then Theorem 6 in Barrientos et al. (2012) ensures that

P

{
ω ∈ Ω : Nik1(ω) ≤

ǫ

2Mk1
, i = 1, . . . , T, k(ω) = k1

}
> 0,

which completes the proof of the theorem. �

Proof of Theorem 3.7

The following Lemma, proved below, is used in the proof of thetheorem.

Lemma B.1. If X ⊂ R
p is a compact set and{Gx : x ∈ X } ∈ D̃ ([0, 1])X , then, for every

ǫ > 0 there existsk0 ∈ N such that fork > k0,

sup
x∈X

sup
y∈[0,1]

|bp(y | k,Gx)− gx(y)| < ǫ.

Now, let{Qx : x ∈ X } ∈ D̃([0, 1])X , with density functions{qx : x ∈ X }. An application
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of the triangle inequality implies that, for everyx ∈ X , y ∈ [0, 1] and almost everyω ∈ Ω,

|g(x, ω)(y)− qx(y)| ≤ |bp(y | k,Qx)− qx(y)|+ |g(x, ω)(y)− bp(y | k,Qx)| .

By Lemma B.1, it follows that there existsk0 ∈ N such that

sup
x∈X

sup
y∈[0,1]

|bp(y | k0, Qx)− qx(y)| ≤
ǫ

2
.

On the other hand, note that for everyx ∈ X , k1 ∈ N and almost everyω ∈ Ω,

sup
y∈[0,1]

|g(x, ω)(y)− bp(y | k1, Qx)| = sup
y∈[0,1]

∣∣∣∣∣
k1∑

l=1

Wl(x, ω, k1)β (y|l, k1 − l + 1)

−
k1∑

l=1

Qx

(
l

k1
,
l − 1

k1

]
β (y|l, k1 − l + 1) dy

∣∣∣∣∣ ,

≤ Mk1 max
l∈{1,...,k1}

∣∣∣∣Wl(x, ω, k1)−Qx

(
l

k1
,
l − 1

k1

]∣∣∣∣ ,

where,Wl(x, ω, k1) =
∑∞

i=1wi(x, ω)I{θi(x, ω)}{⌈kθi(x,ω)⌉=l} and

M = sup
l∈{1,...,k1}

sup
y∈[0,1]

β (y|l, k1 − l + 1) .

Now, consider a subsetΩ0 ⊂ Ω, such that for almost everyω ∈ Ω0, the following conditions

are met:

• For l = 1, . . . , k0,

sup
x∈X

∣∣∣∣hx (zl(x, ω))−
2l − 1

2k0

∣∣∣∣ ≤
1

4k0
.

• For l = 1,

sup
x∈X

∣∣∣∣vx (η1(x, ω))−Qx

((
0,

l

k0

])∣∣∣∣ ≤
ǫ

2k0M(2k0 − 1)
.
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• For l = 2, . . . , k0,

sup
x∈X

∣∣∣∣∣∣
vx (ηl(x, ω))−

Qx

((
l
k0
, l−1

k0

])

1−
∑l−1

j=1Qx

((
j
k0
, j−1

k0

])

∣∣∣∣∣∣
≤

ǫ

2k0M(2k0 − 1)
.

• k(ω) = k0.

Then for almost everyω ∈ Ω0, it follows that

sup
x∈X

sup
y∈[0,1]

|g(x, ω)(y)− bp(y | k,Qx)| <
ǫ

2
,

and, therefore,

P

{
ω ∈ Ω : sup

x∈X

sup
y∈[0,1]

|g(x, ω)(y)− qx(y)| ≤ ǫ

}
≥

k0∏

l=1

P

{
ω ∈ Ω : sup

x∈X

∣∣∣∣hx(zl(x, ω))−
2l − 1

2k0

∣∣∣∣ ≤
1

4k0

}
×

P

{
ω ∈ Ω : sup

x∈X

∣∣∣∣vx(η1(x, ω))−Qx

((
0,

1

k0

])∣∣∣∣ ≤
ǫ

2k0M(2k0 − 1)

}
×

k0∏

l=2

P



ω ∈ Ω : sup

x∈X

∣∣∣∣∣∣
vx(ηl(x, ω))−

Qx

((
l
k0
, l−1

k0

])

1−
∑l−1

j=1Qx

((
j
k0
, j−1

k0

])

∣∣∣∣∣∣
≤

ǫ

2k0M(2k0 − 1)



×

P {ω ∈ Ω : k(ω) = k0} .

Now, since

x 7→
2l − 1

2k0
,

x 7→ Qx

((
0,

1

k0

])
,

and

x 7→
Qx

((
l
k0
, l−1

k0

])

1−
∑l−1

j=1Qx

((
j
k0
, j−1

k0

]) ,
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l = 2, . . . , k0, are continuous functions, it follows that

k0∏

l=1

P

{
ω ∈ Ω : sup

x∈X

∣∣∣∣hx(zl(x, ω))−
2l − 1

2k0

∣∣∣∣ ≤
1

4k0

}
×

P

{
ω ∈ Ω : sup

x∈X

∣∣∣∣vx(η1(x, ω))−Qx

((
0,

1

k0

])∣∣∣∣ ≤
ǫ

2k0M(2k0 − 1)

}
×

k0∏

l=2

P



ω ∈ Ω : sup

x∈X

∣∣∣∣∣∣
vx(ηl(x, ω))−

Qx

((
l
k0
, l−1

k0

])

1−
∑l−1

j=1Qx

((
j
k0
, j−1

k0

])

∣∣∣∣∣∣
≤

ǫ

2k0M(2k0 − 1)





> 0.

Finally, sincek(·) has full support onN, then

P

{
ω ∈ Ω : sup

x∈X

sup
y∈[0,1]

|g(x, ω)(y)− qx(y)| ≤ ǫ

}
> 0,

which completes the proof of the theorem. �

Proof of Lemma B.1

Let {Qx : x ∈ X } ∈ D̃([0, 1])X , with density functions{qx : x ∈ X }, and assume, without

loss of generality, thatX = [0, 1]. Notice thatqx(y) can be seen as a joint density function

defined onX × [0, 1], whose marginal distribution forx is uniform. Now, let

k1∑

i=1

∫ i/k1

(i−1)/k1

bp(y | Qt, k)dtβ(x | i, k1 − i+ 1)

be the density of the multivariate Bernstein polynomial of the joint distributionqx(y) of degrees

k andk1, (k, k1) ∈ N
2. Therefore, an extension of the Weierstrass approximationtheorem

ensures that for everyǫ > 0, there existsk0 ∈ N such that

sup
x∈X

sup
y∈[0,1]

∣∣∣∣∣qx(y)−
k1∑

i=1

∫ i/k1

(i−1)/k1

bp(y | Qt, k)dtβ(x | i, k1 − i+ 1)

∣∣∣∣∣ ≤
ǫ

2
,
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for everyk > k0 andk1 > k0. On the other hand, note that

∣∣∣∣∣bp(y | Qx, k)−
k1∑

i=1

∫ i/k1

(i−1)/k1

bp(y | Qt, k)dtβ(x | i, k1 − i+ 1)

∣∣∣∣∣

≤
k∑

j=1

∣∣∣∣∣

∫ j/k

(j−1)/k

qx(z)dz −
k1∑

i=1

∫ i/k1

(i−1)/k1

∫ j/k

(j−1)/k

qt(z)dzdtβ(x | i, k1 − i+ 1)

∣∣∣∣∣β(x | j, k − j + 1).

Thus, since
∑k1

i=1

∫ i/k1
(i−1)/k1

∫ j/k

(j−1)/k
qt(z)dzdtβ(x | i, k1 − i+ 1) is the Bernstein polynomial of

∫ j/k

(j−1)/k

qx(z)dz,

it follows that there exists̃k0 ∈ N, such that for a fixedk and everyk1 > k̃0,

sup
j∈{1,...,k}

sup
x∈X

∣∣∣∣∣

∫ j/k

(j−1)/k

qx(z)dz −
k1∑

i=1

∫ i/k1

(i−1)/k1

∫ j/k

(j−1)/k

qt(z)dzdtβ(x | i, k1 − i+ 1)

∣∣∣∣∣ ≤
ǫ

2k2
.

Finally, if k = k0 andk1 = max{k0, k̃0}, then a simple application of the triangle inequality

implies that,

|bp(y | Qx, k)− gx(y)| ≤

∣∣∣∣∣bp(y | Qx, k)−
k1∑

i=1

∫ i/k1

(i−1)/k1

bp(y | Qt, k)dtβ(x | i, k1 − i+ 1)

∣∣∣∣∣

+

∣∣∣∣∣qx(y)−
k1∑

i=1

∫ i/k1

(i−1)/k1

bp(y | Qt, k)dtβ(x | i, k1 − i+ 1)

∣∣∣∣∣ ,

≤ ǫ,

which completes the proof of the lemma. The extension of the proof for the case whereX is

identified with[0, 1]p, p > 1, is straightforward; it is only needed to replace

k1∑

i=1

∫ i/k1

(i−1)/k1

∫ j/k

(j−1)/k

qt(z)dzdtβ(x | i, k1 − i+ 1)

by the corresponding multivariate Bernstein polynomial. �
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Proof of Corollary 3.1

Let {Qx : x ∈ X } ∈ D̃([0, 1]), with density functions{qx : x ∈ X }. From Theorem 7, it

follows that for everyǫ > 0, there exists a subsetΩ0 ⊂ Ω with positiveP–measure, such that

for everyy ∈ [0, 1], x ∈ X and almost everyω ∈ Ω0,

|g(x, ω)(y)− qx(y)| < ǫ,

which implies that
1

1 + ǫ
qx(y)

≤
qx(y)

g(x, ω)(y)
≤

1

1− ǫ
qx(y)

.

Now, since(x, y) 7→ qx(y) is continuous on the compact setX × [0, 1], it follows that

sup
x∈X

sup
y∈[0,1]

qx(y) <∞.

Furthermore, if we assume that

inf
x∈X

inf
y∈[0,1]

qx(y) > 0,

it follows that there existM1(ǫ) > 0 andM2(ǫ) < ∞, such thatM1(ǫ) ≤ qx(y)
g(x,ω)(y)

≤ M2(ǫ).

Since the logarithm function defined on[M1(ǫ),M2(ǫ)] is uniformly continuous and bounded,

andM1(ǫ) andM2(ǫ) are decreasing and increasing as functions ofǫ, respectively, it follows

that, for everyǫ′ > 0, there existsǫ > 0 such that

P

{
ω ∈ Ω : sup

x∈X

KL(qx, g(x, ω)) < ǫ′
}

≥

P

{
ω ∈ Ω : sup

x∈X

sup
y∈[0,1]

|g(x, ω)(y)− qx(y)| < ǫ

}
> 0,

whereKL(q, g) =
∫ 1

0
q(y) log

(
q(y)
g(y)

)
dy.Now consider the case wheninfx∈X infy∈[0,1] qx(y)

= 0. By using a similar reasoning as in the proof of Theorem 2 of Petrone & Wasserman (2002),

it is possible to ensure that for everyǫ∗ > 0, there existδ > 0, ǫ′ > 0 andΩ0 ⊂ Ω, such that for
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everyx ∈ X and almost everyω ∈ Ω0,

KL(q′
x
, g(x, ω)) < ǫ′,

implying that

KL(qx, g(x, ω)) ≤ (C + 1) logC + C
[
KL(q′

x
, g(x, ω)) +

√
KL(q′

x
, g(x, ω))

]
< ǫ∗,

whereq′
x
(y) = C−1qx(y) ∨ δ andC =

∫
[0,1]

qx(y) ∨ δ dy. Note that by definition

inf
x∈X

inf
y∈[0,1]

q′
x
(y) > 0,

and, therefore,

P

{
ω ∈ Ω : sup

x∈X

KL(q′
x
, g(x, ω)) < ǫ∗

}
≥ P

{
ω ∈ Ω : sup

x∈X

KL(qx, g(x, ω)) < ǫ′
}
> 0,

which completes the proof. �

B.2 Properties of thewDBPP

In this section we adapt the results derived for the general model to the special case of the

wDBPP. The proofs closely follow those given in Section B.1.

Theorem B.1. Let{Gx : x ∈ X } ∼ wDBPP(λ,Ψ2,H , α). If for everyj ∈ N, the stochastic

processeszj are P–a.s. continuous, then for every{xj}∞1 ⊂ X , such thatlimj→+∞xj −→

x0 ∈ X andxjl ≤ x0l, l = 1, . . . , p,

lim
j→+∞

sup
B∈B([0,1])

|Gxj
(B)−Gx0(B)| = 0, P–a.s.,

that is,Gxj
convergesP–a.s. in total variation norm toGx0 , whenxj −→ x−

0 . In addition, for

every{xj}∞1 ⊂ X , such thatlimj→+∞xj −→ x0 ∈ X andxjl ≥ x0l, for somel = 1, . . . , p,
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there exists a random probability measure on([0, 1],B([0, 1])), G̃x0 , such that

lim
j→+∞

sup
B∈B([0,1])

|Gxj
(B)− G̃x0(B)| = 0, P–a.s.,

that is,Gxj
convergesP–a.s. in total variation norm tõGx0, whenxj −→ x+

0 .

PROOF. Since the elements ofH are continuous functions ofx and, for everyj ∈ N, zj

is aP–as continuous stochastic process, it follows thatx 7→ hx(zj(x, ·)), j ∈ N, is aP–a.s.

continuous function. Also, since the ceiling function is continuous from the left and it has a limit

from the right, it follows that, for almost everyω ∈ Ω and every
{
x
(l)
j

}∞

j=1
, with x

(l)
j ∈ X ,

such thatlimj→+∞x
(l)
j = x0 ∈ X andxljm ≤ x0m,m = 1, . . . , p,

lim
j→+∞

⌈
k(ω)θi

(
x
(l)
j , ω

)⌉
= ⌈k(ω)θi (x0, ω)⌉ .

Furthermore, for almost everyω ∈ Ω and every
{
x
(r)
j

}∞

j=1
, with x

(r)
j ∈ X , such thatlimj→+∞

x
(r)
j = x0 ∈ X andxrjm ≥ x0m, for somem = 1, . . . , p, it follows that

lim
j→+∞

⌈k(ω)θi(x
(r)
j , ω)⌉ = ⌈k(ω)θi(x0, ω)⌉

(r) :=





j if k(ω)θi(x0, ω) ∈ (j − 1, j)

j + 1 if k(ω)θi(x0, ω) = j
.

Therefore, by the Lebesgue’s dominated convergence theorem, it follows that the density w.r.t.

Lebesgue measure ofGx, isP–a.s. continuous from the left and it has a limit from the right. In

other words, that for everyy ∈ [0, 1],

P

{
ω ∈ Ω : lim

j→+∞
g(x

(l)
j , ω)(y) = g(x0, ω)(y), lim

j→+∞
g(x

(r)
j , ω)(y) = g(r)(x0, ω)(y)

}
= 1,

where

g(r)(x0, ω)(y) =
∞∑

i=1

wj(x0, ω)β(y|⌈k(ω)θi(x0, ω)⌉
(r), k(ω)− ⌈k(ω)θi(x0, ω)⌉

(r) + 1).

Finally, letG(r)(x0, ω) be a probability measure with density functiong(r)(x0, ω). A direct
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application of Scheffe’s theorem implies that

P

{
ω ∈ Ω : lim

j→+∞
sup

B∈B([0,1])

|G(x(l)
j , ω)(B)−G(x0, ω)(B)| = 0,

lim
j→+∞

sup
B∈B([0,1])

|G(x(r)
j , ω)(B)−G(r)(x0, ω)(B)| = 0

}
= 1,

which completes the proof of the theorem. �

Theorem B.2. Let {Gx : x ∈ X } ∼ wDBPP(λ,Ψ2,H , α). If for every{xj}∞1 ⊂ X , such

that limj→+∞xj −→ x0 ∈ X , we havezi(xj, ·)
L
−→ zi(x0, ·), asj −→ +∞, then, for all

y ∈ (0, 1),

lim
j→+∞

ρ [G(xj , ·)(By), G(x0, ·)(By)] = 1,

whereρ(A,B) denotes the Pearson correlation betweenA andB, andBy = [0, y].

PROOF. Notice that for everyy ∈ [0, 1] and everyx ∈ X ,

E {G(x, ·)(By) | k} = E

{
k∑

l=1

[F ∗(x, ·)(l)] BIN(l | k, l)

∣∣∣∣∣ k
}
,

=

k∑

l=1

E {F ∗(x, ·) (l) | k}BIN(l | k, l),

where,BIN(· | k, y) stands for binomial distribution with parameters(k, y), and

F ∗(x, ·) (l) =
∞∑

i=1

wi(·)I{θi(x, ·)}{⌈kθi(x,·)⌉≤l}.

Now, notice that the independence of the stochastic processes and the i.i.d. property of the
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corresponding elements, imply that

E {F ∗(x, ·) (l) | k} = E

{
∞∑

i=1

wi(·)I{θi(x, ·)}{⌈kθi(x,·)⌉≤l}

∣∣∣∣∣ k
}
,

=
∞∑

i=1

E {wi(·)}E
{
I{θi(x, ·)}{⌈kθi(x,·)⌉≤l}

∣∣ k
}
,

= E
{
I{θ1(x, ·)}{⌈kθ1(x,·)⌉≤l}

∣∣ k
}
,

= G∗
0x (Al,k) ,

where,Al,k = [0, j/k] andG∗
0x stands for the marginal probability measure ofθi(x, ·), for every

i ∈ N. It follows that

E {Gx(By) | k} =

k∑

l=1

G∗
0x (Al,k) BIN(l | k, l).

Applying a similar reasoning, it follows that, for everyx,x0 ∈ X and everyy ∈ [0, 1],

E {Gx(By)Gx0(By) | k} =

k∑

l=1,l1=1

[
∞∑

i=1

E
{
w2

i (·)
}
G∗

0,x,x0
(Al,k × Al1,k)

]

B̄(l, l1 | k, y)

+

k∑

l=1,l1=1

[
∞∑

i=1,i1 6=i

E {wi(·)wi1(·)}G
∗
0x(Al,k)G

∗
0x0

(Al1,k)

]

B̄(l, l1 | k, y),

where,B̄(l, l1 | k, y) = B(l | k, y)B(l1 | k, y) andG∗
0,x,x0

corresponds to the marginal distri-

bution of(θi(x, ·), θi(x0, ·)). In particular, forx = x0,

E
{
Gx(By)

2 | k
}

=
k∑

l=1

[
∞∑

i=1

E
{
wi(·)

2
}
G0x(Al,k)

]
BIN(l|k, y)2 +

k∑

l=1,l1=1

[
∞∑

i=1,i1 6=i

E {wi(·)wi1(·)}G0x(Al,k)G0x(Al1,k)

]

B̄(l, l1 | k, y).
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Now, since the elements ofH are continuous functions ofx and, for everyi ∈ N and every

{xj}∞1 , with xj ∈ X , such thatlimj→+∞xj −→ x0 ∈ X , zi(x, ·) converges in distribution

to zi(x0, ·) as j −→ +∞, it follows that θi(xj, ·) converges in distribution toθi(x0, ·), as

j −→ +∞. Now a few applications of Lebesgue dominated convergence theorem imply that

lim
j−→+∞

E
{
Gxj

(By)
2
}

=

∞∑

l=1

lim
j−→+∞

E
{
Gxj

(By)
2
∣∣ l
}
P{ω ∈ Ω : k(ω) = l},

=

∞∑

l=1

E
{
Gx0(By)

2
∣∣ l
}
P{ω ∈ Ω : k(ω) = l},

= E
{
Gx0(By)

2
}
,

lim
j−→+∞

E
{
Gxj

(By)Gx0(By)
}

=
∞∑

l=1

lim
j−→+∞

E
{
Gxj

(By)Gx0(By)
∣∣ l
}
P{ω ∈ Ω : k(ω) = l},

=
∞∑

l=1

E
{
Gx0(By)

2
∣∣ l
}
P{ω ∈ Ω : k(ω) = l},

= E
{
Gx0

(By)
2
}
,

and

lim
j−→+∞

E
{
Gxj

(By)
}
= E {Gx0

(By)} ,

which completes the proof of the theorem. �

Theorem B.3. Let{Gx : x ∈ X } ∼ wDBPP(λ,Ψ2,H , α). Asumme that there exists a posi-

tive constantγ such that ifx1,x2 ∈ X and‖x1−x2‖ > γ, thenCov
[
I{zi(x1,·)∈A1}, I{zi(x2,·)∈A2}

]
=

0, for everyA1, A2 ∈ B(R). Assume also that for everyx1,x2 ∈ X such that‖x1 −x2‖ > γ,

and for every sequence{(x1j ,x2j)}∞1 ⊂ X 2, such thatlimj→+∞(x1j ,x2j) = (x1,x2), we

have that(zi(x1j, ·), zi(x2j , ·))
L
−→ (zi(x1, ·), zi(x2, ·)), as j −→ +∞. Then, for every
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y ∈ [0, 1],

lim
j→+∞

Cov [G(x1j , ·)(By), G(x2j, ·)(By)] =

Cov




k(·)∑

l=1

G∗
0x1

(
Al,k(·)

)
BIN(l | k(·), y),

k(·)∑

l=1

G∗
0x2

(
Al,k(·)

)
BIN(l | k(·), y)




whereBy = [0, y], Aj,k(·) = [0, l/k(·)], G∗
0x stands for the marginal probability measure of

θ1(x, ·) andBIN(· | k, y) stands for the probability mass function of the binomial distribution

with parameters(k, y).

PROOF. Notice that for everyx1j ,x2j ∈ X ,

E [G(x1j , ·)(By), G(x2j , ·)(By) | k]− E [G(x1j , ·)(By) | k]E {G(x2j , ·)(By) | k]

=

k∑

l=1,l1=1

∞∑

i=1,i1=1

E [wi(·)wi1(·)]E
[
I{(θi(x1j ,·),θi1(x2j ,·))∈Al,k×Al1,k}

]
B̄(l, l1 | k, y)

−
k∑

l=1,l1=1

∞∑

i=1,i1=1

E [wi(·)]E [wi1(·)]E
[
I{θi(x1j ,·)∈Al,k}

]
E
[
I{θi1(x2j ,·)∈Al1,k}

]
B̄(l, l1 | k, y).

where,B̄(l, l1 | k, y) = BIN(l | k, y) × BIN(l1 | k, y). Now, since the elements ofH are

continuous functions ofx and, for everyi ∈ N, it follows that

lim
j→∞

E
[
I{(θi(x1j ,·),θi(x2j ,·))∈Al,k×Al1,k}

]
= E

[
I{θi(x1,·)∈Al,k}

]
E
[
I{θi(x2,·)∈Al1,k}

]

and

lim
j→∞

E
[
I{θi(x1j ,·)∈Al,k}

]
E
[
I{θi(x2j ,·)∈Al1,k}

]
= E

[
I{θi(x1,·)∈Al,k}

]
E
[
I{θi(x2,·)∈Al1,k}

]
.
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Thus, by Lebesgue’s dominated convergence theorem

lim
j→∞

E [G(x1j , ·)(By), G(x2j, ·)(By) | k]− E [G(x1j , ·)(By) | k]E {G(x2j, ·)(By) | k]

=
k∑

l=1,l1=1

B̄(l, l1 | k, y)
∞∑

i=1,i1=1

E
[
I{θi(x1,·)∈Al,k}

]
E
[
I{θi1 (x2,·)∈Al1,k}

]
E [wi(·)wi1(·)]

−
k∑

l=1,l1=1

B̄(l, l1 | k, y)
∞∑

i=1,i1=1

E
[
I{θi(x1,·)∈Al,k}

]
E
[
I{θi1 (x2,·)∈Al1,k}

]
E [wi(·)]E[wi1(·)]

=

k∑

l=1,l1=1

B̄(l, l1 | k, y)
∞∑

i=1,i1=1

E
[
I{θi(x1,·)∈Al,k}

]
E
[
I{θi1 (x2,·)∈Al1,k}

]
Cov[wi(·), wi1(·)]

=

k∑

l=1,l1=1

B̄(l, l1 | k, y)E
[
I{θ1(x1,·)∈Al,k}

]
E
[
I{θ1(x2,·)∈Al1,k}

]
Cov

[
∞∑

i=1

wi(·),
∞∑

i1=1

wi1(·)

]

= 0,

for everyk ∈ N, and therefore,

lim
j→∞

Cov [G(x1j , ·)(By), G(x2j , ·)(By)]

= lim
j→∞

E [Cov [G(x1j , ·)(By), G(x2j, ·)(By) | k]]

+ lim
j→∞

Cov [E [G(x1j , ·)(By) | k] , E [G(x2j, ·)(By) | k]]

= E

[
lim
j→∞

Cov [G(x1j , ·)(By), G(x2j , ·)(By) | k]

]

+Cov

[
lim
j→∞

E [G(x1j , ·)(By) | k] , lim
j→∞

E [G(x2j, ·)(By) | k]

]

= Cov [E [G(x1, ·)(By) | k] , E [G(x2, ·)(By) | k]]

where for everyx ∈ X ,

E [G(x, ·)(By) | k] =
k∑

l=1

G∗
0x (Al,k)


 k

l


 yl(1− y)k−l,

which completes the proof of the theorem. �

Theorem B.4.Let{Gx : x ∈ X } ∼ wDBPP(λ,Ψ2,H , α). Assume that for every{(x1j ,x2j)}∞1
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⊂ X 2, such thatlimj→+∞(x1j,x2j) = (x1,x2) ∈ X 2, we have that(zi(x1j , ·), zi(x2j , ·))
L
−→

(zi(x1, ·), zi(x2, ·)), asj −→ +∞. Then, for everyy = [0, 1],

lim
j→∞

ρ [G(x1j , ·)(By), G(x2j, ·)(By)] = ρ [G(x1, ·)(By), G(x2, ·)(By)] ,

whereBy = [0, y].

PROOF. Since the elements ofH are continuous functions ofx and, for everyi ∈ N, and

every {(x1j ,x2j)}∞1 , with x1j ,x2j ∈ X , such thatlimj→+∞(x1j,x2j) = (x1,x2), with

x1,x2 ∈ X , it follows that (zi(x1j , ·), zi(x2j, ·)) and zi(xlj, ·) converges in distribution to

(zi(x1, ·), zi(x2, ·)) and zi(xl, ·), respectively, asj −→ +∞, for l = 1, 2. Finally, since

the correlation,ρ, is a continuous function ofG∗
0xl

(Aj,k) andG∗
0,x1,x2

(Aj,k × Aj1,k), k ∈ N,

j, j1 ∈ {1, . . . , k} andl = 1, 2, it follows that(x1,x2) 7→ ρ [G(x1, ·)(By), G(x2, ·)(By)] is also

a continuous function. �

Theorem B.5. Let {Gx : x ∈ X } ∼ wDBPP(λ,Ψ2,H , α). If for everyx1, . . . ,xd ∈ X d,

d ≥ 1, the joint distribution of(zi(x1, ·), . . . , zi(xd, ·)) has full support onRd, andk(·) has

full support onN, thenP ([0, 1])X is the support of{Gx : x ∈ X } under the weak product

topology.

PROOF. The proof is similar to the one of Theorem 3.5. In this case,

Wl(x, ω, k) =
∞∑

i=1

wi(ω)I{θi(x, ω)}{⌈kθi(x,ω)⌉=l}.

Now, the non–singularity of the beta distribution, the assumptions that the joint distribution of

(zi(x1, ·), . . . , zi(xd, ·))

has full support onRd, for everyx1, . . . ,xd ∈ X d, d ≥ 1, and thatk(·) has full support onN,
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imply that

P

{
ω ∈ Ω :

∣∣∣∣
∫
fijdG(xi, ω)−

∫
fijdQxi

∣∣∣∣ < ǫi, i = 1, . . . , T, j = 1, . . . , Ki

}
≥

∑

k1>k0

P

{
ω ∈ Ω : Nik1(ω) ≤

ǫi
4Mijk1

, i = 1, . . . , T, j = 1, . . . , Ki, k(ω) = k1

}
> 0,

by Theorem 6 in Barrientos et al. (2012), which completes theproof of the theorem. �

Theorem B.6. Let {Gx : x ∈ X } ∼ wDBPP(λ,Ψ2,H , α). If for everyx1, . . . ,xd ∈ X d,

d ≥ 1, the joint distribution of(zi(x1, ·), . . . , zi(xd, ·)) has full support onRd, andk(·) has full

support onN, thenD ([0, 1])X is the support of{Gx : x ∈ X } under theL∞ product topology.

PROOF. The proof is similar to the one of Theorem 3.6. In this case,

Wl(x, ω, k) =
∞∑

i=1

wi(ω)I{θi(x, ω)}{⌈kθi(x,ω)⌉=l}.

Now, the non–singularity of the beta distribution, the assumptions that the joint distribution of

(zi(x1, ·), . . . , zi(xd, ·))

has full support onRd, for everyx1, . . . ,xd ∈ X d, d ≥ 1, and thatk(·) has full support onN,

imply that

P

{
ω ∈ Ω : sup

y∈[0,1]

|g(xi, ω)(y)− qxi
(y)| < ǫ, i = 1, . . . , T

}
≥

∑

k1≥k0

P

{
ω ∈ Ω : Nik1(ω) ≤

ǫ

4Mk1
, i = 1, . . . , T, k(ω) = k1

}
> 0,

by Theorem 6 in Barrientos et al. (2012), which completes theproof of the theorem. �

Theorem B.7. Let {Gx : x ∈ X } ∼ wDBPP(λ,Ψ2,H , α). If X is a compact set,k(·) has

full support onN, and the processes used in the definition of thewDBPP are such that, for any
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[0, 1]–valued continuous function defined onX , f , andǫ > 0,

P

{
ω ∈ Ω : sup

x∈X

|hx(zi(x, ω))− f(x)| < ǫ

}
> 0,

thenD̃ ([0, 1])X is the support of{Gx : x ∈ X } under theL∞ topology.

PROOF. Let {Qx : x ∈ X } ∈ D̃([0, 1])X , with density functions{qx : x ∈ X }. An

application of the triangle inequality implies that, for everyx ∈ X , y ∈ [0, 1] and almost every

ω ∈ Ω,

|g(x, ω)(y)− qx(y)| ≤ |bp(y | k,Qx)− qx(y)|+ |g(x, ω)(y)− bp(y | k,Qx)| .

By Lemma B.1, it follows that there existsk0 ∈ N such that

sup
x∈X

sup
y∈[0,1]

|bp(y | k0, Qx)− qx(y)| ≤
ǫ

2
.

Now, notice that for everyx ∈ X ,

sup
y∈[0,1]

|g(x, ω)(y)− bp(y | k0, Qx)| = sup
y∈[0,1]

∣∣∣∣∣
k0∑

l=1

Wl(x, ω, k0)β (y|l, k0 − l + 1)

−
k0∑

l=1

Qx

(
l

k0
,
l − 1

k0

]
β (y|l, k0 − l + 1) dy

∣∣∣∣∣ ,

≤ Mk0 max
l∈{1,...,k0}

∣∣∣∣Wl(x, ω, k0)−Qx

(
l

k0
,
l − 1

k0

]∣∣∣∣ ,

where,Wl(x, ω, k0) =
∑∞

i=1wi(ω)I{θi(x, ω)}{⌈kθi(x,ω)⌉=l} and

M = sup
l∈{1,...,k0}

sup
y∈[0,1]

β (y|l, k0 − l + 1) .

Sincex 7→ Qx

(
l
k0
, l−1

k0

]
is a continuous function, then for eachl ∈ {1, . . . , k0} there exist step

functions of the form

Sl(x) =

ml∑

j=1

aj,lIXj,l
(x),
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l = 1, . . . , k0, where,ml is a natural number,{aj,l}
ml

j=1 are positive numbers,{Xj,l}
ml

j=1 is a

partition ofX , eachXj,l has positive Lebesgue measure, andIA is the indicator function of the

setA, such that for everyx ∈ X ,
∑k0

l=1 Sl(x) = 1, and

sup
x∈X

sup
l∈{1,...,k0}

∣∣∣∣Sl(x)−Qx

(
l

k0
,
l − 1

k0

]∣∣∣∣ ≤
ǫ

4Mk0
.

Notice that the above step functions, in turn, can be expressed as a discrete measure of the form

Sl(x) =
m∑

i=1

w̃iI{θ̃i(x)}{⌈k0θ̃i(x)⌉=l},

wherem is a natural number,{w̃i}
m
i=1 are positive numbers such thatw̃i ∈ (0, ǫ

8Mk0
) and

∑m
i=1 w̃i = 1, θ̃i(x) is a continuous function,i = 1, . . . , m, such that the set

{
x ∈ X : k0θ̃i(x) = l, l = 1, . . . , k0, i = 1, . . . , m

}

has zero Lebesgue measure. Therefore, it is possible to ensure the existence of a positive con-

stant,γ, such that ifsup
x∈X

∣∣∣θi(x, ω)− θ̃i(x)
∣∣∣ < γ, then

∣∣∣⌈k0θi(x, ω)⌉ − ⌈k0θ̃i(x)⌉
∣∣∣ ≤ 1.

Furthermore, if for somei1, i2 ∈ {1, . . . , m} andl ∈ {1, . . . , k0}, there existx(1),x(2) ∈ X

such that

k0θ̃i1
(
x(1)

)
= k0θ̃i2

(
x(2)

)
= l,

then there existx(1)
1 ,x

(1)
2 ,x

(2)
1 ,x

(2)
2 ∈ X such that

θ̃i1

(
x
(1)
1

)
+ γ = θ̃i1

(
x
(1)
2

)
− γ = θ̃i2

(
x
(2)
1

)
+ γ = θ̃i2

(
x
(2)
2

)
− γ =

l

k0
,

min{x(1)
1 ,x

(1)
2 } < x

(1)
1 < max{x(1)

1 ,x
(1)
2 },

min{x(2)
1 ,x

(2)
2 } < x

(2)
1 < max{x(2)

1 ,x
(2)
2 }
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and

(
min{x(1)

1 ,x
(1)
2 },max{x(1)

1 ,x
(1)
2 }
)⋂(

min{x(2)
1 ,x

(2)
2 },max{x(2)

1 ,x
(2)
2 }
)
= ∅.

Now, consider a subsetΩ0 ⊂ Ω, such that for almost everyω ∈ Ω0, the following conditions

are met:

• For i = 1, . . . , m,

sup
x∈X

∣∣∣hx (zl(x, ω))− θ̃i(x)
∣∣∣ ≤ γ.

• For i = 1,

|vi(ω)− w̃i| ≤
ǫ

8Mk0(2m − 1)
.

• For i = 2, . . . , m,

∣∣∣∣∣vi(ω)−
w̃i

1−
∑i−1

j=1 w̃j

∣∣∣∣∣ ≤
ǫ

8Mk0(2m − 1)
.

• k(ω) = k0.

Then for almost everyω ∈ Ω0, it follows that

max
l∈{1,...,k0}

∣∣∣∣∣Wl(x, ω, k0)−
m∑

i=1

w̃iI{θ̃i(x)}{⌈k0θ̃i(x)⌉=l}

∣∣∣∣∣ ≤
ǫ

4Mk0
,

wich implies that

sup
x∈X

sup
y∈[0,1]

|g(x, ω)(y)− bp(y | k,Qx)| <
ǫ

2
,
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and, therefore,

P

{
ω ∈ Ω : sup

x∈X

sup
y∈[0,1]

|g(x, ω)(y)− qx(y)| ≤ ǫ

}
≥

m∏

i=1

P

{
ω ∈ Ω : sup

x∈X

∣∣∣hx (zl(x, ω))− θ̃i(x)
∣∣∣ ≤ γ

}
×

P

{
ω ∈ Ω : |vi(ω)− w̃i| ≤

ǫ

8k0M(2m − 1)

}
×

m∏

l=2

P

{
ω ∈ Ω :

∣∣∣∣∣vi(ω)−
w̃i

1−
∑i−1

j=1 w̃j

∣∣∣∣∣ ≤
ǫ

8k0M(2m − 1)

}
×

P {ω ∈ Ω : k(ω) = k0} .

Now, note that the continuity of the functions{θ̃i}mi=1 and the non–singularity of the beta distri-

bution imply that

m∏

i=1

P

{
ω ∈ Ω : sup

x∈X

∣∣∣hx (zl(x, ω))− θ̃i(x)
∣∣∣ ≤ γ

}
×

P

{
ω ∈ Ω : |vi(ω)− w̃i| ≤

ǫ

8k0M(2m − 1)

}
×

m∏

l=2

P

{
ω ∈ Ω :

∣∣∣∣∣vi(ω)−
w̃i∏

j<l 1−
∑i−1

j=1 w̃j

∣∣∣∣∣ ≤
ǫ

8k0M(2m − 1)

}

> 0.

Finally, sincek(·) has full support onN, it follows that

P

{
ω ∈ Ω : sup

x∈X

sup
y∈[0,1]

|g(x, ω)(y)− qx(y)| ≤ ǫ

}
> 0,

which completes the proof of the theorem. �

Theorem B.8. Let {Gx : x ∈ X } ∼ wDBPP(λ,Ψ2,H , α). Assume thatX is a compact

set,k(·) has full support onN, and the processes used in the definition of thewDBPP are such
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that, for anyǫ > 0 and[0, 1]–valued continuous functionf defined onX , we have

P

{
ω ∈ Ω : sup

x∈X

|hx(zi(x, ω))− f(x)| < ǫ

}
> 0.

Then,

P

{
ω ∈ Ω : sup

x∈X

∫ 1

0

qx(y) log

(
qx(y)

g(x, ω)(y)

)
dy > ǫ

}
> 0,

for everyǫ > 0 and every{Qx : x ∈ X } ∈ D̃([0, 1]), with density functions{qx : x ∈ X }.

PROOF. This proof is similar to the one of Corollary 3.1.

Theorem B.9. Let {Gx : x ∈ X } ∼ wDBPP(λ,Ψ2,H , α). Assume thatX is a compact

set,k(·) has full support onN, and the processes used in the definition of thewDBPP are such

that, for anyǫ > 0 and[0, 1]–valued continuous functionf defined onX , we have

P

{
ω ∈ Ω : sup

x∈X

|hx(zi(x, ω))− f(x)| < ǫ

}
> 0.

Then the posterior distribution associated with the randomjoint distribution induced by the

wDBPP model,m(·)(y,x) = q(x)g(x, ·)(y), whereq is the density generating the predictors,

is weakly consistent at any joint distribution of the formm0(y,x) = q(x)q0(y | x), where

{q0(· | x) : x ∈ X } ∈ D̃ ([0, 1])X .

PROOF. This proof is similar to the one of Theorem 3.8 (given in the main document).

B.3 Properties of theθDBPP

In this appendix we adapt the results derived for the generalmodel to the special case of the

θDBPP. The proofs closely follow those given in Section B.1.

Theorem B.10. Let {Gx : x ∈ X } ∼ θDBPP(λ,Ψ1,V , G0). If for every{xj}∞1 ⊂ X , such

that limj→+∞xj −→ x0 ∈ X , we haveηi(xj , ·)
L
−→ ηi(x0, ·), asj −→ +∞, then, for all

y ∈ (0, 1),

lim
j→+∞

ρ [G(xj , ·)(By), G(x0, ·)(By)] = 1,
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whereρ(A,B) denotes the Pearson correlation betweenA andB, andBy = [0, y].

PROOF. Notice that for everyy ∈ [0, 1] and everyx ∈ X ,

E {G(x, ·)(By) | k} = E

{
k∑

l=1

[F ∗(x, ·)(l)] BIN(l | k, y)

∣∣∣∣∣ k
}
,

=

k∑

j=1

E {F ∗(x, ·) (l) | k}BIN(l | k, y),

where,BIN(· | k, y) stands for the probability mass function of the binomial distribution with

parameters(k, y), and

F ∗(x, ·) (l) =
∞∑

i=1

wi(x, ·)I{θi(·)}{⌈kθi(·)⌉≤l}.

Now, notice that the independence of the stochastic processes and the i.i.d. property of the

corresponding elements, imply that

E {F ∗(x, ·) (l) | k} = E

{
∞∑

i=1

wi(x, ·)I{θi(·)}{⌈kθi(·)⌉≤l}

∣∣∣∣∣ k
}
,

=

∞∑

i=1

E {wi(x, ·)}E
{
I{θi(·)}{⌈kθi(·)⌉≤l}

∣∣ k
}
,

= E
{
I{θ1(·)}{⌈kθ1(·)⌉≤l}

∣∣ k
}
,

= G0 (Al,k) ,

whereAl,k = [0, l/k]. It follows that

E {Gx(By) | k} =

k∑

l=1

G0 (Al,k) BIN(l | k, l).
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Applying a similar reasoning, it follows that for everyx,x0 ∈ X and everyy ∈ [0, 1],

E {Gx(By)Gx0(By) | k} =
k∑

l=1

[
∞∑

i=1

E {wi(x, ·)wi(x0, ·)}G0(Al,k)

]
BIN(l | k, y)2

+
k∑

l=1,l1=1

[
∞∑

i=1,i1 6=i

E {wi(x, ·)wi1(x0, ·)}G0(Al,k)G0(Al1,k)

]

B̄(l, l1 | k, y),

where,B̄(l, l1 | k, y) = BIN(l | k, y)× BIN(l1 | k, y). In particular, forx = x0,

E
{
Gx(By)

2
∣∣ k
}

=

k∑

l=1

[
∞∑

i=1

E
{
wi(x, ·)

2
}
G0(Al,k)

]
BIN(l | k, y)2 +

k∑

l=1,l1=1

[
∞∑

i=1,i1 6=i

E {wi(x, ·)wi1(x, ·)}G0(Al,k)G0(Al1,k)

]

B̄(l, l1 | k, y).

Now, since the elements ofV are continuous functions ofx and, for everyi ∈ N and every

{xj}∞1 , with xj ∈ X , such thatlimj→+∞xj −→ x0 ∈ X , ηi(x, ·) converges in distribution

to ηi(x0, ·) as j −→ +∞, it follows thatwi(xj, ·) converges in distribution towi(x0, ·) as

j −→ +∞ and thatx 7→ E {wi(x, ·)}, x 7→ E {wi(x, ·)2} andx 7→ E {wi(x, ·)wi1(x0, ·)} are

continuous functions. Now, a few applications of Lebesgue dominated convergence theorem

imply that

lim
j−→+∞

E
{
Gxj

(By)
2
}

=
∞∑

l=1

lim
j−→+∞

E
{
Gxj

(By)
2
∣∣ l
}
P{ω ∈ Ω : k(ω) = l},

=
∞∑

l=1

E
{
Gx0(By)

2
∣∣ l
}
P{ω ∈ Ω : k(ω) = l},

= E
{
Gx0(By)

2
}
,
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lim
j−→+∞

E
{
Gxj

(By)Gx0(By)
}

=
∞∑

l=1

lim
j−→+∞

E
{
Gxj

(By)Gx0(By)
∣∣ l
}
P{ω ∈ Ω : k(ω) = l},

=
∞∑

l=1

E
{
Gx0(By)

2
∣∣ l
}
P{ω ∈ Ω : k(ω) = l},

= E
{
Gx0

(By)
2
}
,

and

lim
j−→+∞

E
{
Gxj

(By)
}
= E {Gx0

(By)} ,

which completes the proof of the theorem. �

Theorem B.11.Let{Gx : x ∈ X } ∼ θDBPP(λ,Ψ1,V , G0). Asumme that there exists a con-

stantγ > 0 such that ifx1−x2 ∈ X and‖x1−x2‖ > γ, thenCov
[
I{ηi(x1j ,·)∈A1}, I{ηi(x2j ,·)∈A2}

]

= 0, for everyA1, A2 ∈ B(R). Assume also thatx1,x2 ∈ X such that for every‖x1 −x2‖ >

γ, and for every sequence{(x1j ,x2j)}∞1 ⊂ X 2, such thatlimj→+∞(x1j ,x2j) = (x1,x2), we

have(ηi(x1j , ·), ηi(x2j , ·))
L
−→ (ηi(x1, ·), ηi(x2, ·)), asj −→ +∞. Then, for everyy ∈ [0, 1],

lim
j→+∞

Cov [G(x1j , ·)(By), G(x2j , ·)(By)] =

∞∑

t=1

P{ω ∈ Ω : k(ω) = t}

t∑

l=1,l1=1

B̄(l, l1 | t, y)
∞∑

i=1

E [wi(x1, ·)]E[wi(x2, ·)]Cov
[
I{θi(·)∈Al,t}, I{θi(·)∈Al1,t}

]

+Cov




k(·)∑

l=1

G0

(
Al,k(·)

)
BIN(l | k(·), y),

k(·)∑

l=1

G0

(
Al,k(·)

)
BIN(l | k(·), y)




whereBy = [0, y],Aj,k(·) = [0, l/k(·)], BIN(· | k, y) stands for the probability mass function of

the binomial distribution with parameters(k, y) andB̄(l, l1 | k, y) = BIN(l | k, y)× BIN(l1 |

k, y).
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PROOF. Notice that, for everyx1j ,x2j ∈ X ,

E [G(x1j, ·)(By), G(x2j , ·)(By)|k]−E [G(x1j , ·)(By) | k]E {G(x2j , ·)(By) | k]

=

k∑

l=1,l1=1

∞∑

i=1,i1=1

E [wi(x1j, ·)wi1(x2j , ·)]E
[
I{θi(·)∈Al,k}I{θi1 (·)∈Al1,k}

]
B̄(y | l, l1, k)

−
k∑

l=1,l1=1

∞∑

i=1,i1=1

E [wi(x1j , ·)]E [wi1(x2j , ·)]E
[
I{θi(·)∈Al,k}

]
E
[
I{θi1 (·)∈Al1,k}

]
B̄(y | l, l1, k).

Now, since the elements ofV are continuous functions ofx and, for everyi, i1 ∈ N,

wi(x1j , ·)wi1(x2j , ·) is a continuous function of{(ηi(x1j , ·), ηi(x2j , ·))}l1, l = max{i, i1}, it

follows that

lim
j→∞

E [wi(x1j , ·)wi1(x2j , ·)] = E [wi(x1, ·)]E [wi1(x2, ·)]

and

lim
j→∞

E [wi(x1j , ·)]E [wi1(x2j , ·)] = E [wi(x1, ·)]E [wi1(x2, ·)] .

Thus, by Lebesgue’s dominated convergence theorem, it follows that

lim
j→∞

Cov [G(x1j , ·)(By), G(x2j , ·)(By) | k]

= lim
j→∞

E [G(x1j , ·)(By), G(x2j, ·)(By) | k]−E [G(x1j , ·)(By)|k]E {G(x2j , ·)(By) | k]

=

k∑

l=1,l1=1

B̄(y | l, l1, k)
∞∑

i=1,i1=1

E [wi(x1, ·)]E[wi1(x2, ·)]E
[
I{θi(·)∈Al,k}I{θi1 (·)∈Al1,k}

]

−
k∑

l=1,l1=1

B̄(y | l, l1, k)
∞∑

i=1,i1=1

E [wi(x1, ·)]E [wi1(x2, ·)]E
[
I{θi(·)∈Al,k}

]
E
[
I{θi1 (·)∈Al1,k}

]

=
k∑

l=1,l1=1

B̄(y | l, l1, k)
∞∑

i=1,i1=1

E [wi(x1, ·)]E[wi1(x2, ·)]Cov
[
I{θi(·)∈Al,k}, I{θi1 (·)∈Al1,k}

]

=
k∑

l=1,l1=1

B̄(y | l, l1, k)
∞∑

i=1

E [wi(x1, ·)]E[wi(x2, ·)]Cov
[
I{θi(·)∈Al,k}, I{θi(·)∈Al1,k}

]
.

On the other hand, the covariance between the conditional expectations ofG(x1j , ·)(By) and
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G(x2j , ·)(By) givenk is of the form,

lim
j→∞

Cov [E [G(x1j, ·)(By)| k] , E [G(x2j , ·)(By)| k]]

= Cov

[
lim
j→∞

E [G(x1j , ·)(By)| k] , lim
j→∞

E [G(x2j , ·)(By) | k]

]

= Cov [E [G(x1, ·)(By)| k] , E [G(x2, ·)(By) | k]]

where for everyx ∈ X ,

E [G(x, ·)(By)| k] =
k∑

l=1

G∗
0x (Al,k)


 k

l


 yl(1− y)k−l,

which completes the proof of the theorem. �

Theorem B.12.Let{Gx : x ∈ X } ∼ θDBPP(λ,Ψ1,V , G0). Assume for every{(x1j ,x2j)}∞1

⊂ X 2, such thatlimj→+∞(x1j ,x2j) = (x1,x2) ∈ X 2, we have that(ηi(x1j , ·), ηi(x2j , ·))
L
−→

(ηi(x1, ·), ηi(x2, ·)), asj −→ +∞. Then, for everyy = [0, 1],

lim
j→∞

ρ [G(x1j , ·)(By), G(x2j, ·)(By)] = ρ [G(x1, ·)(By), G(x2, ·)(By)] ,

whereBy = [0, y].

PROOF. Since the elements ofV are continuous functions ofx and, for everyi ∈ N and every

{(x1j ,x2j)}∞1 , withx1j ,x2j ∈ X , such thatlimj→+∞(x1j ,x2j) = (x1,x2), withx1,x2 ∈ X ,

it follows that

(ηi(x1j , ·), ηi(x2j, ·)),

and ηi(xlj , ·) converges in distribution to(ηi(x1, ·), ηi(x2, ·)) and ηi(xl, ·), respectively, as

j −→ +∞, for l = 1, 2. It also follows that(x1,x2) 7→ E {wi(xl, ·)}, (x1,x2) 7→ E {wi(xl, ·)2},

l = 1, 2, and(x1,x2) 7→ E {wi(x1, ·)wi1(x2, ·)} are continuous functions, for everyi, i1 ∈ N.

Finally, since the correlation,ρ, is a continuous function ofE {wi(xl, ·)}, E {wi(xl, ·)2} and
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E {wi(x1, ·)wi1(x2, ·)}, i, i1 ∈ N, andl = 1, 2, it follows that

(x1,x2) 7→ ρ [G(x1, ·)(By), G(x2, ·)(By)]

is also a continuous function. �

Theorem B.13. Let {Gx : x ∈ X } ∼ θDBPP(λ,Ψ1,V , G0). If for everyx1, . . . ,xd ∈ X d,

d ≥ 1, the joint distribution of(ηi(x1, ·), . . . , ηi(xd, ·)) has full support onRd, and,k(·) andG0

have full support onN and(0, 1], respectively, thenP ([0, 1])X is the support of{Gx : x ∈ X }

under the weak product topology.

PROOF. The proof is similar to the one of Theorem 3.5. In this case,Wl(x, ω, k) =
∑∞

i=1wi(x, ω)I{θi(ω)}{⌈kθi(ω)⌉=l}. Now, since by assumption the joint distribution of

(ηi(x1, ·), . . . , ηi(xd, ·)) has full support onRd, for everyx1, . . . ,xd ∈ X d, d ≥ 1, and,k(·)

andG0 have full support onN and(0, 1], respectively, then Theorem 6 in Barrientos et al. (2012)

ensures that

P

{
ω ∈ Ω :

∣∣∣∣
∫
fijdG(xi, ω)−

∫
fijdQxi

∣∣∣∣ < ǫi, i = 1, . . . , T, j = 1, . . . , Ki

}
≥

∑

k1>k0

P

{
ω ∈ Ω : Nik1(ω) ≤

ǫi
4Mijk1

, i = 1, . . . , T, j = 1, . . . , Ki, k(ω) = k1

}
> 0,

which completes the proof of the theorem. �

Theorem B.14. Let {Gx : x ∈ X } ∼ θDBPP(λ,Ψ1,V , G0). If for everyx1, . . . ,xd ∈ X d,

d ≥ 1, the joint distribution of(ηi(x1, ·), . . . , ηi(xd, ·)) has full support onRd, and,k(·) andG0

have full support onN and(0, 1], respectively, thenD ([0, 1])X is the support of{Gx : x ∈ X }

under theL∞ product topology.

PROOF. The proof is similar to the one of Theorem 3.6. In this case,

Wl(x, ω, k) =
∞∑

i=1

wi(x, ω)I{θi(ω)}{⌈kθi(ω)⌉=l}.

Now, since by assumption the joint distribution of(ηi(x1, ·), . . . , ηi(xd, ·)) has full support on
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R
d, for everyx1, . . . ,xd ∈ X d, d ≥ 1, and,k(·) andG0 have full support onN and(0, 1],

respectively, it follows that

P

{
ω ∈ Ω : sup

y∈[0,1]

|g(xi, ω)(y)− qxi
(y)| < ǫ, i = 1, . . . , T

}
≥

∑

k1≥k0

P

{
ω ∈ Ω : Nik1(ω) ≤

ǫ

4Mk1
, i = 1, . . . , T, k(ω) = k1

}
> 0,

by Theorem 6 in Barrientos et al. (2012), which completes theproof of the theorem. �

Theorem B.15. Let {Gx : x ∈ X } ∼ θDBPP(λ,Ψ1,V , G0). If X is a compact set,G0 and

k(·) have full support onN and (0, 1], respectively, and the processes used in the definition of

theθDBPP are such that, for anyǫ > 0 and[0, 1]–valued continuous functionf defined onX ,

we have that

P

{
ω ∈ Ω : sup

x∈X

|vx(ηi(x, ω))− f(x)| < ǫ

}
> 0,

thenD̃ ([0, 1])X is the support of{Gx : x ∈ X } under theL∞ topology.

PROOF. The proof is similar to the one of Theorem 3.7. In this case, it is sufficient to consider

a subsetΩ0 ⊂ Ω, such that for everyω ∈ Ω0, the following conditions are met:

• For l = 1, . . . , k0,

⌈θl(ω)k0⌉ = l.

• For l = 1,

sup
x∈X

∣∣∣∣vx (η1(x, ω))−Qx

((
0,

l

k0

])∣∣∣∣ ≤
ǫ

2k0M(2k0 − 1)
.

• For l = 2, . . . , k0,

sup
x∈X

∣∣∣∣∣∣
vx (ηl(x, ω))−

Qx

((
l
k0
, l−1

k0

])

1−
∑l−1

j=1Qx

((
j
k0
, j−1

k0

])

∣∣∣∣∣∣
≤

ǫ

2k0M(2k0 − 1)
.

• k(ω) = k0.
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Then, for almost everyω ∈ Ω0, it follows that

sup
x∈X

sup
y∈[0,1]

|g(x, ω)(y)− bp(y | k,Qx)| <
ǫ

2
,

and, thus,

P

{
ω ∈ Ω : sup

x∈X

sup
y∈[0,1]

|g(x, ω)(y)− qx(y)| ≤ ǫ

}
≥

k0∏

l=1

P {ω ∈ Ω : ⌈θl(ω)k0⌉ = l} ×

P

{
ω ∈ Ω : sup

x∈X

∣∣∣∣vx(η1(x, ω))−Qx

((
0,

1

k0

])∣∣∣∣ ≤
ǫ

2k0M(2k0 − 1)

}
×

k0∏

l=2

P



ω ∈ Ω : sup

x∈X

∣∣∣∣∣∣
vx(ηl(x, ω))−

Qx

((
l
k0
, l−1

k0

])

1−
∑l−1

j=1Qx

((
j
k0
, j−1

k0

])

∣∣∣∣∣∣
≤

ǫ

2k0M(2k0 − 1)



×

P {ω ∈ Ω : k(ω) = k0} .

Now, note that since

x 7→ Qx

((
0,

1

k0

])
,

and

x 7→
Qx

((
l
k0
, l−1

k0

])

1−
∑l−1

j=1Qx

((
j
k0
, j−1

k0

]) ,

l = 2, . . . , k0, are continuous functions, it follows that

P

{
ω ∈ Ω : sup

x∈X

∣∣∣∣vx(η1(x, ω))−Qx

((
0,

1

k0

])∣∣∣∣ ≤
ǫ

2k0M(2k0 − 1)

}
×

k0∏

l=2

P



ω ∈ Ω : sup

x∈X

∣∣∣∣∣∣
vx(ηl(x, ω))−

Qx

((
l
k0
, l−1

k0

])

1−
∑l−1

j=1Qx

((
j
k0
, j−1

k0

])

∣∣∣∣∣∣
≤

ǫ

2k0M(2k0 − 1)





> 0.
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Finally, sinceG0 andk(·) have full support on(0, 1] andN, respectively, then

P

{
ω ∈ Ω : sup

x∈X

sup
y∈[0,1]

|g(x, ω)(y)− qx(y)| ≤ ǫ

}
> 0,

which completes the proof of the theorem. �

Theorem B.16. Let {Gx : x ∈ X } ∼ θDBPP(λ,Ψ1,V , G0). Assume thatX is a compact

set,G0 andk(·) have full support onN and (0, 1], respectively, and the processes used in the

definition of theθDBPP are such that, for anyǫ > 0 and [0, 1]–valued continuous functionf

defined onX , we have that

P

{
ω ∈ Ω : sup

x∈X

|vx(ηi(x, ω))− f(x)| < ǫ

}
> 0.

Then,

P

{
ω ∈ Ω : sup

x∈X

∫ 1

0

qx(y) log

(
qx(y)

g(x, ω)(y)

)
dy > ǫ

}
> 0,

for everyǫ > 0 and every{Qx : x ∈ X } ∈ D̃([0, 1]), with density functions{qx : x ∈ X }.

PROOF. This proof is similar to the one of Corollary 3.1.

Theorem B.17. Let {Gx : x ∈ X } ∼ θDBPP(λ,Ψ1,V , G0). Assume thatX is a compact

set,G0 andk(·) have full support onN and (0, 1], respectively, and the processes used in the

definition of theθDBPP are such that, for anyǫ > 0 and [0, 1]–valued continuous functionf

defined onX , we have that

P

{
ω ∈ Ω : sup

x∈X

|vx(ηi(x, ω))− f(x)| < ǫ

}
> 0.

Then the posterior distribution associated with the randomjoint distribution induced by the

thetaDBPP model,m(·)(y,x) = q(x)g(x, ·)(y), whereq is the density generating the predic-

tors, is weakly consistent at any joint distribution of the formm0(y,x) = q(x)q0(y | x), where

{q0(· | x) : x ∈ X } ∈ D̃ ([0, 1])X .

PROOF. This proof is similar to the one of Theorem 3.8 (given in the main document).
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B.4 Proof of Theorem 3.9

Since the elements ofV are continuous functions ofx and, for everyj ∈ N, ηj is a P–as

continuous stochastic process, it follows thatx 7→ vx(ηj(x, ·)) andx 7→ wj(x, ·), j ∈ N,

areP–a.s. continuous functions. A direct application of Lebesgue’s dominated convergence

theorem implies that the density, w.r.t. Lebesgue measure,of Gx, isP–a.s. continuous, i.e., for

everyy ∈ [0, 1],

P

{
ω ∈ Ω : lim

j→+∞
g(xj, ω)(y) = g(x0, ω)(y),

}
= 1.

Now, by Scheffe’s theorem, it follows that

P

{
ω ∈ Ω : lim

j→+∞
sup

B∈B([0,1])

|G(xj , ω)(B)−G(x0, ω)(B)| = 0,

}
= 1,

which completes the proof of the theorem. �

B.5 MCMC schemes forDBPPmodels

In this appendix we provide a description of the MCMC implementation used to draw samples

from the posterior distributions of the LDBPP,wLDBPP andθLDBPP models. The compu-

tational implementation was based on a finite dimensional approximation to the corresponding

dependent stick–breaking processes, where the number of terms in the infinite series representa-

tions was truncated to a valueN . The MCMC algorithms correspond to a Gibbs sampler, which

combines, in the cases where the conditional distributionsare not of conjugate, slice (Neal,

2003) and Metropolis–Hastings (Tierney, 1994) algorithms. The specific implementations for

each model are given next.
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MCMC scheme for theLDBPPmodel

To update the regression coefficients,γ
η
1, . . . ,γ

η
N−1,γ

z
1, . . . ,γ

z
N , we used the multivariate slice

sampling algorithm proposed by Neal (2003). In this case, the conditional distribution is given

by

f0
(
γ
η
1, . . . ,γ

η
N−1,γ

z
1, . . . ,γ

z
N | . . .

)
∝

n∏

i=1





N−1∑

j=1

q
(
xi,γj

)∏

l<j

[1− q (xi,γ l)] β
(
yi |

⌈
k h
(
dz(xi)

Tγz
j

)⌉
, k −

⌈
k h
(
dz(xi)

Tγz
j

)⌉
+ 1
)

+
∏

l<N

[1− q (xi,γ l)]β
(
yi |

⌈
k h
(
dz(xi)

Tγz
N

)⌉
, k −

⌈
k h
(
dz(xi)

Tγz
N

)⌉
+ 1
)
}

× exp



−

1

2

N−1∑

j=1

(
γ
η
j − µη

)T
(Sη)−1

(
γ
η
j − µη

)
−

1

2

N∑

j=1

(
γz
j − µz

)T
(Sz)−1 (

γz
j − µz

)


 ,

whereq
(
xi,γj

)
= h

(
dη(xi)

Tγ
η
j

)
. Let γη

1
, . . . ,γη

N−1
,γz

1
, . . . ,γz

N
be the current value of the

regression coefficients, andwη, wz ∈ R
+. The algorithm begins by drawing a random number

t0 ∼ U
(
0, f0

(
γη
1
, . . . ,γη

N−1
,γz

1
, . . . ,γz

N
| . . .

))
, and by defining

L
η
j = γη

j
− wη

jU
η
j , R

η
j = γη

j
+ wη

j , j = 1, . . . , N − 1,

Lz
j = γz

j
− wz

jU
z
j , Rz

j = γz

j
+ wz

j , j = 1, . . . , N,

whereUη
j andUz

j are drawn from ther1 andr2-dimensional uniform distributions,Ur1(0, 1)

andUr2(0, 1), respectively. Then, the following steps are repeated until new coefficient values,

γ
η
1, . . . ,γ

η
N−1,γ

z
1, . . . ,γ

z
N , are accepted:

Step (i): DrawUη
j andUz

j fromUr1(0, 1) andUr2(0, 1), respectively, and define

γ
η
j = L

η
j +U

η
j

(
R

η
j − L

η
j

)
, j = 1, . . . , N − 1,

and

γz
j = Lz

j +Uz
j

(
Rz

j − Lz
j

)
, j = 1, . . . , N.
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If t0 < f0
(
γ
η
1, . . . ,γ

η
N−1,γ

z
1, . . . ,γ

z
N | . . .

)
, then accept these new coefficient values and

stop the algorithm. Otherwise, go to the next step.

Step (ii): Letγη
jl

, γηjl, γ
z
jl, γ

z
jl

, Rη
jl, L

η
jl, R

z
jl andLz

jl be thel-th component of the vectorγη
j
,γη

j , γ
z
j ,

γz
j
, Rη

j , L
η
j , R

z
j andLz

j , respectively. Then,

– for j = 1, . . . , N − 1, andl = 1, . . . , r1, if γηjl < γη
jl

, then setLη
jl = γη

jl
; else, set

Rη
jl = γη

jl
.

– for j = 1, . . . , N, and l = 1, . . . , r2, if γzjl < γz
jl

, then setLz
jl = γz

jl
; else, set

Rz
jl = γz

jl
.

To update the polynomial degree,k, we used a Metropolis-.Hastings step, where the pro-

posal distribution is given byQ(knew | kold) = p0δ{kold−1}(knew) + (1 − p0)δ{kold+1}(knew),

p0 ∈ (0, 1). Finally, the full conditional distributions for the hyper–parameters,µη, µz, Sη and

Sz are conjugate. For mean vectors, these are given by

µη | . . . ∼

Nr1


[(Sη

0)
−1 + (N − 1)(Sη)−1

]−1


(Sη

0)
−1µ

η
0 + (Sη)−1

N−1∑

j=1

γ
η
j


 ,
[
(Sη

0)
−1 + (N − 1)(Sη)−1

]−1


 ,

and

µz | . . . ∼ Nr2


[(Sz

0)
−1 +N(Sz)−1

]−1


(Sz

0)
−1µz

0 + (Sz)−1
N∑

j=1

γz
j


 ,
[
(Sz

0)
−1 +N(Sz)−1

]−1


 ,

respectively. For covariance matrices, the full conditionals are given by

Sη | . . . ∼ IWr1

(
(N − 1) + νη,Ψη +

N−1∑

j=1

(
µη − γ

η
j

)T (
µη − γ

η
j

)
)

and

Sz | . . . ∼ IWr2

(
N + νz,Ψz +

N∑

j=1

(
µz − γz

j

)T (
µz − γz

j

)
)
,
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respectively.

MCMC scheme for thewLDBPPmodel

To update the parametersv1, . . . , vN−1,γ
z
1, . . . ,γ

z
N , we used the multivariate slice sampling

algorithm proposed by Neal (2003). In this case, the conditional distribution is given by

f0 (v1, . . . , vN−1,γ
z
1, . . . ,γ

z
N | . . .) ∝

n∏

i=1

{
N−1∑

j=1

vj
∏

l<j

(1− vl) β
(
yi |

⌈
k h
(
dz(xi)

Tγz
j

)⌉
, k −

⌈
k h
(
dz(xi)

Tγz
j

)⌉
+ 1
)

+
∏

l<N

(1− vl) β
(
yi |

⌈
k h
(
dz(xi)

Tγz
N

)⌉
, k −

⌈
k h
(
dz(xi)

Tγz
N

)⌉
+ 1
)
}

× exp

{
−
1

2

N∑

j=1

(
γz
j − µz

)T
(Sz)−1 (

γz
j − µz

)
}

×
N−1∏

j=1

(1− vl)
α−1 .

Let v1, . . . , vN−1,γ
z
1
, . . . ,γz

N
be the current value of the parameters, and take(wv, wz) ∈

(0, 1)×R
+. The algorithm begins by drawing a random numbert0 ∼ U (0, f0 (v1, . . . , vN−1,γ

z
1,

. . . ,γz
N | . . .)), and by defining

Lv
j = vj − wv

jU
v
j , Rv

j = vj + wv
j , j = 1, . . . , N − 1,

Lz
j = γz

j
− wz

jU
z
j , Rz

j = γz

j
+ wz

j , j = 1, . . . , N,

whereUv
j andUz

j are drawn from anU(0, 1) andUr2(0, 1) distribution, respectively. Then, the

following steps are repeated until new value of the parameters, v1, . . . , vN−1,γ
z
1, . . . ,γ

z
N , are

accepted:

Step (i): DrawUv
j andUz

j from anU(0, 1) andUr2(0, 1) distribution, respectively, and define

vj = Lv
j + Uv

j

(
Rv

j − Lv
j

)
, j = 1, . . . , N − 1,
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and

γz
j = Lz

j +Uz
j

(
Rz

j − Lz
j

)
, j = 1, . . . , N.

If t0 < f0 (v1, . . . , vN−1,γ
z
1, . . . ,γ

z
N | . . .), then accept these new values and stop the

algorithm. Otherwise, go to the next step.

Step (ii): Letγzjl, γ
z
jl

, Rη
jl, L

η
jl, R

z
jl andLz

jl be thel-th component of the vectorγz
j , γ

z
j
, Rη

j , L
η
j , Rz

j

andLz
j , respectively. Then,

– for j = 1, . . . , N − 1, if vj < vj , then setLv
j = vj ; else, setRv

j = vj .

– for j = 1, . . . , N, and l = 1, . . . , r2, if γzjl < γz
jl

, then setLz
jl = γz

jl
; else, set

Rz
jl = γz

jl
.

Finally, the polynomial degree,k, and the hyper–parameters,µz andSz, were updated using

the same steps described for the LDBPP model.

MCMC scheme for theθLDBPPmodel

To update the parametersγη
1, . . . ,γ

η
N−1, θ1, . . . , θN , we used the multivariate slice sampling

algorithm proposed by Neal (2003). In this case, the conditional distribution is given by

f0
(
γ
η
1, . . . ,γ

η
N−1, θ1, . . . , θN | . . .

)
∝

n∏

i=1

{
N−1∑

j=1

q
(
xi,γj

)∏

l<j

[1− q (xi,γl)] β (yi | ⌈k θj⌉ , k − ⌈k θj⌉+ 1)

+
∏

l<N

[1− q (xi,γl)] β (yi | ⌈k θN⌉ , k − ⌈k θN⌉ + 1)

}

× exp

{
−
1

2

N−1∑

j=1

(
γ
η
j − µη

)T
(Sη)−1 (

γ
η
j − µη

)
}

N−1∏

j=1

θa−1
j (1− θl)

b−1

whereq
(
xi,γj

)
= h

(
dη(xi)

Tγ
η
j

)
. Let γη

1
, . . . ,γη

N−1
, θ1, . . . , θN be the current values of the

parameters and take(wη, wθ) ∈ R
+×(0, 1). The algorithm begins by drawing a random number
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t0 ∼ U
(
0, f0

(
γ
η
1, . . . ,γ

η
N−1, θ1, . . . , θN | . . .

))
, and by defining

L
η
j = γη

j
− wη

jU
η
j , R

η
j = γη

j
+ wη

j , j = 1, . . . , N − 1,

Lθ
j = θj − wz

jU
θ
j , Rθ

j = θj + wz
j , j = 1, . . . , N,

whereUη
j andUθ

j are drawn from anUr1(0, 1) andU(0, 1) distribution, respectively. Then, the

following steps are repeated until new value of the parameters, γη
1, . . . ,γ

η
N−1, θ1, . . . , θN , are

accepted:

Step (i): DrawUη
j andUθ

j from anUr1(0, 1) andU(0, 1) distribution, respectively, and define

γ
η
j = L

η
j +U

η
j

(
R

η
j − L

η
j

)
, j = 1, . . . , N − 1,

and

θj = Lθ
j + Uj

(
Rθ

j − Lθ
j

)
, j = 1, . . . , N.

If t0 < f0
(
γ
η
1, . . . ,γ

η
N−1, θ1, . . . , θN | . . .

)
, then accept these new values and stop the

algorithm. Otherwise, go to the next step.

Step (ii): Letγη
jl

, γηjl, R
η
jl andLη

jl be thel-th component of the vectorγη
j
,γη

j , R
η
j andLη

j , respec-

tively. Then,

– for j = 1, . . . , N − 1, andl = 1, . . . , r1, if γηjl < γη
jl

, then setLη
jl = γη

jl
; else, set

Rη
jl = γη

jl
.

– for j = 1, . . . , N, andl = 1, . . . , r2, if θj < θj , then setLz
jl = θj; else, setRθ

j = θj.

Finally, the polynomial degree,k, and the hyper-parameters,µη andSη, were updated using the

same steps described for the LDBPP model.
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B.6 Additional simulation results
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Figure B.1: Simulated data - Scenario I (n = 250): True (continuous line) and posterior mean

(dotted line) for the conditional density. A band constructed using the 95%point–wise HPD

intervals is presented in gray. Panels (a), (d), (g) and (j),(b), (e), (h) and (k), and (c), (f), (i)

and (l) display the results for the best DBPP model (LDBPP1),the best LDDP model (LDDP1),

both regarding the estimatedL1 distance, and the weight dependent DP for four values of the

predictor, respectively.
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Figure B.2: Simulated data - Scenario I (n = 500): True (continuous line) and posterior mean

(dotted line) for the conditional density. A band constructed using the 95%point–wise HPD

intervals is presented in gray. Panels (a), (d), (g) and (j),(b), (e), (h) and (k), and (c), (f), (i)

and (l) display the results for the best DBPP model (LDBPP1),the best LDDP model (LDDP2),

both regarding the estimatedL1 distance, and the weight dependent DP for four values of the

predictor, respectively.
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Figure B.3: Simulated data - Scenario I (n = 1000): True (continuous line) and posterior mean

(dotted line) for the conditional density. A band constructed using the 95%point–wise HPD

intervals is presented in gray. Panels (a), (d), (g) and (j),(b), (e), (h) and (k), and (c), (f), (i)

and (l) display the results for the best DBPP model (LDBPP1),the best LDDP model (LDDP2),

both regarding the estimatedL1 distance, and the weight dependent DP for four values of the

predictor, respectively.
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Figure B.4: Simulated data - Scenario II (n = 250): True (continuous line) and posterior mean

(dotted line) for the conditional density. A band constructed using the 95%point–wise HPD

intervals is presented in gray. Panels (a), (d), (g) and (j),(b), (e), (h) and (k), and (c), (f), (i) and

(l) display the results for the best DBPP model (wLDBPP1), the best LDDP model (LDDP2),

both regarding the estimatedL1 distance, and the weight dependent DP for four values of the

predictor, respectively.
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Figure B.5: Simulated data - Scenario II (n = 500): True (continuous line) and posterior mean

(dotted line) for the conditional density. A band constructed using the 95%point–wise HPD

intervals is presented in gray. Panels (a), (d), (g) and (j),(b), (e), (h) and (k), and (c), (f), (i) and

(l) display the results for the best DBPP model (wLDBPP1), the best LDDP model (LDDP1),

both regarding the estimatedL1 distance, and the weight dependent DP for four values of the

predictor, respectively.
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Figure B.6: Simulated data - Scenario II (n = 1000): True (continuous line) and posterior mean

(dotted line) for the conditional density. A band constructed using the 95%point–wise HPD

intervals is presented in gray. Panels (a), (d), (g) and (j),(b), (e), (h) and (k), and (c), (f), (i)

and (l) display the results for the best DBPP model (LDBPP1),the best LDDP model (LDDP1),

both regarding the estimatedL1 distance, and the weight dependent DP for four values of the

predictor, respectively.
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Figure B.7: Simulated data - Scenario III (n = 250): True (continuous line) and posterior mean

(dotted line) for the conditional density. A band constructed using the 95%point–wise HPD

intervals is presented in gray. Panels (a), (d), (g) and (j),(b), (e), (h) and (k), and (c), (f), (i)

and (l) display the results for the best DBPP model (LDBPP1),the best LDDP model (LDDP1),

both regarding the estimatedL1 distance, and the weight dependent DP for four values of the

predictor, respectively.
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Figure B.8: Simulated data - Scenario III (n = 500): True (continuous line) and posterior mean

(dotted line) for the conditional density. A band constructed using the 95%point–wise HPD

intervals is presented in gray. Panels (a), (d), (g) and (j),(b), (e), (h) and (k), and (c), (f), (i)

and (l) display the results for the best DBPP model (LDBPP1),the best LDDP model (LDDP1),

both regarding the estimatedL1 distance, and the weight dependent DP for four values of the

predictor, respectively.
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Figure B.9: Simulated data - Scenario III (n = 1000): True (continuous line) and posterior

mean (dotted line) for the conditional density. A band constructed using the 95%point–wise

HPD intervals is presented in gray. Panels (a), (d), (g) and (j), (b), (e), (h) and (k), and (c),

(f), (i) and (l) display the results for the best DBPP model (LDBPP1), the best LDDP model

(LDDP1), both regarding the estimatedL1 distance, and the weight dependent DP for four

values of the predictor, respectively.
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Figure B.10: Simulated data - Scenario I (n = 250): True (continuous line) and posterior mean

(dotted line) for the conditional density. A band constructed using the 95%point–wise HPD

intervals is presented in gray. Panels (a), (d), (g) and (j),(b), (e), (h) and (k), and (c), (f), (i) and

(l) display the results for the best DBPP model (θLDBPP2), the best LDDP model (LDDP1),

both regarding the estimatedL∞ distance, and the weight dependent DP for four values of the

predictor, respectively.
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Figure B.11: Simulated data - Scenario I (n = 500): True (continuous line) and posterior mean

(dotted line) for the conditional density. A band constructed using the 95%point–wise HPD

intervals is presented in gray. Panels (a), (d), (g) and (j),(b), (e), (h) and (k), and (c), (f), (i) and

(l) display the results for the best DBPP model (θLDBPP2), the best LDDP model (LDDP2),

both regarding the estimatedL∞ distance, and the weight dependent DP for four values of the

predictor, respectively.
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Figure B.12: Simulated data - Scenario I (n = 1000): True (continuous line) and posterior

mean (dotted line) for the conditional density. A band constructed using the 95%point–wise

HPD intervals is presented in gray. Panels (a), (d), (g) and (j), (b), (e), (h) and (k), and (c),

(f), (i) and (l) display the results for the best DBPP model (LDBPP2), the best LDDP model

(LDDP1), both regarding the estimatedL∞ distance, and the weight dependent DP for four

values of the predictor, respectively.
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Figure B.13: Simulated data - Scenario II (n = 250): True (continuous line) and posterior mean

(dotted line) for the conditional density. A band constructed using the 95%point–wise HPD

intervals is presented in gray. Panels (a), (d), (g) and (j),(b), (e), (h) and (k), and (c), (f), (i) and

(l) display the results for the best DBPP model (wLDBPP1), the best LDDP model (LDDP1),

both regarding the estimatedL∞ distance, and the weight dependent DP for four values of the

predictor, respectively.
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Figure B.14: Simulated data - Scenario II (n = 500): True (continuous line) and posterior mean

(dotted line) for the conditional density. A band constructed using the 95%point–wise HPD

intervals is presented in gray. Panels (a), (d), (g) and (j),(b), (e), (h) and (k), and (c), (f), (i) and

(l) display the results for the best DBPP model (θLDBPP1), the best LDDP model (LDDP1),

both regarding the estimatedL∞ distance, and the weight dependent DP for four values of the

predictor, respectively.
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Figure B.15: Simulated data - Scenario III (n = 1000): True (continuous line) and posterior

mean (dotted line) for the conditional density. A band constructed using the 95%point–wise

HPD intervals is presented in gray. Panels (a), (d), (g) and (j), (b), (e), (h) and (k), and (c),

(f), (i) and (l) display the results for the best DBPP model (LDBPP1), the best LDDP model

(LDDP1), both regarding the estimatedL∞ distance, and the weight dependent DP for four

values of the predictor, respectively.
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Figure B.16: Simulated data - Scenario III (n = 250): True (continuous line) and posterior

mean (dotted line) for the conditional density. A band constructed using the 95%point–wise

HPD intervals is presented in gray. Panels (a), (d), (g) and (j), (b), (e), (h) and (k), and (c),

(f), (i) and (l) display the results for the best DBPP model (wLDBPP1), the best LDDP model

(LDDP1), both regarding the estimatedL∞ distance, and the weight dependent DP for four

values of the predictor, respectively.
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Figure B.17: Simulated data - Scenario III (n = 500): True (continuous line) and posterior

mean (dotted line) for the conditional density. A band constructed using the 95%point–wise

HPD intervals is presented in gray. Panels (a), (d), (g) and (j), (b), (e), (h) and (k), and (c),

(f), (i) and (l) display the results for the best DBPP model (wLDBPP2), the best LDDP model

(LDDP1), both regarding the estimatedL∞ distance, and the weight dependent DP for four

values of the predictor, respectively.
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Figure B.18: Simulated data - Scenario III (n = 1000): True (continuous line) and posterior

mean (dotted line) for the conditional density. A band constructed using the 95%point–wise

HPD intervals is presented in gray. Panels (a), (d), (g) and (j), (b), (e), (h) and (k), and (c),

(f), (i) and (l) display the results for the best DBPP model (θLDBPP2), the best LDDP model

(LDDP1), both regarding the estimatedL∞ distance, and the weight dependent DP for four

values of the predictor, respectively.
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B.7 Additional results for the proportion of food
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Figure B.19: Proportion of food - LDBPP model. Panels (a), (b), (c), (d), (e) and (f) display the

posterior mean (dashed line) and a 95% point-wise HPD band (grey area) for the conditional

density at socioeconomic level low-low, low, medium-low, medium, medium-high and high,

respectively, under the LDBPP model. The posterior mean under the parametric beta regression

model is given as a solid line for comparison purposes.
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Figure B.20: Proportion of food -wLDBPP model. Panels (a), (b), (c), (d), (e) and (f) display

the posterior mean (dashed line) and a 95% point-wise HPD band (grey area) for the conditional

density at socioeconomic level low-low, low, medium-low, medium, medium-high and high, re-

spectively, under thewLDBPP model. The posterior mean under the parametric beta regression

model is given as a solid line for comparison purposes.
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B.8 Additional results for the proportion of hygienic waste
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Figure B.21: Proportion of hygienic waste - LDBPP model. Panels (a), (b), (c), (d), (e) and (f)

display the posterior mean (dashed line) and a 95% point-wise HPD band (grey area) for the

conditional density at socioeconomic level low-low, low, medium-low, medium, medium-high

and high, respectively, under the LDBPP model.
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Figure B.22: Proportion of hygienic waste -wLDBPP model. Panels (a), (b), (c), (d), (e) and

(f) display the posterior mean (dashed line) and a 95% point-wise HPD band (grey area) for the

conditional density at socioeconomic level low-low, low, medium-low, medium, medium-high

and high, respectively, under thewLDBPP model.
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M ÜLLER, P. & QUINTANA , F. A. (2010). Random partition models with regression on covari-

ates.Journal of Statistical Planning and Inference(To appear).
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