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Abstract 

This work takes up methods for Bayesian inference in generalized linear mixed models with 

applications to small-area estimation. A previous work (Datta and Lahiri, 1995) focused 

on Bayesian estimation with a prior scale mixture distribution for the error componen! in 

a normal linear model, to smooth small area means when one or more outliers are present 

in the data. Following this idea, an appropriate scale mixture of normals (Andrews and 

Mallows, 1974, Fernández and Steel, 2000) for the spatial random effects distribution is 

proposed in the context of the Markov random field theory, which is applied to the usual 

spatial intrinsically autoregressive random effect. Conditions are stab!ished in order to 

guarantee the posterior distribution existence when the random field is observed directly. 

Given a joint observed random field, a simulation study is performed to illustrate the use of 

hierarchical algorithms. Inference over the variability parameter is obtained, showing that 

the best estimators are related to a particular scale mixture of normal random field. 

Based on the work of Ghosh et al. (1998), theoretical conditions are presented to gua­

rantee the posterior distribution propriety, when a generalized linear mixed model with a 

spatial componen! is assumed. Due to the equivalence between the normal and the scale 

mixture of normal models, specifically with Student-t and Slash distributions, it is possible 

to obtain hierarchical representations, therefore, Markov Chain Monte Carlo sampler me­

thods are used to perform the computations. 

Lung, trachea and bronchi cancer relative risk and childhood diabetes incidence in 

Chilean communes are estimated to illustrate the proposed methods. Inference over un­

known parameters are discussed. Results are presented using appropriate thematic maps. 

viii 



As part of the work in progress, theoretical aspects to measure Bayesian learning are 

· explored, taking into account that in the spatial hierarchical model considered in this work, 

only the sum of two sets of random effects are identified by the data. Specific expressions 

for the L 1 distance were obtained. Other considerations are discussed as part of the future 

work, considering extensions to be developed in different directions. 

ix 
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Chapter 1 

Introduction 

1.1 Spatial epidemiology issues 

Spatial epidemiology concerns to the analysis of the spatial and spatio-temporal distribution 

of a specific disease. This discipline has become an area of research with high development 

in the last years. The continuous computational deve!opment and technica! advances in sta­

tistica! methodo!ogies and geographic information system have he!ped to obtain satisfactory 

resu!ts to salve problems in different research areas. Different formats of epidemio!ogica! 

data naturally give rise to different statistical methods. In general, the spatial ana!ysis data 

can be c!assified as fo!lows: 

• Geostatistics or point referenced data, when the main goal is prediction of different 

georeferenced points or extrapo!ation of areas, since availab!e samp!es of measurements 

are from a spatially continuous phenomenon of interest. 

• Point pattern analysis data, when identification of c!usters in space is the focus. 

o Area! or !attice data, when the focus is to exp!ain the geographica! variation of an 

event (economica! or epidemio!ogical), in administrative separated small areas. 

This work presents a methodologica! review and extensions of usual area! data models 

with applications in epidemio!ogy. 

2 
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Large scale disease mapping in spatial epidemiology, shows disease spatial variation with 

primarily descriptive purposes [88]. From a public health perspective, it is an importan! 

too! because it allows the implementation of policies in areas where high risks are detected. 

There are well known problems with mapping raw and standardized rates for rare dis­

eases and/or small areas, since sampling variability tends to dominate the subsequent maps 

[16]. This implies that the statistical analysis aims to provide a map free of distortion, such 

that, precise estimates would be obtained for each small area. 

The problem is treated with discrete data that include the number of individuals y;, 

defined under two types of design, the number of cases of a disease that are present in a 

particular population at a given time (prevalence), or the number of newly diagnosed cases 

during a specific time period (incidence). In epidemiology, the application of methods to 

adjust raw rates, ca!led "methods of standardization", are necessary. These methods aim to 

provide comparable rates between areas, when different sex and age population structures 

are present. These standardized. rates measure the risk of having a disease within each area. 

There are two methods of rate standardization, direct and indirect. Indirect standardiza­

tion allows the specific estimation of rates through what in literature is called Standardized 

Morbidity/Mortality Ratio (SMR) [19]. In either of these two methods, every observed Yi 

is an aggregation within each i area, that is, the number of cases of interest are considered 

for the analysis, which means that the individual variation of cases will be lost. 

Successful studies in Europe ([7], [17], [72], [83], among others) with applications to 

cancer and diabetes data, was a motivation to apply these statistical methods for borrow­

ing strength in small area disease, which could reduce the variability not explained by the 

model, incorporating a probabilistic structure that represents the relationship between the 

areas of study. 

This thesis work was motivated by real data, in the sense that results obtained from 

usual convolution models [68] were too smooth in order to be representative for the true 

risks. The latter was the reason to lit spatial robust models, which assume heavier tailed 
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distributions in the spatial random effects. Applications are oriented to obtain incidence 

rates for insulin dependent diabetes mellitus (IDDM) in Chilean Metropolitau Region and 

· relative risks of female trachea, bronchi and lung cancer mortality in the northern area of 

the country. 

1.2 Background 

Some useful definitions about the modeling stage will be exposed in this section. A brief 

introduction aud some general aspects will be discussed in the following order: general 

treatment of the generalized linear mixed models, definition of gaussiau Markov random 

fields and the usual construction of spatial Poisson models. 

1.2.1 The generalized linear mixed model 

McCullagh and Nelder [66] define a wide class of regression models, when the assumption of 

normality in the response variable is not appropriate. They define the class of Generalized 

Linear Models (GLM) as follows: consider m independent random variables y,, ... , Ym 

following a distribution that belong to the exponential family, i.e., with the joint distribution 

given by 

m 

f(y]f!, </>) = TI exp{ <Pi' (yiei - g(O;)) + p( </>;;y;)}, (1.2.1) 
i=l 

where y= (y,, ... , YmJ', f! = (8,, ... , Bm)' is a vector of unknown canonical parameters, 

</> = (</>,, ... ,</>m)' is a vector of known scale parameters and pis a known function that 

does not depend on the unknown parameters. 

The main specification in a GLM is the relation between a linear predictor and au 

strictly increasing function h, called link function. In a GLM, linear relationship present 

the following form, 

h(O;) = x;/3, 
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where x¡ is a p x 1 vector of covariates, {3 is a vector of unknown structural parameters 

associated to each component of x;. GeneraJ!y, {3 is considered as a vector of fixed effects. 

· Allowing for one or more random effects, say t;, GLM are extended to what is called 

Generalized Linear Mixed Model (GLMM). If an additionaJ parameter is considered into 

the link function, a GLMM will consider the following additive structure, 

h(B;) =x;f3+t;, i = 1, ... ,m, 

where t¡ is called random effect. Pioneer GLMM literature is referred to works developed 

by Breslow and C!ayton [18] and C!ayton [27]. 

1.2.2 Gaussian Markov random fields 

Let 1r(u) be a probability distribution associated to a region R. Denote by u¡ a random 

variable measured on area i E R and, u_¡ a subset which contains random vaJues on al! 

areas other than area i. Consider the conditionaJ distribution 7r(u;lu-;) associated to area 

i given observed values u_¡. Viewed through its conditionaJ distribution at each area, 1r( u) 

is termed Markov random field (MRF) [10]. Brook's lernma ([6],[9]) is applied to construct 

the joint distribution of the random fie!d. A brief discussion will be exposed in section two, 

in the context of the proposed models. 

Pioneer applications in the context of this class of processes were related to irnage re­

construction ([10], [15]) and agricultura! field experiments ([9], [12]). 

Nowadays, Gaussian MRF's are the most commonly models used for disease mapping 

[76]. If the observations of any two areas are connected by a common boundary, and they 

are assumed conditionally independent normally distributed on al! other observations, then 

the joint distribution 1r(u) is cal!ed Gaussian MRF (GMRF) [74]. A formal way to define 

a GMRF is, 

1r(u) oc exp {- 2~2 u'D.wu}, (1.2.2) 

where u E !Rm with m denoting the number of areas at the region R, and Dw is a m x m 

symmetric matrix. The entries Wij = ( D, )ij represent the spatial connection between areal 
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units i and j. Dw is usual! y referred to as proximity or adjacency matrix. In this work, Dw 

will be concerned with areas whose conditional distributions depend only on the values of 

areas in the immediate neighborhood of the area i. 

Definition (1.2.2) can be rewritten as 

1r(u) ex exp {- 2~2 L Wij(u¡- Uj)
2
}, 

ifj 

(1.2.3) 

which is generally referred to as pairwise difference condition. This specification is often 

called as intrinsically autoregressive (lAR) model [76]. For further detai!s of MRF, see 

for example, Besag ([9], [10]), Besag et al. [15] and the books of Banerjee et al. [6] and 

Cressie [30]. In this work, the usual GMRF model (1.2.2) will be considered instead of the 

conditional lAR specification (1.2.3). 

1.2.3 Spatial Poisson regression models 

The Poisson model has been extensively studied since 1837 when Dennis Poisson introduced 

a probability rule based on the incidence of death by coz of mules to soldiers in the French 

army, and this discrete distribution has been used in various contexts. Griffith and Haining 

[48] summarlzes applications of the Poisson model in the context of geographical analysis. 

They addressed this distribution from an applied point of view, starting from its genesis 

with a historical summary to its current use in geographic patterns. 

Consider the number of individuals who suffer a non contagious disease in a certain area 

of interest, follows a Binomial distribution with parameters n¡ and Pi, where n¡ is the size of 

the population at risk and p¡ the probability of having the disease. In epidemiology, there 

are rare diseases within a large population at risk. This argument leads to assume that the 

number of cases can be modelled as a Poisson distribution with mean parameter n¡p¡, when 

the population at risk is large ( n¡ --+ oo) and the probability that represents the occurrence 

of the disease tends to zero (p¡ --+ 0). 

Overdispersion problems (Var(y) > E(y)) under the assumption that the number of 

cases (y) follow a Poisson distribution, ha ve led to consider a model with random effects 



using a regression model with the following specification, 

Yi ~ Poisson(n¡p¡) 

log(p¡) = xj¡J +E¡, 

7 

where E(s are the random effects. Bayesian formulation can be fitted using the developed 

GLMM theory [27]. Common linear extensions in disease mapping have been developed, 

allowing for the sum of two independent components for each area, that is, if E¡ = v¡ + u¡, 

i = 1, ... , m, the link function can be expressed as, 

h(p¡) = X~¡)+ V¡ +U¡, (1.2.4) 

where v = (v¡, ... ,vm)' are iid normally distributed random effects, u= (u¡, ... ,um)' are 

spatially structured random effects and h represen\ the link function, which is representad 

by the usual natural lag for this particular case. From a Bayesian perspective, it is com­

mon to represent the spatial effect by (1.2.2), which is frequently used as a prior distribution. 

The structure in 1.2.4 let to capture variability which is not explained neither by the 

model nor by the unstructured random effects v. Taking this idea into account, Clayton and 

Kaldor [28], Besag et al. ([13], [14], [15]), Mollie [68], Wakefield and Elliot [88], Pascutto 

et al. [72], among others, proposed methodologies based on empirical and fully Bayesian 

theory to salve the rates estimation problem considering different spatial structures. Best et 

al. [17] summarizes advances in the area, including parametric and semi parametric models. 

Empirical and fully Bayesian methods have worked fairly well ([28], [65], [68]). One dif­

ference between them is that when a Bayesian hierarchical model is considerad, uncertainty 

can be represented through a prior information, which allows to make inference ( e.g. credi­

bility intervals) over al! the unknown pararneters, including those that measures variabi!ity. 

Following this argument, this work will primarily focus in applying Bayesian techniques to 

analyze data from the epidemiological area. 
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1.3 Model assessment 

Three common ways to measure model assessment are taken into account. The first two 

are oriented to penalize the observed deviance. Deviance information criterion (DIC) [84] 

and Bayesian ( or Schwarz) information criterion (BIC) [82] will be used. These metho­

dologies make an adjustment to the model log likelihood or deviance, taking into account 

the number of parameters in the model, analogue to Akaike's information criterion ([1], [2]). 

In practice, deviance is defined as D(e) = -2log(f(yle)), where f(y¡e) is the pro­

bability density fnnction of y, the observed random vector, given an unknown parameter 

vector e. In Bayesian context,-samples from MCMC chains are available, so it is possible 

to estimate the deviance associated to the model tbrough 

1 M 
D(e) = -2M L log(f(yle¡)), 

l=l 

where Mis the MCMC sample size. The effective number of parameters is still in discussion, 

the approximation proposed by Spiegelhalter et al. [84] wi!l be used through the difference, 

p, = D(e) - D(O). 

where O is the Bayesian point estimation of e. So, the penalized measures for model 

assessment, DIC and a modified BIC [29] are defined as, 

DIC = D(O) + 2p, 

and 

BIC = D(O) + p, log(m). 

Small values for both measures allow to choose the best model fit. 

Following the work developed by Laud and Ibrahim [61], and generalized by Gelfand and 

Ghosh [40], a third model choice criterion is applied. This criterion is based on a predictive 

check of the model and measures the discrepancy between the observed data and predicted 

observations, taking into account quadratic loss measures. Following this idea, the model 



with the best acljustment is that one with the sma!lest C2 ' defined as 

m 

C
2 

= I>~ced + E((Yiobe- Yipced)
2

!Yiobe' Mo). 
i=l 

9 

where o-[pred = Var(yiprediYiobs,Mo), Yiobs is the i-th random variable and Yipre.d is the i-th 

future replication under the proposed model Mo. 

1.4 Applications and exploratory analysis 

Chile is located at the southern part of South America. U ntil 2006, the administrative 

division was given by 13 regions, which were subdivided into 342 districts, including the 

islands. Each district is ca!led commune, and is the smallest geographical scale for which 

data are available. 

Using standard modeling techniques, such as the convolution model studied by Mollie 

([68], [67]), it was possible to obtain results related to stomach cancer and trachea, bronchi 

and lung cancer mortality in our country, which were published in Icaza et al. [51). Spatio­

temporal analysis for IDDM is presented in Torres et al. [86], including a complementary 

disease clustering analysis for pattern data [35). Explorative analysis is developed in the 

next subsections. 

1.4.1 Insulin dependent diabetes mellitus incidence rates 

This application focuses on studying the spatial distribution of IDDM, in the Metropolitan 

Region of Santiago de Chile. This region is divided into 52 communes, where 34 are highly 

urbanized (Gran Santiago) and 18 are considered rural areas. 

IDDM data correspond to the registered cases aged up to 15 years old, during the 2000-

2006 period, in 52 communes of the region. 

According to 2002 census, approximately 29% of the total population living in the region 

are under 15 years old; this population is considered as disease susceptible population or at 
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Figure 1.1: (a) Population at risk distribution; (b) Raw IDDM incidence rates 

25% lower (Rural communes) 25% higher (Urban communes) 
Comuna Cases Incidence Rate Comuna Cases Incidence Rate 
San José de Maipo o o El Bosque 18 5.675 
María Pinto o o Santiago 19 8.678 
San Pedro o o Vitacura 20 17.967 
Alhue o o Ñuñoa 22 10.815 
Til Til 1 3.273 Providencia 23 20.110 
Pirque 1 3.003 Lo Barnechea 24 16.252 
Buin 1 0.829 La Reina 25 16.521 
Curacaví 2 4.351 Peñalolén 26 6.307 
El Monte 2 3.838 San Bernardo 26 5.346 
Calera de Tango 3 8.011 Las Condes 43 12.761 
Talagante 4 3.320 La Florida 45 7.353 
Isla de Maipo 4 8.134 Maipú 65 7.231 

i Peñaflor 4 3.126 L}=)uente A_g_o 74 7.331 

Table 1.1: Lower and higher IDDM rates descriptive statistics in Metropolitan Region 

10 

risk. Figure 1.1 shows, a) the spatial distribution of population at risk and, b) raw IDDM 

incidence rates associated with each area. 

From figure 1.1 it is possible to appreciate that communes with highest incidence of 

IDDM do not match with those with highest population at risk. 

In figure 1.2 it is possible to appreciate the crude rates distribution according to rura!ity. 

Something evident is that urban communes as La Reina, Providencia, Lo Barnechea and 
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Figure 1.2: IDDM incidence rates boxplot 
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Vitacura present highest rates in comparison with the other urban areas. In addition, these 

communes belong to the group with highest socioeconomic levels in Metropolitan Region. 

This effect can also be appreciated in table 1.1, where 25% of the communes with the high­

est raw rates of the region, includes them. That is, even when most cases are related to the 

communes with higher population, such as La Florida, Puente Alto and Maipú, the highest 

incidence rates are associated to communes with high socioeconomic levels. 

Figure 1.3 shows an usual behavior of rates, when they are related to population size. 

That is, incidence rates related to low population have greater variability. 

A study of the spatial distribution of IDDM in Gran Santiago area [86] was developed 

based on usual Bayesian statistical methods, modeling the number of cases annually be­

tween the years 2000-2005. This study showed that communes with high incidence are 

associated with high socioeconomic levels. 

This problem is of interest because rural areas rates tend to be inf!uenced by their urban 

neighbors. The specification of a robust random effect model will help to achieve better 
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Figure 1.3: IDDM rates vs population at risk 

epiderniological results. 

1.4.2 Female trachea, bronchi and lung cancer mortality. 

12 

Cardiovascular mortality statistics from 1997 to 2004 published by Ministry of Health of 

Chile and population from 2002 census are used by Icaza and Núñez [50] to calculate sex 

and age standardized mortality rates. GLMM ([18], [93]) were used, under the assumptions 

of different slopes for the random effects and independence among communes. The results 

were published as the Chilean cardiovascular mortality atlas. Sorne other works related 

to this research problem are the master theses developed by Díaz [34] and Orellana [71]. 

Recently, Icaza et al. [51] show the estimation of mortality relative risks using the spatial 

convolution model discussed in the literature ([17], [68]) for stomach cancer and bronchi, 

trachea and lung cancer in Chile. 

In this thesis work, the application is aimed at estimating the risk in female population 

deaths related to cancer associated with organs of the respiratory system, lung, trachea or 
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bronchi. Even when the estimation procedure is applied to the complete country, only 43 

communes results, which belong to the five regions of northern Chile, will be shown. 

Figure 1.4 show the variability associated with the mortality risk of lung, trachea and 

bronchi cancer in the north area of the country. It is evident the association between the 

population size and the cancer SMR variability. This effect produce the erratic SMR results 

which are displayed in the aside map. 

SMR distribution considered by region is shown in figure 1.5. Evident differences can 

be seen from the plots. Region of Antofagasta (II) shows an excess in the variability of 

SMR in contrast to the other regions. Even more, in this region the median is around 2 an 

present an extremely high risk in the commune of Mejillones (SMR=9.25). 

Icaza et al. [51] presented the distribution of cancer mortality risks, based on the aged 

standardized mortality ratios for the whole country, with no distinction of gender. The 

problem arises when the phenomenon is stratified by sex, delivering too smooth estimates 

and sorne communes with zero observed cases present high risks. 
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It is expected that app!ication of robust models to this problem will help to obtain 

better estimates of relative risks, making them more appropriate for interpretations in 

epidemiology. 

1.5 Thesis goals and structure. 

The specific goals of this work are: 

• to propose Bayesian robust models for the spatial random effects ([68], [67]), defining 

a more general family of syrmnetric Markov random fields based on the stochastic 

representation of scale of mixture of normal distributions, 

• to construct of Bayesian hierarchical models, which includes likelihood functions de­

rived from the generalized linear model theory and robust Markov random fie!ds for 

the spatial random effects in different stages, 

• to apply MCMC techniques and related algorithms in arder to make inference possible, 

in the context of the proposed model, 
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• to discuss and propase a methodo!ogy to evaluate Bayesian learning, as an alternative 

to identifiability study, 

• to implement of MCMC algorithms on simulated and real data. 

This thesis is structured as follows. 

Chapter 2 present extensions of usual Markov random fields, which are frequently 

used for spatial modelling aspects. Several theoretical aspects and conditions are 

established under the assumption of joint multivariate scale mixture of normal distri­

butions. 

In chapter 3 a generalized Bayesian hierarchical model is proposed. Required inte­

grability conditions are presented under the standard assumptions and the extension 

presented in chapter 2. Bayes procedure is implemented via MCMC integration tech­

niques, specifical!y through the Gibbs sampler algorithm. 

Chapter 4 contains the analysis of two real data sets previously described. Results 

considering standard and proposed models are obtained. 

Exploratory Bayesian !earning is measured based on two discrepancy measures ( q­

divergence), L1 discrepancy distance and Kullback Leibler divergence. Methodology 

and discussions are exposed in chapter 5. 

Finally, comments and conclusions are discussed in chapter 6, as well as, future work 

and remained opened directions. 



Chapter 2 

Scale mixture of normal 

distributions and related Markov 

random fields. 

2.1 lntroduction 

Scale mixture of normal (SMN) distributions have been proposed as extensions of the nor­

mal model. They have been defined as a subclass of the elliptical distributions family by 

Fang and Anderson [37]. This subfamily present similar properties to the normal distri­

bution, with the exception that their behavior let capture unusual patterns present in the 

data. Kano [55] and Gupta and Varga [49] studied conditions in arder to guarantee that 

SMN distribution exists. Specifical!y, Kano [55] established that a mixture distribution is 

well defined if a known and positive random variable with a cumulative density function 

P1, called mixing term, exists. Gómez - Sánchez - Manzano et al. [47] proved and gave 

conditions in arder to this subclass could belong as sequence terms of elliptical distributions. 

Robust linear models has been studied since West [91], based on the stochastic represen­

latían of SMN distributions, proposed a Bayesian regression linear models to detect outliers. 

16 
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Lange et al. ([59], [60]) present theory and computational issues to obtain maximum likeli­

hood estimations through EM algorithm. 

Severa! Bayesian works ha ve used this stochastic representation to make inferences ([43], 

[38], [39]). Student-t distribution has also been characterized through SMN distributions 

([43], [38], [59]). In a Bayesian context, Fernandez and Steel [39] showed the Bayesian in­

ference validity and the existence of posterior moments, when usual non informative prior 

distributions are available. Specifically, Geweke [43] and Fernandez and Steel [38] discuss 

the advantage and pitfalls of modeling data when a Student-t linear regression model is 

considered. 

From a MRF context, this class of mixtures can be found in papers developed from a 

geological point of view, where prediction is the main focus. Student-t distributed MRF was 

treated by Roislien and Omre [77], using a frequentist approach. Lyu and Simoncelli [64] 

made the extension of GMRF theory to what they called Gaussian Scale Mixture Fields, in 

image reconstruction modeling. 

In this work, SMN theory is applied to extend the GMRF model ([9], [13]) when epi­

demiological data is available. Then, spatial random effect density is assumed following a 

robust distribution, in the sense of heavier tailed behavior in comparison to normal case. 

2.2 Scale mixtures of the normal distribution 

According to Andrews and Mallows [3], West([91] [92]), Fang and Anderson [37] and Fer­

nandez and Steel [39], a SMN distribution is generated if the variable of interest, u, can be 

represented as 

U= f.L + o/,-1/2 'P z, (2.2.1) 

where f.L is a location parameter, and z and 7/J are independent random variables, with z 

following an standard normal distribution and 7/J having a c.d.f P,¡, such that P,¡,(O) =O. 

Therefore, this characterization of heavier tailed distributions compare to the normal 
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model, can be defined in a multivariate way as follows: 

Definition 2.2.1. Let 1/;1 , ... , 1/Jm be a non observable sequence of independent and identi­

cally distributed (iid) sequence random variables, following a (known) probability distribu­

tion with cumulative density function P,p on (O,oo), that is, P,,(o) =O. A random vector 

u = (U¡, ... , um)' follows a multivariate SMN distribution, if its density can be specified as 

1 ¡w¡112 { 1 } rr(u/J.t, O'~) = ( 2 )m/2 exp --2 (u- ¡.t)'w-1(u- J.t) dPw, 
(O,oo)= 27rrru 2au 

(2.2.2) 

where \[1 = diag(1/J¡, ... ,1/Jm), J.t = (p,¡, ... ,P,m) is a location vector, O'~ is a dispersion 

parameter, and Pw represents the cumulative density function of a product probability 

measure on JR:+. 

N otice that if the scale random factors 1/11, ... , 'if;m are al! different, then from the above 

definition it follows that the components u1 , ... , Um of the random vector u are indepen-

dent, with u, ~ SMN(p,,, 0'~). While if ·¡j;1 = 'lj;2 = ... = 1/Jm = 1/J, then the u¡'s will be 

uncorrelated SMN(P,i, O'~) random variables, but not (necessary) independent. Moreover, 

under this !ast assumption, a more general dependence structure between the u, 's can be 

introduced by replacing the scalar dispersion parameter O'~ by a m x m dispersion matrix I:. 

Definition 2.2.2. A random vector u= (u1 , ... ,um)' follows a dependen\ multivariate 

SMN distribution, with location parameter J.t and dispersion matrix I:, if its density is 

defined by 

{ ,pm/2 { 1/J } 
rr(u/¡.t, I:) = J(o,oo) (2rr)m/21I:I-l/2 exp -2(u- J.t)'I:-l(u- J.t) dP,p. (2.2.3) 

where 1/J is a mixing random factor with cumula ti ve density function P,p defined on JR:+. 

Sorne properties, related to moments, marginal and conditional distributions based on 

the elliptical family of distributions are derived by Fang and colleagues ([36], [37]). These 

authors construct these class of distributions through the characterization of a less complex 

symmetric family, called spherical, through JE(e't'x) = lf>(t't), which is called the charac­

teristic generator function. From this fact, marginal and conditional distributions can be 
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obtained with their respective moments, previous application of a linear transformationo 

Kano [55] gives conditions in order to construct SMN distributions with a preferable 

consistency properly, in the sense that, the marginal distribution belongs to the same fam­

ily as the joint distributiono He established that elliptical distributions with the consistency 

property must be a SMN distributiono 

As the multivariate normal distribution, each multivariate elliptical distribution depends 

on a location vector Manda dispersion matrix ~o A similar fact occurs with each conditional 

elliptical distributiono In that follows, we consider the partition given by 

( 

U
o ) ( "o ) ( ~2 "o 

0 

) 

2 r~ vi L.J'I-,-2 

U-i l M-i ' :E-i,i ~-i ' 

where -i represent the set of indexes that excludes the i-th componento Following Kano 

[55], each conditional SMN distribution belongs to the same family of the original SMN dis­

tribution, and they are symmetric location-scale distributionso In particular, for each SMN 

family of distributions, the location and scale parameters of the conditional distribution of 

U¡ given u_.¡ are the form of 

1-'il-i = J-L¡ + ~i.-i~=}(u_¡- M-il 

(]"21 o= (]"2- I;, -i~-~~-' 'o z -z z ., -z .,. 

(202.4) 

This representation will be useful to determine SMN conditional distributions, which are 

important for the posterior analysis in the MRF contexto 

2.3 Scale mixture of normal random fields 

Besag [9] present a pioneer work in the context of the MRF theory, with applications to 

regular lattice systems, when spatial heterogeneity is consideredo This is a key reference to 

state the statistical modeling in this areao 

Recent results were obtained by Kaiser and Cressie [54] for the construction of MRF 

when conditional distributions are availableo Other results are exposed in Lee et aL [63], 
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extending the idea of the construction of a MRF for distributions that belong to exponential 

family, relaxing assumptions like pairwise dependen ce [9]. 

In this work, an extension of the usual multivariate GMRF will be developed, by as­

surning a multivariate SMN distribution. Pairwise dependence will be assumed, which is 

natural when the MRF is represented by a Gaussian kernel. Pairwise dependence will be 

consistent with a SMN kernel, due to the relationship between the Gaussian and SMN dis­

tributions. 

As mentioned in chapter 1, a multivariate Gaussian distribution derived from a MRF, 

is 

1r(ulo-~) ce exp {-~u' Dwu}, 
2au 

(2.3.1) 

where u E !El."', o-~ represents the scale parameter of the MRF and Dw is a m x m proxi­

mity matrix, with diagonal elements Wi+ representing tbe number of neighbors of the i-th 

component, and off-diagonal elements Wij taking values -1 if the elements i and j share 

boundary and O in other case, i.e., 

¡ Wi+ 

Wij = ~1 

i=j 

i 1-j;i ~j 

otherwise. 

(2.3.2) 

The notation i ~ j is used for communes i and j whicb are contiguous, and they are 

neighbors if both communes share a common border. A basic discussion aud treatment of 

several proximity matrices can be found in Banerjee et al. [6]. 

The next definition will provide an extension of (2.3.1) to the SMN random field (SMN 

RF). 

Definition 2.3.1. A spatial raudom vector u= (u1, ... , Um)' follows a SMN RF, if the 

kernel density is specified as 

1r(ulo-~) ce {
00 

'lj;m/2 exp {- 'lj;2 u'Dwu} dP,¡,, Jo 2o-u 
(2.3.3) 
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where 7/J is a positive random variable with a known c.d.f. P,¡,, o-.; is a dispersion parameter 

and Dw denotes a proximity matrbc A SMN RF with scale parameter o-~ will be denoted 

as SMNRF(O,o-~D:;},v), where visan additional parameter (or set ofparameters) which 

controls the tails behavior. 

For the Gaussian case, it is known that specification of Dw 2.3.2 makes (2.3.1) improper 

[6), since the matrix Dw is singular, so that D.;;; 1 does not exist, hence 

{ 1r(u/o-~)du ex: { exp {---\-u'Dwu} du = oo. 
}JRm JR.m 2u u 

The last equation implies that a density function is available, but not integrable. This 

result is the lAR model property, and it is usually relegated lo the prior distribution eli­

citation. If additional assumptions are not consídered, the improper conditíon will imply 

that if a multivariate SMN RF is assumed wíth kernel 2.3.1, then consisten\ property [55) 

fails. Therefore, integration theory can not be applied. 

As the same way of the joint distribution of the GMRF treated in the spatialliterature, 

for every SMN RF, the joint distributíon will be also improper. In fact, this distribution 

will be proper only if the associated dispersion matrix is definite positive. Hence, sorne 

additional restrictions should be ímposed to obtain a proper joínt dístributions, as is dis­

cussed in Banerjee el al. [6) and Assunc;iio el al. [5). The following proposition establishes 

conditions to makes proper the SMN RF associated joínt distríbution. 

Proposition 2.3.1. Suppose that a set of spatial indexed random variables, represented 

by the vector u = (u¡, ... ,um)', is available. Consider the SMN RF in (2.3.1) as the 

distribution of u. Additionally, let suppose that P,¡, is a known positive cumulative density 

function. If L:::1 u.¡ =O and lE('\b112 ) < oo, then (2.3.3) is proper. 

Proof. As was showed by Assun<¡iio el al. [5], the L::::1 u.¡ = O constraint makes the Gaussian 

kernel 2.3.1 proper. The proof of this result involves the usual spectral decomposition of 

Dw, that is, Dw = P'AP, where the matrices A and P represen\ the eigenvalues and the 
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eigenvectors of Dw, respective! y. Thus, if the transforma! ion x = Pu is applied, is known 

[5] that, 

{ exp{-~u'Dwu}duoc { exp{-~x'Ax}dx<oo. }R.= 20"u }JR.m-1 20'.u 
(2.3.4) 

Hence, under the ¿;::,1 U¡ = O constraint, we have in (2.3.4) by applying the Fubini's 

theorem and the change variable y = ,p112x that 

r 7r(ul<r;)du 
}Rm 

= ¡oo ,pm/Z { exp {-
2

1/; 
2 

u'Dw u} dudP,¡, 
Jo }JRm Uu -.. 

oc foo ,¡;m/2 f exp {- 1/;2x'Ax} dxdP,¡, Jo }JR.m-1 2au 

OC loo ,pl/2d1j; < OO. 

D 

It is of interest to find the full conditional distributions. They are necessary to make 

posterior inferences when MCMC methods are app!ied. In this sense, we consider the next 

result. 

Corollary 2.3.2. Under the conditions of the Proposition 2.3.1, the full conditional distri­

butions arising from a SMN RF are given by 

where, 

u¡¡u_¡,<r; ~ SMN(Jt;¡-;,<r¡
1
_¡,v),i ~ j, 

I:j#i WijUj 

J.ti)-i = Lj:¡fi Wij 

<72 
u 

2 = -- .. and ai)-i L]#i wtJ 

(2.3.5) 

(2.3.6) 

It is possible to obtain the distribution of a SMN RF directly. Fo!lowing Besag [9], 

for each fixed P,¡,, and applying the Brook's lemma ,1r(u,1/;) can be obtained by using the 

conditional-marginal decomposition; that is, the distribution of a SMN RF can be obtained 

as follows: Let u and v be two arbitrary realizations in [! = {u : P(u) > O} = {v : 
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P(v) >O}. Then the distribution of the SMN-RF under consideration, which seems to be 

reasonab!y well defined, can be obtained as 

1r(u,,P) = IT7r(u¡lv¡,v2,····Vi-J,Ui+J, ... ,um,1/1). 
1r(v,'lj;) . 7r(vi/ul,u2,···,Ui-l,Vi+l,···,vm,'I/J) 

z=l 

(2.3.7) 

2.4 Sorne specific scale mixture of normal random fields 

Specific choices for P,p in (2.3.3) leads to diiferent scale mixture probability distributions. 

Student-t and slash MRF's will be treated in this work, which can be characterized using 

earlier resu!ts. Both distributions can be obtained by using stochastic representations, 

which depends on the selected mixing distribution P,¡,. 

2.4.1 Hierarchical specification 

The SMN RF can be represented hierarchically in term of stages: The SMN RF model is 

developed by introducing, at the first stage of the hierarchy, a GMRF. At the second stage 

a mixing distribution for the sca!e perturbation must be specified. Specifically: 

l. The Student-t MRF: 

i) 

ii) 

ulo-~,1/1 ~Normal (O,o-~,P- 1 D;;; 1 ) 

,P ~ Gamma(v/2, vj2). 

(2.4.1) 

(2.4.2) 

In this case, the Student-t MRF with v degrees of freedom follows, which will be 

denote by ulo-~ ~ t(O,o-2D;;;I,v). 

2. The slash MRF: 

i) 

ii) 

ulo-~,1/1 ~Normal (o,~,¡,-1 D.;;; 1 ), 

,P ~ Beta(v/2, 1). 

(2.4.3) 

(2.4.4) 

In this case, the slash MRF, denoted by ulo-;; ~ Slash(O,o-;;D;;;1 ,v), is obtained. 

Here, Dw is an adjacency matrix defined earlier in (2.3.1), ,-;¡ >O is a scale parameter 

and 11 > O is a shape parameter. These hierarchical structures will be useful to 

implement the MCMC method. 
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Figure 2.1: Specific standard scale mixture of normal distributions (Gaussian, Student-t (5) and Sla.sh(5)) 

It is important to mention that the distribution of both of the above randa m fields have 

the finite condition exposed in Proposition 2.3.1. Graphical comparisons between standard 

normal, Student-t (with v = 5 d.f.) and slash (with v = 5 d.f.) distributions can be visu­

alized in figure 2.1. Notice that even when the slash distribution present heavier tails thau 

the normal distribution, its behavior is lighter than the Student-t distribution. 

Prior distribution for o-~ is required in arder to assume a valid Bayesian model. Usually, 

a proper non informative type of prior distribution is considered for this parameter. For 

this work, a special inverse gamma distribution can be used, in other words, by considering 

o-;:;-2 ~ Gamma(a,b), (a, b > 0), (2.4.5) 

with a, b-+ O. 
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2.4.2 Full posterior distributions 

For the Gibbs Sampling scheme, fu!! posterior distributions are necessary. They will depend 

on the distribution assumed for the random field. 

If (2.4.1)-(2.4.2) are assumed, which is equivalent to the Student-t MRF formulation, 

and the prior in (2.4.5) is considered for 0'.~, then the fu!! conditional distributions presented 

in Algorithm I are obtained for MCMC implementation. By the other side, if (2.4.3)-(2.4.4) 

are assumed, that is a S!ash RF modeling, taking into account the prior (2.4.5) for 0'~, then 

the fu!! conditional distributions are shown in Algorithrn II. 

Algorithm l. [The Student-t RF] 

l. 0';;-2 ¡,¡,,u,v~Gamma(a+~,~(u'Dwu)+b), 

2. 1/JIO'~, u,v ~Gamma (mi", ~(u'Dwu) + ~). 

Algorithm II. [The slasb RF] 

l. 0';;-2 ¡.,¡,, u, v ~Gamma (a+~' ~(u' Dwu) + b) , 

2. 1/JIO'~, u, l/ ~Gamma ( m;-v, 2!~ (u'Dwu)) l¡o,l] (.,P). 

Each algorithrn must be iterated until convergence is reached. N atice that the Algorithm 

II presenta truncated gamma distribution in [0, lJ interval. To draw from this distribution, 

the Damien and Walker [31] algorithm can be performed. 

2.5 Simulation study 

This section presents a simulation study, which allows to assess the behavior and validity 

of the different proposed models. It also allows to compare their behavior when the data 

are drawn under controlled parameter values. 

Rue and Held [79] present severa! algorithrns to draw GMRF. In this study, a depen­

dent multivariate GMRF is drawn, constrained to sum zero, to be consistent with the theory 
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Real Estimated Dispersion parameter: a 
RF df RF O'~= 1 

Mean Std. Dev. 95% HDP CI MC Error 

Normal 1.178 0.554 (0.475,2.947) 0.028 
10 Std-t 1.182 0.556 (0.455,2.883) 0.029 

Sla.sh 0.980 0.456 (0.397,2.446) 0.000 
Std~t Normal 1.109 0.373 (0.656,2.813) 0.016 

50 Std-t 1.109 0.373 (0.653,2.801) 0.015 
Slash 1.066 0.358 (0.629,2.690) 0.006 

Normal 1.083 0.251 (0.663,1. 768) 0.013 
100 Std-t 1.082 0.250 (0.675,1.756) 0.013 

Slash 1.061 0.246 (0.653,1.735) 0.008 
Normal 1.349 0.468 (0.8270,3.048) 0.117 

10 Std-t 1.354 0.469 (0.8353,3.011) 0.120 
Sla:sh 1.127 0.395 (0.6883,2.615) 0.020 

Slash Normal 1.070 0.193 (0.7092,1.517) 0.012 
50 Std-t 1.071 0.194 (0.7100,1.522) 0.012 

Slash 1.028 0.186 (0.6858,1.456) 0.002 
Normal 0.992 0.179 (0.6596,1.337) 0.000 

100 Std-t 0.991 0.179 (0.6518,1.327) 0.000 
Slash 0.972 0.174 (0.6535,1.300) 0.002 

<7~ 25 
Normal 30.260 16.123 (12.361,111.698) 0.844 

10 Std-t 30.217 16.111 (12.240,110.991) 0.832 
Slash 25.256 13.472 (10.221,92.786) 0.002 

Std-t Normal 26.032 4.551 (15.273,34.252) 0.116 
50 Std-t 25.981 4.564 (15.212,34.174) 0.105 

Slash 25.036 4.390 (14.622,32.912) 0.001 
Normal 25.872 7.083 (15.934,48.969) 0.054 

100 Std-t 25.875 7.040 (16.143,48.737) 0.055 
Slash 25.351 6.907 (15. 748,47. 767) 0.009 

Normal 32.763 13.688 (18.062,117.652) 2.068 
10 Std-t 32.790 13.594 (18.212,114.883) 2.094 

Slash 27.308 11.370 (14.884,97.563) 0.234 
Slash Normal 26.023 4.555 (15.168,34.303) 0.115 

50 Std-t 26.009 4.523 (15.139,34.125) 0.112 
Slash 25.009 4.367 (14.553,32.964) 0.000 

Normal 26.352 4.526 (18.560,37.004) 0.199 
100 Std-t 26.332 4.471 (18.915,36.420) 0.197 

Slash 25.813 4.376 (18.442,35.819) 0.075 

<7~ 100 
Normal 118.519 64.830 (56.323,416.717) 2.619 

10 Std-t 118.481 64.305 (55.887,406.197) 2.628 
Slash 98.942 54.123 (47.890,342.590) 0.011 

Std-t Normal 104.108 20.670 (66.039,155.863) 0.408 
50 Std-t 104.088 20.827 (66.434,157.633) 0.401 

Slash 100.051 19.756 (63.725,148.841) 0.000 
Normal 103.896 26.629 (59.750,168.915) 0.286 

100 Std-t 103.850 26.782 (63.240,172.941) 0.278 
Slash 101.874 26.152 (61.082,169.528) 0.067 

Normal 122.152 35.826 (80.874,274.819) 6.355 
10 Std-t 121.998 35.611 (82.821 ,268.380) 6.305 

Slash 101.728 29.962 (67.263,228.890) 0.050 
Slash Normal 104.191 20.813 (67. 799,157.736) 0.421 

1 50 Std-t 104.078 20.624 (67.017,155.590) 0.403 
1 Slash 100.168 19.979 (64.152,150.602) 0.001 

Normal 104.847 19.024 (68.017,142.582) 0.614 
100 Std-t 104.752 19.008 (67.113,141.934) 0.591 

Slash 102.717 18.593 (66.083,139.261) 0.200 

Table 2.1: Dispersion parameter estimation: Posterior mean, standard deviation, 95% HPD credibility intervals 
for simulations and Monte Cario error 
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exposed in this chapter. Severa! samples were simulated, specifically 100 samples of size 

m = 52 for each model were obtained. The spatial adjacency matrix is based on the Chilean 

Metropolitan region. Each sample coming from one of the studied models will be called 

replication. Estimations for 'ljJ and D".~ were obtained in order to have a wide picture of the 

different values that these parameters can take. 

Here, O"~ is the parameter of interest, because it express the variability of the random 

field. In the next chapter, its estima te will be useful to obtain the percentage of variability 

explained by the spatial component of the model. 

Scenarios for MRF simulations includes: 

• Student-t MRF with v = 10, 50, 100, 

• Slash MRF with v = 10, 50, 100. 

An important aspect is to verify the ability of the model to estimate O"~. Thus, three 

different values for this parameter are taking into account for al! models, O".~ = 1, 25, 100. 

The degrees of freedom parameter v is assumed to be known. This aspect will be discussed 

in the later chapters, under an epidemiological context. 

High posterior density (HDP) credibility interval lengths needs to be considered, that 

is, narrower intervals will be and evidence of a better precision on estimation process, and 

distributions associated to these intervals are potential candidates to be chosen. Posterior 

mean and standard deviation will measure the point estimation for parameters of interest. 

Table 2.1 shows inferences related to the unknown parameter D"~. Specifically, it gives 

the posterior mean, the standard deviation, the 95% HDP credibility interval and the Monte 

Cario (MC) error obtained from the simulated samples. These results show that most of 

the credibility intervals associated to the true model present better estimations, irnproving 

its behavior when SMN RF tends to a GMRF. When the Slash distribution is the target 

distribution, estimation for O"~ present a better behavior for al! O"~, showing better model 

fit in comparison with other proposed MRF. 
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Small degrees of freedom must be treated carefully, because it is possible to find similar 

cases to Cauchy distribution, where first and second moments are not defined; the slash 

distribution present a similar behavior, when this fact occurs. 



Chapter 3 

Robust small area modeling 

3.1 Introduction 

Bayesian spatial models has become increasingly popular for epiderniologists and statisti­

cians over the last two decades. A pioneer work in this direction was developed by Clayton 

and Kaldor [28] who proposed empirical Bayes approach with application to lip cancer data 

in Scotland. MCMC methods yield to an explosive increment of the use of Bayesian ana­

lysis in different areas of application. In particular, in the context of spatial epiderniology, 

severa! works can be mentioned; sorne of the most relevant are commented in the next 

lines. In Ghosh et al. [44], conditions to demonstrate Bayesian GLM integrability are for­

malized. Integrability aspects are importan\ since improper priors [8] are used to represen\ 

lack of knowledge over unknown parameters. Best et al. [16], investigated severa! spatial 

prior distributions, based on MRF theory, and present discussions related to methods for 

model comparison and diagnostics. Pascutto et al. [72] examined sorne structural and func­

tional assumptions of these models and illustrate its sensitivity through the presentation 

of results related to informal sensitivity analysis for prior distributions choices. They also 

explored the effect that cause outlying areas, assuming a Student-t distribution for the non 

structured effect. Gelfand et aL [57], developed nonparametric methodologies, based on 

Dirichlet processes as prior distributions with its respective computational implementation. 

29 
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The works of Best et al. [17] and Waller [89] contain comprehensive reviews. Most com­

mon models used in the area can be found in the books of Banerjee et al. [6] and Lawson [62], 

This chapter shows the development of robust spatial Bayesian models to detect unusual 

rates or relative risks at a particular area. Robust models will be obtained using the SMN 

RF, forma!ized in chapter 2. 

3.2 Spatial generalized linear mixed models 

Assuming that a region of interest is divided into m independent areas, then the probabilis­

tic representation of a GLMM [27] will be structured assuming (L2.1), with general link 

function represented by (L2A). Depending on the focus of the problem and the available 

data, estimation of rates or relative risks, (}, is of interesL Ghosh et al. [44] established 

conditions for a GLMM, including the case when the spatial effect is included in the model, 

proving the existence of a proper posterior distribution under sorne restrictions, such as, eli­

citation of proper prior distributions for dispersion parameters and spatial effects restricted 

to sum zero. Chen et al. [25] developed a more specific methodology based on Bayesian 

GLMM, and characterized sufficient and necessary conditions in arder to make Bayesian 

inference possible, identifying precise conditions that guarantee the posterior distribution 

property. 

Let y= (y¡,.,,, Ym)', a set of m random variables indexed toa specific region. A general 

formulation when a SMN distribution is assumed for spatial random effects, includes the 

following elements: 

L A general model can be specified as in (L2.1), that is, 

m 

f(y/8,</>) = I1 exp{4>i1(y.¡B¡- g(B.;)) + p(4>¡;y;)}, 
i=l 

where 8 = (B1,". , 8,)' is the vector of canonical parameters, </> = ( 4>1 ,,", 4>,)' is a 

vector of known scale parameters and p is a known function that does not depend on 

the unknown parameters. 



31 

2. An associated link function represented by (1.2.4) can be considered, that is 

h(Bi)lx¡,¡3,u¡ i;!j Normal(x';¡3+ui,(]'2), 

where X¡ is a p x 1 vector of covariates associated to a p x 1 vector of fixed effects 

¡3, and u¡ 's are spatially structured random effects. (]' 2 measures the non-structured 

variability. 

3. Let u follow a SMN RF, in the sense of (2.3.3), the spatial behavior is represented by, 

ui(J'~ ~ SMN (o,(]'~D,;; 1 , v), (3.2.1) 

where (]'~ is the associated dispersion parameter, Dw is the adjacency matrix defined 

in (2.3.2) and v are the degrees of freedom. 

Equivalent to (3.2.1), an stochastic representation can be specified as follows, 

a. ui.,P,(J'~ ~Normal (o,..¡,- 1 (]'.~D,;; 1 ), (3.2.2) 

b. ..P ~ P,¡,, where P,¡, is an cumulative density function such as P,¡,(O) =O, 

where ..¡, is considered as a hidden parameter to reproduce SMN distributions. 

In the literature, it is recurrent to find that the spatial random effect in (3.2.1), is influ­

enced by a predefined neighborhood represented by the adjacency matrix Dw, controlling 

the local variability. Hence, the spatial random effect mean and dispersion are smoothed 

by the information given by its neighbors. The robust construction exposed here is attrac­

tive due to the existence of unusual zeros and/or the complex geographic structure of the 

country in which the application is of interest. 

Instead of working with the usual assumption of normality for the random effect, (3.2.1) 

allows the extension to robust models for the random effects, using the Student-t distribu­

tion treated by Geweke [43] and the slash distribution proposed by Lange and Sinscheimer 

[60]. From a Bayesian point of view, constructions of (3.2.1) through the representation in 
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(3.2.2) seems to be a natural step of the analysis, allowing for the immediate Gibbs imple­

mentation. 

Properties and conditions for the existence of posterior moments when SMN densities 

(2.2.2) are considered, were developed by Fernandez and Steel [39] in a general context, 

through the different SMN representations, with econometric and financia] applications. In 

the spatial framework, Laplace and double exponential distributions [11] has been proposed 

as parametric robust alternatives. Datta and Lahiri [32] focused on Bayesian estimation 

with a prior scale mixture distribution, for the error component in a normal linear model, to 

smooth small area means when one or more outliers are present in the data. If the focus is 

nonparametric small area analysis Knorr-Held and Railer [56], Cangnon and Clayton ([21], 

[22]) and Gelfand et al. [57], developed techniques and models to estimate relative risks. 

As a final step of the modeling, prior distributions are required for the unknown pa­

rameters to complete the hierarchical model. Usual non informative prior distributions are 

represented by 

i. (3 ex constant 

ii. o--2 ~ Gamma(a/2, b/2) 

iii. o-;;2 ~ Gamma(c/2, d/2), 

(3.2.3) 

where (3 E JRP and a, b, e, d > O. o-2 and o-~ represents dispersion parameters included in the 

model. o-~ is the local dispersion parameter related to a specific spatial structure. Other 

useful measure in spatial models is the computation of the proportion or percentage of 

spatial aggregation explained by the model, which is usually estimated by the ratio, 

s2 
u 

S.~+ (J2' 

where s~ is the empirical variance, which can be obtained from the estimation of u 

for each MCMC iteration. The interpretation is related to obtain the relative contribution 

given by the spatial aggregation effect. 

Under the model (1.2.1), link function (1.2.4) and prior assumption (3.2.3), theorems 1 
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and 2 of the work developed by Ghosh et al. [44], give the conditions to obtain a proper 

posterior distribution for 8jy when P('lj; = 1) =l. Following both theorems, it is possible 

to find a generalization towards the SMN case. The next proposition gives conditions when 

non-structured random effects are assumed. 

Proposition 3.2.1. Under the following assumptions: 

i. The support of 8; E(&_¡, B;), for some -oo <&_;<e,< oo. 

ii. m- p+a >O 

iii. b >O, d >O, m+ e> O 

. , iidN l(O •1,-1 2 ) . l zv. Ui s rv arma , 'f'·i a u , ~ = , ... , m. 

v. 1/;; '.!3 P,¡, i = 1, ... , m, such that P~(O) =O. 

If 

l' exp{</>i1(y;8- g(8))}h'(8)d8 < oo, 
ft.i 

lfi = 1, ... , m, then 1r(8jy) is proper. 

Proof. The fui! joint posterior distribution present the following structure, 

7r(8,¡3, U,0';,,.2,1/;Iy) <X n;:, exp{ 4>i1(y;8;- g(8;))} 

X m,:,l exp{ -(1/2<72)(h(8;)- x:¡3- U;) 2}h'(8;) 

X n;:, exp{ -(1j;;/20'~)uT}1j;JI2 (0'20';;J-1/2 

x exp{ -a/2,.;}(,.2)-(b/2+1) exp{ -c/2,.2}(,.;)-(d/2+1)p~,, 

where P~ represent the density function of 'lj;. Integrating with respect to ¡3, <72 and ,.~, the 

kernel reduce to, 

7r(8, u, 1/Jiy) <X rr;:, exp{<f>i1(y;8;- g(8;))}h'(8;) 

X n::,1/JJ/2(a + 1/J;uJ)l/2(m+b)p~, 

Notice that this last result is the product of m Student-t kernels. This fact Jet to 

integrate over u E lftm, producing the following result, 



K(O, 1/Jiy):::; crr;:1 exp{</>i1(y;&;- g(B;))}h'(B;) 

rrm P' 
X i=l '1./J' 
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where e is a constant that does not depend on e or any of the parameters previously 

integrated. Finally, integration over 1/J leads to the desirable result. D 

In a spatial framework the treatment is different. The random effects u must verify the 

MRF properties, which implies to specify the same 1/J;, Vi= 1, ... , m. The next proposition 

extend the previous results, when the spatial random effect follow a SMN RF. 

Proposition 3.2.2. Under the following assumptions: 

i. The support of 8; E (f/.;,0;), for some -oo < f/.; <O;< oo. 

ii. m-p+a-1>0 

iii. b> O, d> O, m+c> O 

iv. u; 's distributed as (2.3.3) and constrained to sum zero. 

V. 1/J1 = 1/J2 = ... = 1/Jm = 1/J ~ P,p, with IE(,P112
) < oo. 

If the condition of integrability in the proposition 3.2.1 is verified then 1r(Oiy) is proper. 

Proof. The full joint posterior distribution is specified as follows, 

1r(e, (3, u, 0';, 0'2, 1/JIY) cx rr:,l exp{ </>i1(y,e,- g(8;))}h'(8¡) 

X fl;:!,1 exp{ -(1/20'2)(h(B;) - xif3- u;) 2
} 

x exp{ -(1/J/20"z,)u' Dwu} 

x,prn/2( 0'20'~)-m/2 exp{ -a/20'~} 

x (0'2)-(b/2+1) exp{ -c/20'2}( 0'~)-(d/2+1) P,¡,, 

where P~ represent the density function of 1/J. Integrating with respect to (3, 0'2 and 0';, the 

following joint distribution is obtained, 

1r(O, u,1/JIY) cx fl;:!, 1 exp{q\i1(y;8;- g(8;))}h'(8;) 

x,pm/2(a + ,Pu' Dwu)l/2(m+b) P~. 
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N atice that under sum zero constraint condition, the last function in the above relation 

correspond to a m- 1 Student-t kernel. Thus, integration on u is performed over IRm-l, 

giving the following result, 

7r(8, 7/;]y) :o; e TIZ:, 1 exp{ 4>i1(y;8; - g(B;))}h' ( 8;) 

X"''!/2 P' 
'1' "' 

with e, constant which not include any of the parameters previously mentioned. As 

J~ec(,P) 7f; 112dP,p < oo, then the result is obtained. o 

3.3 Markov chain Monte Cario schemes 

When a hierarchical model is considered, the MCMC implementation requires the specifi­

cation of full conditionals distributions. In this case, the implementation will depend on 

the choice of the hidden parameters. Analysis is treated separately, depending on random 

effects specification, given by Propositions 3.2.1 and 3.2.2. 

The analytic problems that Bayesian models present has been widely discussed in the 

literature. MCMC methods has become the best solution to make inference. Gibbs sam­

pling ([23], [42]) , Metropolis Hastings [26] and adaptive rejection [45] algorithms are the 

most discussed choices ([70], [69], [44], among others) in the context of GLM for small area 

analysis. 

In arder to obtain general expressions for the computational treatment of this model, 

the following matrix representations will be used for the implementation purposes, 

h(B) = (h(B¡), ... , h(Bm))' 

f3 = ((h,/h ' .. ,/3p)' 

and X= [xi],i = 1, ... ,m; k= 1, ... ,p, defines an arbitrary design matrix. 
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3.3.1 Non-structured random effects 

Consider the model (1.2.1), link function (3.2.1), stochastic representations given by (2.4.1)­

(2.4.2) or (2.4.3)-(2.4.4) when Dw =In, and independent prior distributions for {3, o- 2
, and 

o-; given by 3.2.3. Fui! conditional distributions, under the above assumptions and Propo­

sition 2.3.1 when a non spatial structure is considered, is described by the algorithm IIL 

Algorithm III. [Non spatial dependence] 

l. f'JIX,o-2 ,u~Normal(p,a-2 (X'X)-1 ) where, 

p = (X'X)-1X'(h(8)- u) 

2. uii8,X,j3,a2 ,a~,~i"" Normal(¡if,vi) where, 

1-'f = (h(B,)- x;,B)vr and vr = ( ;i +o-~)_, 
3. o--2 ¡8,{3,X, u, c,d ~ Gamma(a',b') where, 

1 . 1 
a'=- [m+ a] and b' =- [(h(l'l)- X'f'J- u)1(h(8)- X'{'J- u)+ b] 

2 2 

4. o-~2 1u,c,d,7,b I"..J Gamma(c*,d*) where, 

, m+c 1 2 

(
m ) e = -- and d' =- LV;iu¡ +d 

2 2 i~l 

5. Two different scenarios can be obtained for the hidden parameters 1/J¡, i = 1, ... , m, 

depending on the dependence structure initially adopted. Therefore, the full condi­

tionals for this parameter can be expressed by one of the following specifications: 

• Independent random effects: 

5a. if the mixing distribution is 7/J¡ ~ Gamma(v/2, v/2), i = 1, ... , m, then 

1/J¡fu,o-~, v ~Gamma (~(v + 1), ~ (u7 + o-~v)). 
2 2o-u 



5b. if the mixing distribution is 1/J¡ ~ Beta(v /2, 1), i = 1, ... , m, then 

1/1;/u, u;, v ~Gamma G(v + 1), 2~~ (uf)) 1(0,1)("\b¡). 

o Non correlated random effects: 

5a.' if the mixing distribution is 1/J ~ Gamma(v /2, v/2), i = 1, ... , m, then 

1/!Ju, u~, v ~Gamma (~(v +m), -;.u' u+ v), 
2 2uu 

5b.' if the mixing distribution is 1/J ~ Beta(v/2, 1), i = 1, ... , m, then 

>f;Ju, u~, v ~Gamma (~(v +m), -;.u' u) 1(o.1)(VJ). 
2 2uu 

6. 1r(B;]y, ,13, X, u 2 , u) ex h'(B;) exp{ q)j 1 (y;B; + 1/l(B;) - !(h(B;) - x;,13- u;J2)} 

3.3.2 Spatially-structured random effects 
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The main interest is focussed in establishing a robust parametric spatial random effect. 

Consider the model (1.2.1) with associated link function (3.2.1), stochastic representation 

(3.2.2) and independent prior distributions given by (3.2.3). Based on these assumptions 

and recalling the Proposition 3.2.2, the fu!! conditional distributions for this case differs 

from the last specifications on the distributions of u, u~ and 1/J, which structure is replaced. 

The next algorithm present the fu!! conditional distributions for this particular model. 

Algorithm IV. [Spatially correlated] 

1. ,13JX, u 2 , u ~ N armal(Í3, u2 (X'X)-1) where, 

Í3 = (X'X)- 1X'(h(8)- u) 

2. ui!(),X,{J,u2 ,a.~,'lj;,u_i rv Normal(Jtf,vi) where, 

( ) 

-1 
u (h(B;)- x;J3) 1/1 u u 1/1 1 

Jl; = ( 2 + 21til-i) V¡ and V¡ = - 2- + 2 , 
O' (J'u O"i]-·i O' 

where, ltil-i and u~-i are the location and dispersion parameter given in (2.3.6). 
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3. o--2 ¡0,¡3, X, u, e, d rv Gamma( a*, b*) where, 

1 1 
a* = 2 [m+ a] and b* = 2 [ (h( 8) -X' ,6- u)' (h( 8) - X' ,6 - u) +b] 

4. 0",;- 2 ¡u,1,b,c,d ~ Gamma(c*,d*) where, 

e*= m;c andd*=~(1,b(u'Dwu)+d). 

5. In this case, mixing distribution is common Vi = 1, ... , m, according to Proposition 

3.2.2, thus, 

5a.' ifjb ~ Gamma(v/2,v/2), then 

1,blu, O".~, v ~Gamma (~(v +m), ~(u'Dwu) + v) 
2 20"u 

5b.' ifjb ~ Beta(v/2,1), then 

,¡,¡u, O"~, v ~Gamma G(v +m), 
2
!
3 

(u' Dwu)) lco.l)(jb) 

6. 1r(8iiY, ,6, X, 0"
2

, u) oc h'(&i) exp{ 1>i1 (yi&d 1,&( ei) - ~(h( &;) - x;,a - ui) 2) }. 

MCMC scheme maintains its routines as in the subsection 3.3.1. Nandram et al. [70] dis­

cussed computational details such as the construction of proposal densities for the Metropo­

lis Hastings sampler, when fu!! posterior distributions for the Gibbs sampler do not exhibit 

closed forms. Software as WINBUGS [85], through its Geobugs library, has facilitated the 

computational treatment of a great variety of hierarchical models, including the GLMM 

spatial models. 

3.4 Simulation Study 

Simulation study present similar characteristics as in chapter 2. Severa! additional stages 

will be considered to complete the spatial model. The steps of this study are reviewed in 

the next points. 

l. Dispersion parameters 0"2 and O";; will be assurned known. Without lost of generality, 

the equal geographical infiuence assumption will be considered, when 0"
2 = O".~ = l. 
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Real Fitted Proportion of spatial variability 
MRF MRF 

Mean Std. Dev. 95% HPD CI MC Error 
Slash(5) 0.656 0.0328 (0.608,0.746) 0.160 

Slash(10) Slash(10) 0.622 0.0284 (0.541,0.671) 0.126 
Slash(50) 0.476 0.0232 (0.421,0.520) 0.034 
Normal 0.474 0.0214 (0.406,0.509) 0.034 

Student-t(5) 0.659 0.0257 (0.574,0.703) 0.243 
Student-t(lO) Student-t(IO) 0.623 0.0310 (0.553,0.678) 0.280 

Student-t(50) 0.490 0.0245 (0.454,0.562) 0.026 
L_ Normal 0.475 0.0193 (0.444,0.531) 0.032 

Table 3.1: Proportion of spatial variability estimations: Posterior mean, standard deviation, 95% HPD credibility 
intervals and Monte Carla error 

2. A zero mean Gaussian distribution is considered for the non structured random effect 

V. 

3. Three different SMN-RF will be assumed for the spatial random effect u, normal, 

Student-t and slash. For the last two densities, the related degree of freedom is 

v = 10. Adjacency matrix associated to the Chilean Metropolitan region is used to 

perform the simulations. 

4. Finally, given {3 = O, u and v, simulated data will be generated assuming a Poisson 

distribution. 

The proportion of spatial variability inference is of interest in spatial models. Most fitted 

models gave similar results for each simulated scenario. Therefore, just simulated results 

related to the slash and Student-t, both with ten degrees of freedom, fit are presented in 

table 3.1. From the table, while the degrees of freedom increase, it is possible to appreciate 

a monotonic decreasing behavior in the posterior mean of the proportion of spatial variabi­

lity. Similar trends could be observed when a Student-t MRF or a slash MRF is assumed. 

This downward trend suggests that a SMN RF should be appropriate in arder to give more 

importance to the spatial aggregation effect, instead of obtaining smoothed estimations. 

The proposed models are i!lustrated by using two real data sets, in the context of 

epiderniological applications. 



Chapter 4 

Applications 

The aim of this work is to apply robust spatial Bayesian model developed in Chapter 3 

to detect unusual high relative risks or disease rates in Chilean communes. Using data 

associated to IDDM incidence rates in Metropolitan region and female lung, trachea and 

bronchi cancer SMR in the country's northern zone, an exploratory analysis was performed 

in Chapter l. 

Studies related to incidence rates for diseases like childhood diabetes and cancer have 

not been studied extensively in the spatial context in Chilean population. Results of robust 

spatial Bayesian modeling related to both disease are presented in the next sections. 

4.1 Insulin dependent diabetes mellitus incidence, Metropoli-

tan Region, Chile 

Spatial behavior of IDDM has been studied through Bayesian perspective in di verse popula­

tions, sucb as the Sardinia Island, Italy ([7], [24], [83]), Sweden [81], Norway [52] or Finland 

[80]. In these countries, IDDM is of a particular importance, due to their incidence rates 

are higher than in the rest of the world and the trend has been increasing. 

Torres et al. [86] show an aggregation of incident rates in space coordinates for urban 

40 
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L_~ __ TC::aussian MRF 1 Student-t MRF 1 Slash MRF 1 

f3o -9.721 (0.004) -9.760 (0.006) -9.752 (0.002) 
(-9.844,-9.634) (-9.876,-9.631) (-9.841,-9.656) 

¡¡¡: 0.346 (0.013) 0.291 (0.016) 0.275 (0.014) 
(0.162,0.574) (0.089,0.537) (0.090,0.507) 

(J''L 
u 0.230 (0.016) 0.071 (0.001) 0.067 (0.001) 

(0.102,0.547) (0.035,0.117) (0.032,0.112) 
% Spatial 0.441 (0.011) 0.537 (0.0114) 0.546 (0.012) 
Variability (0.242,0.649) (0.332,0.749) (0.338,0.749) 

V - 10.475 (16.482) 7.346 (6.226) 
- (3.958,18.277) (3.038,12.389) 

Table 4.1: Posterior mean, standard deviation and 95% HPD credibility intervals for unknown parameters when a 
Gaussian MRF, Student-t MRF and Slash MRF are assumed. 

~-- T · me 1 BIC 1 Preciictive (G&G} J 
Model Dbar 1 pD 

Gaussian 846.778 1151.067 13240.408 
534.886 1 311.892 

Student-t 852.687 1160.315 13335.069 
537.371 1 315.315 

Slash 836.498 1136.405 13301.901 
529.097 1 307.401 

Table 4.2: IDDM model selection criteria, DIO, BIC and predictive check. 

areas of Metropolitan region, using Bayesian methodology proposed by Mollie ([67], [68]). 

Robust Bayesian models proposed in chapter 3 were applied to this problem. Posterior 

estimations are obtained from a single run ofthe Gibbs sampler, with a burn-in of 1,000 ite­

rations followed by 10,000 further cycles. Convergence have been checked through trace and 

autocorrelation plots. Inference over unknown parameters are displayed in table 4.1, when 

GMRF, Student-t MRF and Slash MRF are assumed to control spatial variability. It is 

possible to appreciate that similar values are estimated for (30 and 0'
2

, under the three MRF 
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Figure 4.1: IDDM incidence rate (IR) variability: Raw estimates, Mollié's convolution model (Gaussian MRF), 
Student-t convolution model (Student-t MRF) and Slash convolution model (Slash MRF). 

models. In contrast, <T~ present different values, depending on the distribution assumed for 

the MRF. The robust model (Slash MRF) increase the degree of spatial aggregation from 

44.1 % to 54.6 %, that is, the excess of spatial variability presented in this data seems mostly 

dueto clustering effect. As it is mentioned in Banerjee et al. ([6], p. 166), differences could 

exist in this quautity, when other prior distributions are considered. By the other hand, 

even when degrees of freedom were not included as au additional stage on modeling step, 

inference over this parameter is considered. N atice that estimated degrees of freedom are 

small, which implies that the excess of variability is better captured by one of the SMN RF 

model. 

In figure 4.1 it is possible to appreciate that fully Bayesian estimates of IDDM incidence 

rates show less variation than raw incidence rate. The three Bayesiau variation plots seems 

to have a similar behavior, due to the presence of severa] communes with high incidence 

rates, which are considered as outliers. The main difference, in comparison to the raw IDDM 
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Figure 4.2: IDDM inddenc.:e rate: a} Raw incidence rate. b) Mollié's convolution model (Gaussian MRF). e) 
Student-t convolution model (Student-t MRF). d) Slash convolution model (Slash MRF). 

incidence rate, is that commune Las Condes is added in that extreme group by the three 

models, The Normal MRF assumption lead to estimate smoother rates, however, Student-t 

and Slash MRF's present slight differences of variability. That difference let to control the 

excess of smoothness, i.e., robust shrinkage gives a more adequate estimate of the pattern 

of underlying risk of disease than that provided by the Mollie's convolution estimates. 

Model selection criteria results are presented in table 4.2. According to goodness of fit 

criteria mentioned in chapter 1, small values implies better adjustment. Therefore, spatial 

model that includes Slash random effects with 7 d.f is a strong candidate to model geo­

graphical dependence. 

High incidence estirnates remains on cornrnunes with high socioeconornic leve!, such as 

Vitacura and Providencia, for the four maps. Even more, on those cornrnunes this excess 

is estimated assurning any of the proposed Bayesian models. Spatial distribution of IDDM 

incidence rates Bayesian estimates can be observed in figure 4.2. Slight differences can be 

observed between results when Slash MRF (d) and Student-t MRF (e) rnodels are assumed. 
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1 @aussian MRF \ Student-t MRF \ Slash MRF 1 

f3o -0.348 (0.001) -0.372 (0.001) -0.391 (0.001) 
(-0.409,-0.300) (-0.441,-0.313) (-0.425,-0.331) 

O'" 0.092 (0.0003) 0.087 (0.0004) 0.085 (0.0003) 
(0.060,0.129) (0.054,0.128) (0.055,0.128) 

O'~ 0.197 (0.001) 0.203 (0.001) 0.203 (0.001) 
(0.153,0.238) (0.150,0.253) (0.153,0.244) 

% Spatial 0.770 (0.001) 0.788 (0.001) 0.788 (0.002) 
Variabi!ity (0.708,0.841) (0.740,0.848) (0.715,0.863) 

V - 26.406 (116.944) 32.049 (87.516) 
- (15.742,53.499) (15.585,50.462) 

Table 4.3: Posterior mean, standard deviation and 95% HPD credibility intervals for unknown parameters when a 
Gaussian MRF, Student-t MRF and Slash MRF are assumed. 

4.2 Female trachea, bronchi and lung cancer mortality, Chilean 

northern regions 

Several applications applied Bayesian methods to estimate relative risks in small-areas to 

cancer mortality data can be found in the literature, for example, Ghosh et al. [44], Giuducci 

et al. [46], Pacutto et al. [72], and Mollie ([68], [67]). 

In this work, the application is related to the estimation of female lung, bronchi and 

trachea cancer mortality relative risks in the northern of Chile. The problem arises when 

Mollie's model estimates for women cancer mortality risks were too smooth and high on 

communes where zero cases were observed. Posterior summaries were based on a single 

sample of the Gibbs sampler, with 10,000 iterations after discarding 1,000-iteration (burn­

in). Convergence ha ve been checked via an informal assessment of trace and autocorrelation 

plots. 

SMR and model estimations variability are shown in figure 4.3. Estimation variability 

is reduced when any of the Bayesian models is considered. 



1 1 Die-~·~ BIC 1 Predictive (G&G)l 
Mojel _ Dbar 1 pD _ 

Gaussian 4821.381 8187.896 381675.00 
3064.272 1 1757.108 

Student-t 4805.212 8152.110 381671.59 
3058.344 1 1746.869 

Slash 4792.151 8125.845 381950.00 
3052.174J 1739.977 

Table 4.4: Cancer mortality model selection criteria, DIC, BIC and predictive check. 
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Figure 4.3: SMR Rate variability: Raw rate, Mollié's convolution model (Gaussian MRF), Student-t convolution 
model (Student-t MRF) and Slash convolution model (Slash MRF). 
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Figure 4.4: Female lung, trachea and bronchi cancer SMR: a) Standardized mortality ratio (SMR). b) Mollié's 
convolution model. e) Student-t convolution model (Student-t MRF). d) Slash convolution model (Slash MRF). 

Figure 4.4 displays the cancer mortality relative risk estimation using three different roo­

deis, with Mollie's convolution model (b), Student-t MRF (e) and Slash MRF (d) as spatial 

random effects. Models were tested and the best fit was selected among the three different 

proposed spatial structures. Table 4.4 selected the Slash spatial random effect with appro­

ximately 32 degrees of freedom. The degrees of freedom were estimated assuming a proper 

non informative prior; see table 4.3 to check the estimates. One important result is referred 

to the 79% estimated proportion of spatial variability. N otice that this proportion is almost 

the same for the three proposed models. This could be related to the estimated degrees of 

freedom. 

Although the selected Slash MRF model presented better rates adjustment, notice that 

the predictive criteria points out to select the model with Student-t MRF spatial random 

effect. Therefore, from figure 4.4( d) it is possible to appreciate that the first and darkest 

area in the extreme north, the most populated commune (Arica) in that region, presents the 

highest rates in comparison with its closer neighbors. It was not possible to reduce the effect 

produced by the larger areas in the next darkest zones; these ones corresponds to Tarapacá 

and Antofagasta regions, which are placed in the Atacama Desert. The over-smoothing 

effect lead to flat true variations in risk, even by the selected model. 



Chapter 5 

Identifiability issues 

5.1 About identifiability and Bayesian learning 

Let consider the model (1.2.1), general link function (1.2.4) and prior distributions (2.3.3) 

and (3.2.3). Taking into account that in the spatial hierarchical model considered in this 

work, only the sum of two sets of random effects (u + v) are identified by the data, a 

Bayesian identification study of one of the parameters is proposed. 

Identifiability has been an important issue to consider when frequentist modeling has 

been applied. This concept measures the ability of data to estímate parameters of interest. 

Bunke and Bunke's [20] definition essentially says that two distinct values of an identifiable 

parametric 6mction should always lead to different !ikelihoods of the observation. Rothen­

berg [78] give general conditions when identification is the point of interest, which are based 

on Fisher's information matrix. An important result for exponential family of distributions 

is given in this paper, related to the existence of a non singular information matrix for the 

likelihood in discussion. 

Kadane [53] treats identification and defines frecuentist point of view as follows. 

Definition 5.1.1. A parameter space e is identified if and only if, given two parameters 

8, 8' E e, such that, 
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Pe(A) = Pe,(A), A E B(IR), 

then, e = O'. The converse is also true. 

A definition for identification of functions, as a generalization of the notion of identifica­

tion in definition 5.1.1 is presented. This last extension is useful to characterize identification 

in sufficient statistics theory. On the other hand, Bayesian results are based on expressions 

that represen\ optirnal statistical decision when the experirnent is observed in two stages, 

pre and post experiment. Necessary conditions rnust be satisfied in order to reach Bayesian 

identifiability, such as, the existence of prior distributions over the parameter space to gua­

rantee positiveness on the difference between prior and posterior expected utility functions. 

Bayesian identifiability is also discussed and defined by Dawid [33], who defined it as the 

ability of posterior distribution to be updated by the available data, as a result of conditional 

independence. He recalls sufficiency definition, arguing that a sufficient parameter, which 

is directly related to sufficient statistics, is an identified parameter in the sense that no ad­

ditional information is necessary, when a sarnple is observed. Forrnally, Jet y= (y,, ... , Yn) 

be observed data and 8 = (e,, 82 ) a vector of parameters, assurning the existence of a prior 

distribution for 8, 82 will be non-identified by observed data y if 

1r(e2¡e,,y) = 7r(e2¡e,). 

Under this intuitive definition, severa! parameters written in hierarchy can not be iden­

tified in the rnodel. Even more, conditions based on conditional and prior independence 

over a pararneter space, characterize Bayesian non-identifiability for sorne specific rnodels. 

Non-identifiable pararneters are frequently treated as auxiliary parameters in construction 

of stochastic representations. The latter is just one way to represen\ uncertainty over pa­

rameters of interest instead of making fixed assumptions over them. 

Last decade, Poirier [75] and Gelfand and Sahu [41], provided general definitions, results 

and conditions to preserve identifiability in certain class of rnodels. In sorne cases, reparam­

eterizations can alleviate this kind of problems. They agree with the fact that identifiability 
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is not an importan\ issue to consider in Bayesian theory, because unbiased estimation is not 

of main interest; even more, Poirier [75] argues that a Bayesian analysis is always possible 

when prior distributions present proper or integrability properties. By the other hand and 

under the same Poirier's ideas, Gelfand and Sahu [41] discussed and establish conditions 

when generalized linear rnodels are considered to make inferences, due to the evident iden­

tifiability problems that this class present. 

Ghosh et al. [44] treated an identifiable version of the convolution spatial rnodel [68], 

presenting conditions and results of integrability when non inforrnative prior distributions 

are assumed. N ow, instead of deterrnining the existence of identifiability, measure the 

Bayesian learning in the sense of Xie and Carlin [94] is of interest. They exposed two ways 

of measuring it, instead of justify lack of identifiability. In this context, Kullback Leibler 

(KL) divergence ·and precision measurements are proposed in order to determine the cost 

of introducing data information after a prior belief is specified. One result in the spatial 

scenario is presented, in the forrn of the convolution rnodel, assuming norrnality over the 

areas. 

Two rneasurements are treated in this chapter, cornparing the amount of information 

lost if a prior distribution for sorne specific set ofparameters (non-identifiable) is considered, 

exploring results when generalized linear models are assumed and presenting specific results 

for a spatial discrete rnodel. 

5.1.1 Information measures 

Initially, two procedures based on Vidal et al. [87] and Xie and Carlin's [94] are considered. 

Two difieren\ alternatives to measure Bayesian learning are specified under assumptions of 

non normality; therefore, sorne necessary elements will be exposed in the next lines. 

Definition 5.1.2. Bayesian non information are related to the following fact interpreta-

tions. 

• 1r(82]81,y) = 1r(82J81) when y is conditionally uninformative for 82, given 81 , and, 



• 1r(02!Yl = 1r(02) when y is marginally uninformative for 82. 

Let re-define the following expressions as, 

Prior distribution 

Posterior distribution 

Po= 1r(02), 

p, = 1r(02IY), 

Fui! Posterior distribution P2 = 1r(02¡e,). 
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(5.1.1) 

Two usual information measures to make the analysis are L 1 distance ([73], [90]) and 

KL divergence [58]. These quantities will allow the quantification of gained knowledge, 

when data y was observed. So, Bayesian learning process will depend on the results when 

full conditional, posterior and prior distributions for the "non-identifiable parameter" are 

compared. Both discrepancy measures will depend on the structure of distributions earlier 

mentioned. 

In this work the study will be applied to the spatial model discussed in chapter three. 

Given data y, associated likelihood function and prior distributions are represented by 

L(01,02;y) and 1r(01 ,02) respectively. Under the latter specification, it is possible to ob­

tain complete posterior for 82, 1r(02¡e,,y), and its posterior distribution 1r(02IY). 

Two variations in the model (1.2.1), link function (3.2.1), prior distributions (3.2.3) and 

SMN RF (3.2.2) must be taken into account, 

l. Link function (3.2.1) re-parametrization, has the form, 

'd ( 0'2 ) rJ=u+v, where7J!v,'lj;,{)~ 1~ N v, ;n;/ (5.1.2) 

vl0'2,¡3 i;;j N(x'¡3,0'2I). 

Therefore, in this work v is the set of non identifiable parameters. 

2. Without loss of generality, fixed dispersion parameters 0'2, O'~ and structural parameter 

vector ¡3 = O are assumed. 
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3. A positive P,p c.d.f. is assumed for 1/J. 

After sorne algebra.ic manipulations and tinder re-parameterized spatial model recently 

described it is possible to obtain the following proposition. 

Proposition 5.1.1. If model (1.2.1), hierarchical parametrization (5.1.2) and independent 

prior distributions given by (3.2.3) are assumed, then Po = ?r(v), P1 = ?r(viy) and P2 = 

?r(vi1J) have the following forms, 

Po = N(O, D"
2l) (5.1.3) 

P1 = kee'l] exp{(</>0y)
1
1]-qlg(1J)}h

1
(1J) ['' N'l] (v, ~D;;; 1 ) dP,pd'l] 

xNv(O, D"
2I), (5.1.4) 

P2 = l" N(f-'v, 'Ev)dP,, = SMN(f-tv, 'Ev, v), (5.1.5) 

with 

1-'v = '1' [!rnw] ~v and [ 
,p 1 l-1 ~v= ~Dw+~I , 

where, </>= (¡p¡l, ... ,<P-;;1) are known dispersionparameters, g(1J) = (g(1J1), ... ,g(1Jn)) is a 

set of functions for the linear link and the operator a 0 b indicates the elementwise product 

between m x 1 vectors a and b. 

These distributions will be useful to obta.in the required learning measurements. Math­

ematical expressions (5.1.4) and (5.1.5) can be approximated using Monte Carla integration 

techniques. 

Remark 5.1.1. Under definition 5.1.2, it is possible to show that random vector y is 

conditionally uninformative for v given 1]; however, according to expression (5.1.4), y is 

marginally informative for v. 
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Figure 5.1: Expectation (5.1.4) vs y for (a) Poisson model and (b) Bernoulli model. 
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Remark 5.1.2. One more condition must satisfy (5.1.4) related to the existence of lE((</> 0 

y)'r¡- </>'g(r¡)}h'(r¡)). In the context of exponential family, there is no limitation with this 

fact. 

Two special cases are of special interest. The following examples show sorne reduced 

forms for (5.1.4). 

Example 5.1 Considera random vector y following a Poisson distribution with lE(y,) = 

exp(?J.¡). Then, it is known from exponential family theory that g(?J¡) = exp(?J.¡) and </>¡ = 1, 

i = 1, ... , n, then (5.1.4) can be re written as, 

where, 

11'(vly) ex lEr¡·(exp{(y -l)'r¡- exp(r¡)}lv) x N(O,o-21) 

r¡* ~ SM N (v ,-~ n-1) 
J 'ljJ w 



53 

Example 5.2 Consider a random vector y following a Bernoulli distribution with 

JE(y¡) = 1 ::~~(~,). In this case, g(r¡¡) = log(1 + exp(r¡¡)) and rp¡ = 1, Vi = 1, ... , n; un­

. der this conditions, (5.1.4) can be expressed by, 

1r( v¡y) ex lE,.r ( exp{ (y- 1)' 'T) + log(1 + exp( -'T)))}Iv) x Nv(O, <T
2I) 

with '7* distributed as in example 4.1. 

Figure 5.1 shows the expectation behavior for probability functions (5.1.4), in the País­

son (example 5.1) and Bernoulli (example 5.2) case, when 1f('7iv) is equivalent toa standard 

normal distribution. The importance of these plots is related to their positive behavior, as 

part of a distribution function. Even more, these expressions could include the normaliza­

tion constant. 

On the other hand, notice that this class of models keep the initial SMN distributions 

properties. A particular case is exposed in the next corollary. 

Corollary 5.1.2. Jjlf'(,P = 1) = 1, then probabilistic expressions for P1 in {5.1.4} and P2 

in (5.1.5} are reduced to, 

with 

P1 = / exp{(<j>0y)''7- rp'g('T))}h1('1)N'T) (v,<T~D;;; 1 )d'1 x Nv(O,<T2l), 
J RecT} 

P2 = N(Jtv, ¿;v), 

Jtv = '71 [kDw] ¿;v and [ 
1 1 l-1 

Ev= U[Dw+~l , 

where, Jtv and ¿;v remains as the previous location and dispersion parameters in Propo-

sitian 5.1.1. 



54 

5.1.2 L 1 distance measure 

Vida! et al. [87] analyze what they called local sensitivity, when a specific parameter for 

skewness is considered or not. They compare this discrepancy through L1 distance ([73], 

[90]) between two proposed models, and measures the maximum discrepancy between them. 

This q-divergence measure is considered in Arellano-Valle et al. [4] in order to quantify 

data influence in posterior distributions, when elliptical regression models are considered. 

L 1 distance between two models f and g can be defined by, 

L¡(f, g) = -
2

1 j lf(x)- g(x)ldx = sup lll'(Aif) -l!'(Aig)l, 
AEB 

where B represents Borel's sets and l!'(Aif) denotes the probability measure defined by the 

density f. Therefore, distance L 1 Jet measure the maximum discrepancy between specific 

models f and g. More detailed interpretations can be found in Vida! et al. [87] and refer­

ences therein. 

Taking this idea, learning differences can be obtained using differences between distri­

butions in proposition 5.1.1, in order to measure sensitive elements to decide how much can 

be learnt about the set of unidentifiable parameters, once y has been observed. 

Proposition 5.1.3. For any fixed o-2 ando-.~, L1 distances between distributions {5.1.3), 

{5.1.4) and {5.1.5} specified in Proposition 5.1.1 are, 

L¡(J12,Po) = e (sign(1Ji) [~- ( ?r(v;ll)¡)dv¡] ;i = 1, ... ,m) (5.1.6) 
2 }¡-oo,O]• 

L¡(p2,p¡) = ~ ( Nv(O, o-2)1?r(7Jiv)- KIE17[exp{(</> ® y)'17- </>'g(1J)}h'('1)1v]ldv, (5.1.7) 
)¡-oo,ooJn 

where, 7Jiv ~ rr(7Jiv) = SMN(v, o-.~D:;}, v), K= f(y)- 1 ande is an appropriate function 

that captures the joint behavior from each marginal element of L¡(p2,Po). 

Proof. Proof of proposition 5.1.1 is oriented to show the reduced expression obtained for 

(5.1.6). The symmetric behavior of normal and scale of normal distributions is relevant 
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Figure 5.2: Regions for L1 distances under symmetry. 

in the demonstration process. Prior clistribution for v is assumed to be zero centerecl. 

Multivariate case considers a construction from the univariate cases. Demonstration is 

reflected for the univariate case. 

/ 1'7l'(v;lr7i)- '7l'(v;)l = L: ['7J'(v;lr¡;)- '7l'(v;)]dv; + 100

['7J'(v;lr¡;)- '7l'(v;)]dvi 

Assume that r¡; < O. 

If v; < O then, '7l'(v;ir¡; < O)- '7l'(vi) > O. Converse! y, if v; > O then, '7l'( v;ir¡; < O)- '7l'( v;) < 

o, 
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'* ¡·O J1l'(v;Jr¡; <O)- 11'(v,)Jdv; + loo J1l'(v;Jr¡; <O)- 11'(v¡)Jdv; 
-oo Jo 

¡o 1 loo 1 
11'(v;Jr¡.; < O)dv;- '2- 11'(v.;Jr¡; < O)dv.; +-

-oo o 2 

= f 0

00 
11'( v.;Jr¡; < O)dv - 1 + ¡~"' 11'( v.;J·q.; < O)dv 

= 21: 11'(v;Jr¡; < O)dv- l. 

Similarly, if r¡¡ > O, 

'* -¡: 11'(v;Jr¡; > O)dv; + 1-1: 11'(v;J?)i > O)dv, 

= 1 - 2 lo 11'( v;Jr¡; > O)dv;, 
l-oe 

then Lr(po,P2) depend on the collection generated by the signs of r¡. Figure 5.2 shows indi­

vidual regions for Lr distances when r¡; < O and r¡; > O. Approximations using Monte Cario 

methods can be used. Other alternatives are related to obtain this quantity using functions 

e, that approximate the joint behavior and keep the dependence between its components. 

With respect to (5.1.7), its computation is relegated to use estimations obtained from 

MCMC sampling methods. o 

A reduced mathematical expression for L1 distance between fui! posterior distribution 

(5.1.5) and prior distribution (5.1.3) is obtained, dueto the symmetry properties that SMN 

and Normal distributions present. The latter presenta simple structure, whichjust depends 

on the fui! posterior distribution 1l' ( v 1 r¡). 

Computation for expression (5.1. 7) relies on simulation methods beca use involved pro­

bability distribution (5.1.4) depends on complex functions of unknown parameters (r¡,,P) 
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and cannot be computed exactly. 

Both expressions (5.1.6) and (5.1.7), represent learning discrepancies. Expression (5.1.6) 

can be interpreted as the prior (potential) learning difference and expression (5.1.7) is related 

to the posterior (remaining) learning difference, once y was observed. These interpretations 

are appropriate, if Xie and Carlin's work is followed. 

5.1.3 Kullback Leibler divergence 

A second alternative to measure discrepancy between two models is proposed in this section, 

following divergence measures considered by Arellano-Valle et al. [4], who applied them for 

sensitivity detection purposes in elliptical Bayesian regression models; they proposed this 

class of measures as part of q-divergences measures family to quantify the effect produced 

by a subset of data, in order to examine its infiuence in posterior distributions. 

Xie and Carlin [94] compare Bayesian learning among prior and posterior distributions, 

when non-normality is addressed. They suggested that KL divergence is adequate to quan­

tify the learning process. Computations and app!ications are oriented to illustrate this 

methodology when methods for density estimation and spatial models including multiple 

random effects are considered. 

In this work, non symmetrized KL divergence between two probability models f and g 

will be defined by 

KL(f, g) = joo f(x) lag f((x)) dx. 
-oo g X 

Following Xie and Carlin [94], let define the following expressions. 

o Potential Learning Divergence 

1 ~(vi~) 
KL(po,P2) = ~(vi~) lag -(-)-dx. 

[-oo,oo]n 1T V 
(5.1.8) 

• Remaining Learning Divergence 
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1 K(viry) 
KL(pr,P2) = K(vlry)log-(-l-)dx. 

[ -oo,oo]" K V Y 
(5.1.9) 

These expressions do not present analytical closed forms, therefore, MCMC approaches 

can be adopted to obtain estimations for 5.1.8 and 5.1.9. Explicit expressions are omitted, 

due to closed forms are unavailable and difficult to evaluate. 

5.2 Markov chain Monte Cario approach 

Monte Carlo algorithms proposed by Xie and Carlin [94], can be adapted to estimate expres­

sions difficult to evaluate, such as 5.1. 7, 5.1.8 and 5.1.9. Following this work, it is possible 

to obtain empirical Bayes estimations for a given model, even within a simulation study. 

Under this idea, MCMC scheme can be reviewed into the following steps. 

i. Obtain marginal samples from v and ry given y posterior distributions, running an 

appropriate MCMC sampler. In particular, for thls work, a hybrid Gibbs-Metropolis 

algorithm can be applied. 

ii. Once ry samples are available, run the MCMC algorithm replacing y with ry to obtain 

samples from the posterior distribution K( v lry). 

iii. Estimate 5.1.7, 5.1.8 and 5.1.9, using available samples and Monte Carlo integration 

techniques. 

In this thesis work, the computational stage is proposed to be further developed. 



Chapter 6 

Concluding remarks and discussion 

Specific results were obtained through this work, which are relevant for Bayesian small area 

estimation proposing a new methodology as an alternative to usual parametric models. This 

approach is particularly useful to obtain estimation of rates or relative risks when subjective 

geographical dependence is assumed and related results are too smooth for the region under 

study. 

In this work, an extension to obtain robust inference from GMRF theory is proposed. 

As a first step, the extension is applied to classical normality assumptions, considering SMN 

family of distributions to capture regional spatial behavior. Conditions are required to en­

sure the propriety of these intrinsic spatial random effect posterior distributions, which must 

be associated to sum zero constraint and existence of mixing random variable expectations. 

When spatial correlation structure is available, one Proposition led to provide sufficient 

conditions to guarantee posterior distribution integrability for Bayesian GLMM. Another 

Proposition is presented, when a non spatial correlation scenario is assumed. 

The general methodology is applicable to situations where small area parameters must 

be estimated. Variability parameters are of interest, their incorporation in the proposed 

hierarchical models allowed the computation of the marginal spatial proportion of varia­

bility, through the empírica! marginal standard deviation function, to quantify excess of 

variability explained by the spatial effect. This fact keeps direct relation with the spatial 
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random effect contribution considered for the ana!ysis. 

Applications study gave better results, considering the complex structure of Chilean 

geography. Both applications were best modeled by Poisson regression with spatial random 

effects following a joint Slash distribution. It is possible to notice that f3o do not produce 

changes when the three models are fitted to both applications. That is an important 

consideration that shows the robust properties of the Student-t MRF and Slash MRF. 

Specifically, for IDDM incidence estimation, relevant results are, 

are: 

• Smooth effect on severa! distant rural communes was better adjusted considering that 

the observed number of cases are zero with associated smaJ! population at risk. 

• The Slash MRF model increase the degree of spatiaJ aggregation. This is an important 

result from epidemiologist researchers, since diabetes spatiaJ hypothesis is not clearly 

understood. 

In the case of female cancer mortaJity relative risks estimation, sorne important results 

• The smoothing effect of Arica and Parinacota region matches with a better estimation 

of risks in the area. 

• Highly geographical influence that cancer mortaJity present has been studied in most 

references. For this application, high spatial excess ofvariability was not the exception, 

allowing for a 78.8%. 

In the last chapter, Bayesian learning anaJysis is considered in arder to show that un­

known parameters are updated by the observed data. Simulation study is proposed in 

arder to investigate model behavior under heavier tailed distributions for spatial random 

effects. General expressions to measure Bayesian learning were obtained. These qnantities 

are based on L¡ distance and Kullback Leibler divergence, and aJlow interpretations facts 

such as potential and remaining learning, defined in a previous work by Xie and Carlin 

[94]. These measures were specifically proposed to measure the discrepancy between prior 

and posterior distributions that take part on the Bayesian identifiability definitions, when 
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a spatial random effect that follows a SMN RF is assumed. A formal simulation study is 

proposed to be further developed. 

This thesis proposed an extension and the Bayesian methodology to fit robust Bayesian 

inference models, extending GMRF toa heavier tailed family distributions such as SMN RF. 

Bayesian model identifiability was performed, to obtain results related to measure Bayesian 

learning on a set of specific parameters. The results were computationally implemented 

using simulated data. 

As future works, several tapies can be explored in the spatial context. Diagnostic ap­

proaches, model sensibility and extensions of model assumptions which include asymmetry 

in the distribution of the random effects, are related tapies to be developed. Simulation 

studies to validate proposed models under different scenarios can be performed too. 

Bayesian space time models can be proposed, with the subsequent problem of sparse­

ness of data that could affect estimation on communes with low population. Therefore, 

robust models will become more necessary. Temporal trends and geographical patterns are 

estimated simultaneously, allowing for additional random effects to represent temporal and 

spatio temporal interaction variations. 

Multivariate extensions related to simultaneous modeling of epidemiological events, us­

ing multivariate generalized linear regression models. Develop the related Bayesian theory 

of this class of models, which include estimation and decision problems under informative 

and non informative prior elicitation. Model comparison with other different developed 

methodologies actually proposed in the literature. 
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