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Abstract

This thesis addresses the statistical analysis of regression models with locally station-

ary disturbances. This methodology allows for the fitting of non-stationary time series

data displaying both trends and time-varying long-range dependent errors. Data with

such features arise in many fields, including for example economy, climatology and

hydrology, among others.

In order to deal with the non-stationary behavior of the regression errors, a locally

stationary approach is proposed. This statistical framework allows for the modeling

of a time-varying autocovariance structure. In this context, the parameters of the

non-stationary model are allowed to vary smoothly over time so that it can be locally

approximated by stationary processes.

The study conducted in this thesis focuses on the analysis of some statistical prop-

erties of the least squares estimates (LSE) of the regression models described above.

These estimators are widely used in practice because they can be readily calculated.

Observe that other techniques such as, for example the best linear unbiased estima-

tors (BLUE), make the unrealistic assumption that the dependence structure of the

errors in known a priori. This critical assumption is even harder to justify in practice

since the dependence structure of the errors is not necessarily stationary.

The behavior of the LSE is studied in this work from three complementary points

of view. First, the large sample behavior of the LSE is analyzed. In particular,

conditions for the consistency of these estimators are provided. Besides, precise con-

vergence rates for the asymptotic variance of the LSE of this regression model are

vii



viii

established. It is shown that these estimators satisfy a central limit theorem. In

addition, the asymptotic normality of the estimates of the error model parameters is

established. Second, the finite sample performance of the LSE is studied by means of

several Monte Carlo simulations. Finally, the application of the proposed regression

methodologies is illustrated with real-life data examples.
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de Chile were supported by the VRAID (Vicerectoŕıa Adjunta de Investigación y
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Introduction

Let the observed process {Yt,T} follow the regression model

Yt,T = X ′
(
t
T

)
β + εt,T ,

whereX( t
T

) = (xt1, . . . , xtp)
′ is a p-vector of non-stochastic regressors β = (β1, . . . , βp)

′

is a vector of unknown regression parameters, and εt,T the sequence of a class of locally

stationary long-memory (LSLM) processes. We discuss the asymptotic properties of

the LSE for the unknown parameter, more specifically the consistency, asymptotic

variance and normality of β̂ under the family of LSLM processes. However this model

does not have a stationary property, which is crucial in the standard estimation the-

ory and asymptotic theory of time series models. Spectral analysis of time series is a

large field, presenting a great interest from both theoretical and practical viewpoints.

The fundamental starting point of this analysis is the Cramer representation, there-

fore a stationary time series can also be viewed as a sum of an infinite number of

randomly weighed complex exponentials, Fourier basis functions, through the use of

the Cramer representation see Brillinger (1981)

Xt =

∫ π

−π
A(λ)eiλtdξ(λ), t ∈ Z,

where A(λ) is the transfer function and ξ(λ) is zero-mean random process with vari-

ance one and orthogonal increments i.e. E(dξ(λ), dξ(λ)) = δ0(λ − µ), see Priestley

(1965).

1
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The Cramer representation of a stationary time series is in terms of the Fourier

functions which are perfectly localized in the frequency domain but not localized in

time. Moreover, the transfer function is independent of time. The above statement

about the distribution of power over frequencies not changing in time is not true for

a non-stationary time series data.

Locally stationary processes are becoming an important tools to analyse non-

stationary time series data. Many authors have suggested definitions for this type of

processes, including Silverman (1957), Priestley (1965) and Dahlhaus (1996), among

others. Furthermore, the theory of locally stationary processes has been recently ex-

tended to encompass non-stationary long-range dependent time series data, see for

example Beran (2008), Genton and Perrin (2004) (2004) and Jensen and Witcher

(2000). Long-memory time series has attracted a great deal attention in the last

decades, see for example the monographs Beran (1994) and Palma (2007). In par-

ticular, characterization of long-memory has been studied by Parzen (1992) and Hall

(1997). The estimation parameter of LSLM processes has been studied by Beran

(2008) and Jensen and Witcher (2000), among others. However, it seems that the

estimation of the regression parameters of such processes has received far less atten-

tion.

In this work , we establish conditions for the asymptotic variance of vector param-

eter estimates establishes precise convergence rates for a family of LSLM processes

with general time-varying long memory parameter. Apart from establishing these

asymptotical results, this work explores the finite sample calculation of the variance

of LSE of a LSLM process.

This thesis is organized as follows. Chapter 1 is devoted to provide definitions of
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long-memory and locally stationary processes discussed in this work. Chapter 2 stud-

ies the statistical properties of the sample mean as an estimate of a locally stationary

process with constant mean. Chapter 3 extends these results to the case where the

locally stationary process has a time-varying scalar trend. Further extensions to the

multivariate case are considered in Chapter 4. An application of these techniques

to real-life data is discussed in Chapter 5. Conclusions and some guidelines for fu-

ture work are addressed in Chapter 6. This work ends with a technical appendix

containing several auxiliary lemmas.



Chapter 1

Locally stationary long-memory
processes

Most time series analyses are based on the assumption that the probabilistic prop-

erties of the underlying process are time-invariant. Even if this assumption is very

useful in order to construct simple predictors and asymptotic properties over the pa-

rameters are satisfied, it seems not to be the best strategy in practice, actually, many

time series are not covariance stationary and exhibit a time-varying or evolutionary

second order structure [cf. Preistley, 1965]. In the following we will give notions of

how this non-stationary behavior can be modeled and derive some basic properties

of these processes.

1.1 Introduction

The stationarity property of a time series is important in the theory of estimation and

asymptotic of time series models. A discrete time series {Xt , t = 0,±1,±2, . . .} is

said to be strictly stationary if for any t1, t2, . . . , tn and for any k, the joint probability

distribution of {Xt1, Xt2, . . . , Xtn} is identical with the joint probability distribution of

4
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{Xt1+k, Xt2+k, . . . , Xtn+k} Brockwell and Davis (1996). This is a difficult requirement

to satisfy or to verify for any time series. It can be relaxed by requiring stationarity

only for moments up to some order. A zero-mean discrete time random process Xt is

said to be weakly stationary or, simply, stationary if the auto-covariance function of

lag k,

γX(k) = E(XtXt+k),

between Xt and Xt+k depends only on k, but not on t. The spectral density function

fX(·) of a stationary process is defined as the discrete Fourier transform of the auto-

covariance function,

f(λ) =
1

2π

∞∑
h=−∞

γ(h) exp (−ihλ), −π < λ < π. (1.1.1)

The summability of |γ(·)| implies that the series in (1.1.1) converges absolutely. A

common nonparametric estimator of the spectral density function of Xt of length n

is the periodogram,

IX(λ) =
1

2πn
|JX(λ)|2 =

1

2πn
JX(λ)JX(−λ),

where JX(·) is the discrete Fourier transform of Xt and it is defined as

JX(λ) =
n∑
t=0

Xt exp (−itλ).

In general, IX(λ) is asymptotically unbiased but inconsistent estimator of fX(λ) [cf.

Brockwell and Davies, 1996]. Consistency of this estimate can be improved by apply-

ing a proper tapering to the data Dahlhaus and Giraitis (1998). Besides Xt can be

represented as

Xt =

∫ π

−π
A(λ) exp (itλ)dξ(λ),
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discussed in the Introduction (previous section). The spectral density function of the

stationary time series Xt can then be expressed as

fX(λ) = |A(λ)|2 = A(λ)A(−λ). (1.1.2)

The above statement about the distribution of power over frequencies not changing

in time is not true for a non-stationary time series . If Xt is non-stationary then

the auto-covariance function of Xt and Xt+k is a function of t and k. In practice,

many time series, especially hydrology, climatology, and financial time series, ex-

hibit non-stationary behavior. In such cases, various techniques, such as specialized

transformations (differencing) of data or considering the data over small piecewise

stationary time intervals, can be employed to make the analysis of stationary tech-

niques applicable for non-stationary time series. As referenced in his paper Dahlhaus

(1997) ” If one abandons the assumption of stationary, the number of possible models

for time series data explodes. For example, one may consider ARMA models with

time varying coefficients. In this case the time behavior of the coefficients may again

be modeled in different ways”. To improve the understanding concept Dahlhaus pro-

poses the following model

Xt = g(t)Xt−1 + Zt with Zt
iid∼ N(0, σ2),

for t = 1, . . . , T .

Inference in this case means inference for the unknown function g on the grid

{1, . . . , T}. It is obvious that an asymptotic approach where T → ∞ in not suit-

able for describing a statistical method since future ”observations ” of g(t) do not

necessarily contain any information on g(t) on {1, . . . , T}. This mean that as Xt is
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non-stationary and may seem contradictory to construct a asymptotic or forecast-

ing theory, since a best linear predictor exploits generally when exist a varying time

structure in the unconditional moments of the process.

This problem is overcome if we add regularity assumptions on the deterministic

function g(t). For instance, we can impose that g(t) is a piecewise constant function.

More generally, we can assume that g(t) is nearly constant along intervals of a certain

length τ . However, this approach is not satisfactory since it implicitly imposes that

the function g(t) is estimable only using τ observations. In this framework, when the

length of the data set increases, no improvement is possible in the estimation of g(t)

over this interval of length τ . This implies that asymptotic considerations can not

be used in the statistical inference of such process. This is a substantial drawback,

because the usual statistical properties of estimators such as consistency, efficiency

or central limit theorems cannot be used to measure and to compare the quality of

different estimators.

To overcome this problem, Dahlhaus introduced a concept of ”local stationarity”,

he suppose observe the series from time 0 up to T − 1 (T observations). The local

stationary assumption postulates the existence of a deterministic function g(u) defined

for u ∈ [0, 1) such that the approximation g(t) ≈ g(u) holds in an appropriate way,

we will define below. In this approach, two scales of time are defined: The observed

time , which is the usual scale of time 0, . . . , T − 1, and the rescaled time defined on

the interval [0, 1). The resulting non-stationary process is doubly indexed

Xt,T = g
(
t
T

)
Xt−1,T + Zt with Zt

iid∼ N(0, σ2).

The regularity assumptions are now made on the function g(u) defined on [0, 1). Due

to the mapping between 0, . . . , T − 1 and [0, 1), the estimation of g(u) becomes a
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standard statistical problem: For instance if g(u) is constant on an interval of length

τ < 1 in the rescaled time, then it may be estimated using τ · T observed data in the

real time.

An important consequence of the rescaled time is the interpretation of asymptotics.

When T tends to infinity, we get more information on the local structure of Xt,T

process in the rescaled time, because the mapping defines a finer grid in the rescaled

time. However, it does not mean that we look into the future, because the rescaled

time has a fixed bounded support [0, 1).

1.2 Long-memory processes

In literature, autocovariances and autocorrelations are often referred to as memory

indicators. A simple way to classify the memory type of a stationary time series is by

quantifying the rate of decay of autocovariances or autocorrelations. In mathematical

terms long-memory process autocorrelations have a power type decay to zero as the

lag increases. The autocorrelations decay to zero in a short memory process, such as

ARMA processes [cf. Beran (1994), Brockwell and Davis (1996)], occurs at a much

more rapid, exponential, rate.

An ARMA process Xt is a short memory process since the autocovariance between

Xt and Xt+k decreases exponentially as k →∞. In fact the autocorrelation function,

ρ(k), is exponentially bounded, i.e. |ρ(k)| ≤ Crk, for k = 1, 2, . . . , where C > 0 and

0 < r < 1.
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1.2.1 Definition

There exist many definitions for the long-memory process see Palma (2007) for more

details, a particular definitions of this process is given below.

Definition 1.2.1. A long-memory process Xt can be defined by specifying a hyper-

bolic decay of the auto-covariances

E(XtXt+k) = γX(k) ∼ k2d−1l1(k),

as k → ∞, where d is the so-called long-memory parameter and l1(·) is a slowly

varying function.

For any real number d > −1, be let define the difference operator ∇d = (1− B)d

where B is the backward shift operator, using the binomial expansion,

∇d = (1−B)d =
∞∑
j=0

πjB
j,

where

πj =
Γ(j − d)

Γ(j + 1)Γ(−d)
=
∏

0<k≤j

k − 1− d
k

j = 0, 1, 2, . . . , (1.2.1)

and Γ(·) is the gamma function,

Γ(x) =


∫∞
−∞ t

x−1e−t dt, x > 0

∞, x = 0

x−1Γ(1 + x), x < 0

Similarly, we can also define the operator ∇−d, the counterpart of ∇d as

∇−d = (1−B)−d =
∞∑
j=0

ψjB
j, (1.2.2)
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where

ψj =
Γ(j + d)

Γ(j + 1)Γ(d)
=
∏

0<k≤j

k − 1 + d

k
, j = 0, 1, 2, . . .

By applying the Stirling’s formula, Γ(x) ∼
√

(2π)e−x+1(x − 1)x−1/2 as x → ∞, we

obtain

πj ∼ j−d−1/Γ(−d)

ψj ∼ jd−1/Γ(d), (1.2.3)

as j →∞, where aT ∼ bT means that aT/bT → 1, as T →∞.

1.2.2 ARFIMA Processes

A well know class of long-memory models is the autoregressive fractionally integrated

moving-average (ARFIMA) processes introduced by Granger and Joyeux (1980) and

Hosking (1981). An ARFIMA process Xt may be defined by

Φ(B)Xt = Θ(B)(1−B)−dZt, (1.2.4)

where Φ(B) = (1+φ1B+φ2B
2 + . . .+φpB

p) and Θ(B) = (1+θ1B+θ2B
2 + . . .+θqB

q)

are the autoregressive and moving-average operators, respectively, (1 − B)−d is a

fractional differencing operator defined in (1.2.2).

The next Theorem examines the existence of a stationary solution of the ARFIMA

process defined by equation (1.2.4), including its uniqueness, causality, and invert-

ibility.

Theorem 1.2.1. Considerer the ARFIMA process defined by (1.2.4). Assume that

the polynomials Φ(·) and Θ(·) have no common zeros and that d ∈ (−1, 1/2). Then,
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(a) If the zeros of Φ(·) lie outside the unit circle {z : |z| = 1}, then there is a unique

stationary solution of (1.2.4) given by

Xt =
∞∑

j=−∞

φjZt−j,

where φ(z) = (1− z)−dΘ(z)/Φ(z).

(b) If the zeros of Φ(·) lie outside the closed unit disk {z : |z| ≤ 1}, then the solution

Xt is causal.

(c) If the zeros of Θ(·) lie outside the closed unit disk {z : |z| ≤ 1}, then the solution

Xt is invertible.

(d) If the solution Xt is causal and invertible, then its autocorrelation function ρ(·)

and spectral density f(·) satisfy, for d 6= 0,

ρ(k) ∼ Ck2d−1, as k →∞,

where C 6= 0, and

f(λ) =
σ2

2π

∣∣Θ(e−iλ)
∣∣2

|Φ(e−iλ)|2
∣∣1− e−iλ∣∣−2d ∼ σ2

2π

[
Θ(1)

Φ(1)

]2

λ−2d,

as λ→ 0.

For the Proof see Palma (2007). A class particular of ARFIMA process are the call

fractionally integrated noise, a definition of this process is give at the next subsection.

1.2.3 Fractionally integrated noise

Definition 1.2.2. (The ARIMA(0,d,0) Process) The process Xt is said to be an

ARIMA(0,d,0) process with d ∈ (−.05, 0.5) if Xt is a stationary solution with zero
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mean of the difference equations,

∇dXt = Zt, where Zt ∼ WN(0, σ2). (1.2.5)

The process Xt is often called fractionally integrated noise . Implicit in Definition

(1.2.2) is the requirement that the series ∇dXt =
∑∞

j=0 πjXt−j with πj as in (1.2.1),

should be mean square convergent. In the case if Zt is Gaussian then we call Xt

fractionally integrated Gaussian noise. In Cramer representation,

∇dXt =

∫ π

−π
eitλ(1− e−iλ)ddZX(λ).

In view of the representation (1.2.5) of Zt we say that Xt is invertible, even though the

coefficients πj may not be absolutely summable as in the corresponding representation

of Zt for an invertible ARMA process. We shall say that is causal if Xt can be

expressed as

Xt =
∞∑
j=0

ψjZt−j.

The existence of a stationary causal solution are established for [cf. Brockwell and

Davis, 1996, Theorem 13.2.1]. From (1.2.3) it follows that
∑∞

j=0 ψ
2
j <∞ so that

n∑
j=0

ψje
−ijλ −→ (1− e−iλ)−d,

as n → ∞. Since Xt is obtained from ψj by the application of linear filter [cf.

Brillinger(1981), and Brockwell and Davis(1996)], the transfer function and the spec-

tral density function of fractionally integrated noise can be derived as

A(λ) = (1− e−iλ)−d

f(λ) = |A(λ)|2 fZ(λ) =
σ2

2π

∣∣1− e−iλ∣∣−2d
, −π ≤ λ ≤ π.
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The representations spectral of this process is given by

Xt =

∫ π

−π
eiλt(1− e−iλ)−dd ξ(λ).

The autocovariance function of fractionally integrated noise process is given by

γ(h) = σ2 Γ(1− 2d)

Γ(1− d)Γ(d)

Γ(h+ d)

Γ(1 + h− d)
,

and the autocorrelation function is

ρ(h) =
Γ(1− d)

Γ(d)

Γ(h+ d)

Γ(1 + h− d)
.

1.3 The model of locally stationary

1.3.1 Definition

Definition 1.3.1. A sequence of stochastic processes Xt,T (t = 1, 2, . . . , T ) is called

locally stationary with transfer function A0 if there exists a representation

Xt,T =

∫ π

−π
A0
t,T (λ) exp (iλt)dB(λ), (1.3.1)

where B(λ) is a Brownian motion on [−π, π] and there exists a constant K and a 2π

periodic function A : (0, 1]×R→ C with A(u,−λ) = A(u, λ) such that

sup
t,λ

∣∣A0
t,T (λ)− A

(
t
T
, λ
)∣∣ ≤ K

T
, (1.3.2)

for all T , A(u, λ) is assumed to be continuous in u, where t and u = t
T

denote

time points in the interval [1, T ] and the rescaled interval [0, 1] respectively. The

smoothness of A in u guarantees that the process has locally a stationary behavior.

The idea behind this representation is, essentially, that, for each fixed T , one implicitly
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assumes some local interval of stationarity about each time point and a smooth change

from one interval to the next. We also require additional smoothness conditions on A,

namely differentiability, to develop asymptotic theory. Dahlhaus (1997) defined the

time-varying (evolutionary) spectral density function of a locally stationary process

at time u ∈ [0, 1] and frequency λ ∈ [−π, π] by the formula

f(u, λ) = |A(u, λ)|2 .

A good example of locally stationary processes is time-varying long-memory process,

is the case of fractionally integrate noise [cf. Section 1.2.3].

Xt,T = σ
(
t
T

)
∇−d

(
t/T

)
Zt

= σ
(
t
T

) T∑
j=0

ψt,T,jZt−j,

where ∇−d(·) is the fractional integration operator, with

ψt,T,j =
Γ (j + d (t/T ))

Γ (j + 1) Γ (d(t/T ))
.

By applying the Stirling’s formula, we obtain

ψt,T,j ∼
jd(t/T )− 1

Γ (d(t/T ))
, as j →∞.

Therefore, the sequence ψt,T,j is square summable,
∑∞

j=0 ψ
2
t,T,j <∞, for d ∈ (−0.5, 0.5).

Hence, the time-varying transfer function is defined as the discrete Fourier transform

of ψt,T,j as T →∞, just as in the case of fractionally integrated noise ,

T∑
j=0

ψt,T,je
−ij −→ (1− e−iλ)−d(u), for all u ∈ [0, 1],

as T → ∞. Since Xt,T is obtained from ψt,T,j by the application of linear filter

[cf. Brillinger(1981), and Brockwell and Davis(1996)], the transfer function and the
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spectral density function of fractionally integrated noise can be derived as

A(u, λ) =
σ(u)√

2π

(
1− e−iλ

)−d(u)

f(u, λ) = |A(u, λ)|2 =
σ2(u)

2π

∣∣1− e−iλ∣∣−2d(u)
,

where 1√
2π

and 1
2π

are the transfer function and the spectral density function of Zt

respectively. Since Zt is a i.i.d sequence , its Cramer representation is as follows

Zt =

∫ π

−π

1√
2π
eiλtd ξ(λ).

Then,

∇−d(t/T )Zt =

∫ π

−π
eiλt
∣∣1− e−iλ∣∣−d(t/T )

(2π)−1/2d ξ(λ).

Hence Xt,T has the transfer function

A0
t,T (λ) =

σ(t/T )√
2π

(1− e−iλ)−d(t/T ),

and

sup
t,λ

∣∣A0
t,T (λ)− A

(
t
T
, λ
)∣∣ = 0 ≤ K

T
.

Therefore, the time-varying fractionally integrated noise is locally stationary. This

result can be extended to a general locally stationary ARFIMA processes for more

details see Palma and Olea (2010).



Chapter 2

Analysis of the sample mean of
LSLM processes

Some asymptotic statistical properties of the sample mean of a class of LSLM process

are studied in this chapter. Conditions for consistency are investigated and precise

convergence rates of the variance of the sample mean are established for a class

of time-varying long-memory parameter functions. A central limit theorem for the

sample mean is also established. Furthermore, the calculation of the variance of the

sample mean is illustrated by several numerical and simulated experiments.

2.1 Introduction

This chapter discusses the statistical properties of the sample mean of a class of

LSLM processes. The analysis of the sample mean is an essential part of the theory

and application of stochastic processes. As stated by Parzen (1986), ”The behavior of

sample means, which needs to be understood by all applied statisticians and users of

simulation methods, can be considered to be the most basic question of both classical

and modern probability and statistics”. The asymptotic behavior of the sample mean

16
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has been well established in the context of linear stationary processes see for exam-

ple Section 5.6.1 of Pourahmadi (2001). In particular, several authors have studied

the problem for stationary long-memory models, see for example Adenstedt (1974),

Samarov and Taqqu (1988). In addition, the behavior of the sample mean has been

studied in the context of short-memory locally stationary processes, see for example

Dahlhaus (1996, 1997). However, to the best of our knowledge, no general asymptotic

results are available yet in the context of long-memory locally stationary processes.

Locally stationary processes are becoming an important tool for analyzing non-

stationary time series data. Many authors have suggested definitions for this type of

processes, including Silverman (1957), Priestley (1965) and Dahlhaus (1996), among

others. Furthermore, the theory of locally stationary processes has been recently

extended to encompass non-stationary long-range dependent time series data, see for

example Beran (2008), Genton and Perrin (2004) and Jensen and Witcher (2000).

Long-memory time series has attracted a great deal attention in the last decades,

see for example the monographs Beran (1994) and Palma (2007). In particular,

characterization of long-memory has been studied by Parzen (1992) and Hall (1997).

The parameter estimation of LSLM processes has been studied by Beran (2008)

and Jensen and Witcher (2000), among others. However, it seems that the estimation

of the mean of such processes has received far less attention. In this work, we es-

tablish conditions to ensure the consistency of the sample mean and establish precise

convergence rates for a family of LSLM processes with linear, quadratic or general

time-varying long memory parameter. Apart from establishing these asymptotical

results, this work explores the finite sample calculation of the theoretical variance of

the sample mean of a LSLM. These empirical studies show that in order to be precise,
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the use of the asymptotic formula for the variance of the sample mean requires very

large sample sizes. Thus, we offer alternative approximation formulas which work

well for moderate sample sizes.

The remaining of this chapter is structured as follows. Section 3.2 discusses a class

of LSLM processes. Section 3.3 establishes the consistency of the sample mean of this

family of LSLM models. Section 3.4 we provides convergence rates for the variance

of this estimator and shows its asymptotic normality in the Section 3.5. Section 2.6

illustrates the use of the asymptotic formulas for the variance of the sample mean as

well as finite sample approximations.

2.2 Locally stationary long-memory processes

Definition 2.2.1. A sequence of stochastic processes Yt,T (t = 1, ....., T ) is called

locally stationary with transfer function A0 and constant mean µ if there exists a

spectral representation

Yt,T = µ+

∫ π

−π
eiλtA0

t,T (λ)dξ(λ), (2.2.1)

where the following holds.

(a) ξ(λ) is a Brownian motion on [−π, π].

(b) There exists a constant K and a 2π period function A : (0, 1] × R → C with

A(u,−λ) = A(u, λ),

and

sup
t,λ

∣∣A0
t,T (λ)− A

(
t
T
, λ
)∣∣ ≤ K

T
, (2.2.2)

for all T .
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The transfer function A0
t,T (λ) of this class of non-stationary processes changes

smoothly over time so that they can be locally approximated by stationary processes.

An example of this class of locally stationary processes is given by the infinite moving

average expansion

Yt,T = µ+ σ
(
t
T

) ∞∑
j=0

ψj
(
t
T

)
Zt−j, (2.2.3)

where {Zt} is a zero-mean and unit variance white noise and {ψj(u)} are coefficients

satisfying
∑∞

j=0 ψj (u)2 <∞ for all u ∈ [0, 1]. The model defined by (2.2.3) generalizes

the usual Wold expansion for a linear stationary process allowing the coefficients of

the infinite moving average expansion vary smoothly over time. A particular case is

the generalized version of the fractional noise process described by the discrete-time

equation

Yt,T = µ+ σ
(
t
T

) ∞∑
j=0

ηj
(
t
T

)
Zt−j, (2.2.4)

for t = 1, 2. . . . , T where {Zt} is a white noise sequence with zero mean and unit

variance the infinite moving average coefficients {ηj(u)} are given by

ηj(u) =
Γ [j + d(u)]

Γ (j + 1) Γ [d(u)]
, (2.2.5)

where Γ (·) is the Gamma function and d(·) is a smoothly time-varying long-memory

parameter. For simplicity, the locally stationary fractional noise process 2.2.4 will

be denoted as LSFN . Lemma A.1.1 provides a closed-form formula for calculating

the covariance function κT (s, t) = cov (Ys,T , Yt,T ) for a LSFN, which is useful for

simulating this class of processes, see Section 2.6 for details. The class of LSFN

models can be extended to the locally stationary ARFIMA processes, see Jensen and

Witcher Jensen and Witcher (2000) for details. As an example, consider the locally
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stationary ARFIMA(0, d, 1) model defined by

Yt,T = σ
(
t
T

) [
1− θ

(
t
T

)
B
]

(1−B)−d(t/T )Zt, (2.2.6)

where θ(·) is a smoothly varying moving average coefficient satisfying |θ(u)| < 1 for

u ∈ [0, 1]. Similarly to Lemma A.1.1, it can be readily proved that the covariance

κT (s, t) of the process (2.2.6) is given by

κT (s, t) = σ
(
s
T

)
σ
(
t
T

) Γ
[
1− d

(
s
T

)
− d

(
t
T

)]
Γ
[
s− t+ d

(
s
T

)]
Γ
[
1− d

(
s
T

)]
Γ
[
d
(
s
T

)]
Γ
[
s− t+ 1− d

(
t
T

)] (2.2.7)

×

[
1 + θ

(
s
T

)
θ
(
t
T

)
− θ

(
s
T

) s− t− d
(
t
T

)
s− t− 1 + d

(
s
T

) − θ ( t
T

) s− t− d
(
s
T

)
s− t− 1 + d

(
t
T

)] ,
for s, t = 1, . . . , T, s ≥ t.

2.3 Consistency

In what follows we study some of the asymptotic properties of the sample mean as

an estimate of µ under the following regularity conditions.

A1. The time-varying covariance function of the process (2.2.1) satisfies

κT (s, t) ∼ g( s
T
, t
T

)(s− t)d(
s
T )+d

(
t
T

)
−1
,

for large s − t > 0, where d : [0, 1] → (0, 1
2
) and g is a C1(R × R) function which is

uniformly bounded over [0, 1]× [0, 1].

A2. (Linear Case ) The function d(·) is linear with positive slope, then reaches its

maximum value, d1, at u = 1 and if d(·) has negative slope, then reaches its maximum

value, d0, at u = 0.
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A3. (General Case ) The function d(·) reaches its maximum value, d0, at u0 with

d′′(u0) < 0 and continuous third derivative.

A4. There exist a positive constant K such that |σ(u)ψj(u)| ≤ Kjd1−1.

Note that according to Lemma A.1.1, the elements κT (s, t) of the variance-covariance

matrix of a locally stationary fractional noise process described by (2.2.4)-(2.2.5) are

given by

κT (s, t) = σ
(
s
T

)
σ
(
t
T

) Γ
[
1− d

(
s
T

)
− d

(
t
T

)]
Γ
[
s− t+ d

(
s
T

)]
Γ
[
1− d

(
s
T

)]
Γ
[
d
(
s
T

)]
Γ
[
s− t+ 1− d

(
t
T

)] ,
for s, t = 1, . . . , T , s ≥ t. Thus, an application of the Stirling’s approximation yields,

κT (s, t) ∼ σ
(
s
T

)
σ
(
t
T

) Γ
[
1− d

(
s
T

)
− d

(
t
T

)]
Γ
[
1− d

(
s
T

)]
Γ
[
d
(
s
T

)](s− t)d( sT )+d
(
t
T

)
−1
,

for large s − t > 0. Hence, this locally stationary fractional noise process satisfies

Assumption A1. The next theorem establishes the consistency of the estimate µ̂T .

Theorem 2.3.1. (Consistency) Assume that the process {Yt,T} satisfies (2.2.1). Then,

under Assumptions A1–A2 the estimator µ̂T is consistent, that is,

µ̂T → µ,

in probability, as T →∞.

Proof. By definition, the variance of the estimator µ̂T can be written as

Var(µ̂T ) =
1

T 2

T∑
s=1

T∑
t=1

κT (s, t) =
1

T 2

[
2

T∑
s> t

κT (s, t) +
T∑
s=1

κT (s, s)

]
.

Therefore,

Var(µ̂T ) ∼ 2

T 2

T∑
s> t

κT (s, t),
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as T →∞. Furthermore, given that by Assumption A1

κT (s, t) ∼ g( s
T
, t
T

)(s− t)d(
s
T )+d

(
t
T

)
−1
,

for large s− t > 0, we conclude that

Var(µ̂T ) ∼ 2

T 2

T∑
s> t

g( s
T
, t
T

)(s− t)d(
s
T )+d

(
t
T

)
−1
. (2.3.1)

Since by Assumption A1, |g(x, y)| is uniformly bounded for all (x, y) ∈ [0, 1] × [0, 1]

we have that

Var(µ̂T ) ≤ K

T 2

T∑
s> t

(s− t)2d1−1 ≤ K

T 1−2d1

T∑
s> t

( s
T
− t

T
)2d1−1 1

T 2

≤ K

T 1−2d1

∫ 1

0

∫ x

0

(x− y)2d1−1 dy dx ≤ K ′

T 1−2d1
,

where K ′ is a positive constant. Now, by Chebyshev’s inequality, for any ε > 0 we

have

P(|µ̂T − µ| > ε) ≤ Var(µ̂T )

ε2
≤ K ′

ε2T 1−2d1
.

Since 0 < d1 <
1
2
, P(|µ̂T − µ| > ε)→ 0 as T →∞, proving the result.

Observe that Theorem 2.3.1 involving the consistency of µ̂T is valid for a general

time-varying long-memory function d(·) satisfying Assumption 3. Thus, it is not

restricted only to the linear cases.

2.4 Asymptotic Variance

We study the behavior of the variance of the sample mean for a LSLM process satis-

fying some regularity assumptions given by A1–A3. Before exploring that situation,
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recall that for a stationary long-memory process {y1, . . . , yT} with long-memory pa-

rameter d, the variance of the sample mean ȳT = 1
T

∑T
t=1 yt behave like

Var(ȳT ) ∼ c T 2d−1,

as T → ∞. Given a sample {Y1,T , . . . , Yt,T} of the process (2.2.1) we can estimate

the mean of the process µ by using its sample mean µ̂T = 1
T

∑T
t=1 yt,T . The objective

is to know the asymptotic variance of µ̂T .

In this section we state the convergence rate of the sample mean variance. Theo-

rem 2.4.1 deals with a linear case and Theorem 2.4.2 deals the quadratic case while

Theorem 2.4.3 focuses on a general case for time-varying long-memory parameter.

Theorem 2.4.1. (Linear Case ) Assume that the process {Yt,T} satisfies (2.2.1) and

d(u) = α0 + α1 u with α1 > 0. Then, under Assumptions A1–A2 the estimator µ̂T

satisfies

T 1−2d1(α1 log T )2d1+1 Var(µ̂T )→ g(1, 1)Γ(2d1),

as T →∞. If α1 < 0, then

T 1−2d0(α1 log T )2d0+1 Var(µ̂T )→ g(0, 0)Γ(2d0),

as T →∞.

Proof. By definition, the variance of the sample mean can be written as

Var(µ̂T ) =
1

T 2

T∑
s=1

T∑
t=1

κT (s, t) =
1

T 2

[
2

T∑
s> t

κT (s, t) +
T∑
s=1

κT (s, s)

]

∼ 2

T 2

T∑
s> t

κT (s, t) =
2

T 2

T∑
s> t

Γ(1− ds − dt)
Γ(1− ds)Γ(ds)

(s− t)(ds+dt−1)

=
2

T 2

T∑
s> t

g( s
T
, t
T

)(s− t)d(
s
T )+d

(
t
T

)
−1
, (2.4.1)
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as T →∞. Therefore the sum approximation for integrates we have

Var(µ̂T ) ∼ 2

T 2

T∑
s> t

g( s
T
, t
T

)( s
T
− t

T
)
d( sT )+d

(
t
T

)
−1
T
d( sT )+d

(
t
T

)
−1

∼ 2

∫ 1

0

∫ x

0

g(x, y)(x− y)d(x)+d(y)−1T d(x)+d(y)−1 dy dx. (2.4.2)

Similarly to the proof of Lemma A.1.2, the asymptotic value of Var(µ̂T ) depends only

on the evaluation of the double integral (2.4.2) in a neighborhood of (x, y) = (1, 1).

Consequently, let us define any ε > 0 the set

AT = {(x, y)|1− ε ≤ x, y ≤ 1 + ε, 1/T < x− y, |d(x)− d1| < δ,

|d(y)− d1| < δ, |g(x, y)− g(1, 1)| < δ},

for some δ > 0. This is a nonempty set since d(·) and g(·) are continuous functions

in a neighborhood of 1. Let CT be defined as

CT = T 1−2d1 (α1 log T )2d1+1 . (2.4.3)

Then,

lim
T→∞

CT Var (µ̂T ) = lim
T→∞

2CT

∫ 1

0

∫ x

0

g̃(x, y) [(x− y)T ]d(x)+d(y)−1 dy dx

= lim
T→∞

2CT

∫
AT

∫
g̃(x, y) [(x− y)T ]d(x)+d(y)−1 dy dx.

Therefore 1 < (x− y)T we have that

lim
T→∞

2CT

∫
AT

∫
g̃(x, y) [(x− y)T ]d(x)+d(y)−1 dy dx

≤ [g̃(1, 1) + δ] lim
T→∞

2CT

∫
AT

∫
[(x− y)T ]2δ+2d1−1 dy dx.

Therefore, by virtue of Lemma A.1.2, we conclude that

lim
T→∞

2CT

∫ 1

0

∫ x

0

g(x, y) [(x− y)T ]d(x)+d(y)−1 dy dx ≤ [g(1, 1) + δ] Γ(2d1).
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By an analogous argument, we can also conclude that

limT→∞ 2CT
∫ 1

0

∫ x
0
g(x, y) [(x− y)T ]d(x)+d(y)−1 dy dx

≥ [g(1, 1)− δ] Γ(2d1). (2.4.4)

Now, since ε and δ can be chosen arbitrarily small, we have that

limT→∞ 2CT
∫ 1

0

∫ x
0
g(x, y) [(x− y)T ]d(x)+d(y)−1 dy dx = g(1, 1)Γ(2d1).

The negative case is similar to the previous proof, thus the evaluation of the

double integral (2.4.2) is a neighborhood of point (x, y) = (0, 0). Therefore utilizing

the Lemma A.1.3 and defining to any ε > 0 the set

AT = {(x, y)|1− ε ≤ x, y ≤ 1 + ε, 1/T < x− y, |d(x)− d0| < δ,

|d(y)− d0| < δ, |g(x, y)− g(0, 0)| < δ},

for some δ > 0, and CT = T 1−2d0(α1 log T )2d0+1, the result is obtained.

Theorem 2.4.2. (Quadratic Case) Assume that the process {Yt,T} satisfies (2.2.1)

and d(u) = a + b u − c u2 with c > 0. If assumptions A1 and A3 are fulfilled, then

the variance of µ̂T satisfies

T 1−2d0(c/2 log T )d0+ 1
2 Var(µ̂T )→


1
2

√
πg(u0, u0)Γ(d0) if u0 ∈ (0, 1)

1
4

√
πg(u0, u0)Γ(d0) if u0 = 0, 1.

as T →∞.

Proof. From expression (2.4.1) we have

Var(µ̂T ) ∼ 2
T∑
s> t

g( s
T
, t
T

)( s
T
− t

T
)
d( sT )+d

(
t
T

)
−1
T
d( sT )+d

(
t
T

)
−1 1

T 2

∼ 2

∫ 1

0

∫ x

0

g(x, y)(x− y)d(x)+d(y)−1T d(x)+d(y)−1 dy dx. (2.4.5)
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Now, by means of the variable transformation u = x+ y and v = x− y, we can write

d(x) + d(y)− 1 = 2d0 − 1− 2β[(x− u0)2 + (y − u0)2] = α(u)− βv2,

where α(u) = 2d0 − 1− β(u− 2u0)2 and β = c/2. Thus,

Var(µ̂T ) ∼
∫ 1

0

∫ u

0

g̃(u, v)vα(u)−βv2Tα(u)−βv2 dv du

+

∫ 2

1

∫ 2−u

0

g̃(u, v)vα(u)−βv2Tα(u)−βv2 dv du,

where g̃(u, v) = g(u+v
2
, u−v

2
). Therefore,

T 1−2d0(β log T )d0+ 1
2 Var(µ̂T )

∼
∫ 1

0

T−β(u−2u0)2
(√

β log T
)1+β(u−2u0)2

hT (u) du (2.4.6)

+

∫ 2

1

T−β(u−2u0)2
(√

β log T
)1+β(u−2u0)2

hT (2− u) du,

where

hT (u) =
(√

β log T
)α(u)+1

∫ u

0

g̃(u, v)vα(u)−βv2T−βv
2

dv. (2.4.7)

Now, an application of Lemma A.1.8 yields,

T 1−2d0(β log T )d0+ 1
2 Var(µ̂T )

∼
∫ 1

0

T−β(u−2u0)2
(√

β log T
)1+β(u−2u0)2

h(u) du

+

∫ 2

1

T−β(u−2u0)2
(√

β log T
)1+β(u−2u0)2

h(u) du,

where

h(u) =
1

2
g̃(u, 0)Γ

[
α(u) + 1

2

]
.
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On the other hand,∫ 1

0

T−β(u−2u0)2
(√

β log T
)1+β(u−2u0)2

h(u) du

=
√
n

∫ 1

0

exp[cn(u− 2u0)2]h(u) du,

where n = β log T and cn = n− β log
√
n. Since cn/n→ 1 as n→∞ and cn > 0, by

Lemma A.1.9 we conclude that∫ 1

0

T−β(u−2u0)2
(√

β log T
)1+β(u−2u0)2

h(u) du→

√
πh(2u0)I(0,1)(2u0) +

√
π

2
h(2u0)I{0,1}(2u0),

as T →∞, where IA is the indicator function of A. An analogous argument leads to∫ 2

1

T−β(u−2u0)2
(√

β log T
)1+β(u−2u0)2

h(u) du→

√
πh(2u0)I(0,1)(2u0 − 1) +

√
π

2
h(2u0)I{0,1}(2u0 − 1).

as T →∞. Now, by observing that

h(2u0) =
1

2
g̃(2u0, 0)Γ

[
α(2u0) + 1

2

]
=

1

2
g(u0, u0)Γ(d0),

the result is proved.

Theorem 2.4.3. (General Case) Assume that the process {Yt,T} satisfies (2.2.1). If

assumptions A1 and A3 are fulfilled, then the variance of µ̂T satisfies

T 1−2d0(log T )d0+ 1
2 Var(µ̂T )→ V (u0),

as T →∞ where

V (u0) =


4d0
√
πg(u0,u0)Γ(d0)

[−d′′(u0)]d0+1/2 if u0 ∈ (0, 1)

1
√
πg(u0,u0)Γ(d0)

4d0−1[−d′′(u0)]d0+1/2 if u0 = 0, 1.
(2.4.8)
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Proof. Similarly to the proof of Theorem 2.4.2, the asymptotic value of Var(µ̂T )

depends only on the evaluation of the integral (2.4.5) in a neighborhood of (x, y) =

(u0, u0). Consequently, let us define for any ε > 0 the set

AT = {(x, y)|u0 − ε ≤ x, y ≤ u0 + ε, 1/T < x− y, |d′′(x)− d′′(u0)| < δ,

|d′′(y)− d′′(u0)| < δ, |g(x, y)− g(u0, u0)| < δ},

for some δ > 0. This is a nonempty set since d′′(·) and g(·, ·) are continuous functions

in a neighborhood of u0. Define CT = T 1−2d0 (log T )d0+ 1
2 . Then,

lim
T→∞

CT Var (µ̂T ) = lim
T→∞

2CT

∫ 1

0

∫ x

0

g(x, y) [(x− y)T ]d(x)+d(y)−1 dy dx

= lim
T→∞

2CT

∫
AT

∫
g(x, y) [(x− y)T ]d(x)+d(y)−1 dy dx.

Since 1 < (x− y)T we have that

lim
T→∞

CT

∫
AT

∫
g(x, y) [(x− y)T ]d(x)+d(y)−1 dy dx

≤ [g(u0, u0) + δ] lim
T→∞

CT

∫
AT

∫
[(x− y)T ]2d0+[d′′(u0)−δ][(x−u0)2+(y−u0)2]/2−1 dy dx.

Then it follows by Theorem 2.4.2 we have that

lim
T→∞

CT

∫
AT

∫
g(x, y) [(x− y)T ]d(x)+d(y)−1 dy dx

≤ [g(u0, u0) + δ]
4d0
√
πΓ(d0)

[δ − d′′(u0)]d0+1/2
.

By an analogous argument, we can also conclude that

lim
T→∞

CT

∫
AT

∫
g(x, y) [(x− y)T ]d(x)+d(y)−1 dy dx

≥ [g(u0, u0)− δ] 4d0
√
πΓ(d0)

[−δ − d′′(u0)]d0+1/2
. (2.4.9)
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Now, since ε and δ can be chosen arbitrarily small, we have that

lim
T→∞

CT

∫
AT

∫
g(x, y) [(x− y)T ]d(x)+d(y)−1 dy dx

= g(u0, u0)
4d0
√
πΓ(d0)

[−d′′(u0)]d0+1/2
.

A similar argument yields the result for u0 = 0, 1.

2.5 Normality

The next theorem establishes the asymptotic normality of µ̂T . Observe that we

have added the assumption that the input noise {Zt} in the generalized Wold ex-

pansion (2.2.3) is a sequence of independent identically distributed random variables.

As noted by Hosking (1996)(p.264), this assumption seems to be essential for the

existence of a central limit theorem for the sample mean.

Theorem 2.5.1. (Normality) Assume that the process {Yt,T} satisfies (2.2.3) where

{Zt} is a sequence of independent identically distributed random variables. Then

under Assumptions A1, A3 and A4

T 1−2d0 (log T )2d0+1 (µ̂T − µ)→ N [0, V (u0)],

as T →∞, where V (u0) is given by (2.4.8).

Proof. We adapt the Theorem 18.6.5 by Ibragimov and Linnik (1971), as corrected

by Hosking (1996). Without loss of generality, assume that µ = 0 and define ST =∑T
t=1 Yt,T . Then, we can write

ST =
T∑

k=−∞

ck,TZk,
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where the coefficients {ck,T} are given by

ck,T =
T∑

j=max{1,k}

σ
(
j
T

)
ψj−k

(
j
T

)
.

Let σ2
T = Var(ST ) just as Ibragimov and Linnik’s show that the ratio

ck,T
σT

converges

to zero uniformly as T → ∞. In what follows, we prove that this is indeed the case

for the class of locally stationary processes under study. First, observe that from

Assumption A3 we may conclude that

|ck,T | ≤ KT d0 , (2.5.1)

for k ≤ T . On the other hand, note that σ2
T = T 2 Var(µ̂T ) . Hence, by (2.4.9) we

have that

CT
T 2

σ2
T ≥

4d0
√
πΓ (d0) [g(u0, u0)− δ]

[−δ − d′′(u0)]d0+1/2
,

for large T , where CT is defined in (2.4.3). Since d′′(u0) < 0, g(u0, u0) > 0, Γ(u0) > 0

for any u0 ∈ [0, 1] and δ can be chosen arbitrarily small, there exists a constant K > 0

such that

CT
T 2

σ2
T ≥ K,

for large T . Hence

1

σT
≤ K

√
CT
T

. (2.5.2)

Now, by (2.5.1) and (2.5.2) we conclude that

aT =
|ck,T |
σT
≤ K

(log T )d0/2+1/4

√
T

,

in which aT → 0 uniformly as T →∞.
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2.6 Numerical and Simulation Studies

This section discusses the calculation of the variance of the sample mean of LSLM pro-

cesses, assessing the accuracy of the asymptotic formula provided by Theorems 2.4.1–

2.4.3 comparing the sample variance obtained from several simulations to their theo-

retical counterparts. These calculations are illustrated with a locally stationary frac-

tional noise process with linear, quadratic and general long-memory function. Given

that the calculation of the exact variance of the sample mean is a highly demanding

task for large sample sizes, we examine other approximate methods.

2.6.1 Linear long-memory function

Example 2.6.1. For the LSFN process with time-varying long-memory parameter

given by

d(u) = 0.2 + 0.15u, (2.6.1)

for u ∈ [0, 1].

This function is depicted in Figure2.1.

A realization of this process with 4, 000 observation is shown in Figure 2.2. The

samples of this LSFN process used in these simulations are generated by means of

the innovation algorithm, see for example (Brockwell and Davis, 1991, p.172). In this

implementation, the variance-covariance matrix of the process, κT (s, t), is given by

Lemma A.1.1.
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Figure 2.1: Time varying long-memory function d(u) = a+ bu, u ∈ [0, 1] with a = 0.2
and b = 0.15 .
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Figure 2.2: Simulated locally stationary process with 4, 000 observations, with linear
long-memory function.
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The following tables report a set of simulation and numerical experiments to

illustrate the calculation of the variance of the sample mean. We consider locally

stationary fractional noise models with time-varying parameter specified by (2.6.1)

and different sample sizes. On the other hand, calculating the exact value of the

variance of the sample mean is a demanding computational task, especially for large

sample sizes. The exact value of the variance of the sample mean is given by

Var(µ̂T ) =
1

T 2

T∑
s=1

T∑
t=1

κT (s, t), (2.6.2)

and using formula (2.4.2) we may obtain the approximation,

Var(µ̂T ) ∼ 2

∫ 1

0

∫ x

0

g(x, y)(x− y)d(x)+d(y)−1T d(x)+d(y)−1 dy dx, (2.6.3)

where

g(x, y) =
Γ [1− d(x)− d(y)]

Γ [1− d(x)] Γ [d(x)]
.

For simplicity, this formula will be denoted as Approximation. On the other hand we

have the asymptotic variance given by the Theorem 2.4.1

T 1−2α0−2α1(α1 log T )2α0+2α1+1 Var(µ̂T )→ g(1, 1)Γ(2α0 + 2α1), (2.6.4)

as T →∞. we will denote formula Asymptotic.

Table 2.1 reports the values of the variance of the sample mean for three sample

sizes T = 1, 000, T = 2, 000 and T = 4, 000 obtained from the following four ap-

proaches: Exact, Sample, Approximation and the Asymptotic formula. The first row

of the table provides the exact values of the variance of µ̂T given by formula (2.6.2).

The second row corresponds to the average of this value over 1,000 repetitions. The

third row corresponds to Approximation given by (2.6.3) and asymptotic method give
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Table 2.1: Estimation of the mean: Variance of the estimate

Method Sample Size

T = 1, 000 T = 2, 000 T = 4, 000

Exact 0.0588310 0.04444876 0.03358069

Sample 0.0583592 0.04644588 0.03292527

Approximation 0.0554740 0.04168669 0.03139149

Asymptotic 0.1305255 0.09011318 0.06310254

Table 2.2: Estimation of the mean: Ratio of Approximation and Asymptotic Variance

Method Sample Size

log T = 10 log T = 100 log T = 500

Approximation/Asymptotic 0.5723458 0.9803262 1.001104

by (2.6.4) for the variance of µ̂T . From this table, note that the sample mean variance

values from the simulations (second row) and Approximation Variance(third row) are

relatively close to their theoretical counterparts displayed in the first row. On the

other hand, Asymptotic Variance formula seems to be far off from the exact value for

these three sample sizes. Thus, for these sample sizes, the asymptotic formula is not

very useful for calculating the variance of µ̂T . In order to evaluate the accuracy of the

asymptotic formula for larger sample sizes, the Table 2.2 reports the ratio between

approximation given for formula (2.6.3) and Asymptotic Variance formula (2.6.4).

Due to the large sample sizes involved in this table, in these experiments we have

not calculated the exact variance de µ̂T nor the sample values. From this table, we

observe that the values Approximation and Asymptotic Variance is quite close when
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the number of sample size increases.

2.6.2 Quadratic long-memory function

Example 2.6.2. Consider the following illustrative example consisting of a LSFN

process defined by (2.2.4)–(2.2.5) with time-varying long-memory parameter given by

d(u) = 4
17

+ 2
17
u− 4

17
u2, (2.6.5)

for u ∈ [0, 1].

This function, depicted in Figure 2.3, has a maximum value d0 = 0.25 reached at

u0 = 0.25.
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Figure 2.3: Time varying long-memory function d(u) = a + bu − cu2, u ∈ [0, 1] with
a = 4/17, b = 2/17 and c = 4/17.
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The following two tables report a set of simulation and numerical experiments to

illustrate the calculation of the variance of the sample mean. We consider locally

stationary fractional noise models with time-varying parameter specified by (2.6.5)

and different sample sizes. In this section we also discuss other approximated method

for calculating the variance of the mean.

As previous case the exact value of the variance of the sample mean is given by the

formula (2.6.2). Another approximation of the variance of the sample mean can be

obtained as follows (For more details see Appendix Lemma A.1.10). From expression

(2.4.6) with u0 = 0.25 we have that

Var(µ̂T ) ∼ T 2d0−1

(β log T )d0+ 1
2

∫ 1

0

T−β(u−2u0)2
(√

β log T
)1+β(u−2u0)2

hT (u) du

∼
∫ 1

0

Tα(u)
(√

β log T
)−α(u)−1

hT (u) du.

But, from Lemma A.1.8 equations (A.1.8)-(A.1.9) we have that

hT (u) ∼ 1
2
g(u

2
, u

2
) γ
[
α(u)+1

2
, β(log T )u2

]
,

where γ(x, a) corresponds to the incomplete Gamma function

γ(x, a) =

∫ x

0

ta−1 exp(−t) dt.

Hence,

Var(µ̂T ) ∼ 1

2

∫ 1

0

Tα(u)(√
β log T

)α(u)+1
g(u

2
, u

2
) γ
[
α(u)+1

2
, β(log T )u2

]
du. (2.6.6)

This formula will be denoted as Approximation 1. Finally, we can approximate the

value of the variance of the sample mean by the asymptotic expression provided by

Theorem 2.4.2,

Var(µ̂T ) ∼ 1

2

√
πg(u0, u0)Γ(d0)T 2d0−1(β log T )−d0−

1
2 . (2.6.7)
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Table 2.3: Estimation of the mean: Variance of the estimate

Method Sample Size

T = 1, 000 T = 2, 000 T = 4, 000

Exact 0.02034246 0.01419231 0.009870528

Sample 0.01879493 0.01329861 0.009766211

Approximation 0.02283783 0.01566236 0.01075406

Approximation 1 0.01477839 0.01033301 0.006440145

Asymptotic 0.04735846 0.03116997 0.02064407

For simplicity, this expression will be denoted as Asymptotic formula. Table 2.3 re-

ports the values of the variance of the sample mean for three sample sizes T = 1, 000,

T = 2, 000 and T = 4, 000 obtained from the following five approaches: exact, sample,

Approximation, Approximation 1 and the Asymptotic formula. The first row of the

table provides the exact values of the variance of µ̂T given by (2.6.2). The second

row corresponds to the average of this value over 1,000 repetitions. The third and

fourth rows correspond to the sample mean variances obtained from Approximation

and Approximation 1, given by formulas (2.6.3) and (2.6.6), respectively. The fifth

column shows the approximated values of the variance of µ̂T provided by the asymp-

totic formula (2.6.7). From this table, note that the sample mean variance values

from the simulations (second row) and Approximation 1 (third row) are relatively

close to their theoretical counterparts displayed in the first row. On the other hand,

Approximation 1 and the Asymptotic formula seems to be far off from the exact value

for these three sample sizes. Thus, for these sample sizes, the asymptotic formula is

not very useful for calculating the variance of µ̂T .
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In order to evaluate the accuracy of the asymptotic formula for larger sample

sizes, Table 2.4 reports the ratios between Approximation and Approximation 1 to

the asymptotic formula. From this table, the asymptotic formula seems to produce

accurate values, but for quite large sample sizes.

Table 2.4: Estimation of the mean: Ratio of variances

Method Sample Size

log T = 10 log T = 100 log T = 500

Approximation /Asymptotic 0.5595917 0.9391358 0.9822582

Approximation 1/Asymptotic 0.3921184 0.9463146 1.000580

2.6.3 Cubic long-memory function

Example 2.6.3. Extending the previous example let {yt,T : t ∈ Z} be a LSFN process

with time-varying long-memory parameter given by

d(u) = 3
17

+ 2
17
u+ 1

17
u2 − 3

17
u3, (2.6.8)

for u ∈ [0, 1].

This function, depicted in Figure 2.4, has a maximum value d0 = 0.230 reached

at u0 = 0.595.

The following two tables, report a set of simulation and numerical experiments to

illustrate the calculation of the variance of the sample mean. We can also approximate
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Figure 2.4: Time varying long-memory function d(u) = a+ bu+ cu2 − eu3, u ∈ [0, 1]
with a = 3/17, b = 2/17,c = 1/17 and c = 3/17.

the value of the variance of the sample mean by the asymptotic expression given by

Var(µ̂T ) ∼ 1

2

√
πg(u0, u0)Γ(d0)T 2d0−1

[
−d
′′(u0)

22
log T

]−d0− 1
2

. (2.6.9)

For simplicity, this expression will be denoted as Asymptotic formula. Table 2.5

reports the values of the variance of the sample mean for three sample sizes T = 1, 000,

T = 2, 000 and T = 4, 000. In this table the fourth row show the approximated values

of the variance of µ̂T provided by the asymptotic formula (2.6.9). One can see that

the variance of the sample mean given in the first three rows are very close. To

evaluate the accuracy of the asymptotic formula for larger sample sizes, Table 2.6

reports the ratio between approximation given for formula (2.6.3) and Asymptotic

Variance formula (2.6.9). From this table, we observe that the values Approximation

and Asymptotic Variance is quite close when the number of sample size increases.
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Table 2.5: Estimation of the mean: Variance of the estimate

Method Sample Size

T = 1, 000 T = 2, 000 T = 4, 000

Exact 0.01811858 0.01238319 0.008430995

Sample 0.01869189 0.01245654 0.008560451

Approximation 0.01902065 0.01280057 0.008617324

Asymptotic 0.03191383 0.02047275 0.013213600

Table 2.6: Estimation of the mean: Ratio of Approximation and Asymptotic Variance

Method Sample Size

log T = 10 log T = 100 log T = 500

Approximation/Asymptotic 0.7098559 1.014965 1.004061
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2.6.4 General long-memory function

The rate of convergence of the asymptotic variance for the sample mean established

for a general class of time-varying long memory parameter functions, turns out to be

accurate for large sample sizes, as shown in the following examples.

Example 2.6.4. Consider the locally stationary fractional noise process with time-

varying long-memory parameter given by

d(u) = 0.1 + u exp(−2u), (2.6.10)

for u ∈ [0, 1].

This function, depicted in Figure 2.5, has a maximum value d0 = 0.284 reached

at u0 = 0.500.

In this example we evaluate the asymptotic formula for the variance of the sample

mean given by Theorem 2.4.3. The Tables 2.7 and 2.8 show us that the asymptotic

variance formula is accurate but this is accomplished with a very large sample sizes.
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Figure 2.5: Time varying long-memory function d(u) = a + bu exp(−cu), u ∈ [0, 1]
with a = 0.1, b = 1 and c = 2 .

Table 2.7: Estimation of the mean: Variance of the estimate

Method Sample Size

T = 1, 000 T = 2, 000 T = 4, 000

Exact 0.03664112 0.02657624 0.01923992

Sample 0.03794652 0.02698353 0.01941801

Approximation 0.03683037 0.02651523 0.01910474

Asymptotic 0.05977541 0.04110415 0.02845064

Table 2.8: Estimation of the mean: Ratio of Approximation and Asymptotic Variance

Method Sample Size

log T = 10 log T = 100 log T = 500

Approximation/Asymptotic 0.7279555 1.025402 1.006205



43

Example 2.6.5. Figure 2.6 show us an example of time-varying long-memory pa-

rameter, given by

d(u) = 0.5− 0.2 exp(−u)− 0.15u2, (2.6.11)

for u ∈ [0, 1].

From the figure we can observe that the function d(u) has a maximum value

d0 = 0.342 reached at u0 = 0.433.
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Figure 2.6: Time varying long-memory function d(u) = a− b exp(−u)− cu, u ∈ [0, 1]
with a = 0.5, b = 0.2 and c = 0.15 .

Table 2.9 reports the values of the variance of the sample mean for three sample

sizes T = 1, 000, T = 2, 000 and T = 4, 000. In the same way as in the examples

above, the sample mean variance and Approximation are relatively close to their

theoretical counterparts.
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Table 2.9: Estimation of the mean: Variance of the estimate

Method Sample Size

T = 1, 000 T = 2, 000 T = 4, 000

Exact 0.11413985 0.09024096 0.07124653

Sample 0.1117166 0.09347473 0.07115020

Approximation 0.11670980 0.09183322 0.07227960

Asymptotic 0.26638680 0.19747530 0.14742360

The Table 2.10 reports the variance ratio between Approximation given by formula

(2.6.3) and Asymptotic Variance formula given by Theorem 2.4.3. From this table,

we observe that the values Approximation and Asymptotic Variance is quite close

when the number of sample size increases.

Table 2.10: Estimation of the mean: Ratio of Approximation and Asymptotic Vari-
ance

Method Sample Size

log T = 10 log T = 100 log T = 500

Approximation/Asymptotic 0.5461717 0.981355 0.9978066



Chapter 3

Estimation of a time-varying trend
for a LSLM process

It is apparent from the time series graphs of many economic and climatology series,

that they share certain characteristics. In particular there is a tendency, especially

noticeable for price index for example, that increase (or decrease) over time.

In this chapter we analyze the problem of relating a time series with a time-varying

trend, in many practical applications, the behavior of a time series may be related

to the behavior of other components or regressors. A widely used approach to model

these relationships is the linear regression analysis.

We explore some asymptotic statistical properties for the LSE of a linear regression

model with LSLM disturbances. In this chapter we analyze the simple case of a vector

non-stochastic regressor, if this vector is equal to unit vector, then we have the case of

a time series with a constant mean, where the LSE is the sample mean. In Chapter

4 we extend the asymptotic statistical properties introduced in this chapter to a

p-vector of non-stochastic regressors.

45
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3.1 Introduction

Figure 3.1 displayed a simulated LSFN process with 2,000 observations and d(u) =

a+ b u, it is evident from a visual inspection of this serie that there is a trend upward

over time. However, in this chapter we consider trends in a more general class of

processes that vary over time.

0 500 1000 1500 2000
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−2

0
2

4
6

8

Time

Figure 3.1: Simulated LSFN process with d(u) = a + bu, u ∈ [0, 1] with a = 0.3 and
b = 0.1 .

In the same way as in the previous chapter, we provide asymptotic results for calcula-

tion of the theoretical variance of the LSE of a LSLM process. These empirical studies

show that in order to be precise, the use of the asymptotic formula for the variance

of the LSE requires very large sample sizes. Thus, we offer alternative approximation

formulas which work well for moderate sample sizes.



47

3.2 Locally stationary long-memory processes

In this chapter, we go one step further with the analysis in Chapter 2 and study

how this non-stationary behavior can be modeled. We focus on a very simple model

of non-stationarity with a scalar vector no-stochastic regressors and the sequence of

errors from a LSLM evolving with time. In this section, we also derive some basic

properties of these processes. We adapt the definition of locally stationary processes

given in Section 1.3 to a more general case, where Yt,T corresponds to a model with

a time-varying trend.

Definition 3.2.1. A sequence of stochastic processes Yt,T (t = 1, ....., T ) is called

locally stationary with transfer function A0 and time-varying trend if there exists a

spectral representation

Yt,T = x( t
T

)β +

∫ π

−π
eiλtA0

t,T (λ)dξ(λ), (3.2.1)

where the following holds.

(a) ξ(λ) is a Brownian motion on [−π, π]

(b) There exists a constant K and a 2π period function A : (0, 1] × R → C with

A(u,−λ) = A(u, λ),

and

sup
t,λ

∣∣A0
t,T (λ)− A

(
t
T
, λ
)∣∣ ≤ K

T
, (3.2.2)

for all T .



48

An example more general of this class of locally stationary processes is given by

the infinite moving average expansion

Yt,T = x
(
t
T

)
β + σ

(
t
T

) ∞∑
j=0

ψj
(
t
T

)
Zt−j, (3.2.3)

where {Zt} is a zero-mean and unit variance white noise and {ψj(u)} are coefficients

satisfying
∑∞

j=0 ψj (u)2 <∞ for all u ∈ [0, 1]. The model defined by (3.2.3) generalizes

the usual Wold expansion for a linear stationary process allowing the coefficients of

the infinite moving average expansion vary smoothly over time. A particular case is

the generalized version of the fractional noise process described by the discrete-time

equation

Yt,T = x
(
t
T

)
β + σ

(
t
T

) ∞∑
j=0

ηj
(
t
T

)
Zt−j, (3.2.4)

for t = 1, 2. . . . , T where {Zt} is a white noise sequence with zero mean and unit

variance the infinite moving average coefficients {ηj(u)} are given by (2.2.5)

3.3 Consistency

Consider the following linear regression model

Yt,T = x( t
T

)β + εt,T , (3.3.1)

for t = 1, 2, . . . , T where {Yt,T} is an observed sequence, x( t
T

) a scalar of no-stochastic

regressors, {εt,T} sequence of errors is a LSLM processes and β is unknown regression

parameter. We then proceed to the analysis of some large sample properties of the

LSE under the following regularity conditions.
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A5. Parameter regression is a function of ( t
T

) which satisfies

xt,T = x
(
t
T

)
→ x(u),

as t
T
→ u for all u ∈ [0, 1] and function which is uniformly bounded over [0, 1].

A6. There exist a positive constant K such that |x(u)σ(u)ψj(u)| ≤ Kjd1−1.

The LSE the β is given by

β̂T =
1∑T

t=1 x
2
t,T

T∑
t=1

yt,Txt,T .

The definition of LSE is equivalent to

β̂T = v−1
T

T∑
t=1

yt,Txt,T ,

where vT is given by

vT =
T∑
t=1

x2
t,T ∼ T

∫ 1

0

x2(u)du ∼ Tk. (3.3.2)

The consistency of the least square estimator β̂T is established in the next theorem.

Theorem 3.3.1. (Consistency) Consider the linear model (3.3.1) where the process

{Yt,T} satisfies (3.2.1). Then, under Assumptions A1, A3 and A5 the estimator β̂T

is consistent, that is,

β̂T → β,

in probability ,as T →∞.
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Proof. By definition, the variance of the estimator β̂T can be written as

Var
(
β̂T

)
= Var

(
v−1
T

T∑
t=1

ytx
(
t
T

))

= [v−1
T ]2

T∑
t=1

T∑
s=1

x
(
t
T

)
κT (s, t)x

(
s
T

)
= [v−1

T ]2

[
2

T∑
s>t

x
(
t
T

)
x
(
s
T

)
κT (s, t) +

T∑
s=1

κT (s, s)x
(
s
T

)2

]
.

Therefore,

Var
(
β̂T

)
∼ 2[v−1

T ]2
T∑
s>t

x
(
t
T

)
x
(
s
T

)
κT (s, t),

as T →∞. Furthermore, given that by Assumption A1

κT (s, t) ∼ g( s
T
, t
T

)(s− t)d(
s
T )+d

(
t
T

)
−1
,

for large s− t > 0, we conclude that

Var
(
β̂
)
∼ 2[v−1

T ]2
T∑
s>t

x
(
t
T

)
x
(
s
T

)
g( s

T
, t
T

)(s− t)d(
s
T )+d

(
t
T

)
−1
.

Since by Assumption A1, |g(x, y)| is uniformly bounded for all (x, y) ∈ [0, 1] × [0, 1]

and by Assumption A5 the scalar xt,T (u) for u ∈ [0, 1] is bounded, next we have that

Var(β̂T ) ≤ K[v−1
T ]2

T∑
s> t

(s− t)2d0−1 ≤ K[v−1
T ]2

T∑
s> t

( s
T
− t

T
)2d0−1T 2d0−1

≤ K

T 1−2d0

∫ 1

0

∫ x

0

(x− y)2d0−1 dy dx ≤ K ′

T 1−2d0
.

Therefore we conclude that

Var(β̂T ) ≤ K ′T 2d0−1 → 0,

as T →∞. Now, by Chebyshev’s inequality, for any ε > 0 we have

P(|β̂T − β| > ε) ≤ Var(β̂T )

ε2
≤ KT 2d0−1

ε2
.

Since , P(|β̂T − β| > ε)→ 0 as T →∞, proving the result.
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3.4 Asymptotic Variance of the LSE

In this section we analyze the asymptotic variance of the LSE for the regression

parameter of the process defined in (3.3.1). Given a sample {y1,T , . . . , yt,T} we know

the LSE for the regression parameter is given by

β̂ =
1∑T

t=1 x( t
T

)2

T∑
t=1

yt,Tx(
t

T
)

=
T∑
t=1

yt,Tρt,T ,

where ρt,T =
x( t
T

)∑T
t=1 x( t

T
)2

. An application of Assumption A5 yields,

Tρ
(
t
T

)
→ x(u)∫ 1

0
x2(y)dy

.

The next results specify the convergence rate of the asymptotic variance of the esti-

mator.

Theorem 3.4.1. (Linear Case ) Assume that the process {Yt,T} satisfies (3.2.1) and

d(u) = α0+α1 u with α1 > 0. Then, under Assumptions A1, A2 and A5 the estimator

β̂T satisfies

T 1−2d1(α1 log T )2d1+1 Var(β̂T )→ x(1)2g(1, 1)Γ(2d1)[∫ 1

0
x2(y) dy

]2 ,

If α1 < 0, then

T 1−2d0(α1 log T )2d0+1 Var(β̂T )→ x2(0)g(0, 0)Γ(2d0)[∫ 1

0
x2(y) dy

]2 ,

as T →∞.
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Proof. The variance of the estimator β̂T can be written as

Var(β̂T ) =
T∑
s=1

T∑
t=1

ρT (s)ρT (t)κT (s, t)

=

[
2

T∑
s> t

ρT (s)ρT (t)κT (s, t) +
T∑
s=1

ρT (s)2κT (s, s)

]

∼ 2
T∑
s> t

ρT (s)ρT (t)κT (s, t)

= 2
T∑
s> t

ρT (s)ρT (t)
Γ(1− ds − dt)
Γ(1− ds)Γ(ds)

(s− t)(ds+dt−1)

= 2
T∑
s> t

ρ( s
T

)ρ( t
T

)g( s
T
, t
T

)(s− t)d(
s
T )+d

(
t
T

)
−1
,

as T →∞. Therefore the sum approximation for integrates we have

Var(β̂T ) ∼ 2
T∑
s> t

ρ(
s

T
)ρ(

t

T
)g( s

T
, t
T

)( s
T
− t

T
)
d( sT )+d

(
t
T

)
−1
T
d( sT )+d

(
t
T

)
−1

∼ 2

∫ 1

0

∫ x

0

T 2ρ(x)ρ(y)g(x, y)(x− y)d(x)+d(y)−1T d(x)+d(y)−1 dy dx

∼ 2

∫ 1

0

∫ x

0

g̃(x, y)(x− y)d(x)+d(y)−1T d(x)+d(y)−1 dy dx. (3.4.1)

where

g̃(u, v) =
x
(
u+v

2

)
x
(
u−v

2

)[∫ 1

0
x2(y) dy

]2 g
(
u+v

2
, u−v

2

)
. (3.4.2)

Similarly to the proof of Theorem 2.4.1, the asymptotic value of Var(β̂T ) depends only

on the evaluation of the double integral (3.4.1) in a neighborhood of (x, y) = (1, 1).

Consequently, let us define any ε > 0 the set

AT = {(x, y)|1− ε ≤ x, y ≤ 1 + ε, 1/T < x− y, |d(x)− d1| < δ,

|d(y)− d1| < δ, |g̃(x, y)− g̃(1, 1)| < δ},
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for some δ > 0. This is a nonempty set since d(·) and g̃(·) are continuous functions

in a neighborhood of 1 the proof follows of the Theorem 2.4.1.

Theorem 3.4.2. (General Case) Assume that the process {Yt,T} satisfies (3.2.1). If

assumptions A1, A3 and A5 are fulfilled, then the variance of β̂T satisfies

T 1−2d0(log T )d0+ 1
2 Var(β̂T )→ V (u0),

as T →∞ and

V (u0) =


4d0
√
πh(u0,u0)Γ(d0)

[−d′′(u0)]d0+1/2 if u0 ∈ (0, 1)
√
πh(u0,u0)Γ(d0)

4d0−1[−d′′(u0)]d0+1/2 if u0 = 0, 1,
(3.4.3)

where h(·, ·) is given by

h(u0, u0) =
g(u0, u0)x(u0)2[∫ 1

0
x2(y) dy

]2

Proof. Similar to the proof of Theorem 2.4.3

3.5 Normality

Theorem 3.5.1. (Normality) Assume that the process {Yt,T} satisfies (3.2.3) where

{Zt} is a sequence of independent identically distributed random variables. Then

under Assumptions A1, A3 and A6

T 1−2d0 (log T )2d0+1
(
β̂T − β

)
→ N [0, V (u0)],

as T →∞, where V (u0) is given by (3.4.3).

Proof. Define ST =
∑T

t=1 x
(
t
T

)
Yt,T . Then, we can write

ST =
T∑

k=−∞

ck,TZk,
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where the coefficients {ck,T} are given by

ck,T =
T∑

j=max{1,k}

x
(
j
T

)
σ
(
j
T

)
ψj−k

(
j
T

)
.

Letσ2
T = Var(ST ). As pointed out by Hosking (1996), the key aspect of Ibragimov

and Linnik’s proof is showing that
ck,T
σT

converges to zero uniformly as T → ∞. In

what follows, we prove that this is indeed the case for the class of locally stationary

processes under study. First, observe that from Assumption A6 we may conclude

that

|ck,T | ≤ KT d0 , (3.5.1)

for k ≤ T . On the other hand, note that σ2
T = v2

T Var(β̂T ) where vT is as (3.3.2).

Hence, by (2.4.9) we have

CT
T 2

σ2
T ≥

4d0
√
πΓ (d0) [h(u0, u0)− δ]

[−δ − d′′(u0)]d0+1/2
,

for large T , where CT is defined in (2.4.3). Since h(u0, u0) > 0, Γ(d0) > 0 and δ can

be chosen arbitrarily small, there exists a constant K > 0 such that

CT
v2
T

σ2
T ≥ K,

for large T . Hence

1

σT
≤ K

√
CT
vT

. (3.5.2)

Now, by (3.5.1) and (3.5.2) we conclude that

aT =
|ck,T |
σT
≤ K

(α1 log T )d0/2+1/4
√
T

vT
,

in which aT → 0 uniformly as T →∞.
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3.6 Numerical and Simulation Studies

Example 3.6.1. Let {yt,T} be harmonic Model given by

Yt,T = sin
(
ω t
T

)
β + εt,T ,

where ω = 1.6 and εt,T is a LSFN process descriptive by (3.2.1). Consider the time-

varying long-memory parameter given by

d(u) = 0.2 + 0.15u, (3.6.1)

for u ∈ [0, 1].

To illustrate the calculation of the variance of the LSE, consider a trajectory

{y1,T , . . . , yt,T} of a simulated LSFN process with time-varying long-memory param-

eter given in (3.6.1), time-varying trend sin
(
1.6 t

T

)
and sample size T = 4, 000 dis-

played in Figure 3.2. As in the previous case the sample of this LSFN processes

are generated by means of the innovation algorithm. In this implementation, the

variance-covariance matrix of the process, κT (s, t), is given by Lemma A.1.1.

Note what in this case the Asymptotic Variance is given by

(α1 log T )2α0+2α1+1T 1−2α0−2α1 Var(β̂T )→ x(1)2g(1, 1)Γ(2α0 + 2α1)[∫ 1

0
x2(y) dy

]2 , (3.6.2)

as T →∞ and Approximation is give by

Var(β̂T ) ∼ 2

∫ 1

0

∫ x

0

g̃(x, y)(x− y)d(x)+d(y)−1T d(x)+d(y)−1 dy dx. (3.6.3)



56

Time

Y

0 1000 2000 3000 4000

−2
0

2
4

Figure 3.2: Simulated locally stationary process with 4, 000 observations.

where

g̃(x, y) =
x(x)x(y)[∫ 1

0
x2(y) dy

]2 g(x, y).

The Table 3.1 reports the values of the variance for the LSE of β. From the Table 3.1

we can see that the values of the first row are similar to the values of the Approx-

imation (third row). To reproduce the Theoretical Variance (first row) for T very

large computational cost is very high we will use the ratio between the Approxima-

tion formula and the Asymptotic variance to establish the accuracy of the asymptotic

variance formula. Table 3.2 shows the ratio between the Asymptotic Variance (3.6.2)

and the Approximation (3.6.3) for large enough values of T . It is observed that this

ratio is closer to one. In following example discusses the calculation of the variance of

the LSE, assessing the accuracy of the asymptotic formula provided by Theorem 3.4.2.

Example 3.6.2. Extending the previous example, let {yt,T} be an harmonic model
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Table 3.1: Estimation Harmonic Model: Variance of the estimate

Method Sample Size

T = 1, 000 T = 2, 000 T = 4, 000

Exact 0.13783469 0.10643133 0.08208923

Sample 0.12648179 0.1043008 0.0775631

Approximation 0.1325978 0.1018098 0.07825691

Asymptotic 0.5031331 0.3473569 0.2432397

Table 3.2: Estimation Harmonic Model: Ratio of Approximation and Asymptotic
Variance

Method Sample Size

log T = 10 log T = 100 log T = 500

Approximation/Asymptotic 0.3878928 0.9702865 1.001508

given by

Yt,T = cos
(
ω t
T

)
β + εt,T ,

where ω = π
2

and εt,T is a LSLM process described by (3.2.1) and the time-varying

long-memory parameter is given by

d(u) = 0.15 + 1.5u exp (−2u), (3.6.4)

for u ∈ [0, 1].

This function, depicted in Figure 2.5, has a maximum value d0 = 0.284 reached

at u0 = 0.500. The Table 3.3 reports the values of the variance for the LSE for three
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sample sizes T = 1, 000, T = 2, 000 and T = 4, 000. In this case the asymptotic

formula is give by Theorem 3.4.2 for the variance of β̂T . As in the previous case we

Table 3.3: Estimation Harmonic Model: Variance of the estimate

Method Sample Size

T = 1, 000 T = 2, 000 T = 4, 000

Exact 0.0607423 0.04384365 0.0316032

Sample 0.0606481 0.04143008 0.0315631

Approximation 0.0589109 0.04220783 0.0302805

Asymptotic 0.2296406 0.15791080 0.1092995

Table 3.4: Estimation Harmonic Model: Ratio of Approximation and Asymptotic
Variance

Method Sample Size

log T = 10 log T = 100 log T = 500

Approximation/Asymptotic 0.5608171 0.9462125 0.9983411

will use the ratio between the approximation and the asymptotic variance to establish

the accuracy of the asymptotic variance formula. Table 3.4 show us the ratio between

the Asymptotic Variance and the Approximation (3.6.3) for large enough values of T .

From this table, the Asymptotic formula seems to produce accurate values for very

large sample sizes.



Chapter 4

Regression estimation with LSLM
disturbances

The LSE of the chapter 3 has been deliberately simple, restricted to the bivariate

case involving just the variables Yt,T and xt,T , the observed process and regressor

respectively. While there are very few applications in which only two variables are

involved most of the important principles in estimation can be illustrated with this

simple case. The extension to the multivariate case is straightforward given the

framework outlined in the bivariate case. For example, the method of least squares

still proceeds by defining the residual sum of squares and seeking the estimators that

result in a minimum. Similarly the principles of asymptotic theory are the same. In

particular in this chapter we are interested in extend the asymptotic properties for

LSE to linear regression model to more than two regressors. This extension is made

very much easier if matrix-vector notations are used.

59
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4.1 Introduction

Let the observed process {Yt,T} follow the regression model

Yt,T = X ′
(
t
T

)
β + εt,T ,

whereX( t
T

) = (xt1, . . . , xtp)
′ is a p-vector of non-stochastic regressors β = (β1, . . . , βp)

′

is a vector of unknown regression parameters, and εt,T the sequence of errors of a

LSLM processes. We discuss the asymptotic properties of the LSE for the unknown

parameter more specifically the consistency, asymptotic variance and normality of

the LSE under the family of LSLM processes. However this model does not have a

stationary property, which is crucial in the theory of estimation and asymptotic of

time series models. Asymptotic properties of the LSE in a regression model with long

memory stationary errors εt has been studied by Yajima (1991). However, the case

that εt,T is a long-memory locally stationary process has not been clarified fully yet

since this process causes considerable mathematical difficulties. In this chapter, we

establish conditions for consistency and establishes precise convergence rates of the

variance of the LSE for a family of LSLM processes with general time-varying long

memory parameter. Apart from establishing these asymptotical results, this chap-

ter explores the finite sample calculation of the theoretical variance of the LSE of a

LSLM. The remaining of this chapter is structured as follows: Section (4.2) discusses

a class of LSLM processes; Section (4.3) establishes the consistency of the LSE of

this family of LSLM models; In section (4.4) will discuss the asymptotic variance of

this estimator differentiating the linear case and the general case for the time-varying

long-memory parameter; Section (4.5) we discuss an asymptotic distribution for the

LSE. Here we impose the condition that the white noise process are a sequence of
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independent identically distributed random; Section (4.6) we discuss the parameter

estimate by minimization of a generalization of the Whittle function where the usual

periodogram is replaced by local periodograms over data segments, here the unknown

parameter β is estimated by LSE β̂; Section (4.7) illustrates the use of the asymptotic

formulas for the variance of the LSE as well as finite sample approximations.

4.2 Locally stationary long-memory processes

Definition A sequence of stochastic processes {Yt,T} is called locally stationary with

transfer function A0 if there exists a spectral representation

Yt,T = X ′
(
t
T

)
β +

∫ π

−π
eiλtA0

t,T (λ)dξ(λ), (4.2.1)

for t = 1, . . . , T , where the following holds.

(a) ξ(λ) is a Brownian motion on [−π, π]

(b) There exists a constant K and a 2π period function A : [0, 1] × R → C with

A(u,−λ) = A(µ, λ), and

sup
t,λ

∣∣∣∣A0
t,T (λ)− A

(
t

T
, λ

)∣∣∣∣ ≤ K

T
,

for all T . In this definition two different functions A0
t,T (λ) and A

(
t
T
, λ
)

are defined.

This complicated construction is necessary if we want to model a class of processes

which is rich enough to cover interesting applications. In particular, if we do not

define these two functions in the above definition, then the class does no longer

include time-varying AR(p) processes (as showed in Dahlhaus (1996) ).
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Observe that we have used the same convention for the asymptotic concept than

in Chapter 1. This implies that the non-stationary process is doubly-indexed. The

smoothness of A in u defines the departure from stationarity and ensures the locally

stationary behavior of the process. An example of this class of locally stationary

processes is given by the infinite moving average expansion

Yt,T = X ′
(
t
T

)
β + σ

(
t
T

) ∞∑
j=0

ψj
(
t
T

)
Zt−j, (4.2.2)

where {Zt} is a zero-mean and unit variance white noise and {ψj(u)} are coefficients

satisfying
∑∞

j=0 ψj (u)2 <∞ for all u ∈ [0, 1]. The model defined by (4.2.2) generalizes

the usual Wold expansion for a linear stationary process allowing the coefficients of

the infinite moving average expansion vary smoothly over time. A particular case is

the generalized version of the fractional noise process described by the discrete-time

equation

Yt,T = X ′
(
t
T

)
β + σ

(
t

T

) ∞∑
j=0

ηj

(
t

T

)
Zt−j, (4.2.3)

for t = 1, 2. . . . , T where {Zt} is a white noise sequence with zero mean and unit

variance the infinite moving average coefficients {ηj(u)} are given by

ηj(u) =
Γ [j + d(u)]

Γ (j + 1) Γ [d(u)]
, (4.2.4)

where Γ (·) is the Gamma function and d(·) is a smoothly time-varying long-memory

coefficient. A natural extension of the LSFN model is the locally stationary autore-

gressive fractionally integrated moving average LS-ARFIMA process is defined by

Φ

(
t

T

)
Yt,T = Θ

(
t

T

)
(1−B)−d(

t
T ) σ

(
t

T

)
Zt, (4.2.5)

for t = 1, 2, . . . n, where for u ∈ [0, 1], Φ (u,B) = 1 + φ1(u)B + . . . . + φp(u)Bp is an

autoregressive polynomial, Θ (u,B) = 1 + θ1(u)B + . . . . + θqB
q is a moving average
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polynomial, d(u) is a long-memory parameter, σ(u) is a scale factor and Zt is a

zero-mean and unit variance white noise.

4.3 Consistency

We shall consider the regression model of the form

Yt,T = X ′
(
t
T

)
β + εt,T , (4.3.1)

for t = 1, 2, . . . , T where Yt,T is an observed sequence, X( t
T

) is a p-vector no-stochastic

regressors, {εt,T} sequence of errors under the class of LSLM processes and β is

unknown regression parameter. In what follows we study some of the asymptotic

properties of the LSE under the following regularity conditions.

A7. The time-varying spectral density of the process (4.2.1) is strictly positive and

satisfies

fθ(u, λ) =
Cf (θ, u)

|1− e−iλ|2d(u)
,

where Cf (θ, u) is a nonnegative bounded function, λ ∈ [−π, π] and 0 < d(u) < 1
2

for

all u ∈ [0, 1] and θ ∈ Θ. As a particular case of the assumption, consider the extension

of the usual fractional noise process with time-varying long parameter, described by

(4.2.3)-(4.2.4). The spectral density of this LS-FN process given by

fθ(u, λ) =
σ2

2π

(
2 sin

λ

2

)−dθ(u)

.

By fθ(u, λ) = |A(u, λ)|2 we denote the time varying spectral density of our process,

from (4.2.4) the transfer function of this process satisfies∫ π

−π
A(u, λ)A(u,−λ) exp(ikλ) =

Γ[1− d(u)− d(v)]Γ[k + d(u)]

Γ[1− d(u)]Γ[d(u)]Γ[k + 1− d(v)]
,
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for k ≥ 0. Thus, by Stirling’s approximation we get∫ π

−π
A(u, λ)A(u,−λ) exp(ikλ) ∼ Γ[1− d(u)− d(v)]

Γ[1− d(u)]Γ[d(u)]
kd(u)+d(v)−1,

for k →∞.

A8. The time-varying covariance function of the process (4.2.1) satisfies

κT (s, t) ∼ g( s
T
, t
T

)(s− t)d(
s
T )+d

(
t
T

)
−1
,

for large s − t > 0, where d : [0, 1] → (0, 1
2
) and g is a C1(R × R) function which is

uniformly bounded over [0, 1]× [0, 1].

A9. The p-vector no-stochastic regressors are a function continuous what satisfied

X( t
T

)→ X(u),

as t
T
→ u for all u ∈ [0, 1] and function which is uniformly bounded over [0, 1].

A10. There exist a positive constant K such that |αixi (u)σ (u)ψj−k (u)| ≤ Kjd0−1

for i = 1, . . . , p, for all u ∈ [0, 1] and j ≥ 1.

Given a sample {y1,T , . . . , yt,T} of the process (4.2.1) we know the least squares

estimators for the regression parameters β is given for

β̂ = (XTX
′
T )
−1
XTYT ,

where XTX
′
T is given by

XTX
′
T =

T∑
t=1

xt,Tx
′
t,T = V T ,



65

where xt,T = (xt,1, . . . , xt,p)
′ =

(
x1

(
t
T

)
, . . . , xp

(
t
T

))′
= x

(
t
T

)
is a sequence of regres-

sors. Hence V T can be write

V T
i,j =

T∑
t=1

xi
(
t
T

)
x′j
(
t
T

)
, (4.3.2)

to i, j = 1, . . . p. Therefore V T is a matrix the p × p that satisfy be positive definite

and under assumption A8 we have that V T satisfies the following condition

T
[
V T
i,j

]−1 →
[∫ 1

0

x(y)x′(y) dy

]−1

i,j

,

as T →∞. Analogy to XTYT be can written

XTYT =
T∑
t=1

xt,Tyt,T .

Therefore the least squares estimator can be write

β̂T =
[
V T
]−1

T∑
t=1

xt,Tyt,T .

The consistency of the LSE is established in the next theorem.

Theorem 4.3.1. Consider the linear model (4.3.1) where the sequence of observa-

tions {Yt,T} satisfies (4.2.1) with the spectral density fθ(u, λ) of A7. Then, under

Assumptions A3, A8 and A9 the estimator β̂T is consistent, that is,

β̂T → β,

in probability , as T →∞
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Proof. Let α be a fixed vector, the variance of the estimator β̂T can be written as

Var(α′β̂T ) = Var(α′V −1
T

T∑
t=1

xtyt)

= α′V −1
T

T∑
t=1

xt Var(yt)x
′
tV
−1
T α

= α′V −1
T

T∑
s,t=1

xtγ(s− t)x′tV −1
T α

=

∫ π

−π

∣∣∣∣∣
T∑
t=1

α′V −1
T xt exp (iλt)

∣∣∣∣∣
2

fθ(u, λ) dλ

≤ KT 2d(u)

T∑
t=1

(α′V −1
T xt)

2 ≤ KT 2d0

T∑
t=1

(α′V −1
T xt)

2

= KT 2d0α′V −1
T α.

The last result is given by Lemma A.2.1. Therefore we conclude that

Var(β̂T ) ≤ KT 2d0V −1
T ≤ KT 2d0−1 → 0,

as T →∞. Now, by Chebyshev’s inequality, for any ε > 0 we have

P(|β̂T − β| > ε) ≤ Var(β̂T )

ε2
≤ KT 2d0−1

ε2
.

Since , P(|β̂T − β| > ε)→ 0 as T →∞, proving the result.
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4.4 Asymptotic variance

The asymptotic variance of the LSE is analyzed in this section. The next results

specify rate of convergence for asymptotic variance of β̂T .

Theorem 4.4.1. (Linear Case ) Assume that the process {Yt,T} satisfies (4.2.1) and

d(u) = α0+α1 u with α1 > 0. Then, under Assumptions A2, A8 and A9, the estimator

β̂T satisfies

T 1−2d1(α1 log T )2d1+1 Var(β̂T ) → G(1, 1)Γ(2d1),

as T →∞. If α1 < 0, then

T 1−2d0(α1 log T )2d0+1 Var(β̂T ) → G(0, 0)Γ(2d0),

as T →∞. Where G is an p× p matrix with elements given by

G(u, u) =

[∫ 1

0

x(v)x′(v) dv

]−1

x(u)x′(u)

[∫ 1

0

x(v)x′(v) dv

]−1

g(u, u). (4.4.1)
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Proof. By definition , the variance of the estimator β̂T can be written as

Var(β̂T ) = Var

(
[VT ]−1

T∑
t=1

xtyt

)

= [VT ]−1 Var

(
T∑
t=1

xtyt

)
[VT ]−1

= V −1
T

[
T∑
t=1

cov(xtyt, xsys)

]
V −1
T

= V −1
T

[
T∑
s=1

T∑
t=1

xt cov(yt, ys)x
′
t

]
V −1
T

= [VT ]−1

[
T∑
s=1

T∑
t=1

x
(
t
T

)
κT (t, s)x′

(
t
T

)]
[VT ]−1

∼ [VT ]−1

[
T∑
s> t

x
(
t
T

)
κT (t, s)x′

(
s
T

)
+

T∑
s< t

x
(
t
T

)
κT (s, t)x′

(
s
T

)]
[VT ]−1

∼ [VT ]−1
T∑
s> t

x
(
t
T

) Γ(1− ds − dt)
Γ(1− ds)Γ(ds)

(s− t)(ds+dt−1)x′
(
s
T

)
[VT ]−1

+ [VT ]−1
T∑
s> t

x
(
s
T

) Γ(1− ds − dt)
Γ(1− ds)Γ(ds)

(s− t)(ds+dt−1)x′
(
t
T

)
[VT ]−1

∼ [VT ]−1
T∑
s> t

[
x
(
t
T

)
x′
(
s
T

)
+ x

(
s
T

)
x′
(
t
T

)]
g( s

T
, t
T

)

× (s− t)d(
s
T )+d

(
t
T

)
−1

[VT ]−1 ,

as T →∞. Therefore the sum approximation for integrate we have

Var(β̂T ) ∼ [VT ]−1
T∑
s> t

T 2
[
x
(
t
T

)
x′
(
s
T

)
+ x

(
s
T

)
x′
(
t
T

)]
g( s

T
, t
T

)

×( s
T
− t

T
)
d( sT )+d

(
t
T

)
−1
T
d( sT )+d

(
t
T

)
−1

[VT ]−1 1
T 2

∼ [VT ]−1

∫ 1

0

∫ x

0

T 2 [x (x)x′ (y) + x (y)x′ (x)] g(x, y)

×(x− y)d(x)+d(y)−1T d(x)+d(y)−1 dy dx [VT ]−1

∼
∫ 1

0

∫ x

0

G(x, y)(x− y)d(x)+d(y)−1T d(x)+d(y)−1 dy dx, (4.4.2)
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where

G(x, y) =

[∫ 1

0

x(z)x′(z) dz

]−1

[x (x)x′ (y) + x (y)x′ (x)]

×
[∫ 1

0

x(z)x′(z) dz

]−1

g (x, y) . (4.4.3)

Hence, similarly to the proof of Lemma A.1.2, the asymptotic variance value of

Var(β̂T ) depends only on the evaluation of the double integral (4.4.2) in a neigh-

borhood of (x, y) = (1, 1). Consequently, let us define any ε > 0 the set

AT = {(x, y)|1− ε ≤ x, y ≤ 1 + ε, 1/T < x− y, |d(x)− d1| < δ,

|d(y)− d1| < δ, |G(x, y)−G(1, 1)| < δ},

for some δ > 0. This is a nonempty set since d(·) and G(·) are continuous functions

in a neighborhood of 1. Let CT be defined as

CT = T 1−2d1 (α1 log T )2d1+1 . (4.4.4)

Then,

lim
T→∞

CT Var
(
β̂T

)
= lim

T→∞
CT

∫ 1

0

∫ x

0

G(x, y) [(x− y)T ]d(x)+d(y)−1 dy dx

= lim
T→∞

CT

∫
AT

∫
G(x, y) [(x− y)T ]d(x)+d(y)−1 dy dx.

Therefore 1 < (x− y)T we have that

lim
T→∞

CT

∫
AT

∫
G(x, y) [(x− y)T ]d(x)+d(y)−1 dy dx

≤ [G(1, 1) + δ] lim
T→∞

CT

∫
ATi,j

∫
[(x− y)T ]2δ+2d1−1 dy dx.

Therefore, by virtue of Lemma A.1.2, we conclude that

lim
T→∞

CT

∫ 1

0

∫ x

0

G(x, y) [(x− y)T ]d(x)+d(y)−1 dy dx ≤ [G(1, 1) + δ] Γ(2d1).
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By an analogous argument, we can also conclude that

limT→∞CT

∫ 1

0

∫ x

0

G(x, y) [(x− y)T ]d(x)+d(y)−1 dy dx

≥ [Gi,j(1, 1)− δ] Γ(2d1). (4.4.5)

Now, since ε and δ can be chosen arbitrarily small, we have that

limT→∞CT

∫ 1

0

∫ x

0

G(x, y) [(x− y)T ]d(x)+d(y)−1 dy dx = G(1, 1)Γ(2d1).

Theorem 4.4.2. (General Case ) Assume that the process {Yt,T} satisfies (4.2.1).

Then, under Assumptions A3, A8 and A9 the estimator β̂T satisfies

T 1−2d0 (log T )d0+ 1
2 Var

(
β̂T

)
→ V (u0),

as T →∞. Where V (u0) is given by G(u0, u0) 22d0
√
πΓ(d0)

[−d′′(u0)]d0+1/2 if u0 ∈ (0, 1)

G(u0, u0) 22d0−1√πΓ(d0)

[−d′′(u0)]d0+1/2 if u0 = 0, 1.

Where G is an p× p matrix with elements given by

Gi,j(u0, u0) =

[∫ 1

0

x(y)x′(y) dy

]−1

x(u0)x′(u0)

[∫ 1

0

x(y)x′(y) dy

]−1

g(u0, u0).

Proof. Similarly to the proof of Theorem 2.4.2, the asymptotic value of Var(β̂T ) de-

pends only on the evaluation of the integral (4.4.2) in a neighborhood of u0. Conse-

quently, let us define for each element of the matrix Gi,j(x, y) and for any ε > 0 the

set

AT = {(x, y)|u0 − ε ≤ x, y ≤ u0 + ε, 1/T < x− y, |d′′(x)− d′′(u0)| < δ,

|d′′(y)− d′′(u0)| < δ, |G(x, y)−G(u0, u0)| < δ},
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for some δ > 0. Define CT = T 1−2d0 (log T )d0+ 1
2 . Then,

lim
T→∞

CT Var
(
β̂T

)
= lim

T→∞
CT

∫ 1

0

∫ x

0

G(x, y) [(x− y)T ]d(x)+d(y)−1 dy dx

= lim
T→∞

CT

∫
AT

∫
G(x, y) [(x− y)T ]d(x)+d(y)−1 dy dx.

Therefore 1 < (x− y)T we have that

lim
T→∞

CT

∫
AT

∫
G(x, y) [(x− y)T ]d(x)+d(y)−1 dy dx

≤ [G(u0, u0) + δ] lim
T→∞

CT

∫
AT

∫
[(x− y)T ]2d0+[d′′(u0)−δ][(x−u0)2+(y−u0)2]/2−1 dy dx,

for each i, j = 1, . . . p. Then it follows by Theorem 2.4.2 we have that

lim
T→∞

CT

∫
AT

∫
G(x, y) [(x− y)T ]d(x)+d(y)−1 dy dx

≤ [G(u0, u0) + δ]
4d0
√
πΓ(d0)

[δ − d′′(u0)]d0+1/2
.

By an analogous argument, we can also conclude that

lim
T→∞

CT

∫
AT

∫
G(x, y) [(x− y)T ]d(x)+d(y)−1 dy dx

≥ [G(u0, u0)− δ] 4d0
√
πΓ(d0)

[−δ − d′′(u0)]d0+1/2
. (4.4.6)

Now, since ε and δ can be chosen arbitrarily small, we have that

lim
T→∞

CT

∫
AT

∫
G(x, y) [(x− y)T ]d(x)+d(y)−1 dy dx

= G(u0, u0)
4d0
√
πΓ(d0)

[−d′′(u0)]d0+1/2
.

A similar argument yields the result for u0 = 0, 1.
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4.5 Normality

In this section we discuss the asymptotic normality of β̂ for this we assume that

the input noise {Zt} in the generalized Wold expansion is a sequence of independent

identically distributed random variables.

Theorem 4.5.1. Assume that the process {Yt,T} satisfies (4.2.2) where {Zt} is a

sequence of independent identically distributed random variables. Under the Assump-

tions A3, A7–A10 the estimator satisfies

T 1−2d0 (log T )2d0+1
(
β̂T − β

)
→ N [0, V (u0)],

where V (u0) is given by

V (u0) =

 G(u0, u0) 22d0
√
πΓ(d0)

[−d′′(u0)]d0+1/2 if u0 ∈ (0, 1)

G(u0, u0) 22d0−1√πΓ(d0)

[−d′′(u0)]d0+1/2 if u0 = 0, 1.

Proof. We adapt the proof of Theorem 18.6.5 of Ibragimov and Linnik (1971), as

corrected by Hosking (1996). Let α be a fixed vector and define

ST =
T∑
t=1

p∑
i=1

αixi
(
t
T

)
Y
(
t
T

)
for i = 1, . . . , p. Then, we can write

ST =
T∑

k=−∞

Ck,TZk,

where the coefficients Ck,T are given by

Ck,T =
T∑

j=max{1,k}

p∑
i=1

αixi
(
j
T

)
σ
(
j
T

)
ψj−k

(
j
T

)
.

Let σ2
T = Var (ST ) . As pointed out by Hosking 1996, the key aspect of Ibragimov

and Linnik’s proof is showing that Ck,T/σT converges to zero uniformly as T → ∞.
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In what follows, we prove that this is indeed the case for the class of locally stationary

processes. Under the Assumption A10 we have conclude that

|Ck,T | ≤ KT d0 , (4.5.1)

for all k ≤ T . On other hand, we have that Var(α′β̂T ) = K
T 2σ

2
T . Hence by (4.4.6)

CT
σ2
T

T 2
≥ [α′G(u0, u0)α− δ] 4d0

√
πΓ(d0)

[−δ − d′′(u0)]d0+1/2
,

for large T , where CT is defined in the proof of Theorem 4 for any u0 ∈ [0, 1] and δ

arbitrarily small, there exists a constant K > 0 such that

1

σT
≤ K

√
CTT

−1. (4.5.2)

Combining the equation (4.5.1) and (4.5.2) we conclude that

|Ck,T |
σT

≤ K
[log T ]d0/2+1/4

√
T

,

for i, j = 1, . . . , p which tends to zero uniformly as T →∞.

When the time-varying long-memory parameter d(·) is a linear function the asymp-

totic normality of β̂T is similar the cases previous.

4.6 Estimation of the error parameters

In this section we discuss the fitting of a locally model with time-varying spectral

density fθ(u, λ), θ ∈ Θ ⊂ Rp to observations {Yt,T} in the family of models given

by (4.2.1). We shall construct as estimator for the errors by substituting β̂T for the

unknown parameters β. We obtain the parameter estimate by minimization of a
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generalization of the Whittle function where the usual periodogram is replaced by

local periodograms. Let

I
x(t/T )β
N (u, λ) :=

1

2πH2,N(0)

∣∣dY−x(t/T )β
N (u, λ)

∣∣2,
LT (θ, β) =

1

4π

1

M

M∑
j=1

∫ π

−π

{
log fθ(uj, λ) +

I
x(t/T )β
N (uj, λ)

fθ(uj, λ)

}
dλ,

θ̂T := argmin
θ∈Θ
LT (θ, β) and θ̃T := argmin

θ∈Θ
LT (θ, β̂T ),

where

dYN(u, λ) =
N−1∑
s=0

h
(
s
N

)
Y[uT ]−N/2+s+1e

−iλs, Hk,N(λ) =
N−1∑
s=0

h
(
s
N

)k
e−iλs.

Thus, IN(u, λ) is the periodogram over a segment of length N with midpoint [uT ].

For study of the asymptotic properties of θ̃ we need following regularity conditions.

A11. The time-varying spectral density is strictly positive and satisfies

fθ(u, λ) ∼ Cf (θ, u)|λ|−2α(θ,u),

as |λ| → 0, where Cf (θ, u) is strictly positive function and α(θ, u) ∈ (0, 1).

A12. The data taper h(u) is a positive, bounded function for u ∈ [0, 1] and symmetric

around 1
2

with a bounded derivative.

A13. The sample size T and the subdivisions integers N , S and M tend to infinity

satisfying S/N → 0,
√
T log2N/N → 0,

√
T/M → 0, and N3 log2N/T 2 → 0.

A14. There exist a constant positive K such that∣∣∣∣∣
t∑

j=0

h
(
j
N

)
γ(j − s)

∣∣∣∣∣ < K

where t = 1, . . . , T and s = 1, . . . , N
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Theorem 4.6.1. Suppose that assumptions A11–A14 holds and in addition that∥∥∥X ′ ( tT ) β̂T −X ′ ( tT ) β∥∥∥ = op

(√
NT d0−1/2

log T d0+1/2

)
and∥∥∥{X ′ ( tT ) β̂T −X ′ ( tT ) β}− {X ′ ( t−1

T

)
β̂T −X ′

(
t−1
T

)
β
}∥∥∥ = op

(
T d0−1/2

√
N log T d0+1/2

)
uniformly in t. Then

√
T
(
θ̃T − θ̂T

)
→p 0

that is θ̃T is consistent and has the same asymptotic distribution as θ̂T .

The result is proved in the Appendix.

4.7 Numerical and Simulation Studies for a Re-

gression Model

In this section we discuss the application of the previous theoretical results to the

analysis of the large sample properties of LSE for a regression model in LSLM process,

the model is given by ,

Yt,T = β1xt1 + β2xt2 + εt,T ,

where [xt1, xt2]′ =
[(

t
T

)
, sin

(
ω t
T

)]′
is a vector of non-stochastic regressors with ω = 4

and β = (β1, β2)′ is a vector of unknown regression parameters, and εt,T the sequence

of errors is a LSLM processes. In this section we will be verifying the asymptotic for-

mula provided by Theorem 4.4.1 and Theorem 4.4.2, comparing the sample variance
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obtains from several simulations to their theoretical counterparts. The calculations

are illustrated with locally stationary fractional noise process with lineal and gen-

eral case long-memory function. The samples of this LSFM process used in these

simulations are generated by mean of the innovation algorithm, see (Brockwell and

Davis, 1991, p.172). In this implementation, the variance-covariance matrix of the

process, κT (s, t), is given by Lemma A.1.2 . Given that the calculation of the exact

variance of the LSE is a highly demanding task for large sample sizes, we examine

other approximate methods. The exact value of the variance of vector parameters is

given by

Var(β̂T ) = V −1
T

[
T∑
s=1

T∑
t=1

x
(
t
T

)
κT (t, s)x′

(
t
T

)]
V −1
T , (4.7.1)

where VT is give by the equation (4.3.2), and using formula (4.4.2) we may obtain the

approximation,

Var(β̂T ) ∼
∫ 1

0

∫ x

0

G(x, y)(x− y)d(x)+d(y)−1T d(x)+d(y)−1 dy dx, (4.7.2)

with G(x, y) given by

G(x, y) =

[∫ 1

0

xt(z)x′t(z) dz

]−1

[x (x)x′ (y) + x (y)x′ (x)]

×
[∫ 1

0

xt(z)x′t(z) dz

]−1

g (x, y) . (4.7.3)

For simplicity, this formula will be denoted as Approximation. On the other hand we

have the asymptotic variance for linear case given by

T 1−2d1(log T )2d1+1 Var(β̂T )→ G(1, 1)
Γ(2d1)

[α1]2d1+1
, (4.7.4)

as T →∞ and for general case given by

T 1−2d0 (log T )d0+ 1
2 Var(β̂T )→ G(u0, u0)

4d0
√
πΓ(d0)

[−d′′(u0)]d0+1/2
, (4.7.5)

as T →∞ for simplicity, this expression will be denoted as Asymptotic formula.
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4.7.1 Numerical and Simulation Studies for the Linear Case

Consider the following illustrative example consisting of a LSFN process defined by

(4.2.3)–(4.2.4) with time-varying long-memory parameter given by

d(u) = 0.3 + 0.15u, (4.7.6)

for u ∈ [0, 1]. The Figure (4.1) shows the evolution of time-varying long-memory

parameter.

0.0 0.2 0.4 0.6 0.8 1.0

0.
30

0.
35

0.
40

0.
45

u

d(
u)

Figure 4.1: Time-Varying long memory parameter

The Table 4.1 reports the values of the variance for three sample sizes T = 1000,

T = 2000 and T = 4000 obtained from the following four approaches: exact, sample,

Approximation and the Asymptotic formula. The Exact value is given for (4.7.1)

and represent the value of the Variance of β̂T . The second row corresponds to be

average of the variance β̂T estimate for least-square estimator over 1000 repetitions.

The third row correspond to the Variance the β̂T obtained from Approximation,
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Table 4.1: Estimation Model LS : Variance of the estimate

Method Variance Covariance

T=1000 Var (β̂1) Var (β̂2) cov (β̂1, β̂2)
Exact 1.4518342 0.1641284 -0.1107668

Sample 1.4104739 0.1716930 -0.1166340

Approximation 1.4351997 0.1842634 -0.1147786

Asymptotic 11.787343 5.780556 -8.254538

T=2000 Var (β̂1) Var (β̂2) cov (β̂1, β̂2)
Exact 1.3102114 0.1441131 -0.1245641

Sample 1.2197547 0.1530794 -0.1341820

Approximation 1.2920312 0.1598947 -0.1236997

Asymptotic 9.170844 4.497415 -6.422234

T=4000 Var (β̂1) Var (β̂2) cov (β̂1, β̂2)
Exact 1.1815534 0.1269124 -0.1332342

Sample 1.1887740 0.1348541 -0.1398417

Approximation 1.1736965 0.1398363 -0.1388113

Asymptotic 7.249257 3.555062 -5.076570
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given by formula is (4.7.2). The four row report the approximated values of the

variance β̂T provided by the asymptotic formula (4.7.4). The table 4.1 shows that the

parameters variances from the simulations (second row) and Approximation (third

row) are relatively close to their theoretical counterparts displayed in the first row.

On the other hand, the Asymptotic formula seems to be far off from the exact value

for these three sample sizes. Thus, for these sample sizes, the asymptotic formula is

not very useful for calculating the variance of β̂T . In order to evaluate the accuracy of

Table 4.2: Ratio between Approximation formula and Asymptotic Variance

Sample Size Variance Covariance

log T = 100 Var(β̂1) Var(β̂2) cov(β̂1, β̂2)
Approximation/Asymptotic 0.73141 0.5856191 0.6539831

log T = 1200 Var(β̂1) Var(β̂2) cov(β̂1, β̂2)
Approximation/Asymptotic 0.9772955 0.9644594 0.9709982

log T = 1500 Var(β̂1) Var(β̂2) cov(β̂1, β̂2)
Approximation/Asymptotic 1.000292 0.9851984 0.9905511

the asymptotic formula for larger sample sizes, Table 4.2 reports the variance ratios

between the Approximation and Asymptotic formula. From this table, the asymptotic

formula seems to produce accurate values, but for quite large sample sizes.

4.7.2 Numerical and Simulation Studies for the General Case

To illustrate the asymptotic variance formula given in Theorem (4.4.2), consider the

following locally stationary fractional noise process with time-varying long-memory

parameter given by

d(u) = 0.1 + u exp (−2u), (4.7.7)
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for u ∈ [0, 1]. This function, depicted in Figure 2.5, has a maximum value d0 = 0.284

reached at u0 = 0.500.

Table 4.3: Estimation Model LS : Variance of the estimate

Method Variance Covariance

T=1000 Var(β̂1) Var(β̂2) cov(β̂1, β̂2)
Exact 0.08455518 0.05036215 0.01626905

Sample 0.09009177 0.05792289 0.01714857

Approximation 0.09137119 0.05013938 0.01569106

Asymptotic 0.04381562 0.20421934 0.09459385

T=2000 Var(β̂1) Var(β̂2) cov(β̂1, β̂2)
Exact 0.06156288 0.03713725 0.01206201

Sample 0.06529732 0.03982817 0.01236225

Approximation 0.06557527 0.03633117 0.01118837

Asymptotic 0.03012951 0.14043003 0.06504682

T=4000 Var(β̂1) Var(β̂2) cov(β̂1, β̂2)
Exact 0.044632273 0.027242047 0.008995782

Sample 0.045688292 0.029589303 0.008883724

Approximation 0.047069891 0.026341244 0.008502723

Asymptotic 0.02085443 0.09720000 0.04502278

In this case the long- memory parameter does not belong to the class of poly-

nomials generated by the basis {gj(u) = uj}, so the fourth row corresponds to the

approximated values of the variance of β̂T provided by the asymptotic formula (4.7.5).

The Table 4.3 reports Exact Value, Sample, Approximation and Asymptotic Variance

formula the regression parameters estimation for LSE methods. Similar to previous

case the Table 4.3 shows that the theoretical variance, sample and approximation

are very close, however the asymptotic formula seems far from the exact values for
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these sample sizes. The Table 4.4 reports the ratios between Approximation and the

asymptotic formula. Due to the large sample sizes involved in this table, in these

experiments we have not calculated the exact variance of β̂T nor the sample values.

From this table, the asymptotic formula seems to produce accurate values, but for

quite large sample sizes.

Table 4.4: Ratio between Approximation formula and Asymptotic Variance

Sample Size Variance Covariance

log T = 100 Var(β̂1) Var(β̂2) cov(β̂1, β̂2)
Approximation/Asymptotic 1.614918 0.7483252 0.9605854

log T = 500 Var(β̂1) Var(β̂2) cov(β̂1, β̂2)
Approximation/Asymptotic 1.108186 0.9456312 1.002092

log T = 1500 Var(β̂1) Var(β̂2) cov(β̂1, β̂2)
Approximation/Asymptotic 1.035321 0.9819726 1.001368



Chapter 5

Application

5.1 The Tree-Ring data

In this chapter we focus our attention to analyze the signification of the vector of

parameters using of the asymptotic formula for the variance of β̂T . The Tree-Ring

data of BRISTLECONE PINE measurements at NEVADA, from 0AD to 1967. The

model for this data is given by

Yt,T = X ′
(
t
T

)
β + εt,T , (5.1.1)

where X
(
t
T

)
=
(
1, t

T
, sin

(
ω t
T

)
, cos

(
ω t
T

))′
is a vector regressors, βj with j = 1, . . . , 4

is the vector of parameters, ω = 364 and εt,T the sequence of errors of a LSLM

processes.

The data, available at the National Climatic Data Center, are report by V.C.

Lamarche and C. Ferguson and displayed in the Figure 5.1, the measurement can be

used to indicate the chances of temperature, precipitation, climate and environmental

change derived from tree ring measurements.

The least squares fitting assuming uncorrelated errors is shown in Table 5.1. Ob-

serve that according to this table all the regression coefficients in model (5.1.1) are

82
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Figure 5.1: Tree Ring Data

significant at the 5% level. Hence we estimated the vector of parameters by LSE and

Table 5.1: Tree-Ring Data: Least Square Fit

Parameters Estimates SD t value P-value

β1 0.895042 0.012681 70.581 0.0000

β2 0.164763 0.021956 7.504 0.0000

β3 0.005594 0.008956 0.625 0.532

β4 -0.013969 0.008970 -1.557 0.120

obtain the residuals Yt,T −X ′
(
t
T

)
β̂, the sample ACF of the residuals for this model

is displayed in Panel (a) of Figure 5.2, and it shows significant autocorrelations at

large lags. In addition, the corresponding variance plot is shown in Panel (b) of Fig-

ure 5.2. In a variance plot, the broken line represents the expected behavior of the
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variance of the sample mean of a block of k observation for the short-memory case.

On the other hand, the heavy line represents the expected behavior of the variance

for a long-memory process. From both panels, this series seems to exhibit long-range

dependence behavior.
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Figure 5.2: Tree Ring Data. (a) Sample ACF, (b) Variance plot

Nevertheless, a closer look to the empirical ACF of the data reveals that the degree

of long-memory does not seem to be constant over time see Figure 5.3. In fact, the

values of the sample ACF of the first 500 observations, see Panel (a), are higher than

the corresponding sample ACF values for the other two 500-year periods considered,

see panels (b)-(c).

As a result from these two plots, it seems that the disturbances εt,T in the linear

regression model (5.1.1) may be locally stationary long memory correlation structure

and the LSE fitting may not be adequate.

To account for the possible locally stationary long-memory behavior of the errors,
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Figure 5.3: Tree Ring Data. Sample ACF: (a) Observations 1 to 500,(b) Observations
750 to 1250, (c) Observations 1490 to 1967 .

the following LS-ARFIMA model is proposed for the regression disturbances εt,T .

Φ

(
t

T

)
εt,T = Θ

(
t

T

)
(1−B)−d(

t
T ) σ

(
t

T

)
Zt. (5.1.2)

The model selected according to the Akaike’s information criterion (AIC) is the LS-

ARFIMA(0,d,0)-(2,0), the parameter estimates and significance are reported in Ta-

ble 5.1. Note that according to the fourth column of this table, all the parameters of

this model are statistically significant at the 5% level. In this case the time varying

long-memory coefficient is a quadratic function i.e. d(u) = α0 + α1 u+ α2 u
2. Panels

(a) and (b) of Figure 5.4 show the evolution of the long-memory parameter, d(u), and

the variance scale, σ(µ)2 which, in our case is constant. In both panels the heavy line

represents the locally stationary ARFIMA model, the horizontal broken line indicates

the stationary ARFIMA model. Figure 5.5 exhibits three panels exploring the struc-

ture of the residuals. Panel (a) of this figure displays the residuals from the fitted
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Table 5.2: Model Estimation : Tree-Ring Data

Parameters Estimates SD t value

α0 0.1987363 0.0527406 3.7682

α1 0.4987270 0.2435983 2.0473

α2 -0.6299850 0.2358630 -2.6710

β0 0.2555662 0.0040746 62.7216
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Figure 5.4: Tree Ring Data. (a) Estimates of the long-memory parameter. (b) Esti-
mates the noise variance.
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LS-ARFIMA model. Panel (b) shows the sample ACF, and Panel (c) exhibits the

Ljung-Box whiteness tests. From the figure we can see no significant autocorrelations,

this conclusion is formally supported by the Ljung-Box tests where we consideration

K = 16 windows, see Panel (c) which indicates that the white noise null hypothesis

is not rejected for all the lags considered in this case Lag = 30, at the 5% level of sig-

nificance. Now, to analyze the significance the vector parameter we’ll use the formula
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Figure 5.5: Tree Ring Data: Residual analysis (a) Residuals from the fitted model,
(b) Sample ACF, (c) Ljung-Box tests.

of the asymptotic variance the β̂T for the general case the time varying long-memory

parameter given by Theorem 4.4.2. Using the estimate of Whittle we have that

d̂(u) = 0.1987363 + 0.4987270u− 0.6299850u2,

and test of significance approximate for β̂T is given the t− test

tc,j =
β̂T,j√

Var
(
β̂T,j

)
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with j = 1, 2, 3. The significance of the parameters and standard deviation are

reported in Table 5.2. Note that according to the fourth column of this table, the

Table 5.3: Estimation Model: Mean Sample

Parameters Estimates SD t value

β0 0.895042441 0.27411285 3.2652334

β1 0.164763042 0.30873077 0.5336787

β2 0.005593744 0.03345162 0.1672189

β3 -0.013968661 0.00684155 -2.0417380

first and fourth parameter that correspond to the media and to the component cos(·)

of a harmonic function respectively, are significant, however the other parameters are

not statistically significant at the 5% level.



Chapter 6

Conclusions and further work.

6.1 Concluding Remarks

In this work we have established some asymptotic statistical properties to the vector

of parameter of a regression model with errors belonging to the class of LSLM process.

Is important to remember that these models do not have a fixed structure in time,

unless these processes show a time-varying second-order structure. As in Silverman

(1957) definition, each model on non-stationary covariance has to define explicitly its

departure from stationarity. However, from a statistical viewpoint, many questions

remain. For example, with this lack of an invariant second-order structure, how

can we estimate the time-varying parameters with a high accuracy? so a serious

problem here is that we cannot build an asymptotic theory for the estimation of time

varying parameters. Consequently, the standard statistical properties like consistency,

efficiency or central limit theorems cannot be use to measure and compare the quality

of different estimators. As we mentioned before in the Chapter 1 to overcome this

problem, Dahlhaus introduced a concept of locally stationary.

In this context we have investigated the asymptotic of the sample mean of a

89
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class of LSLM process with a general specification for the time-varying long-memory

parameter. As evidenced by the Theorems 2.4.1–2.4.3, the asymptotic behavior of the

variance of the sample mean of a LSLM process is more complex than its stationary

long memory counterpart.

The statistical properties for the least square estimator LSE for a vector of pa-

rameter was analyzed in Chapter 4. The Theorem (4.3.1) study the consistency of

LSE, while the Theorem (4.4.1) and Theorem (4.4.2) give us an explicit formula for

the asymptotic variance of the LSE.

Finally, a central limit theorem is established in Theorem (4.5), where we as-

sume that input noise in the generalized wold expansion is a sequence of independent

identically distributed random variables.

6.1.1 Further Research

Further work in this framework is the study of asymptotic efficiency for the LSE.

Several authors have studied the problem of the asymptotic efficiency of the LSE Y t

in ARIMA process, relative to the BLUE see for example Grenander and Rosenblatt

(1954) and Grenander and Rosenblatt (1957) they considered a spectral density f(λ)

piecewise continuous, with no discontinuities at λ = 0 and 0 < f(λ) < ∞, then Yt

is asymptotic efficient. Adenstedt (1974) established certain criteria for asymptotic

efficiency for the sample mean for a spectral density of the form λ−2dL(λ) as λ→ 0,

where L(λ) is a slowly varying function at the origin with 0 < L(0) <∞. One possible

approach to this issue is given by Samarov and Taqqu (1988), they have obtained

results for the efficiency of LSE when the time series is fractional ARIMA(0,d,0)

for all d < 1
2
. If the time series has a spectral density f , the efficiency of the LSE
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estimator Y t is defined as

e(n, f) =
Var(m̂f )

Var(Y t)
, (6.1.1)

where m̂f is the BLUE for µ. The asymptotic efficiency is

e(∞, f) = lim
n→∞

e(n, f).

Therefore, a pending job is to analyze the asymptotic behavior of the minimum

variance for the sample mean of a class locally stationary fractional noise process,

where the time-varying long-memory parameter through of a lineal process or a more

general behavior. We should find the asymptotic efficiency for spectral density f(u, λ)

given by

fθ(u, λ) =
σ2

2π

(
2 sin

λ

2

)−dθ(u)

.



Appendix A

Technical Appendix

A.1 Supplementary Material for Chapter 2

Lemma A.1.1. The variance-covariance matrix [κT (s, t)]s,t=1,...,T of the process (2.2.4)

is given by

κT (s, t) = σ
(
s
T

)
σ
(
t
T

) Γ
[
1− d

(
s
T

)
− d

(
t
T

)]
Γ
[
s− t+ d

(
s
T

)]
Γ
[
1− d

(
s
T

)]
Γ
[
d
(
s
T

)]
Γ
[
s− t+ 1− d

(
t
T

)] ,
for s, t = 1, . . . , T , s ≥ t.

Proof. By definition, the elements κT (s, t) of the variance-covariance matrix of the

process (2.2.4) are given by

κT (s, t) = E[Ys,TYt,T ] = σ
(
s
T

)
σ
(
t
T

) ∞∑
j=0

ηs−t+j
(
s
T

)
ηj
(
t
T

)
= σ

(
s
T

)
σ
(
t
T

) ∞∑
j=0

Γ
[
s− t+ j + d

(
s
T

)]
Γ
[
j + d

(
t
T

)]
Γ [s− t+ j + 1] Γ [j + 1]

= σ
(
s
T

)
σ
(
t
T

) Γ
[
s− t+ d

(
s
T

)]
Γ
[
d
(
s
T

)]
Γ [s− t+ 1]

×
∞∑
j=0

Γ
[
s− t+ j + d

(
s
T

)]
Γ
[
j + d

(
t
T

)]
Γ [s− t+ 1]

Γ
[
s− t+ d

(
s
T

)]
Γ
[
d
(
t
T

)]
Γ [s− t+ j + 1] Γ [j + 1]

.
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Therefore, by an application of the hypergeometric function F (a, b; c, z) with z = 1

we get

κT (s, t) = σ
(
s
T

)
σ
(
t
T

) Γ
[
s− t+ d

(
s
T

)]
Γ
[
d
(
s
T

)]
Γ [s− t+ 1]

×F (s− t+ d
(
s
T

)
, d
(
t
T

)
; s− t+ 1, 1).

Now, by Gradshteyn and Ryzhik (2000) [Eq. 9.122] the result is obtained.

Lemma A.1.2. Let d(u) be a function lineal and define the double integral

IT =

∫ 1

0

∫ x

0

g̃i,j(x, y)(x− y)d(x)+d(y)−1T d(x)+d(y)−1 dy dx,

where g̃(x, y) is a function defined in (3.4.2). Then,

T 1−2d1 (α1 log T )2d1+1 IT →
x(1)2[∫ 1

0
x2(y) dy

]g(1, 1)Γ(2d1),

as T →∞

Proof. By means of the variable transformation u = x + y and v = x − y, we can

write

d(x) + d(y) = 2α0 + α1u,

where α1 > 0. Thus,

IT ∼
∫ 1

0

∫ u

0

g̃(u, v)v2α0+α1u−1T 2α0+α1u−1 dv du

+

∫ 2

1

∫ 2−u

0

g̃(u, v)v2α0+α1u−1T 2α0+α1u−1 dv du,

Note that g̃(u, v) reaches its maximum value when v is close to zero. Therefore,
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analyzing I1 and an application Lemma A.1.4 we have

T 1−2α0−α1 (α1 log T ) I1

∼
∫ 1

0

∫ u

0

Tα1(u−1) (α1 log T ) g̃(u, v)v2α0+α1u−1 dv du

∼
∫ 1

0

Tα1(u−1) (α1 log T )

∫ u

0

g̃(u, v)v2α0+α1u−1 dv du

∼ α1 log T

∫ 1

0

Tα1(u−1)g̃(u, 0)
u2α0+α1u

2α0 + α1u
du.

Now, an application of Lemma A.1.5 yields,

T 1−2α0−α1 (α1 log T ) I1

∼ α1 log T

2α0 + α1

∫ 1

0

g̃(u, 0)u2α0+α1uTα1(u−1) du

∼ g̃(1, 0)

2α0 + α1

∼
x
(

1
2

)2[∫ 1

0
x2(y) dy

]2

g
(

1
2
, 1

2

)
(2α0 + α1)

,

In summary we have,

(α1 log T )T 1−2α0−α1I1 → g
(

1
2
, 1

2

) x
(

1
2

)2[∫ 1

0
x2(y) dy

]2

(2α0 + α1)
, (A.1.1)

as T →∞. Considering the integrate I2, and an application of Lemma A.1.4 yields,
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we have

[α1 log T ]1+2α0+2α1 T 1−2α0−2α1I2

∼
∫ 2

1

∫ 2−u

0

Tα1u−2α1 [α1 log T ]1+2α0+2α1 g̃(u, v)v2α0+α1u−1 dv du

∼
∫ 2

1

Tα1u−2α1 [α1 log T ]1+2α0+2α1

∫ 2−u

0

g̃(u, v)v2α0+α1u−1 dv du

∼
∫ 2

1

Tα1u−2α1 [α1 log T ]1+2α0+2α1 g̃(u, 0)
(2− u)2α0+α1u

2α0 + α1u
du

∼ [α1 log T ]1+2α0+2α1

2 (α0 + α1)

∫ 2

1

g̃(u, 0)T−α1(2−u)(2− u)2α0+α1u du

∼ [α1 log T ]1+2α0+2α1

2 (α0 + α1)

∫ 1

0

g̃(x+ 1, 0)T−α1(1−x)(1− x)2α0+α1(x+1) dx

∼ [α1 log T ]1+2α0+2α1

2 (α0 + α1)

∫ 1

0

g̃(x+ 1, 0)T−α1(1−x)(1− x)2α0+2α1 dx.

An application of Lemma A.1.6 yields

[α1 log T ]1+2α0+2α1 T 1−2α0−2α1I2

∼ [α1 log T ]1+2α0+2α1

2(α0 + α1)

×
∫ 1

0

g̃(x+ 1, 0)T−α1(1−x)(1− x)2α0+2α1 dx

∼ g̃(2, 0)Γ(1 + 2α0 + 2α1)

2(α0 + α1)
.

On the other hand,

[α1 log T ]2α0+2α1+1 T 1−2α0−2α1I2 →
x(1)2g(1, 1)Γ(2α0 + 2α1)[∫ 1

0
x2(y) dy

]2 , (A.1.2)
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as T →∞.Therefore of (A.1.1) and (A.1.2) be conclude

lim
T→∞

T 1−2d1(α1 log T )2d1+1IT

= lim
T→∞

[
(α1 log T )2d1

Tα1
T 1−2α0−α1(α1 log T )I1 + T 1−2d1(α1 log T )2d1+1I2

]

= lim
T→∞

x (1
2

)2
g
(

1
2
, 1

2

)
2α0 + α1

(α1 log T )2d1+1

Tα1
+
x(1)2g(1, 1)Γ(2d1)[∫ 1

0
x2(y) dy

]2

 .
The first term on the equation converges to zero when T →∞ the result is proven.

Lemma A.1.3. Let d = α0 − α1x with α1 > 0 and define the double integral

IT =

∫ 1

0

∫ x

0

g̃(x, y)(x− y)d(x)+d(y)−1T d(x)+d(y)−1 dy dx,

where g̃(x, y) is a function defined in (3.4.2). Then,

T 1−2α0 (α1 log T )2α0+1 IT →
x(0)2[∫ 1

0
x2(y) dy

]g(0, 0)Γ(2α0),

as T →∞

Proof. Now d is a lineal function and has negative slope, by means of the variable

transformation u = x+ y and v = x− y we can write

IT ∼
∫ 1

0

∫ u

0

g̃(u, v)v2α0−α1u−1T 2α0−α1u−1 dv du

+

∫ 2

1

∫ 2−u

0

g̃(u, v)v2α0−α1u−1T 2α0−α1u−1 dv du.
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A utilization the Lemma A.1.4 we can approximation the integrate I1 by

[α1 log T ]2α0+1 T 1−2α0I1

∼
∫ 1

0

∫ u

0

[α1 log T ]2α0+1 T−α1ug̃(u, v)v2α0−α1u−1 dv du

∼
∫ 1

0

T−α1u [α1 log T ]2α0+1

∫ u

0

g̃(u, v)v2α0−α1u−1 dv du

∼
∫ 1

0

[α1 log T ]2α0+1 T−α1ug̃(u, 0)
u2α0−α1u

2α0 − α1u
du

∼ [α1 log T ]2α0+1

2α0

∫ 1

0

g̃(u, 0)u2α0T−α1u du.

Now an application Lemma A.1.7 yields, we have

[α1 log T ]2α0+1 T 1−2α0I1

∼ 1

2α0

(α1 log T )2α0+1

∫ 1

0

g̃(u, 0)T−α1uu2α0 du

∼ g̃(0, 0)Γ(1 + 2α0)

2α0

.

Therefore the approximation for I1 is give by

(α1 log T )2α0+1T 1−2α0I1 →
x2(0)g(0, 0)Γ(2α0)[∫ 1

0
x2(y) dy

]2 ,
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as T →∞. Now we considers the approximation for I2

(α1 log T )T 1−2α0+α1I2

∼
∫ 2

1

∫ 2−u

0

(α1 log T )Tα1(1−u)g̃(u, v)v2α0−α1u−1 dv du

∼
∫ 2

1

(α1 log T )Tα1(1−u)

∫ 2−u

0

g̃(u, v)v2α0−α1u−1 dv du

∼
∫ 2

1

(α1 log T )Tα1(1−u)g̃(u, 0)
(2− u)2α0−α1u

2α0 − α1u
du

∼ (α1 log T )

∫ 1

0

T−α1xg̃(x+ 1, 0)
(1− x)2α0−α1(x+1)

2α0 − α1(x+ 1)
dx

∼ (α1 log T )

∫ 1

0

T−α1(1−y)g̃(2− y, 0)
y2α0−α1(2−y)

2α0 − α1(2− y)
dy

∼ (α1 log T )

2(α0 − α1)

∫ 1

0

T−α1(1−y)g̃(2− y, 0)y2α0−α1(2−y) dy

∼ (α1 log T )

2(α0 − α1)

∫ 1

0

g̃(2− y, 0)T−α1(1−y)y2α0−α1 dy.

An application of Lemma A.1.5 replacing we have

(α1 log T )T 1−2α0+α1I2

∼ α1 log T

2(α0 − α1)

∫ 1

0

g̃(2− y, 0)Tα1(y−1)y2α0−α1 dy

∼ g̃(1, 0)

2(α0 − α1)
.

Thus the approximation for I2 is given by

(α1 log T )T 1−2α0+α1I2 → g
(

1
2
, 1

2

) x
(

1
2

)2[∫ 1

0
x2(y) dy

]2

2(α0 − α1)
,
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Hence the approximation of the two integrates are given by

lim
T→∞

T 1−2d0(α1 log T )2d0+1IT

= lim
T→∞

[
T 1−2d0(α1 log T )2d0+1I1 + (α1 log T )2d0

Tα1
T 1−2d0+α1(α1 log T )I2

]
= lim

T→∞

x(0)2g(0, 0)Γ(2d0)[∫ 1

0
x2(y) dy

]2 +
x (1/2)2 g (1/2, 1/2)

2(α0 − α1)

(α1 log T )2d0

Tα1

 .
The second term of the equation converges to zero when T →∞ the result is proven.

Lemma A.1.4. Let g(x) be a C1(R) function such that g(0) 6= 0 and let h(u) be a

continuous function. Then

lim
h(u)→0

1

[h(u)]2α+βu

∫ h(u)

0

g(x)x2α+βu−1 dx =
g(0)

2α + βu
.

Proof. Since the function g ∈ C1(R), then by Taylor’s Theorem we can write

g(x) = g(0) + g′(x)x.

Hence, we can write

1

[h(u)]2α+βu

∫ h(u)

0

g(x)x2α+βu−1dx

=
g(0)

[h(u)]2α+βu

∫ h(u)

0

x2α+βu−1dx

+
1

[h(u)]2α+βu

∫ h(u)

0

g′(x)x2α+βudx

=
g(0)

2α + βu
+

1

[h(u)]2α+βu

∫ h(u)

0

g′(x)x2α+βudx. (A.1.3)
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The second term of (A.1.3) is zero, in effect

1

[h(u)]2α+βu

∫ h(u)

0

g′(x)x2α+βudx

≤ K

[h(u)]2α+βu

∫ h(u)

0

x2α+βudx

≤ K

[h(u)]2α+βu

[h(u)]2α+βu+1

2α + βu+ 1

≤ Kh(u)

2α + βu+ 1
→ 0,

as h(u)→ 0.

Lemma A.1.5. Let g : R → R be a C1(R) function such that g(1) 6= 0 and define

the integral In as

In = [b log n]

∫ 1

0

g(x)x2a+bnb(x−1) dx.

Then In → g(1), as n→∞.

Proof. Since the function C1(R), then by Taylor’s theorem we can write

g(x) = g(1) + g′(ξx)(x− 1), (A.1.4)

for some 0 ≤ ξx ≤ x, for positive x. Hence integrating both sides of the equation

(A.1.4) can be written as

In = g(1)b log n

∫ 1

0

x2a+bnb(x−1) dx

+b log n

∫ 1

0

g′(ξx)(x− 1)x2a+bnb(x−1) dx. (A.1.5)

The first integrate on the right can be calculated

g(1)b log n

∫ 1

0

x2a+bn−b(1−x) dx

= g(1)

∫ b logn

0

[
1− t

b log n

]2a+b

exp (−t) dt

∼ g(1)

∫ ∞
0

exp (−t) dt = g(1),
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as n→∞. In other words the second integrate of (A.1.5)is zero as n→∞ in effect∣∣∣∣b log n

∫ 1

0

g′(ξx)(x− 1)x2a+bnb(x−1) dx

∣∣∣∣
≤ Kb log n

∫ 1

0

(x− 1)x2a+bnb(x−1) dx

∼ Kb log n

∫ 1

0

(x− 1)n−b(1−x) dx

∼ Kb log n

∫ 1

0

y exp (−yb log n) dy

∼ K

b log n

∫ b logn

0

t exp (−t) dt→ 0,

as n→∞.

Lemma A.1.6. Let g : R → R be a C1(R) function such that g(1) 6= 0 and define

the integrate In as

In = [b log n]1+2a+2b

∫ 1

0

g(x)(1− x)2a+2bnb(x−1) dx

Then In → g(1)Γ[1 + 2a+ 2b], as n→∞.

Proof. Since the function C1(R), then by Taylor’s theorem we can write

g(x) = g(1) + g′(ξx)(x− 1), (A.1.6)

for some 0 ≤ ξx ≤ x, for positive x. Hence integrating both sides of the equation

(A.1.6) can be written as

In = g(1) [b log n]1+2a+2b

∫ 1

0

(1− x)2a+2bnb(x−1) dx

+ [b log n]1+2a+2b

∫ 1

0

g′(ξx)(x− 1)(1− x)2a+2bnb(x−1) dx. (A.1.7)
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The first integrate in the expression on the right above is calculated as follows,

g(1) [b log n]1+2a+2b

∫ 1

0

(1− x)2a+2bnb(x−1) dx

= g(1) [b log n]1+2a+2b

∫ 1

0

y2a+2b exp (−yb log n) dy

= g(1) [b log n]2a+2b

∫ b logn

0

[
t

b log n

]2a+2b

exp (−t) dt

= g(1)

∫ b logn

0

t2a+2b exp (−t) dt→ g(1)Γ(2a+ 2b+ 1),

as n→∞. On other hand, the second integrate in (A.1.7) converge to zero since∣∣∣∣[b log n]1+2a+2b

∫ 1

0

g′(ξx)(x− 1)(1− x)2a+2bnb(x−1) dx

∣∣∣∣
≤ K [b log n]1+2a+2b

∫ 1

0

(1− x)2a+2b+1n−b(1−x) dx

≤ K [b log n]1+2a+2b

∫ 1

0

y2a+2b+1n−by dy

≤ K [b log n]1+2a+2b

∫ b logn

0

[
t

b log n

]2a+2b+1

exp (−t) dt

≤ K

[b log n]

∫ b logn

0

t2a+2b+1 exp (−t) dt→ 0,

as n→∞.

Lemma A.1.7. Let g : R → R be a C1(R) function such that g(1) 6= 0 and define

the integrate In as

In = [b log n]1+2a

∫ 1

0

g(x)x2an−bx dx

Then In → g(0)Γ[1 + 2a], as n→∞.

Proof. The proof uses similar arguments as previous case.



103

Lemma A.1.8. Let g : R → R be a C1(R) function such that g(0) 6= 0 and let

α : [0, 1]→ R be a continuous function such that α(u) > −1 for all u ∈ [0, 1]. Then,

In = (
√
n)α(u)+1

∫ u

0

xα(u)g(x) exp(−nx2) dx→ 1

2
g(0)Γ

[
α(u) + 1

2

]
,

as n→∞, for any u ∈ (0, 1).

Proof. Since the function g ∈ C1(R), then by Taylor’s theorem we can write

g(x) = g(0) + g′(ξx)x,

for some 0 ≤ ξx ≤ x, for positive x. Hence, we can write

In = g(0)(
√
n)α(u)+1

∫ u

0

xα(u) exp(−nx2) dx

+ (
√
n)α(u)+1

∫ u

0

xα(u)+1g(ξx) exp(−nx2) dx. (A.1.8)

The first integral in the expression above can be written as

g(0)(
√
n)α(u)+1

∫ u

0

xα(u) exp(−nx2) dx = g(0)

∫ u
√
n

0

yα(u) exp(−y2) dy. (A.1.9)

Consequently,

g(0)(
√
n)α(u)+1

∫ u

0

xα(u) exp(−nx2) dx →

1

2
g(0)

∫ ∞
0

yα(u) exp(−y2) dy = g(0)
1

2
Γ
[
α(u)+1

2

]
,

as n→∞. On the other hand, the second integral in (A.1.8) converges to zero since∣∣∣∣(√n)α(u)+1

∫ u

0

xα(u)+1g(ξx) exp(−nx2) dx

∣∣∣∣
≤ K(

√
n)α(u)+1

∫ u

0

xα(u) exp(−nx2) dx ≤ K√
n

∫ u
√
n

0

yα(u) exp(−y2) dy → 0,

as n→∞.
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Lemma A.1.9. Let g : R→ R be a C1(R) function and define the integral In as

In =
√
n

∫ 1

0

exp[−cn(x− x0)2]g(x) dx,

where {cn} is a sequence of positive real numbers such that cn/n → 1, as n → ∞.

Then,

In →
√
πg(x0)I(0,1)(x0) +

√
π

2
g(x0)I{0,1}(x0),

as n→∞.

Proof. Consider first the case x0 ∈ (0, 1). Since g ∈ C1(R), we can write g(x) =

g(x0) + g′(ξx)(x− x0), for some ξx between x0 and x. Consequently,

In = g(x0)
√
n

∫ 1

0

exp[−cn(x− x0)2] dx

+
√
n

∫ 1

0

g′(ξx)(x− x0) exp[−cn(x− x0)2] dx.

Note that the first integral in the expression above can be written as

g(x0)
√
π
{

Φ
[
(1− x0)

√
2n
]
− Φ

[
−x0
√

2n
]}( n

cn

)1/2

where Φ(·) is the Gaussian distribution function. Thus, for any x0 ∈ (0, 1) we have

that

g(x0)
√
π
{

Φ[(1− x0)
√

2n]− Φ[−x0
√

2n]
}( n

cn

)1/2

→
√
πg(x0),

as n→∞. On the other hand,∣∣∣∣√n∫ 1

0

g′(ξx)(x− x0) exp[−cn(x− x0)2] dx

∣∣∣∣
≤ K

√
n

cn

∫ 1

0

√
cn|x− x0| exp(−cn(x− x0)2) dx

= K

√
n

cn

∫ (1−x0)
√

2cn

−x0
√

2cn

|y| exp(−y2/2)
dy
√
cn

≤ K
√
cn

∫ ∞
−∞
|y| exp(−y2/2) dy → 0,
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as n→∞. Now, if x0 = 0 or x0 = 1, then

g(x0)
√
π
{

Φ[(1− x0)
√

2n]− Φ[−x0

√
2n]
}( n

cn

)1/2

→ 1

2

√
πg(x0),

as n→∞. Therefore, in these two cases

In →
1

2

√
πg(x0),

as n → ∞. Finally, if x0 is outside the interval [0, 1], then (x − x0)2 > ε > 0 for all

x ∈ [0, 1]. Hence, exp[−cn(x− x0)2] < exp(−cnε) and then

|In| ≤
√
n exp(−cnε)

∫ 1

0

|g(x)|dx→ 0,

as n→∞.

Lemma A.1.10. Assume that the process {Yt,T} satisfies (2.2.1) and (2.6.5), and

that Assumption A1 holds. Then the variance of µ̂T satisfies

Var(µ̂T ) ∼ 1

2

∫ 1

0

Tα(u)(√
β log T

)α(u)+1
g
(
u
2
, u

2

)
γ

[
α(u) + 1

2
, β(log T )u2

]
d u,

where β = c/2 and γ(x, a) corresponds to the incomplete Gamma function

γ(x, a) =

∫ x

0

ta−1 exp (−t)d t.

Proof. From expression (2.4.6) we have that

Var(µ̂T ) ∼ T 2d0−1

(β log T )d0+1/2

∫ 1

0

T−β(u−2u0)2
(√

β log T
)1+β(u−2u0)2

hT (u)d u

∼
∫ 1

0

Tα(u)
(√

β log T
)−α(u)−1

hT (u)d u. (A.1.10)

But, from (4.5.1) with n = β log T we can write

hT (u) =
(√

n
)α(u)+1

∫ u

0

g̃(u, v)vα(u)−βv2 exp (−nv2)d v.
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Now, by a similar arguments leading to (A.1.8) we have that

hT (u) ∼
(√

n
)α(u)+1

g̃(u, 0)

∫ u

0

vα(u)−βv2 exp (−nv2)d v

+
(√

n
)α(u)+1

∫ u

0

g̃(u, ξv)ξ
−βξ2v
v vα(u) exp (−nv2)d v,

for some ξv ∈ [0, u]. But, analogously to the proof of Lemma (A.1.8), the second

integral in the expression above is negligible for large n. Thus,

hT (u) ∼
(√

n
)α(u)+1

g̃(u, 0)

∫ u

0

vα(u)−βv2 exp (−nv2)d v.

Now, by replacing this expression in (A.1.10), the result follows.

A.2 Supplementary Material for Chapter 4

Lemma A.2.1. Define R and R̃ be the T ×T matrices with (i, j)th entry γ(h, u) and

γ̃(h, u), respectively, where

γ̃(h, u) =

∫ π

−π

eiλh

|1− eiλ|2d(u)
dλ,

and IT be the T × T identity matrix. Then

RT ≤ KR̃T ≤ KT 2dsIT ∀u ∈ [0, 1].
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Proof. Let x be a fixed vector, since

x′RTx =
T∑

t,s=1

γ(t− s)xtxs

=
T∑

t,s=1

∫ π

−π
eiλ(t−s)xtxsf(u, λ)dλ

=

∫ π

−π

T∑
t,s=1

e(iλ(t−s))xtxs
f0(λ)

|1− eiλ|2d(u)
dλ

=

∫ π

−π

∣∣∣∣∣
T∑
t=1

eiλtxt

∣∣∣∣∣
2

f0(λ)

|1− eiλ|2d(u)
dλ

≤ K

∫ π

−π

∣∣∣∣∣
T∑
t=1

eiλtxt

∣∣∣∣∣
2

1

|1− eiλ|2d(u)
dλ

= Kx′R̃Tx.

Let y = R̃
1/2
T x, then

y′y = x′R̃
1/2
T R̃

1/2
T x = x′R̃Tx =

∫ π

−π

∣∣∣∑T
t=1 e

iλtxt

∣∣∣2
|1− eiλ|2d(u)

dλ.

Thus

y′y

x′x
=

∫ π

−π

∣∣∣∑T
t=1 e

iλtxt

∣∣∣2
|1− eiλ|2d(u)

dλ

1/2π

∫ π

−π

∣∣∣∣∣
T∑
t=1

eiλtxt

∣∣∣∣∣
2

dλ

. (A.2.1)

Now, for 0 < d(u) < 1
2

we have

|λ|2d(u)

|1− eiλ|2d(u)
=

∣∣∣∣ λ/2

sin (λ/2)

∣∣∣∣2d(u)

, λ ∈ [−π, π].

Therefore for d(u) ∈ (0, 1/2),∣∣∣∣ λ/2

sin (λ/2)

∣∣∣∣2d(u)

≤
(π

2

)2d(u)

= C(u).
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Since 0 < d(u) < 1
2

=⇒ C(u) ≤ π
2
≡ C. Hence

|λ|2d(u)

|1− eiλ|2d(u)
=

∣∣∣∣ λ/2

sin (λ/2)

∣∣∣∣2d(u)

≤ C.

Thus in (A.2.1)

y′y

x′x
=

∫ π

−π

∣∣∣∑T
t=1 e

iλtxt

∣∣∣2
|1− eiλ|2d(u)

dλ

1/2π

∫ π

−π

∣∣∣∣∣
T∑
t=1

eiλtxt

∣∣∣∣∣
2

dλ

≤ 2πC

∫ π

−π
|λ|−2d(u)

∣∣∣∣∣
T∑
t=1

eiλtxt

∣∣∣∣∣
2

dλ

∫ π

−π

∣∣∣∣∣
T∑
t=1

eiλtxt

∣∣∣∣∣
2

dλ

.

Define h∗(λ) =
|
∑T
j=1 e

iλjxj |2∫ π
−π |

∑T
j=1 e

iλjxj |2 dλ
. Then, this is a probability function over [−π, π]

satisfying
∫ π
−π h

∗(λ)d(λ) = 1 and h∗(λ) ≤ T
2π
. Consequently,

y′y

x′x
≤

∫ π

−π
| λ |−2d(u) h∗(λ)d(λ) ≤ CT

∫ π/T

0

λ−2d(u)d(λ)

=
Cπ1−d(u)

1− 2d(u)
T 2d(u) ≤ KT 2d0 .

Hence R̃T ≤ KT 2d0I ∀u ∈ [0, 1].

Proof. 4.6.1. The proof uses argument analogues as in Theorem 3.2 and Theorem

3.6 of Dahlhaus (1997). The consistency of θ̃T follows with the proof of Theorem 3.2,

hence if we show that

sup
θ

∣∣∣LT (θ, xj(t/T )β̂)− LT (θ, xj(t/T )β)
∣∣∣→p 0

for j = 1, . . . , p that is, if we show

sup
θ

∣∣∣∣∣ 1

M

M∑
j=1

∫ π

−π

{
I
xj(t/T )β̂
N (uj, λ)− Ixj(t/T )β

N (uj, λ)
}
φθ(uj, λ) dλ

∣∣∣∣∣→p 0,

where φθ(uj, λ) = fθ(uj, λ)−1. By the mean value theorem there exist a vector θT

satisfying |θT − θ0| ≤ |θ̂T − θ0|, such that

√
T
{
∇LT (θ̃T , xj(t/T )β̂)−∇LT (θ0, xj(t/T )β̂)

}
= ∇2LT (θT , xj(t/T )β̂)

√
T (θ̃T − θ0)
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it suffices show that

(A.1)
√
T∇LT (θ0, xj(t/T )β̂)−

√
T∇LT (θ0, xj(t/T )β)→p 0

(A.2) ∇2LT (θ, xj(t/T )β̂)→p Γ.

Therefore the result follows if we show that

√
T

1

M

M∑
j=1

∫ π

−π

{
I
xj(t/T )β̂T
N (uj, λ)− Ixj(t/T )β

N (uj, λ)
}
φθ0(uj, λ) dλ→p 0 (A.2.2)

for j = 1, . . . , p and φθ(u, λ) = ∇fθ(u, λ)−1 and

sup
θ

∣∣∣∣∣ 1

M

M∑
j=1

∫ π

−π

{
I
xj(t/T )β̂
N (uj, λ)− Ixj(t/T )β

N (uj, λ)
}
φθ0(uj, λ) dλ

∣∣∣∣∣→p 0 (A.2.3)

for φθ(u, λ) = fθ(u, λ)−1 and φθ(u, λ) = ∇2fθ(u, λ)−1. The last expression is equal to

sup
θ

∣∣∣∣ 1

M

M∑
j=1

∫ π

−π
φθ(uj, λ) {2πH2,N(0)}−1

×
{
d
Y−xj(t/T )β
N (uj, λ)d

xj(t/T )(β−β̂)
N (uj,−λ)

+d
xj(t/T )(β−β̂)
N (uj, λ)d

Y−xj(t/T )β
N (uj,−λ)

+d
xj(t/T )(β−β̂)
N (uj, λ)d

xj(t/T )(β−β̂)
N (uj,−λ)

}
dλ

∣∣∣∣ (A.2.4)

which by means of the Cauchy-Schwarz inequality is with

δT :=
1

M

M∑
j=1

∫ π

−π
{2πH2,N(0)}−1

∣∣∣∣dxj(t/T )(β−β̂)
N (uj, λ)

∣∣∣∣2 dλ
bounded by

sup
θ,u,λ
|φθ(u, λ)|

2

(
1

M

M∑
j=1

∫ π

−π
I
xj(t/T )β
N (uj, λ) dλ

)1/2

δ
1/2
T + δT

 .
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The expression (1/M)
∑M

j=1

∫ π
−π I

xj(t/T )β
N (uj, λ) dλ is bounded in probability (Theorem

2) see Palma and Olea (2010) and

δT =
1

M

M∑
j=1

H2,N(0)−1

N∑
s=1

h
(
s−1
N

)2
{
xj

(
tj −N/2 + s

T

)
β

−xj
(
tj −N/2 + s

T

)
β̂T

}2

= op

(
NT 2d0−1

log T 2d0+1

)
therefore (A.2.3) is proved. To prove (A.2.2) we note that

√
TδT → 0. Since

√
Tδ

1/2
T 9 0 we need a better estimate for the first and second term of (A.2.4).

Let cT :=
√
T {2πH2,N(0)}−1, H t,N(λ) :=

∑t−1
s=0 h(s/N)e−iλs and tj = tj −N/2,

cT
M

M∑
j=1

∫ π

−π
φθ0(uj, λ)d

Y−xj(t/T )β
N (uj, λ)d

xj(t/T )(β−β̂T )
N (uj,−λ) dλ

= cT

M∑
j=1

N−1∑
t=0

{
xj

(
tj + t+ 1

T

)
β − xj

(
tj + t+ 1

T

)
β̂T

}
×
∫ π

−π
φθ0(uj, λ)d

Y−xj(t/T )β
N (uj, λ)

{
H t+1,N(−λ)−H t,N(−λ)

}
dλ

= −cT
M∑
j=1

N−1∑
t=0

[{
xj

(
tj + t+ 1

T

)
β − xj

(
tj + t+ 1

T

)
β̂T

}
−
{
xj

(
tj + t

T

)
β − xj

(
tj + t

T

)
β̂T

}]
×
∫ π

−π
φθ0(uj, λ)d

Y−xj(t/T )β
N (uj, λ)H t,N(−λ) dλ

+cT

M∑
j=1

{
xj

(
tj + t

T

)
β − xj

(
tj + t

T

)
β̂T

}
×
∫ π

−π
φθ0(uj, λ)d

Y−xj(t/T )β
N (uj, λ)H t,N(−λ) dλ.

On other hand we haveH t,N(−λ) ≤ KLN(λ) uniformly in t. Utilizing the Lemma (A.2.2)
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we have that

Var

∫ π

−π
φθ0(uj, λ)d

Y−xj(t/T )β
N (uj, λ)H t,N(−λ) dλ = O(N),

uniformly in uj and t. Since E(d
Y−xj(t/T )β
N (uj, λ)) = 0 the whole expressions tends

to zero in probability. The second term of (A.2.4) is treated in the same way, which

proves the result.

Lemma A.2.2. Let I(u, λ) be defined by

I(u, λ) =

∫ π

−π
φθ0(uj, λ)dY−µN (uj, λ)H t,N(−λ) dλ

where φθ0(uj, λ) = ∇fθ(u, λ)−1. Then, there exist a constant K > 0 such that

|Var I(u, λ)| ≤ KN.

Proof.

I(u, λ) =

∫ π

−π
φθ0(uj, λ)dY−µN (uj, λ)H t,N(−λ) dλ

=

∫ π

−π
∇fθ(uj, λ)−1

N−1∑
s=0

h
(
s
N

)
h
(
t
N

) (
Y[uT ]−N/2+s+1 − µ

)
×e−iλs

t−1∑
j=0

h
(
j
N

)
eiλj dλ

=
N−1∑
s=0

t−1∑
j=0

h
(
s
N

)
h
(
j
N

) (
Y[uT ]−N/2+s+1 − µ

) ∫ π

−π
∇fθ(uj, λ)−1eiλ(j−s) dλ

=
N−1∑
s=0

h
(
j
N

) (
Y[uT ]−N/2+s+1 − µ

)
c(s),

where c(s) =
∑t−1

j=0 h
(
s
N

)
γµ(j − s). Then, under assumption A7 and A9 we have
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that

|Var(I(u, λ))| =

∣∣∣∣∣Var

(
N−1∑
s=0

h
(
s
N

) (
Y[uT ]−N/2+s+1 − µ

)
c(s)

)∣∣∣∣∣
=

∣∣∣∣∣
N−1∑
s,k=0

h
(
s
N

)
h
(
k
N

)
c(s)c(k)γµ(s− k)

∣∣∣∣∣
≤ K

N∑
s=0

N∑
k=0

|s− k|−2dθ(u)−1 ≤ K
N∑
j=0

(N − j)j−2dθ(u)−1 ≤ KN
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