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Abstract

Model comparisons within a Bayesian perspective is probably one of the topics with
great impact on statistical literature in recent years. Diverse methods have been
developed which are based on several points of view. One of them considers a purely
inferential approach, consisting in the deriving of the Bayes factor, which is perhaps
the most popular measure to Bayesian models comparing. In this thesis we develop a
treatment for Bayesian model comparison for skew-elliptical regression models and our
objective is concentrated on the regression linear models together with the distribution
of the errors. It also includes the study of the existence of possible measurement errors
in the predictor variables.

We start by establishing some results where the Bayes factor and some default
Bayes factors do not work. These results are established for elliptical linear models
and a class of prior distribution which generalizes the normal-chi-squared family.

Afterwards, we deal with measurement error models (MEM). We provide an ex-
pression of the Bayes factor to test the existence of measurement error in the explica-
tive variable and present a method to compute it based on Importance Sampling and
Metropolis-Hastings algorithms. Additionally, we construct measures and develop
computational methods to evaluate influence of observations for the parameters of
the MEM. The measures are based on the perturbation function approach combined
with the Bayes factors and other divergence measures. We apply these results to
problems with real data.

Finally, we compute Bayes factors to test asymmetry under skew elliptical linear

regression models. In the univariate case, we study the problem of the sensitivity of

xi



xii

the skewness parameter using the L;-distance, and provide expressions of the Bayes
factor to test skewness under some particular prior distributions. The results are
evaluated through simulation problems obtaining expected results. Also, we develop
methods to compute the Bayes factor to identify asymmetry in a representable skew
elliptical linear regression model and we presented simulation results with multivari-
ate skew-normal distribution for the errors. Application in stock markets are also

considered.
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Introduction

In this chapter, we introduce the main concepts that will be used along this thesis.
We give the necessary conceptual bases to follow the reading of the next chapters and
we describe them. We also reference the recent works in the topics that concern us,
together with mentioning some pioneer works.

Bayes factors. Comparison of models within a Bayesian perspective is probably
one of the topics with great impact on the statistical literature in recent years. The
first steps in Bayesian models comparison was given by Jeffreys (1935, 1961), and
ever since, diverse methods have been developed based on several points of view. For
further information, please refer to Akaike (1973), Schwarz (1978), Aitkin (1991),
Bernardo and Smith (1994), O'Hagan (1995), Kass and Raftery (1995), Berger and
Pericchi (1993, 1996a), Pereira and Stern (1999) and Bernardo (1999). An extensive
list with more than 100 references is presented in Berger (1998). The problem of model
comparison has been approached using different methods. One of them considers a
purely inferential approach and consists in the deriving of the Bayes factor (BF),
which is perhaps the most popular measure used to comparing models, probably for
its simplicity, interpretation and because it is an important quantity in many of the
different theories on the Bayesian models comparison.

The existence of a great variety of these methods from a Bayesian point of view
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reflects the complexity of the problem, in spite of the interest of the Bayesian statistics
community in order to find an unifier theory, necessary in any scientific theory. In this
sense, the selection of models from the point of view of the Decision Theory seems to
better fulfill this goal. More details on this focus are given in Bernardo and Smith
(1994, Chapter 6), Bernardo (1999) and Key et al. (1999).

The essence of the Bayesian inference resides in extracting information of the
observed data through the posterior distribution of some unknown state of the nature
and this is of our interest. In the Bayesian methods for hypotheses comparison is
similarly so, and in almost all these methods are necessary the calculation of the BF.

Let us suppose that we are comparing two models M, and M;. Then the model

My would be more in agreement with the data x if p (M |x) > p (M, |x), that is, if

p(My|x)  p(x|Mo)p(Mp)

LS LX)~ p (x| M) p (M)

where

p (x| M;) :/p(x|9i,Mi)7r(0i]Mi)d0i, i=0,1.
The expression on the right involve the BF defined in the follow.

Definition 0.0.1. Given two hypotheses Hy and H; corresponding to assumptions of
two alternative models, My and My, for the data x, the Bayes factor in favor of Hy

(and against Hy) is given by the posterior to prior odds ratio:

Which can also be written as

o (x]60) m (80) A0,

By = ;
01 fpl (X’Ol)ﬂ'l (01) d01
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where py (x| 0x) = p (x| Ok, My) and 7y, (0)) = 7 (0x| My) are the likelihood and a
prior density of 8 under the model M (k = 0,1) respectively. Kass and Raftery
(1995) present a detailed review on the use of the BF in several applied areas, us-
ing computation techniques such as asymptotic approximations and Markov Chain
Monte Carlo (MCMC) methodology. These authors present also a complete list of
publications related to the subject.

The prior distributions 7 (6%) (k = 0,1) are necessary: from a point of view this
is an advantage since we could include additional information to that given by the
data about the values of the parameter, but it could be very difficult to specify a
prior distribution when this information does not exist. On the other hand, these
prior densities should be proper since the improper ones depend on an indefinite
multiplicative constant, and therefore the BF | in this case, generally, would depend
on indefinite constants. More details on this topic can be seen in Berger and Pericchi
(1993, 1996a) and O’Hagan (1995).

Other advantages of the BF is that it does not require alternative models with the
same parametric space, which is useful to compare any pair of models. The utility
of the BF is not only to compare models or to select a model inside a set of possible
models. In fact, the BF is involved in the problem of prediction when we adopt the
model average approach as we describe below.

If we have a set of models M = {M,; :i € I} with their respective predictive

distributions p; (x) = p (x| M;) and prior probabilities m; = 7w (M;), > .., m = 1, then

iel

the posterior probability of the model M is given by

py(x)m; 1

S )T S B

Therefore, a possible model to choose for the data y, given the previous observations

P (M;|x) =
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p(ylx) = Zpi (y]x) P (M;|x)
where

pi (y]%) = / pi (v1%.8,) ps (8:] %) d6, = / pi (¥16:) p: (6] %) d6..

The last equality is obtained by assuming y x| ;. From p (y|x) follows
E(y[x) = ZE(Y|X7 M;) P (M;|x).
iel

Literature describes also some disadvantages that the BF presents (O’Hagan
(1994, Chapter 7), O’'Hagan (1995), Kass and Raftery (1995) and Berger and Pericchi
(1993, 1996a)). For example, its high sensitivity with respect to the prior distribu-
tion even with great sample sizes. Another difficulty is that, in nested hypotheses,
using noninformative prior distribution on the parameter of interest, will force the
BF to favor the hypothesis Hy. The Bartlett’s paradox shows this fact (see Bartlett
(1957) ). With the purpose of avoiding these difficulties, it has been developed other
variants of the BF | such as the Fractional Bayes Factors (FBF) due to O'Hagan
(1995) and the Intrinsic Bayes Factors (IBF) by Berger and Pericchi (1996a). Other
points of view in the Bayesian models comparison that avoid the great influence of the
prior distributions are the Conventional Prior (CP) approached due to Jeffreys (1961,
Chapter 5), the Bayesian Information Criterion (BIC ) derived by Schwarz (1978),
the Bayesian Reference Criterion (BRC) obtained by Bernardo (1999) and the Full
Bayesian Significance Test (FBST) introduced by Pereira and Stern (1999). Of course
these methods have other difficulties. A wide exposition that includes the bases and
motivations of the Bayesian model selection, as well as examples and comparison of

some methods of model comparison is in Berger and Pericchi (2001).
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Frequently it is difficult to find an analytic solution for the normalization constants
of the posterior densities, and therefore, it becomes also difficult the computation of
the BF. Due to this has been developed diverse computational methods in order to cal-
culate the marginal probability of the data or, the BF directly. Among these methods
are the Laplace approximation (e.g., Tierney and Kadane (1986) and Tierney et al.
(1989)), Monte Carlo, Importance Sampling and Iterative Quadrature to calculate
the predictive (see, for example, Naylor and Smith (1982, 1988), Geweke (1989), Mc-
Culloch and Rossi (1991) and Gelfand and Dey (1994)). Another group of calculation
procedures is those that use simulations from the posterior distribution, among these
are the Sampling Importance Resampling (SIR) referred to Rubin (1988), the Gibbs
Sampling referred to Geman and Geman (1984) and the Metropolis-Hastings referred
to Metropolis et al. (1953) and Hastings (1970). Chib (1995) and Chib and Jeliazkov
(2001) use the MCMC draws from a posterior distribution to calculate the marginal
likelihood. Different useful numeric methods in the Bayesian Statistic are presented
and compared by Chen et al. (2000).

Elliptical models. Due to the great idealization of the normal model, unrealistic in
many applications, in the last times, the non normal models have gained importance.
However, departures from the normal model generally takes an implicit loss of the
parsimony and a bigger mathematical complexity. Due to this, and to try not to
lose many good properties of the normal model, diverse generalizations of the normal
model have been developed, some guided to control the skewness, others to model
the weight of the tails, or both at the same time.

A natural generalization from the normal model, with the goal of controlling the

weight of the tails, is the class of elliptical models defined in Kelker (1970) and
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broadly studied in Cambanis et al. (1981), Fang et al. (1990) and Arellano-Valle
(1994). The elliptical models present the advantage of including as particular cases
a great variety of important models and they also present very good properties (for
example, marginalization and conditionality).

Bayesian inference for normal regression models, including sensitivity analysis,
model comparison and error in variables under noninformative and conjugate prior
for the parametric model has received considerable attention in the last decades. From
a distributional point of view the results can be extended in several directions. One
is by considering a wider class of prior distributions for the parameters of the model.
Another, is by considering alternative distributions for the error terms.

Usually, the results with non-conjugate priors relies heavily on MCMC methods.
On the other hand, many extensions have been obtained by considering the so called
dependent elliptical model, which is often used in linear regression analysis to ac-
commodate the kurtosis of the error terms and to accommodate outliers. Bayesian
inference with multivariate elliptical models was initially presented in Chu (1973).
Posteriorly, Zellner (1976) used the multivariate Student-t distribution, who consid-
ered a Bayesian treatment of linear regression models under noninformative prior
distributions.

The results of Zellner (1976) were extended to the case where the errors are mod-
elled as scale mixtures of normal distributions by Jammalamadaka et al. (1987) and
Chib et al. (1988) and to the entire class of multivariate elliptical distributions by
Osiewalski and Steel (1993). See also, Arellano-Valle et al. (2000) and Branco et al.
(2001) for connections to diagnostic and calibration problems in elliptical regression

models.
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Arellano-Valle et al. (2002a) extended the results of Osiewalski and Steel (1993) for
a new class of prior distributions that generalizes the normal-chi-squared family. They
showed that, for this class, the posterior analysis for the coefficients is invariant with
respect to changes in the generator function under some conditions, and conjugation
is achieved for ¢.

Skew-elliptical models. With the objective of modelling the asymmetry of the data,
taking as a base the normal distribution, diverse generalizations have arisen, for exam-
ple the presented by Fernandez and Steel (1998) and the presented by Arellano-Valle
et al. (2001) which include the epsilon-skew-normal distribution of Mudholkar and
Hutson (2000). But the skew density function defined by Azzalini (1985) has several
attractive properties such as ”strict inclusion” of the normal density, mathematical
tractability and a wide range of the indices of skewness and kurtosis. Azzalini (1985)
makes notice that if f is a symmetric p.d.f. around zero, and G is a continuous c.d.f.

such that G’ is symmetric p.d.f. around zero, then

o () ()

is a p.d.f. for any A € R. Where y € R is the location parameter, ¢ > 0 is the scale

parameter and A is a skewness parameter, when A = 0 we recover the symmetric
p.d.f., % (%) Different choices of f and G give us important special cases, e.g.,
the skew-normal with p.d.f. given by §¢ (%) ) ()\%) and denoted by SN (A, u, o).

Generalizations to the multivariate distributions could be seen in Azzalini and
Dalla-Valle (1996) and Azzalini and Capitanio (1999). Further extension that can
simultaneously account for both skewness and heavy tails are the multivariate skew-
elliptical distributions defined and studied in Branco and Dey (2001) and Genton and

Loperfido (2001), where an interesting special case is the skew-t distribution with
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p.d.f. given by %t (x;—“ |0, 1,V) Fr ()\x;—“), where T ~ t(0,1,v), p is the location
parameter, o is the scale parameter, v the degree of freedom (control the heaviness
of the tail) and A is the skewness parameter.

An unifier work on asymmetric distributions was made by Arellano-Valle et al.
(2002b). They defined a general class of skew-distributions that include, as particular
cases, the skew-elliptical distributions and also, for this class, they gave two stochastic
representations and a general method for computing moments.

Measurement error models. Another generalization of standard regression mod-
els are the measurement error models (MEM) (also called errors-in-variables models
). Due to practical motivations and simplicity of model, attention has been paid to
the linear regression model, where commonly Y; denote the dependent variable and
Ti1, -+, Tip, the explanatory variables that are supposedly known variables. In oc-
casions this assumption is not valid because many real problems exist where is not
possible to know the explanatory variables completely, for example, in social sciences
and management sciences. In this context the denominated MEM arise.

Adcock (1877, 1878) is usually regarded as the first person specifically to consider
such models. It has been written much on the topic, but a detailed and recent analysis
about MEM could be found in Fuller (1987) and Cheng and Ness (1999). Carrol et al.
(1995) concentrated on nonlinear measurement errors models.

Inference problems in MEM typically are approached via classical inference (e.g.,
Fuller (1987), Carrol et al. (1995) and Cheng and Ness (1999)). Literature related to
the Bayesian methodology in MEM is less vast than in classical approach. A pioneer
work, by Lindley and El-Sayyad (1968), investigates Bayesian inference for normal

case. A unification of the results in Lindley and El-Sayyad (1968) with additional
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considerations on the prior assumptions is considered in the book by Zellner (1971).

Some other results which appeared later include Villegas (1972), Florens et al.
(1974), Reilly and Patino-Leal (1981) and Bolfarine and Cordani (1993), among oth-
ers. These more recent works emphasize obtaining posterior distributions for the re-
gression coefficients under different assumptions which include normally distributed
errors. The scarcity of such results is probably due to the fact that the analytical
treatment of the Bayesian approach for MEM is not simple. This difficulty has been
overcame recently by considering MCMC methods. Some very recent works in this di-
rections are considered in Stephens and Dellaportas (1992), Dellaportas and Stephens
(1995), Richardson and Gilks (1993), Richardson (1996), Muller and Roeder (1997)
and Aoki et al. (2003).

However, the development of MEM has been slower than in other areas of statis-
tics. Particularly very few results are considered in connection to model choice and
model comparisons in spite of the abundant literature available for ordinary linear
models.

Diagnostic. Another important aspect in modelling is the diagnostic of models.
(Classical and Bayesian diagnostic techniques for normal linear regression models have
been extensively studied in the statistical literature. From classical approach, please
refer to, for instance, Cook and Weisberg (1982) and Barnett and Lewis (1994).
Diagnostic techniques within a Bayesian framework have been studied by Johnson
and Geisser (1982, 1983, 1985), Pettit and Smith (1983), Guttman and Pena (1988)
and Peng and Dey (1995), among others. These authors developed influence measures
based on divergence measures between the joint (and marginal) posterior (predictive)

distributions with and without a given subset of observations. Kempthorne (1986),
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Geisser (1987) and Carlin and Polson (1991) investigate the problem of quantifying the
influence of observations in a Bayesian decision framework by examining the changes
in Bayes risk under certain specified prior distributions and loss function. Most of the
research has been conducted for normal linear models and using noninformative prior
distributions. Extensions of the previous results to elliptical (dependent) regression
models are considering in Arellano-Valle et al. (2000).

In MEM, the problem has been mainly approached from the classical point of
view by considering normal distributions and by computing influence measures, see,
e.g., Wellman and Gunst (1991), Abdullah (1995) and Kim (2000). We are not aware
of any Bayesian literature on the problem of quantifying influence in MEM .

Like in the study of any branch of the science, the development of the linear re-
gression models has gone from simpler suppositions toward other ones more complex.
Many authors have dedicated great part of their works to generalize the suppositions
that traditionally have been made on the linear regression models. We, in this thesis,
will contribute to this development in this same sense.

Main objective. During many years it has been supposed that the errors of the
observations in a linear model are normal, however in many situations this assumption
is unrealistic, for example, if the errors present some values very far from the rest.
In this case it could be better to take an error distribution with heavier tails that
those of the normal distribution, in this sense the elliptical models provide a nice
alternative. The dependent multivariate elliptical distributions can help to relax the
strong supposition of the uncorrelation of errors without complicating too much the
analysis and at the same time to maintain a wide class of distributions to control

"atypical” observations.
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The assumption of symmetrical errors is also a supposition that can be violated
in the practice, then it would become necessary to have models that are able to
control this characteristic. To control the asymmetry it have been defined different
skew models. In particular, we will work with the skew elliptical models defined by
Branco and Dey (2001) which they are able to control the skewness, heaviness of the
tails and correlation. Another assumption that commonly is made it is to suppose
that the predictor variable is measured without error, or rather they are measured
with a negligible error, but this is not feasible to suppose in many practical cases,
it is here where the models with errors in variables emerge. Different examples and
applications of these models are considered in the books of Fuller (1987), Carrol et al.
(1995) and Cheng and Ness (1999).

The main objective of this research is to select the probability model that best
explains the behavior of the observed data with known covariates. The selection of
the true model is almost impossible, then, what we will do is to study the topic to
provide new tools and knowledge that will allow us to approach this objective. The
selection model will be focused inside the class of skew-elliptical linear regression
models with measurement error in the predictor variables.

The outline of Figure 1 provides a way to summarize the possible paths with the
purpose of determining a specific regression model. To achieve our objective, we will
calculate the BF in some of the nodes of the outline of Figure 1, and in the square 1
of the outline. Also, with the model diagnostic objective, in the square 2 will see the
importance of the BF when it is used in influence measures to evaluate the sensitivity
of posterior estimates when a group of observations is eliminated from the analysis.

QOutline of the thesis. The thesis is organized as follows. In Chapter 1, we review
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Skew-Elliptical Linear Regression Model with

Symmetric Measurement Errors in Predictors

With symmetric errors With skew errors
on observations (A = 0) on observations (A # 0)
1. Without measurement 3. Without measurement
error (02 = 0) error (02 = 0)
A
2. With symmetric measurement 4. With symmetric measurement
error (o2 # 0) error (o2 # 0)

Figure 1: Outline of model selection into skew-elliptical linear regression models

some results related to elliptical distributions, present a Bayesian analysis of ellip-
tical linear models by considering different specifications for the prior distribution
and compute default Bayes factors to compare elliptical linear models including a
discussion of the performance of these measures as an objective criteria for elliptical
model comparison. In Chapter 2, through the Metropolis-Hastings algorithm and
the Importance Sampling method, we compute the Bayes factor to test the existence
of measurement error, where its behavior is evaluated through simulated and real

data. Measures to evaluate influence of observations are studied in Chapter 3. We
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use the perturbation function to calculate some influence measures on the posterior
distribution of the parameters of the MEM , and apply these measures to a problem
with real data.

In Chapters 4 and 5, we compute Bayes factors to test asymmetry under skew-
elliptical models. In Chapter 4, for the univariate skew-elliptical model, and in Chap-
ter 5, for skew-elliptical linear regression model. In univariate case, we measured the
sensitivity of the skewness parameter using the L;-distance between the symmetric
and asymmetric models. We also compute the Bayes factor to test skewness and
present simulation results for the skew-normal and skew-t distributions obtaining ex-
pected results. Secondly, we compute the Bayes factor to identify asymmetry in a
representable skew elliptical linear regression model and present simulation results
with multivariate skew-normal distribution for the errors. Application in stock mar-
kets are also considered. Conclusions and final remarks are presented in Chapter
6.

Notations. Through this thesis, we employ the usual symbols ||| to denote Eu-
clidean length of a vector, I, independence of two random vectors and g, the equal-
ity in distribution. N, (p, ), denote n-dimensional Normal distribution with mean
vector g and variance matrix 3, and ¢, (x |p, X) and ®,, (x |, 3) denote its respec-
tive p.d.f. and c.d.f. Also, I,, denote identity matrix, 1,, n -dimensional vector of
ones, Ga (a,b), Gamma distribution with expected value equal to ¢ and IGa(a,b),
Inverted-Gamma such that if X ~ IGa (a,b) then X' ~ Ga(a,b). t,(p,2,v), de-

note n-dimensional Student-t distribution with location vector p, dispersion matrix

3 and v degrees of freedom. Also, x <y means that z; <y;, i =1,...,n.



Chapter 1

Comparing Elliptical Linear

Regression Models

In this chapter we consider the calculation of Bayes factors between elliptical linear
models for a new class of prior distributions that generalizes the normal-chi-squared
family. Arellano-Valle et al. (2002a) showed that for this class the posterior analysis
is simple to perform under some conditions, and conjugation is achieved for ¢.

The results of Arellano-Valle et al. (2002a) detected, in the posterior analysis, a
invariance with respect to changes in the generator function. We use this fact to show
that the Bayes factors do not depend on the generator function of an elliptical model.
We also show that for some noninformative prior distributions belonging to this prior
class, some default Bayes factors neither depend on the generator function.

The chapter is organized as follows. In Section 1.1, we introduce the elliptical
distribution and review some results related to elliptical distributions. In Section
1.2, we present a Bayesian analysis of elliptical linear models by considering differ-
ent specifications for the prior distribution. The main result of this section is due

to Arellano-Valle et al. (2002a), and it bears to that many solutions to inference

14



Comparing Elliptical Linear Regression Models 15

problems on elliptical regression models are equals with those obtained under nor-
mal regression models. Finally, in Section 1.3 we compute default Bayes factors to
compare elliptical linear models including a discussion of the performance of these

measures as an objective criteria for elliptical model comparison.

1.1 Elliptical Distributions

In this section we summarize the basic properties of elliptical distributions. Roughly
speaking, a random real variable Z has a spherical distribution if Z < _Z. In this
work we restrict the study to the case when the c.d.f. of Z is absolutely continuous, so
that the spherical symmetry implies that Z has density given by fz(z) = h(2?)Ig(z),
where
/OO wzh(u)du = 1. (1.1.1)
0
The function h is called the density generator and we write Z ~ S;(h). For ex-
ample, if h(u) = \/LQ?G_%“ then we obtain the standard normal distribution with
Z ~ N(0,1), and if h(u) = {v + u}~"=, for some constant c, then the stan-
dard Student-t distribution with v degrees of freedom, say Z ~ ¢(0,1,v), follows.
The class of spherical power exponential distribution can be obtained by setting
h(u) = kexp(—3|ul*), s > 0, for some constant k. The class of spherical distributions
is a large family and includes the spherical uniform distribution, scale mixture of the
spherical normal distribution, among others. Thus, this class of distributions con-
tains symmetric distributions with heavier and lighter tails than those of the normal
distribution.

We note that if Z ~ Sj(h) then T' = Z? has density given by

fr(t) = t72h(0) [0 (2). (1.1.2)
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T is usually termed radial random variable and is denoted by T' ~ R?*(h). Now, let
Y = ju+ ¢2Z then
fr(y) = 62 h((y — n)*¢) Iz (v),

where h satisfy (1.1.1) and T = ¢(Y — p)? has density given by (1.1.2). We say that
the random variable Y has elliptical distribution with parameters p (location) and ¢
(precision), with u € R and ¢ > 0, and we write Y ~ Ely(u, ¢, h).

Multivariate distributions with univariate marginal spherical distributions can be
constructed in several ways. The simplest procedure is to consider Z = (73, ..., Z,)"
a random vector with Z; & Si(h). In this case we say that Z has poly-spherical

distribution. On the other hand, we can construct a multivariate distribution with

constant density function over spheres, that is, fz(z) = h(™(||z|?), where

T A0 ) —
—u2 h"(u)du = 1. 1.1.3
|, e (1)

We say that Z has a multivariate spherical distribution and we write Z ~ S,,(h™).

Note that T = ||Z]||* has density given by

We say here that T has radial-squared distribution with n degrees of freedom and
density generator function h(™, and we write this as 7' ~ R2(h™). Thus, Z ~
S, (h™) if and only if T' = ||Z||> ~ R2(h™).

Note also that the random variable S = T~! has density function

|3

™

L(3)

which is refereed to as the inverted radial-squared distribution with n degrees of

(1/5)% 7 A (1/8)L0,00)(5),

N3

freedom and density generator A, and we write this as S ~ I R%(h™).
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All marginal and conditional distributions of a spherical distribution are also
spherical (see for example Fang et al. (1990)). Any linear combination W = a'Z is
spherically distributed too. Moreover, if Z = (Zy,..., Z,)t ~ S, (h™) then Z1, ..., Z,
are independent if and only if S, (h(™) is the normal spherical distribution (Kelker
(1970)).

Thus, except in the normal case, the poly-spherical and multivariate spherical
distributions are different classes. Both contain distributions that are long-tailed
and short tailed relative to the normal distribution, but the multivariate spherical
approach seems to be a more realistic model because the independence assumption

is relaxed. For example, in the context of the Student-t model, we have that:

2y -t
Z ~ poly —t(0,1,v) < fz(z) = KT, {u%’}
and +
n 2 _%
Zwtn(O,ImV)Hfz(z):c{1+M} |
14

Note that the poly-Student-t distribution is not spherically symmetric. This dis-
tribution remains invariant only under change of sign. On the other hand, the multi-
variate Student-t distribution remains invariant under all orthogonal transformations
and has Student-t univariate marginal distributions, but the elements of Z are not
independent.

A justification from a predictivistic point of view of the dependence structure in
the multivariate Student-t model is given by Arellano-Valle et al. (1994), see also
Loschi et al. (2002).

Figures 1.1 and 1.2 exhibit, respectively, the shape and contours of three types
of distributions and Table 1.1 contains different families of spherical generators and

their corresponding radial-squared distributions.
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Table 1.1: Some subclasses of n—dimensional spherical distributions (u = ||z|?,z €
R™).
Distribution Generator. density Rafhal'—squ.ared
function distribution
Normal om) " exp {—u/2} X2
r(2H) CEEY
Cauchy = {1+ u} nF,1
(WILT/ (ntv)
I == )v” "2V
Student-t 0(%)mn/2 v +u} ’ nk, .,
v>0
F(n;l/))\ / 7(n;u)
Generalized Student-t r(%)mn/ At u} ’ LY 2
v,A>0
)
n T —u® 2 2
Power Exponential r(&)n222a exp {—u®/2}, X8
a>0 “
F( 5 )ar 2q2-(§n

Kotz Type

ot ew (-2},

r,a>0,2¢g+n>0

Ga& (2q+n r)

200 7 2

Pearson Type II

—

T n+1/> v 1
F(%)ﬂ-n/Z (1 - u) )

v>0

Beta (g, g)
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il
A
e

Figure 1.1: Joint densities: a. bivariate standard normal, b. bivariate standard
Cauchy and c. independent product of two standard Cauchy.
In Table 1.1, ¢ is an appropriate constant, Ga%(a, A) means that 7% ~ Ga(a, \)

2
(the Gamma distribution with parameters o and \) and y; means that T° ~ x2,

_n _u
2

where T' = ||Z||? is the radial-squared random variable. Moreover, ¢"(u) = (27)" 2e
is the normal n-dimensional generator.

In this chapter we deal only with multivariate spherical distributions, more gen-
erally with elliptical symmetric distributions.

An nx1 random vector Y is said to have an elliptical distribution with parameters
p (the location vector) and 3 (the dispersion matrix) of dimensions n x 1 and n X n,
respectively, with 3 being positive definite (X > 0), if Y has density function of the

form
=R [y - ) Sy - )]
where h(™ satisfies (1.1.3).
In this case, we write Y ~ El,, (p,, 3, h(")) which is equivalent to Z = X723 (Y — p) ~
El, (0,1,,h™W) = S, (h™) and therefore to (Y —p)' S (Y —p) = |Z|? = T ~
R2 (htm).
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by £,
i

Figure 1.2: Contours of joint densities: bivariate standard normal (black line), bivari-
ate standard Cauchy (blue line) and independent product of standard Cauchy (red
line) to a height ¢. a. ¢ = (2°7) ", b. ¢ = (2%7) " and c. ¢ = (2%7) .

From the above results we can show also that if E (7') < oo, then E(Z) = 0 and

V(Z) = a1, that is,
E(Y)=p and V(Y)=a,%,

where a;, = E (n~'T) is the variance parameter associated with the density generator
B,
Now, let Zj, be a k—dimensional (1 < k < n) random sub-vector of Z ~ S, (h(”)).

Then, Zj, ~ Sk (h¥)) and has density function A% (||zk||2), zj, € R* where

A% () :/ TZ v%k_lh(")(u%—v)dv, (1.1.4)
0

F(t2")
so that Ty = ||Z||* ~ R2 (%)), see Fang et al. (1990). Moreover, provided that the

required moments exist, we have that
E(k7'Tx) =, and V (k7'T;) = {k7'(k+2)(kp + 1) — 1}aj,

where r;, = «a;’E[{n(n+2)}71T?] — 1 is the kurtosis parameter of the elliptical
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family with density generator 2(™. Similar results hold for the inverse radial-squared
random variable Sy = T} L
t
Let us now consider the partition Z = (Z};, Z’ék)) ~ S, (h™). Thus, the condi-

tional distribution of Zj, given Z) = z) is such that

Zi % = 2 L 2 |24 = 1 ~ Si (B)., (1.1.5)
where t = ||Z(k)H2 and, for each t > 0,
(n)
(k) . h (u+t)
hy’(u) = NESIOR u >0, (1.1.6)

is the conditional density generator function. Moreover, by noting that
To = 1 Zel* ~ B (W®) ) Toy = [|Zgo||* ~ Ro_ (h7P) and T = |Z]° ~ B} (b)) |
we obtain the following relationship: R2 (h(™) < R (M) + R2_, (™M), since
z]|* = ||zx]|* + Hz(k)HZ. From (1.1.5), it also follows that

Til Ty =t ~ By (hgk)> :

so that the variance and kurtosis parameters, a, ) and £, x), respectively, associated
t t

with the conditional elliptical model in (1.1.5) are functions of zg through ¢t =

20|

More details about the relationship between elliptical and radial-squared distri-

butions can be found in Arellano-Valle et al. (2002a).

1.2 Bayesian Inference for Elliptical Linear Mod-

els

In this section we consider the elliptical linear regression model

Y[X. 8,6, h" ~ El, (XB,67 L, hl),) (1.2.7)

ns agp
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where, from (1.1.6),
h(ntdo)
W) = )
‘ hid)(aog)

ap is known (ag > 0), h("t9) is a generator function of a (n+dy)-dimensional elliptical
distribution, 8 €R* and ¢ > 0.

If we adopt the convention that h(®(u) = 1, A™(0) = ¢, for some constant
¢, and h(()") = h™ then, when dy = ap = 0, (1.2.7) yields the standard elliptical
model El, (Xﬁ, o1, h(”)). In the latter case and under the non-informative prior

distribution

(B, ¢) < ¢, (1.2.8)

Osiewalski and Steel (1993) have shown that the posterior of 3 is the same for all
density generators of elliptical distributions 2™, and therefore, for the normal linear
model. Similar results hold for the predictive analysis. Only the posterior distribution
of ¢ is affected by departures from normality within the class of elliptical distributions.
Some results related to posterior moments of ¢ are given in Osiewalski and Steel (1996)
by considering the conditional distribution of ¢ given the location parameters 3 and
the data (Y,X). Arellano-Valle et al. (2000) provide an alternative proof of this
fact, and determine the posterior distribution of ¢ explicitly, obtaining a convenient
formula for examining the effects of departures of normality, which are reflected on
the posterior of ¢. Proposition (1.2.1) extends the previous results by considering a
more general class of priors distributions for (3, ¢).

Specifically, we consider

¢|h™ ~ agt RS (h9) (1.2.9)
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which yields

(agm) ?
r(%)

where h(%) (.) is given by (1.1.4).

™ (B, ¢|ht"M) = % 1R (ao)m (B, ™) (1.2.10)

The dependence on h(™ in (1.2.9) is reasonable, since in the present context the
interpretation of the scale parameter changes with the density generator. We will
interpret dy = 0 in (1.2.9) as the non-informative prior 7(¢|h™) oc ¢!, so that
(1.2.10) is reduced to (1.2.8) when 7 (B¢, h™) is constant.

Proposition 1.2.1. Under (1.2.7) and (1.2.10) with B1L¢|h™, we have

_k+d
2

= (BIX,y, h™) [aq(y) + HXﬁ _ Xﬁm = (BIh™) (1.2.11)

and,
T ($X,y, h™) oc ¢'x ! /R D ({aqm + HXB — Xﬁ]ﬂ ¢) 7 (Blg) dB (1.2.12)
where d = n — k+dy are the remaining degrees of freedom, ,é = (XtX)f1 Xy, gy =

2

ao + q(y) and q(y) = (n — k)S* where S* = Hy ~ X3

Assuming h™ as given and (,8|h(”)) to be constant, then

/8|va ~ 1y (Ba aq(y)(XtX)_17d> (1213)
and,
O|X,y, ht" ~ ! R (hD). (1.2.14)
a(y)

Proof. Using (1.2.7) and (1.2.9), we have that

n+dg

[y, 01X, B) oco

R (6 ly = XBIP) h) (ags).
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But, from (1.1.6), h{" (u)h(@) (t) = R D) (4 + ), so that

£y, 81X, 8) o ™2 TR0 (4 |ly — XB + dap) . (1.2.15)

Using now (1.1.3), we have that

n—+d

FyIX.B) o a0+ ly —XBI7] 7,

which does not depend on A™. Thus, the results in (1.2.11) and (1.2.13) follow by

using the well known decomposition
2 Ak ~ 112
Iy = X8I” = |ly - x|+ x5 - x5 (1.2.16)

and from the fact that 7 (,B|X,y, h(")) x f(y|X,8)n (B|h(")). For the proof of

(1.2.12) and therefore (1.2.14), we note that

™ (61X, y, h) o / [y, 01X, 8,0) 7(B|n)dB,

R
where f (y, o X, 3, h(”)) is defined in (1.2.15). Thus, the proof follows by using (1.1.4)
jointly with (1.2.16). m

Note from (1.2.11) that if the prior distribution of B does not depend on h(™,
then the posterior distribution of @3 is invariant on the class of elliptical models under
consideration and can be obtained under the normality assumption. In particular,
applying (1.2.13) and (1.2.14) we get E(B|X,y) = 8 (n > k+2), V(8 X,y) =
2y (X!X)™"  (n > k+4) and (provided that they exist) E (¢ X,y, W) = don

aq(y)’

2
\Y (qﬁ]X,y, h(”)) = [dff(mh +1) — 1] [do‘—h} . For the particular case dy = ag =0, d =

Aq(y)
n—k and agy) = (n — k)% BIX,y ~ 1, (B, S2(XX) ! n — k) and ¢[X,y, b ~

meb_k (h(”‘k)). These results reduce to those in Osiewalski and Steel (1993).
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Assuming in Proposition 1.2.1, k(™ as given and 7 (ﬁ|h(”)) to be constant, then
(1.2.14) implies that the posterior distribution of 02 = ¢~! satisfies o2|X,y, h(™
n . /2 dj2 [, _9\d41 a
aqy) I R3 (h™), that is, m (02X, y, h") = T/ aq(/y) (c72)27 hlD) (242).

Another posterior inference is the models selection, for this is very common

to calculate the Bayes factor between two models, Fl, (Xlﬁl,gb 1In,hf£2¢) 1) and

El, (XQﬁQ, 61T, hg;gm), that is

S (v X081 00 ) 7 (Br. olnl") dodd, ff (v X1 8) 7 (Bl ) B,
BF =
S 1 (y[Xe: B2 0,087 ) 7 (B0l ">) dodBy [ (v %o, By) 7w (BolhS”) dB,

J {%1()') + HXlﬁl - XlBl

1_ B 7T<51|h1 )dﬁ1

n+dg

| (o) as,

J {aqz(y) + HX252 - X262

. 2
where 8, = (X!X,)™' Xty and ¢(y) Bl with i = 1,2. An explicit form

for the previous Bayes factor is difficult to obtain.

As we could see, invariance of the posterior distribution of 3 facilitates the pos-
terior inferences of 3 since they coincide with the well-known results of the normal
model. However, this is a difficulty if our goal is compare different elliptical models
under the conditions of Proposition 1.2.1 with 7 (ﬁ]h(”)) o 1, this case is approached

in the next section.

1.3 Default Bayes Factors for Elliptical Linear Mod-

els

In this section we consider the ¢ alternative standard elliptical linear models

M;:Y =XB+¢;, ¢~ El, (o,qs 'L, A ) (1.3.17)
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j =1,...,q, where the h;’s are n-dimensional generators, 3 € R* (n > k), and the
non-informative prior distribution given by (1.2.8).

As is well known, the usual Bayes factors based on non-informative or default
improper priors, do not work, because the resulting Bayes factors are undetermined.
Several solutions to this difficulty have been proposed and discussed by Berger and
Pericchi (2001), they are called objective Bayes model selection methods.

In this section we discuss the model comparison problem under improper prior by
using the Intrinsic Bayes Factors (IBF) (Berger and Pericchi (1996a)) and Fractional
Bayes Factors (FBF) (O’Hagan (1995)).

Let consider the following partition

X
y_ <Y<1> ) Cx ( m )
Y@ X(2)
where y;) € R™ (i = 1,2), n = ny + ny and the matrix X(; has dimension n; x k.

Proposition 1.3.1. If rank(X 1)) = k < ny then, for each model M; in (1.3.17), the
marginal density of the sub-vector y(1y is given by

r ni—k
m} (yy| Xay) = ) .

(v " (‘X&)X(l) )5

~ —(n1—k)
Yo — X(l)ﬁu) H )

“ -1
where ,8(1) = <X€1)X(1)) X?l)y(l)

Proof. Using the same ideas of Proposition 1.2.1 when ay = dy = 0 we can show that

['(n/2)

/2

f(y,ﬁ!X,m:/O o2 hM (¢ |ly — XB?) do = ly — X8|, (1.3.18)

which does not depends on 2™, and can rewrite as

T (n1/2) tn, (ym\ X@8.n7" lya) — X8| L., m)
w/2 [yay = Xs||"

f (v v, 8 X) =

Y
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where t;, (y| @, 3, v) is density of ¢; (p, 3, v) distribution. If now integrating out y (s

we obtain

n1/2
SN R |

n1/2
1
* S(Zl) (n1 k’)

7Tn1/2

w, 8| X)) =

HY(1 X(1)5(1

2
. Since the last factor is the kernel of the Student-

where S(Ql) = —nll_k Hy(l) — X(l)ﬁ(l)
t density

-1

b (BB, Sty (XiyX) ™ mi — k)

and n; > k, the result follows. m

Remark 1.3.2. From Proposition 1.5.1, the marginal density of any sub-vector y iy,
with ny > k, does not depend on the specific elliptical model under consideration.
A similar result is obtained by Berger et al. (1998) to compare models of the form
(1.3.17), but for a wider class of models. However, their result is not valid for ny >

k+1.

1.3.1 Intrinsic Bayes Factor

The general strategy for computing IBF’s begins with the determination of a proper
and minimal training sample. It is known that (Berger and Pericchi (1996b)) the
minimal training sample for the elliptical models in (1.3.17) is a sub-vector y ({) of size
ny = k+ 1 such that the corresponding sub-matrix X (/) is of full rank. Computation
to compare two elliptical models M; and Ms, yields the following Partial Bayes Factor
(PBF) for data y,
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Therefore the IBF’s would not be useful in order to compare the models in (1.3.17).
However, the IBF’s are useful and easy to calculate upon comparing elliptical linear
models with different design matrices.

Now, we consider the comparison between the elliptical linear models
My Y = X8, + ¢ €~ Bly (0,67 T, 0") (1.3.19)
j =1,...,q where the h;’s are the generators, n > max {k;} and 3, € R¥.
j

Proposition 1.3.3. The IBF’s in order to compare any two models My and M, of

type (1.8.19) do not depend on K™ and hYY.

Proof. 1t suffices to note from Proposition 1.3.1 that the PBF does not depend on
the generators. m

The previous result is very useful since it allow us to calculate IBF’s to compare
elliptical linear models with different design matrices using the results of Berger and

Pericchi (1996b) relating to the IBF’s for normal linear models.

1.3.2 Fractional Bayes Factor

Another alternative approach to compare models is the FBF developed in O’Hagan
(1995). As mentioned by this author, the FBF has a series of advantages over the
IBF (see, for example O’Hagan (1997)), for example it is easier to compute than IBF.
It is necessary to note that those models specified by (1.3.19) differ in two aspects,
the design matrix X; and the generator hgn). The next results are related to the

comparison of two models M; = <X1, h§”)) and M, = <X27 hgn)>~



Comparing Elliptical Linear Regression Models 29

Proposition 1.3.4. The FBF to compare two models My and My in (1.3.19) with

design matrices of full rank is

)nw—n o (1) () d

)n(b—1> IS g <h§n>) ’ (u) du

r (e (- X8,

D (22 1 (252) ([ly - Xu8,

Y

J

where 0 < b < 1, bn > max{k;} and Bj = (Xt-Xj)_1 Xy, j=1,2.
j

Proof. In this case the FBF is given by By (y) = %, where

S 7 (85:0) £ (¥1X,.8,.0.h") dodg,
S 7 (8,:0) £ (31%5,8,, 0,0 ) doa,

q; (by) =

and j = 1,2. Using the change of variables u; = ¢ ||y — X3 ? and integrating out
g g j Vg g g

B, we obtain that the denominator of ¢; (b,y) is given by

—(bn—Fk;) by /D
) '/uj? (h; )> (uj) du.

Now, the numerator of g; (b,y) is just the predictive density of y under model j.

G ;
£ (ot U7

Thus, from Proposition 1.3.1 we have that the numerator is given by

n—=k;
I <T) >(nkj)

(VA (X))

(fv-x5

Consequently,

_r()re (v -xs))
() A Lt ()

)

concluding the proof. m

The FBF for especial cases are presented in what follows.
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Table 1.2: I (b, h™) for some subclasses of n-dimensional spherical distributions.

| Distribution | Density generator h(™ (u) ‘ I (b,n™) |
n
Normal | K (u) = (2m) ™2 exp {~u/2} He
" bn —e 60.n(l771)/2
Contaminated (1 =€) hy (u) +eo 2hy (%), o(3 )(l(bw;m )
Normal O<e<l1l,0>0
NEEAYIP _(ntv) b (ntv\p(bn\p( e
sdent-t | IV gy 4 uy 50 | SN
TR O HE3NERE
Generalized ROEa Au} 2 A>0 T (3 T (052 )t
Student-t
HED R HEANENE=
Peason | oy (1= v >0 S
Type 11 ) S
(3 ) TNE)
Power O exp{—u®/2}, s >0 T2y o
Exponential
2q+n
F(%)sp 2s q _ s Fb(% F<b2q;s»n) b—1
Kotz Type P(Qgﬁn)w%f‘é#u exp{=pu*/2}, rb(g‘g")w%"bb%zﬁ”
p,s>0,2¢+n>0

Corollary 1.3.5. The FBF for comparing two models My and My of type (1.3.17)

s given by

This corollary shows the lack of sensibility of the FBF when distinguishing be-
tween two different elliptical linear models, because the FBF depends on the data
through the sample size n only. We note also that in order to compare models with
different design matrices by using the result of Proposition 1.3.4 it is necessary to
know [ <b, hgn)> =7 u'e (hén)>b (u) du. Table 1.2 shows the value of I <b, hg-n)>
for different generator density functions.

From Table 1.2, note that for the generalized Student-t distribution the value of
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1 (b, h(")) does not depend on the parameter A, and therefore this value is the same
for the Student-t distribution. Similarly, the value of I (b, h(”)) for the Kotz Type
distribution does not depend on the parameter p.

The next corollary shows that for comparing two elliptical linear models with
different design matrices and common generator function, it is enough to compare

two normal linear models with different design matrices, see O’'Hagan (1995).

Corollary 1.3.6. The FBF for comparing two linear models My := (Xl, h(”)) and
M = (Xg, h(")) s given by

n(b—1)

_r(gr (g |y -Xib,
T ()T (k) Hy—XZBQH ’

where 0 < b < 1, bn > max {k;} and B, = (X'X;) ™' Xly, j=1,2.
J

Observe that, under conditions of the previous corollary, both: the IBF and FBF,

remain invariant for the class of elliptical distributions.

1.3.3 Model Comparison as a Decision Problem

A more general approach is to consider the problem of model comparison within the
decision theory framework, as described in Bernardo and Smith (1994). Following
the notation used by those authors we will call w the unknown state of the nature.
In our case, the objective could be inference about (3, ®), (Ynt1,---,Ym), etc. Thus,
we would like to obtain the conditional distribution of w given y under the true
model, by assuming that this model is contained in the class of models that we are
comparing. Figure 1.3, taken from Bernardo and Smith (1994), shows the description
of our decision problem, where m; means that, given the data y, we choose model M;

and a;, j € J; is some report of beliefs assuming model M;.
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u(m;, aj,w)

Figure 1.3: Outline of the decision problem

Appropriate utility functions for these cases must be smooth, proper and local
score functions; their definitions and more details can be found in Bernardo and Smith
(1994). Under these conditions, these authors show that for proper score functions,
u; (aj,w), the optimal choice of a;, j € J;, is af = f(w|y,m;) and, therefore the

utility function would be
u(mg,al,w) = (f(w]y,m),w), i=1,...,q.
But also, under the assumption of local score function, we have that
u(m;,al,w) = Alog f (w|y,m;) + B (w), i=1,...,q,

where A > 0 is a constant and B (-) is a function of w. Therefore, the optimal model

is such that maximize the following expected utility function

a(mily) = / {Alog f (] y,m:) + B (w)} f (w]y) dw (1.3.20)

provided that this exists and where, in our case, if P (M;) = 1/q for alli=1,...,q

m ( —1
P(M;|y) = ;v .
j

then
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If additionally all design matrices are equal, then P (M;|y) = 1/q and

q
F(wly) ==Y f(wly,m)). (1.3.21)
J=1

VQIH

That means, except for different design matrices, that there is no posterior preference
for any model. In such a case, the expected utility u (m;|y) depends on the model
through f (w|y,m;).

Hereafter, we present results for computing @ (m;|y) to compare models M; =
(X, hi) and M; = (X;, h;) for different choices of w, where h; = h;n). We will also
assume that n > max {k;}, such that if w = (8, ¢) then f (w|y,m;) and, therefore,

f (w]y) are proper, which imply that (1.3.20) exists.

Proposition 1.3.7. Ifw = (8,¢) and X; =X Vi=1,...,q,
_ T2 A n_q n_q
u(m;ly) = log [v2 ™ h; (v)] v2 'y (v) dv

qr( ) 7j=1

—AE,, [log (|y — XB8|" )] — Alog [m" (y|X)] +E[B (8, ¢)]y].

Q

where the expected value By, () is calculated with respect to the Student-t distribution
t (B, S2(XIX) ™" 0 — k;)
Proof. Since in this case we are assuming that w = (3,¢) and X; =X, i=1,...,q,

it follows that m¥ (y|X) = m" (y|X),i=1,...,q, so that
63 hi (0lly — XB*)

m" (y[ X)
Then, from (1.3.21) and the previous equation,
(mi]y) 2
u(mily) = —wxr—r=
qm™ (y| X)

[0 (6 s o lly = XBIN] Y- 0 s (0l ~ XBI*) d(8.9)
—Alog [m" (y|X)] + E[B (8, ¢)|y].
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In the previous integral, the usual change of variable v = ¢ ||ly — X3||?, yields

U = —A — - y og [v2 = h; (V)] ve h; (v) dv
imly) = s [ Iy =X cw;/lg[ ()] 03 (0) d

A log (Ily =XB1") . x~ [ oo
—qu(y|X)/ ly —Xa|" dﬂ;/v U, (v) du

—Alog [m™ (y| X)] + E[B(8,9¢)|y].

Using that

27 —n/2

fro-xo
Yoo |

ly = X8I = Hy - XB( Tl

and by observing that the last factor is the kernel of a Student-t distribution, we

conclude the proof. =

Remark 1.3.8. From the above proposition and the previous results it follows that
ifw=08and X; =X foralli =1,...,q, then u(m;|y) = AE,, [log f (Bly)|y] +
E,, [B (B)|y], which do not depends on h;.

Proposition 1.3.9. If w = ¢ then

a(mz|Y> = q N<Y|Xr>

T2 ]
n—k; :
I (3%)
Proof. This follows from Proposition 1.2.1, by noting that when aq = dy = 0 then

n—k;

T 2
r(=")

—k;

((n— k) S20) % ¢ 'hi ((n — k) S0)
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2
. The change of variable v = (n — k;) S?¢ yields the

where S? = (n_lki) Hy — X8,

result. m

Remark 1.3.10. If in Proposition 1.3.9 we set X; = X for alli=1,...,q, then

AT & . -
U (mz| }’) = qF?—n—k) Z/lOg [UTk_lhi (U):| ’UTk_lhj (’U) dv
2 /) j=1

w2 (n—k)s?

+Alog +E[B(9)ly],

which depends on h;.

Let us suppose now that our interest is to select models to make inference about
future observations ¥,.1, ..., yn. Thus, we will assume that the vector y, as well as

the matrix X, are partitioned as

y:<yw>andxi:( <>>
Y (m—n) Xz(m—n)

with ym) = (y1,. .- Jyn)' and Yim-n) = WUnt1,--- ym)" and Xin)» Xigm—n) are n X k
and (m —n) x k dimensional known design matrices. Also, Y |X;,3;,¢~ % h" ~
FEl,, (XiB;,¢7'L,; ™) and we are comparing the models M; = (X;, ") and M; =
(X, h).

70 %9

Proposition 1.3.11. If w = (Yns1,- -, Ym),

A

u (mil ym) = STy X0) /10g Lf (Y- | Y, X3)]

> F (Yo Yoy X5) m2 (¥ X5) dY ) + B [ B (Ymm)) | Y -
=1

where y(mfn)‘ Yy, Xi~tmn <X'Z(m7n)Bl7 SEWM n— kz) and
Wi = Xim-n) (XIX;) 7' X!

i(m—n)

+Im—n .
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Proof. The result follows from Osiewalski and Steel (1993), where it is shown that

Y(m—n)} Y@n), My ~ tm—n (Xz(m—n)/ém S?Wza n— kl) )
which depends on m; through X; only. =

Remark 1.3.12. In the above proposition, if X; = X foralli=1,...,q, then

@ (mil y(m) = Ay, [10g [f (Yom-n)| Yo, X) ][ Y] + Bty [B (Yon-m) | Y] -

where the expected value B, , () is taken with respect to the Student-t distribution

tm_n <X(m_n),é, SIQW, n — k‘) .

We note from propositions 1.3.7 and 1.3.9 that the expected utility function
@ (m;|y) depends on the model m; through I(h;) = [ log [vnTik_lhi (v)} vank_lhj (v) dv,
which depends on the data only through the sample size n.

In general, the shape of the density (1.3.21) together with the fact that f (3|y, M;)
and f (Yns1, -+, Ym|y, M;) donot depend on the elliptical model h;, and f (3, ¢|y, M;)
V87, () and £ (8] y, M) o ™3~ (u) with v = 6 |y — XB]* and u = 6 |y — X
respectively, is not useful when selecting the most appropriate model after having ob-
served the data y.

The comparison of elliptical models for the errors using the marginal densities, in
linear models with prior distribution 7 (3, ¢) o< ¢!, should be reexamined. On the
other hand, if we have chosen an elliptical model, that is to say h; is fixed, then the
comparison is centered in the design matrices, and the comparison could be carried
out satisfactorily using the IBF, the FBF or maximizing (1.3.20): in the case of the
IBF’s, the well-known results of Berger and Pericchi (1996b) could be used, and in

the case of the FBF’s convenient formulas can be obtained for many models.
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Concluding we present a Bayesian analysis of the elliptical linear model under
different prior specifications for the parameters. We show that when using squared-
radial distributions for ¢ with B1L¢|h™ and 7(B|h™) the posterior of B does not
depend on h(™. Hence, the inference on 3 is the same as the one obtained under nor-
mality. Only the posterior of ¢ depends on h™ | even under improper prior considered
here.

Moreover, the IBF to compare two elliptical linear models (with common design
matrix) does not work, because the predictive distributions are the same for the
models under comparison. On the other hand, even though the FBF depends on (™,
it depends on the data only through the sample size. Similar results are obtained
when we adopt the perspective of decision analysis for model comparison. Other
alternative methods for nested hypotheses testing that must be explored are presented
by Bernardo (1999) and Pereira and Stern (1999), because these procedures involve
all parameters in the models being compared.

Thus, many results obtained under the normal model remain valid under depen-
dent elliptical models. In general, the results derived here for the dependent elliptical
models do not hold for poly-elliptical models.

In this chapter we specify a conditional distribution for Y| X, 3, ¢, h™ and a prior
for (B3,¢)|h™, in such a way that YILh(™, considering h(™ as random (i.e., h(™ is
marginally ancillary). Thus, any procedure for model comparisons that is based on
the predictive distributions would be not useful to discriminating among different
density generators. Even if we introduce a prior for A, this would not be updated
under the hypotheses imposed in this chapter. On the other hand, it becomes clear

that Bayesian model comparisons should include not only the predictive distribution,
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but also all the model components.
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Chapter 2

On the Existence of Measurement

Error

The problem of estimating parameters in the regression of a response variable Y on
an explanatory variable & from observations on (Y, X), where X is a measurement
of &, is a special case of what has historically been called errors-in-variables problem.

In many practical situations, measurement processes are subject to measurement
errors, in particular, while collecting information related to a phenomenon that could
be described through a regression model. In this case, the predictor variables would
become unknown parameters causing a decrease of the parsimony and a greater com-
plexity of the model.

The standard measurement error regression model with one explanatory variable

can be expressed by

1 =1,...,n, where the §; are unobservable, however they are related with observable

39
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variables X; by the equation
Xi =& +u, (2.0.2)

1=1,...,n.

Lettlng Y = (}/17'--7Yn>t7 X = (Xla'--aXTL)tu £ :(fla"' 7€n)t7 € = (Elu"' 7€n)t

and u = (uy,--- ,u,)", model (2.0.1) and (2.0.2) can be represented in matricial form
as follows
Y=a+p36+e (2.0.3)
X =&+ u.

As usual, it is assumed that

€; iid 0 062 0 .
~ Ny , , 1=1,...,n.

2 02) called struc-

Thus, for this model we have two groups of parameters: (a, 3,02, o7,

tural parameters and &€ = (&, --- ,&,)" called latent (or incidental) parameters. The
model (2.0.3) with fixed &; is called functional model, and if we assume that due
to a sampling process the & are random, as for example &; Y (u, 72), this model
is called structural. A complete and unified treatment which also discusses possible
applications is presented in Fuller (1987) and more recently in Cheng and Ness (1999).

The statistical treatment of this model is not easy, since the dimension of the
parametric space increases with the sample size. Notice that if in the functional
MEM, o2 = 0, then it becomes a normal simple linear regression model (NSLRM),
while in the structural MEM, it becomes a model with random effects (normal simple
linear regression model with random explanatory variables). Because simplifications

are obtained when o2 = 0, we would want to build procedures that allow to compare
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between the simplest model or the most complex, or equivalently to compare the
hypothesis Hy : 02 = 0 versus H; : 02 > 0.

It is well known that the functional model as well as the structural model are
unidentifiable, therefore, from the classic point of view, unless additional assumptions
are made on the parameters, it is impossible to solve the proposed problem above.
This situation is widely discussed in the literature, please refer to e.g. Fuller (1987)
and Cheng and Ness (1999). From a Bayesian perspective, the problem of nuisance
parameters is solved marginalizing in the posterior distribution, and the exploratory
model comparison can be done by computing Bayes factors. To the best of our
knowledge, this problem has not been treated in the Bayesian literature.

The chapter is organized as follows. In Sections 2.1 we compute the BF to compare
the hypothesis Hy : 02 = 0 versus H; : 02 > 0 under functional model and in Section
2.2, for structural model. Section 2.3 is devote to define computational strategies.
A version of Importance Sampling method is used to compute the BF presented in
Sections 2.1 and 2.2. In Section 2.4 the behavior of the method is evaluated through
simulations. Finally, we illustrate the obtained results with an application to real

data in the field of Agriculture.

2.1 Bayes Factor in the Functional MEM

In this section we consider the problem of comparing the hypotheses

H : 2:()7 9 ) 2
{ 020w =0,0.0,0 (2.1.4)

)
H : 03 >0,a,ﬁ,0€2,£
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in the functional MEM, which is equivalent to compare the models M, : NSLRM and

M : functional MEM, that is to compare,

( indep. .
M, :Y; Lr N (a+ Bz;,0%),i=1,...,n

versus

Y; inde i 2 0
Mll fd\’p.NQ Oé—i_ﬁé s O ,izl,...,n,
\ X & 0 o}

where x; denote the observed value of X;. Note that, under the My model, we obtain

T =&
Denote the likelihood functions by p (y,x|«, 3,02, €) = N, (y|«,8,02) for M,

model and, p(y, x|, 3,0%,0%, &) = Ny, (y, x|, 8,02,02,€) for M; model, then the

€)r - w € u

BF is given by

BEM _ [ N, (y|a,B,02) 7 (v, B, 02) dadfdo?
o fNQn(ya)(’CY)B,UQ 02 5)77'(0&,6,0'62,0'276) d&dﬁdazdagds

€7 u? u

Observe that the dimension of the integral of the denominator is very high due
to the presence of the vector of latent parameters £&. However, if we assume a prior

specification such that €1l (o, 3,02, 02) and & YN (p, 72), with p and 72 known, we

could integrate on the space of the parameters & to obtain a simpler shape of the BF.

a, 3,02, 02 are conditionally i.i.d. normal

oty ()]

With these assumptions, we obtain (;)

distributed, with mean and variance given by

Lottt = =={(5)
E a,B,02,0.r = ECE
- ()
14
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and
V{( § > o, 5,020 } - V{E ( i ) a,ﬁ,af,ai,sn
=y (Y) ot ]}
_ oyl [ et o?
- & 0 az
_(# s (o
B Brt 72 0 UZ
B B2+ o2 Br?
N Br? %+ 02 .
Therefore,

p(yxlasolol) = [p(vxla ol ole)r € de

2.2 | -2 2
:N%[(y)ﬂn®<a+ﬁu>’ln®<ﬁf+aﬁ B
X

1
where ® denote the Kronecker product of two matrixes. The p.d.f. of previous

distribution we will denote by Ny, (y, x|, 3,02,02). Then, we obtain

fNQn Y7X| 70-6270-’3) (auﬁaagaoﬁ) dadﬁdazd@% o

As we can see, the formula (2.1.5) is friendlier since the dimension of the integral
of the denominator does not depend of n. These integrals are not easy to calculate
even if we consider standard prior distributions as Normal, Inverted-Gamma, etc.
The computational implementation will be discussed in Section 2.3. However, if we

assume the prior distribution

W(a,ﬁ,af)zw(a af)ﬂ(af):NQ [(ﬁ)‘(bz),afB

x I1Ga (07 |ac,b.)

))
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where B is a known 2 x 2 matrix, the integral of the numerator can be solved in a

closed form, since it is well known that

o (06—2)%2+ae+1 1 N A
JBoclyX) o rw@)@wffprﬂEmp{_éazO}*ﬁ V<ﬂ_ﬁ>}

1 _ at__ A
XeXp{_202 [yty+ﬁf)B 150—5Vﬁ+2b6]},

where 8 = (a, 8), V = X'X + B!, B, = (ap, bo)", B =V~ (X'y + B3) and

In this case,

(2b0)™ T (2 + a.)
T (a.) 7/2bn/>+a B|1/2 |V|1/2’

F) = [ (3l 50?) w 0. 5,07) dadiio? =

where b = y'y + B;B13, — ,étV,é + 2b.. Also, it can be show that the predictive

distribution is

wherey = X' XV 'B713,, X =1,- XV 'X'andr = 8, [B~! = B~'V B! B,—

.
v, —> ! 2a, |,
Y72a€ 7 a)

v'3y + 20b..
The denominator of equation (2.1.5) can be estimated using the procedure de-

scribed by Chib and Jeliazkov (2001).

2.2 Bayes Factor in the Structural MEM

In this section we consider the structural MEM, that is to say we assume that

€ u’ €) u?

(&, ui, &)1 < Ny [(0,0, )", diag (02,02, 7%)], where i = 1,...,n and diag (02,02, 72)
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is a diagonal matrix with the given elements on the diagonal. Here, ;o and 7 will be
also considered known.

Observe that under assumed prior distributions in both cases, functional and
structural, if 2 > 0 then the predictive distribution of observations are equals, mak-
ing the functional and structural MEM equivalent. However, if 02 = 0, the functional
MEM becomes a NSLRM, and the structural, in a NSLRM with random predictor
variables.

It is easy to see that when o2 > 0 the likelihood function for structural MEM is

defined by

Mll f\(%Ng “ Blu 3 ﬁT 7 67— ,izl,...,n
X; L Br? o

and when o2 = 0, it is obtained the model with random effects, M : Y; = a+ X, +¢;,
where X; YN (u, 72), € YN (0,6%) and i = 1,...,n. Then, the problem to compare
these two models is equivalent to compare (2.1.4).

In a similar way to the previous case, it can be proved that

BSM_ fNQ’rL(y7X|aaﬁ7ag)ﬂ(a7ﬁaag)dadﬁdgz (226)
U [ Now (x|, B,02,02) T (a, B, 02, 02) dadfdo?do?’ -
where

2.2 2 2
s (Do (7)o (77 7))
x H B2 -2

Notice that the denominator of (2.2.6) is equal to one of (2.1.5) due to the similarity,

among the functional and structural models, that we mentioned at the beginning. In

the next section we discuss implementation issues.
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Also, since

NQTL(Y7X‘057 70527M772) = Nn(Y|Oé, 70527u7727X)'Nn(X|057 7037M7T2)

= N’rl (y|a,ﬁ,0€2,,u,7'2) ' N’rl (X|,LL,7'2),

then

BSM = N, (x| . 7%) BEM, (2:2.7)

where N, (x| u, 7%) is the p.d.f. of N, (ul,,721,).

2.3 Computational Strategy

The integration methods Monte Carlo and Importance Sampling are less precise and
are more computational demanding than the quadrature methods, although in this
case are feasible to use because the complexity of the models hinders to use other
integration methods. Generally, in this type of computational methods is required of
evaluating of the likelihood function or the posterior density. Even, the dimensionality
of the integrals in the expressions (2.1.5) and (2.2.6) is high, computational evaluation
of the integrand is not complex because the covariance matrix has a friendly structure.

In fact, note that

nites - (7)o
X
; o+ B B2+ 0% Br?

= N.
|/ >’( o L)

- HN2 yl7x2|0560-57 u)

=1

<

o+ Bu L o 32 +02 Br?
o Br? 2+ 02

)
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and

n

N2n (y7X|047 7052) = HN2 (yiaxi|a7 ,O'?)IHN(.fL'i|/,L,T2) XHN(yi|a7 7052)
i=1 =1

i=1

= N, (X |p]1n,7'21n) N, (y| a, ,02) )

€

Then, the three likelihoods involved in the comparison problem, can be written as a
product of likelihoods which are easy to evaluate numerically.

We note that from expressions (2.1.5) and (2.2.6), the dimension of the integral
of the numerator is one minus than that of the denominator. In these cases there are
specific variants to calculate the Bayes factor. A summary of some of these methods
can be found in Chen et al. (2000). We will use one of these methods which is a variant
of the Importance Sampling method. We choose this method because it requires only
the generation of one posterior distribution, the corresponding to the most complex

model.

2.3.1 Importance Sampling Extended to Hypotheses with

Different Dimensions

Now, we will explain the method that we will use to find estimators of the Bayes
factors of interest. For details about the method, see Chen et al. (2000).

Suppose that we want to test the hypotheses Hy : w = wqy versus H; : w # wy
where 8 = (w, 1) € © = Q x W, 7 (1) is the prior p.d.f. for b under Hy and 7 (w, 9)
is the prior density to @ under H;. Observe that the Bayes factor to compare both

hypotheses is,
o I (DIY) () dv
" 9 (Dlw,¥) 7 (w, ) dwdep’

where D denotes the observed data. Now, if we find a p.d.f. g (w| ), since [ g(w|¢) dw =
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1, then the previous Bayes factor can be expressed as

By =

fpo(D|¢)7To(1/’)g(W|¢)de¢: [ po (D] ) 7 (¥) g (w| ) dwda
[ 1 (D|w,¥) 7 (w, ) dwdyp [ p1 (D|w, ) 7 (w, ) dwdap
. [POInWY)  nDabired)

1 (Dlw, )7 (w, ) [ p1(D]w, )7 (w, ) dwdep
[ po(D]p)mo () g (w]p) 5 "
A e e
_ po (D] ) mo () g (w]p)
- E{ pr (D[w, ) 7 (w, ) }

where E; (+) is the expected value with respect to p; (w, 9| D).
Chen et al. (2000) show that an optimal selection of g (w|%)), in the sense of

minimizes the asymptotic relative mean-square error, is by taking

p1(D]w,¥) 7 (w| )
Jp1(Dlw, ) 7 (w| ) dw

g(wly) = pi(wlep,D) =

w.p)
D
@) n Do) @d)
Dlwg) B Tr (Do) m o p)d
fpl | 'lb) (¢)
In such case, the asymptotic relative mean-square error is defined by
. 2
ARE? (B ) I . (Bm _ Bm) (2.3.9)
= limn 3.
01 R B2,
If we choose g as in (2.3.8), then
D 7T
By =E, {po( L@(i/)}) 0 (1/))} | (2.3.10)

where ¢ () = [ p1 (D|w,¥) 7 (w, %) dw and therefore, a Monte Carlo estimator is

L1 (DY) (v0)
o» Z (9 :
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where { (w(i), @b(i)> =1, ,m} is a random sample from p; (w, 9| D). This method
is, in general, computational demanding, since for each term of the sum, it is necessary
to estimate ¢ <¢(i)>.

However, for our case, taken into account that (2.1.5) and (2.2.6) have the same

denominator, and if we assume o2 1L (v, 3, 02) then, we obtain in both cases that

pi(w,%|D) = pi (o, f,07,00y,%) (2.3.11)

41 (Y7X| Oé,ﬂ,O’?,O’S)W(O!,ﬂ,U?,UZ)
fpl <Y7X|a76 o? 0-2)77-(0[75 o? 02) dadﬂdagdag

yYerYu YT e U

J Now (y, x| @, 8,02, 03) m (e, B, 02) 7 (07) dadBdozdoy]

€r-u

_ _ pl(D|w7¢)ﬂ-<w7¢)
el = D) = D) 7 () do
b1 (Y>X‘a?ﬁaazao_g)’ﬁ(aaﬁvag)ﬂ(ai)

fpl (Y7X|057670-270-3)71-(057670-62)7{(0-3) dO'?L

NZTL (Y>X| Oé,ﬁ, 0-6270-5) ™ (0-121,)

J Naw (y. x|, 8,02, 0%) 7 (07) do

€r-u

and

() = /p1<D|w,w>w<w,w>dw

= [ Mo (vxl a0 02 7 (0,502 7 (o) do
To calculate (2.1.5) we have
Do (D| ¢) o (’l/)) - Nn (Y| Qa, ﬁ? 052) T (Oé,ﬁ7 062)

and from (2.3.10),

BFM:E Nn(y|Oé, 7062)
o U Naw (v x|, B, 02, 02) w (02) do2 |-
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Therefore, the corresponding Monte Carlo estimator is:

m N <y| al® 30 02(2'))
]_ n 9 y Ve
Bii == - (2.3.12)
Y m i=1 c <@(i), ﬁ(i), 062(2))

where

¢ (o, 50 520 = %i]\/bn (y,x] a?, 5, 620, 520))
{ <a(i), JEiQN or (i)) =1, } is a random sample draws from the posterior distri-
bution (2.3.11) and {Ug(j),j 1,--- }, from the prior distribution 7 (02).

From (2.2.7), the Monte Carlo estimator for (2.2.6) is given by

m N ( x| a®, ) 02@))

1 on \ Y, ) ) V€

BSM — n BFM —_
2 Y v

These last results can be summarized in the following two propositions.

(2.3.13)

Proposition 2.3.1. An optimal estimator for the Bayes factor to compare a NSLRM
against a MEM, under prior conditions (o, 3,02)1Lo2 1€ and € ~ N, (ul,,721,) is
giwen by (2.3.12).

Proposition 2.3.2. An optimal estimator for the Bayes factor to compare a NSLRM
with normal random predictors against a MEM, under prior conditions («, 3,0%) 1Lo2 1€

and &€ ~ N, (ul,,, 7°1,) is given by (2.3.13).

Here, the optimality is focused in the minimization of the asymptotic relative

mean-square error, ARE? (Bm), given by (2.3.9).

2.4 Simulation Results

The behavior of estimators established in (2.3.12) and (2.3.13) will be illustrated

o2 ~

o
by using generated data from different MEM with prior distributions ( 5 )
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N2 o 7O'€2B
bo

For functional and structural models, the sample {(a(i), 5(i),a€2(i),ai(i)> }, i =

, 02~ IGa(a.,b.), 02 ~ IGa(ay,b,) and & ~ N, (u1,,721,).

1,---,m, were drawn from the posterior distribution using the Metropolis-Hastings
(M-H) algorithm (Metropolis et al. (1953) and Hastings (1970)) with initial values
2 o1 Uiy — YT

Z?:l (z; — f)z ’

a® =y — 3Oz

" 2
) et 3 X (1 — o = %)

5(0) _

ac+ % ’
n —\2
520 — by + % Zj:l (zj — 2)

and transition probability functions

(i+1) (4) 2 —ixn 2 -
¢ . ~ Ny “ ‘ R (Oé(i)7 B y, x) = +n Zj:l (z; — ) T |
Bl Q) o 1

672 . Ga (1,020)

€
and

u

o 20D L Ga (1, ai(i)) ,

s (yj,am,g(i)mjf
(n=2) ¥, (zj—z)

tion of the parameters, 2200 samples were generated. The initial 200 iterations were

where R (a(i),ﬁ(i),y,x) = To estimate the posterior distribu-
discarded to assure stationarity and a lag of 10 was selected to avoid autocorrela-
tion. That means that a net sample size of 200 was used. The M-H algorithm was

programmed in MATLAB package, version 6.0.0.88.
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2.4.1 The Functional MEM

The data (y;,z;), j =1,...,50 were drawn from the following models
Y; = 2.0+ 1.0 + ¢

where the values §; were 5 replicates of the values (-4, -3, -2, -1, 0, 1, 2, 3, 4, 5),

Ou

o, assumed values from 0.0 to 3.0 with step equal to 0.2 and 0. = T,

except when

0. = 0 where o, was equal to 0.1. Since 0. < 0,, there are measurement error, then

2
02 ~ N, [( > ,2031217
1

02 ~ IGa(2,0.1), 02 ~ IGa(2,1) and ¢ N (u,72), where = 0,3 and 72 =

we hope that By < 1.

«
We consider the following prior specifications ( 5 )

1,3,5. Table A.1 of Appendix A exhibits the Bayes factors computed for different
combinations of p and 72.

Figure 2.1 (the ordinates axis is multiplied by 107®) shows the obtained results
for p = 0 and 72 = 3, in this case high values of BF are appreciated for o, < 1.4
and values approximately equal to zero when o, > 1.6, then for high values of o,
the BF favors to MEM model as we expected. Similarly, it happened when y = 0
and 72 = 5, see Table A.1. For the other cases, where prior information is not in
agreement with the true values of §;, the BF does not work well, see Table A.1. Since
the true values of §; are replicates of the values (-4, -3, -2, -1, 0, 1, 2, 3, 4, 5). A nice
prior distribution for §; would be an uniform.

These results show the high sensitivity of the BF with respect to prior distribution
of ¢;. This could be stimulating to explore non-subjective Bayesian methods for model

comparison.
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Ou

Figure 2.1: Optimal Bayes factors for functional MEM with ¢ = 0 and 72 = 3.
2.4.2 The Structural MEM
The data (y;,z;), j =1,...,50 were drawn from the following models
Y; =20+ 1.0 + ¢

where the values ¢; were drawn from a normal distribution N (0,9), o, assumed the
values from 0.0 to 3.0 with step equal to 0.2 and 0. was selected according to the

ratio § = 2=, where ¢ took the values 0.1, 1 and 5; when o, = 0 then o, was equal to

2
02 ~ N, [( >,20€212], o2 ~
1

IGa(2,0.1) and 02 ~ IGa(2,1). Table A.2 of Appendix A shows the obtained Bayes

0.1, 1 and 5, respectively.

«
We considered the prior distributions ( 5 )

factors for different combinations of 9.
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Ou

Figure 2.2: Optimal Bayes factors for structural MEM with § = 0.1.

Figures 2.2 to 2.4 show better the optimal Bayes factors values for each § =
0.1, 1,5, respectively. From these results we appreciate the importance of ratio ¢ for
testing the existence of measurement error, the results are only good when ¢ < 1,

that is to say, when the measurement error is more evident, o, < 7,,.

2.5 An Application

Now, we use the estimator (2.3.13) with real data to test the existence of measurement
errors in variables. The data were taken from Fuller (1987, Chapter 1) and consist
on areas under corn crop. Two different methods were digitized: aerial photography

and personal interview with the farm operator. We denoted the hectares of corn
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1, 1,5 2, 25 3,
Ou

Figure 2.3: Optimal Bayes factors for structural MEM with § = 1.

determined for an area segment by Y; for aerial photography and X;, for personal
interview. An area segment is an area of the earth’s surface of approximately 250
hectares. Observations for a sample of 37 area segments are given in Table A.3 of
Appendix A.

For the data description we should hope Bayes factor indicates existence of mea-

surement error, and also, the model should be described by the equations,

Y=a+p0E+e€

X=£+nu

Since two different methods were used to measure the same object, we decide to take

0 . C . «
a N , 3021, | as prior distribution for 5
1

0? and as prior distribution

€
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07

Figure 2.4: Optimal Bayes factors for structural MEM with § = 5.

for the planted hectare sizes in each area segment we consider a normal distribution
centered in % and with variance (32)2, that is to say & ~ N37 (125137, 102415;).
The computations for the optimal Bayes factor were made under different Inverted-
Gamma prior distributions for o2 and o2 given in Table 2.1.

The results are shown in Table 2.2, where Column 1 displays the three sets of
prior distributions considered in Table 2.1, Column 2 gives the optimal BF estimates
from (2.3.13) and Columns 3 to 6 show the posterior expected values of a, 3, 0% and
o2, respectively.

To make the computation of the optimal Bayes factor, 301,000 samples from
the posterior distribution were generated with the M-H algorithm described in the

previous section. The initial 1000 iterations were discarded to assure stationarity and
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Table 2.1: Prior distributions for ¢ and ¢2 in the corn hectares example.

] Set priors \ Prior distributions \ prior mean =+ prior s.d. ‘
I 02 ~ IGa(2.25,12.5) 10 £20
02 ~ IGa(3,40) 20 4+ 20
0 0? ~ IGa (2.0001,10.001) 10 £ 1000
02~ IGa (2.0004, 20.008) 20 £ 1000
I o’ ~ IGa(2,10) 10 £ 00
02 ~ IGa(2,20) 20 + o0

Table 2.2: Results for corn hectares data in structural MEM

’ Set priors ‘ Botopt ‘ & ‘ 3 ‘ 52 ‘ 52
1 0.1903 | -0.9980 | 1.0346 | 13.3654 | 20.7529
II 0.2904 | -0.9331 | 1.0339 | 14.9646 | 19.3656

I11 0.3521 | -0.9639 | 1.0342 | 14.8065 | 19.4108

a lag of 10 was selected to avoid autocorrelation. That means that a net sample size
of 30,000 was used.

As we expected, the optimal Bayes factor, for these data and prior distributions
considered, always favored the presence of measurement errors. Also, the parameters

estimates are quite near to those obtained by Fuller (1987, Chapter 1).

2.6 Other Approaches

Because the BF is highly sensible with respect to the prior specification, several
authors have proposed objective Bayesian methods for model comparison, as for ex-
ample the Bayesian Information Criterion (BIC) by Schwarz (1978), the Fractional
Bayes Factors (FBF) by O’Hagan (1995), the Intrinsic Bayes Factors (IBF) by Berger
and Pericchi (1996a), the Bayesian Reference Criterion (BRC) by Bernardo (1999),
among others.

Suppose that we are comparing two models My : fo (y |6o) and M, : fi (y |61)
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with non informative prior distribution 7r§v (0;), 7 =0,1.
The BIC has the "advantages” of simplicity and freedom from prior distributions.

It is given by
Jo (y ‘éo>
h <y él)

where the 6; is the maximum likelihood estimator (mle) of @, and d; = dim (0;).

BIY = p(d=do)/2 (2.6.14)

But, obtaining of an unique mle under MEM requires of additional assumptions over
the model. One of these assumptions which will make the normal structural model
identifiable is to assume the ratio of the error variances 6 = 2= known. In this case

the mle’s are given by

NI

Syy — 028 + | (Syy — 523m)2 +46%s2,

B= o ,
o= g - Bi.7
52 — Syy — 26A527y + /328$CE
u 52 _,_52

A2 5222
0. =070,

. Sz
T2 ==

~

and

where
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and
n

sey=n"" Y (2 —2) (i — §),

i=1
see, for example, Zellner (1971, Chapter 5), Fuller (1987, Chapter 1) and Cheng and
Ness (1999, Chapter 1).

On the other hand, the mle’s under My model, that is NSLRM with normal ex-
planatory variables, are fig = Z, 72 = Sy, 30 = LG = 7— (o7 and 02y = %

The following proposition shows that in this case the BIC do not discriminate between

the models under comparison.

Proposition 2.6.1. The BIC to compare a NSLRM with normal explanatory vari-
ables versus a structural MEM with ratio of measurement variances known s equal

to one.

Proof. In this case the BIC (2.6.14) is given by

A A2 a2
NQTZ (y7X| (10,60,0'6’07[110,7'0)

v G52 82 hA2)
NZn <Y7X|a7670—e?0—u7ﬂ77—>

Bélc:é (y7 X) =

Thus, we have to prove

N S B R AQ A2 n A2 A3 A2 22 5 A2
where [ <a076070-57071u077—0> =In |:N2n <Y7X| 05075070-5,07/'6077—0)} and [ (0475705701”/%7' >

In [NM <y,x\ a. B, a—g,a—g,g,%?)].

For My model, the log-likelihood function evaluated in the corresponding mle’s is
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given by
A A A2 A a2 n 2249 1 A A o~ 2
[ (a()aﬁO?Je,O?:anTO) = —nln (27T) - 5111( 00-670) - F y — (040 + /BOMO) 1,
€,0
B . 5 . ¢ .
+&2 y — (G0 + Bofio ) 1) (x — f1olly)
€,0
—MHX— o1,
27262, HoSn

NSy nBoSzy
~2 -2
206,0 06,0

— —nln(27) — gm (7267,)

224a—2 | ~A—2
( 000 T To >Sm

2

)

1
= —n [1 +1n (27) + 3 In (SyySea — siy)} .

For M; model, we are assuming § = o= known. Thus, the log-likelihood function

evaluated in the corresponding mle’s is given by

. R 2 | 22 R 5
z(a,g,&i,g,#) — —aln(27) - 2o (D) _M“y_ (@4—5,}) 1,
2 2D
- A t
+5g (v = (@+00) 1) (x—jla)
32%2_’_(52&3 ) )
—THX—M]lnﬂ

n <32?2 + 52&1%) Sy
2D

Y

where D = 62 (72 + 0272 + 6262). Now, using the well known relationships
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and

Spy = @%2,
(see, for example, Zellner (1971, Chapter 5), Fuller (1987, Chapter 1) and Cheng and
Ness (1999, Chapter 1)), we obtain

3 n SyzS
l<Aa aAQ,A,Q) = —nln27) - =In{(s Sm;—82 _ zToYy
« ﬁ Oys 5 T ( 7T) 9 ( vy zy) 9 (Syysm — Siy)

82

zy
+s Spy — 82 9 (s Spp — S2 )
yySax zy yy Sz Ty

1
= —n [1 +1In (27) + 3 In (8yySze — 53,) | »

and therefore, we conclude the proof. m

The general strategy for computing IBF’s begins with the determination of a
proper and minimal training sample, which is a subset of the entire data y. Due to
there are a variety of training samples, we index them by [.

A training sample, y (1), is called proper if 0 < m; (y ({)) < oo for j = 0,1, and
minimal if it is proper and no subset is proper, where m; (y) is the corresponding

marginal or predictive p.d.f.,

m; (y) = / £ (y16;) 7Y (8;) d6;.

Since in training sample 0 < m; (y (1)) < oo, then 7; (8;|y (1)) o< f; (y (1) |0;) 7} (8;)
is proper. Now taking these posterior distributions as prior distributions we can use

the remaining data, y (—[), for model comparison and to compute a Bayes factor,

_ J fo(y (=) 180,y (1)) m0 (8ol y (1)) dBo
Jfily (=0)[61,y (1)) w1 (61]y (1)) 6,

BE (1) is called Partial Bayes Factor (PBF). It is easy to prove that

By (1)

B(])Dl (1) = Bo1(y) - B (y (1)),
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where By (y (1)) = Z;g% Due to PBF depends on the arbitrary choice of the

training sample, to eliminate this dependence and to increase stability, Berger and

Pericchi (1996a) define the IBF’s averaging the B{; (1) over all possible training sam-
ples y(l), l = 1,...,L. Then, for each type of average there is an IBF, for exam-
ple, the arithmetic IBF is defined as B{Y (y) = BOIT(y) S Bio(y (1)), the geometric
IBF, as B§! (y) = Bo (y)exp {L‘1 Zle In Byg (y (l))}, and the median IBF, as
B} (y) = By (y)med [Byg (y (1))], where med denotes the median of a data set.
Berger and Pericchi (1996a) defined others alternative strategies for model compari-
son, such as the expected IBF, intrinsic prior distributions and encompassing IBF.

In our case, measurement error model, the computation of By; was computation-
ally demanding, so to compute the IBF’s could be worse. The use of intrinsic prior
distributions requires of a nice asymptotic behavior of the mle’s, but the mle’s of the
MEM they do not satisfy those limiting properties, unless we make additional sup-
positions on the parameters of the MEM. For example, if we assume § = 2= known
we obtain consistent mle’s, but it yields to that the models we are comparing are
no longer nested. In this case, the encompassing IBF could be used, but this would
bring other additional complications, see for example O’Hagan (1997).

The FBF, with training fraction b € (0, 1), is defined by

B (y) =

where

[ fi(y16;) 7} (8,)d0;
j 7b = b .
GO0 = T 10, A (6,)d6;

O’Hagan (1995) proposed different choices for b, for example, b = mg/n, b = n~t max {mg, /n}

and b = n~! max {my, In (n)}, where my is the minimal training sample size. Also, it
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is easy to show that the B{ is given by

[1f1 (v 16:0))" 7 (61) 6,
[ [fo (v 160)]" 7 (60) dBy’

and By, can be computed for MEM from Propositions 2.3.1 and 2.3.2. Here, difficulty

B(Jiml (y) = Boi (y)

resides in calculating the quotient of the previous expression, although this seems to
be simpler than to calculate the IBF’s.

The BRC was developed by Bernardo (1999). He combines decision theory,
Kullback-Leibler information and reference analysis to propose a non-subjective Bayesian
approach to nested hypotheses testing. BRC is a very nice models selection tool, how-
ever, it can be very difficult to carry out, for example in MEM it could be complicated
to find the reference priors.

Other nested model comparison procedure is the following. For a posterior density,
f1(@]y) and for some 0 < p < 1, a highest posterior density (HPD) credible set for

0 is defined to be the event R, (y), which is the smallest region such that

/ £ (01y)d6 = p.
RP(Y)

Intuitively, for large p, R, (y) contains those values of @ which are most plausible
given the model M; and the data y. Then, given a specified p and derived R, (y), we
are going to assert that the true value of 0 lies in R, (y).

Defining the decision problem of the choice of p in [0, 1], with the state of the
world defined to be the true 8, we have to choose a value of p. An appropriate utility

function may be

u(p,0) = h(p) Lir, )y (0) + 9 (1 =) I ey (6)

where Ry (y) = ©\R,(y), and h and g are decreasing functions defined on [0, 1].
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Then the expected utility of choosing p is given by

u(p)=ph(p)+(1—-p)g(l-p),

from which the optimal p may be derived for any specific choices of h and ¢g. Here,
the problem resides in being able to calculate the posterior distributions or obtain
samples of them. So, this method is not too difficult.

In the next chapter, more specifically, in Section 3.3 we present another approach.
Essentially, it consists on choosing the model with smaller posterior variance with

respect to some parameter of interest.



Chapter 3

Influential Observations in

Functional Measurement Error

Model

In this chapter we propose measures to determine the influence of a given subset of
observations on the posterior distribution of the structural parameters in a functional
MEM. This topic was treated by Wellman and Gunst (1991) and Abdullah (1995)
from classical point of view and by Arellano-Valle et al. (2000) for elliptical linear
regression models. The model that we analyze in this chapter is the normal sim-
ple linear regression model with additive measurement error in variables. Thus, we

consider the model given by

Y, =a+ B¢ + €, (3.0.1)
Xi =& +w,
i=1,...,n, where as in Chapter 2, (Y;, X;) are observed quantities, &; are unobserved
quantities, €; YN (0,02), w; “ N (0,0%) and ellu, where € = (e, - - L€)' and

65
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u=(ug, - ,up).

For this model there are two kinds of parameters: (a, 3,02, 02) called structural
parameters and & = (&,---,&,)" called latent (nuisance or incidental) parameters.
Assuming as prior distribution & ~ N, (u 1,,721,) with g and 7 known, and &

independent of € and u, then, integrating out &, the likelihood of this model can be

+ 22+ 2 2
Now (yoxl @B 0202 = Now [[ ¥ Ve [ “T7F ) e P T T
L Br? 2 + 02

- i a+ Bu B2t + o2 pBr?
= N.
(s [0 ) (75 )

Let I be any subset with k elements of the set {1,...,n}, and as usual, when

specified by

a subset I has been deleted from the data, then (y;,x;) and (y(l),x(f)) are the
corresponding eliminated and remaining data.

In Section 3.1 we present the perturbation function and highlight its utility. In
Section 3.2 we use the perturbation function together with the BF to calculate in-
fluence measures based on ¢-divergence. The perturbation function also is used in
Section 3.3, where we show a proposition that allow us to compute some influence
measures based on posterior Bayes risk under quadratic loss function using only a
sample from the unperturbed posterior distribution. Finally, we apply these results

to data from concrete compressive strengths.

3.1 The Perturbation Function

The perturbation functions were introduced by Kass et al. (1989), and Weiss (1996),

generalizes the problem of assessment of the influence of model assumptions on a
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posterior distribution f (8 |y, My ) in a general context, using a perturbation function.
The perturbation function is defined by

h(0) = f(9|y,M1)’
f(@ly, My)
where f (6 |y, M, ) is the perturbed posterior distribution with respect to the posterior
distribution f (0 |y, My).
We note that,

f(y,01My)  f(y|Mo)
[y M) f(y,0|Mo)

where Bp; is the Bayes factor to compare the models My and M;, and h*(0) =

h(6) = = h" (0) Bo,

f(y,0|My)/f(y,0|My). The next example shows that a suitable choice of h* ()

can be used to assess the influence of model assumptions.

Example 3.1.1. Lety = (y1,...,yn) be conditionally independent observations from

a regression model with p.d.f.

f(yl6,X) Hf (v:160,%;),

where x; is the corresponding vector of predictors for the observation y; and X =
(x1,. .. ,xn)t is the design matriz. The perturbation function corresponding to deletion

case s such that

fya 6. X)) 7 ()
f(yl6,X)m(0)

h(0) x h*(0) = =[f (16, X,)]7",

where Xy is the formed matrixz by the vectors of predictors corresponding to the ex-
cluded observations yr. Similarly, for prior perturbations we obtain h () x m (6) /7 (0),
where w1 (@) is an alternative prior distribution; and for likelihood perturbations,
h(0) x f1(y|0,X)/f(y|0,X), where fi (y|0,X) is an alternative likelihood func-

tion for 6.
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On the other hand, we notice that

Bo, f (y [My) _ f(y|Mo) f(y M)
fFly[My) ~ [f(y.0X,M)d0  [h*(8) f(y,0]X, My)do
_ { f(yl0, X, My) (6 |M0)d0 -
f(y [Mp)
= E7' [ (0)]y], (3.1.2)

where the expected value is with respect to the posterior distribution obtained from
the unperturbed model (see, Weiss (1996)).

Equation (3.1.2) expresses the BF in function of the perturbation h* ( @), and also
implies that E[h(6)|y] = 1. Moreover, a valuable advantage of formula (3.1.2) is
that it requires only a sample from the unperturbed posterior distribution that can be
obtained through MCMC methods, and then to apply Monte Carlo approximation.
Different methods to detect outliers, based on (3.1.2), can be found in Pettit (1992)
and Weiss (1996).

For our case, that is under the model (3.0.1), the perturbation function corre-

sponding to deletion case is given by

(Oé 57 O¢) u) = BOlh ( ﬁ? Oc u)

_ [Hie] N2 (yuxz| o 67 067 u):| - (313)

Ew* [[Hie[NQ(yiaxi|aaﬁao-e270—3 1’}/—)Xj|7

where 7* is given by equation (2.3.11).

Remark 3.1.2. If 0 = (01, 0,), the perturbation function to obtain the influence on
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posterior distribution of 611s given by

f1(01]y) _ J [1(8]y)do, _ Jh(6)f(0]y)db,
f(61]y) ff(0|}’) do, ff(0|}’) do,

_ f(6ly) _
= /h(@) Wd%—/h(mf(@ﬂ@h}’)d@z

_ Bm/h* (8) £ (64]6..y) d6s,

h(61)

but in the MEM given by (3.0.1), is hard to calculate f (02| 61,y,x) and therefore,
h(601) too. Chib and Jeliazkov (2001) present a method for estimating f (03| 07,y,X)
for an arbitrary 0* (from MCMC' chains produced by the M-H algorithm), but for
estimation efficiency, the point @ has to be taken with a high density under the
posterior distribution. For estimating h (01), we need many points like this, and in

this way, we would only achieve a poor estimate of h(61).

3.2 Influence Measures Based on ¢-divergence

Other appealing ways of quantifying influence is by computing divergence measures
between posteriors computed with and without a given subset of the data. That
is, measures that take into account the full distributions involved. The problem of
quantifying the effect of subsets of data using divergence measures has been considered
by several authors, following the approach proposed by Johnson and Geisser (1982).
Weiss and Cook (1992) provide a unified treatment, based on divergence measures,
to examine influence of model perturbations. These author define the g-divergence

measure between two densities m; and 75 on 6 by

d, (), ) = / g [2 EZ;} 7 (8) d6, (3.2.4)
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where ¢ is a convex function such that ¢(1) = 0. From (3.2.4) a wide class of

different divergence measures is obtained. For example, when ¢ (z) = —log(z) the

Kullback-Leibler divergence follows, when ¢ (z) = (z — 1) log (2), the J-distance (or
1

the symmetric version of Kullback-Leibler divergence), when ¢(z) = 5[z — 1|, the

Ly-divergence and y?-divergence follows of take ¢ (z) = (z — 1)°.
Thus, taking 71 () = f (8 |y, %)) and 72 (8) = f (8 ]y,x), in (3.2.4) we have
that d, (/) = d, (71, m2) can be interpreted as the g-influence of the data (yr,x;) on

posterior distribution of 8, which can be written as

_ f(@]ym:xm) B
dqm—/q[ 2 ]f<0|y,x>d0—E{q[h(emy,x}, 32

where the expected value is taken with respect to the unperturbed posterior distri-
bution f (0 |y,x).

Notice that these measures provide an order relation on the set of all partitions
of subsets of {1,...,n}, according to their relative influence. In fact, by adopting
the approach developed by Girén et al. (1992), we can define a subset I; as being
more g-influential than a subset I, for the parameter 0 if d, (1;) > d, (I3). A similar
ordering can be introduced using the measures Mg, M; and Mg considered in the
next section.

The most commonly used g-influence measures are the J-influence and the L;-
influence measures. The later measure and y?-influence has been recommended by
several authors (see, for example, Peng and Dey (1995) and Weiss (1996)) because
these are easier to interpret. However, it is difficult to obtain explicit expressions for
these influence measures, even in simple cases, but in order to estimate d, (I) we can
use the formula given by Weiss (1996).

For the model (3.0.1), through MCMC methods, we can obtain a sample 89 from
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the unperturbed posterior distribution f (8 ]y,x), where 8 = («a, 3,02,02) and thus,

€rru

(3.2.5) can be estimated by the formula given by
qu (I) = m_l Zq |:B()1h* <0(J)>:| s
j=1

where h* (0) = [Hiel Na (yi, zi| o, B, 07 02)}_1 and

By =m™ Z h* <9(j)) )
j=1
Notice that OZq (I) requires only a sample from the unperturbed posterior distribution

f(0]y,x).

3.3 Measures Based on the Posterior Bayes Risk

Kempthorne (1986) defined different influence measures in a Bayesian decision the-
ory framework. In this context, the influence of a subset I of observations on the
decision problem is defined as its impact on the posterior Bayes risk. Consequently,
if A denotes the space of all actions and © the unknown states of the world, then

preferences among actions are determined by their risk:
r(rm*,a) =E. [L(6,a)],

that is, the expected loss with respect to the posterior distribution 7* when we choose
the action a and @ is the true state of the world. In the context of parametric inference,
it may be of interest estimation, prediction, hypotheses testing, models selection, etc.,
as considered by Berger (1985), O’'Hagan (1994) and Bernardo and Smith (1994). In
this section we consider the estimation problem following Kempthorne (1986). Thus,

we consider the loss function given by

L(6,a)=(0—a)W (0 —a)=]|0—al, (3.3.6)
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with W being a known symmetric, positive semi-definite matrix. The optimal action
is the Bayes action a* = E,« () which gets the smallest posterior Bayes risk.
The influence measures, of a subset I of observations, on @, can be measured in

three different ways,

and

Mg (I)=r (WE’}), az})) —r(r*,a"),
where WE‘I) denote the posterior distribution on @ when the subset I of observations
is excluded from the analysis and afp) is the corresponding Bayes action.

The influence measure Mg is the cost of excluding the subset I of observations
from the analysis in terms of the posterior Bayes risk. In this case it is considered that
all the data follow the same model since the risk it is taken with respect to the same
posterior distribution 7* which is best characterization of the belief on 6 given all the
data. Therefore, a subset of observations does not have influence if its exclusion of
the data does not increase the posterior Bayes risk. Also, note that because a* is the
Bayes action under 7*, then r (71'*, az})) > r(7*,a") and the measure My is always
non-negative. Assuming that all data follow the same model, to exclude a subset of
data from the analysis does not reduce the posterior Bayes risk.

The influence measure M; assumes that all data, except the subset I, follow
the same model. Thus, if we do not know anything about the true model of the
observations I, then the analysis of the decision problem is valid if the observations

I are excluded. Therefore, the posterior distribution ﬂz}), is the to best characterizes
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the belief on 6. According to these suppositions, M; measures the increment of the
posterior Bayes risk when the subset [ is incorrectly included in the data. Similar to
the previous measure, M; is non-negative since incorrectly including a the data I in
the analysis never reduces the posterior Bayes risk.

In the third influence measure we assume that all data follow the same model,
then 7 and T(p) are valid and Mp, is the reduction of the posterior Bayes risk when
we increase the set of data adding the cases I. Including a subset of observations
I which are very different to the rest of the data of the analysis may reduce the
precision of the posterior distribution of @ and therefore, it produces an increment in
the posterior Bayes risk. Then, contrary to the two previous influence measures, Mg
is not restricted to be non negative.

The next lemma gives general expressions for the three measures Mg, M; and Mg
that can be used for the numeric computation of these measures using samples from

the posterior distribution generated by some MCMC method.

Lemma 3.3.1. Under the quadratic loss function (3.3.6),

* * 2
ME,H (1) = MI,B (1) = ‘ a —aq ‘w

and
My g (I) = tr [W (Viy—V7)],

where V* = V.. (0) and Vin = Vrrg‘” ().

Proof. 1t is an immediate consequence of the well-known expression,

E. [(6 —a)W (0 —a)] =tr (WV") + |la* — al3,. =

Remark 3.3.2. Let us notice that, if we are interested in selecting the model with bet-

ter @ estimate, then we should choose the model with the smaller Bayes risk, r (7*, a).
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That is to say, if we are comparing two models My and My with posterior distributions
wg and T, respectively, then we should choose the model My if r (r§, af) —r (77, a) >
0, where aj = Er- (0), 7 =0,1. Thus, under the quadratic loss function (3.3.6) and
from the previous lemma, we select the model My if tr[W (V§—=V7)] > 0. Likewise,
if we are only interested in the estimate of one parameter 01, then we select the model

My if Vs (01) > Vo (61).

Now we see these influence measures with respect to the posterior distribution of
the parameters of the model (3.0.1). The next proposition provides an expression
to Mg and Mj that only involves the expected value of the unperturbed posterior

distribution and the standardized perturbation function h.

Proposition 3.3.3. Under the quadratic loss function (3.3.6),

My,

o (1) =M, g(I)=|[Er[(1-1(8))0]y,x]]w
where h (@) is the perturbation function of 7 (6 |y,x) to m(} (6 |y(1),x(1)).

Proof. From

a’ —a(p E.(0y,x)— Ere, (6 ‘y(,-),x([)) =E. (0|y,x) —Ep. (0y,x)

— E.- (60— 6h(6)ly.x)

and the previous lemma, the result is obtained. m
For our case, that is under the model (3.0.1), the function h (0) is given by (3.1.3),

and 7 by (2.3.11).
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3.4 An Application

The results established in the previous sections will now be illustrated by using mea-
sured compressive strength of concrete data. The data were taken from Wellman
and Gunst (1991) and consist of 41 pairs of observed (y;, z;) values (see Figure 3.1,
and Table A.4), where the y; and x; represent the measured compressive strength
of concrete taken after 28 days and 2 days of pouring, respectively. The measured
strengths of concrete differ from their respective true underlying values due to various
sources of measurement errors. Thus an appropriate model for the data is given by
(3.0.1). Wellman and Gunst (1991) and Abdullah (1995) used these data to evaluate
the performance of various diagnostic techniques in linear regression with errors in
variables, but from classical point of view.

The calculations were made numerically and using the M-H algorithm described
in Section 2.4 with prior distributions (o, 3)" |62 ~ N, [(2000, 1), (2002, 4) o],
02 ~IGa (3,4 % 10%), 02 ~ IGa (3,4 x 10°) and & ~ Ny (300014, 500%I4;). 301,000
samples from the posterior distribution were generated, where the initial 1000 iter-
ations were discarded to assure stationarity and a lag of 10 was selected to avoid
autocorrelation. That means that a net sample size of 30,000 was used.

Figures A.1 to A.4 show the influence of one observation based on the influence
measures described in the previous sections. Looking at Figures A.1 to A.4, we
see that the most influential observations are 17, 21, 22 and 37 coinciding with the
observations analyzed by Wellman and Gunst (1991) and Abdullah (1995). The
observations 26 and 34 have a moderated influence.

Table 3.1 gives the influence measures for these observations, Columns 2 and 3

should be multiplied by 107% and 10'°, respectively. The effect of each of these six
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Figure 3.1: Concrete compressive strengths, in pounds per square inch, at 2 and 28
days.
observations over all parameters of the MEM given by (3.0.1) is show in Columns
2 to 5. Due to Remark 3.1.2, the influence measures given in Sections 3.2 and 3.3,
over some particular parameter are hard to estimate using perturbation function.
However, it is not difficult to calculate E. - (0 |y,x) — E”?I) (0 ‘yu),x(l)), so that,
Columns 6 to 9 give the differences between Bayes estimators for each parameter of
the MEM.

From Table 3.1 and Figures A.1 to A.4, we see that observation 21 have an strong
influence on model parameters. This is followed by observations 17 and 37. Columns
8 and 9 indicate that the effect of the sample 37 is over the estimation of o. and

0. The effect of the observation 22 is bigger on o.. Summarizing, the observation
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Table 3.1: Influence measures for concrete compressive strength data under MEM in

deletion case.
i B | Mg (i) | diy (i) | de (i) | & —dg [ BB | 0 — 6w | 9w —0uy

17 0.0673 0.0585 0.1589 0.1908 -166.6826 0.0472 7.4454 -0.2708
21 0 0.6962 0.7753 155.3351 -1385.4 0.4796 40.9677 26.0708
22 0.0268 0.0016 0.071 0.0327 -121.9643 0.0394 -16.5134 11.4325
26 0.1093 0.0017 0.0684 0.0320 -99.6000 0.0302 -8.7644 -0.6540
34 0.1205 0.0138 0.0589 0.0214 129.9191 -0.0395 0.5022 8.3000
37 0.0893 0.01 0.0897 0.0555 232.7790 -0.0691 15.2408 14.3426

21 is the one that really has a great influence on the model. From this analysis, the
separate effect of these observations is clearly established.

This influence measures can be used for examining of posterior distributions from
different models. Then, we can use this influence measures for model comparison.
It is well know that for the linear regression model, y|3,02, X ~ N, (Xg3,0°1,),
with prior distributions 83|02 ~ Ny [Bq,0°B| and 0> ~ IGa(ac,b.), the posterior
distribution is

ntk
Pty x) o« DL L (9 8) V(- )}
I (a)(2m)% |B["? 20

1 - At
X exp {—272 [yty + 6B B, -BVB+ 2b6] } . (3.4.7)

where V= XX + B! and 8 = V! (X'y + B~'8,). From this follows that

~ b
X ~t v 2a, 3.4.8
ﬁ‘yJ k</87n+2a€ 7n+ CL) ( )
and
b
o’ ly,X ~ IGa (g + a., 5) : (3.4.9)

where b = yly + B,B13, — BtVB + 2b,.
Table 3.2 displays fitted models using the complete data set and the 40 samples

excluding sample 21. To estimate (o, 3) and o we used, respectively, expected value



Influential Observations in Functional Measurement Error Model 78

Table 3.2: Comparison of linear regression model and MEM fits.

’ ‘ Complete data set ‘ Sample 21 deleted ‘
Linear model MEM Linear model MEM
ol 2250.7 873.7 3016.4 2259.1
B 0.7894 1.2482 0.5159 0.7686
O, 515.1397 397.5288 397.6253 356.5611
Ou - 354.7970 — 328.7262
sd (@) 463.6781 739.8793 380.8376 598.4807
sd (B) 0.1512 0.2436 0.1257 0.1984
sd (062) 5.9893 x 10* 7.3983 x 10* 3.6145 x 10* 4.6123 x 10*
sd (O’i) - 4.8429 x 10* - 4.6115 x 10*

of Bly,X and o?|y,X under each models. sd(f) denotes the posterior standard
deviation of 6 .

From Table 3.2 we can see the strong effect that the estimates have with each
model. In both models we notice the great influence of the observation 21, but for
the MEM fit is greater than for the linear regression fit. The o, estimate suggests
the presence of measurement error. However, in both cases the complete data set
and the data set without sample 21, the standard deviation for each parameter in
the linear model was smaller than using MEM. Thus, from Remark 3.3.2, we should
choose the linear regression model to fit the data. For the complete data set, the
Bayes factor given by Proposition 2.3.2 was equal to 0.3817, while for the data set
with sample 21 deleted was equal to 2.3112. However, these values of Bm[)pt are not
reliable because the simulation results of Section 2.4.2 were only good when o, < o,
and due to 6. and &, values, we can assume that o, ~ o,. Also, the compressive
strengths of concrete taken after 28 days and 2 days of pouring were taken with the
same measurement instrument, thus, this also makes us think that o, =~ 0,. We note

that the sample 21 has a great influence on BOlopt-
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In short, from these data we can infer two important pieces of evidence: first, due
to the problem description (and not due to B()lopt)7 there is measurement error, and
second, due to the influence measures, the sample 21 is an outlier. Therefore, we
would choose the estimates of Column 5 of Table 3.2. Although, we think that the

best fit is reached by the estimates of Column 4.



Chapter 4

Testing of Asymmetry in
Univariate Skew Elliptical Model

In many applications the assumption of the normal distribution is not appropriate and
more realistic models are needed. However, these more flexible models increase the
mathematical complexity. Computational technics can solve partially the problem,
even so, some mathematical calculation needs to be done if we want to obtain accurate
results. New models have been developed with the goal to preserve good properties
of the normal model and also to be more flexible to control the skewness and kurtosis
of the distribution. These general models include the normal case as a special one.
The model proposed by Azzalini (1985) has the above qualities. If f and g are

symmetric p.d.f.’s around zero and G is a continuous c.d.f. associate with g, then

() e (vt (10.)

is a p.d.f. for any A € R. Where 1 € R is the location parameter, o > 0 is the scale

parameter and A is a skewness parameter. When A = 0 we obtain the symmetric

p.d.f., % f (%) Different choice of the functions f and G give us important special

80
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cases, for example, the skew-normal with p.d.f. given by %gb (m;—“) ) (A%) and
denoted by SN (A, i, o).

The elliptical models given by Kelker (1970) are other well known generalizations
of the normal model. Theses models have been studied, for example, Cambanis et al.
(1981), Fang et al. (1990) and Arellano-Valle (1994). The elliptical models include a
vast variety of important distributions (the Student-t distribution, double exponen-
tial, Pearson type II) and also have good properties (marginalization, conditionally
among others). These models are symmetric as the normal model, with different
kurtosis coefficient.

Extension for the normal model using the two above mentioned ideas, skewness
and heavy tails, have been studied by Branco and Dey (2001) and Genton and Lop-
erfido (2001). An interesting special case is the skew-t distribution with p.d.f. given
by %t (% 0,1, V) Fr (A%), where T' ~ t (0,1, v), p is the location parameter, o is
a scale parameter, v the degree of freedom (control the heaviness of the tails) and A
is the skewness parameter.

In this chapter we approach the problem of model comparison within skew-elliptical
families. In Section 4.1, we measure the sensitivity of the skewness parameter using
the L;-distance between the symmetric and asymmetric models. Computation of the
Bayes factor to examine asymmetry is presented in Section 4.2. Also, in Section 4.3
we present simulation results for the skew-normal and skew-t distributions obtaining

expected results. Application in stock markets are also considered.
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4.1 Sensitivity Analysis for the Skewness Param-

eter

In this section, we study the L; distance between a symmetric and an asymmetric
models.
The model comparison here to seek by evidences from the data set to decide about

one of the models below

My : o 'f (I_“> (4.1.2)

o

My 207'f (?) G(Ax;M>.

Interesting questions are, how much different are My and M;? Is it possible to

obtain an expression as function of \? In Figure 4.1, we plot the skew normal p.d.f.

for three different values of \.

0.7
D.rﬁ%
05]
n.aé
n.3§
n.zé
0.4

Figure 4.1: Skew-normal densities for A = =2, A =0 and A = 5.
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There are many ways to measure the distance between models. An interesting
measurement is the L; distance, because it has a easy and nice interpretation (see,
for example, Peng and Dey (1995), Weiss (1996) and Arellano-Valle et al. (2000)).

The L; distance between two densities f; and fs is

(fi o) = /|f1 (@)l dz = sup [P (A] 1) ~ P(A] )],

where B are the Borel’s sets. The L; distance is bounded and takes values in [0, 1],
where Ly (f1, f2) = 0 indicates that f; (x) = fo (z) for all  value. Also, Ly (f1, f2) is
an upper bound on the differences [P (A|f1) — P(A|fy)| for any set A, where P (-|f)
denote the probability measure defined by f. Generally, it is difficult to obtain explicit
expressions for the L, distance, even in simple cases. However, for our case, the
following proposition provide an useful expression to compute and understand the

distance.

Proposition 4.1.1. For any p and o fixed, the Ly distance between My and My,
specified in (4.1.2), is

Lo(Mo, My) = B [G (N 2)] — % (4.1.3)
where f*(2) = 2f (2) Lo (2) is the p.d.f. f truncated on zero.
Proof. By letting = = 224,
Ly(Mo, My) = % i f(x “>—2f(x;’“‘)e(ﬁo_“> dz
- UI/R %—G(Ai“)’f(“’;“)dx:/]l% %—G()\z) F(2)dz
- /_(; %—G(Az) f(z)dz+/ooo %— (02| £ (2) dz
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Now, by symmetry of g, we notice that if z > 0and A > 0 or if 2 < 0 and A < 0, then

%—G(Az):—/o Zg(u)du

= /OAZg(u) du.

On the other hand, if 2z <0 and A > 0 or if z > 0 and A < 0, then

%—G(Az):/:g(u)duz/oAZg(U)du>0-

z

and

- —G(\2)

1
2

But since, f and g are symmetric,

/ //\Z w)duf (2 dz—/ //\Z u)duf (2
/ //\Z u) duf (z dz—/ /AZ u)duf (2)dz

then, if A > 0 one gets

Ly (Mo, M) ://AZ ) duf (2 dz+/ /Az w) duf (2
1

N //A w)duf (z)dz = B [G (AZ)] - 5

and

and if A <0,

Lo(M, My) = / /AZ w) duf (= dz+/ /AZ u) duf () dz
_ / /AZ w) duf () dz = Ej- [——G(AZ)]
1

= Ep[G(M2)] -

Note that L; (Mg, M;) = Ly (A\) does not depend on p and o.
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Corollary 4.1.2. If Ly is as in (4.1.3), then

1
Proof. Since G is a c.d.f., follows that G (|A\| z) — 1 when |A\] — oco. On the other

side, E¢« [G (|A]| Z)] exist because 0 < G (z) < 1 for all € R. Therefore

lim B [G(]A| 2)] = Ej- [HMGGA' Z)} ~ 1

[A|— o0

The next examples will show us some special cases, where the L; distance can be
obtained in a close way. For these examples we will assume, without loss of generality,

p=0and o =1.

Example 4.1.3. (Uniform)

Let f(z) = 10 (2) and G (z) = 14y (2) + [(1,400) (), the p.d.f. and
c.d.f. of the uniform distribution U_y 1), respectively. Then, f*(x) = Ip1(z), and
for A >0,

Ax +1

G(\r) = 5 I (Az) + T 400y (AT)
_ AT+ 1]

2

]($) —0—1(%’4_00) (x).

>|=
=

Now, if A > 1, then

1 XAz +1 ! 1 1 1
L) =B 0N -5 = [T et [ de- 5= 5-
by

and, If 0 < X < 1, then

1 e +1 1 A
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Therefore

L L yfiN>1
Ll()\):{ 2~ & A .

Blhir <t

Solid line in Figure 4.2 shows this function.

Example 4.1.4. (Double Exponential)

Let f (z) = 27l (2) and G (z) = S 1o p) (x)+ (1 - %) Ijo,100) (), the p.d.f.
and c.d.f. of the double exponential, respectively. Then, f*(x) = e "I 1) () and,

for A > 0 and xz > 0 it follows that

1
G(\x)=1- §€_>\I,

so that

L) =B GNX] -5 = [ (1 - %I) L W"AL 5

Dashed line in Figure 4.2 shows this function.

Example 4.1.5. (Normal)

The Ly distance for the normal and skew-normal distributions is

1

Az 1
Li(A) = Ep[@([AX)] - / / 2 () didy — 5

— / / o3[t e) e ]dydx _Z

2
_ 1 2 2 2 1
= % exp —5[(1+|/\|)x — 2|\ zy + ] dydx—§

— 28y (0,0) 1_21 1 |A| 1
= u (0, 5 =25 27Tarccos Ny 5

11 ( i )
= — — —arccos )
2 7 V1+ A2
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Figure 4.2: L;-distance: solid line for the uniform and skew-uniform densities, and

dashed line for double exponential and skew-double-exponential densities.

1 A
where U ~ Ny (0, %) with 3 = A . Thus,
Al 1+ X2

1 1
Li(\) = = — —arccos (\/%) :

However, in more general cases, numerical methods are necessary to calculate the

L, distance, as an example, the skew-t model.

Figure 4.3 present values of L;()\) for two groups of models: the solid line shows

the distance between N(0,1) and SN(A,0, 1) densities. The circles line, the distance

between the Student-t distribution and the skew-t model. In this case, we calculated

Li(X) using the S-PLUS integration function, this function which implements adaptive

15-point Gauss-Kronrod quadrature based on the Fortran function dgage and dqagie
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from QUADPACK (Piessens et al. (1983)) in NETLIB (Dongarra and Grosse (1987)).

Figure 4.3: L;-distance: solid line for the normal and skew-normal densities, and
circles line for Cauchy and skew-Cauchy densities.

An important way to measure the sensitivity of the A parameter is considering
the effect on the posterior distribution for the parameters (u, o). With this objective

we obtained the following results to compute the posterior distributions.

Proposition 4.1.6. Under the SN (A, u,0) and the prior assumptions A1 (u,0),
plo~N <m, %2> and 072 ~ Ga(a,b), then:

1.

TnJrZa\/v_}_—n
2°7 9T (% + a) /7Fr (\Vn + 2a>-11x)

W§¢<Axi;“)exp{—f; [(n+v)(u—ﬂ)2+r2]}7

T (p, ol A\, x) =
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where fi = MEME 2 = pg? 4 B (m — )’ +2b, 82 =nt30" (2, —7)° and

n+v 7
Fr is the c.d.f. of the t, (0, %,n + 2a) with ¥ =L, + 2= 1,1°.

2.
A/nt2a+1 <
7 (M x) = P2 fo el (B 4 a) Fy (\/rz—i-(niv)(—;—/l)Q ( u]ln))
s ( +a) \/_FT( \/72X “nn) [T2+(n+v)(ﬂ_ﬂ)2}<%ﬂ+a>
and
3.

n+2a ~—n—2a—1 7,,2 x — 41
(0| Ax) = = A exp{ }FU (A—“)
25171T (2 4 a) Fr (Vn + 2aAXL12) 20 o
where Fy is the c.d.f. of the t, (01,,n+2a+ 1) and Fy is the c.d.f. of the
N, (0,%).

Proof. See Appendix C. m

From this proposition and (3.4.7)-(3.4.9) we have

[T, @ (A=74)

Pr (AVn + 2a*442)

o ()

7 (1,0 A, x) = 7 (1,0 A = 0,%),

P2+ (o) (u—)

A X) = - A=0,x
™ (p] A, x) Fr (W T 20500 ™ (p )
and
Fy (AX£2e
7 (o] A, x) = v () 7 (o] A=0,x).

Fr (\/n + 2a)\%) 8

The first term in the three previous equations can be seen as a factor of sensitivity.

Also, notice that for A = 0 (normal model), u| A = 0,x ~ t; (,u, n + 2a>

2
(n+v)(n+2a) ’
and 0%\ = 0,x ~Ga <§ +a, §> From the previous proposition it is easy to calcu-
late 7 (p| o, A, x) and 7 (0| u, A, x), and these two conditional posterior distributions

are necessary in Gibbs Sampling algorithm.
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On the other side, also we can calculate the L, distance considering these posterior

distributions, for example, between 7 (| A = 0,x) and 7 (0| A, x),

L) = 1/000]7?(0])\:0,)()—7r(a|)\,x)|da

2

_ e /°° Ry ()
2547 (5 +a) Jo Fr (Vi + 2aX*48)

Fo (A\/E(x - gnn))

Fr (Vi T 2aneit) ||

exp { r? }
T 202
21 g

1 an+2a+1

g

1
= -E||1-
2

where S ~ Ga (% + a, %) Also, the L; distance between 7 (| A = 0,x) and 7 (u| A, x)

is given by

L) = %/m 7 (A = 0,%) — 7 (] A )| dp

o0

I (% +a)r"™/u+n
27l (2 +a)
Py (\/ MW (y /ﬂln))

r2+(n+v)(u—p)?

1— -
/_oo Pr (Vn + 2a)\ 1)

_ n+42a+1

P (o) (= @) d

V2 (n+v) (M—ji)?

Fr (\/n + 2&)\%) ’

Fy ( AVni2atl  (x _ M]ln))
K 1—

where M ~ tl (,ll, m

, M+ 2a> :
These last results depend on the factor of sensitivity and can be used to study the
influence of the skewness parameter over the posterior distribution of p and o. The

influence measures given in Chapter 3 and their calculus methods can be used.
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4.2 Bayes Factor

In this section we use the Bayes factor to do model comparison (see, for example, Kass
and Raftery (1995), Lavine and Schervish (1999) and Berger and Pericchi (2001)).
Liseo and Loperfido (2002) used the Bayes factor with prior reference to compare
normal versus skew normal models. Let x = (z1,...,x,) be the data set, it is comes
from i.7.d. random samples. Then, the Bayes factor to test the hypotheses given by

(4.1.2), in favor of the M, (the symmetric model) is given as

_ Jo M [ITi, f (554) ] 7 (n, o) duda
2 [ o [[1-, f (B2) G (\=2)] 7 (1, 0, A) dpdod)’

where 7 (+) is the prior distribution for the respective parameter. As we can note by

BF (4.2.4)

expression (4.2.4), a closed form to Bayes factor is not possible to obtain in a general
way. Also the numeric calculation is complex. However, when i and ¢ are known,

the Bayes factor have a better expression

1
P e TS G O e (0 dx

(el

(4.2.5)

The next proposition gives another expression for (4.2.5).
Proposition 4.2.1. The Bayes factor (4.2.5) is given by

-1
BF,, = {2”1@ (z _aEo el 0)1 ,

g

where Zl,...,Znirz;flG, A~ 7 (A) and Z; LN foralli=1,... n.

Proof. By noting that

/ﬁG(,\xi;“)]W(A)dA — /P(ZS)\X_TM]IH)W(/\)CD\

_ /[[D(ZS)\X_—MH"
g

= P(ZS)\X_—MH”)_

o

)\> 7 (A) dA
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Corollary 4.2.2. If G is the standard normal c.d.f. and X ~ N (m,v?), then

—ull,, -1
BF, , = [2"@)” (0 ’mu,In + (v/0)2 (x — pll,) (x — /ﬂln)t)} )
o

Proof. 1t is enough to note that,

x — pll

n - Iln
N, [mx_fv@

L L ofo)? ) (- ).

On practical point of view it is natural to consider the sign of the A parameter
known, i.e., we know the direction of the skewness. In this case, the comparison
to be consider is an unilateral test for the parameter A. In the next two proposi-
tions, we obtain expressions for the Bayes factor that can be helpful for numerical

implementation.

Proposition 4.2.3. Let x = (x1,...,x,) a random sample from (4.0.1), where G is
the standard normal c.d.f. , \ML(u,0), \* ~ Ga(a,b) and P(\ > 0) = 1. Then the
Bayes factor (4.2.4) to compare the models specified by the hypotheses Hy : A = 0 and
Hy: X >0 s given by
_ Joo Joo [T £ (B52)] 7 (s 0) dpdo

P T oo [T (58] P (5 5., B2 /B o) dd’
where Fr is the c.d.f. of the t, (0,1,,2a).

BF

Proof. Notice that if \* ~ Ga (a,b), then X has probability density function f (A]a,b) =
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Qba ()\2) 3 exp (—bA?). Thus,

/ ﬁa(w;“)]mw =i [H/oop (-5) ‘“"]

=1
N2 Lexp (—b)\Q) d\

2b% /°° / /A ‘ 1~
= ——— exp | —= ) t;|dt
(271') 2 F (Cl) 0 —00 2 lz:;

A2 exp (—b)\2) dA.

Making the change of variables t; = Ay;, for all « = 1,... n, and exchanging the

integration order, we obtain

/ HG(Ax “) T\ d\ =

i1 (2m) 2 F
/ A20tn=L oy [ (b + = Zyz> )\2] dA\dy;.

0

Then, with the change of variables | = A2, one obtains

" Ti— b* s

[1c (A TNdN = —f— [ -

i=1 (2m)2 T (a) —o0

/ 1975 exp [— (b+ %) z} dldy,
0

baF a ‘l_ 2a+ _ n+2a
= / 20+y'y] ® dy

(27) 2 F
n+2a

- 27T2F / / [H_} K

But making the change of variables y; = ti\/g ,foralli=1,... n, we obtain

— n+2a
n L tit] ™ 2z
HG(Ax “) T\ d\ = / / {1+—1 dt;
1 2a7r 2 F 2a

Iy —p ja Ip — (/G
= F — .. - 1.
T( o \/;7 ) e b)

/

/
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Then, the proposition result is immediate. m
From Proposition 4.2.3, for ;4 and ¢ known,

1
TP (B )

Remark that to use the expression (4.2.5) and (4.2.6) is not necessary to determine

BF

(4.2.6)

the p.d.f. o71f (%) The next result is obtained using similar argument.

Proposition 4.2.4. Let x = (z1,...,x,) a random sample from the p.d.f. (4.0.1),
where G is the standard normal c.d.f. , \ML(p,0), \* ~ Ga (a,b) and P(\ < 0) = 1.
Then the Bayes factor (4.2.4) to compare the models defined by the hypotheses Hy :
A=0 and Hy : A <0 is given by

_ oo Jeo [T, f (354)] 7 (4, 0) dpdo
2 [ oo [T, (52)] Fr (B2 /5 o /) 7 (. 0) dudo”

where Fr is the c.d.f. of the t, (0,1,,2a).

BF

Proof. Notice that if A> ~ Ga (a,b), then A < 0 has probability density function
f(Aa,b) = % ()\2)%% exp (—bA?). So that, making the change of variable [ = —),
we obtain

ﬁG()\xi;M)]w(A)dk - —/:[ﬁcp(—zxi;“)]f(-l|a,b)dz

=1

_ /OOO Lljcp (z“;xﬂ F(llab)d.

Then, it is enough to continue the proof of Proposition 4.2.3. =

A general way to calculate (4.2.5), is using the Monte Carlo method. Note that if

we can generate a sample A, ..., A\, from 7 (), then the Monte Carlo estimator for
(4.2.5) is
BF o

e I, 26 (s s)]
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where the variance of the estimator BAFH,U depends on the prior variance of A: prior
distributions less informative for A give estimation with greater variance. However,

we can obtain a superior limit for the variance of (BAF W,) . It is well known if X

is a random variable in [0, 1] then V (X) < 1. Therefore,

. -1 22n m n T, — [ 221 4y 22(n—1)
ISR | CIEE )] S m
j=1  Li=1

The superior limit above gives us an idea how big need to be m in order to control

the variability of the Monte Carlo estimation. However, this limit increases quickly

with n, that is to say, it gives us a very large limit value for moderate sample size.

4.2.1 Bayes Factor for Representable Skew Distributions

In the latter section we discussed the difficulties to obtain a general form for the Bayes
factor. Therefore, it is important to consider restrictions in the functions f and G to
make the calculations of (4.2.4) simpler and also to keep the class of the asymmetric
distributions general. Next, we consider a subclass of the elliptical distribution more

simple to work with.

Definition 4.2.5. Z| A, i, 0 has a skew representable distribution under the c.d.f. H

if the p.d.f. can be written by

o= [ e () (s

where H is the c.d.f. of a random wvariable w, which is non-negative and such that

wlL (A, p, 7).

An equivalent definition is given by: Z| A, i, o is a skew representable if and only if
there is w ~ H and wll(\, p, o) such that Z| A\, pu,0,w ~ SN (A, i, 04/w). Properties

and examples can be found in Branco and Dey (2001).
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Proposition 4.2.6. Let x = (x1,...,x,) a random sample from a skew representable
distribution. If a priori pulo ~ N (m, "72) and 072 ~ Ga (a,b), then the Bayes factor

(4.2.4) is given by

BF (X) = — f f,r,—n—2a [(T/ + U) H?:l wl]zé dH (wl) - dH (wn) ' (427>
22 [ [r2 (4 o) [[iL wil 2 g (w) dH (wi) -+ dH (wn)

where
X = /llln -1
g(w)= [ Fr|An+ 2a7 D (w)] ) 7 () dA,
Fr is the c.d.f. of a t,(0,%,n+2a), i = 5 O vy +om), no= >0 wit
Y =[D(w)] '+ Uﬁ? D (w)] ' 1,14 [D ()] ', D (w) = diag (wi, . ..,wy), 12 =nS>+

2
(= S )+ 20, S2 = S0 <x1 =i ij]) and v; = % for each

n+v

1=1,...,n.

Proof. See Appendix D. m
In the special case where wy = wy = -+ = w,, = 1, the result of Proposition 4.2.6

agrees with Liseo and Loperfido (2002) result.

4.3 Simulation Results

In this section we perform a simulation study to describe the behavior of the Bayes
factor given by (4.2.5). In Subsection 4.3.1 we make use of the fact that the Student-t

distribution can be written as a mixture of normal distributions. In this case (4.2.6)

([T (22 )] <w|a,a>dw}‘l

We calculate the previous integral using the MATLAB integration function (quad)

is given by

based on the recursive adaptive Simpson quadrature method.
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Table 4.1: Mean and variance for prior distributions in simulation study.
b [ENIVIV] G

0.1] 28 | 2.15 | 10

1 0.89 | 0.21 | 1

D 0.4 | 0.04 | 0.2

4.3.1 Normal Versus Skew-Normal

For each value of A, A = 0,0.1,...,0.5, we generate 1000 independent data sets,

Yly - Yn, from p.d.f. 2¢ (y) @ (Ay) with n = 10,50, 100. Then, for each data set we

calculate (4.2.6) considering =0, 0 = 1 and A\? ~ Ga (1,b), where b = 0.1, 1, 5.
From \? ~ Ga(a,b) the prior p.d.f. for X is given by

20
I'(a)

and the variance and mean are given, respectively, by

J(Masb) = —— (A2)" 2 exp (—bN?)

_a I%(a+1)
M b2 (a)
_ Tla+s) .
E(\) = ViT (@) it A>0
and
EQy = Lts) ey g

VT (a)

Therefore, for the prior distributions that we use in the simulations, we obtain the
Table 4.1. Please note that the prior variance of A is always smaller than ¢. Thus, if
we want to have a big prior variance, then we have to consider a much bigger than b.
Therefore, in this case the prior mean will be big also. Similar results are obtained
for negatives values of A using Proposition 4.2.4.

For each sample size (n) and A value, the Bayes factor was calculated using 1000

simulated samples. We considered some strong pieces of evidence in favor of the
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Table 4.2: Simulation results with A\* ~ Ga (1,0.1) and for different values of n and
A

n | N\ BF<05|BF>2]| 25" p. | Median | 75" p.
0 4.4 89.4 8.4193 | 28.4309 | 66.0642
0.1 5.1 86.9 6.9357 | 21.2874 | 52.7914

10 [ 0.2 9.1 82.5 3.5738 | 13.9176 | 41.8535
0.3 14.0 72.3 1.6913 7.3060 | 24.1999
0.4 17.4 66.4 0.9266 5.4030 | 18.6577
0.5 24.3 58.9 0.5541 3.5752 | 12.0782
0 0.5 98.4 60.5811 | 158.1004 | 319.9009
0.1 1.7 95.2 21.4082 | 67.7103 | 169.2791

50 | 0.2 4.9 87.7 6.2691 | 26.0408 | 77.3927
0.3 12.4 724 1.6805 8.4769 | 38.5235
0.4 274 55.3 0.3907 2.8809 | 12.9466
0.5 47.1 33.3 0.0636 0.6080 3.7100
0 0.2 99.3 | 121.7138 | 310.8615 | 643.1082
0.1 2.3 95.2 27.9092 | 103.7148 | 261.5884

100 | 0.2 10.6 79.7 2.9946 | 17.4966 | 74.9616
0.3 25.8 56.9 0.4623 3.3920 | 18.7598
0.4 55.5 26.8 0.0282 0.3287 2.3751
0.5 81.9 9.1 0.0016 0.0240 0.2455

asymmetric model if BF < 0.5, and in favor of the symmetric model if BF > 2.

Tables 4.2 to 4.4 display, in Column 3 and 4, the percentage of the samples that

presented evidence in favor of the asymmetric and symmetric models, respectively;

from Column 5 to 7, the 25 percentile, median and 75" percentile of the Bayes

factor values, respectively.

Tables 4.2 to 4.4 show very good results.

Note that for each sample size the

BF decreases when the value of X increases, and for A = 0 tend to be quite big.

This desired behavior is appreciated better for higher sample sizes. In general, the

calculated Bayes factors show correct evidence when A = 0 and when A > 0.4, and

while the sample size increases, this evidence improves. For A > 1, the Bayes factor
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Table 4.3: Simulation results with A> ~ Ga (1,1) and for different values of n and .

n | A\ BE<05|BF>2] 25" p. | Median | 75" p.
0 10.4 635 | 1.4078 | 3.7729 | 7.8112
0.1 12.4 63.3 | 1.2134 | 2.9230 | 6.3771
10 | 0.2 17.9 50.6 | 0.7471 | 2.0380 | 5.1615
03| 281 37.5 | 0.4165 | 1.2357 | 3.2828
0.4 349 315 | 0.2951 | 0.9964 | 2.6781
05| 424 23.8 | 0.2186 | 0.7602 | 1.8649
0 2.1 91.5 | 6.9877 | 17.8707 | 36.4650
0.1 8.7 76.6 | 2.2403 | 7.7218 | 19.0447
50 | 0.2 201 57.3 | 0.7349 | 2.8510 | 8.3711
03| 385 36.8 | 0.2347 | 1.0252 | 3.6563
04| 59.6 20.1 | 0.0514 | 0.2602 | 1.3642
05| 736 8.6 0.0130 | 0.1075 | 0.5436
0 1.1 96.5 | 13.2021 | 34.0111 | 76.7385
0.1 7.2 81.6 | 3.1714 | 9.8879 | 25.5317
100 | 0.2 | 24.9 54.3 | 0.5055 | 2.5016 | 9.1792
03| 535 27.1 | 0.0539 | 0.3897 | 2.3266
04| 80.4 7.6 0.0045 | 0.0465 | 0.3220
05| 93.8 2 0.0002 | 0.0035 | 0.0342
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Table 4.4: Simulation results with A> ~ Ga (1,5) and for different values of n and .

n | A\ | BF<05]| BF>2] 25" p. | Median | 75 p.
0 11.8 38.0 | 0.8493 | 1.5772 | 2.5897
0.1 13.8 30.0 | 0.7558 | 1.3369 | 2.2663
10 0.2 205 23.7 | 0.5797 | 1.0459 | 1.9641
03| 332 12.5 | 0.4136 | 0.7660 | 1.4244
04| 384 10.0 | 0.3463 | 0.6743 | 1.2524
05| 429 51 | 0.2952 | 0.5855 | 1.0312
0 7.2 73.0 | 1.8322 | 4.1703 | 7.7046
0.1 16.7 50.3 | 0.7710 | 2.0095 | 4.3708
50 | 0.2 351 27.7 1 0.2951 | 0.9229 | 2.2482
03] 565 14.9 | 0.1107 | 0.3736 | 1.2628
04| 739 6.7 | 0.0359 | 0.1637 | 0.5405
05| 87.7 1.5 | 0.0110 | 0.0523 | 0.2118
0 1.3 83.0 | 3.0349 | 7.2055 | 14.2496
0.1 17.7 57.4 | 0.8089 | 2.6087 | 6.1743
100 | 0.2 | 486 24.6 | 0.1147 | 0.5354 | 1.9529
03] 724 7.0 ] 0.0232 | 0.1234 | 0.5619
0.4 920 0.9 | 0.0023 | 0.0176 | 0.0937
05| 984 0.0 | 0.0002 | 0.0019 | 0.0136
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Table 4.5: Simulation results with v = 1 and for different values of n and A.
n | N\ | BF<05|BF>2| 25" p. | Median | 75 p.
0 11.7 71.7 1.5312 | 6.0873 | 24.8469
0.1 26.0 48.0 0.4909 | 1.7623 5.1188
10 | 0.2 36.1 31.2 0.2949 | 0.8545 2.6339
0.3 42.7 23.2 0.2176 | 0.6198 1.7899
0.4 54.1 14.9 0.1393 | 0.4391 1.0920
0.5 60.8 14.5 0.1032 | 0.3198 0.9775
0 1.4 95.6 | 29.7884 | 133.4624 | 594.1999
0.1 29.4 49.9 0.3438 | 1.9686 8.9924
50 | 0.2 59.6 21.4 0.0316 | 0.2662 1.4956
0.3 79.7 8.4 0.0049 | 0.0427 0.3417
0.4 89.3 4.0 0.0018 | 0.0140 0.1033
0.5 93.4 2.4 0.0004 | 0.0041 0.0370
0 0.3 98.7 148.4 608.8 2737.9
0.1 41.9 38.2 0.1 0.8 6.2
100 | 0.2 84.1 7.6 0.0 0.0 0.2
0.3 94.9 2.8 0.0 0.0 0.0
0.4 99.0 0.3 0.0 0.0 0.0
0.5 99.6 0.0 0.0 0.0 0.0
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values are almost zero. We can see the strong dependence of the values of Bayes

factor from prior specification.

4.3.2 Student Versus Skew-Student

For each A =0,0.1,...,0.5, we generate 1000 independent data sets, v, ...

, Yn, With

n = 10,50, 100, from the skew-t distribution, where f (y) =t (y[0,1,v). We consider

v =1,3,10,20 and calculate (4.2.5) considering A\?> ~ Ga (1,1).

Tables 4.5 to 4.8 exhibit the results of the performed simulations for each different

values of v. Similar results to the normal case were obtained, highlighting those better

results obtained for small values of v. We note that, in this case as well as in the

normal case, the BF has a nice behavior for small values of \.
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Table 4.6: Simulation results with ¥ = 3 and for different values of n and \.

n | AN\ | BF<05|BF>2| 25" p. | Median | 75" p.
0 9.6 65.9 1.3456 | 3.9168 | 10.7615
0.1 18.9 55.3 | 0.7665 | 2.4418 | 6.2970
10 | 0.2 26.1 44.6 | 0.4711 | 1.5983 | 4.7274
0.3 34.1 32.6 | 0.3219 | 0.9850 | 2.9351
0.4 46.8 21.1 0.1937 | 0.5647 | 1.6797
0.5 48.1 19.4 | 0.1583 | 0.5458 | 1.4894
0 2.8 92.1 8.8131 | 26.0701 | 64.3461
0.1 10.4 74.5 1.9732 | 8.1181 | 22.9338
50 | 0.2 29.7 48.0 | 0.3317 | 1.8392 | 6.8588
0.3 49.9 26.0 | 0.0701 | 0.5011 | 2.1223
0.4 73.2 125 | 0.0146 | 0.1110 | 0.5871
0.5 84.1 4.3 0.0034 | 0.0283 | 0.1942
0 1.0 96.6 | 20.2344 | 64.4118 | 142.0406
0.1 10.8 76.8 | 2.1960 | 9.6536 | 32.6166
100 | 0.2 43.3 37.7 | 0.1266 | 0.8049 | 4.5909
0.3 75.6 10.9 | 0.0074 | 0.0679 | 0.4631
0.4 91.8 2.5 0.0005 | 0.0071 | 0.0676
0.5 98.3 0.6 0.0000 | 0.0005 | 0.0061




Testing of Asymmetry in Univariate Skew Elliptical Model

Table 4.7: Simulation results with v = 10 and for different values of n and .
n | A\ | BFE<05|BF>2| 25" p. | Median | 75" p.
0 10.3 69.3 1.5578 | 4.3809 | 9.2094
0.1 14.7 56.4 0.9371 | 2.5278 | 6.4705
10 | 0.2 20.6 49.0 0.6525 | 1.9159 | 4.8182
0.3 29.2 38.7 0.4043 | 1.2866 | 3.3779
0.4 37.3 27.6 0.2820 | 0.8020 | 2.2204
0.5 46.7 21.1 0.1758 | 0.5682 | 1.6956
0 2.6 91.2 7.0075 | 19.2956 | 43.3332
0.1 25.5 45.6 0.4844 1.6349 | 4.6176
50 | 0.2 22.1 58.7 0.6381 3.0221 9.1743
0.3 41.5 33.0 0.1552 | 0.7937 | 3.2732
0.4 61.8 17.4 0.0372 | 0.2468 1.1372
0.5 78.3 6.5 0.0078 | 0.0593 | 0.3789
0 2.1 94.7 15.2573 | 38.3028 | 87.9117
0.1 7.5 81.7 3.4485 | 11.4648 | 32.0435
100 | 0.2 27.0 51.5 0.3982 | 2.1520 | 7.8946
0.3 58.3 19.0 0.0294 | 0.2585 | 1.3151
0.4 86.3 5.5 0.0018 | 0.0179 | 0.1602
0.5 95.6 1.1 0.0002 | 0.0022 | 0.0241
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Table 4.8: Simulation results with v = 20 and for different values of n and .
n | A\ | BF<05|BF>2/| 25" p. | Median | 75" p.
0 9.2 67.2 1.3782 | 3.6613 | 8.6506
0.1 15.0 58.0 0.8423 | 2.6160 | 6.5973
10 | 0.2 22.8 48.2 0.6223 | 1.9014 | 4.5525
0.3 27.4 36.1 0.4471 1.2501 3.1800
0.4 34.4 30.9 0.2813 | 0.9360 | 2.4928
0.5 45.2 23.2 0.1925 | 0.6397 1.8215
0 2.3 92.1 6.7759 | 17.6408 | 37.4567
0.1 8.9 77.3 2.2818 | 7.9469 | 19.0925
50 | 0.2 20.4 56.4 0.7003 | 2.6450 | &.7393
0.3 39.3 36.8 0.1860 | 0.9700 | 3.3768
0.4 61.4 19.1 0.0406 | 0.2736 | 1.2038
0.5 79.2 7.6 0.0079 | 0.0624 | 0.3695
0 0.8 95.3 14.8925 | 35.9162 | 76.7650
0.1 6.9 79.6 2.6278 | 10.5830 | 28.1940
100 | 0.2 27.4 51.5 0.4086 | 2.2116 | 8.2338
0.3 53.9 24.1 0.0466 | 0.3766 | 1.9179
0.4 81.9 6.3 0.0037 | 0.0360 | 0.2745
0.5 95.0 1.3 0.0002 | 0.0027 | 0.0332
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Table 4.9: Bayes factors by company.
| | M ~Ga(1,1) | M ~ Ga(1,0.001) |

Company BF < BF -
Cementos 0.6297 137.2086
Cervezas 0.3033 16.6370

Chilquinta 0.1936 10.7234
Copec 0.5601 51.4174
Tansa 1.3841 408.8198

4.4 An Application

In this section we use the results from proposition 4.2.3 and 4.2.4 in a real data set.
The data set comes from the ” Bolsa de Comercio de Santiago de Chile” and it consists
in the monthly rentability of five Chilean companies measured between March, 1990
and April, 1999. The sample size is n = 110 for each company. In Appendix B, we
present some descriptive statistics, including the skewness and kurtosis.

For each company, Table 4.9 presents in Columns 2 and 3 the Bayes factor under
two prior distributions A ~ Ga (1,1) and A2 ~ Ga (1,0.001), respectively. We con-
sider the A sign known, A > 0. It can be justified because in this period the Chilean
companies presented an affluent economy.

From Table 4.9, we can see that using a more informative prior, the only data set
in favor of the symmetry assumption is the Iansa company. On the other side, with
the less informative prior, all Bayes factor values are extremely large. This confirms
the high sensitivity of the Bayes factor to prior chosen and its wrong behavior when
we used vague prior distributions. From the practical point of view, we consider the
results given in the second column of Table 4.9. Therefore, the positive asymmetry

is more evident in the company Chilquinta following by company Cervezas.



Chapter 5

Testing of Asymmetry in Linear

Regression Model

In this chapter we present some results related with the Bayes factors with the purpose
of detecting asymmetry on the errors distribution in a linear regression model. With
this aim, in the first section, we define the multivariate skew-elliptical distribution
which we use throughout this chapter. In the second section, we estimate the Bayes
factor for some particular cases and in the third, we perform a simulation study in
order to discern the behavior of the Bayes factor, given in Subsection 5.2.1, with

respect to different prior distributions. Finally, we apply the results to real data.

5.1 Multivariate Skew-Elliptical Distributions

In this section we define the multivariate skew-elliptical distribution which we employ
through this chapter. We use the definition given by Branco and Dey (2001), this
definition includes interesting particular cases discussed in Kelker (1970), Fang and

Zhang (1990), Fang et al. (1990), Azzalini and Dalla-Valle (1996), and Azzalini and

106
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Capitanio (1999).
Consider that the random vector X* = (Xo, X1, ..., X,)" has El, (p,*, Z,h(”“))

distribution, where the location parameter is the vector pu* = (0, ut)t and the scale

1 &
> = ,
5 Q

where § = (64, ...,d,)" and Q is the scale matrix associated to the vector X = (X1, ..., X,)".

parameter is given by the matrix

Under these assumptions, we will say that the random vector Y 2 X| Xo > 0 has
skew-elliptical distribution. The next results obtained by Branco and Dey (2001) will

be used in the following section.

Proposition 5.1.1. If the p.d.f. of the random vector X* exists and is continuous,

then the p.d.f. of Y is given by

Iy (¥) = 2fu (3) Fiyyy [N (y-p0)]

where frm) (y) is the p.d.f. associated with the distribution El, (u, Q,h(”)) and F},

a(y)

1s the c.d.f. of El (0, 1,hq(y)), where

N o
(1-06'Q16)?

R (u) = / RUHD (2 4 u) 7" e, u >0,
0

A [u 4 q (y)]
A [q(y)]

haty) (u) =
and q(y) = (y—p)' Q' (y—p).

Proof. From the Bayes theorem we obtain fy (y) = 2P (X > 0|y) fx (y). On the

other hand, X* ~ El, 1, (u,*, E,h(”+1)) and by the marginalization and conditionally
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properties of the elliptical distributions (see Fang and Zhang (1990)), we get X ~

El, (p, ,0™). So that fx (y) = frm (y) and Xo|ly ~ EL(8"Q ™" (y — ), 1 — 8'Q "8, hy(y))-

Xo=0 €2 (y—lj ) and the symmetric property of the elliptical
(1—6tQ715) 2

distribution, it follows that

Now, considering Z, =

't (y —
P(Xy>0ly)=P| 2> — -
(1-6'Q76)>

Hereafter, to denote that the random vector Y has a skew-elliptical distribution,
we will note down Y ~ SE, (u,ﬂ, h(™), )\). Particular cases and properties of this
class of distributions can be found in Branco and Dey (2001).

Note that if A = 0, we get the symmetric model,

fr () = fow () = 1917707 [(y — ) @7 (y — p)] -

The next corollary gives an alternative expression to the p.d.f. of a skew-elliptical

distribution that could be convenient in many occasions.

Corollary 5.1.2. An alternative expression to the p.d.f. SE, (y,,Q, R )\) 18,

LN e
ey =20t [ B [+ (v)] du

—0o0

where ¢ (y) = (y — ) Q" (y — p).
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Proof.
N (y) = 2fum (¥) oy, [Atﬂ‘% (y—u)}
e NQ E )
= 221 )] [ huty [17] d
) )\tﬂ_%(y—u) p(n+1) [u2+ (y)]
:292h(")qy/ 95 g
€ 1) oo h [q (y)]
Y N A )
= 2|Q|_2/ R Tu? + g (y)] du.
|

n+1

Note that if ("D (u) = (27)” 2 exp {—%}, the generator function for a (n + 1)-

variate normal distribution, then, from the previous corollary we obtain

X )\tﬂ_%(y—u) - 2,
fely) = 219 / <2w>-¥e><p{—“—q<-‘”}du

- 2
= 2|Q|77 (27)” QeXp{—(T}/ v (21) "2 Xp{—“;}du
= 2N, (v [ Q)@ [NQ (y-p)].

That is to say, we obtain the multivariate skew-normal distribution defined in Azzalini

and Dalla-Valle (1996), which we will denote by SN,, (1,2, ).

5.2 Bayes Factor

In this section we assume that have a data set coming from the following linear
regression model,

Y = X3 + €, (5.2.1)
where 3 €R*, € ~ SE, (O,gzﬁ*lIn,h(”),)\lln), ¢ > 0 and A € R. Our goal will be to

search for evidences in the data that allow us to choose between a symmetrical or
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asymmetric model for the errors. In other words, evidences will be looked from the
data to favor of A =0 or, A\ # 0.

Note that if A = 0, the data coming from a distribution with p.d.f. given by

¢ h™ (olly — X 8%,

this case were studied in Chapter 1, and if A\ # 0, the data coming from

. WoLh (y=XB) p(n+1) [,,2
2040 lg ()] [ 1l

oo h™ [q (y)]
where ¢ (y) = ¢ |ly — X3||>. So that, for the data y = (y1,...,yn), the Bayes factor

in favor of A = 0 is,

BF — Jo:h™ [q(y)] 7 (8, ¢) dBd¢  522)

o I {¢’5h<n> g (y)] [P (- XP) hoy) (u2)du} 7 (8,6, \) dBdedA

where 7 (+) represents the prior distribution for the respecting parameters. As we can
see, by expression (5.2.2), a closed form to Bayes factor is not possible to obtain in a
general way. Also, the numerical computation is complex. However, when 3 and ¢

are known, Equation (5.2.2) has a better expression:

1
BF

B 2 f WalL (y-X3)

— 00

ho(yy (u?) du| 7 (X) dX

The next proposition gives a particular case which is an example where the Bayes

factor can not discriminate between a symmetric and asymmetric model.

Proposition 5.2.1. Lety = (y1,...,Yn) a random sample from the model (5.2.1),
where € ~ SN, (0,67 'T,,\ 1,,). If ML(B,¢) and A\ ~ N (0,v*). Then the Bayes

factor (5.2.2) is equal to 1.
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Proof. Notice that

/ [ /_ ;m;(yxﬁ) hyty) (u?) du]ﬂ()\)dA ~ / [ /_ ;M%(yxﬂ) i;;du]ﬁ()\)d)\

— [r[z=aVony - X8 r(ar

where Z ~ N (0,1). But since Z 1L\ and

Z = M\o (y = XB) ~ N (0,14 60 [1l, (v - XB)])

then

/IP’[ZSA\/E]IZ(y—XB)]w(/\)dA = /IP’[ZSA\/E]IZ(Y—XB)’A]W(AM)\
= P|Z <\/ol(y - XB)]
= P|Z- /o1 (y - X8) 0| =2

Therefore,

S/ [ :\ﬁn%(y_xﬁ) hy(y) (u?) du} 7 (A) dX\ = 2 and the Bayes factor given by

(5.2.2) isequal to 1. m

The previous proposition is telling us to assume a normal distribution with zero
mean as prior distribution for A, is equivalent to suppose a normal linear regression
model for the data y. Others particular cases of the Bayes factor to compare a
symmetric distribution with an asymmetric one are the next propositions, where it
is necessary to know the sign of A. The knowledge of the skewness parameter sign is
feasible in practice. Before presenting those propositions we must recall the following

lemma that will be us useful for the proof of the next propositions.

Lemma 5.2.2. If Y |, .7 ~ N, ( p, 7 '3) and 7 |a,b ~ Ga(a,b), then Y |p, 3, a,b ~

tn (u,%E,Qa).
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Proof. If q(y) = (y —p)' 7" (y — m), then

~—

o0

f(y w2, a,b) Ny, (y |, 77'2) Ga (7 |a,b) dr

Proposition 5.2.3. Lety = (y1,...,Yn) a random sample from (5.2.1), where € ~
SN, (0,¢7'T,, A\1,,) with ML(B,¢), \> ~ Ga(a,b) and P(\>0) = 1. Then, the
Bayes factor (5.2.2) to compare the models specified by the hypotheses Hy : X = 0 and
Hy A > 0 is given by
BF — J¢2h™ [q(y)] 7 (B, 0) dBdo |
2 650 0] Fr (1, = X9) /% 7 (8,0) 3o

where Fr is the c.d.f. of the t(0,1,2a) and q(y) = ¢ ||y — XB|*.

Proof. Notice that if \* ~ Ga (a, b), then X has probability density function f (\|a,b)

25 ()\2)‘1_% exp (—bA?). Therefore,

T'(a)
AL (y-x3) o o0 ,
/ [ /_ . hygy) (4?) du]n(A)dA = i) /0 A2l

Aﬂﬂfl(y—xﬁ) w2
/ e~ 2 dudA

—00

2b" o 2
— )\Qaefb)\
V21T (a) /0

Veoll, (Y*XB) 12,2
/ e 2 drd).

o0
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Then, with the change of variable | = A2, we obtain

/ [/_/c\;/%ni(yxﬁ) hatyy (u?) du] T(A)d\ = \/ﬁb—;(a) /OOO -

Vol (Y*XIB) 2
/ e 2 drdl,

o0

and, from Lemma 5.2.2,

/ [/ABZ(Y—XB) hats) (u2) du] 7w (\)d\ = Fr [\/5]1; (v —X0)|,

—o0
where T' ~ t (O, g, 2a). Then, the result of the proposition is immediate. m
If in the previous proposition we assume 3 and ¢ known, then
1

287 |1 (v - X8) |

In a similar way the following result is also obtained.

BF =

Proposition 5.2.4. Lety = (y1,...,Yn) a random sample from (5.2.1), where € ~
SN, (0,¢ 'L, A 1,,) with AL(B,¢), \* ~ Ga(a,b) and P(A<0) = 1. Then the
Bayes factor (5.2.2) to compare the models defined by the hypotheses Hy : A = 0 and

Hy A< 0 1s given by

BF — f g2 h™) [q (y)] 7 (B, ¢) dBd¢
2 [¢2h™ [q(y)] Fr []12 (XB-y) %} ™ (8, ¢) dBdo

where Fr is the c.d.f. of the t(0,1,2a) and q(y) = ¢ ||y — XB|*.

Proof. Notice that if A*> ~ Ga(a,b), then X < 0 has density function f (\|a,b) =
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1“25) ()\2)‘1_% exp (—bA?). Therefore, making the change of variable [ = —\,

/|/ NI, 0 ) wlsmar = - [/ B e () a

[e.9] oo o0

F(~l]a,b)dl

= /0 ) [ /_ lfﬂ;(XﬂY) gy () du]

F(lla,b)dl.

Then, it is enough to follow the proof of the previous proposition. m

When the parameters 3 and ¢ are not known, the previous propositions are not
a solution to the problem described to the beginning of this chapter due to the great
analytic and numeric complexity that presents the calculation of the Bayes factors

given by these propositions. A more tractable case is presented in the next subsection.

5.2.1 Bayes Factor for Representable Skew Elliptical Linear
Model

The propositions of the previous section use skew-normal distributions for the error
distribution of the model (5.2.1). In this section we will work with a wider class of
skew-elliptical distributions than the skew-normal class, however the analytic exertion

is not much more complicated than in the skew-normal case.

Definition 5.2.5. We will say that Y| @, Q, A has multivariate skew-elliptical repre-

sentable distribution under the c.d.f. H if its p.d.f. can be written by

Fyipo (Y)ZQ/ N, (y |1, w0Q) @ [w IXQE (y—p) | dH (W),
0

where H is the c.d.f. of a random variable w, which is non-negative and such that

wll (g, 2, ).
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An equivalent definition is given by: Y|, €2, X is skew representable if and
only if there is w ~ H and wll(pu, 2, ) such that Y|, Q, A, w ~ SN, (p, w2, A).
Y|, QA ~ RSE, (,2,A) will be used to denote that Y|, €, A has multivariate
skew-elliptical representable distribution. Properties and examples of this class of

distributions can be found in Branco and Dey (2001).

Proposition 5.2.6. Lety = (y1,...,yn) a random sample from the model (5.2.1),
where € ~ RSE,, (0,71, \1,,), ML(B,¢), B|¢ ~ N (m, ¢ 'B) and ¢ ~ Ga(a,b).
Then the Bayes factor (5.2.2) is given by

(W' [XIX + wB~Y 2 - 2d ] (w)

BF (Y) = k—n _1 9
2 [wz [XIX +wB- 1 2r 729 (w)dH (w)

g = [ Fr

Fr is the c.d.f. of the t(0,1,n+ 2a), B = (XX +wB™) ' (X'y + wB~'m), W =

where

(1— X1, XWIX,)
2w (n + 2a) ' A2

nz@w—xﬁﬂn«»dm

X! (T, + A1, 15) X + wB~! and r? = X¥ 4 m'B~'m — B’ (w"'X'X + B~1) 8 4 2b.
Proof. See Appendix E. m

The previous proposition presents an expression of the Bayes factor to detect
evidence of the data with respect to the skewness in a representable skew-elliptical
model. In the particular case where H is degenerated in w = 1, we obtain skew-normal

distribution for the errors. In this case the Bayes factor is given by

BF (y) = ! (5.2.3)

1-A21E XWXt ~
2 f Fr \/( r2(n+2a) A2 )]lﬁl (y - XB) T ()\) dA

where 8 = (X!X +B) ' (Xfy + B'm), W = X! (I, + \21,,1') X + B! and

r’=yly+m'‘B 'm — ,[;t (XX +B™) B + 2b . The previous expression is easier to

calculate through numerical methods.
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5.3 Simulation Results

In this section we describe the simulation results in order to study the behavior of the
Bayes factor given by (5.2.3). We used a integration subroutine of MATLAB package,
version 6.0.0.88, based on the recursive adaptive Simpson quadrature method.

In this simulation study we generated data from the linear regression model (5.2.1),
where 8 = (2,1)", € ~ SN,, (0, ¢ 'I,, M.,,) with the following values variety: n = 50
and 100; ¢ = 0.01, 1 and 100; and A =0, ...,5. Also, the design matrix is given by

t t ]130
10 —4 -3 - 45

For each one of the 36 previously described models, we made 100 replicates and,
for each one of these, calculated the Bayes factor given by (5.2.3) under the following
prior distributions, B¢ ~ N [(2, 1)t,¢_1v12}, ¢ ~ Ga(a,b) and A ~ Ga(ay,by).
The Tables 5.1 to 5.4 display the first, second and third quartile of the Bayes factor
estimated for the 100 replicates in each one of 36 models. Each table shows the results
for different prior conditions where ay and by are chosen such that E (\) = Z—i and
V(A = Z—%, where E (A) and V (\) are given initially.

Results for concentrated prior distributions are shown in Table 5.1. In this case,
we are assuming 3 ~ t, ((2, 1)t,12,2), ¢ ~ Ga(1,100) and A ~ Ga(62.5,0.025). In
general, the results of this table are good, although the values of the Bayes factor are
not very different from 1. In this sense, the results for the case ¢ = 100 are the worst,
but this was expected because the prior distribution taken for ¢ has mean equal to
0.01 and variance, 1074

Prior conditions of Table 5.2 are similar to the previous table, except that A ~

Ga (0.625,2.5). Due to this, nice results are obtained even when ¢ = 100. We
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Table 5.1: Simulation results with v = 0.01, « = 1, b = 100, E(\) = 2.5 and
V() =0.1.
¢ =0.01 p=1 ¢ =100
n [ A] 1" ec | Median | 3" c. | 1" ¢c. | Median | 3% ¢c. | 1% ¢c. | Median | 3% c.
0 | 0.6552 0.9870 2.0963 | 0.8498 | 1.0306 | 1.4500 | 0.9715 | 1.0034 | 1.0351
1 | 0.5868 0.7353 1.0429 | 0.6795 | 0.7850 | 0.8893 | 0.9523 | 0.9680 | 0.9812
50 | 2 | 0.5883 0.7492 1.0438 | 0.6894 | 0.7806 | 0.8626 | 0.9429 | 0.9682 | 0.9832
3105799 | 0.7445 | 0.9679 | 0.6826 | 0.7830 | 0.8802 | 0.9585 | 0.9733 | 0.9869
4 10.5868 | 0.7381 1.0663 | 0.7355 | 0.8237 | 0.9177 | 0.9524 | 0.9694 | 0.9842
5 | 0.5544 0.7225 0.9950 | 0.6664 | 0.7786 | 0.8759 | 0.9558 | 0.9677 | 0.9843
0| 0.7211 1.0683 1.7372 | 0.8510 | 1.0087 | 1.3086 | 0.9662 | 0.9922 | 1.0253
1| 0.6365 0.7553 0.8552 | 0.7183 | 0.8058 | 0.8997 | 0.9568 | 0.9734 | 0.9906
100 | 2 | 0.6209 0.7392 0.8509 | 0.7157 | 0.8105 | 0.9029 | 0.9597 | 0.9797 | 0.9907
3 | 0.6393 0.7240 0.8196 | 0.7281 | 0.8096 | 0.8928 | 0.9523 | 0.9766 | 0.9856
4 10.6168 | 0.7031 0.8688 | 0.7444 | 0.8201 | 0.9035 | 0.9567 | 0.9750 | 0.9874
5106193 | 0.7119 | 0.8347 | 0.7217 | 0.8411 | 0.9125 | 0.9574 | 0.9734 | 0.9875

expected this improvement since this prior distribution for A is more in agreement
with the true values of A which we used in order to generate the data.

In Table 5.3 we increased the prior variance of A with the purpose of observing
the behavior of Bayes factor with respect to a vague informative prior distribution for
A. As we expected, the Bayes factor does not work when we use a vague informative
prior distributions (see, for example, Kass and Raftery (1995)). Also, in order to
obtain these calculations, the computational time was great.

Later, we wanted a less informative prior distribution on any parameter that is
not \, then we took ¢ ~ Ga(1,0.01) that has mean equal to 100 and variance, 10%.
Table 5.4 displays the results. Same to the previous case, as expected, the Bayes
factor held a wrong behavior. Another interesting aspect of the results of this table
is the little variability in the estimates of the Bayes factor, in spite of possessing so

different data sets.
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Table 5.2: Simulation results with v = 0.01, a = 1, b = 100, E()\) = 2.5 and

V() =1.
¢ =0.01 p=1 ¢ = 100
n | A| 1" Median | 3" c. | 1" ¢. | Median | 3" ¢c. | 1" ¢. | Median | 3" c.
0] 0.7112 1.0213 2.8531 | 0,8502 | 1,0305 | 1,4481 | 0,9715 | 1,0005 | 1,0268
1] 0.5492 0.6399 0.7831 | 0,6801 | 0,7854 | 0,8896 | 0,9528 | 0,9683 | 0,9812
50 | 2 | 0.5502 0.6361 0.7390 | 0,6899 | 0,7811 | 0,8630 | 0,9430 | 0,9673 | 0,9832
3 | 0.5551 0.6342 0.7696 | 0,6832 | 0,7835 | 0,8805 | 0,9586 | 0,9743 | 0,9873
4 | 0.5893 0.6832 0.8349 | 0,7361 | 0,8241 | 0,9179 | 0,9532 | 0,9700 | 0,9842
5 | 0.5387 0.6156 0.7588 | 0,6670 | 0,7791 | 0,8762 | 0,9556 | 0,9678 | 0,9844
0 | 0,7549 1,0765 1,9039 | 0,7951 | 1,0213 | 1,2740 | 0.9735 | 1.0041 1.0318
1] 0,6087 0,6974 0,8090 | 0,7496 | 0,8332 | 0,9082 | 0.9560 | 0.9763 | 0.9882
100 | 2 | 0,6506 0,7441 0,8546 | 0,7240 | 0,7896 | 0,8909 | 0.9540 | 0.9728 | 0.9869
3 10,6611 0,7486 0,8435 | 0,7116 | 0,7989 | 0,8917 | 0.9570 | 0.9718 | 0.9844
4 | 0,6258 0,7617 0,8715 | 0,7579 | 0,8314 | 0,9249 | 0.9521 0.9696 | 0.9894
5 10,6241 0,7215 0,8494 | 0,7209 | 0,8204 | 0,8876 | 0.9540 | 0.9711 | 0.9860
Table 5.3: Simulation results with v = 0.01, a = 1, b = 100, E()\) = 2.5 and
V(M) = 100.
¢ =0.01 p=1 ¢ = 100
n | A| 1" c. | Median | 3" c. | 1" ¢c. | Median | 3" ¢. | 1" ¢. | Median | 3" c.
0 | 0.9821 1.1157 1.3673 | 1.0198 | 1.0986 | 1.1782 | 1.0855 | 1.0967 | 1.1062
1] 0.8714 0.9344 1.0135 | 0.9746 | 1.0112 | 1.0447 | 1.0811 1.0894 1.0939
50 | 2 | 0.8750 0.9366 0.9924 | 0.9544 | 1.0095 | 1.0490 | 1.0803 1.0855 1.0924
3 1 0.8790 0.9343 1.0049 | 0.9872 | 1.0256 | 1.0609 | 1.0812 1.0886 1.0925
4 1 0.9046 0.9631 1.0362 | 0.9757 | 1.0144 | 1.0518 | 1.0790 1.0859 1.0920
5 1 0.8653 0.9245 1.0029 | 0.9794 | 1.0097 | 1.0529 | 1.0808 | 1.0864 | 1.0923
0] 0.9735 1.0639 1.2652 | 1.0185 | 1.0861 | 1.1996 | 1.0885 1.0949 1.1050
1] 0.9154 0.9755 1.0450 | 0.9818 | 1.0140 | 1.0586 | 1.0787 | 1.0864 | 1.0909
100 | 2 | 0.9416 0.9988 1.0414 | 0.9980 | 1.0272 | 1.0616 | 1.0778 | 1.0864 | 1.0912
3 | 0.9092 0.9747 1.0281 | 0.9921 | 1.0349 | 1.0648 | 1.0804 1.0862 1.0893
4 | 0.9237 0.9874 1.0326 | 0.9881 | 1.0203 | 1.0567 | 1.0779 1.0851 1.0895
5 | 0.9240 0.9626 1.0349 | 0.9801 | 1.0095 | 1.0630 | 1.0777 | 1.0855 1.0890




Testing of Asymmetry in Linear Regression Model

Table 5.4: Simulation results with v = 100, a =

119

1, b = 001, E(\) = 2.5 and

V() =1.
¢ =0.01 o=1 ¢ =100
n | A 1" c | Median | 3" ¢c. | 1" ¢c. | Median | 3" ¢. | 1" ¢. | Median | 3 c.
0 | 0.8014 0.9999 1.0003 | 0.9999 | 1.0000 | 1.0001 | 0.9999 1.0000 1.0001
1] 0.8014 0.9999 1.0000 | 0.9998 | 0.9999 | 0.9999 | 0.9998 | 0.9999 | 0.9999
50 | 2 | 0.8014 0.9999 1.0000 | 0.9998 | 0.9999 | 0.9999 | 0.9998 | 0.9999 | 0.9999
3 10.8014 | 0.9998 | 1.0000 | 0.9998 | 0.9999 | 0.9999 | 0.9998 | 0.9999 | 0.9999
4 10.8014 | 0.9999 | 1.0000 | 0.9998 | 0.9999 | 1.0000 | 0.9999 | 0.9999 | 1.0000
5 1 0.8014 0.9999 1.0000 | 0.9998 | 0.9999 | 0.9999 | 0.9998 | 0.9999 | 0.9999
0| 0.9999 | 1.0000 | 1.0000 | 0.9999 | 1.0000 | 1.0001 | 0.9999 | 1.0000 | 1.0001
1| 0.9999 0.9999 1.0000 | 0.9999 | 1.0000 | 1.0000 | 0.9999 1.0000 1.0000
100 | 2 | 0.9999 0.9999 1.0000 | 0.9999 | 0.9999 | 1.0000 | 0.9999 | 0.9999 1.0000
3 | 0.9999 0.9999 1.0000 | 0.9999 | 0.9999 | 1.0000 | 0.9999 1.0000 1.0000
4 10.9999 | 0.9999 | 1.0000 | 0.9999 | 0.9999 | 1.0000 | 0.9999 | 1.0000 | 1.0000
5109999 | 0.9999 | 1.0000 | 0.9999 | 1.0000 | 1.0000 | 0.9999 | 0.9999 | 1.0000

These results corroborate the well-known result about the great influence that

the prior distributions exert on the Bayes factor. Indeed, in these results the prior

distributions almost determine the good behavior of this Bayes factor. Nice results

are only obtained when a priori, a correct idea is had about the true values of the

parameters.

5.4 An Application

In this section we illustrate the calculus from equation (5.2.3) using the real data set

described in the example of Section 4.4. The data of the explanatory variable was

the values of IPSA observed between March, 1990 and April, 1999.

For each company, Table 5.5 displays the Bayes factor given by (5.2.3) under

the following prior distributions A\ ~ Ga (0.4,0.2), B¢ ~ N, [(0, 1), 10¢~'1,] and

¢ ~ Ga(100,1). Then, the prior mean and variance for \ are 2 and 10 respectively.




Testing of Asymmetry in Linear Regression Model

Table 5.5: Bayes factors by company in linear regression model.

Company‘ BF ‘

Cementos
Cervezas
Chilquinta
Copec
Tansa

0.9998
0.9993
0.9990
0.9998
1.0004
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From Table 5.5, it can be seen that no company present a strong evidence of the

Bayes factor and the only data set in favor of the symmetry assumption is the lansa

company, similar to those results in Section 4.4. However, the results of Section 4.4

presented strong evidence. The simulations in the previous section as well as these

results with real data show a weak evidence of the Bayes factor, probably because the

inclusion of the explanatory variable produces a better explanation of the response

variable behavior. Thus, we think that in order to study these real data it is not

worthwhile to use an asymmetric model.



Chapter 6

Concluding Remarks

In Chapter 1 we presented a class of prior distributions that make the posterior 3
independent of the choice of h(™. Although it is not established explicitly, the same
invariance holds for the predictive distribution of y, as pointed out in Osiewalski and
Steel (1993). We also specified a conditional distribution for y|3, ¢, h(™ and a prior
for ( B,¢)|h™, in such a way that yILh(™, considering ™ as random (i.e., h(™
is marginally ancillary). Thus, any procedure for model comparisons that is based
on the predictive distributions would be not useful to discriminate among different
density generators. Even if we introduce a prior for A, this would not be updated
under the hypotheses imposed in Chapter 1. On the other hand, it becomes clear
that Bayesian model comparisons should include not only the predictive distribution,
but also all the model components. We point out that the comparisons should refer
to alternatives for the joint distribution of (y,8). In particular, it is suggested there

to study the ratio
fl (Y7 0)

BF(6) = f2(y, 0)

121
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as a function of @, which is called Global Bayes Factor (GBF) and may be rewritten
as
m (Oly

BF () = Tmy;BF,

where BF' is the usual Bayes factor. Thus
Ero(ty) [BF (0)] = BF.

Others alternative procedures for model comparison were discussed in Section 2.6.

Model comparison and selection in MEM models could still be developed in several
directions, for example the comparison and selection of models inside the class of skew-
elliptical distributions, the selection of variables, development of the topics seen in
this thesis extending the range of distributions for the errors, etc.

When obtaining samples from the posterior distribution of a MEM, it is impor-
tant to dedicate efforts to improve the transition probability functions in the M-H
algorithm. In our case turned out to be quite inefficient: around a 10% of the candi-
dates were accepted, although convergence existed. It is thought that this inefficiency
was been due, in great measure, to the fact there were 4 unknown parameters. We
made simulations assuming two unknown parameters, and the convergence was much
quicker.

With the purpose of eliminating the influence of prior distributions, it is important
to improve objective Bayesian methods for model comparison in MEM. We mentioned
some possible paths to follow in Section 2.6.

In Chapter 3 we present a strategy for examining the sensitivity of posterior dis-
tribution with respect to the deletion of sets of observations. We find interesting to
study the sensitivity of posterior distribution with respect to departures from nor-

mality relative to other multivariate elliptical models and also using noninformative



Concluding Remarks 123

prior distributions.

In Section 4.1, two expressions were presented for the L; distance between pos-
terior distributions of 1 and . Then, to determine the sensitivity of the A parame-
ter concerning these posterior distributions, the numeric calculation would be most
useful. On the other hand, in Section 4.2, different prior conditions were assumed
obtaining different Bayes Factor expressions. Similar results could be obtained for
other prior conditions, for instance, we could assume that |[A\| ~ Ga(a,b) or A ~
Half-Normal, etc.

Extensions in other directions are to study the usage of default Bayes factors
for testing skewness. We could consider noninformative prior distribution 7 (\) in
(4.2.5). In this case, a first obstacle is, for example, to consider an improper prior
distribution 7 (A) oc 1, since [*°_[[]7, G (Ay:)]” dA diverge with 0 < b < 1, then the
Intrinsic Bayes factor and Fractional Bayes factor could not be calculated. Chap-
ter 5 is a natural generalization of Chapter 1, there we preserve uncorrelation and
assume dependence of observations. However, in Chapter 4 we assume independent
observations. Thus, a possible alternative of Chapter 5 is considering independent
observations. The simulation results of Chapter 5 induces us to believe that the co-
variates presence in multivariate case could subtract importance to the asymmetry
of the errors. This can be noticed when comparing the monthly rentability example

results of five Chilean companies as detailed in Sections 4.4 and 5.4.
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Bayes Factors in MEM
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Figure A.1: By given by (3.1.2) under MEM in deletion case.
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Table A.1: Optimal Bayes factor values for simulated data in functional MEM.

P p =0, p =0, =0, p=3, p=3, p=3,
“lort=1 =3 =5 =1 =3 =5
0 || 7.815e-039 | 9.477e4078 | 7.766e+072 | 6.284e+4051 | 7.846e+105 | 1.180e+087
0.2 || 2.269e-085 | 4.769e+071 | 3.131e4064 | 6.179e+048 | 1.671e+092 | 1.876e+080
0.4 || 2.448e-053 | 1.007e+063 | 2.884e+4-054 | 1.441e+069 | 1.476e+4-073 | 4.298e+067
0.6 || 4.323e-096 | 5.320e+4-051 | 9.901e+4-054 | 4.835e+067 | 3.164e+078 | 5.644e+059
0.8 || 2.229e-100 | 6.062e4-026 | 1.331e+4053 | 3.530e+055 | 9.421e+052 | 8.939e+063
1.0 || 7.227e-025 | 8.155e+031 | 7.625e4-054 | 2.702e+067 | 2.304e+4-048 | 1.108e+061
1.2 || 1.896e-113 | 2.879e-029 | 7.428e4-040 | 8.060e+059 | 1.952e+047 | 6.135e+056
1.4 || 1.918e-059 | 3.450e+012 | 3.397e+015 | 6.527e+038 | 1.770e+043 | 2.151e+057
1.6 || 1.361e-184 | 4.547e-100 | 7.733e-007 | 2.798e+049 | 4.009e+4-032 | 5.862e+021
1.8 || 1.344e-204 | 2.023e-034 | 1.017e4018 | 1.351e+059 734.5918 8.839e-015
2.0 || 4.321e-137 | 2.108e-112 | 5.243e-005 | 4.273e4070 | 6.444e+035 | 2.797e-013
2.2 || 4.113e-206 | 1.164e-024 | 7.841e+011 | 2.853e4-050 | 3.296e+015 | 3.609e-004
2.4 || 1.512e-201 | 3.340e-053 | 3.233e-133 | 7.941e+4-053 | 9.752e+031 | 1.150e+4-009
2.6 0 1.608e-025 0 5.426e+069 | 8.992e+4-032 | 6.585e+043
2.8 || 8.096e-146 | 6.008e-154 | 2.536e-049 | 1.464e+077 | 1.095e+014 10.5466
3.0 || 2.344e-169 | 1.022e-128 | 5.010e-132 | 1.914e+4-054 | 4.741e+026 | 6.582e-055

Table A.2: Optimal Bayes factor values for simulated data in structural MEM.

| oy | =01 | =1 | 0=5 |
0 [ 1.5960e+025 0.0093 0.6591
0.2 | 1.0768¢4009 | 2.1851e+004 | 4.1210e-005
0.4 25.1171 0.3261 3.4341e-004
0.6 0.0023 0.0165 0.1086
0.8 0.0060 1.7242e-005 0.1667
1.0 0.0010 0.0063 0.6042
1.2 | 9.5568e-005 | 9.8342¢-005 0.4622
1.4 | 3.6166e-006 0.0055 0.1263
1.6 | 1.5987e-008 0.0334 0.5573
1.8 | 5.7717e-005 | 1.1722e-006 0.0368
2.0 || 4.1454e-018 | 4.3199e-056 0.0159
2.2 || 3.2095e-004 | 6.2342e-093 0.3534
2.4 || 1.5946e-093 | 4.5352e-066 0.2880
2.6 || 4.2793¢-004 | 9.8820e-041 0.1595
2.8 || 1.6547¢-050 0 0.0534
3.0 || 1.0853e-014 | 9.0370e-060 0.0145
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Table A.3: Corn hectares determined by two methods.
Segment Photograph Interview Segment Photograph Interview
Yi T Yi T
1 167.14 165.76 20 120.19 121.00
2 159.04 162.08 21 115.74 109.91
3 161.06 152.04 22 125.45 122.66
4 163.49 161.75 23 99.96 104.21
5 97.12 96.32 24 99.55 92.88
6 123.02 114.12 25 163.09 149.94
7 111.29 100.60 26 60.30 64.75
8 132.33 127.88 27 101.98 99.96
9 116.95 116.90 28 138.40 140.43
10 89.84 87.41 29 94.70 98.95
11 84.17 88.59 30 129.50 131.04
12 88.22 88.59 31 132.74 127.07
13 161.87 165.35 32 133.55 133.55
14 106.03 104.00 33 83.37 77.70
15 87.01 88.63 34 78.51 76.08
16 159.85 153.70 35 205.98 206.39
17 209.63 185.35 36 110.07 108.33
18 122.62 116.43 37 134.36 118.17
19 93.08 93.48

Table A.4: Concrete compressive strength measurements (psi).

] Salnple\ Day 28 I)ay'Q\ Sample \I)ay 28 Day 2\ Sample \I)ay 28 Day 2‘

4470 2830
4740 3295
o115 2710
4880 2855
4445 2980
4080 3065
5390 3765
4045 3265
4370 3170
4955 2895
3835 2630
4290 2830
4600 2935

4605 3115

15
16
17
18
19
20
21
22
23
24
25
26
27
28

4690
4880
3425
4265
4485
5220
7695
3330
4065
4715
4735
3605
4670
4720

2985
3135
2750
3205
3000
3035
4245
1635
2270
2895
2845
2205
3590
3080

29
30
31
32
33
34
35
36
37
38
39
40
41

4650
4680
5165
5075
4710
4200
4645
4725
4695
2470
4330
4950
4460

3335
3800
2680
3760
3605
2005
2495
3205
2060
3425
3315
3825
3160
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Figure A.2: Mpg(i) = M, g(i) = [E[(1-Ah(0)) 0|y,x”|i, where 8 =

(Oé7ﬁ,0-€2,0-,3).
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Figure A.3: Li-influence under MEM in deletion case.
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Figure A.4: y2-influence under MEM in deletion case.



Appendix B

Descriptive Statistics by Company

Table B.1: Some descriptive statistics for the monthly rentability of five Chilean
companies, measured between March, 1990 and April, 1999.

’ Company \ Mean \ s.d. \ Skewness \ Kurtosis ‘
Cementos | 0.01347727 | 0.13283164 | 1.33268186 | 3.31334209
Cervezas || 0.02022545 | 0.11423326 | 0.51903086 | 0.66034736
Chilquinta || 0.02778182 | 0.13638980 | 0.68802875 | 2.21338495

Copec 0.01201909 | 0.10339547 | 0.71021655 | 0.98810570
[ansa 0.0006200 | 0.1131153 | 0.3621623 | 0.2541416
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Appendix C

Proof of Proposition 4.1.6

We should calculate
(x| A p,0)7 (1, 0)

TR = TR o () o)
_ o " [T, ¢ (%) @ (A=) 7 (p, 0)
JonTI, ¢ (554) @ (A= ") (1, 0)d (o)
Since
7 (1,0 = 7 (o) 7 (o) = F”/j o { =g o+ 21}
and
o (P52 = oty Qexp{—i' <xi—u>2},
then -

20\ /v 1 1 ) )
T (p, 0l A x) o nil (02)g+a+1 eXP{—r‘Q [Z (@i —p)" +v(p—m

T (a) (27)
[ (=)
T (j)b:;fW (02);&“ o {_202

[l ("),

i=1
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where i = BEEU 2 = pg? 4 DU () — 7)° +2b and 2 =n~' 0 (25— 7)°

On the other hand, the normalizing constant is

mx) = /0”i]j¢(xi;”)<I><Axi;”>w(u,a)d(u,o)

2b%\/v © 2

r

- T Wexp{—rﬂ}h(a)da,
“)du.

h(o) = /(:exp{—n;f 7 —ﬂ)Q} f[l@ (XT
T ) e

Making the change of variable y = y/n + v";ﬂ, we obtain

% {__}/ / e exp{_%ézf}dzidy.

Making now the change of variables u; = z; + yﬁ and exchanging the integration

where

order, we obtain
7, 12 n

ho) = \/Ff/ //\ B B XI:U? v+n( 1+)\2 (Zul)

1=

AN+ v anuz

S v4n (14 A2)

exp § — dydu;

/OO v+n(l+ A2
o 2(n—i—v)

)\l 2
e e b
\/v+n1+/\2 v+n(l+A2)
LI (A—xl ”,...,Ax"_ﬂ)
g

v4n(1+A2) Y o

where U ~ N, (0, %) with ¥7' =1, — )]1]1 Using the well known identities

v+n(1+)\2

(see Fang and Zhang (1990, Chapter 1))

A luvtA—!

Cavt) o AL
(A uv) A +—1—VtA—1u’

(C.0.1)
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for some squared matrix A and vectors u and v, and
I, + AB| = |I,+ BA|, (C.0.2)

where A, and B, we obtain ¥ =1,, + U’J\F—Qn]l]lt and |X| =1+ ;\in

Therefore,

e = £ () <27r>")é [ e {‘ﬂ} R (WX )i

Making the change of variable 0% = é, we obtain

m(x) = F(a)b:“"”“ ((v+nv(277)n>2

II‘)(Z;)QQHG (v +n (Ul + A2)) 5

o 5 AV 1
/ 52+a lexp{__}/.../ exp{——utz—lu} duzdS
0 2 e 2

Making the change of variables t;1/s = u; and exchanging the integration order, we

obtain

m(x) = sza(f:zm (v+n(vl—l—)\2))2

A’L
/ / / " 1exp —5[ + ' 1t]}dsdt

(n+a v|Z| A 17 —(n+a)
F (a) 7“"+2“7T” (v +n(1+ A2 ) / / | ‘ L }

( “F(%+g)( v )QFT(AmX_T“ >

o)
T (a) rnt2agy v+n

where T ~ ¢, (0,X,n + 2a).
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Therefore,

Tn+2a\/v_}_—n
2790 (2 4 a) TFr (\Wn + 2a%2L)

Wﬁ}j@(ﬁ “) exp{ 212 [(n+v)(ﬂ—ﬂ)2+7“2}}-

On the other hand,

T (p, ol A, x) =

(X)) = /’wuhﬂxxww
0

rit2e /v +n
27 %90 (2 + a) TFr (\Wn + 2¢%72L)

/jwﬁzﬁl@ (Axi;”> exp{—yb [(n+) (M—ﬂ)2+r2]}da

it /u+n
20+~ (2 4 a) 7% Fp (\Wn + 2a>22)

/w(—fz;Txp{ s 0+ 0) = 2+ 77

/ / exp { Z zf} dz;do.

=1

Making the change of variables z; = %£ and exchanging the integration order, we

o
obtain
Fnt2a \/T

n+1

2n+a—%1’* ( + a 3 T

Meh) 1 (p=p)+r° +y'y
n+a+1 exp 552 dody;,

™ (p] A x)
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but if we make the change of variable 072 = s, then

"+2ax/v+—n
2n+a+21"( FT ()n/n—i—Zax “n)
Azi—p)
/ / / e { =2 [0+ 0) (=) +72 +'y] } dsdy,
rnt2ey /v +nl (n +a+ 5)
I (g + a) '/THTHFT ()\\/n + QCLX_T[L]I)
A@i=p) 9 N2 t —(n-l—a-‘r%)
[P+ (n+v)(p— )" +y'y] dy;
2 T (2L 4+ q) Fy May—p) 5. M (2 — )

D (5 +0) VaFe (Wn+2058) 1o 4 () (- ] C5F0)

m(plAx) =

where Y ~ ¢, (O,%In,n + 2a + 1).

Moreover, if we consider the function h (o), we get

(o] hx) = / 7 (,0] A, x) dy

—00

rt v +n h (o) { r? }
= o A a1 P 53
2%+ (2 4 a) /7 Fr (\Wn + 221 (02)2 04!

202

n+2a ~—n—2a—1 X — A]l 2
2 r

= Siiein(n — v ()\ )exp{——Q}.
2270710 (2 + a) Fr (Vn + 2a0*12) o 20
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Proof of Proposition 4.2.6

Notice that

f(X’)\auao—>wl7"'awn) = HO'\/E¢<O' WM)CI)()\U—M/JJ)

where D (w) = diag (w1, ..., wn), 7= Yo wil, 82 = S0 v — (0, viry)? =

2
n n _w; .
> iy Vi (:17, = im1 l/jxj> and v; = %t for each i =1,..., n.
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Now, considering 7 (u|o) = (u! ) we obtain
f( ’)‘ ) 2y ‘ ( )|_% ( 1 52)
x|\ o,wi, .. w,) = D (w ex
y O, W1, ) (7_‘_0_2)”4_1 p 952w

h exp{ —— Zyx m)’
. p 20_2 iLq v (p—

/Z exp [_772;71 (1= /l)ﬂ f[cb <A3; _wl ) du, (D.0.1)

where

o omy e v+ um
L= :
n+v

Making the change of variable y = y/n + U@, we obtain

h\ 0,01, wn) :/Ooexp{—”2 }H@(

[e.e]

o

- = [ ()T [ (B - )

2
- ) o0 (5)
B n+ov J_ 2
(55 o) :
T/ \/Fz\/m 7% 1 2
//_OO (2m) 2 exp <_§Zzl> dz;dy.

Then, making the change of variables u; = = Y

— \//\W and exchanging the
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integration order, we obtain

10 (27)72
h (A w,) = |D 2 -
( 0, Wi, 7w) ‘ (w)| n+u

) 2 2
/ /Véw;‘ [Z?:l witf — sty (i i) }

exp{ — 5

n 2
/°° v+n(1422) WoEST Z“] dydu

ooexp  2(n+w) _U+7](1+>\2)i:1
= D))} 220~
v+n(1+ M%)

zi—f

/ /A e 1ut D (w) X 11| up du
DY X _—— —_—_— /L
I vt (L+A2)

[N

1
NozablE ) =
_ D (W) 22T FU<>\x1 Lt “),
v+n(1+ M%) ow1 ow,
where U distributes N, (0, ) with X7'=D (w) — Wiv)]ﬂlt. Now, using (C.0.1)

we get B =[D (w)] 7" + 22 D (w)] " 11 [D (w)] "

v+n

Replacing h (A, 0,ws, . ..,w,) in (D.0.1) we obtain

2ny || T — b Tn — [
A cey W) = - Fu A see s A
FOAA g ein) \/<m?> o0 (1+ )] U( 0w o

n 2
N 2 v
-5 |5 - i T
exp 552 W+n+v<m ;yzx>

Then, since =2 ~ Ga (a,b), one obtains

e on+2y |3
FdA @ wn) = F(a)\/w"[v—i—n(l—I—)\?)]

[e%} 2 0 N
/ o exp (—T—2> Iy <)\x1 ,u’ e ,)\xn ,u) do,
0 20 owy oWy,

where 72 = nS? + e (m = > ic1 viz;)’ + 2b.
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A change of variable s = r?/0?, allows us to write

b® 2y |2
FxAwr, . w) = \/ 5]

T [+ (1+ %))
/ szt lexp (—ﬁ) Iy <)\\/§x1 — M, . .,)\\/Exn — ,u) ds
0

2 Wi Wy,

B b " v
~ T(a)rm+2a\ v 45 (1 + \2)

., s MWESSE 1
/ s3+alexp (__) / . / exp {——utZ]lu} du;ds.
0 2 —o0 2

Uj
S?

bem—"m v
Awrs . wy) =
FxIA w1, wn) F(a)r”+2@\/v+n(1+)\2)

Making the change of variables t; = we get

T;—f

A : o)
/ e / ’ / gnta-l exp {—% (1 + ttZ_lt) } dsdt;
—00 0

T (n+ a) 2”+“\/ v|X|

[ (a)rmt2eqn \ v +n (14 \?)
)\% _1 —(n+a)
/ = / D72 1+t 5] dt;

r
I (a) rrt2agn/2 v+n(1+ A2

be (n/2—|—a)2”+“\/ v|Z

Fr ()\ n+2a$1_M,...,)\\/n+2axn_u),

(A%} TWn

where T distributes ¢, (0,3, n + 2a).
On the other hand,

n

B 1 Ty — [
f(x|’u’0',w17...,u)n) = HO'\/Egb(U wi)

n

= (70®) ¥ D (w)| "2 exp (—L52> exp [—77 =i Vixi)?] .

202 202
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2

Considering that w (u| o) = N <,u\ m, %), one obtains

f(xlo,wi,. . w,) = ,/Wm(wﬂ_%exp(—%si)
Lol o) v

Thus, since 072 ~ Ga (a,b), one gets
20° v T r?

D —3 —n—1-2a ——\do.
gy s P [ e (= ar

With a new change of variable, s = 7?/0?, one obtains

v
f<X|u)17..-,wn) — Tn+2a]:‘ \/71)

22+“F

f(x|wi,. . wy) =

m\»-t
»
0|3
+
Q
L
@
o]
o
|
|
N——
QU
»

Therefore, the Bayes factor is
[ J f(X|wr, . wy) dH (wr) -+ - dH (wy,)
T T T (I A - v0a) dH (1) - dH ()] 7 (V) dA

J f [(n+v) HZ‘ Lwi] 2 dH () - - dH (w,)
25 [« [rn=20g (w)dH (wy) -+ dH (wy)

BF (x)

Y

where

B |2 x — il 1
—/\/m“ (Am 2D () )w()\)d)\.
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But since
A2 -1
w = [ED@)I_ Lo+ 55 D ()] 117
D (w)] [T, wi
)\Qn |U)J\r2n]:n + [D (w)]_l ]]_]]_t’ _ v+ n (1 + AZ)
(v+n)"[TiL, wi (v+n) [l w’

the proof is complete.
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Proof of Proposition 5.2.6

Notice that

Folone) = [ F518.000)7 (8l6)dB

:/QN
Rk

n+k

_ %ékexp{—ﬂ[||y XBIP +w(B—m)'B 1<ﬂ—m>}}

/@)% 1t (y-x3) 2
} exp {—5} dzdp,

y | X33, —I cb[( )\llt (y — Xﬁ)]Nk(ﬂ]m ~'B)dg

but since

Iy = X8I +w(B-m) B (B-m) = (8-4) (XX+uB")(5-8)

—Bt (XtX + wB_l) B +y'y +wm'B 'm,

where

B=(XX+uwB) " (X'y +wB 'm),
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then
20" |B| 2
f(y|¢7>\7w) = %h ((b,)\,&)) (E01>
(2m) 2 w2
exp {—Zi [yty +om'B'm - g (XX +wB™) ,é] } ,
w
where

Ao dw) = /RkeXp{—%(B—B)t(XfXjuwB—l) (g_@}
/_ (j)%m;(yxm exp {—%2} dzdg3.

Now, making the change of variable u=-= f + ’\f]lt (,8 — B) and exchanging

the integration order, we obtain

hig\w) = f/w YXB/ {—g[u Aoy X (8- ﬁ)}}

exp {—% (5 _ 5) (X'X +wB™) (B _ B) } dBdu

_ ﬁ/_*ﬁn%y)ﬁ) exp{—%ﬂ}

/Rk eXP{_% [(ﬁ_3>tw<ﬁ_ﬂ) _Zw_\j\gﬂt (ﬂ—éﬂ}dﬂdu,
where W = X* (I, + A*1,1;) X + wB™". But since

8-6-B8)wW(s-p-8)=(8-8)W(8-5)221'x (8- 3)+5W§s.
Vo
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where 3 =4 WX, then
h(p,\,w) = \/IJ/WH%G_Xﬁ) exp {EBtWB — ('U_UQ}
oo w
[ ow{-5(8-5-5) W (s-5-5)}aoun

k+1

EoaAEy (yox(3
_ m /)\wdﬂln(y X/B) exp {_f (1 . )\Z]lt Xw—lxt]l )UQ} du
_ 2 " "

OF W oo
5(2n) A
w?2 ™ ~
- k 1 ;FU |:—]l; <y_Xﬁ)} )
gz |[W[2 (1 - XN1EXWIX,): L

Pw
Now, if we substitute h (¢, A\, w) in (E.0.1), we get

where U ~ N (0 <1_/\2%XW1Xtﬂ")_l>.

n -1
202 |B| 2 A N
f(Y|¢,)\,W) = n ok 19ZS | | lFU |:_]lfz (y_X/B>:|
(2m)z w2 W2 (1 - N1 XW'X'L,)? w
exp {—% [yty +wm'B™'m — Bt (XtX + wB_l) B] } .

But since ¢ ~ Ga (a,b), then

FoIae) = [ 1o Galolab)do
20 |B|~?
(2m)F w"T* [W? (1 — A1EXWIX!L,) 7 T (a)

[ 2 x8)] 5t -4

where 7?2 = y:)—y +m'B7lm — Bt (W 'X'X +B1) B + 2b. Now, from Lemma 5.2.2,

we obtain
25T (5 +a) [B]*
(2m)F W™ (W2 (1 = 21EXW X1,

f(Y|)"w) =

M=

T (Cl) 7’”—"_20‘

2

WhereT~t<O L ,n—i—2a>.

T w(1-A2 1L XWX L, ) (n-2a)
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Using the well known identity (see Fang and Zhang (1990, Chapter 1))
(A+CED)'=A~'— A"'CE (E + EDA'CE) EDA™!

for some matrix A,y,, Egxq Cpxq and Dyy,, we have

A2 (XPX 4+ wB™) 7 X 1,18 X (XX + wB) !

W= (X'X + WB‘I)_1 — =3
1+ 21X (XX +wB- 1) Xt 1,

So that,
= NTXW X 1, = (141X (XX +oB ™) X1, )

But, from C.0.2, we have

W (XX +wB )| = [ XX (XX oB )

_ ‘1 + NILX (XX +wB )X 1,

1

= (1-XLXw'X'1,)

thus
1\ -1
‘W| B ‘W(XtX—FCUB 1) ’ B |XtX+wal|

(XX +wB )T 1= NIEEXWOIXE D,

Therefore,
2£+a+1bar no B *% A .
f(Y|>‘uw): n j,k <2 a) |1 | FT |:_]l§;, (y_Xﬁ>:| .
(2m)2 w"z [X!X + wB-1|2 T (a) r7t2e w
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On the other hand, when A = 0:

F3low) = [ F318.0.0)7(8l¢)as
Rk

=ulli: .
- B oo {2 lly - XBI 4w (8- m) B (8- m) fap

=

_ %em{—(g {i—er m— A (v'X'X +B" )5]}
/Rkexp{—% {(g—é) (XX +wB ) (8- )H

[SIES

¢ |B| >
(27)% w"F" [X!X + wB-1|2

exp {—? [yt_y +m'B 'm — Bt (w_lXtX + B_l) B] } .

2| w

Considering that ¢ ~ Ga (a,b), we obtain

_ b* |B|"2 00 R . {_gﬁ_ﬂ}d
TOl9) = ot |th+wB—1|%r(a)/o A I

25T (3 +a) B
(27)% w"2" |XtX + wB-1|2 T (a) rn+2e

Therefore, the Bayes factor is

Jf(ylw)dH (w)
JJF(ylAw)m () dAdH (w)
[w' " [XIX + wB~ "2 p 2 g (w)

A~

2 [ [w'F XX + wB-| § -2 [gn; <y _ Xﬁ)] 7 (\) dAdH ()

BF (y)

We standardize the random variable T and obtain the result.
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