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Abstract

Model comparisons within a Bayesian perspective is probably one of the topics with

great impact on statistical literature in recent years. Diverse methods have been

developed which are based on several points of view. One of them considers a purely

inferential approach, consisting in the deriving of the Bayes factor, which is perhaps

the most popular measure to Bayesian models comparing. In this thesis we develop a

treatment for Bayesian model comparison for skew-elliptical regression models and our

objective is concentrated on the regression linear models together with the distribution

of the errors. It also includes the study of the existence of possible measurement errors

in the predictor variables.

We start by establishing some results where the Bayes factor and some default

Bayes factors do not work. These results are established for elliptical linear models

and a class of prior distribution which generalizes the normal-chi-squared family.

Afterwards, we deal with measurement error models (MEM). We provide an ex-

pression of the Bayes factor to test the existence of measurement error in the explica-

tive variable and present a method to compute it based on Importance Sampling and

Metropolis-Hastings algorithms. Additionally, we construct measures and develop

computational methods to evaluate influence of observations for the parameters of

the MEM. The measures are based on the perturbation function approach combined

with the Bayes factors and other divergence measures. We apply these results to

problems with real data.

Finally, we compute Bayes factors to test asymmetry under skew elliptical linear

regression models. In the univariate case, we study the problem of the sensitivity of

xi



xii

the skewness parameter using the L1-distance, and provide expressions of the Bayes

factor to test skewness under some particular prior distributions. The results are

evaluated through simulation problems obtaining expected results. Also, we develop

methods to compute the Bayes factor to identify asymmetry in a representable skew

elliptical linear regression model and we presented simulation results with multivari-

ate skew-normal distribution for the errors. Application in stock markets are also

considered.
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Introduction

In this chapter, we introduce the main concepts that will be used along this thesis.

We give the necessary conceptual bases to follow the reading of the next chapters and

we describe them. We also reference the recent works in the topics that concern us,

together with mentioning some pioneer works.

Bayes factors. Comparison of models within a Bayesian perspective is probably

one of the topics with great impact on the statistical literature in recent years. The

first steps in Bayesian models comparison was given by Jeffreys (1935, 1961), and

ever since, diverse methods have been developed based on several points of view. For

further information, please refer to Akaike (1973), Schwarz (1978), Aitkin (1991),

Bernardo and Smith (1994), O’Hagan (1995), Kass and Raftery (1995), Berger and

Pericchi (1993, 1996a), Pereira and Stern (1999) and Bernardo (1999). An extensive

list with more than 100 references is presented in Berger (1998). The problem of model

comparison has been approached using different methods. One of them considers a

purely inferential approach and consists in the deriving of the Bayes factor (BF),

which is perhaps the most popular measure used to comparing models, probably for

its simplicity, interpretation and because it is an important quantity in many of the

different theories on the Bayesian models comparison.

The existence of a great variety of these methods from a Bayesian point of view

1



Introduction 2

reflects the complexity of the problem, in spite of the interest of the Bayesian statistics

community in order to find an unifier theory, necessary in any scientific theory. In this

sense, the selection of models from the point of view of the Decision Theory seems to

better fulfill this goal. More details on this focus are given in Bernardo and Smith

(1994, Chapter 6), Bernardo (1999) and Key et al. (1999).

The essence of the Bayesian inference resides in extracting information of the

observed data through the posterior distribution of some unknown state of the nature

and this is of our interest. In the Bayesian methods for hypotheses comparison is

similarly so, and in almost all these methods are necessary the calculation of the BF.

Let us suppose that we are comparing two models M0 and M1. Then the model

M0 would be more in agreement with the data x if p (M0 |x) > p (M1 |x), that is, if

1 <
p (M0 |x)

p (M1 |x)
=

p (x|M0) p (M0)

p (x|M1) p (M1)
,

where

p (x|Mi) =

∫
p (x|θi, Mi) π (θi|Mi) dθi, i = 0, 1.

The expression on the right involve the BF defined in the follow.

Definition 0.0.1. Given two hypotheses H0 and H1 corresponding to assumptions of

two alternative models, M0 and M1, for the data x, the Bayes factor in favor of H0

(and against H1) is given by the posterior to prior odds ratio:

B01 =
p (x|M0)

p (x|M1)
=

{
p (M0 |x)

p (M1 |x)

}/{
p (M0)

p (M1)

}
.

Which can also be written as

B01 =

∫
p0 (x|θ0) π0 (θ0) dθ0∫
p1 (x|θ1) π1 (θ1) dθ1

,
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where pk (x|θk) = p (x|θk, Mk) and πk (θk) = π (θk|Mk) are the likelihood and a

prior density of θk under the model Mk (k = 0, 1) respectively. Kass and Raftery

(1995) present a detailed review on the use of the BF in several applied areas, us-

ing computation techniques such as asymptotic approximations and Markov Chain

Monte Carlo (MCMC) methodology. These authors present also a complete list of

publications related to the subject.

The prior distributions πk (θk) (k = 0, 1) are necessary: from a point of view this

is an advantage since we could include additional information to that given by the

data about the values of the parameter, but it could be very difficult to specify a

prior distribution when this information does not exist. On the other hand, these

prior densities should be proper since the improper ones depend on an indefinite

multiplicative constant, and therefore the BF , in this case, generally, would depend

on indefinite constants. More details on this topic can be seen in Berger and Pericchi

(1993, 1996a) and O’Hagan (1995).

Other advantages of the BF is that it does not require alternative models with the

same parametric space, which is useful to compare any pair of models. The utility

of the BF is not only to compare models or to select a model inside a set of possible

models. In fact, the BF is involved in the problem of prediction when we adopt the

model average approach as we describe below.

If we have a set of models M = {Mi : i ∈ I} with their respective predictive

distributions pi (x) = p (x|Mi) and prior probabilities πi = π (Mi),
∑

i∈I πi = 1, then

the posterior probability of the model Mj is given by

P (Mj|x) =
pj (x) πj∑
i∈I pi (x) πi

=
1∑

i∈I Bij
πi

πj

,

Therefore, a possible model to choose for the data y, given the previous observations
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x, is

p (y|x) =
∑
i∈I

pi (y|x) P (Mi|x)

where

pi (y|x) =

∫
pi (y|x,θi) pi (θi|x) dθi =

∫
pi (y|θi) pi (θi|x) dθi.

The last equality is obtained by assuming y⊥⊥x|θi. From p (y|x) follows

E (y|x) =
∑
i∈I

E (y|x, Mi) P (Mi|x) .

Literature describes also some disadvantages that the BF presents (O’Hagan

(1994, Chapter 7), O’Hagan (1995), Kass and Raftery (1995) and Berger and Pericchi

(1993, 1996a)). For example, its high sensitivity with respect to the prior distribu-

tion even with great sample sizes. Another difficulty is that, in nested hypotheses,

using noninformative prior distribution on the parameter of interest, will force the

BF to favor the hypothesis H0. The Bartlett’s paradox shows this fact (see Bartlett

(1957) ). With the purpose of avoiding these difficulties, it has been developed other

variants of the BF , such as the Fractional Bayes Factors (FBF) due to O’Hagan

(1995) and the Intrinsic Bayes Factors (IBF) by Berger and Pericchi (1996a). Other

points of view in the Bayesian models comparison that avoid the great influence of the

prior distributions are the Conventional Prior (CP) approached due to Jeffreys (1961,

Chapter 5), the Bayesian Information Criterion (BIC ) derived by Schwarz (1978),

the Bayesian Reference Criterion (BRC) obtained by Bernardo (1999) and the Full

Bayesian Significance Test (FBST) introduced by Pereira and Stern (1999). Of course

these methods have other difficulties. A wide exposition that includes the bases and

motivations of the Bayesian model selection, as well as examples and comparison of

some methods of model comparison is in Berger and Pericchi (2001).
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Frequently it is difficult to find an analytic solution for the normalization constants

of the posterior densities, and therefore, it becomes also difficult the computation of

the BF. Due to this has been developed diverse computational methods in order to cal-

culate the marginal probability of the data or, the BF directly. Among these methods

are the Laplace approximation (e.g., Tierney and Kadane (1986) and Tierney et al.

(1989)), Monte Carlo, Importance Sampling and Iterative Quadrature to calculate

the predictive (see, for example, Naylor and Smith (1982, 1988), Geweke (1989), Mc-

Culloch and Rossi (1991) and Gelfand and Dey (1994)). Another group of calculation

procedures is those that use simulations from the posterior distribution, among these

are the Sampling Importance Resampling (SIR) referred to Rubin (1988), the Gibbs

Sampling referred to Geman and Geman (1984) and the Metropolis-Hastings referred

to Metropolis et al. (1953) and Hastings (1970). Chib (1995) and Chib and Jeliazkov

(2001) use the MCMC draws from a posterior distribution to calculate the marginal

likelihood. Different useful numeric methods in the Bayesian Statistic are presented

and compared by Chen et al. (2000).

Elliptical models. Due to the great idealization of the normal model, unrealistic in

many applications, in the last times, the non normal models have gained importance.

However, departures from the normal model generally takes an implicit loss of the

parsimony and a bigger mathematical complexity. Due to this, and to try not to

lose many good properties of the normal model, diverse generalizations of the normal

model have been developed, some guided to control the skewness, others to model

the weight of the tails, or both at the same time.

A natural generalization from the normal model, with the goal of controlling the

weight of the tails, is the class of elliptical models defined in Kelker (1970) and
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broadly studied in Cambanis et al. (1981), Fang et al. (1990) and Arellano-Valle

(1994). The elliptical models present the advantage of including as particular cases

a great variety of important models and they also present very good properties (for

example, marginalization and conditionality).

Bayesian inference for normal regression models, including sensitivity analysis,

model comparison and error in variables under noninformative and conjugate prior

for the parametric model has received considerable attention in the last decades. From

a distributional point of view the results can be extended in several directions. One

is by considering a wider class of prior distributions for the parameters of the model.

Another, is by considering alternative distributions for the error terms.

Usually, the results with non-conjugate priors relies heavily on MCMC methods.

On the other hand, many extensions have been obtained by considering the so called

dependent elliptical model, which is often used in linear regression analysis to ac-

commodate the kurtosis of the error terms and to accommodate outliers. Bayesian

inference with multivariate elliptical models was initially presented in Chu (1973).

Posteriorly, Zellner (1976) used the multivariate Student-t distribution, who consid-

ered a Bayesian treatment of linear regression models under noninformative prior

distributions.

The results of Zellner (1976) were extended to the case where the errors are mod-

elled as scale mixtures of normal distributions by Jammalamadaka et al. (1987) and

Chib et al. (1988) and to the entire class of multivariate elliptical distributions by

Osiewalski and Steel (1993). See also, Arellano-Valle et al. (2000) and Branco et al.

(2001) for connections to diagnostic and calibration problems in elliptical regression

models.
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Arellano-Valle et al. (2002a) extended the results of Osiewalski and Steel (1993) for

a new class of prior distributions that generalizes the normal-chi-squared family. They

showed that, for this class, the posterior analysis for the coefficients is invariant with

respect to changes in the generator function under some conditions, and conjugation

is achieved for φ.

Skew-elliptical models. With the objective of modelling the asymmetry of the data,

taking as a base the normal distribution, diverse generalizations have arisen, for exam-

ple the presented by Fernández and Steel (1998) and the presented by Arellano-Valle

et al. (2001) which include the epsilon-skew-normal distribution of Mudholkar and

Hutson (2000). But the skew density function defined by Azzalini (1985) has several

attractive properties such as ”strict inclusion” of the normal density, mathematical

tractability and a wide range of the indices of skewness and kurtosis. Azzalini (1985)

makes notice that if f is a symmetric p.d.f. around zero, and G is a continuous c.d.f.

such that G′ is symmetric p.d.f. around zero, then

2

σ
f

(
x− µ

σ

)
G

(
λ

x− µ

σ

)
is a p.d.f. for any λ ∈ R. Where µ ∈ R is the location parameter, σ > 0 is the scale

parameter and λ is a skewness parameter, when λ = 0 we recover the symmetric

p.d.f., 1
σ
f
(

x−µ
σ

)
. Different choices of f and G give us important special cases, e.g.,

the skew-normal with p.d.f. given by 2
σ
φ
(

x−µ
σ

)
Φ
(
λx−µ

σ

)
and denoted by SN(λ, µ, σ).

Generalizations to the multivariate distributions could be seen in Azzalini and

Dalla-Valle (1996) and Azzalini and Capitanio (1999). Further extension that can

simultaneously account for both skewness and heavy tails are the multivariate skew-

elliptical distributions defined and studied in Branco and Dey (2001) and Genton and

Loperfido (2001), where an interesting special case is the skew-t distribution with
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p.d.f. given by 2
σ
t
(

x−µ
σ
|0, 1, ν

)
FT

(
λx−µ

σ

)
, where T ∼ t (0, 1, ν), µ is the location

parameter, σ is the scale parameter, ν the degree of freedom (control the heaviness

of the tail) and λ is the skewness parameter.

An unifier work on asymmetric distributions was made by Arellano-Valle et al.

(2002b). They defined a general class of skew-distributions that include, as particular

cases, the skew-elliptical distributions and also, for this class, they gave two stochastic

representations and a general method for computing moments.

Measurement error models. Another generalization of standard regression mod-

els are the measurement error models (MEM) (also called errors-in-variables models

). Due to practical motivations and simplicity of model, attention has been paid to

the linear regression model, where commonly Yi denote the dependent variable and

xi1, · · · , xip, the explanatory variables that are supposedly known variables. In oc-

casions this assumption is not valid because many real problems exist where is not

possible to know the explanatory variables completely, for example, in social sciences

and management sciences. In this context the denominated MEM arise.

Adcock (1877, 1878) is usually regarded as the first person specifically to consider

such models. It has been written much on the topic, but a detailed and recent analysis

about MEM could be found in Fuller (1987) and Cheng and Ness (1999). Carrol et al.

(1995) concentrated on nonlinear measurement errors models.

Inference problems in MEM typically are approached via classical inference (e.g.,

Fuller (1987), Carrol et al. (1995) and Cheng and Ness (1999)). Literature related to

the Bayesian methodology in MEM is less vast than in classical approach. A pioneer

work, by Lindley and El-Sayyad (1968), investigates Bayesian inference for normal

case. A unification of the results in Lindley and El-Sayyad (1968) with additional
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considerations on the prior assumptions is considered in the book by Zellner (1971).

Some other results which appeared later include Villegas (1972), Florens et al.

(1974), Reilly and Patino-Leal (1981) and Bolfarine and Cordani (1993), among oth-

ers. These more recent works emphasize obtaining posterior distributions for the re-

gression coefficients under different assumptions which include normally distributed

errors. The scarcity of such results is probably due to the fact that the analytical

treatment of the Bayesian approach for MEM is not simple. This difficulty has been

overcame recently by considering MCMC methods. Some very recent works in this di-

rections are considered in Stephens and Dellaportas (1992), Dellaportas and Stephens

(1995), Richardson and Gilks (1993), Richardson (1996), Muller and Roeder (1997)

and Aoki et al. (2003).

However, the development of MEM has been slower than in other areas of statis-

tics. Particularly very few results are considered in connection to model choice and

model comparisons in spite of the abundant literature available for ordinary linear

models.

Diagnostic. Another important aspect in modelling is the diagnostic of models.

Classical and Bayesian diagnostic techniques for normal linear regression models have

been extensively studied in the statistical literature. From classical approach, please

refer to, for instance, Cook and Weisberg (1982) and Barnett and Lewis (1994).

Diagnostic techniques within a Bayesian framework have been studied by Johnson

and Geisser (1982, 1983, 1985), Pettit and Smith (1983), Guttman and Peña (1988)

and Peng and Dey (1995), among others. These authors developed influence measures

based on divergence measures between the joint (and marginal) posterior (predictive)

distributions with and without a given subset of observations. Kempthorne (1986),
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Geisser (1987) and Carlin and Polson (1991) investigate the problem of quantifying the

influence of observations in a Bayesian decision framework by examining the changes

in Bayes risk under certain specified prior distributions and loss function. Most of the

research has been conducted for normal linear models and using noninformative prior

distributions. Extensions of the previous results to elliptical (dependent) regression

models are considering in Arellano-Valle et al. (2000).

In MEM, the problem has been mainly approached from the classical point of

view by considering normal distributions and by computing influence measures, see,

e.g., Wellman and Gunst (1991), Abdullah (1995) and Kim (2000). We are not aware

of any Bayesian literature on the problem of quantifying influence in MEM .

Like in the study of any branch of the science, the development of the linear re-

gression models has gone from simpler suppositions toward other ones more complex.

Many authors have dedicated great part of their works to generalize the suppositions

that traditionally have been made on the linear regression models. We, in this thesis,

will contribute to this development in this same sense.

Main objective. During many years it has been supposed that the errors of the

observations in a linear model are normal, however in many situations this assumption

is unrealistic, for example, if the errors present some values very far from the rest.

In this case it could be better to take an error distribution with heavier tails that

those of the normal distribution, in this sense the elliptical models provide a nice

alternative. The dependent multivariate elliptical distributions can help to relax the

strong supposition of the uncorrelation of errors without complicating too much the

analysis and at the same time to maintain a wide class of distributions to control

”atypical” observations.



Introduction 11

The assumption of symmetrical errors is also a supposition that can be violated

in the practice, then it would become necessary to have models that are able to

control this characteristic. To control the asymmetry it have been defined different

skew models. In particular, we will work with the skew elliptical models defined by

Branco and Dey (2001) which they are able to control the skewness, heaviness of the

tails and correlation. Another assumption that commonly is made it is to suppose

that the predictor variable is measured without error, or rather they are measured

with a negligible error, but this is not feasible to suppose in many practical cases,

it is here where the models with errors in variables emerge. Different examples and

applications of these models are considered in the books of Fuller (1987), Carrol et al.

(1995) and Cheng and Ness (1999).

The main objective of this research is to select the probability model that best

explains the behavior of the observed data with known covariates. The selection of

the true model is almost impossible, then, what we will do is to study the topic to

provide new tools and knowledge that will allow us to approach this objective. The

selection model will be focused inside the class of skew-elliptical linear regression

models with measurement error in the predictor variables.

The outline of Figure 1 provides a way to summarize the possible paths with the

purpose of determining a specific regression model. To achieve our objective, we will

calculate the BF in some of the nodes of the outline of Figure 1, and in the square 1

of the outline. Also, with the model diagnostic objective, in the square 2 will see the

importance of the BF when it is used in influence measures to evaluate the sensitivity

of posterior estimates when a group of observations is eliminated from the analysis.

Outline of the thesis. The thesis is organized as follows. In Chapter 1, we review
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Skew-Elliptical Linear Regression Model with

Symmetric Measurement Errors in Predictors

? ?

With symmetric errors

on observations (λ = 0)

With skew errors

on observations (λ 6= 0)

? ?

1. Without measurement

error (σ2
u = 0)

3. Without measurement

error (σ2
u = 0)

? ?

2. With symmetric measurement

error (σ2
u 6= 0)

4. With symmetric measurement

error (σ2
u 6= 0)

Figure 1: Outline of model selection into skew-elliptical linear regression models

some results related to elliptical distributions, present a Bayesian analysis of ellip-

tical linear models by considering different specifications for the prior distribution

and compute default Bayes factors to compare elliptical linear models including a

discussion of the performance of these measures as an objective criteria for elliptical

model comparison. In Chapter 2, through the Metropolis-Hastings algorithm and

the Importance Sampling method, we compute the Bayes factor to test the existence

of measurement error, where its behavior is evaluated through simulated and real

data. Measures to evaluate influence of observations are studied in Chapter 3. We
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use the perturbation function to calculate some influence measures on the posterior

distribution of the parameters of the MEM , and apply these measures to a problem

with real data.

In Chapters 4 and 5, we compute Bayes factors to test asymmetry under skew-

elliptical models. In Chapter 4, for the univariate skew-elliptical model, and in Chap-

ter 5, for skew-elliptical linear regression model. In univariate case, we measured the

sensitivity of the skewness parameter using the L1-distance between the symmetric

and asymmetric models. We also compute the Bayes factor to test skewness and

present simulation results for the skew-normal and skew-t distributions obtaining ex-

pected results. Secondly, we compute the Bayes factor to identify asymmetry in a

representable skew elliptical linear regression model and present simulation results

with multivariate skew-normal distribution for the errors. Application in stock mar-

kets are also considered. Conclusions and final remarks are presented in Chapter

6.

Notations. Through this thesis, we employ the usual symbols ‖‖ to denote Eu-

clidean length of a vector, ⊥⊥, independence of two random vectors and
d
=, the equal-

ity in distribution. Nn (µ,Σ), denote n-dimensional Normal distribution with mean

vector µ and variance matrix Σ, and φn (x |µ,Σ) and Φn (x |µ,Σ) denote its respec-

tive p.d.f. and c.d.f. Also, In denote identity matrix, 11n, n -dimensional vector of

ones, Ga (a, b), Gamma distribution with expected value equal to a
b

and IGa (a, b),

Inverted-Gamma such that if X ∼ IGa (a, b) then X−1 ∼ Ga (a, b). tn (µ,Σ, ν), de-

note n-dimensional Student-t distribution with location vector µ, dispersion matrix

Σ and ν degrees of freedom. Also, x ≤ y means that xi ≤ yi, i = 1, . . . , n.



Chapter 1

Comparing Elliptical Linear

Regression Models

In this chapter we consider the calculation of Bayes factors between elliptical linear

models for a new class of prior distributions that generalizes the normal-chi-squared

family. Arellano-Valle et al. (2002a) showed that for this class the posterior analysis

is simple to perform under some conditions, and conjugation is achieved for φ.

The results of Arellano-Valle et al. (2002a) detected, in the posterior analysis, a

invariance with respect to changes in the generator function. We use this fact to show

that the Bayes factors do not depend on the generator function of an elliptical model.

We also show that for some noninformative prior distributions belonging to this prior

class, some default Bayes factors neither depend on the generator function.

The chapter is organized as follows. In Section 1.1, we introduce the elliptical

distribution and review some results related to elliptical distributions. In Section

1.2, we present a Bayesian analysis of elliptical linear models by considering differ-

ent specifications for the prior distribution. The main result of this section is due

to Arellano-Valle et al. (2002a), and it bears to that many solutions to inference

14
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problems on elliptical regression models are equals with those obtained under nor-

mal regression models. Finally, in Section 1.3 we compute default Bayes factors to

compare elliptical linear models including a discussion of the performance of these

measures as an objective criteria for elliptical model comparison.

1.1 Elliptical Distributions

In this section we summarize the basic properties of elliptical distributions. Roughly

speaking, a random real variable Z has a spherical distribution if Z
d
= −Z. In this

work we restrict the study to the case when the c.d.f. of Z is absolutely continuous, so

that the spherical symmetry implies that Z has density given by fZ(z) = h(z2)IR(z),

where ∫ ∞

0

u−
1
2 h(u)du = 1. (1.1.1)

The function h is called the density generator and we write Z ∼ S1(h). For ex-

ample, if h(u) = 1√
2π

e−
1
2
u then we obtain the standard normal distribution with

Z ∼ N(0, 1), and if h(u) = c{ν + u}− ν+1
2 , for some constant c, then the stan-

dard Student-t distribution with ν degrees of freedom, say Z ∼ t(0, 1, ν), follows.

The class of spherical power exponential distribution can be obtained by setting

h(u) = k exp(−1
2
|u|s), s > 0, for some constant k. The class of spherical distributions

is a large family and includes the spherical uniform distribution, scale mixture of the

spherical normal distribution, among others. Thus, this class of distributions con-

tains symmetric distributions with heavier and lighter tails than those of the normal

distribution.

We note that if Z ∼ S1(h) then T = Z2 has density given by

fT (t) = t−
1
2 h(t)I(0,∞)(t). (1.1.2)
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T is usually termed radial random variable and is denoted by T ∼ R2(h). Now, let

Y = µ + φ
1
2 Z then

fY (y) = φ
1
2 h((y − µ)2φ)IR(y),

where h satisfy (1.1.1) and T = φ(Y − µ)2 has density given by (1.1.2). We say that

the random variable Y has elliptical distribution with parameters µ (location) and φ

(precision), with µ ∈ R and φ > 0, and we write Y ∼ El1(µ, φ−1, h).

Multivariate distributions with univariate marginal spherical distributions can be

constructed in several ways. The simplest procedure is to consider Z = (Z1, . . . , Zn)t

a random vector with Zi
iid∼ S1 (h). In this case we say that Z has poly-spherical

distribution. On the other hand, we can construct a multivariate distribution with

constant density function over spheres, that is, fZ(z) = h(n)(‖z‖2), where∫ ∞

0

π
n
2

Γ(n
2
)
u

n
2
−1h(n)(u)du = 1. (1.1.3)

We say that Z has a multivariate spherical distribution and we write Z ∼ Sn(h(n)).

Note that T = ‖Z‖2 has density given by

fT (t) =
π

n
2

Γ(n
2
)
t

n
2
−1h(n)(t)I(0,∞)(t).

We say here that T has radial-squared distribution with n degrees of freedom and

density generator function h(n), and we write this as T ∼ R2
n(h(n)). Thus, Z ∼

Sn(h(n)) if and only if T = ‖Z‖2 ∼ R2
n(h(n)).

Note also that the random variable S = T−1 has density function

π
n
2

Γ(n
2
)
(1/s)

n
2
−1h(n)(1/s)I(0,∞)(s),

which is refereed to as the inverted radial-squared distribution with n degrees of

freedom and density generator h(n), and we write this as S ∼ IR2
n(h(n)).
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All marginal and conditional distributions of a spherical distribution are also

spherical (see for example Fang et al. (1990)). Any linear combination W = atZ is

spherically distributed too. Moreover, if Z = (Z1, . . . , Zn)t ∼ Sn(h(n)) then Z1, . . . , Zn

are independent if and only if Sn(h(n)) is the normal spherical distribution (Kelker

(1970)).

Thus, except in the normal case, the poly-spherical and multivariate spherical

distributions are different classes. Both contain distributions that are long-tailed

and short tailed relative to the normal distribution, but the multivariate spherical

approach seems to be a more realistic model because the independence assumption

is relaxed. For example, in the context of the Student-t model, we have that:

Z ∼ poly − t(0, 1, ν) ↔ fZ(z) = kΠn
i=1

{
1 +

z2
i

ν

}− ν+1
2

and

Z ∼ tn (0, In, ν) ↔ fZ(z) = c

{
1 +

∑n
i=1 z2

i

ν

}−n+ν
2

.

Note that the poly-Student-t distribution is not spherically symmetric. This dis-

tribution remains invariant only under change of sign. On the other hand, the multi-

variate Student-t distribution remains invariant under all orthogonal transformations

and has Student-t univariate marginal distributions, but the elements of Z are not

independent.

A justification from a predictivistic point of view of the dependence structure in

the multivariate Student-t model is given by Arellano-Valle et al. (1994), see also

Loschi et al. (2002).

Figures 1.1 and 1.2 exhibit, respectively, the shape and contours of three types

of distributions and Table 1.1 contains different families of spherical generators and

their corresponding radial-squared distributions.



Comparing Elliptical Linear Regression Models 18

Table 1.1: Some subclasses of n–dimensional spherical distributions (u = ‖z‖2, z ∈
Rn).

Distribution
Generator density

function
Radial-squared

distribution

Normal (2π)−n/2 exp {−u/2} χ2
n

Cauchy
Γ(n+1

2 )
π

n+1
2

{1 + u}−
(n+1)

2 nFn,1

Student-t
Γ(n+ν

2 )νν/2

Γ( ν
2 )πn/2

{ν + u}−
(n+ν)

2 ,

ν > 0
nFn,ν

Generalized Student-t
Γ(n+ν

2 )λν/2

Γ( ν
2 )πn/2

{λ + u}−
(n+ν)

2 ,

ν, λ > 0

nλ
ν

Fn,ν

Power Exponential

Γ(n
2 )α

Γ( n
2α)π

n
2 2

n
2α

exp {−uα/2} ,

α > 0
χ

2
α
n
α

Kotz Type
Γ(n

2 )αr
2q+n
2α

Γ( 2q+n
2α )π

n
2 2

2q+n
2α

uq exp {−ruα/2}, Ga
1
α

(
2q+n
2α

, r
2

)
r, α > 0, 2q + n > 0

Pearson Type II
Γ(n+ν

2 )
Γ( ν

2 )πn/2
(1− u)

ν
2
−1 ,

ν > 0
Beta

(
n
2
, ν

2

)
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a. b. c.

Figure 1.1: Joint densities: a. bivariate standard normal, b. bivariate standard
Cauchy and c. independent product of two standard Cauchy.

In Table 1.1, c is an appropriate constant, Ga
1
s (α, λ) means that T s ∼ Ga(α, λ)

(the Gamma distribution with parameters α and λ) and χ
2
s
ν means that T s ∼ χ2

ν ,

where T = ‖Z‖2 is the radial-squared random variable. Moreover, φn(u) = (2π)−
n
2 e−

u
2

is the normal n-dimensional generator.

In this chapter we deal only with multivariate spherical distributions, more gen-

erally with elliptical symmetric distributions.

An n×1 random vector Y is said to have an elliptical distribution with parameters

µ (the location vector) and Σ (the dispersion matrix) of dimensions n× 1 and n×n,

respectively, with Σ being positive definite (Σ > 0), if Y has density function of the

form

|Σ|−
1
2 h(n)

[
(y − µ)t Σ−1 (y − µ)

]
,

where h(n) satisfies (1.1.3).

In this case, we write Y ∼ Eln
(
µ,Σ, h(n)

)
which is equivalent to Z = Σ−1/2 (Y − µ) ∼

Eln
(
0, In, h

(n)
)

= Sn

(
h(n)

)
and therefore to (Y − µ)t Σ−1 (Y − µ) = ‖Z‖2 = T ∼

R2
n

(
h(n)

)
.
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a. b. c.

Figure 1.2: Contours of joint densities: bivariate standard normal (black line), bivari-
ate standard Cauchy (blue line) and independent product of standard Cauchy (red
line) to a height c. a. c = (26π)

−1
, b. c = (210π)

−1
and c. c = (214π)

−1
.

From the above results we can show also that if E (T ) < ∞, then E (Z) = 0 and

V (Z) = αhIn, that is,

E (Y) = µ and V (Y) = αhΣ,

where αh = E (n−1T ) is the variance parameter associated with the density generator

h(n).

Now, let Zk be a k−dimensional (1 ≤ k < n) random sub-vector of Z ∼ Sn

(
h(n)

)
.

Then, Zk ∼ Sk

(
h(k)
)

and has density function h(k)
(
‖zk‖2), zk ∈ Rk, where

h(k) (u) =

∫ ∞

0

π
n−k

2

Γ
(

n−k
2

)v n−k
2
−1h(n)(u + v)dv, (1.1.4)

so that Tk = ‖Zk‖2 ∼ R2
k

(
h(k)
)
, see Fang et al. (1990). Moreover, provided that the

required moments exist, we have that

E
(
k−1Tk

)
= αh and V

(
k−1Tk

)
= {k−1(k + 2)(κh + 1)− 1}α2

h,

where κh = α−2
h E [{n(n + 2)}−1T 2] − 1 is the kurtosis parameter of the elliptical
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family with density generator h(n). Similar results hold for the inverse radial-squared

random variable Sk = T−1
k .

Let us now consider the partition Z =
(
Zt

k,Z
t
(k)

)t

∼ Sn

(
h(n)

)
. Thus, the condi-

tional distribution of Zk given Z(k) = z(k) is such that

Zk |Zk = zk
d
= Zk

∣∣‖Zk‖2 = t ∼ Sk

(
h

(k)
t

)
, (1.1.5)

where t =
∥∥z(k)

∥∥2
and, for each t ≥ 0,

h
(k)
t (u) =

h(n)(u + t)

h(n−k)(t)
, u ≥ 0, (1.1.6)

is the conditional density generator function. Moreover, by noting that

Tk = ‖Zk‖2 ∼ R2
k

(
h(k)
)
, T(k) =

∥∥Z(k)

∥∥2 ∼ R2
n−k

(
h(n−k)

)
and T = ‖Z‖2 ∼ R2

n

(
h(n)

)
,

we obtain the following relationship: R2
n

(
h(n)

) d
= R2

k

(
h(k)
)

+ R2
n−k

(
h(n−k)

)
, since

‖z‖2 = ‖zk‖2 +
∥∥z(k)

∥∥2
. From (1.1.5), it also follows that

Tk|T(k) = t ∼ R2
k

(
h

(k)
t

)
,

so that the variance and kurtosis parameters, α
h
(k)
t

and κ
h
(k)
t

, respectively, associated

with the conditional elliptical model in (1.1.5) are functions of z(k) through t =∥∥z(k)

∥∥2
.

More details about the relationship between elliptical and radial-squared distri-

butions can be found in Arellano-Valle et al. (2002a).

1.2 Bayesian Inference for Elliptical Linear Mod-

els

In this section we consider the elliptical linear regression model

Y|X,β, φ, h(n) ∼ Eln

(
Xβ, φ−1In, h

(n)
a0φ

)
, (1.2.7)
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where, from (1.1.6),

h
(n)
a0φ(u) =

h(n+d0)(u + a0φ)

h(d0)(a0φ)
,

a0 is known (a0 > 0), h(n+d0) is a generator function of a (n+d0)-dimensional elliptical

distribution, β ∈Rk and φ > 0.

If we adopt the convention that h(0)(u) = 1, h(n)(0) = c, for some constant

c, and h
(n)
0 = h(n), then, when d0 = a0 = 0, (1.2.7) yields the standard elliptical

model Eln
(
Xβ, φ−1In, h

(n)
)
. In the latter case and under the non-informative prior

distribution

π(β, φ) ∝ φ−1, (1.2.8)

Osiewalski and Steel (1993) have shown that the posterior of β is the same for all

density generators of elliptical distributions h(n), and therefore, for the normal linear

model. Similar results hold for the predictive analysis. Only the posterior distribution

of φ is affected by departures from normality within the class of elliptical distributions.

Some results related to posterior moments of φ are given in Osiewalski and Steel (1996)

by considering the conditional distribution of φ given the location parameters β and

the data (Y,X). Arellano-Valle et al. (2000) provide an alternative proof of this

fact, and determine the posterior distribution of φ explicitly, obtaining a convenient

formula for examining the effects of departures of normality, which are reflected on

the posterior of φ. Proposition (1.2.1) extends the previous results by considering a

more general class of priors distributions for (β, φ).

Specifically, we consider

φ|h(n) ∼ a−1
0 R2

d0

(
h(d0)

)
(1.2.9)
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which yields

π
(
β, φ|h(n)

)
=

(a0π)
d0
2

Γ
(

d0

2

) φ
d0
2
−1h(d0)(a0φ)π

(
β|φ, h(n)

)
, (1.2.10)

where h(d0) (·) is given by (1.1.4).

The dependence on h(n) in (1.2.9) is reasonable, since in the present context the

interpretation of the scale parameter changes with the density generator. We will

interpret d0 = 0 in (1.2.9) as the non-informative prior π(φ|h(n)) ∝ φ−1, so that

(1.2.10) is reduced to (1.2.8) when π
(
β|φ, h(n)

)
is constant.

Proposition 1.2.1. Under (1.2.7) and (1.2.10) with β⊥⊥φ|h(n), we have

π
(
β|X,y, h(n)

)
∝
[
aq(y) +

∥∥∥Xβ −Xβ̂
∥∥∥2
]− k+d

2

π
(
β|h(n)

)
(1.2.11)

and,

π
(
φ|X,y, h(n)

)
∝ φ

k+d
2
−1

∫
Rk

h(k+d)

([
aq(y) +

∥∥∥Xβ −Xβ̂
∥∥∥2
]

φ

)
π (β|φ) dβ (1.2.12)

where d = n−k +d0 are the remaining degrees of freedom, β̂ = (XtX)
−1

Xty, aq(y) =

a0 + q(y) and q(y) = (n− k)S2 where S2 = 1
n−k

∥∥∥y −Xβ̂
∥∥∥2

.

Assuming h(n) as given and π
(
β|h(n)

)
to be constant, then

β|X,y ∼ tk

(
β̂, aq(y)(X

tX)−1, d
)

(1.2.13)

and,

φ|X,y, h(n) ∼ 1

aq(y)

R2
d

(
h(d)
)
. (1.2.14)

Proof. Using (1.2.7) and (1.2.9), we have that

f (y, φ|X,β) ∝ φ
n+d0

2
−1h

(n)
a0φ

(
φ ‖y −Xβ‖2) h(d0)(a0φ).
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But, from (1.1.6), h
(n)
t (u)h(d0)(t) = h(n+d0)(u + t), so that

f (y, φ|X,β) ∝ φ
n+d0

2
−1h(n+d0)

(
φ ‖y −Xβ‖2 + φa0

)
. (1.2.15)

Using now (1.1.3), we have that

f (y|X,β) ∝
[
a0 + ‖y −Xβ‖2]−n+d0

2 ,

which does not depend on h(n). Thus, the results in (1.2.11) and (1.2.13) follow by

using the well known decomposition

‖y −Xβ‖2 =
∥∥∥y −Xβ̂

∥∥∥2

+
∥∥∥Xβ −Xβ̂

∥∥∥2

(1.2.16)

and from the fact that π
(
β|X,y, h(n)

)
∝ f (y|X,β) π

(
β|h(n)

)
. For the proof of

(1.2.12) and therefore (1.2.14), we note that

π
(
φ|X,y, h(n)

)
∝
∫

Rk

f
(
y, φ|X,β, h(n)

)
π(β|h(n))dβ,

where f
(
y, φ|X,β, h(n)

)
is defined in (1.2.15). Thus, the proof follows by using (1.1.4)

jointly with (1.2.16).

Note from (1.2.11) that if the prior distribution of β does not depend on h(n),

then the posterior distribution of β is invariant on the class of elliptical models under

consideration and can be obtained under the normality assumption. In particular,

applying (1.2.13) and (1.2.14) we get E (β|X,y) = β̂ (n > k + 2), V (β|X,y) =

aq(y)

d−2
(XtX)

−1
(n > k + 4) and (provided that they exist) E

(
φ|X,y, h(n)

)
= dαh

aq(y)
,

V
(
φ|X,y, h(n)

)
=
[

d+2
d

(κh + 1)− 1
] [

dαh

aq(y)

]2
. For the particular case d0 = a0 = 0, d =

n− k and aq(y) = (n− k)S2: β|X,y ∼ tp

(
β̂, S2 (XtX)

−1
, n− k

)
and φ|X,y, h(n) ∼

1
(n−k)S2 R

2
n−k

(
h(n−k)

)
. These results reduce to those in Osiewalski and Steel (1993).
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Assuming in Proposition 1.2.1, h(n) as given and π
(
β|h(n)

)
to be constant, then

(1.2.14) implies that the posterior distribution of σ2 = φ−1 satisfies σ2|X,y, h(n) ∼

aq(y)IR2
d

(
h(n)

)
, that is, π

(
σ2|X,y, h(n)

)
= πd/2

Γ(d/2)
a

d/2
q(y) (σ−2)

d
2
+1

h(d)
(aq(y)

σ2

)
.

Another posterior inference is the models selection, for this is very common

to calculate the Bayes factor between two models, Eln

(
X1β1, φ

−1In, h
(n)
a0φ,1

)
and

Eln

(
X2β2, φ

−1In, h
(n)
a0φ,2

)
, that is

BF =

∫
f
(
y
∣∣∣X1,β1, φ, h

(n)
1

)
π
(
β1, φ|h

(n)
1

)
dφdβ1∫

f
(
y
∣∣∣X2,β2, φ, h

(n)
2

)
π
(
β2, φ|h

(n)
2

)
dφdβ2

=

∫
f (y |X1,β1 ) π

(
β1|h

(n)
1

)
dβ1∫

f (y |X2,β2 ) π
(
β2|h

(n)
2

)
dβ2

=

∫ [
aq1(y) +

∥∥∥X1β1 −X1β̂1

∥∥∥2
]−n+d0

2

π
(
β1|h

(n)
1

)
dβ1

∫ [
aq2(y) +

∥∥∥X2β2 −X2β̂2

∥∥∥2
]−n+d0

2

π
(
β2|h

(n)
2

)
dβ2

,

where β̂i = (Xt
iXi)

−1
Xt

iy and qi(y) =
∥∥∥y −Xiβ̂i

∥∥∥2

with i = 1, 2. An explicit form

for the previous Bayes factor is difficult to obtain.

As we could see, invariance of the posterior distribution of β facilitates the pos-

terior inferences of β since they coincide with the well-known results of the normal

model. However, this is a difficulty if our goal is compare different elliptical models

under the conditions of Proposition 1.2.1 with π
(
β|h(n)

)
∝ 1, this case is approached

in the next section.

1.3 Default Bayes Factors for Elliptical Linear Mod-

els

In this section we consider the q alternative standard elliptical linear models

Mj : Y = Xβ + εj, εj ∼ Eln

(
0, φ−1In; h

(n)
j

)
, (1.3.17)
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j = 1, . . . , q, where the hj’s are n-dimensional generators, β ∈ Rk (n > k), and the

non-informative prior distribution given by (1.2.8).

As is well known, the usual Bayes factors based on non-informative or default

improper priors, do not work, because the resulting Bayes factors are undetermined.

Several solutions to this difficulty have been proposed and discussed by Berger and

Pericchi (2001), they are called objective Bayes model selection methods.

In this section we discuss the model comparison problem under improper prior by

using the Intrinsic Bayes Factors (IBF) (Berger and Pericchi (1996a)) and Fractional

Bayes Factors (FBF) (O’Hagan (1995)).

Let consider the following partition

y =

(
y(1)

y(2)

)
and X =

(
X(1)

X(2)

)

where y(i) ∈ Rni (i = 1, 2), n = n1 + n2 and the matrix X(i) has dimension ni × k.

Proposition 1.3.1. If rank(X(1)) = k < n1 then, for each model Mj in (1.3.17), the

marginal density of the sub-vector y(1) is given by

mN
j

(
y(1)

∣∣X(1)

)
=

Γ
(

n1−k
2

)
(
√

π)
n1−k

(∣∣∣Xt
(1)X(1)

∣∣∣) 1
2

∥∥∥y(1) −X(1)β̂(1)

∥∥∥−(n1−k)

,

where β̂(1) =
(
Xt

(1)X(1)

)−1

Xt
(1)y(1).

Proof. Using the same ideas of Proposition 1.2.1 when a0 = d0 = 0 we can show that

f (y,β|X,h) =

∫ ∞

0

φ
n
2
−1h(n)

(
φ ‖y −Xβ‖2) dφ =

Γ (n/2)

πn/2
‖y −Xβ‖−n , (1.3.18)

which does not depends on h(n), and can rewrite as

f
(
y(1),y(2),β

∣∣X) =
Γ (n1/2) tn2

(
y(2)

∣∣X(2)β, n−1
1

∥∥y(1) −X(1)β
∥∥2

In2 , n1

)
πn1/2

∥∥y(1) −X(1)β
∥∥n1

,
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where tk (y|µ,Σ, ν) is density of tk (µ,Σ, ν) distribution. If now integrating out y(2)

we obtain

f
(
y(1),β

∣∣X(1)

)
=

Γ (n1/2)

πn1/2

∥∥∥y(1) −X(1)β̂(1)

∥∥∥−n1

1 +

∥∥∥X(1)β −X(1)β̂(1)

∥∥∥2

S2
(1) (n1 − k)


−n1/2

,

where S2
(1) = 1

n1−k

∥∥∥y(1) −X(1)β̂(1)

∥∥∥2

. Since the last factor is the kernel of the Student-

t density

tk

(
β| β̂(1), S

2
(1)

(
Xt

(1)X(1)

)−1
, n1 − k

)
and n1 > k, the result follows.

Remark 1.3.2. From Proposition 1.3.1, the marginal density of any sub-vector y(1),

with n1 > k, does not depend on the specific elliptical model under consideration.

A similar result is obtained by Berger et al. (1998) to compare models of the form

(1.3.17), but for a wider class of models. However, their result is not valid for n1 >

k + 1.

1.3.1 Intrinsic Bayes Factor

The general strategy for computing IBF’s begins with the determination of a proper

and minimal training sample. It is known that (Berger and Pericchi (1996b)) the

minimal training sample for the elliptical models in (1.3.17) is a sub-vector y (l) of size

n1 = k +1 such that the corresponding sub-matrix X (l) is of full rank. Computation

to compare two elliptical models M1 and M2, yields the following Partial Bayes Factor

(PBF) for data y,

B12 (l) =
mN

1 (y|X)

mN
2 (y|X)

· mN
2 (y (l)|X (l))

mN
1 (y (l)|X (l))

= 1.
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Therefore the IBF’s would not be useful in order to compare the models in (1.3.17).

However, the IBF’s are useful and easy to calculate upon comparing elliptical linear

models with different design matrices.

Now, we consider the comparison between the elliptical linear models

Mj : Y = Xjβj + εj, εj ∼ Eln

(
0, φ−1In; h

(n)
j

)
(1.3.19)

j = 1, . . . , q where the hj’s are the generators, n > max
j
{kj} and βj ∈ Rkj .

Proposition 1.3.3. The IBF’s in order to compare any two models M1 and M2 of

type (1.3.19) do not depend on h
(n)
1 and h

(n)
2 .

Proof. It suffices to note from Proposition 1.3.1 that the PBF does not depend on

the generators.

The previous result is very useful since it allow us to calculate IBF’s to compare

elliptical linear models with different design matrices using the results of Berger and

Pericchi (1996b) relating to the IBF’s for normal linear models.

1.3.2 Fractional Bayes Factor

Another alternative approach to compare models is the FBF developed in O’Hagan

(1995). As mentioned by this author, the FBF has a series of advantages over the

IBF (see, for example O’Hagan (1997)), for example it is easier to compute than IBF.

It is necessary to note that those models specified by (1.3.19) differ in two aspects,

the design matrix Xj and the generator h
(n)
j . The next results are related to the

comparison of two models M1 =
(
X1, h

(n)
1

)
and M2 =

(
X2, h

(n)
2

)
.
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Proposition 1.3.4. The FBF to compare two models M1 and M2 in (1.3.19) with

design matrices of full rank is

Bb (y) =
Γ
(

n−k1

2

)
Γ
(

bn−k2

2

) (∥∥∥y −X1β̂1

∥∥∥)n(b−1) ∫∞
0

u
bn
2
−1
(
h

(n)
2

)b

(u) du

Γ
(

n−k2

2

)
Γ
(

bn−k1

2

) (∥∥∥y −X2β̂2

∥∥∥)n(b−1) ∫∞
0

u
bn
2
−1
(
h

(n)
1

)b

(u) du

,

where 0 < b < 1, bn > max
j
{kj} and β̂j =

(
Xt

jXj

)−1
Xt

jy, j = 1, 2.

Proof. In this case the FBF is given by Bb (y) = q1(b,y)
q2(b,y)

, where

qj (b,y) =

∫
π
(
βj, φ

)
f
(
y|Xj,βj, φ, h

(n)
j

)
dφdβj∫

π
(
βj, φ

)
f b
(
y|Xj,βj, φ, h

(n)
j

)
dφdβj

and j = 1, 2. Using the change of variables uj = φ
∥∥y −Xjβj

∥∥2
and integrating out

βj we obtain that the denominator of qj (b,y) is given by

Γ
(

bn−kj

2

)
πkj/2

Γ
(

bn
2

) (∣∣Xt
jXj

∣∣) 1
2

(∥∥∥y −Xjβ̂j

∥∥∥)−(bn−kj)

·
∫

u
bn
2
−1

j

(
h

(n)
j

)b

(uj) duj.

Now, the numerator of qj (b,y) is just the predictive density of y under model j.

Thus, from Proposition 1.3.1 we have that the numerator is given by

Γ
(

n−kj

2

)
(
√

π)
n−kj

(∣∣Xt
jXj

∣∣) 1
2

(∥∥∥y −Xjβ̂j

∥∥∥)−(n−kj)

.

Consequently,

qj (b,y) =
Γ
(

n−kj

2

)
Γ
(

bn
2

) (∥∥∥y −Xjβ̂j

∥∥∥)n(b−1)

Γ
(

bn−kj

2

)
(
√

π)
n ∫

u
bn
2
−1

j

(
h

(n)
j

)b

(uj) duj

,

concluding the proof.

The FBF for especial cases are presented in what follows.
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Table 1.2: I (b, hn) for some subclasses of n-dimensional spherical distributions.
Distribution Density generator h(n) (u) I

(
b, h(n)

)
Normal h

(n)
φ (u) = (2π)−n/2 exp {−u/2} Γ( bn

2 )
(bπ)bn/2

Contaminated (1− ε) hφ (u) + εσ−
n
2 hφ

(
u
σ

)
,

Γ( bn
2 )(1−ε+εσn(b−1)/2)

(bπ)bn/2

Normal 0 < ε < 1, σ > 0

Student-t
Γ(n+ν

2 )νν/2

Γ( ν
2 )πn/2

{ν + u}−
(n+ν)

2 , ν > 0
Γb(n+ν

2 )Γ( bn
2 )Γ( bν

2 )
Γb( ν

2 )Γ(b n+ν
2 )πbn/2

Generalized
Γ(n+ν

2 )λν/2

Γ( ν
2 )πn/2

{λ + u}−
(n+ν)

2 , ν, λ > 0
Γb(n+ν

2 )Γ( bn
2 )Γ( bν

2 )
Γb( ν

2 )Γ(b n+ν
2 )πbn/2

Student-t

Pearson
Γ(n+ν

2 )
Γ( ν

2 )πn/2
(1− u)

ν
2
−1, ν > 0

Γb(n+ν
2 )Γ( bn

2 )Γ(b ν−2
2

+1)
Γb( ν

2 )Γ(b n+ν−2
2

+1)πbn/2

Type II

Power
Γ(n

2 )s

Γ( n
2s)π

n
2 2

n
2s

exp {−us/2}, s > 0
Γb(n

2 )Γ( bn
2s )sb−1

Γb( n
2s)π

bn
2 b

bn
2s

Exponential

Kotz Type
Γ(n

2 )sρ
2q+n

2s

Γ( 2q+n
2s )π

n
2 2

2q+n
2s

uq exp {−ρus/2}, Γb(n
2 )Γ(b 2q+n

2s )sb−1

Γb( 2q+n
2s )π

bn
2 bb

2q+n
2s

ρ, s > 0, 2q + n > 0

Corollary 1.3.5. The FBF for comparing two models M1 and M2 of type (1.3.17)

is given by

Bb (y) =

∫∞
0

u
bn
2
−1
(
h

(n)
2

)b

(u) du∫∞
0

u
bn
2
−1
(
h

(n)
1

)b

(u) du
.

This corollary shows the lack of sensibility of the FBF when distinguishing be-

tween two different elliptical linear models, because the FBF depends on the data

through the sample size n only. We note also that in order to compare models with

different design matrices by using the result of Proposition 1.3.4 it is necessary to

know I
(
b, h

(n)
j

)
=
∫∞

0
u

bn
2
−1
(
h

(n)
j

)b

(u) du. Table 1.2 shows the value of I
(
b, h

(n)
j

)
for different generator density functions.

From Table 1.2, note that for the generalized Student-t distribution the value of
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I
(
b, h(n)

)
does not depend on the parameter λ, and therefore this value is the same

for the Student-t distribution. Similarly, the value of I
(
b, h(n)

)
for the Kotz Type

distribution does not depend on the parameter ρ.

The next corollary shows that for comparing two elliptical linear models with

different design matrices and common generator function, it is enough to compare

two normal linear models with different design matrices, see O’Hagan (1995).

Corollary 1.3.6. The FBF for comparing two linear models M1 :=
(
X1, h

(n)
)

and

M2 :=
(
X2, h

(n)
)

is given by

Bb (y) =
Γ
(

n−k1

2

)
Γ
(

bn−k2

2

)
Γ
(

n−k2

2

)
Γ
(

bn−k1

2

)

∥∥∥y −X1β̂1

∥∥∥∥∥∥y −X2β̂2

∥∥∥
n(b−1)

,

where 0 < b < 1, bn > max
j
{kj} and β̂j =

(
Xt

jXj

)−1
Xt

jy, j = 1, 2.

Observe that, under conditions of the previous corollary, both: the IBF and FBF,

remain invariant for the class of elliptical distributions.

1.3.3 Model Comparison as a Decision Problem

A more general approach is to consider the problem of model comparison within the

decision theory framework, as described in Bernardo and Smith (1994). Following

the notation used by those authors we will call ω the unknown state of the nature.

In our case, the objective could be inference about (β, φ), (yn+1, . . . , ym), etc. Thus,

we would like to obtain the conditional distribution of ω given y under the true

model, by assuming that this model is contained in the class of models that we are

comparing. Figure 1.3, taken from Bernardo and Smith (1994), shows the description

of our decision problem, where mi means that, given the data y, we choose model Mi

and aj, j ∈ Ji is some report of beliefs assuming model Mi.
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Figure 1.3: Outline of the decision problem

Appropriate utility functions for these cases must be smooth, proper and local

score functions; their definitions and more details can be found in Bernardo and Smith

(1994). Under these conditions, these authors show that for proper score functions,

ui (aj,ω), the optimal choice of aj, j ∈ Ji, is a∗i = f (ω|y, mi) and, therefore the

utility function would be

u (mi, a
∗
i ,ω) = ui (f (ω|y, mi) , ω) , i = 1, . . . , q.

But also, under the assumption of local score function, we have that

u (mi, a
∗
i ,ω) = A log f (ω|y, mi) + B (ω) , i = 1, . . . , q,

where A > 0 is a constant and B (·) is a function of ω. Therefore, the optimal model

is such that maximize the following expected utility function

ū (mi|y) =

∫
{A log f (ω|y, mi) + B (ω)} f (ω|y) dω (1.3.20)

provided that this exists and where, in our case, if P (Mi) = 1/q for all i = 1, . . . , q

then

P (Mj|y) =

(
q∑

i=1

mN
i (y|Xi)

mN
j (y|Xj)

)−1

.
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If additionally all design matrices are equal, then P (Mj|y) = 1/q and

f (ω|y) =
1

q

q∑
j=1

f (ω|y, mj) . (1.3.21)

That means, except for different design matrices, that there is no posterior preference

for any model. In such a case, the expected utility ū (mi|y) depends on the model

through f (ω|y, mj).

Hereafter, we present results for computing ū (mi|y) to compare models Mi =

(Xi, hi) and Mj = (Xj, hj) for different choices of ω, where hj = h
(n)
j . We will also

assume that n > max
j
{kj}, such that if ω = (β, φ) then f (ω|y, mj) and, therefore,

f (ω|y) are proper, which imply that (1.3.20) exists.

Proposition 1.3.7. If ω = (β, φ) and Xi = X ∀ i = 1, . . . , q,

ū (mi|y) =
π

n
2 A

qΓ
(

n
2

) q∑
j=1

∫
log
[
v

n
2
−1hi (v)

]
v

n
2
−1hj (v) dv

−AEtk

[
log
(
‖y −Xβ‖n−2)]− A log

[
mN (y|X)

]
+ E [B (β, φ)|y] ,

where the expected value Etk (·) is calculated with respect to the Student-t distribution

tk

(
β̂, S2 (XtX)

−1
, n− k

)
.

Proof. Since in this case we are assuming that ω = (β, φ) and Xi = X, i = 1, . . . , q,

it follows that mN
i (y|X) = mN (y|X), i = 1, . . . , q, so that

f (β, φ|y, mi) =
φ

n
2
−1hi

(
φ ‖y −Xβ‖2)

mN (y|X)
.

Then, from (1.3.21) and the previous equation,

ū (mi|y) =
A

qmN (y|X)∫
log
[
φ

n
2
−1hi

(
φ ‖y −Xβ‖2)] q∑

j=1

φ
n
2
−1hj

(
φ ‖y −Xβ‖2) d (β, φ)

−A log
[
mN (y|X)

]
+ E [B (β, φ)|y] .
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In the previous integral, the usual change of variable v = φ ‖y −Xβ‖2, yields

ū (mi|y) =
A

qmN (y|X)

∫
‖y −Xβ‖−n dβ

q∑
j=1

∫
log
[
v

n
2
−1hi (v)

]
v

n
2
−1hj (v) dv

− A

qmN (y|X)

∫
log
(
‖y −Xβ‖n−2)
‖y −Xβ‖n dβ

q∑
j=1

∫
v

n
2
−1hj (v) dv

−A log
[
mN (y|X)

]
+ E [B (β, φ)|y] .

Using that

‖y −Xβ‖−n =
∥∥∥y −Xβ̂

∥∥∥−n

1 +

∥∥∥Xβ −Xβ̂
∥∥∥2

S2 (n− k)


−n/2

,

and by observing that the last factor is the kernel of a Student-t distribution, we

conclude the proof.

Remark 1.3.8. From the above proposition and the previous results it follows that

if ω = β and Xi = X for all i = 1, . . . , q, then ū (mi|y) = AEtk [ log f (β|y)|y] +

Etk [B (β)|y], which do not depends on hi.

Proposition 1.3.9. If ω = φ then

ū (mi|y) =
A∑q

r=1 mN
r (y|Xr)

∫
log
[
(n− ki) S2

i v
n−ki

2
−1hi (v)

]
v−1

q∑
j=1

(πv)
n−kj

2

Γ
(

n−kj

2

) ((n− kj) S2
j

(n− ki) S2
i

)n−kj
2

hj

(
(n− kj) S2

j

(n− ki) S2
i

v

)
mN

j (y|Xj) dv

+ E [B (φ)|y] + A log

[
π

n−ki
2

Γ
(

n−ki

2

)] .

Proof. This follows from Proposition 1.2.1, by noting that when a0 = d0 = 0 then

f (φ|y, mi) =
π

n−ki
2

Γ
(

n−ki

2

) ((n− ki) S2
i φ
)n−ki

2 φ−1hi

(
(n− ki) S2

i φ
)
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where S2
i = 1

(n−ki)

∥∥∥y −Xiβ̂i

∥∥∥2

. The change of variable v = (n− ki) S2
i φ yields the

result.

Remark 1.3.10. If in Proposition 1.3.9 we set Xi = X for all i = 1, . . . , q, then

ū (mi|y) =
Aπ

n−k
2

qΓ
(

n−k
2

) q∑
j=1

∫
log
[
v

n−k
2
−1hi (v)

]
v

n−k
2
−1hj (v) dv

+A log

[
π

n−k
2 (n− k) s2

Γ
(

n−k
2

) ]
+ E [B (φ)|y] ,

which depends on hi.

Let us suppose now that our interest is to select models to make inference about

future observations yn+1, . . . , ym. Thus, we will assume that the vector y, as well as

the matrix X, are partitioned as

y =

(
y(n)

y(m−n)

)
and Xi =

(
Xi(n)

Xi(m−n)

)

with y(n) = (y1, . . . , yn)t and y(m−n) = (yn+1, . . . , ym)t and Xi(n), Xi(m−n) are n × k

and (m− n) × k dimensional known design matrices. Also, Y |Xi,βi, φ
−1, hm

i ∼

Elm (Xiβi, φ
−1Im; hm

i ) and we are comparing the models Mi = (Xi, h
m
i ) and Mj =(

Xj, h
m
j

)
.

Proposition 1.3.11. If ω = (yn+1, . . . , ym),

ū
(
mi|y(n)

)
=

A∑q
r=1 mN

r

(
y(n)

∣∣Xr

) ∫ log
[
f
(
y(m−n)

∣∣y(n),Xi

)]
q∑

j=1

f
(
y(m−n)

∣∣y(n),Xj

)
mN

j

(
y(n)

∣∣Xj

)
dy(m−n) + E

[
B
(
y(m−n)

)∣∣y(n)

]
,

where y(m−n)

∣∣y,Xi ∼ tm−n

(
Xi(m−n)β̂i, S

2
i Wi, n− ki

)
and

Wi = Xi(m−n) (Xt
iXi)

−1
Xt

i(m−n)+Im−n.
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Proof. The result follows from Osiewalski and Steel (1993), where it is shown that

y(m−n)

∣∣y(n), mi ∼ tm−n

(
Xi(m−n)β̂i, S

2
i Wi, n− ki

)
,

which depends on mi through Xi only.

Remark 1.3.12. In the above proposition, if Xi = X for all i = 1, . . . , q, then

ū
(
mi|y(n)

)
= AEtm−n

[
log
[
f
(
y(m−n)

∣∣y(n),X
)]∣∣y(n)

]
+ Etm−n

[
B
(
y(m−n)

)∣∣y(n)

]
,

where the expected value Etm−n (·) is taken with respect to the Student-t distribution

tm−n

(
X(m−n)β̂, S2

i W, n− k
)

.

We note from propositions 1.3.7 and 1.3.9 that the expected utility function

ū (mi|y) depends on the model mi through I(hi) =
∫

log
[
v

n−k
2
−1hi (v)

]
v

n−k
2
−1hj (v) dv,

which depends on the data only through the sample size n.

In general, the shape of the density (1.3.21) together with the fact that f (β|y, Mi)

and f (yn+1, . . . , ym|y, Mi) do not depend on the elliptical model hi, and f (β, φ|y, Mi) ∝

v
n
2
−1hi (v) and f (φ|y, Mi) ∝ u

n−ki
2

−1hi (u) with v = φ ‖y −Xβ‖2 and u = φ
∥∥∥y −Xβ̂

∥∥∥2

respectively, is not useful when selecting the most appropriate model after having ob-

served the data y.

The comparison of elliptical models for the errors using the marginal densities, in

linear models with prior distribution π (β, φ) ∝ φ−1, should be reexamined. On the

other hand, if we have chosen an elliptical model, that is to say hi is fixed, then the

comparison is centered in the design matrices, and the comparison could be carried

out satisfactorily using the IBF, the FBF or maximizing (1.3.20): in the case of the

IBF’s, the well-known results of Berger and Pericchi (1996b) could be used, and in

the case of the FBF’s convenient formulas can be obtained for many models.
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Concluding we present a Bayesian analysis of the elliptical linear model under

different prior specifications for the parameters. We show that when using squared-

radial distributions for φ with β⊥⊥φ|h(n) and π(β|h(n)) the posterior of β does not

depend on h(n). Hence, the inference on β is the same as the one obtained under nor-

mality. Only the posterior of φ depends on h(n), even under improper prior considered

here.

Moreover, the IBF to compare two elliptical linear models (with common design

matrix) does not work, because the predictive distributions are the same for the

models under comparison. On the other hand, even though the FBF depends on h(n),

it depends on the data only through the sample size. Similar results are obtained

when we adopt the perspective of decision analysis for model comparison. Other

alternative methods for nested hypotheses testing that must be explored are presented

by Bernardo (1999) and Pereira and Stern (1999), because these procedures involve

all parameters in the models being compared.

Thus, many results obtained under the normal model remain valid under depen-

dent elliptical models. In general, the results derived here for the dependent elliptical

models do not hold for poly-elliptical models.

In this chapter we specify a conditional distribution for Y|X,β, φ, h(n) and a prior

for (β, φ)|h(n), in such a way that Y⊥⊥h(n), considering h(n) as random (i.e., h(n) is

marginally ancillary). Thus, any procedure for model comparisons that is based on

the predictive distributions would be not useful to discriminating among different

density generators. Even if we introduce a prior for h(n), this would not be updated

under the hypotheses imposed in this chapter. On the other hand, it becomes clear

that Bayesian model comparisons should include not only the predictive distribution,
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but also all the model components.



Chapter 2

On the Existence of Measurement

Error

The problem of estimating parameters in the regression of a response variable Y on

an explanatory variable ξ from observations on (Y,X), where X is a measurement

of ξ, is a special case of what has historically been called errors-in-variables problem.

In many practical situations, measurement processes are subject to measurement

errors, in particular, while collecting information related to a phenomenon that could

be described through a regression model. In this case, the predictor variables would

become unknown parameters causing a decrease of the parsimony and a greater com-

plexity of the model.

The standard measurement error regression model with one explanatory variable

can be expressed by

Yi = α + βξi + εi, (2.0.1)

i = 1, . . . , n, where the ξi are unobservable, however they are related with observable

39
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variables Xi by the equation

Xi = ξi + ui, (2.0.2)

i = 1, . . . , n.

Letting Y = (Y1, . . . , Yn)t, X = (X1, . . . , Xn)t, ξ = (ξ1, · · · , ξn)t, ε = (ε1, · · · , εn)t

and u = (u1, · · · , un)t, model (2.0.1) and (2.0.2) can be represented in matricial form

as follows

Y = α + βξ + ε (2.0.3)

X = ξ + u.

As usual, it is assumed that(
εi

ui

)
iid∼ N2

[(
0

0

)
,

(
σ2

ε 0

0 σ2
u

)]
, i = 1, . . . , n.

Thus, for this model we have two groups of parameters: (α, β, σ2
ε , σ

2
u) called struc-

tural parameters and ξ = (ξ1, · · · , ξn)t called latent (or incidental) parameters. The

model (2.0.3) with fixed ξi is called functional model, and if we assume that due

to a sampling process the ξi are random, as for example ξi
iid∼ N (µ, τ 2), this model

is called structural. A complete and unified treatment which also discusses possible

applications is presented in Fuller (1987) and more recently in Cheng and Ness (1999).

The statistical treatment of this model is not easy, since the dimension of the

parametric space increases with the sample size. Notice that if in the functional

MEM, σ2
u = 0, then it becomes a normal simple linear regression model (NSLRM),

while in the structural MEM, it becomes a model with random effects (normal simple

linear regression model with random explanatory variables). Because simplifications

are obtained when σ2
u = 0, we would want to build procedures that allow to compare
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between the simplest model or the most complex, or equivalently to compare the

hypothesis H0 : σ2
u = 0 versus H1 : σ2

u > 0.

It is well known that the functional model as well as the structural model are

unidentifiable, therefore, from the classic point of view, unless additional assumptions

are made on the parameters, it is impossible to solve the proposed problem above.

This situation is widely discussed in the literature, please refer to e.g. Fuller (1987)

and Cheng and Ness (1999). From a Bayesian perspective, the problem of nuisance

parameters is solved marginalizing in the posterior distribution, and the exploratory

model comparison can be done by computing Bayes factors. To the best of our

knowledge, this problem has not been treated in the Bayesian literature.

The chapter is organized as follows. In Sections 2.1 we compute the BF to compare

the hypothesis H0 : σ2
u = 0 versus H1 : σ2

u > 0 under functional model and in Section

2.2, for structural model. Section 2.3 is devote to define computational strategies.

A version of Importance Sampling method is used to compute the BF presented in

Sections 2.1 and 2.2. In Section 2.4 the behavior of the method is evaluated through

simulations. Finally, we illustrate the obtained results with an application to real

data in the field of Agriculture.

2.1 Bayes Factor in the Functional MEM

In this section we consider the problem of comparing the hypotheses{
H0 : σ2

u = 0, α, β, σ2
ε

H1 : σ2
u > 0, α, β, σ2

ε , ξ
, (2.1.4)
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in the functional MEM, which is equivalent to compare the models M0 : NSLRM and

M1 : functional MEM, that is to compare,
M0 : Yi

indep.∼ N (α + βxi, σ
2
ε ) , i = 1, . . . , n

versus

M1 :

(
Yi

Xi

)
indep.∼ N2

((
α + βξi

ξi

)
,

(
σ2

ε 0

0 σ2
u

))
, i = 1, . . . , n,

where xi denote the observed value of Xi. Note that, under the M0 model, we obtain

xi = ξi.

Denote the likelihood functions by p (y,x|α, β, σ2
ε , ξ) = Nn (y|α, β, σ2

ε ) for M0

model and, p (y,x|α, β, σ2
ε , σ

2
u, ξ) = N2n (y,x|α, β, σ2

ε , σ
2
u, ξ) for M1 model, then the

BF is given by

BFM
01 =

∫
Nn (y|α, β, σ2

ε ) π (α, β, σ2
ε ) dαdβdσ2

ε∫
N2n (y,x|α, β, σ2

ε , σ
2
u, ξ) π (α, β, σ2

ε , σ
2
u, ξ) dαdβdσ2

ε dσ2
udξ

.

Observe that the dimension of the integral of the denominator is very high due

to the presence of the vector of latent parameters ξ. However, if we assume a prior

specification such that ξ⊥⊥ (α, β, σ2
ε , σ

2
u) and ξi

iid∼ N (µ, τ 2), with µ and τ 2 known, we

could integrate on the space of the parameters ξ to obtain a simpler shape of the BF.

With these assumptions, we obtain
(

Yi

Xi

)∣∣∣α, β, σ2
ε , σ

2
u are conditionally i.i.d. normal

distributed, with mean and variance given by

E

{(
Yi

Xi

)∣∣∣∣∣α, β, σ2
ε , σ

2
u

}
= E

{
E

[(
Yi

Xi

)∣∣∣∣∣α, β, σ2
ε , σ

2
u, ξ

]}
= E

{(
α + βξi

ξi

)}

=

(
α + βµ

µ

)
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and

V

{(
Yi

Xi

)∣∣∣∣∣α, β, σ2
ε , σ

2
u

}
= V

{
E

[(
Yi

Xi

)∣∣∣∣∣α, β, σ2
ε , σ

2
u, ξ

]}

+E

{
V

[(
Yi

Xi

)∣∣∣∣∣α, β, σ2
ε , σ

2
u, ξ

]}

= V

{(
α + βξi

ξi

)}
+ E

{(
σ2

ε 0

0 σ2
u

)}

=

(
β2τ 2 βτ 2

βτ 2 τ 2

)
+

(
σ2

ε 0

0 σ2
u

)

=

(
β2τ 2 + σ2

ε βτ 2

βτ 2 τ 2 + σ2
u

)
.

Therefore,

p
(
y,x|α, β, σ2

ε , σ
2
u

)
=

∫
p
(
y,x|α, β, σ2

ε , σ
2
u, ξ
)
π (ξ) dξ

= N2n

[(
y

x

)∣∣∣∣∣11n ⊗

(
α + βµ

µ

)
, In ⊗

(
β2τ 2 + σ2

ε βτ 2

βτ 2 τ 2 + σ2
u

)]
,

where ⊗ denote the Kronecker product of two matrixes. The p.d.f. of previous

distribution we will denote by N2n (y,x|α, β, σ2
ε , σ

2
u). Then, we obtain

BFM
01 =

∫
Nn (y|α, β, σ2

ε ) π (α, β, σ2
ε ) dαdβdσ2

ε∫
N2n (y,x|α, β, σ2

ε , σ
2
u) π (α, β, σ2

ε , σ
2
u) dαdβdσ2

ε dσ2
u

. (2.1.5)

As we can see, the formula (2.1.5) is friendlier since the dimension of the integral

of the denominator does not depend of n. These integrals are not easy to calculate

even if we consider standard prior distributions as Normal, Inverted-Gamma, etc.

The computational implementation will be discussed in Section 2.3. However, if we

assume the prior distribution

π
(
α, β, σ2

ε

)
= π

(
α, β

∣∣σ2
ε

)
π
(
σ2

ε

)
= N2

[(
α

β

)∣∣∣∣∣
(

a0

b0

)
, σ2

εB

]
× IGa

(
σ2

ε |aε, bε

)
,
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where B is a known 2 × 2 matrix, the integral of the numerator can be solved in a

closed form, since it is well known that

f
(
β, σ2

ε |y,X
)
∝ baε

ε (σ−2
ε )

n+2
2

+aε+1

Γ (aε) (2π)
n+2

2 |B|1/2
exp

{
− 1

2σ2
ε

(
β−β̂

)t

V
(
β−β̂

)}
× exp

{
− 1

2σ2
ε

[
yty + βt

0B
−1β0 − β̂

t
Vβ̂ + 2bε

]}
,

where β = (α, β)t, V = XtX + B−1, β0 = (a0, b0)
t, β̂ = V−1 (Xty + B−1β0) and

X =


1 x1

...
...

1 xn

 .

In this case,

f (y) =

∫
Nn

(
y|α, β, σ2

ε

)
π
(
α, β, σ2

ε

)
dαdβdσ2

ε =
(2bε)

aε Γ
(

n
2

+ aε

)
Γ (aε) πn/2bn/2+aε |B|1/2 |V|1/2

,

where b = yty + βt
0B

−1β0 − β̂
t
Vβ̂ + 2bε. Also, it can be show that the predictive

distribution is

f (y) = tn

(
y

∣∣∣∣ŷ,
r

2aε

Σ−1, 2aε

)
,

where ŷ = Σ−1XV−1B−1β0, Σ = In−XV−1Xt and r = βt
0 [B−1 −B−1V−1B−1]β0−

ŷtΣŷ + 2bε.

The denominator of equation (2.1.5) can be estimated using the procedure de-

scribed by Chib and Jeliazkov (2001).

2.2 Bayes Factor in the Structural MEM

In this section we consider the structural MEM, that is to say we assume that

(εi, ui, ξi)
t iid∼ N3

[
(0, 0, µ)t , diag (σ2

ε , σ
2
u, τ

2)
]
, where i = 1, . . . , n and diag (σ2

ε , σ
2
u, τ

2)
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is a diagonal matrix with the given elements on the diagonal. Here, µ and τ will be

also considered known.

Observe that under assumed prior distributions in both cases, functional and

structural, if σ2
u > 0 then the predictive distribution of observations are equals, mak-

ing the functional and structural MEM equivalent. However, if σ2
u = 0, the functional

MEM becomes a NSLRM, and the structural, in a NSLRM with random predictor

variables.

It is easy to see that when σ2
u > 0 the likelihood function for structural MEM is

defined by

M1 :

(
Yi

Xi

)
iid∼ N2

((
α + βµ

µ

)
,

(
β2τ 2 + σ2

ε βτ 2

βτ 2 τ 2 + σ2
u

))
, i = 1, . . . , n

and when σ2
u = 0, it is obtained the model with random effects, M0 : Yi = α+βXi+εi,

where Xi
iid∼ N (µ, τ 2), εi

iid∼ N (0, σ2
ε ) and i = 1, . . . , n. Then, the problem to compare

these two models is equivalent to compare (2.1.4).

In a similar way to the previous case, it can be proved that

BSM
01 =

∫
N2n (y,x|α, β, σ2

ε ) π (α, β, σ2
ε ) dαdβdσ2

ε∫
N2n (y,x|α, β, σ2

ε , σ
2
u) π (α, β, σ2

ε , σ
2
u) dαdβdσ2

ε dσ2
u

, (2.2.6)

where

N2n

(
y,x|α, β, σ2

ε

)
= N2n

[(
y

x

)∣∣∣∣∣11n ⊗

(
α + βµ

µ

)
, In ⊗

(
β2τ 2 + σ2

ε βτ 2

βτ 2 τ 2

)]
.

Notice that the denominator of (2.2.6) is equal to one of (2.1.5) due to the similarity,

among the functional and structural models, that we mentioned at the beginning. In

the next section we discuss implementation issues.
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Also, since

N2n

(
y,x|α, β, σ2

ε , µ, τ 2
)

= Nn

(
y|α, β, σ2

ε , µ, τ 2,x
)
·Nn

(
x|α, β, σ2

ε , µ, τ 2
)

= Nn

(
y|α, β, σ2

ε , µ, τ 2
)
·Nn

(
x|µ, τ 2

)
,

then

BSM
01 = Nn

(
x|µ, τ 2

)
BFM

01 , (2.2.7)

where Nn (x|µ, τ 2) is the p.d.f. of Nn (µ11n, τ
2In).

2.3 Computational Strategy

The integration methods Monte Carlo and Importance Sampling are less precise and

are more computational demanding than the quadrature methods, although in this

case are feasible to use because the complexity of the models hinders to use other

integration methods. Generally, in this type of computational methods is required of

evaluating of the likelihood function or the posterior density. Even, the dimensionality

of the integrals in the expressions (2.1.5) and (2.2.6) is high, computational evaluation

of the integrand is not complex because the covariance matrix has a friendly structure.

In fact, note that

N2n

(
y,x|α, β, σ2

ε , σ
2
u

)
= N2n

[(
y

x

)∣∣∣∣∣11n ⊗

(
α + βµ

µ

)
, In ⊗

(
β2τ 2 + σ2

ε βτ 2

βτ 2 τ 2 + σ2
u

)]

=
n∏

i=1

N2

[(
yi

xi

)∣∣∣∣∣
(

α + βµ

µ

)
,

(
β2τ 2 + σ2

ε βτ 2

βτ 2 τ 2 + σ2
u

)]

=
n∏

i=1

N2

(
yi, xi|α, β, σ2

ε , σ
2
u

)
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and

N2n

(
y,x|α, β, σ2

ε

)
=

n∏
i=1

N2

(
yi, xi|α, β, σ2

ε

)
=

n∏
i=1

N
(
xi|µ, τ 2

)
×

n∏
i=1

N
(
yi|α, β, σ2

ε

)
= Nn

(
x
∣∣µ11n, τ

2In

)
Nn

(
y|α, β, σ2

ε

)
.

Then, the three likelihoods involved in the comparison problem, can be written as a

product of likelihoods which are easy to evaluate numerically.

We note that from expressions (2.1.5) and (2.2.6), the dimension of the integral

of the numerator is one minus than that of the denominator. In these cases there are

specific variants to calculate the Bayes factor. A summary of some of these methods

can be found in Chen et al. (2000). We will use one of these methods which is a variant

of the Importance Sampling method. We choose this method because it requires only

the generation of one posterior distribution, the corresponding to the most complex

model.

2.3.1 Importance Sampling Extended to Hypotheses with

Different Dimensions

Now, we will explain the method that we will use to find estimators of the Bayes

factors of interest. For details about the method, see Chen et al. (2000).

Suppose that we want to test the hypotheses H0 : ω = ω0 versus H1 : ω 6= ω0

where θ = (ω,ψ) ∈ Θ = Ω×Ψ, π0 (ψ) is the prior p.d.f. for ψ under H0 and π (ω,ψ)

is the prior density to θ under H1. Observe that the Bayes factor to compare both

hypotheses is,

B01 =

∫
p0 (D|ψ) π0 (ψ) dψ∫

p1 (D|ω,ψ) π (ω,ψ) dωdψ
,

where D denotes the observed data. Now, if we find a p.d.f. g (ω|ψ), since
∫

g (ω|ψ) dω =
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1, then the previous Bayes factor can be expressed as

B01 =

∫
p0 (D|ψ) π0 (ψ) g (ω|ψ) dωdψ∫

p1 (D|ω,ψ) π (ω,ψ) dωdψ
=

∫ [
p0 (D|ψ) π0 (ψ) g (ω|ψ)∫
p1 (D|ω,ψ) π (ω,ψ) dωdψ

]
dωdψ

=

∫
p0 (D|ψ) π0 (ψ) g (ω|ψ)

p1 (D|ω,ψ) π (ω,ψ)

p1 (D|ω,ψ) π (ω,ψ)∫
p1 (D|ω,ψ) π (ω,ψ) dωdψ

dωdψ

=

∫
p0 (D|ψ) π0 (ψ) g (ω|ψ)

p1 (D|ω,ψ) π (ω,ψ)
p1 (ω,ψ|D) dωdψ

= E1

{
p0 (D|ψ) π0 (ψ) g (ω|ψ)

p1 (D|ω,ψ) π (ω,ψ)

}
,

where E1 (·) is the expected value with respect to p1 (ω,ψ|D).

Chen et al. (2000) show that an optimal selection of g (ω|ψ), in the sense of

minimizes the asymptotic relative mean-square error, is by taking

g (ω|ψ) = p1 (ω|ψ,D) =
p1 (D|ω,ψ) π (ω|ψ)∫
p1 (D|ω,ψ) π (ω|ψ) dω

=
p1 (D|ω,ψ)

π(ω,ψ)
π(ψ)∫

p1 (D|ω,ψ)
π(ω,ψ)
π(ψ)

dω
=

p1 (D|ω,ψ) π (ω,ψ)∫
p1 (D|ω,ψ) π (ω,ψ) dω

. (2.3.8)

In such case, the asymptotic relative mean-square error is defined by

ARE2
(
B̂01

)
= lim

n→∞
n

E
(
B̂01 −B01

)2

B2
01

. (2.3.9)

If we choose g as in (2.3.8), then

B01 = E1

{
p0 (D|ψ) π0 (ψ)

c (ψ)

}
, (2.3.10)

where c (ψ) =
∫

p1 (D|ω,ψ) π (ω,ψ) dω and therefore, a Monte Carlo estimator is

B̂01opt =
1

m

m∑
i=1

p0

(
D|ψ(i)

)
π0

(
ψ(i)

)
c
(
ψ(i)

) ,
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where
{(

ω(i),ψ(i)
)

, i = 1, · · · , m
}

is a random sample from p1 (ω,ψ|D). This method

is, in general, computational demanding, since for each term of the sum, it is necessary

to estimate c
(
ψ(i)

)
.

However, for our case, taken into account that (2.1.5) and (2.2.6) have the same

denominator, and if we assume σ2
u⊥⊥ (α, β, σ2

ε ) then, we obtain in both cases that

p1 (ω,ψ|D) = p1

(
α, β, σ2

ε , σ
2
u

∣∣y,x
)

(2.3.11)

=
p1 (y,x|α, β, σ2

ε , σ
2
u) π (α, β, σ2

ε , σ
2
u)∫

p1 (y,x|α, β, σ2
ε , σ

2
u) π (α, β, σ2

ε , σ
2
u) dαdβdσ2

ε dσ2
u

=
N2n (y,x|α, β, σ2

ε , σ
2
u) π (α, β, σ2

ε ) π (σ2
u)∫

N2n (y,x|α, β, σ2
ε , σ

2
u) π (α, β, σ2

ε ) π (σ2
u) dαdβdσ2

ε dσ2
u

,

g (ω|ψ) = p1 (ω|ψ,D) =
p1 (D|ω,ψ) π (ω,ψ)∫
p1 (D|ω,ψ) π (ω,ψ) dω

=
p1 (y,x|α, β, σ2

ε , σ
2
u) π (α, β, σ2

ε ) π (σ2
u)∫

p1 (y,x|α, β, σ2
ε , σ

2
u) π (α, β, σ2

ε ) π (σ2
u) dσ2

u

=
N2n (y,x|α, β, σ2

ε , σ
2
u) π (σ2

u)∫
N2n (y,x|α, β, σ2

ε , σ
2
u) π (σ2

u) dσ2
u

and

c (ψ) =

∫
p1 (D|ω,ψ) π (ω,ψ) dω

=

∫
N2n

(
y,x|α, β, σ2

ε , σ
2
u

)
π
(
α, β, σ2

ε

)
π
(
σ2

u

)
dσ2

u.

To calculate (2.1.5) we have

p0 (D|ψ) π0 (ψ) = Nn

(
y|α, β, σ2

ε

)
π
(
α, β, σ2

ε

)
and from (2.3.10),

BFM
01 = E1

{
Nn (y|α, β, σ2

ε )∫
N2n (y,x|α, β, σ2

ε , σ
2
u) π (σ2

u) dσ2
u

}
.
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Therefore, the corresponding Monte Carlo estimator is:

B̂FM
01opt =

1

m

m∑
i=1

Nn

(
y|α(i), β(i), σ

2(i)
ε

)
c
(
α(i), β(i), σ

2(i)
ε

) , (2.3.12)

where

c
(
α(i), β(i), σ2(i)

ε

)
=

1

rm

rm∑
j=1

N2n

(
y,x|α(i), β(i), σ2(i)

ε , σ2(j)
u

)
,{(

α(i), β(i), σ
2(i)
ε

)
, i = 1, · · · , m

}
is a random sample draws from the posterior distri-

bution (2.3.11) and
{

σ
2(j)
u , j = 1, · · · , rm

}
, from the prior distribution π (σ2

u).

From (2.2.7), the Monte Carlo estimator for (2.2.6) is given by

B̂SM
01opt = Nn

(
x|µ, τ 2

)
B̂FM

01opt =
1

m

m∑
i=1

N2n

(
y,x|α(i), β(i), σ

2(i)
ε

)
c
(
α(i), β(i), σ

2(i)
ε

) . (2.3.13)

These last results can be summarized in the following two propositions.

Proposition 2.3.1. An optimal estimator for the Bayes factor to compare a NSLRM

against a MEM, under prior conditions (α, β, σ2
ε )⊥⊥σ2

u⊥⊥ ξ and ξ ∼ Nn (µ11n, τ
2In) is

given by (2.3.12).

Proposition 2.3.2. An optimal estimator for the Bayes factor to compare a NSLRM

with normal random predictors against a MEM, under prior conditions (α, β, σ2
ε )⊥⊥σ2

u⊥⊥ ξ

and ξ ∼ Nn (µ11n, τ
2In) is given by (2.3.13).

Here, the optimality is focused in the minimization of the asymptotic relative

mean-square error, ARE2
(
B̂01

)
, given by (2.3.9).

2.4 Simulation Results

The behavior of estimators established in (2.3.12) and (2.3.13) will be illustrated

by using generated data from different MEM with prior distributions

(
α

β

)∣∣∣∣∣σ2
ε ∼
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N2

[(
a0

b0

)
, σ2

εB

]
, σ2

ε ∼ IGa (aε, bε), σ2
u ∼ IGa (au, bu) and ξ ∼ Nn (µ11n, τ

2In).

For functional and structural models, the sample
{(

α(i), β(i), σ
2(i)
ε , σ

2(i)
u

)}
, i =

1, · · · , m, were drawn from the posterior distribution using the Metropolis-Hastings

(M-H) algorithm (Metropolis et al. (1953) and Hastings (1970)) with initial values

β(0) =

∑n
j=1 yjxj − nȳx̄∑n
j=1 (xj − x̄)2 ,

α(0) = Ȳ − β(0)x̄,

σ2(0)
ε =

bε + 1
2

∑n
j=1

(
yj − α(0) − β(0)xj

)2
aε + n

2

,

σ2(0)
u =

bu + 1
2

∑n
j=1 (xj − x̄)2

au + n
2

and transition probability functions(
α(i+1)

β(i+1)

)
∼ N2

[(
α(i)

β(i)

)
, R
(
α(i), β(i),y,x

)( x̄2 + n−1
∑n

j=1 (xj − x̄)2 −x̄

−x̄ 1

)]
,

σ−2(i+1)
ε ∼ Ga

(
1, σ2(i)

ε

)
and

σ−2(i+1)
u ∼ Ga

(
1, σ2(i)

u

)
,

where R
(
α(i), β(i),y,x

)
=

∑n
j=1(yj−α(i)−β(i)xj)

2

(n−2)
∑n

j=1(xj−x̄)2
. To estimate the posterior distribu-

tion of the parameters, 2200 samples were generated. The initial 200 iterations were

discarded to assure stationarity and a lag of 10 was selected to avoid autocorrela-

tion. That means that a net sample size of 200 was used. The M-H algorithm was

programmed in MATLAB package, version 6.0.0.88.
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2.4.1 The Functional MEM

The data (yj, xj) , j = 1, . . . , 50 were drawn from the following models

Yj = 2.0 + 1.0ξj + εj

where the values ξj were 5 replicates of the values (-4, -3, -2, -1, 0, 1, 2, 3, 4, 5),

σu assumed values from 0.0 to 3.0 with step equal to 0.2 and σε = σu

10
, except when

σu = 0 where σε was equal to 0.1. Since σε < σu, there are measurement error, then

we hope that B01 < 1.

We consider the following prior specifications

(
α

β

)∣∣∣∣∣σ2
ε ∼ N2

[(
2

1

)
, 2σ2

ε I2

]
,

σ2
ε ∼ IGa (2, 0.1), σ2

u ∼ IGa (2, 1) and ξj
iid∼ N (µ, τ 2), where µ = 0, 3 and τ 2 =

1, 3, 5. Table A.1 of Appendix A exhibits the Bayes factors computed for different

combinations of µ and τ 2.

Figure 2.1 (the ordinates axis is multiplied by 1078) shows the obtained results

for µ = 0 and τ 2 = 3, in this case high values of BF are appreciated for σu ≤ 1.4

and values approximately equal to zero when σu ≥ 1.6, then for high values of σu

the BF favors to MEM model as we expected. Similarly, it happened when µ = 0

and τ 2 = 5, see Table A.1. For the other cases, where prior information is not in

agreement with the true values of ξj, the BF does not work well, see Table A.1. Since

the true values of ξj are replicates of the values (-4, -3, -2, -1, 0, 1, 2, 3, 4, 5). A nice

prior distribution for ξj would be an uniform.

These results show the high sensitivity of the BF with respect to prior distribution

of ξj. This could be stimulating to explore non-subjective Bayesian methods for model

comparison.
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σu

FB

Figure 2.1: Optimal Bayes factors for functional MEM with µ = 0 and τ 2 = 3.

2.4.2 The Structural MEM

The data (yj, xj) , j = 1, . . . , 50 were drawn from the following models

Yj = 2.0 + 1.0ξj + εj

where the values ξj were drawn from a normal distribution N (0, 9), σu assumed the

values from 0.0 to 3.0 with step equal to 0.2 and σε was selected according to the

ratio δ = σε

σu
, where δ took the values 0.1, 1 and 5; when σu = 0 then σε was equal to

0.1, 1 and 5, respectively.

We considered the prior distributions

(
α

β

)∣∣∣∣∣σ2
ε ∼ N2

[(
2

1

)
, 2σ2

ε I2

]
, σ2

ε ∼

IGa (2, 0.1) and σ2
u ∼ IGa (2, 1). Table A.2 of Appendix A shows the obtained Bayes

factors for different combinations of δ.



On the Existence of Measurement Error 54

σu

FB

Figure 2.2: Optimal Bayes factors for structural MEM with δ = 0.1.

Figures 2.2 to 2.4 show better the optimal Bayes factors values for each δ =

0.1, 1, 5, respectively. From these results we appreciate the importance of ratio δ for

testing the existence of measurement error, the results are only good when δ < 1,

that is to say, when the measurement error is more evident, σε < σu.

2.5 An Application

Now, we use the estimator (2.3.13) with real data to test the existence of measurement

errors in variables. The data were taken from Fuller (1987, Chapter 1) and consist

on areas under corn crop. Two different methods were digitized: aerial photography

and personal interview with the farm operator. We denoted the hectares of corn
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σu

FB

Figure 2.3: Optimal Bayes factors for structural MEM with δ = 1.

determined for an area segment by Yi for aerial photography and Xi, for personal

interview. An area segment is an area of the earth’s surface of approximately 250

hectares. Observations for a sample of 37 area segments are given in Table A.3 of

Appendix A.

For the data description we should hope Bayes factor indicates existence of mea-

surement error, and also, the model should be described by the equations,

Y = α + βξ + ε

X = ξ + u.

Since two different methods were used to measure the same object, we decide to take

a N2

[(
0

1

)
, 3σ2

ε I2

]
as prior distribution for

(
α

β

)∣∣∣∣∣σ2
ε and as prior distribution
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σu

FB

Figure 2.4: Optimal Bayes factors for structural MEM with δ = 5.

for the planted hectare sizes in each area segment we consider a normal distribution

centered in 250hect.
2

and with variance (32)2, that is to say ξ ∼ N37 (1251137, 1024I37).

The computations for the optimal Bayes factor were made under different Inverted-

Gamma prior distributions for σ2
ε and σ2

u given in Table 2.1.

The results are shown in Table 2.2, where Column 1 displays the three sets of

prior distributions considered in Table 2.1, Column 2 gives the optimal BF estimates

from (2.3.13) and Columns 3 to 6 show the posterior expected values of α, β, σ2
ε and

σ2
u, respectively.

To make the computation of the optimal Bayes factor, 301,000 samples from

the posterior distribution were generated with the M-H algorithm described in the

previous section. The initial 1000 iterations were discarded to assure stationarity and
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Table 2.1: Prior distributions for σ2
ε and σ2

u in the corn hectares example.
Set priors Prior distributions prior mean ± prior s.d.

I
σ2

ε ∼ IGa (2.25, 12.5)
σ2

u ∼ IGa (3, 40)
10± 20
20± 20

II
σ2

ε ∼ IGa (2.0001, 10.001)
σ2

u ∼ IGa (2.0004, 20.008)
10± 1000
20± 1000

III
σ2

ε ∼ IGa (2, 10)
σ2

u ∼ IGa (2, 20)
10±∞
20±∞

Table 2.2: Results for corn hectares data in structural MEM.
Set priors B̂01opt α̂ β̂ σ̂2

ε σ̂2
u

I 0.1903 -0.9980 1.0346 13.3654 20.7529
II 0.2904 -0.9331 1.0339 14.9646 19.3656
III 0.3521 -0.9639 1.0342 14.8065 19.4108

a lag of 10 was selected to avoid autocorrelation. That means that a net sample size

of 30,000 was used.

As we expected, the optimal Bayes factor, for these data and prior distributions

considered, always favored the presence of measurement errors. Also, the parameters

estimates are quite near to those obtained by Fuller (1987, Chapter 1).

2.6 Other Approaches

Because the BF is highly sensible with respect to the prior specification, several

authors have proposed objective Bayesian methods for model comparison, as for ex-

ample the Bayesian Information Criterion (BIC) by Schwarz (1978), the Fractional

Bayes Factors (FBF) by O’Hagan (1995), the Intrinsic Bayes Factors (IBF) by Berger

and Pericchi (1996a), the Bayesian Reference Criterion (BRC) by Bernardo (1999),

among others.

Suppose that we are comparing two models M0 : f0 (y |θ0 ) and M1 : f1 (y |θ1 )
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with non informative prior distribution πN
j (θj), j = 0, 1.

The BIC has the ”advantages” of simplicity and freedom from prior distributions.

It is given by

BIC
01 =

f0

(
y
∣∣∣θ̂0

)
f1

(
y
∣∣∣θ̂1

)n(d1−d0)/2, (2.6.14)

where the θ̂j is the maximum likelihood estimator (mle) of θj and dj = dim (θj).

But, obtaining of an unique mle under MEM requires of additional assumptions over

the model. One of these assumptions which will make the normal structural model

identifiable is to assume the ratio of the error variances δ = σε

σu
known. In this case

the mle’s are given by

β̂ =
syy − δ2sxx +

[
(syy − δ2sxx)

2
+ 4δ2s2

xy

] 1
2

2sxy

,

α̂ = ȳ − β̂x̄,

σ̂2
u =

syy − 2β̂sxy + β̂2sxx

δ2 + β̂2
,

σ̂2
ε = δ2σ̂2

u,

τ̂ 2 =
sxy

β̂

and

µ̂ = x̄,

where

sxx = n−1

n∑
i=1

(xi − x̄)2 ,

syy = n−1

n∑
i=1

(yi − ȳ)2
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and

sxy = n−1

n∑
i=1

(xi − x̄) (yi − ȳ) ,

see, for example, Zellner (1971, Chapter 5), Fuller (1987, Chapter 1) and Cheng and

Ness (1999, Chapter 1).

On the other hand, the mle’s under M0 model, that is NSLRM with normal ex-

planatory variables, are µ̂0 = x̄, τ̂ 2
0 = sxx, β̂0 = sxy

sxx
, α̂0 = ȳ− β̂0x̄ and σ̂2

ε,0 =
syysxx−s2

xy

sxx
.

The following proposition shows that in this case the BIC do not discriminate between

the models under comparison.

Proposition 2.6.1. The BIC to compare a NSLRM with normal explanatory vari-

ables versus a structural MEM with ratio of measurement variances known is equal

to one.

Proof. In this case the BIC (2.6.14) is given by

BIC
01,δ (y,x) =

N2n

(
y,x| α̂0, β̂0, σ̂

2
ε,0, µ̂0, τ̂

2
0

)
N2n

(
y,x| α̂, β̂, σ̂2

ε , σ̂
2
u, µ̂, τ̂ 2

) .

Thus, we have to prove

ln
(
BIC

01,δ (y,x)
)

= l
(
α̂0, β̂0, σ̂

2
ε,0, µ̂0, τ̂

2
0

)
− l
(
α̂, β̂, σ̂2

ε , σ̂
2
u, µ̂, τ̂ 2

)
= 0,

where l
(
α̂0, β̂0, σ̂

2
ε,0, µ̂0, τ̂

2
0

)
= ln

[
N2n

(
y,x| α̂0, β̂0, σ̂

2
ε,0, µ̂0, τ̂

2
0

)]
and l

(
α̂, β̂, σ̂2

ε , σ̂
2
u, µ̂, τ̂ 2

)
=

ln
[
N2n

(
y,x| α̂, β̂, σ̂2

ε , σ̂
2
u, µ̂, τ̂ 2

)]
.

For M0 model, the log-likelihood function evaluated in the corresponding mle’s is
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given by

l
(
α̂0, β̂0, σ̂

2
ε,0, µ̂0, τ̂

2
0

)
= −n ln (2π)− n

2
ln
(
τ̂ 2
0 σ̂2

ε,0

)
− 1

2σ̂2
ε,0

∥∥∥y − (α̂0 + β̂0µ̂0

)
11n

∥∥∥2

+
β̂0

σ̂2
ε,0

(
y −

(
α̂0 + β̂0µ̂0

)
11n

)t

(x− µ̂011n)

−
β̂2

0 τ̂
2
0 + σ̂2

ε,0

2τ̂ 2
0 σ̂2

ε,0

‖x− µ̂011n‖2

= −n ln (2π)− n

2
ln
(
τ̂ 2
0 σ̂2

ε,0

)
− nsyy

2σ̂2
ε,0

+
nβ̂0sxy

σ̂2
ε,0

−n

(
β̂2

0 σ̂
−2
ε,0 + τ̂−2

0

)
sxx

2

= −n

[
1 + ln (2π) +

1

2
ln
(
syysxx − s2

xy

)]
.

For M1 model, we are assuming δ = σε

σu
known. Thus, the log-likelihood function

evaluated in the corresponding mle’s is given by

l
(
α̂, β̂, σ̂2

u, µ̂, τ̂ 2
)

= −n ln (2π)− n

2
ln
(
D̂
)
− (τ̂ 2 + σ̂2

u)

2D̂

∥∥∥y − (α̂ + β̂µ̂
)

11n

∥∥∥2

+
β̂τ̂ 2

D̂

(
y −

(
α̂ + β̂µ̂

)
11n

)t

(x− µ̂11n)

− β̂2τ̂ 2 + δ2σ̂2
u

2D̂
‖x− µ̂11n‖2

= −n ln (2π)− n

2
ln
(
D̂
)
− n (τ̂ 2 + σ̂2

u) syy

2D̂
+

nβ̂τ̂ 2sxy

D̂

−
n
(
β̂2τ̂ 2 + δ2σ̂2

u

)
sxx

2D̂
,

where D̂ = σ̂2
u (τ̂ 2 + δ2τ̂ 2 + δ2σ̂2

u). Now, using the well known relationships

sxx = τ̂ 2 + σ̂2
u,

syy = β̂2τ̂ 2 + δ2σ̂2
u
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and

sxy = β̂τ̂ 2,

(see, for example, Zellner (1971, Chapter 5), Fuller (1987, Chapter 1) and Cheng and

Ness (1999, Chapter 1)), we obtain

l
(
α̂, β̂, σ̂2

u, µ̂, τ̂ 2
)

= −n ln (2π)− n

2
ln
(
syysxx − s2

xy

)
− sxxsyy

2
(
syysxx − s2

xy

)
+

s2
xy

syysxx − s2
xy

− sxxsyy

2
(
syysxx − s2

xy

)
= −n

[
1 + ln (2π) +

1

2
ln
(
syysxx − s2

xy

)]
,

and therefore, we conclude the proof.

The general strategy for computing IBF’s begins with the determination of a

proper and minimal training sample, which is a subset of the entire data y. Due to

there are a variety of training samples, we index them by l.

A training sample, y (l), is called proper if 0 < mj (y (l)) < ∞ for j = 0, 1, and

minimal if it is proper and no subset is proper, where mj (y) is the corresponding

marginal or predictive p.d.f.,

mj (y) =

∫
fj (y |θj ) πN

j (θj) dθj.

Since in training sample 0 < mj (y (l)) < ∞, then πj (θj|y (l)) ∝ fj (y (l) |θj ) πN
j (θj)

is proper. Now taking these posterior distributions as prior distributions we can use

the remaining data, y (−l), for model comparison and to compute a Bayes factor,

BP
01 (l) =

∫
f0 (y (−l) |θ0,y (l)) π0 (θ0|y (l)) dθ0∫
f1 (y (−l) |θ1,y (l)) π1 (θ1|y (l)) dθ1

.

BP
01 (l) is called Partial Bayes Factor (PBF). It is easy to prove that

BP
01 (l) = B01 (y) ·B10 (y (l)) ,
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where B10 (y (l)) = m1(y(l))
m0(y(l))

. Due to PBF depends on the arbitrary choice of the

training sample, to eliminate this dependence and to increase stability, Berger and

Pericchi (1996a) define the IBF’s averaging the BP
01 (l) over all possible training sam-

ples y (l), l = 1, . . . , L. Then, for each type of average there is an IBF, for exam-

ple, the arithmetic IBF is defined as BAI
01 (y) = B01(y)

L

∑L
l=1 B10 (y (l)), the geometric

IBF, as BGI
01 (y) = B01 (y) exp

{
L−1

∑L
l=1 ln B10 (y (l))

}
, and the median IBF, as

BMI
01 (y) = B01 (y) med [B10 (y (l))], where med denotes the median of a data set.

Berger and Pericchi (1996a) defined others alternative strategies for model compari-

son, such as the expected IBF, intrinsic prior distributions and encompassing IBF.

In our case, measurement error model, the computation of B01 was computation-

ally demanding, so to compute the IBF’s could be worse. The use of intrinsic prior

distributions requires of a nice asymptotic behavior of the mle’s, but the mle’s of the

MEM they do not satisfy those limiting properties, unless we make additional sup-

positions on the parameters of the MEM. For example, if we assume δ = σε

σu
known

we obtain consistent mle’s, but it yields to that the models we are comparing are

no longer nested. In this case, the encompassing IBF could be used, but this would

bring other additional complications, see for example O’Hagan (1997).

The FBF, with training fraction b ∈ (0, 1), is defined by

BF
01 (y) =

q0 (y,b)

q1 (y,b)
,

where

qj (y,b) =

∫
fj (y |θj ) πN

j (θj) dθj∫
[fj (y |θj )]b πN

j (θj) dθj

.

O’Hagan (1995) proposed different choices for b, for example, b = m0/n, b = n−1 max {m0,
√

n}

and b = n−1 max {m0, ln (n)}, where m0 is the minimal training sample size. Also, it
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is easy to show that the BF
01 is given by

BF
01 (y) = B01 (y)

∫
[f1 (y |θ1 )]b πN

1 (θ1) dθ1∫
[f0 (y |θ0 )]b πN

0 (θ0) dθ0

,

and B01 can be computed for MEM from Propositions 2.3.1 and 2.3.2. Here, difficulty

resides in calculating the quotient of the previous expression, although this seems to

be simpler than to calculate the IBF’s.

The BRC was developed by Bernardo (1999). He combines decision theory,

Kullback-Leibler information and reference analysis to propose a non-subjective Bayesian

approach to nested hypotheses testing. BRC is a very nice models selection tool, how-

ever, it can be very difficult to carry out, for example in MEM it could be complicated

to find the reference priors.

Other nested model comparison procedure is the following. For a posterior density,

f1 (θ |y ) and for some 0 < p < 1, a highest posterior density (HPD) credible set for

θ is defined to be the event Rp (y), which is the smallest region such that∫
Rp(y)

f1 (θ |y ) dθ = p.

Intuitively, for large p, Rp (y) contains those values of θ which are most plausible

given the model M1 and the data y. Then, given a specified p and derived Rp (y), we

are going to assert that the true value of θ lies in Rp (y).

Defining the decision problem of the choice of p in [0, 1], with the state of the

world defined to be the true θ, we have to choose a value of p. An appropriate utility

function may be

u (p,θ) = h (p) I{Rp(y)} (θ) + g (1− p) I{Rc
p(y)} (θ) ,

where Rc
p (y) = Θ\Rp (y), and h and g are decreasing functions defined on [0, 1].
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Then the expected utility of choosing p is given by

u (p) = ph (p) + (1− p) g (1− p) ,

from which the optimal p may be derived for any specific choices of h and g. Here,

the problem resides in being able to calculate the posterior distributions or obtain

samples of them. So, this method is not too difficult.

In the next chapter, more specifically, in Section 3.3 we present another approach.

Essentially, it consists on choosing the model with smaller posterior variance with

respect to some parameter of interest.



Chapter 3

Influential Observations in

Functional Measurement Error

Model

In this chapter we propose measures to determine the influence of a given subset of

observations on the posterior distribution of the structural parameters in a functional

MEM. This topic was treated by Wellman and Gunst (1991) and Abdullah (1995)

from classical point of view and by Arellano-Valle et al. (2000) for elliptical linear

regression models. The model that we analyze in this chapter is the normal sim-

ple linear regression model with additive measurement error in variables. Thus, we

consider the model given by

Yi = α + βξi + εi, (3.0.1)

Xi = ξi + ui,

i = 1, . . . , n, where as in Chapter 2, (Yi, Xi) are observed quantities, ξi are unobserved

quantities, εi
iid∼ N (0, σ2

ε ), ui
iid∼ N (0, σ2

u) and ε⊥⊥u, where ε = (ε1, · · · , εn)t and

65
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u = (u1, · · · , un)t.

For this model there are two kinds of parameters: (α, β, σ2
ε , σ

2
u) called structural

parameters and ξ = (ξ1, · · · , ξn)t called latent (nuisance or incidental) parameters.

Assuming as prior distribution ξ ∼ Nn (µ 11n, τ
2In) with µ and τ known, and ξ

independent of ε and u, then, integrating out ξ, the likelihood of this model can be

specified by

N2n

(
y,x|α, β, σ2

ε , σ
2
u

)
= N2n

[(
y

x

)∣∣∣∣∣11n ⊗

(
α + βµ

µ

)
, In ⊗

(
β2τ 2 + σ2

ε βτ 2

βτ 2 τ 2 + σ2
u

)]

=
n∏

i=1

N2

[(
yi

xi

)∣∣∣∣∣
(

α + βµ

µ

)
,

(
β2τ 2 + σ2

ε βτ 2

βτ 2 τ 2 + σ2
u

)]
.

Let I be any subset with k elements of the set {1, . . . , n}, and as usual, when

a subset I has been deleted from the data, then (yI ,xI) and
(
y(I),x(I)

)
are the

corresponding eliminated and remaining data.

In Section 3.1 we present the perturbation function and highlight its utility. In

Section 3.2 we use the perturbation function together with the BF to calculate in-

fluence measures based on q-divergence. The perturbation function also is used in

Section 3.3, where we show a proposition that allow us to compute some influence

measures based on posterior Bayes risk under quadratic loss function using only a

sample from the unperturbed posterior distribution. Finally, we apply these results

to data from concrete compressive strengths.

3.1 The Perturbation Function

The perturbation functions were introduced by Kass et al. (1989), and Weiss (1996),

generalizes the problem of assessment of the influence of model assumptions on a
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posterior distribution f (θ |y, M0 ) in a general context, using a perturbation function.

The perturbation function is defined by

h (θ) =
f (θ |y, M1 )

f (θ |y, M0 )
,

where f (θ |y, M1 ) is the perturbed posterior distribution with respect to the posterior

distribution f (θ |y, M0 ).

We note that,

h (θ) =
f (y,θ |M1 )

f (y |M1 )
· f (y |M0 )

f (y,θ |M0 )
= h∗ (θ) B01,

where B01 is the Bayes factor to compare the models M0 and M1, and h∗ (θ) =

f (y,θ |M1 ) /f (y,θ |M0 ) . The next example shows that a suitable choice of h∗ (θ)

can be used to assess the influence of model assumptions.

Example 3.1.1. Let y = (y1, . . . , yn) be conditionally independent observations from

a regression model with p.d.f.

f (y |θ,X) =
n∏

i=1

f (yi |θ,xi ) ,

where xi is the corresponding vector of predictors for the observation yi and X =

(x1, . . . ,xn)t is the design matrix. The perturbation function corresponding to deletion

case is such that

h (θ) ∝ h∗ (θ) =
f
(
y(I)

∣∣θ,X(I)

)
π (θ)

f (y |θ,X) π (θ)
= [f (yI |θ,XI )]−1 ,

where XI is the formed matrix by the vectors of predictors corresponding to the ex-

cluded observations yI . Similarly, for prior perturbations we obtain h (θ) ∝ π1 (θ) /π (θ) ,

where π1 (θ) is an alternative prior distribution; and for likelihood perturbations,

h (θ) ∝ f1 (y |θ,X) /f (y |θ,X) , where f1 (y |θ,X) is an alternative likelihood func-

tion for θ.
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On the other hand, we notice that

B01 =
f (y |M0 )

f (y |M1 )
=

f (y |M0 )∫
f (y,θ |X, M1 ) dθ

=
f (y |M0 )∫

h∗ (θ) f (y,θ |X, M0 ) dθ

=

[∫
h∗ (θ)

f (y |θ,X, M0 ) π (θ |M0 )

f (y |M0 )
dθ

]−1

= E−1 [h∗ (θ) |y ] , (3.1.2)

where the expected value is with respect to the posterior distribution obtained from

the unperturbed model (see, Weiss (1996)).

Equation (3.1.2) expresses the BF in function of the perturbation h∗ ( θ), and also

implies that E [h (θ) |y ] = 1. Moreover, a valuable advantage of formula (3.1.2) is

that it requires only a sample from the unperturbed posterior distribution that can be

obtained through MCMC methods, and then to apply Monte Carlo approximation.

Different methods to detect outliers, based on (3.1.2), can be found in Pettit (1992)

and Weiss (1996).

For our case, that is under the model (3.0.1), the perturbation function corre-

sponding to deletion case is given by

h
(
α, β, σ2

ε , σ
2
u

)
= B01h

∗ (α, β, σ2
ε , σ

2
u

)
=

[∏
i∈I N2 (yi, xi|α, β, σ2

ε , σ
2
u)
]−1

Eπ∗

[[∏
i∈I N2 (yi, xi|α, β, σ2

ε , σ
2
u)
]−1
∣∣∣y,x

] , (3.1.3)

where π∗ is given by equation (2.3.11).

Remark 3.1.2. If θ = (θ1,θ2), the perturbation function to obtain the influence on



Influential Observations in Functional Measurement Error Model 69

posterior distribution of θ1is given by

h (θ1) =
f1 (θ1|y)

f (θ1|y)
=

∫
f1 (θ|y) dθ2∫
f (θ|y) dθ2

=

∫
h (θ) f (θ|y) dθ2∫

f (θ|y) dθ2

=

∫
h (θ)

f (θ|y)∫
f (θ|y) dθ2

dθ2 =

∫
h (θ) f (θ2|θ1,y) dθ2

= B01

∫
h∗ (θ) f (θ2|θ1,y) dθ2,

but in the MEM given by (3.0.1), is hard to calculate f (θ2|θ1,y,x) and therefore,

h (θ1) too. Chib and Jeliazkov (2001) present a method for estimating f (θ∗2|θ∗1,y,x)

for an arbitrary θ∗ (from MCMC chains produced by the M-H algorithm), but for

estimation efficiency, the point θ∗ has to be taken with a high density under the

posterior distribution. For estimating h (θ1), we need many points like this, and in

this way, we would only achieve a poor estimate of h (θ1).

3.2 Influence Measures Based on q-divergence

Other appealing ways of quantifying influence is by computing divergence measures

between posteriors computed with and without a given subset of the data. That

is, measures that take into account the full distributions involved. The problem of

quantifying the effect of subsets of data using divergence measures has been considered

by several authors, following the approach proposed by Johnson and Geisser (1982).

Weiss and Cook (1992) provide a unified treatment, based on divergence measures,

to examine influence of model perturbations. These author define the q-divergence

measure between two densities π1 and π2 on θ by

dq (π1, π2) =

∫
q

[
π1 (θ)

π2 (θ)

]
π2 (θ) dθ, (3.2.4)
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where q is a convex function such that q (1) = 0. From (3.2.4) a wide class of

different divergence measures is obtained. For example, when q (z) = − log (z) the

Kullback-Leibler divergence follows, when q (z) = (z − 1) log (z), the J-distance (or

the symmetric version of Kullback-Leibler divergence), when q (z) = 1
2
|z − 1|, the

L1-divergence and χ2-divergence follows of take q (z) = (z − 1)2.

Thus, taking π1 (θ) = f
(
θ
∣∣y(I),x(I)

)
and π2 (θ) = f (θ |y,x), in (3.2.4) we have

that dq (I) = dq (π1, π2) can be interpreted as the q-influence of the data (yI ,xI) on

posterior distribution of θ, which can be written as

dq (I) =

∫
q

[
f
(
θ
∣∣y(I),x(I)

)
f (θ |y,x)

]
f (θ |y,x) dθ = E {q [h (θ)]|y,x} , (3.2.5)

where the expected value is taken with respect to the unperturbed posterior distri-

bution f (θ |y,x).

Notice that these measures provide an order relation on the set of all partitions

of subsets of {1, . . . , n}, according to their relative influence. In fact, by adopting

the approach developed by Girón et al. (1992), we can define a subset I1 as being

more q-influential than a subset I2 for the parameter θ if dq (I1) ≥ dq (I2). A similar

ordering can be introduced using the measures ME, MI and MR considered in the

next section.

The most commonly used q-influence measures are the J-influence and the L1-

influence measures. The later measure and χ2-influence has been recommended by

several authors (see, for example, Peng and Dey (1995) and Weiss (1996)) because

these are easier to interpret. However, it is difficult to obtain explicit expressions for

these influence measures, even in simple cases, but in order to estimate dq (I) we can

use the formula given by Weiss (1996).

For the model (3.0.1), through MCMC methods, we can obtain a sample θ(j) from
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the unperturbed posterior distribution f (θ |y,x), where θ = (α, β, σ2
ε , σ

2
u) and thus,

(3.2.5) can be estimated by the formula given by

d̂q (I) = m−1

m∑
j=1

q
[
B̂01h

∗
(
θ(j)
)]

,

where h∗ (θ) =
[∏

i∈I N2 (yi, xi|α, β, σ2
ε , σ

2
u)
]−1

and

B̂01 = m−1

m∑
j=1

h∗
(
θ(j)
)

.

Notice that d̂q (I) requires only a sample from the unperturbed posterior distribution

f (θ |y,x).

3.3 Measures Based on the Posterior Bayes Risk

Kempthorne (1986) defined different influence measures in a Bayesian decision the-

ory framework. In this context, the influence of a subset I of observations on the

decision problem is defined as its impact on the posterior Bayes risk. Consequently,

if A denotes the space of all actions and Θ the unknown states of the world, then

preferences among actions are determined by their risk:

r (π∗, a) = Eπ∗ [L (θ, a)] ,

that is, the expected loss with respect to the posterior distribution π∗ when we choose

the action a and θ is the true state of the world. In the context of parametric inference,

it may be of interest estimation, prediction, hypotheses testing, models selection, etc.,

as considered by Berger (1985), O’Hagan (1994) and Bernardo and Smith (1994). In

this section we consider the estimation problem following Kempthorne (1986). Thus,

we consider the loss function given by

L (θ, a) = (θ − a)t W (θ − a) = ‖θ − a‖2
W , (3.3.6)
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with W being a known symmetric, positive semi-definite matrix. The optimal action

is the Bayes action a∗ = Eπ∗ (θ) which gets the smallest posterior Bayes risk.

The influence measures, of a subset I of observations, on θ, can be measured in

three different ways,

M
E,θ (I) = r

(
π∗, a∗(I)

)
− r (π∗, a∗) ,

M
I,θ (I) = r

(
π∗(I), a

∗)− r
(
π∗(I), a

∗
(I)

)
and

M
R,θ (I) = r

(
π∗(I), a

∗
(I)

)
− r (π∗, a∗) ,

where π∗(I) denote the posterior distribution on θ when the subset I of observations

is excluded from the analysis and a∗(I) is the corresponding Bayes action.

The influence measure ME is the cost of excluding the subset I of observations

from the analysis in terms of the posterior Bayes risk. In this case it is considered that

all the data follow the same model since the risk it is taken with respect to the same

posterior distribution π∗ which is best characterization of the belief on θ given all the

data. Therefore, a subset of observations does not have influence if its exclusion of

the data does not increase the posterior Bayes risk. Also, note that because a∗ is the

Bayes action under π∗, then r
(
π∗, a∗(I)

)
≥ r (π∗, a∗) and the measure ME is always

non-negative. Assuming that all data follow the same model, to exclude a subset of

data from the analysis does not reduce the posterior Bayes risk.

The influence measure MI assumes that all data, except the subset I, follow

the same model. Thus, if we do not know anything about the true model of the

observations I, then the analysis of the decision problem is valid if the observations

I are excluded. Therefore, the posterior distribution π∗(I), is the to best characterizes
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the belief on θ. According to these suppositions, MI measures the increment of the

posterior Bayes risk when the subset I is incorrectly included in the data. Similar to

the previous measure, MI is non-negative since incorrectly including a the data I in

the analysis never reduces the posterior Bayes risk.

In the third influence measure we assume that all data follow the same model,

then π∗ and π∗(I) are valid and MR is the reduction of the posterior Bayes risk when

we increase the set of data adding the cases I. Including a subset of observations

I which are very different to the rest of the data of the analysis may reduce the

precision of the posterior distribution of θ and therefore, it produces an increment in

the posterior Bayes risk. Then, contrary to the two previous influence measures, MR

is not restricted to be non negative.

The next lemma gives general expressions for the three measures ME, MI and MR

that can be used for the numeric computation of these measures using samples from

the posterior distribution generated by some MCMC method.

Lemma 3.3.1. Under the quadratic loss function (3.3.6),

M
E,θ (I) = M

I,θ (I) =
∥∥a∗ − a∗(I)

∥∥2

W

and

M
R,θ (I) = tr

[
W
(
V∗

(I)−V∗)] ,
where V∗ = Vπ∗ (θ) and V∗

(I) = Vπ∗
(I)

(θ).

Proof. It is an immediate consequence of the well-known expression,

Eπ∗
[
(θ − a)t W (θ − a)

]
= tr (WV∗) + ‖a∗ − a‖2

W.

Remark 3.3.2. Let us notice that, if we are interested in selecting the model with bet-

ter θ estimate, then we should choose the model with the smaller Bayes risk, r (π∗, a).
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That is to say, if we are comparing two models M0 and M1 with posterior distributions

π∗0 and π∗1, respectively, then we should choose the model M1 if r (π∗0, a
∗
0)−r (π∗1, a

∗
1) >

0, where a∗j = Eπ∗j
(θ), j = 0, 1. Thus, under the quadratic loss function (3.3.6) and

from the previous lemma, we select the model M1 if tr [W (V∗
0−V∗

1)] > 0. Likewise,

if we are only interested in the estimate of one parameter θ1, then we select the model

M1 if Vπ∗0
(θ1) > Vπ∗1

(θ1).

Now we see these influence measures with respect to the posterior distribution of

the parameters of the model (3.0.1). The next proposition provides an expression

to ME and MI that only involves the expected value of the unperturbed posterior

distribution and the standardized perturbation function h.

Proposition 3.3.3. Under the quadratic loss function (3.3.6),

M
E,θ (I) = M

I,θ (I) = ‖Eπ∗ [(1− h (θ))θ |y,x ]‖2
W ,

where h (θ) is the perturbation function of π∗ (θ |y,x) to π∗(I)

(
θ
∣∣y(I),x(I)

)
.

Proof. From

a∗ − a∗(I) = Eπ∗ (θ |y,x)− Eπ∗
(I)

(
θ
∣∣y(I),x(I)

)
= Eπ∗ (θ |y,x)− Ehπ∗ (θ |y,x)

= Eπ∗ (θ − θh (θ) |y,x)

and the previous lemma, the result is obtained.

For our case, that is under the model (3.0.1), the function h (θ) is given by (3.1.3),

and π∗ by (2.3.11).
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3.4 An Application

The results established in the previous sections will now be illustrated by using mea-

sured compressive strength of concrete data. The data were taken from Wellman

and Gunst (1991) and consist of 41 pairs of observed (yi, xi) values (see Figure 3.1,

and Table A.4), where the yi and xi represent the measured compressive strength

of concrete taken after 28 days and 2 days of pouring, respectively. The measured

strengths of concrete differ from their respective true underlying values due to various

sources of measurement errors. Thus an appropriate model for the data is given by

(3.0.1). Wellman and Gunst (1991) and Abdullah (1995) used these data to evaluate

the performance of various diagnostic techniques in linear regression with errors in

variables, but from classical point of view.

The calculations were made numerically and using the M-H algorithm described

in Section 2.4 with prior distributions (α, β)t |σ2
ε ∼ N2

[
(2000, 1)t , (2002, 4) σ2

ε I2

]
,

σ2
ε ∼ IGa (3, 4× 105) , σ2

u ∼ IGa (3, 4× 105) and ξ ∼ N41 (30001141, 5002I41). 301,000

samples from the posterior distribution were generated, where the initial 1000 iter-

ations were discarded to assure stationarity and a lag of 10 was selected to avoid

autocorrelation. That means that a net sample size of 30,000 was used.

Figures A.1 to A.4 show the influence of one observation based on the influence

measures described in the previous sections. Looking at Figures A.1 to A.4, we

see that the most influential observations are 17, 21, 22 and 37 coinciding with the

observations analyzed by Wellman and Gunst (1991) and Abdullah (1995). The

observations 26 and 34 have a moderated influence.

Table 3.1 gives the influence measures for these observations, Columns 2 and 3

should be multiplied by 10−6 and 1010, respectively. The effect of each of these six
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Figure 3.1: Concrete compressive strengths, in pounds per square inch, at 2 and 28
days.

observations over all parameters of the MEM given by (3.0.1) is show in Columns

2 to 5. Due to Remark 3.1.2, the influence measures given in Sections 3.2 and 3.3,

over some particular parameter are hard to estimate using perturbation function.

However, it is not difficult to calculate Eπ∗ (θ |y,x) − Eπ∗
(I)

(
θ
∣∣y(I),x(I)

)
, so that,

Columns 6 to 9 give the differences between Bayes estimators for each parameter of

the MEM.

From Table 3.1 and Figures A.1 to A.4, we see that observation 21 have an strong

influence on model parameters. This is followed by observations 17 and 37. Columns

8 and 9 indicate that the effect of the sample 37 is over the estimation of σε and

σu. The effect of the observation 22 is bigger on σε. Summarizing, the observation
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Table 3.1: Influence measures for concrete compressive strength data under MEM in
deletion case.

i B̂01 M
E,θ (i) d̂L1 (i) d̂χ2 (i) α̂− α̂(i) β̂ − β̂(i) σ̂ε − σ̂ε(i) σ̂u − σ̂u(i)

17 0.0673 0.0585 0.1589 0.1908 -166.6826 0.0472 7.4454 -0.2708

21 0 0.6962 0.7753 155.3351 -1385.4 0.4796 40.9677 26.0708

22 0.0268 0.0016 0.071 0.0327 -121.9643 0.0394 -16.5134 11.4325

26 0.1093 0.0017 0.0684 0.0320 -99.6000 0.0302 -8.7644 -0.6540

34 0.1205 0.0138 0.0589 0.0214 129.9191 -0.0395 0.5022 8.3000

37 0.0893 0.01 0.0897 0.0555 232.7790 -0.0691 15.2408 14.3426

21 is the one that really has a great influence on the model. From this analysis, the

separate effect of these observations is clearly established.

This influence measures can be used for examining of posterior distributions from

different models. Then, we can use this influence measures for model comparison.

It is well know that for the linear regression model, y |β, σ2
ε ,X ∼ Nn (Xβ, σ2

ε In),

with prior distributions β |σ2
ε ∼ Nk [β0, σ

2
εB] and σ2

ε ∼ IGa (aε, bε), the posterior

distribution is

f
(
β, σ2

ε |y,X
)
∝ baε

ε (σ−2
ε )

n+k
2

+aε+1

Γ (aε) (2π)
n+k

2 |B|1/2
exp

{
− 1

2σ2
ε

(
β− β̂

)t

V
(
β− β̂

)}
× exp

{
− 1

2σ2
ε

[
yty + βt

0B
−1 β0 − β̂

t
Vβ̂ + 2bε

]}
, (3.4.7)

where V = XtX + B−1 and β̂ = V−1 (Xty + B−1β0). From this follows that

β |y,X ∼ tk

(
β̂,

b

n + 2aε

V−1, n + 2aε

)
(3.4.8)

and

σ2
ε |y,X ∼ IGa

(
n

2
+ aε,

b

2

)
, (3.4.9)

where b = yty + βt
0B

−1β0 − β̂
t
Vβ̂ + 2bε.

Table 3.2 displays fitted models using the complete data set and the 40 samples

excluding sample 21. To estimate (α, β) and σ2
ε we used, respectively, expected value
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Table 3.2: Comparison of linear regression model and MEM fits.
Complete data set Sample 21 deleted

α̂

β̂
σ̂ε

σ̂u

sd (α)
sd (β)
sd (σ2

ε )
sd (σ2

u)

Linear model MEM
2250.7 873.7
0.7894 1.2482

515.1397 397.5288
– 354.7970

463.6781 739.8793
0.1512 0.2436

5.9893× 104 7.3983× 104

– 4.8429× 104

Linear model MEM
3016.4 2259.1
0.5159 0.7686

397.6253 356.5611
– 328.7262

380.8376 598.4807
0.1257 0.1984

3.6145× 104 4.6123× 104

– 4.6115× 104

of β |y,X and σ2
ε |y,X under each models. sd (θ) denotes the posterior standard

deviation of θ .

From Table 3.2 we can see the strong effect that the estimates have with each

model. In both models we notice the great influence of the observation 21, but for

the MEM fit is greater than for the linear regression fit. The σu estimate suggests

the presence of measurement error. However, in both cases the complete data set

and the data set without sample 21, the standard deviation for each parameter in

the linear model was smaller than using MEM. Thus, from Remark 3.3.2, we should

choose the linear regression model to fit the data. For the complete data set, the

Bayes factor given by Proposition 2.3.2 was equal to 0.3817, while for the data set

with sample 21 deleted was equal to 2.3112. However, these values of B̂01opt are not

reliable because the simulation results of Section 2.4.2 were only good when σε < σu,

and due to σ̂ε and σ̂u values, we can assume that σε ≈ σu. Also, the compressive

strengths of concrete taken after 28 days and 2 days of pouring were taken with the

same measurement instrument, thus, this also makes us think that σε ≈ σu. We note

that the sample 21 has a great influence on B̂01opt.
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In short, from these data we can infer two important pieces of evidence: first, due

to the problem description (and not due to B̂01opt), there is measurement error, and

second, due to the influence measures, the sample 21 is an outlier. Therefore, we

would choose the estimates of Column 5 of Table 3.2. Although, we think that the

best fit is reached by the estimates of Column 4.



Chapter 4

Testing of Asymmetry in

Univariate Skew Elliptical Model

In many applications the assumption of the normal distribution is not appropriate and

more realistic models are needed. However, these more flexible models increase the

mathematical complexity. Computational technics can solve partially the problem,

even so, some mathematical calculation needs to be done if we want to obtain accurate

results. New models have been developed with the goal to preserve good properties

of the normal model and also to be more flexible to control the skewness and kurtosis

of the distribution. These general models include the normal case as a special one.

The model proposed by Azzalini (1985) has the above qualities. If f and g are

symmetric p.d.f.’s around zero and G is a continuous c.d.f. associate with g, then

2

σ
f

(
x− µ

σ

)
G

(
λ

x− µ

σ

)
(4.0.1)

is a p.d.f. for any λ ∈ R. Where µ ∈ R is the location parameter, σ > 0 is the scale

parameter and λ is a skewness parameter. When λ = 0 we obtain the symmetric

p.d.f., 1
σ
f
(

x−µ
σ

)
. Different choice of the functions f and G give us important special

80
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cases, for example, the skew-normal with p.d.f. given by 2
σ
φ
(

x−µ
σ

)
Φ
(
λx−µ

σ

)
and

denoted by SN(λ, µ, σ).

The elliptical models given by Kelker (1970) are other well known generalizations

of the normal model. Theses models have been studied, for example, Cambanis et al.

(1981), Fang et al. (1990) and Arellano-Valle (1994). The elliptical models include a

vast variety of important distributions (the Student-t distribution, double exponen-

tial, Pearson type II) and also have good properties (marginalization, conditionally

among others). These models are symmetric as the normal model, with different

kurtosis coefficient.

Extension for the normal model using the two above mentioned ideas, skewness

and heavy tails, have been studied by Branco and Dey (2001) and Genton and Lop-

erfido (2001). An interesting special case is the skew-t distribution with p.d.f. given

by 2
σ
t
(

x−µ
σ
|0, 1, ν

)
FT

(
λx−µ

σ

)
, where T ∼ t (0, 1, ν), µ is the location parameter, σ is

a scale parameter, ν the degree of freedom (control the heaviness of the tails) and λ

is the skewness parameter.

In this chapter we approach the problem of model comparison within skew-elliptical

families. In Section 4.1, we measure the sensitivity of the skewness parameter using

the L1-distance between the symmetric and asymmetric models. Computation of the

Bayes factor to examine asymmetry is presented in Section 4.2. Also, in Section 4.3

we present simulation results for the skew-normal and skew-t distributions obtaining

expected results. Application in stock markets are also considered.
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4.1 Sensitivity Analysis for the Skewness Param-

eter

In this section, we study the L1 distance between a symmetric and an asymmetric

models.

The model comparison here to seek by evidences from the data set to decide about

one of the models below

M0 : σ−1f

(
x− µ

σ

)
(4.1.2)

M1 : 2σ−1f

(
x− µ

σ

)
G

(
λ

x− µ

σ

)
.

Interesting questions are, how much different are M0 and M1? Is it possible to

obtain an expression as function of λ? In Figure 4.1, we plot the skew normal p.d.f.

for three different values of λ.

y

λ = −2 λ = 5

λ = 0

Figure 4.1: Skew-normal densities for λ = −2, λ = 0 and λ = 5.
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There are many ways to measure the distance between models. An interesting

measurement is the L1 distance, because it has a easy and nice interpretation (see,

for example, Peng and Dey (1995), Weiss (1996) and Arellano-Valle et al. (2000)).

The L1 distance between two densities f1 and f2 is

L1 (f1, f2) =
1

2

∫
|f1 (x)− f2 (x)| dx = sup

A∈B
|P (A |f1 )− P (A |f2 )| ,

where B are the Borel’s sets. The L1 distance is bounded and takes values in [0, 1],

where L1 (f1, f2) = 0 indicates that f1 (x) = f2 (x) for all x value. Also, L1 (f1, f2) is

an upper bound on the differences |P (A |f1 )− P (A |f2 )| for any set A, where P (· |f )

denote the probability measure defined by f . Generally, it is difficult to obtain explicit

expressions for the L1 distance, even in simple cases. However, for our case, the

following proposition provide an useful expression to compute and understand the

distance.

Proposition 4.1.1. For any µ and σ fixed, the L1 distance between M0 and M1,

specified in (4.1.2), is

L1(M0, M1) = Ef∗ [G (|λ|Z)]− 1

2
, (4.1.3)

where f ∗ (z) = 2f (z) I[0,+∞) (z) is the p.d.f. f truncated on zero.

Proof. By letting z = x−µ
σ

,

L1(M0, M1) =
1

2σ

∫
R

∣∣∣∣f (x− µ

σ

)
− 2f

(
x− µ

σ

)
G

(
λ

x− µ

σ

)∣∣∣∣ dx

= σ−1

∫
R

∣∣∣∣12 −G

(
λ

x− µ

σ

)∣∣∣∣ f (x− µ

σ

)
dx =

∫
R

∣∣∣∣12 −G (λz)

∣∣∣∣ f (z) dz

=

∫ 0

−∞

∣∣∣∣12 −G (λz)

∣∣∣∣ f (z) dz +

∫ ∞

0

∣∣∣∣12 −G (λz)

∣∣∣∣ f (z) dz.
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Now, by symmetry of g, we notice that if z > 0 and λ > 0 or if z < 0 and λ < 0, then

1

2
−G (λz) = −

∫ λz

0

g (u) du

and ∣∣∣∣12 −G (λz)

∣∣∣∣ =

∫ λz

0

g (u) du.

On the other hand, if z < 0 and λ > 0 or if z > 0 and λ < 0, then

1

2
−G (λz) =

∫ 0

λz

g (u) du =

∫ −λz

0

g (u) du > 0.

But since, f and g are symmetric,∫ 0

−∞

∫ −λz

0

g (u) duf (z) dz =

∫ ∞

0

∫ λz

0

g (u) duf (z) dz

and ∫ 0

−∞

∫ λz

0

g (u) duf (z) dz =

∫ ∞

0

∫ −λz

0

g (u) duf (z) dz,

then, if λ > 0 one gets

L1(M0, M1) =

∫ 0

−∞

∫ −λz

0

g (u) duf (z) dz +

∫ ∞

0

∫ λz

0

g (u) duf (z) dz

= 2

∫ ∞

0

∫ λz

0

g (u) duf (z) dz = Ef∗ [G (λZ)]− 1

2
,

and if λ < 0,

L1(M0, M1) =

∫ 0

−∞

∫ λz

0

g (u) duf (z) dz +

∫ ∞

0

∫ −λz

0

g (u) duf (z) dz

= 2

∫ ∞

0

∫ −λz

0

g (u) duf (z) dz = Ef∗

[
1

2
−G (λZ)

]
= Ef∗ [G (|λ|Z)]− 1

2
.

Note that L1 (M0, M1) = L1 (λ) does not depend on µ and σ.
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Corollary 4.1.2. If L1 is as in (4.1.3), then

max
λ

L1 (λ) =
1

2
.

Proof. Since G is a c.d.f., follows that G (|λ| z) → 1 when |λ| → ∞. On the other

side, Ef∗ [G (|λ|Z)] exist because 0 < G (x) < 1 for all x ∈ R. Therefore

lim
|λ|→∞

Ef∗ [G (|λ|Z)] = Ef∗

[
lim
|λ|→∞

G (|λ|Z)

]
= 1.

The next examples will show us some special cases, where the L1 distance can be

obtained in a close way. For these examples we will assume, without loss of generality,

µ = 0 and σ = 1.

Example 4.1.3. (Uniform)

Let f (x) = 1
2
I[−1,1] (x) and G (x) = x+1

2
I[−1,1] (x) + I(1,+∞) (x), the p.d.f. and

c.d.f. of the uniform distribution U[−1,1], respectively. Then, f ∗ (x) = I[0,1] (x), and

for λ > 0,

G (λx) =
λx + 1

2
I[−1,1] (λx) + I(1,+∞) (λx)

=
λx + 1

2
I[− 1

λ
, 1
λ ] (x) + I( 1

λ
,+∞) (x) .

Now, if λ > 1, then

L1 (λ) = Ef∗ [G (λX)]− 1

2
=

∫ 1
λ

0

λx + 1

2
dx +

∫ 1

1
λ

dx− 1

2
=

1

2
− 1

4λ
,

and, If 0 < λ < 1, then

L1 (λ) = Ef∗ [G (λX)]− 1

2
=

∫ 1

0

λx + 1

2
dx− 1

2
=

λ

4
.
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Therefore

L1 (λ) =

{
1
2
− 1

4|λ| if |λ| > 1
|λ|
4

if |λ| ≤ 1
.

Solid line in Figure 4.2 shows this function.

Example 4.1.4. (Double Exponential)

Let f (x) = 1
2
e−|x|IR (x) and G (x) = ex

2
I(−∞,0) (x)+

(
1− e−x

2

)
I[0,+∞) (x), the p.d.f.

and c.d.f. of the double exponential, respectively. Then, f ∗ (x) = e−xI[0,+∞) (x) and,

for λ > 0 and x > 0 it follows that

G (λx) = 1− 1

2
e−λx,

so that

L1 (λ) = Ef∗ [G (|λ|X)]− 1

2
=

∫ ∞

0

(
1− 1

2
e−|λ|x

)
e−xdx− 1

2
=

|λ|
2 (|λ|+ 1)

.

Dashed line in Figure 4.2 shows this function.

Example 4.1.5. (Normal)

The L1 distance for the normal and skew-normal distributions is

L1(λ) = Ef∗ [Φ (|λ|X)]− 1

2
=

1

π

∫ ∞

0

∫ |λ|x

−∞
e−

1
2(t2+x2)dtdx− 1

2

=
1

π

∫ ∞

0

∫ 0

−∞
e−

1
2 [(y+|λ|x)2+x2]dydx− 1

2

=
1

π

∫ 0

−∞

∫ 0

−∞
exp

{
−1

2

[(
1 + |λ|2

)
x2 − 2 |λ|xy + y2

]}
dydx− 1

2

= 2FU (0, 0)− 1

2
= 2

[
1

2
− 1

2π
arccos

(
|λ|√

1 + λ2

)]
− 1

2

=
1

2
− 1

π
arccos

(
|λ|√

1 + λ2

)
,
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λ

L1(λ)

Figure 4.2: L1-distance: solid line for the uniform and skew-uniform densities, and
dashed line for double exponential and skew-double-exponential densities.

where U ∼ N2 (0,Σ) with Σ =

(
1 |λ|
|λ| 1 + λ2

)
. Thus,

L1(λ) =
1

2
− 1

π
arccos

(
|λ|√

1 + λ2

)
.

However, in more general cases, numerical methods are necessary to calculate the

L1 distance, as an example, the skew-t model.

Figure 4.3 present values of L1(λ) for two groups of models: the solid line shows

the distance between N(0, 1) and SN(λ, 0, 1) densities. The circles line, the distance

between the Student-t distribution and the skew-t model. In this case, we calculated

L1(λ) using the S-PLUS integration function, this function which implements adaptive

15-point Gauss-Kronrod quadrature based on the Fortran function dqage and dqagie
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from QUADPACK (Piessens et al. (1983)) in NETLIB (Dongarra and Grosse (1987)).

λ

L1(λ)

Figure 4.3: L1-distance: solid line for the normal and skew-normal densities, and
circles line for Cauchy and skew-Cauchy densities.

An important way to measure the sensitivity of the λ parameter is considering

the effect on the posterior distribution for the parameters (µ, σ). With this objective

we obtained the following results to compute the posterior distributions.

Proposition 4.1.6. Under the SN(λ, µ, σ) and the prior assumptions λ⊥⊥ (µ, σ),

µ|σ ∼ N
(
m, σ2

v

)
and σ−2 ∼ Ga (a, b), then:

1.

π (µ, σ|λ,x) =
rn+2a

√
v + n

2
n−1

2
+aΓ

(
n
2

+ a
)√

πFT

(
λ
√

n + 2ax−µ̂11n

r

)
1

(σ2)
n
2
+a+1

n∏
i=1

Φ

(
λ

xi − µ

σ

)
exp

{
− 1

2σ2

[
(n + v) (µ− µ̂)2 + r2

]}
,
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where µ̂ = nx̄+mv
n+v

, r2 = ns2 + nv
n+v

(m− x̄)2 + 2b, s2 = n−1
∑n

i=1 (xi − x̄)2 and

FT is the c.d.f. of the tn (0,Σ, n + 2a) with Σ = In + λ2

v+n
11n11t

n.

2.

π (µ|λ,x) =
rn+2a

√
v + nΓ

(
n+1

2
+ a
)

Γ
(

n
2

+ a
)√

πFT

(
λ
√

n + 2ax−µ̂11n

r

) FY

(
λ
√

n+2a+1√
r2+(n+v)(µ−µ̂)2

(x− µ11n)

)
[
r2 + (n + v) (µ− µ̂)2](n+1

2
+a)

and

3.

π (σ|λ,x) =
rn+2aσ−n−2a−1

2
n
2
+a−1Γ

(
n
2

+ a
)
FT

(√
n + 2aλx−µ̂11n

r

) exp

{
− r2

2σ2

}
FU

(
λ
x− µ̂11n

σ

)
,

where FY is the c.d.f. of the tn (0,In, n + 2a + 1) and FU is the c.d.f. of the

Nn (0,Σ).

Proof. See Appendix C.

From this proposition and (3.4.7)-(3.4.9) we have

π (µ, σ|λ,x) =

∏n
i=1 Φ

(
λxi−µ

σ

)
FT

(
λ
√

n + 2ax−µ̂11n

r

) × π (µ, σ|λ = 0,x) ,

π (µ|λ,x) =

FY

(
λ
√

n+2a+1√
r2+(n+v)(µ−µ̂)2

(x− µ11n)

)
FT

(
λ
√

n + 2ax−µ̂11n

r

) × π (µ|λ = 0,x)

and

π (σ|λ,x) =
FU

(
λx−µ̂11n

σ

)
FT

(√
n + 2aλx−µ̂11n

r

) × π (σ|λ = 0,x) .

The first term in the three previous equations can be seen as a factor of sensitivity.

Also, notice that for λ = 0 (normal model), µ|λ = 0,x ∼ t1

(
µ̂, r2

(n+v)(n+2a)
, n + 2a

)
and σ−2|λ = 0,x ∼Ga

(
n
2

+ a, r2

2

)
. From the previous proposition it is easy to calcu-

late π (µ|σ, λ,x) and π (σ|µ, λ,x), and these two conditional posterior distributions

are necessary in Gibbs Sampling algorithm.



Testing of Asymmetry in Univariate Skew Elliptical Model 90

On the other side, also we can calculate the L1 distance considering these posterior

distributions, for example, between π (σ|λ = 0,x) and π (σ|λ,x),

L1(λ) =
1

2

∫ ∞

0

|π (σ|λ = 0,x)− π (σ|λ,x)| dσ

=
rn+2a

2
n
2
+aΓ

(
n
2

+ a
) ∫ ∞

0

∣∣∣∣∣1− FU

(
λx−µ̂11n

σ

)
FT

(√
n + 2aλx−µ̂11n

r

)∣∣∣∣∣ exp
{
− r2

2σ2

}
σn+2a+1

dσ

=
1

2
E

∣∣∣∣∣∣1−
FU

(
λ
√

S (x− µ̂11n)
)

FT

(√
n + 2aλx−µ̂11n

r

)
∣∣∣∣∣∣
 ,

where S ∼ Ga
(

n
2

+ a, r2

2

)
. Also, the L1 distance between π (µ|λ = 0,x) and π (µ|λ,x)

is given by

L1(λ) =
1

2

∫ ∞

−∞
|π (µ|λ = 0,x)− π (µ|λ,x)| dµ

=
Γ
(

n+1
2

+ a
)
rn+2a

√
v + n

2
√

πΓ
(

n
2

+ a
)

∫ ∞

−∞

∣∣∣∣∣∣∣∣1−
FY

(
λ
√

n+2a+1√
r2+(n+v)(µ−µ̂)2

(x− µ11n)

)
FT

(√
n + 2aλx−µ̂11n

r

)
∣∣∣∣∣∣∣∣
[
r2 + (n + v) (µ− µ̂)2]−n+2a+1

2 dµ

=
1

2
E


∣∣∣∣∣∣∣∣1−

FY

(
λ
√

n+2a+1√
r2+(n+v)(M−µ̂)2

(x−M11n)

)
FT

(√
n + 2aλx−µ̂11n

r

)
∣∣∣∣∣∣∣∣
 ,

where M ∼ t1

(
µ̂, r2

(n+v)(n+2a)
, n + 2a

)
.

These last results depend on the factor of sensitivity and can be used to study the

influence of the skewness parameter over the posterior distribution of µ and σ. The

influence measures given in Chapter 3 and their calculus methods can be used.
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4.2 Bayes Factor

In this section we use the Bayes factor to do model comparison (see, for example, Kass

and Raftery (1995), Lavine and Schervish (1999) and Berger and Pericchi (2001)).

Liseo and Loperfido (2002) used the Bayes factor with prior reference to compare

normal versus skew normal models. Let x = (x1, . . . , xn) be the data set, it is comes

from i.i.d. random samples. Then, the Bayes factor to test the hypotheses given by

(4.1.2), in favor of the M0 (the symmetric model) is given as

BF =

∫
σ−n

[∏n
i=1 f

(
xi−µ

σ

)]
π (µ, σ) dµdσ

2n
∫

σ−n
[∏n

i=1 f
(

xi−µ
σ

)
G
(
λxi−µ

σ

)]
π (µ, σ, λ) dµdσdλ

, (4.2.4)

where π (·) is the prior distribution for the respective parameter. As we can note by

expression (4.2.4), a closed form to Bayes factor is not possible to obtain in a general

way. Also the numeric calculation is complex. However, when µ and σ are known,

the Bayes factor have a better expression

BFµ,σ =
1

2n
∫ [∏n

i=1 G
(
λxi−µ

σ

)]
π (λ) dλ

. (4.2.5)

The next proposition gives another expression for (4.2.5).

Proposition 4.2.1. The Bayes factor (4.2.5) is given by

BFµ,σ =

[
2nP

(
Z− λ

x− µ11n

σ
≤ 0

)]−1

,

where Z1, . . . , Zn
iid∼ G, λ ∼ π (λ) and Zi⊥⊥λ for all i = 1, . . . , n.

Proof. By noting that∫ [ n∏
i=1

G

(
λ

xi − µ

σ

)]
π (λ) dλ =

∫
P
(
Z ≤ λ

x− µ11n

σ

)
π (λ) dλ

=

∫
P
(

Z ≤ λ
x− µ11n

σ

∣∣∣∣λ) π (λ) dλ

= P
(
Z ≤ λ

x− µ11n

σ

)
.
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Corollary 4.2.2. If G is the standard normal c.d.f. and λ ∼ N (m, v2), then

BFµ,σ =

[
2nΦn

(
0

∣∣∣∣mx− µ11n

σ
, In + (v/σ)2 (x− µ11n) (x− µ11n)t

)]−1

.

Proof. It is enough to note that,

Z− λ
x− µ11n

σ
∼ Nn

[
m

x− µ11n

σ
, In + (v/σ)2 (x− µ11n) (x− µ11n)t

]
.

On practical point of view it is natural to consider the sign of the λ parameter

known, i.e., we know the direction of the skewness. In this case, the comparison

to be consider is an unilateral test for the parameter λ. In the next two proposi-

tions, we obtain expressions for the Bayes factor that can be helpful for numerical

implementation.

Proposition 4.2.3. Let x = (x1, . . . , xn) a random sample from (4.0.1), where G is

the standard normal c.d.f. , λ⊥⊥ (µ, σ), λ2 ∼ Ga (a, b) and P (λ > 0) = 1. Then the

Bayes factor (4.2.4) to compare the models specified by the hypotheses H0 : λ = 0 and

H1 : λ > 0 is given by

BF =

∫∞
0

∫
R σ−n

[∏n
i=1 f

(
xi−µ

σ

)]
π (µ, σ) dµdσ

2n
∫∞

0

∫
R σ−n

[∏n
i=1 f

(
xi−µ

σ

)]
FT

(
x1−µ

σ

√
a
b
, . . . , xn−µ

σ

√
a
b

)
π (µ, σ) dµdσ

,

where FT is the c.d.f. of the tn (0, In, 2a).

Proof. Notice that if λ2 ∼ Ga (a, b), then λ has probability density function f (λ |a, b) =
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2ba

Γ(a)
(λ2)

a− 1
2 exp (−bλ2). Thus,

∫ [ n∏
i=1

G

(
λ

xi − µ

σ

)]
π (λ) dλ =

2ba

(2π)
n
2 Γ (a)

∫ ∞

0

[
n∏

i=1

∫ λ
xi−µ

σ

−∞
exp

(
−t2i

2

)
dti

]
λ2a−1 exp

(
−bλ2

)
dλ

=
2ba

(2π)
n
2 Γ (a)

∫ ∞

0

∫
· · ·
∫ λ

xi−µ

σ

−∞
exp

(
−1

2

n∑
i=1

t2i

)
dti

λ2a−1 exp
(
−bλ2

)
dλ.

Making the change of variables ti = λyi, for all i = 1, . . . , n, and exchanging the

integration order, we obtain∫ [ n∏
i=1

G

(
λ

xi − µ

σ

)]
π (λ) dλ =

2ba

(2π)
n
2 Γ (a)

∫
· · ·
∫ xi−µ

σ

−∞∫ ∞

0

λ2a+n−1 exp

[
−

(
b +

1

2

n∑
i=1

y2
i

)
λ2

]
dλdyi.

Then, with the change of variables l = λ2, one obtains∫ [ n∏
i=1

G

(
λ

xi − µ

σ

)]
π (λ) dλ =

ba

(2π)
n
2 Γ (a)

∫
· · ·
∫ xi−µ

σ

−∞∫ ∞

0

la+n
2
−1 exp

[
−
(

b +
yty

2

)
l

]
dldyi

=
baΓ

(
a + n

2

)
2a+n

2

(2π)
n
2 Γ (a)

∫
· · ·
∫ xi−µ

σ

−∞

[
2b + yty

]−n+2a
2 dyi

=
b−

n
2 Γ
(
a + n

2

)
(2π)

n
2 Γ (a)

∫
· · ·
∫ xi−µ

σ

−∞

[
1 +

yty

2b

]−n+2a
2

dyi.

But making the change of variables yi = ti

√
b
a
, for all i = 1, . . . , n, we obtain

∫ [ n∏
i=1

G

(
λ

xi − µ

σ

)]
π (λ) dλ =

Γ
(
a + n

2

)
(2aπ)

n
2 Γ (a)

∫
· · ·
∫ xi−µ

σ

√
a
b

−∞

[
1 +

ttt

2a

]−n+2a
2

dti

= FT

(
x1 − µ

σ

√
a

b
, . . . ,

xn − µ

σ

√
a

b

)
.
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Then, the proposition result is immediate.

From Proposition 4.2.3, for µ and σ known,

BF =
1

2nFT

(
x1−µ

σ

√
a
b
, . . . , xn−µ

σ

√
a
b

) . (4.2.6)

Remark that to use the expression (4.2.5) and (4.2.6) is not necessary to determine

the p.d.f. σ−1f
(

xi−µ
σ

)
. The next result is obtained using similar argument.

Proposition 4.2.4. Let x = (x1, . . . , xn) a random sample from the p.d.f. (4.0.1),

where G is the standard normal c.d.f. , λ⊥⊥ (µ, σ), λ2 ∼ Ga (a, b) and P (λ < 0) = 1.

Then the Bayes factor (4.2.4) to compare the models defined by the hypotheses H0 :

λ = 0 and H1 : λ < 0 is given by

BF =

∫∞
0

∫
R σ−n

[∏n
i=1 f

(
xi−µ

σ

)]
π (µ, σ) dµdσ

2n
∫∞

0

∫
R σ−n

[∏n
i=1 f

(
xi−µ

σ

)]
FT

(
µ−x1

σ

√
a
b
, . . . , µ−xn

σ

√
a
b

)
π (µ, σ) dµdσ

,

where FT is the c.d.f. of the tn (0, In, 2a).

Proof. Notice that if λ2 ∼ Ga (a, b), then λ < 0 has probability density function

f (λ |a, b) = 2ba

Γ(a)
(λ2)

a− 1
2 exp (−bλ2). So that, making the change of variable l = −λ,

we obtain∫ [ n∏
i=1

G

(
λ

xi − µ

σ

)]
π (λ) dλ = −

∫ 0

∞

[
n∏

i=1

Φ

(
−l

xi − µ

σ

)]
f (−l |a, b) dl

=

∫ ∞

0

[
n∏

i=1

Φ

(
l
µ− xi

σ

)]
f (l |a, b) dl.

Then, it is enough to continue the proof of Proposition 4.2.3.

A general way to calculate (4.2.5), is using the Monte Carlo method. Note that if

we can generate a sample λ1, . . . , λm from π (λ), then the Monte Carlo estimator for

(4.2.5) is

B̂F µ,σ =
m∑m

j=1

[∏n
i=1 2G

(
λj

xi−µ
σ

)] ,
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where the variance of the estimator B̂F µ,σ depends on the prior variance of λ: prior

distributions less informative for λ give estimation with greater variance. However,

we can obtain a superior limit for the variance of
(
B̂F µ,σ

)−1

. It is well known if X

is a random variable in [0, 1] then V (X) ≤ 1
4
. Therefore,

V
[(

B̂F µ,σ

)−1
]

=
22n

m2

m∑
j=1

V

[
n∏

i=1

G

(
λj

xi − µ

σ

)]
≤ 22n

m2

m

4
=

22(n−1)

m
.

The superior limit above gives us an idea how big need to be m in order to control

the variability of the Monte Carlo estimation. However, this limit increases quickly

with n, that is to say, it gives us a very large limit value for moderate sample size.

4.2.1 Bayes Factor for Representable Skew Distributions

In the latter section we discussed the difficulties to obtain a general form for the Bayes

factor. Therefore, it is important to consider restrictions in the functions f and G to

make the calculations of (4.2.4) simpler and also to keep the class of the asymmetric

distributions general. Next, we consider a subclass of the elliptical distribution more

simple to work with.

Definition 4.2.5. Z|λ, µ, σ has a skew representable distribution under the c.d.f. H

if the p.d.f. can be written by

fZ|λ,µ,σ (z) =

∫ ∞

0

2

σ
√

ω
φ

(
z − µ

σ
√

ω

)
Φ

(
λ

z − µ

σ
√

ω

)
dH (ω) ,

where H is the c.d.f. of a random variable ω, which is non-negative and such that

ω⊥⊥ (λ, µ, σ).

An equivalent definition is given by: Z|λ, µ, σ is a skew representable if and only if

there is ω ∼ H and ω⊥⊥ (λ, µ, σ) such that Z|λ, µ, σ, ω ∼ SN (λ, µ, σ
√

ω). Properties

and examples can be found in Branco and Dey (2001).
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Proposition 4.2.6. Let x = (x1, . . . , xn) a random sample from a skew representable

distribution. If a priori µ|σ ∼ N
(
m, σ2

v

)
and σ−2 ∼ Ga (a, b), then the Bayes factor

(4.2.4) is given by

BF (x) =

∫
···
∫

r−n−2a [(η + v)
∏n

i=1 ωi]
− 1

2 dH (ω1) · · · dH (ωn)

2
n
2

∫
···
∫

r−n−2a [(η + v)
∏n

i=1 ωi]
− 1

2 g (ω) dH (ω1) · · · dH (ωn)
. (4.2.7)

where

g (ω) =

∫
FT

(
λ
√

n + 2a
x− µ̂11n

r
[D (ω)]−1

)
π (λ) dλ,

FT is the c.d.f. of a tn (0,Σ, n + 2a), µ̂ = η
η+v

(
∑n

i=1 νixi + vm), η =
∑n

i=1 ω−1
i ,

Σ = [D (ω)]−1 + λ2

v+η
[D (ω)]−1 11n11t

n [D (ω)]−1, D (ω) = diag (ω1, . . . , ωn), r2 = ηS2
ω +

ηv
η+v

(m−
∑n

i=1 νixi)
2

+ 2b, S2
ω =

∑n
i=1 νi

(
xi −

∑n
j=1 νjxj

)2

and νi = ωi

η
for each

i = 1, . . . , n.

Proof. See Appendix D.

In the special case where ω1 = ω2 = · · · = ωn = 1, the result of Proposition 4.2.6

agrees with Liseo and Loperfido (2002) result.

4.3 Simulation Results

In this section we perform a simulation study to describe the behavior of the Bayes

factor given by (4.2.5). In Subsection 4.3.1 we make use of the fact that the Student-t

distribution can be written as a mixture of normal distributions. In this case (4.2.6)

is given by {∫ ∞

0

n∏
i=1

[
2Φ

(
xi − µ

σ

√
ωa

b

)]
Ga (ω |a, a) dω

}−1

.

We calculate the previous integral using the MATLAB integration function (quad)

based on the recursive adaptive Simpson quadrature method.
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Table 4.1: Mean and variance for prior distributions in simulation study.
b E (λ) V (λ) a

b

0.1 2.8 2.15 10
1 0.89 0.21 1
5 0.4 0.04 0.2

4.3.1 Normal Versus Skew-Normal

For each value of λ, λ = 0, 0.1, . . . , 0.5, we generate 1000 independent data sets,

y1, . . . , yn, from p.d.f. 2φ (y) Φ (λy) with n = 10, 50, 100. Then, for each data set we

calculate (4.2.6) considering µ = 0, σ = 1 and λ2 ∼ Ga (1, b), where b = 0.1, 1, 5.

From λ2 ∼ Ga(a, b) the prior p.d.f. for λ is given by

f (λ |a, b) =
2ba

Γ (a)

(
λ2
)a− 1

2 exp
(
−bλ2

)
,

and the variance and mean are given, respectively, by

V (λ) =
a

b
−

Γ2
(
a + 1

2

)
bΓ2 (a)

,

E (λ) =
Γ
(
a + 1

2

)
√

bΓ (a)
if λ > 0

and

E (λ) = −
Γ
(
a + 1

2

)
√

bΓ (a)
if λ < 0.

Therefore, for the prior distributions that we use in the simulations, we obtain the

Table 4.1. Please note that the prior variance of λ is always smaller than a
b
. Thus, if

we want to have a big prior variance, then we have to consider a much bigger than b.

Therefore, in this case the prior mean will be big also. Similar results are obtained

for negatives values of λ using Proposition 4.2.4.

For each sample size (n) and λ value, the Bayes factor was calculated using 1000

simulated samples. We considered some strong pieces of evidence in favor of the
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Table 4.2: Simulation results with λ2 ∼ Ga (1, 0.1) and for different values of n and
λ.

n λ B̂F < 0.5 B̂F > 2 25th p. Median 75th p.
0 4.4 89.4 8.4193 28.4309 66.0642

0.1 5.1 86.9 6.9357 21.2874 52.7914
10 0.2 9.1 82.5 3.5738 13.9176 41.8535

0.3 14.0 72.3 1.6913 7.3060 24.1999
0.4 17.4 66.4 0.9266 5.4030 18.6577
0.5 24.3 58.9 0.5541 3.5752 12.0782
0 0.5 98.4 60.5811 158.1004 319.9009

0.1 1.7 95.2 21.4082 67.7103 169.2791
50 0.2 4.9 87.7 6.2691 26.0408 77.3927

0.3 12.4 72.4 1.6805 8.4769 38.5235
0.4 27.4 55.3 0.3907 2.8809 12.9466
0.5 47.1 33.3 0.0636 0.6080 3.7100
0 0.2 99.3 121.7138 310.8615 643.1082

0.1 2.3 95.2 27.9092 103.7148 261.5884
100 0.2 10.6 79.7 2.9946 17.4966 74.9616

0.3 25.8 56.9 0.4623 3.3920 18.7598
0.4 55.5 26.8 0.0282 0.3287 2.3751
0.5 81.9 9.1 0.0016 0.0240 0.2455

asymmetric model if B̂F < 0.5, and in favor of the symmetric model if B̂F > 2.

Tables 4.2 to 4.4 display, in Column 3 and 4, the percentage of the samples that

presented evidence in favor of the asymmetric and symmetric models, respectively;

from Column 5 to 7, the 25th percentile, median and 75th percentile of the Bayes

factor values, respectively.

Tables 4.2 to 4.4 show very good results. Note that for each sample size the

B̂F decreases when the value of λ increases, and for λ = 0 tend to be quite big.

This desired behavior is appreciated better for higher sample sizes. In general, the

calculated Bayes factors show correct evidence when λ = 0 and when λ ≥ 0.4, and

while the sample size increases, this evidence improves. For λ ≥ 1, the Bayes factor
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Table 4.3: Simulation results with λ2 ∼ Ga (1, 1) and for different values of n and λ.

n λ B̂F < 0.5 B̂F > 2 25th p. Median 75th p.
0 10.4 68.5 1.4078 3.7729 7.8112

0.1 12.4 63.3 1.2134 2.9230 6.3771
10 0.2 17.9 50.6 0.7471 2.0380 5.1615

0.3 28.1 37.5 0.4165 1.2357 3.2828
0.4 34.9 31.5 0.2951 0.9964 2.6781
0.5 42.4 23.8 0.2186 0.7602 1.8649
0 2.1 91.5 6.9877 17.8707 36.4650

0.1 8.7 76.6 2.2403 7.7218 19.0447
50 0.2 20.1 57.3 0.7349 2.8510 8.3711

0.3 38.5 36.8 0.2347 1.0252 3.6563
0.4 59.6 20.1 0.0514 0.2602 1.3642
0.5 73.6 8.6 0.0130 0.1075 0.5436
0 1.1 96.5 13.2021 34.0111 76.7385

0.1 7.2 81.6 3.1714 9.8879 25.5317
100 0.2 24.9 54.3 0.5055 2.5016 9.1792

0.3 53.5 27.1 0.0539 0.3897 2.3266
0.4 80.4 7.6 0.0045 0.0465 0.3220
0.5 93.8 2 0.0002 0.0035 0.0342
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Table 4.4: Simulation results with λ2 ∼ Ga (1, 5) and for different values of n and λ.

n λ B̂F < 0.5 B̂F > 2 25th p. Median 75th p.
0 11.8 38.0 0.8493 1.5772 2.5897

0.1 13.8 30.0 0.7558 1.3369 2.2663
10 0.2 20.5 23.7 0.5797 1.0459 1.9641

0.3 33.2 12.5 0.4136 0.7660 1.4244
0.4 38.4 10.0 0.3463 0.6743 1.2524
0.5 42.9 5.1 0.2952 0.5855 1.0312
0 7.2 73.0 1.8322 4.1703 7.7046

0.1 16.7 50.3 0.7710 2.0095 4.3708
50 0.2 35.1 27.7 0.2951 0.9229 2.2482

0.3 56.5 14.9 0.1107 0.3736 1.2628
0.4 73.9 6.7 0.0359 0.1637 0.5405
0.5 87.7 1.5 0.0110 0.0523 0.2118
0 4.3 83.0 3.0349 7.2055 14.2496

0.1 17.7 57.4 0.8089 2.6087 6.1743
100 0.2 48.6 24.6 0.1147 0.5354 1.9529

0.3 72.4 7.0 0.0232 0.1234 0.5619
0.4 92.0 0.9 0.0023 0.0176 0.0937
0.5 98.4 0.0 0.0002 0.0019 0.0136
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Table 4.5: Simulation results with ν = 1 and for different values of n and λ.
n λ B̂F < 0.5 B̂F > 2 25th p. Median 75th p.

0 11.7 71.7 1.5312 6.0873 24.8469
0.1 26.0 48.0 0.4909 1.7623 5.1188

10 0.2 36.1 31.2 0.2949 0.8545 2.6339
0.3 42.7 23.2 0.2176 0.6198 1.7899
0.4 54.1 14.9 0.1393 0.4391 1.0920
0.5 60.8 14.5 0.1032 0.3198 0.9775
0 1.4 95.6 29.7884 133.4624 594.1999

0.1 29.4 49.9 0.3438 1.9686 8.9924
50 0.2 59.6 21.4 0.0316 0.2662 1.4956

0.3 79.7 8.4 0.0049 0.0427 0.3417
0.4 89.3 4.0 0.0018 0.0140 0.1033
0.5 93.4 2.4 0.0004 0.0041 0.0370
0 0.3 98.7 148.4 608.8 2737.9

0.1 41.9 38.2 0.1 0.8 6.2
100 0.2 84.1 7.6 0.0 0.0 0.2

0.3 94.9 2.8 0.0 0.0 0.0
0.4 99.0 0.3 0.0 0.0 0.0
0.5 99.6 0.0 0.0 0.0 0.0

values are almost zero. We can see the strong dependence of the values of Bayes

factor from prior specification.

4.3.2 Student Versus Skew-Student

For each λ = 0, 0.1, . . . , 0.5, we generate 1000 independent data sets, y1, . . . , yn, with

n = 10, 50, 100, from the skew-t distribution, where f (y) = t (y |0, 1, ν ). We consider

ν = 1, 3, 10, 20 and calculate (4.2.5) considering λ2 ∼ Ga (1, 1).

Tables 4.5 to 4.8 exhibit the results of the performed simulations for each different

values of ν. Similar results to the normal case were obtained, highlighting those better

results obtained for small values of ν. We note that, in this case as well as in the

normal case, the BF has a nice behavior for small values of λ.
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Table 4.6: Simulation results with ν = 3 and for different values of n and λ.
n λ B̂F < 0.5 B̂F > 2 25th p. Median 75th p.

0 9.6 65.9 1.3456 3.9168 10.7615
0.1 18.9 55.3 0.7665 2.4418 6.2970

10 0.2 26.1 44.6 0.4711 1.5983 4.7274
0.3 34.1 32.6 0.3219 0.9850 2.9351
0.4 46.8 21.1 0.1937 0.5647 1.6797
0.5 48.1 19.4 0.1583 0.5458 1.4894
0 2.8 92.1 8.8131 26.0701 64.3461

0.1 10.4 74.5 1.9732 8.1181 22.9338
50 0.2 29.7 48.0 0.3317 1.8392 6.8588

0.3 49.9 26.0 0.0701 0.5011 2.1223
0.4 73.2 12.5 0.0146 0.1110 0.5871
0.5 84.1 4.3 0.0034 0.0283 0.1942
0 1.0 96.6 20.2344 64.4118 142.0406

0.1 10.8 76.8 2.1960 9.6536 32.6166
100 0.2 43.3 37.7 0.1266 0.8049 4.5909

0.3 75.6 10.9 0.0074 0.0679 0.4631
0.4 91.8 2.5 0.0005 0.0071 0.0676
0.5 98.3 0.6 0.0000 0.0005 0.0061
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Table 4.7: Simulation results with ν = 10 and for different values of n and λ.
n λ B̂F < 0.5 B̂F > 2 25th p. Median 75th p.

0 10.3 69.3 1.5578 4.3809 9.2094
0.1 14.7 56.4 0.9371 2.5278 6.4705

10 0.2 20.6 49.0 0.6525 1.9159 4.8182
0.3 29.2 38.7 0.4043 1.2866 3.3779
0.4 37.3 27.6 0.2820 0.8020 2.2204
0.5 46.7 21.1 0.1758 0.5682 1.6956
0 2.6 91.2 7.0075 19.2956 43.3332

0.1 25.5 45.6 0.4844 1.6349 4.6176
50 0.2 22.1 58.7 0.6381 3.0221 9.1743

0.3 41.5 33.0 0.1552 0.7937 3.2732
0.4 61.8 17.4 0.0372 0.2468 1.1372
0.5 78.3 6.5 0.0078 0.0593 0.3789
0 2.1 94.7 15.2573 38.3028 87.9117

0.1 7.5 81.7 3.4485 11.4648 32.0435
100 0.2 27.0 51.5 0.3982 2.1520 7.8946

0.3 58.3 19.0 0.0294 0.2585 1.3151
0.4 86.3 5.5 0.0018 0.0179 0.1602
0.5 95.6 1.1 0.0002 0.0022 0.0241
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Table 4.8: Simulation results with ν = 20 and for different values of n and λ.
n λ B̂F < 0.5 B̂F > 2 25th p. Median 75th p.

0 9.2 67.2 1.3782 3.6613 8.6506
0.1 15.0 58.0 0.8423 2.6160 6.5973

10 0.2 22.8 48.2 0.6223 1.9014 4.5525
0.3 27.4 36.1 0.4471 1.2501 3.1800
0.4 34.4 30.9 0.2813 0.9360 2.4928
0.5 45.2 23.2 0.1925 0.6397 1.8215
0 2.3 92.1 6.7759 17.6408 37.4567

0.1 8.9 77.3 2.2818 7.9469 19.0925
50 0.2 20.4 56.4 0.7003 2.6450 8.7393

0.3 39.3 36.8 0.1860 0.9700 3.3768
0.4 61.4 19.1 0.0406 0.2736 1.2038
0.5 79.2 7.6 0.0079 0.0624 0.3695
0 0.8 95.3 14.8925 35.9162 76.7650

0.1 6.9 79.6 2.6278 10.5830 28.1940
100 0.2 27.4 51.5 0.4086 2.2116 8.2338

0.3 53.9 24.1 0.0466 0.3766 1.9179
0.4 81.9 6.3 0.0037 0.0360 0.2745
0.5 95.0 1.3 0.0002 0.0027 0.0332
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Table 4.9: Bayes factors by company.
λ2 ∼ Ga (1, 1) λ2 ∼ Ga (1, 0.001)

Company
Cementos
Cervezas

Chilquinta
Copec
Iansa

B̂F λ>0

0.6297
0.3033
0.1936
0.5601
1.3841

B̂F λ>0

137.2086
16.6370
10.7234
51.4174
408.8198

4.4 An Application

In this section we use the results from proposition 4.2.3 and 4.2.4 in a real data set.

The data set comes from the ”Bolsa de Comercio de Santiago de Chile” and it consists

in the monthly rentability of five Chilean companies measured between March, 1990

and April, 1999. The sample size is n = 110 for each company. In Appendix B, we

present some descriptive statistics, including the skewness and kurtosis.

For each company, Table 4.9 presents in Columns 2 and 3 the Bayes factor under

two prior distributions λ2 ∼ Ga (1, 1) and λ2 ∼ Ga (1, 0.001), respectively. We con-

sider the λ sign known, λ > 0. It can be justified because in this period the Chilean

companies presented an affluent economy.

From Table 4.9, we can see that using a more informative prior, the only data set

in favor of the symmetry assumption is the Iansa company. On the other side, with

the less informative prior, all Bayes factor values are extremely large. This confirms

the high sensitivity of the Bayes factor to prior chosen and its wrong behavior when

we used vague prior distributions. From the practical point of view, we consider the

results given in the second column of Table 4.9. Therefore, the positive asymmetry

is more evident in the company Chilquinta following by company Cervezas.



Chapter 5

Testing of Asymmetry in Linear

Regression Model

In this chapter we present some results related with the Bayes factors with the purpose

of detecting asymmetry on the errors distribution in a linear regression model. With

this aim, in the first section, we define the multivariate skew-elliptical distribution

which we use throughout this chapter. In the second section, we estimate the Bayes

factor for some particular cases and in the third, we perform a simulation study in

order to discern the behavior of the Bayes factor, given in Subsection 5.2.1, with

respect to different prior distributions. Finally, we apply the results to real data.

5.1 Multivariate Skew-Elliptical Distributions

In this section we define the multivariate skew-elliptical distribution which we employ

through this chapter. We use the definition given by Branco and Dey (2001), this

definition includes interesting particular cases discussed in Kelker (1970), Fang and

Zhang (1990), Fang et al. (1990), Azzalini and Dalla-Valle (1996), and Azzalini and

106
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Capitanio (1999).

Consider that the random vector X∗ = (X0, X1, . . . , Xn)t has Eln+1

(
µ∗,Σ,h(n+1)

)
distribution, where the location parameter is the vector µ∗ = (0,µt)

t
and the scale

parameter is given by the matrix

Σ =

(
1 δt

δ Ω

)
,

where δ = (δ1, . . . , δn)t and Ω is the scale matrix associated to the vector X = (X1, . . . , Xn)t.

Under these assumptions, we will say that the random vector Y
d
= X|X0 > 0 has

skew-elliptical distribution. The next results obtained by Branco and Dey (2001) will

be used in the following section.

Proposition 5.1.1. If the p.d.f. of the random vector X∗ exists and is continuous,

then the p.d.f. of Y is given by

fY (y) = 2fh(n) (y) Fhq(y)

[
λtΩ− 1

2 (y−µ)
]
,

where fh(n) (y) is the p.d.f. associated with the distribution Eln
(
µ,Ω,h(n)

)
and Fhq(y)

is the c.d.f. of El
(
0, 1,hq(y)

)
, where

λt =
δtΩ− 1

2(
1− δtΩ−1δ

) 1
2

,

h(n) (u) =
2π

n
2

Γ
(

n
2

) ∫ ∞

0

h(n+1)
(
r2 + u

)
rn−1dr, u ≥ 0,

hq(y) (u) =
h(n+1) [u + q (y)]

h(n) [q (y)]
,

and q (y) = (y−µ)t Ω−1 (y−µ).

Proof. From the Bayes theorem we obtain fY (y) = 2P (X0 > 0|y) fX (y). On the

other hand, X∗ ∼ Eln+1

(
µ∗,Σ,h(n+1)

)
and by the marginalization and conditionally
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properties of the elliptical distributions (see Fang and Zhang (1990)), we get X ∼

Eln
(
µ,Ω,h(n)

)
. So that fX (y) = fh(n) (y) and X0|y ∼ El

(
δtΩ−1 (y − µ) , 1− δtΩ−1δ,hq(y)

)
.

Now, considering Z0 =
X0−δ

tΩ−1
(y−µ)(

1−δtΩ−1δ
) 1

2
and the symmetric property of the elliptical

distribution, it follows that

P (X0 > 0|y) = P

Z0 > − δ
tΩ−1 (y − µ)(
1− δtΩ−1δ

) 1
2

∣∣∣∣∣∣y
 = Fhq(y)

[
λtΩ− 1

2 (y−µ)
]
.

Hereafter, to denote that the random vector Y has a skew-elliptical distribution,

we will note down Y ∼ SEn

(
µ,Ω, h(n),λ

)
. Particular cases and properties of this

class of distributions can be found in Branco and Dey (2001).

Note that if λ = 0, we get the symmetric model,

fY (y) = fh(n) (y) = |Ω|−
1
2 h(n)

[
(y − µ)t Ω−1 (y − µ)

]
.

The next corollary gives an alternative expression to the p.d.f. of a skew-elliptical

distribution that could be convenient in many occasions.

Corollary 5.1.2. An alternative expression to the p.d.f. SEn

(
µ,Ω, h(n),λ

)
is,

fY (y) = 2 |Ω|−
1
2

∫ λtΩ− 1
2 (y−µ)

−∞
h(n+1)

[
u2 + q (y)

]
du,

where q (y) = (y − µ)t Ω−1 (y − µ).
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Proof.

fY (y) = 2fh(n) (y) Fhq(y)

[
λtΩ− 1

2 (y−µ)
]

= 2 |Ω|−
1
2 h(n) [q (y)]

∫ λtΩ− 1
2 (y−µ)

−∞
hq(y)

[
u2
]
du

= 2 |Ω|−
1
2 h(n) [q (y)]

∫ λtΩ− 1
2 (y−µ)

−∞

h(n+1) [u2 + q (y)]

h(n) [q (y)]
du

= 2 |Ω|−
1
2

∫ λtΩ− 1
2 (y−µ)

−∞
h(n+1)

[
u2 + q (y)

]
du.

Note that if h(n+1) (u) = (2π)−
n+1

2 exp
{
−u

2

}
, the generator function for a (n + 1)-

variate normal distribution, then, from the previous corollary we obtain

fY (y) = 2 |Ω|−
1
2

∫ λtΩ− 1
2 (y−µ)

−∞
(2π)−

n+1
2 exp

{
−u2 + q (y)

2

}
du

= 2 |Ω|−
1
2 (2π)−

n
2 exp

{
−q (y)

2

}∫ λtΩ− 1
2 (y−µ)

−∞
(2π)−

1
2 exp

{
−u2

2

}
du

= 2Nn (y |µ,Ω) Φ
[
λtΩ− 1

2 (y−µ)
]
.

That is to say, we obtain the multivariate skew-normal distribution defined in Azzalini

and Dalla-Valle (1996), which we will denote by SNn (µ,Ω,λ).

5.2 Bayes Factor

In this section we assume that have a data set coming from the following linear

regression model,

Y = Xβ + ε, (5.2.1)

where β ∈Rk, ε ∼ SEn

(
0, φ−1In, h

(n), λ11n

)
, φ > 0 and λ ∈ R. Our goal will be to

search for evidences in the data that allow us to choose between a symmetrical or
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asymmetric model for the errors. In other words, evidences will be looked from the

data to favor of λ = 0 or, λ 6= 0.

Note that if λ = 0, the data coming from a distribution with p.d.f. given by

φ
n
2 h(n)

(
φ ‖y −X β‖2) ,

this case were studied in Chapter 1, and if λ 6= 0, the data coming from

2φ
n
2 h(n) [q (y)]

∫ λ
√

φ11t
n(y−Xβ)

−∞

h(n+1) [u2 + q (y)]

h(n) [q (y)]
du,

where q (y) = φ ‖y −Xβ‖2. So that, for the data y = (y1, . . . , yn), the Bayes factor

in favor of λ = 0 is,

BF =

∫
φ

n
2 h(n) [q (y)] π (β, φ) dβdφ

2
∫ {

φ
n
2 h(n) [q (y)]

∫ λ
√

φ11t
n(y−Xβ)

−∞ hq(y) (u2) du

}
π (β, φ, λ) dβdφdλ

, (5.2.2)

where π (·) represents the prior distribution for the respecting parameters. As we can

see, by expression (5.2.2), a closed form to Bayes factor is not possible to obtain in a

general way. Also, the numerical computation is complex. However, when β and φ

are known, Equation (5.2.2) has a better expression:

BF =
1

2
∫ [∫ λ

√
φ11t

n(y−Xβ)
−∞ hq(y) (u2) du

]
π (λ) dλ

.

The next proposition gives a particular case which is an example where the Bayes

factor can not discriminate between a symmetric and asymmetric model.

Proposition 5.2.1. Let y = (y1, . . . , yn) a random sample from the model (5.2.1),

where ε ∼ SNn (0, φ−1In, λ 11n). If λ⊥⊥ (β, φ) and λ ∼ N (0, v2). Then the Bayes

factor (5.2.2) is equal to 1.
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Proof. Notice that∫ [∫ λ
√

φ11t
n(y−Xβ)

−∞
hq(y)

(
u2
)
du

]
π (λ) dλ =

∫ [∫ λ
√

φ11t
n(y−Xβ)

−∞

e−
u2

2

√
2π

du

]
π (λ) dλ

=

∫
P
[
Z ≤ λ

√
φ11t

n (y −Xβ)
]
π (λ) dλ,

where Z ∼ N (0, 1). But since Z ⊥⊥λ and

Z − λ
√

φ11t
n (y −Xβ) ∼ N

(
0, 1 + φv2

[
11t

n (y −Xβ)
]2)

,

then∫
P
[
Z ≤ λ

√
φ11t

n (y −Xβ)
]
π (λ) dλ =

∫
P
[
Z ≤ λ

√
φ11t

n (y −Xβ)
∣∣∣λ] π (λ) dλ

= P
[
Z ≤ λ

√
φ11t

n (y −Xβ)
]

= P
[
Z − λ

√
φ11t

n (y −Xβ) ≤ 0
]

= 2.

Therefore,
∫ [∫ λ

√
φ11t

n(y−Xβ)
−∞ hq(y) (u2) du

]
π (λ) dλ = 2 and the Bayes factor given by

(5.2.2) is equal to 1.

The previous proposition is telling us to assume a normal distribution with zero

mean as prior distribution for λ, is equivalent to suppose a normal linear regression

model for the data y. Others particular cases of the Bayes factor to compare a

symmetric distribution with an asymmetric one are the next propositions, where it

is necessary to know the sign of λ. The knowledge of the skewness parameter sign is

feasible in practice. Before presenting those propositions we must recall the following

lemma that will be us useful for the proof of the next propositions.

Lemma 5.2.2. If Y |µ, Σ, τ ∼ Nn ( µ, τ−1Σ) and τ |a, b ∼ Ga (a, b), then Y |µ,Σ, a, b ∼

tn
(
µ, b

a
Σ, 2a

)
.
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Proof. If q (y) = (y − µ)t Σ−1 (y − µ), then

f (y |µ,Σ, a, b) =

∫ ∞

0

Nn

(
y
∣∣µ, τ−1Σ

)
Ga (τ |a, b) dτ

=
ba

Γ (a)
(2π)−

n
2 |Σ|−

1
2

∫ ∞

0

τ
n
2
+a−1 exp

{
−τ

[
1

2
q (y) + b

]}
dτ

=
ba

Γ (a)
(2π)−

n
2 |Σ|−

1
2 Γ
(
a +

n

2

)[1

2
q (y) + b

]−(a+n
2 )

=

∣∣∣∣ baΣ

∣∣∣∣− 1
2 (2a)a

Γ (a)
π−

n
2 Γ

(
n + 2a

2

)[
2a +

a

b
q (y)

]−n+2a
2

.

Proposition 5.2.3. Let y = (y1, . . . , yn) a random sample from (5.2.1), where ε ∼

SNn (0, φ−1In, λ11n) with λ⊥⊥ (β, φ), λ2 ∼ Ga (a, b) and P (λ > 0) = 1. Then, the

Bayes factor (5.2.2) to compare the models specified by the hypotheses H0 : λ = 0 and

H1 : λ > 0 is given by

BF =

∫
φ

n
2 h(n) [q (y)] π (β, φ) dβdφ

2
∫

φ
n
2 h(n) [q (y)] FT

[
11t

n (y −Xβ)
√

aφ
b

]
π (β, φ) dβdφ

,

where FT is the c.d.f. of the t (0, 1, 2a) and q (y) = φ ‖y −Xβ‖2.

Proof. Notice that if λ2 ∼ Ga (a, b), then λ has probability density function f (λ |a, b) =

2ba

Γ(a)
(λ2)

a− 1
2 exp (−bλ2). Therefore,∫ [∫ λ

√
φ11t

n(y−Xβ)

−∞
hq(y)

(
u2
)
du

]
π (λ) dλ =

2ba

√
2πΓ (a)

∫ ∞

0

λ2a−1e−bλ2

∫ λ
√

φ11t
n(y−Xβ)

−∞
e−

u2

2 dudλ

=
2ba

√
2πΓ (a)

∫ ∞

0

λ2ae−bλ2

∫ √
φ11t

n(y−Xβ)

−∞
e−

λ2r2

2 drdλ.
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Then, with the change of variable l = λ2, we obtain∫ [∫ λ
√

φ11t
n(y−Xβ)

−∞
hq(y)

(
u2
)
du

]
π (λ) dλ =

ba

√
2πΓ (a)

∫ ∞

0

la−
1
2 e−bl

∫ √
φ11t

n(y−Xβ)

−∞
e−

lr2

2 drdl,

and, from Lemma 5.2.2,∫ [∫ λ11t
n(y−Xβ)

−∞
hq(y)

(
u2
)
du

]
π (λ) dλ = FT

[√
φ11t

n (y −Xβ)
]
,

where T ∼ t
(
0, b

a
, 2a
)
. Then, the result of the proposition is immediate.

If in the previous proposition we assume β and φ known, then

BF =
1

2FT

[
11t

n (y −Xβ)
√

aφ
b

] .

In a similar way the following result is also obtained.

Proposition 5.2.4. Let y = (y1, . . . , yn) a random sample from (5.2.1), where ε ∼

SNn (0, φ−1In, λ 11n) with λ⊥⊥ (β, φ), λ2 ∼ Ga (a, b) and P (λ < 0) = 1. Then the

Bayes factor (5.2.2) to compare the models defined by the hypotheses H0 : λ = 0 and

H1 : λ < 0 is given by

BF =

∫
φ

n
2 h(n) [q (y)] π (β, φ) dβdφ

2
∫

φ
n
2 h(n) [q (y)] FT

[
11t

n (Xβ−y)
√

aφ
b

]
π (β, φ) dβdφ

,

where FT is the c.d.f. of the t (0, 1, 2a) and q (y) = φ ‖y −Xβ‖2.

Proof. Notice that if λ2 ∼ Ga (a, b), then λ < 0 has density function f (λ |a, b) =
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2ba

Γ(a)
(λ2)

a− 1
2 exp (−bλ2). Therefore, making the change of variable l = −λ,

∫ [∫ λ
√

φ11t
n(y−Xβ)

−∞
hq(y)

(
u2
)
du

]
π (λ) dλ = −

∫ 0

∞

[∫ −l
√

φ 11t
n(y−Xβ)

−∞
hq(y)

(
u2
)
du

]
f (−l |a, b) dl

=

∫ ∞

0

[∫ l
√

φ11t
n(Xβ−y)

−∞
hq(y)

(
u2
)
du

]
f (l |a, b) dl.

Then, it is enough to follow the proof of the previous proposition.

When the parameters β and φ are not known, the previous propositions are not

a solution to the problem described to the beginning of this chapter due to the great

analytic and numeric complexity that presents the calculation of the Bayes factors

given by these propositions. A more tractable case is presented in the next subsection.

5.2.1 Bayes Factor for Representable Skew Elliptical Linear

Model

The propositions of the previous section use skew-normal distributions for the error

distribution of the model (5.2.1). In this section we will work with a wider class of

skew-elliptical distributions than the skew-normal class, however the analytic exertion

is not much more complicated than in the skew-normal case.

Definition 5.2.5. We will say that Y|µ,Ω,λ has multivariate skew-elliptical repre-

sentable distribution under the c.d.f. H if its p.d.f. can be written by

f
Y|µ,Ω,λ (y) = 2

∫ ∞

0

Nn (y |µ, ωΩ) Φ
[
ω− 1

2λtΩ− 1
2 (y−µ)

]
dH (ω) ,

where H is the c.d.f. of a random variable ω, which is non-negative and such that

ω⊥⊥ (µ,Ω,λ).
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An equivalent definition is given by: Y|µ,Ω,λ is skew representable if and

only if there is ω ∼ H and ω⊥⊥ (µ,Ω,λ) such that Y|µ,Ω,λ, ω ∼ SNn (µ, ωΩ,λ).

Y|µ,Ω,λ ∼ RSEn (µ,Ω,λ) will be used to denote that Y|µ,Ω,λ has multivariate

skew-elliptical representable distribution. Properties and examples of this class of

distributions can be found in Branco and Dey (2001).

Proposition 5.2.6. Let y = (y1, . . . , yn) a random sample from the model (5.2.1),

where ε ∼ RSEn (0, φ−1In, λ11n), λ⊥⊥ (β, φ), β|φ ∼ Nk (m, φ−1B) and φ ∼ Ga (a, b).

Then the Bayes factor (5.2.2) is given by

BF (y) =

∫
ω

k−n
2 |XtX + ωB−1|−

1
2 r−n−2adH (ω)

2
∫

ω
k−n

2 |XtX + ωB−1|−
1
2 r−n−2ag (ω) dH (ω)

,

where

g (ω) =

∫
FT

[√(
1− λ211t

nXW−1Xt11n

)
r2ω (n + 2a)−1 λ−2

11t
n

(
y −Xβ̂

)]
π (λ) dλ,

FT is the c.d.f. of the t (0, 1, n + 2a), β̂ = (XtX + ωB−1)
−1

(Xty + ωB−1m), W =

Xt (In + λ211n11t
n)X + ωB−1 and r2 = yty

ω
+ mtB−1m− β̂t

(ω−1XtX + B−1) β̂ + 2b.

Proof. See Appendix E.

The previous proposition presents an expression of the Bayes factor to detect

evidence of the data with respect to the skewness in a representable skew-elliptical

model. In the particular case where H is degenerated in ω = 1, we obtain skew-normal

distribution for the errors. In this case the Bayes factor is given by

BF (y) =
1

2
∫

FT

[√
(1−λ211t

nXW−1Xt11n)
r2(n+2a)−1λ−2 11t

n

(
y −Xβ̂

)]
π (λ) dλ

(5.2.3)

where β̂ = (XtX + B−1)
−1

(Xty + B−1m), W = Xt (In + λ211n11t
n)X + B−1 and

r2 = yty + mtB−1m− β̂t
(XtX + B−1) β̂ + 2b . The previous expression is easier to

calculate through numerical methods.
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5.3 Simulation Results

In this section we describe the simulation results in order to study the behavior of the

Bayes factor given by (5.2.3). We used a integration subroutine of MATLAB package,

version 6.0.0.88, based on the recursive adaptive Simpson quadrature method.

In this simulation study we generated data from the linear regression model (5.2.1),

where β = (2, 1)t, ε ∼ SNn (0, φ−1In, λ11n) with the following values variety: n = 50

and 100; φ = 0.01, 1 and 100; and λ = 0, . . . , 5. Also, the design matrix is given by

Xt = 11t
n
10
⊗

(
11t

10

−4 −3 · · · 4 5

)
.

For each one of the 36 previously described models, we made 100 replicates and,

for each one of these, calculated the Bayes factor given by (5.2.3) under the following

prior distributions, β|φ ∼ N2

[
(2, 1)t , φ−1vI2

]
, φ ∼ Ga (a, b) and λ ∼ Ga (aλ, bλ).

The Tables 5.1 to 5.4 display the first, second and third quartile of the Bayes factor

estimated for the 100 replicates in each one of 36 models. Each table shows the results

for different prior conditions where aλ and bλ are chosen such that E (λ) = aλ

bλ
and

V (λ) = aλ

b2λ
, where E (λ) and V (λ) are given initially.

Results for concentrated prior distributions are shown in Table 5.1. In this case,

we are assuming β ∼ t2
(
(2, 1)t , I2, 2

)
, φ ∼ Ga(1, 100) and λ ∼ Ga (62.5, 0.025). In

general, the results of this table are good, although the values of the Bayes factor are

not very different from 1. In this sense, the results for the case φ = 100 are the worst,

but this was expected because the prior distribution taken for φ has mean equal to

0.01 and variance, 10−4.

Prior conditions of Table 5.2 are similar to the previous table, except that λ ∼

Ga (0.625, 2.5). Due to this, nice results are obtained even when φ = 100. We
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Table 5.1: Simulation results with v = 0.01, a = 1, b = 100, E (λ) = 2.5 and
V (λ) = 0.1.

φ = 0.01 φ = 1 φ = 100
n λ 1th c. Median 3th c. 1th c. Median 3th c. 1th c. Median 3th c.

0 0.6552 0.9870 2.0963 0.8498 1.0306 1.4500 0.9715 1.0034 1.0351
1 0.5868 0.7353 1.0429 0.6795 0.7850 0.8893 0.9523 0.9680 0.9812

50 2 0.5883 0.7492 1.0438 0.6894 0.7806 0.8626 0.9429 0.9682 0.9832
3 0.5799 0.7445 0.9679 0.6826 0.7830 0.8802 0.9585 0.9733 0.9869
4 0.5868 0.7381 1.0663 0.7355 0.8237 0.9177 0.9524 0.9694 0.9842
5 0.5544 0.7225 0.9950 0.6664 0.7786 0.8759 0.9558 0.9677 0.9843
0 0.7211 1.0683 1.7372 0.8510 1.0087 1.3086 0.9662 0.9922 1.0253
1 0.6365 0.7553 0.8552 0.7183 0.8058 0.8997 0.9568 0.9734 0.9906

100 2 0.6209 0.7392 0.8509 0.7157 0.8105 0.9029 0.9597 0.9797 0.9907
3 0.6393 0.7240 0.8196 0.7281 0.8096 0.8928 0.9523 0.9766 0.9856
4 0.6168 0.7031 0.8688 0.7444 0.8201 0.9035 0.9567 0.9750 0.9874
5 0.6193 0.7119 0.8347 0.7217 0.8411 0.9125 0.9574 0.9734 0.9875

expected this improvement since this prior distribution for λ is more in agreement

with the true values of λ which we used in order to generate the data.

In Table 5.3 we increased the prior variance of λ with the purpose of observing

the behavior of Bayes factor with respect to a vague informative prior distribution for

λ. As we expected, the Bayes factor does not work when we use a vague informative

prior distributions (see, for example, Kass and Raftery (1995)). Also, in order to

obtain these calculations, the computational time was great.

Later, we wanted a less informative prior distribution on any parameter that is

not λ, then we took φ ∼ Ga(1, 0.01) that has mean equal to 100 and variance, 104.

Table 5.4 displays the results. Same to the previous case, as expected, the Bayes

factor held a wrong behavior. Another interesting aspect of the results of this table

is the little variability in the estimates of the Bayes factor, in spite of possessing so

different data sets.
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Table 5.2: Simulation results with v = 0.01, a = 1, b = 100, E (λ) = 2.5 and
V (λ) = 1.

φ = 0.01 φ = 1 φ = 100
n λ 1th c. Median 3th c. 1th c. Median 3th c. 1th c. Median 3th c.

0 0.7112 1.0213 2.8531 0,8502 1,0305 1,4481 0,9715 1,0005 1,0268
1 0.5492 0.6399 0.7831 0,6801 0,7854 0,8896 0,9528 0,9683 0,9812

50 2 0.5502 0.6361 0.7390 0,6899 0,7811 0,8630 0,9430 0,9673 0,9832
3 0.5551 0.6342 0.7696 0,6832 0,7835 0,8805 0,9586 0,9743 0,9873
4 0.5893 0.6832 0.8349 0,7361 0,8241 0,9179 0,9532 0,9700 0,9842
5 0.5387 0.6156 0.7588 0,6670 0,7791 0,8762 0,9556 0,9678 0,9844
0 0,7549 1,0765 1,9039 0,7951 1,0213 1,2740 0.9735 1.0041 1.0318
1 0,6087 0,6974 0,8090 0,7496 0,8332 0,9082 0.9560 0.9763 0.9882

100 2 0,6506 0,7441 0,8546 0,7240 0,7896 0,8909 0.9540 0.9728 0.9869
3 0,6611 0,7486 0,8435 0,7116 0,7989 0,8917 0.9570 0.9718 0.9844
4 0,6258 0,7617 0,8715 0,7579 0,8314 0,9249 0.9521 0.9696 0.9894
5 0,6241 0,7215 0,8494 0,7209 0,8204 0,8876 0.9540 0.9711 0.9860

Table 5.3: Simulation results with v = 0.01, a = 1, b = 100, E (λ) = 2.5 and
V (λ) = 100.

φ = 0.01 φ = 1 φ = 100
n λ 1th c. Median 3th c. 1th c. Median 3th c. 1th c. Median 3th c.

0 0.9821 1.1157 1.3673 1.0198 1.0986 1.1782 1.0855 1.0967 1.1062
1 0.8714 0.9344 1.0135 0.9746 1.0112 1.0447 1.0811 1.0894 1.0939

50 2 0.8750 0.9366 0.9924 0.9544 1.0095 1.0490 1.0803 1.0855 1.0924
3 0.8790 0.9343 1.0049 0.9872 1.0256 1.0609 1.0812 1.0886 1.0925
4 0.9046 0.9631 1.0362 0.9757 1.0144 1.0518 1.0790 1.0859 1.0920
5 0.8653 0.9245 1.0029 0.9794 1.0097 1.0529 1.0808 1.0864 1.0923
0 0.9735 1.0639 1.2652 1.0185 1.0861 1.1996 1.0885 1.0949 1.1050
1 0.9154 0.9755 1.0450 0.9818 1.0140 1.0586 1.0787 1.0864 1.0909

100 2 0.9416 0.9988 1.0414 0.9980 1.0272 1.0616 1.0778 1.0864 1.0912
3 0.9092 0.9747 1.0281 0.9921 1.0349 1.0648 1.0804 1.0862 1.0893
4 0.9237 0.9874 1.0326 0.9881 1.0203 1.0567 1.0779 1.0851 1.0895
5 0.9240 0.9626 1.0349 0.9801 1.0095 1.0630 1.0777 1.0855 1.0890
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Table 5.4: Simulation results with v = 100, a = 1, b = 0.01, E (λ) = 2.5 and
V (λ) = 1.

φ = 0.01 φ = 1 φ = 100
n λ 1th c. Median 3th c. 1th c. Median 3th c. 1th c. Median 3th c.

0 0.8014 0.9999 1.0003 0.9999 1.0000 1.0001 0.9999 1.0000 1.0001
1 0.8014 0.9999 1.0000 0.9998 0.9999 0.9999 0.9998 0.9999 0.9999

50 2 0.8014 0.9999 1.0000 0.9998 0.9999 0.9999 0.9998 0.9999 0.9999
3 0.8014 0.9998 1.0000 0.9998 0.9999 0.9999 0.9998 0.9999 0.9999
4 0.8014 0.9999 1.0000 0.9998 0.9999 1.0000 0.9999 0.9999 1.0000
5 0.8014 0.9999 1.0000 0.9998 0.9999 0.9999 0.9998 0.9999 0.9999
0 0.9999 1.0000 1.0000 0.9999 1.0000 1.0001 0.9999 1.0000 1.0001
1 0.9999 0.9999 1.0000 0.9999 1.0000 1.0000 0.9999 1.0000 1.0000

100 2 0.9999 0.9999 1.0000 0.9999 0.9999 1.0000 0.9999 0.9999 1.0000
3 0.9999 0.9999 1.0000 0.9999 0.9999 1.0000 0.9999 1.0000 1.0000
4 0.9999 0.9999 1.0000 0.9999 0.9999 1.0000 0.9999 1.0000 1.0000
5 0.9999 0.9999 1.0000 0.9999 1.0000 1.0000 0.9999 0.9999 1.0000

These results corroborate the well-known result about the great influence that

the prior distributions exert on the Bayes factor. Indeed, in these results the prior

distributions almost determine the good behavior of this Bayes factor. Nice results

are only obtained when a priori, a correct idea is had about the true values of the

parameters.

5.4 An Application

In this section we illustrate the calculus from equation (5.2.3) using the real data set

described in the example of Section 4.4. The data of the explanatory variable was

the values of IPSA observed between March, 1990 and April, 1999.

For each company, Table 5.5 displays the Bayes factor given by (5.2.3) under

the following prior distributions λ ∼ Ga (0.4, 0.2), β|φ ∼ N2

[
(0, 1)t , 10φ−1I2

]
and

φ ∼ Ga (100, 1). Then, the prior mean and variance for λ are 2 and 10 respectively.



Testing of Asymmetry in Linear Regression Model 120

Table 5.5: Bayes factors by company in linear regression model.

Company B̂F

Cementos 0.9998
Cervezas 0.9993

Chilquinta 0.9990
Copec 0.9998
Iansa 1.0004

From Table 5.5, it can be seen that no company present a strong evidence of the

Bayes factor and the only data set in favor of the symmetry assumption is the Iansa

company, similar to those results in Section 4.4. However, the results of Section 4.4

presented strong evidence. The simulations in the previous section as well as these

results with real data show a weak evidence of the Bayes factor, probably because the

inclusion of the explanatory variable produces a better explanation of the response

variable behavior. Thus, we think that in order to study these real data it is not

worthwhile to use an asymmetric model.



Chapter 6

Concluding Remarks

In Chapter 1 we presented a class of prior distributions that make the posterior β

independent of the choice of h(n). Although it is not established explicitly, the same

invariance holds for the predictive distribution of y, as pointed out in Osiewalski and

Steel (1993). We also specified a conditional distribution for y|β, φ, h(n) and a prior

for ( β, φ)|h(n), in such a way that y⊥⊥h(n), considering h(n) as random (i.e., h(n)

is marginally ancillary). Thus, any procedure for model comparisons that is based

on the predictive distributions would be not useful to discriminate among different

density generators. Even if we introduce a prior for h(n), this would not be updated

under the hypotheses imposed in Chapter 1. On the other hand, it becomes clear

that Bayesian model comparisons should include not only the predictive distribution,

but also all the model components. We point out that the comparisons should refer

to alternatives for the joint distribution of (y,θ). In particular, it is suggested there

to study the ratio

BF (θ) =
f1 (y, θ)

f2 (y, θ)
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as a function of θ, which is called Global Bayes Factor (GBF) and may be rewritten

as

BF (θ) =
π1 ( θ|y)

π2 ( θ|y)
BF,

where BF is the usual Bayes factor. Thus

Eπ2( ·|y) [BF (θ)] = BF.

Others alternative procedures for model comparison were discussed in Section 2.6.

Model comparison and selection in MEM models could still be developed in several

directions, for example the comparison and selection of models inside the class of skew-

elliptical distributions, the selection of variables, development of the topics seen in

this thesis extending the range of distributions for the errors, etc.

When obtaining samples from the posterior distribution of a MEM, it is impor-

tant to dedicate efforts to improve the transition probability functions in the M-H

algorithm. In our case turned out to be quite inefficient: around a 10% of the candi-

dates were accepted, although convergence existed. It is thought that this inefficiency

was been due, in great measure, to the fact there were 4 unknown parameters. We

made simulations assuming two unknown parameters, and the convergence was much

quicker.

With the purpose of eliminating the influence of prior distributions, it is important

to improve objective Bayesian methods for model comparison in MEM. We mentioned

some possible paths to follow in Section 2.6.

In Chapter 3 we present a strategy for examining the sensitivity of posterior dis-

tribution with respect to the deletion of sets of observations. We find interesting to

study the sensitivity of posterior distribution with respect to departures from nor-

mality relative to other multivariate elliptical models and also using noninformative
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prior distributions.

In Section 4.1, two expressions were presented for the L1 distance between pos-

terior distributions of µ and σ. Then, to determine the sensitivity of the λ parame-

ter concerning these posterior distributions, the numeric calculation would be most

useful. On the other hand, in Section 4.2, different prior conditions were assumed

obtaining different Bayes Factor expressions. Similar results could be obtained for

other prior conditions, for instance, we could assume that |λ| ∼ Ga (a, b) or λ ∼

Half-Normal, etc.

Extensions in other directions are to study the usage of default Bayes factors

for testing skewness. We could consider noninformative prior distribution π (λ) in

(4.2.5). In this case, a first obstacle is, for example, to consider an improper prior

distribution π (λ) ∝ 1, since
∫∞
−∞ [

∏n
i=1 G (λyi)]

b
dλ diverge with 0 < b ≤ 1, then the

Intrinsic Bayes factor and Fractional Bayes factor could not be calculated. Chap-

ter 5 is a natural generalization of Chapter 1, there we preserve uncorrelation and

assume dependence of observations. However, in Chapter 4 we assume independent

observations. Thus, a possible alternative of Chapter 5 is considering independent

observations. The simulation results of Chapter 5 induces us to believe that the co-

variates presence in multivariate case could subtract importance to the asymmetry

of the errors. This can be noticed when comparing the monthly rentability example

results of five Chilean companies as detailed in Sections 4.4 and 5.4.
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Bayes Factors in MEM
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Figure A.1: B01 given by (3.1.2) under MEM in deletion case.

124



Bayes Factors in MEM 125

Table A.1: Optimal Bayes factor values for simulated data in functional MEM.

σu
µ = 0,
τ 2 = 1

µ = 0,
τ 2 = 3

µ = 0,
τ 2 = 5

µ = 3,
τ 2 = 1

µ = 3,
τ 2 = 3

µ = 3,
τ 2 = 5

0 7.815e-039 9.477e+078 7.766e+072 6.284e+051 7.846e+105 1.180e+087
0.2 2.269e-085 4.769e+071 3.131e+064 6.179e+048 1.671e+092 1.876e+080
0.4 2.448e-053 1.007e+063 2.884e+054 1.441e+069 1.476e+073 4.298e+067
0.6 4.323e-096 5.320e+051 9.901e+054 4.835e+067 3.164e+078 5.644e+059
0.8 2.229e-100 6.062e+026 1.331e+053 3.530e+055 9.421e+052 8.939e+063
1.0 7.227e-025 8.155e+031 7.625e+054 2.702e+067 2.304e+048 1.108e+061
1.2 1.896e-113 2.879e-029 7.428e+040 8.060e+059 1.952e+047 6.135e+056
1.4 1.918e-059 3.450e+012 3.397e+015 6.527e+038 1.770e+043 2.151e+057
1.6 1.361e-184 4.547e-100 7.733e-007 2.798e+049 4.009e+032 5.862e+021
1.8 1.344e-204 2.023e-034 1.017e+018 1.351e+059 734.5918 8.839e-015
2.0 4.321e-137 2.108e-112 5.243e-005 4.273e+070 6.444e+035 2.797e-013
2.2 4.113e-206 1.164e-024 7.841e+011 2.853e+050 3.296e+015 3.609e-004
2.4 1.512e-201 3.340e-053 3.233e-133 7.941e+053 9.752e+031 1.150e+009
2.6 0 1.608e-025 0 5.426e+069 8.992e+032 6.585e+043
2.8 8.096e-146 6.008e-154 2.536e-049 1.464e+077 1.095e+014 10.5466
3.0 2.344e-169 1.022e-128 5.010e-132 1.914e+054 4.741e+026 6.582e-055

Table A.2: Optimal Bayes factor values for simulated data in structural MEM.
σu δ = 0.1 δ = 1 δ = 5

0 1.5960e+025 0.0093 0.6591
0.2 1.0768e+009 2.1851e+004 4.1210e-005
0.4 25.1171 0.3261 3.4341e-004
0.6 0.0023 0.0165 0.1086
0.8 0.0060 1.7242e-005 0.1667
1.0 0.0010 0.0063 0.6042
1.2 9.5568e-005 9.8342e-005 0.4622
1.4 3.6166e-006 0.0055 0.1263
1.6 1.5987e-008 0.0334 0.5573
1.8 5.7717e-005 1.1722e-006 0.0368
2.0 4.1454e-018 4.3199e-056 0.0159
2.2 3.2095e-004 6.2342e-093 0.3534
2.4 1.5946e-093 4.5352e-066 0.2880
2.6 4.2793e-004 9.8820e-041 0.1595
2.8 1.6547e-050 0 0.0534
3.0 1.0853e-014 9.0370e-060 0.0145
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Table A.3: Corn hectares determined by two methods.

Segment
Photograph

yi

Interview
xi

Segment
Photograph

yi

Interview
xi

1 167.14 165.76 20 120.19 121.00
2 159.04 162.08 21 115.74 109.91
3 161.06 152.04 22 125.45 122.66
4 163.49 161.75 23 99.96 104.21
5 97.12 96.32 24 99.55 92.88
6 123.02 114.12 25 163.09 149.94
7 111.29 100.60 26 60.30 64.75
8 132.33 127.88 27 101.98 99.96
9 116.95 116.90 28 138.40 140.43
10 89.84 87.41 29 94.70 98.95
11 84.17 88.59 30 129.50 131.04
12 88.22 88.59 31 132.74 127.07
13 161.87 165.35 32 133.55 133.55
14 106.03 104.00 33 83.37 77.70
15 87.01 88.63 34 78.51 76.08
16 159.85 153.70 35 205.98 206.39
17 209.63 185.35 36 110.07 108.33
18 122.62 116.43 37 134.36 118.17
19 93.08 93.48

Table A.4: Concrete compressive strength measurements (psi).
Sample Day 28 Day 2 Sample Day 28 Day 2 Sample Day 28 Day 2

1 4470 2830 15 4690 2985 29 4650 3335
2 4740 3295 16 4880 3135 30 4680 3800
3 5115 2710 17 3425 2750 31 5165 2680
4 4880 2855 18 4265 3205 32 5075 3760
5 4445 2980 19 4485 3000 33 4710 3605
6 4080 3065 20 5220 3035 34 4200 2005
7 5390 3765 21 7695 4245 35 4645 2495
8 4045 3265 22 3330 1635 36 4725 3205
9 4370 3170 23 4065 2270 37 4695 2060
10 4955 2895 24 4715 2895 38 5470 3425
11 3835 2630 25 4735 2845 39 4330 3315
12 4290 2830 26 3605 2205 40 4950 3825
13 4600 2935 27 4670 3590 41 4460 3160
14 4605 3115 28 4720 3080
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Figure A.3: L1-influence under MEM in deletion case.
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Appendix B

Descriptive Statistics by Company

Table B.1: Some descriptive statistics for the monthly rentability of five Chilean
companies, measured between March, 1990 and April, 1999.

Company Mean s.d. Skewness Kurtosis

Cementos 0.01347727 0.13283164 1.33268186 3.31334209
Cervezas 0.02022545 0.11423326 0.51903086 0.66034736

Chilquinta 0.02778182 0.13638980 0.68802875 2.21338495
Copec 0.01201909 0.10339547 0.71021655 0.98810570
Iansa 0.0006200 0.1131153 0.3621623 0.2541416
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Appendix C

Proof of Proposition 4.1.6

We should calculate

π (µ, σ|λ,x) =
f (x|λ, µ, σ) π (µ, σ)∫

f (x|λ, µ, σ) π (µ, σ) d (µ, σ)

=
σ−n

∏n
i=1 φ

(
xi−µ

σ

)
Φ
(
λxi−µ

σ

)
π (µ, σ)∫

σ−n
∏n

i=1 φ
(

xi−µ
σ

)
Φ
(
λxi−µ

σ

)
π (µ, σ) d (µ, σ)

.

Since

π (µ, σ) = π (µ|σ) π (σ) =
ba
√

2v

Γ (a) π
1
2

1

(σ2)a+1 exp

{
− 1

2σ2

[
v (µ−m)2 + 2b

]}
and

σ−n

n∏
i=1

φ

(
xi − µ

σ

)
=
(
2πσ2

)−n
2 exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2

}
,

then

π (µ, σ|λ,x) ∝ 2ba
√

v

Γ (a) (2π)
n+1

2

1

(σ2)
n
2
+a+1

exp

{
− 1

2σ2

[
n∑

i=1

(xi − µ)2 + v (µ−m)2 + 2b

]}
n∏

i=1

Φ

(
λ

xi − µ

σ

)
=

2ba
√

v

Γ (a) (2π)
n+1

2

1

(σ2)
n
2
+a+1

exp

{
− 1

2σ2

[
(n + v) (µ− µ̂)2 + r2

]}
n∏

i=1

Φ

(
λ

xi − µ

σ

)
,
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where µ̂ = nx̄+mv
n+v

, r2 = ns2 + nv
n+v

(m− x̄)2 + 2b and s2 = n−1
∑n

i=1 (xi − x̄)2.

On the other hand, the normalizing constant is

m (x) =

∫
σ−n

n∏
i=1

φ

(
xi − µ

σ

)
Φ

(
λ

xi − µ

σ

)
π (µ, σ) d (µ, σ)

=
2ba
√

v

Γ (a) (2π)
n+1

2

∫ ∞

0

1

(σ2)
n
2
+a+1

exp

{
− r2

2σ2

}
h (σ) dσ,

where

h (σ) =

∫ ∞

−∞
exp

{
−n + v

2σ2
(µ− µ̂)2

} n∏
i=1

Φ

(
λ

xi − µ

σ

)
dµ.

Making the change of variable y =
√

n + v µ−µ̂
σ

, we obtain

h (σ) =
σ√

n + v

∫ ∞

−∞
exp

{
−y2

2

} n∏
i=1

Φ

[
λ

(
xi − µ̂

σ
− y√

n + v

)]
dy

=
σ (2π)−

n
2

√
n + v

∫ ∞

−∞
exp

{
−y2

2

}∫
· · ·
∫ λ

(
xi−µ̂

σ
− y√

n+v

)
−∞

exp

{
−1

2

n∑
i=1

z2
i

}
dzidy.

Making now the change of variables ui = zi + y λ√
n+v

and exchanging the integration

order, we obtain

h (σ) =
σ (2π)−

n
2

√
n + v

∫
· · ·
∫ λ

xi−µ̂

σ

−∞
exp

−1

2

 n∑
i=1

u2
i −

λ2

v + n (1 + λ2)

(
n∑

i=1

ui

)2


∫ ∞

−∞
exp

−v + n (1 + λ2)

2 (n + v)

[
y − λ

√
n + v

v + n (1 + λ2)

n∑
i=1

ui

]2
 dydui

=
σ (2π)−

n−1
2√

v + n (1 + λ2)

∫
· · ·
∫ λ

xi−µ̂

σ

−∞
exp

{
−1

2
ut

[
In −

λ2

v + n (1 + λ2)
1111t

]
u

}
dui

=
σ
√

2π |Σ|
1
2√

v + n (1 + λ2)
FU

(
λ

x1 − µ̂

σ
, . . . , λ

xn − µ̂

σ

)
,

where U ∼ Nn (0,Σ) with Σ−1 = In − λ2

v+n(1+λ2)
1111t. Using the well known identities

(see Fang and Zhang (1990, Chapter 1))

(
A− uvt

)−1
= A−1 +

A−1uvtA−1

1− vtA−1u
, (C.0.1)
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for some squared matrix A and vectors u and v, and

|Ip + AB| = |Iq + BA| , (C.0.2)

where Ap×q and Bq×p, we obtain Σ = In + λ2

v+n
1111t and |Σ| = 1 + λ2n

v+n
.

Therefore,

m (x) =
2ba

Γ (a)

(
v

(v + n) (2π)n

) 1
2
∫ ∞

0

1

σn+2a+1
exp

{
− r2

2σ2

}
FU

(
λ
x− µ̂11

σ

)
dσ.

Making the change of variable σ2 = r2

s
, we obtain

m (x) =
ba

Γ (a) rn+2a

(
v

(v + n) (2π)n

) 1
2

∫ ∞

0

s
n
2
+a−1 exp

{
−s

2

}
FU

(
λ
√

s
x− µ̂11

r

)
ds

=
ba (2π)−n

Γ (a) rn+2a

(
v

v + n (1 + λ2)

) 1
2

∫ ∞

0

s
n
2
+a−1 exp

{
−s

2

}∫
· · ·
∫ λ

√
s

xi−µ̂

r

−∞
exp

{
−1

2
utΣ−1u

}
duids.

Making the change of variables ti
√

s = ui and exchanging the integration order, we

obtain

m (x) =
ba (2π)−n

Γ (a) rn+2a

(
v

v + n (1 + λ2)

) 1
2

∫
· · ·
∫ λ

xi−µ̂

r

−∞

∫ ∞

0

sn+a−1 exp
{
−s

2

[
1 + ttΣ−1t

]}
dsdti

=
(2b)a Γ (n + a)

Γ (a) rn+2aπn

(
v |Σ|

v + n (1 + λ2)

) 1
2
∫
· · ·
∫ λ

xi−µ̂

r

−∞
|Σ|−

1
2
[
1 + ttΣ−1t

]−(n+a)
dti

=
(2b)a Γ

(
n
2

+ a
)

Γ (a) rn+2aπ
n
2

(
v

v + n

) 1
2

FT

(
λ
√

n + 2a
x− µ̂11

r

)
,

where T ∼ tn (0,Σ, n + 2a).
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Therefore,

π (µ, σ|λ,x) =
rn+2a

√
v + n

2
n−1

2
+aΓ

(
n
2

+ a
)√

πFT

(
λ
√

n + 2ax−µ̂11
r

)
1

(σ2)
n
2
+a+1

n∏
i=1

Φ

(
λ

xi − µ

σ

)
exp
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− 1

2σ2

[
(n + v) (µ− µ̂)2 + r2

]}
.

On the other hand,

π (µ|λ,x) =

∫ ∞

0

π (µ, σ|λ,x) dσ

=
rn+2a

√
v + n

2
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2
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σ
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obtain

π (µ|λ,x) =
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but if we make the change of variable σ−2 = s, then
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Moreover, if we consider the function h (σ), we get
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=
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.
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Proof of Proposition 4.2.6

Notice that

f (x|λ, µ, σ, ω1, . . . , ωn) =
n∏

i=1

2

σ
√

ωi
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σ
√
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√
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=
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)− 1
2

exp

[
− 1

2σ2

n∑
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√
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√
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=
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(
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σ
√
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)
,

where D (ω) = diag (ω1, . . . , ωn), η =
∑n

i=1 ω−1
i , S2

ω =
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i=1 νix
2
i − (

∑n
i=1 νixi)

2
=∑n
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(
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and νi = ωi

η
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Now, considering π (µ|σ) = N
(

µ|m, σ2

v

)
, we obtain
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where

µ̂ =
η
∑n

i=1 νixi + vm

η + v
.

Making the change of variable y =
√
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σ

, we obtain
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Then, making the change of variables ui = zi√
ωi

+ y λ
ωi
√

η+v
and exchanging the
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integration order, we obtain
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1111t. Now, using (C.0.1)
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Replacing h (λ, σ, ω1, . . . , ωn) in (D.0.1) we obtain
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A change of variable s = r2/σ2, allows us to write

f (x|λ, ω1, . . . , ωn) =
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Considering that π (µ|σ) = N
(

µ|m, σ2

v
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With a new change of variable, s = r2/σ2, one obtains
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Therefore, the Bayes factor is
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But since

|Σ| =
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the proof is complete.



Appendix E

Proof of Proposition 5.2.6

Notice that

f (y|φ, λ, ω) =
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then
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where β̃ =ωλu√
φ
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Using the well known identity (see Fang and Zhang (1990, Chapter 1))

(A + CED)−1 = A−1 −A−1CE
(
E + EDA−1CE

)−1
EDA−1

for some matrix Ap×p, Eq×q Cp×q and Dq×p, we have

W−1 =
(
XtX + ωB−1

)−1 − λ2 (XtX + ωB−1)
−1

Xt 11n11t
nX (XtX + ωB−1)

−1

1 + λ211t
nX (XtX + ωB−1)−1 Xt 11n

.

So that,

1− λ211t
nXW−1Xt 11n =

(
1 + λ211t

nX
(
XtX + ωB−1

)−1
Xt 11n

)−1

.

But, from C.0.2, we have∣∣∣W (
XtX + ωB−1

)−1
∣∣∣ =

∣∣∣Ik + λ2Xt 11n11t
nX
(
XtX + ωB−1

)−1
∣∣∣

=
∣∣∣1 + λ211t

nX
(
XtX + ωB−1

)−1
Xt 11n

∣∣∣
=

(
1− λ211t

nXW−1Xt 11n

)−1
,

thus

|W| =

∣∣∣W (XtX + ωB−1)
−1
∣∣∣∣∣(XtX + ωB−1)−1
∣∣ =

|XtX + ωB−1|
1− λ211t

nXW−1Xt 11n

.

Therefore,

f (y|λ, ω) =
2

n
2
+a+1baΓ

(
n
2

+ a
)
|B|−

1
2

(2π)
n
2 ω

n−k
2 |XtX + ωB−1|

1
2 Γ (a) rn+2a

FT

[
λ

ω
11t

n

(
y −Xβ̂

)]
.
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On the other hand, when λ = 0:

f (y|φ, ω) =

∫
Rk

f (y|β, φ, ω) π (β|φ) dβ

=

∫
Rk

Nn

(
y

∣∣∣∣Xβ,
ω

φ
In
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(
β
∣∣m, φ−1B

)
dβ

=
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1
2
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2 ω
n
2

∫
Rk

exp

{
− φ

2ω

[
‖y −Xβ‖2 + ω (β −m)t B−1 (β −m)

]}
dβ

=
φ

n+k
2 |B|−

1
2
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1
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Considering that φ ∼ Ga (a, b), we obtain

f (y|ω) =
ba |B|−

1
2
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n
2 ω
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1
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.

Therefore, the Bayes factor is

BF (y) =

∫
f (y|ω) dH (ω)∫ ∫

f (y|λ, ω) π (λ) dλdH (ω)

=

∫
ω

k−n
2 |XtX + ωB−1|−

1
2 r−n−2adH (ω)

2
∫ ∫

ω
k−n

2 |XtX + ωB−1|−
1
2 r−n−2aFT

[
λ
ω
11t

n

(
y −Xβ̂

)]
π (λ) dλdH (ω)

.

We standardize the random variable T and obtain the result.
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Arellano-Valle, R. B., Gómez, H. W., and Quintana, F. A. 2001. A general class of

univariate asymmetric distributions. Tech. rept. Pontificia Universidad Católica de
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