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The astonishing thing is when you are most truly alone,
when you truly enter a state of solitude , that is the
moment when you are not alone anymore, when you start
to feel your connection with others. In the process of
writing or thinking about yourself, you actually become

someone else.

PAUL AUSTER
The Art of Hunger
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Abstract

Tobit models are regression models where the dependent variable is censored (lim-
ited). These models are very common , e.g., in econometric analysis, and most of the
literature related to this kind of models is developed under the normal assumption.

A brief review on Tobin’s work and some theoretical results for the limited depen-
dent normal regression model are presented. This article takes up a linear model as
the one described above, in which the disturbances are independent and have identical
Student-t distribution. In the context of maximum likelihood estimation, we provide
an expression to the information matrix, under a convenient re-parametrization of
the model.

In this thesis we discuss the possibility of extending the Tobit model through some
new distributional assumptions. Some parametrical aspects about the model are also
presented in the sense of showing how the estimation can be made. The inference
and all the asymptotical results are compared with those described in the literature,

for instance in Amemiya ( 1984 ), Olsen ( 1978), among some others.

An interesting way of extending Tobin’s model is supposing that the statistical
distribution of the perturbations are not normal any longer, so we can assume some
other distribution like the Student-t. The importance of choosing such distribution
is based on the robustness that the Student-t posses; the t distribution provides a
useful extension of the normal for statistical modeling of data sets involving errors
with longer than normal tails. The degrees of freedom parameter of the ¢ distribution
provides a convenient dimension for achieving robust statistical inference, with mod-

erate increases in computational complexity for many models. Basically, the thesis

X



describes the censored model using a different approach to the normal model, which is
pretty much known that is quite vulnerable to the presence of outliers. Furthermore,
many models treat this problem editing the data that represents outlying observa-
tions; this last procedure may cause the fact that the uncertainty could not be well
reflected when the inference is made.

In addition, a Monte Carlo simulation study is made in order to adjust the non
normal censored regression model, meaning, under the assumption of Student-¢ per-
turbations, and in addition compare the estimations as the degrees of freedom in-
crease. It’s intuitive thinking that there will be similarities in the normal case and
the Student-t case, but the difference is that the last model is more capable to reach
those extreme values in the data, making it more robust than the normal model.
This feature has the purpose to convince the reader that it is feasible to extend Tobit
models through a distributional constrain; moreover, estimation of the information
matrix, although it takes lot of analytical computations, is available considering the
parameter v (which represents the degrees of freedom that the model poses) un-
known. These calculations are extremely large and exhaustive, but worthy for the

main purpose.



Chapter 1

Introduction

"What do you mean, less than nothing?” replied Wilbur. “I don’t think
there is any such thing as less than nothing. Nothing is absolutely the limat
of nothingness. It’s the lowest you can go. It’s the end of the line. How can
something be less than nothing? If there were something that was less than
nothing then nothing would not be nothing, it would be something-even
though t’s just a very little bit of something. But if nothing is nothing,

then nothing has nothing that is less than it is.”

E. B. White, Charlotte’s Web
(New York: Harper, 1952) p. 28.

1.1 Limited Dependent Variables in Regression Anal-
ysis.

A crucial aspect of any empirical research is to develop a research design to understand

the phenomenon of interest and to guide the selection of an appropriate statistical



method. A first step toward the choice of statistical method is deciding what measure
of the dependent variable can best represent the concept of interest. To arrive at the
appropriate measure, the researcher will need to determine the range of variation of
the phenomenon of interest, the nature of its distribution, and how fine or gross to
make the distinction between particular attributes of the phenomenon. Jointly with
the purpose of the research, these are the considerations that drive the final choice
of measure for the dependent variable. It is essential that the dependent variable
be well-measured, well-distributed, and have enough variance so that there is indeed
something to explain. At the same time, we define a model as a simplified description
of reality that is at least potentially useful in decision making. Since models are
simplified, they are never literally true: whatever the ”"data generating process” may
be, it is not the model. Since they are constructed for the purpose of decision making,
different decision problems can appropriately lead to different models despite the fact
the reality they simplify is the same. All scientific models have certain features in
common. One is that they often reduce an aspect of reality to a few quantitative
concepts that are unobservable but organize observable in a way that is useful in
decision making. In this context, we’ll say that a censored dependent variable occurs

when the values of the measured phenomenon, above or below some threshold value,



are all assigned the same value.

The problem of estimation for a regression model where the dependent (or endoge-
nous) variable is limited, has been studied in different fields: econometric analysis,
clinical essays, wide range of political phenomena, among some others. In economet-
ric, some of these models are commonly classified as: truncated regression models,
discrete regression models, and censored regression models. The main goal of this
thesis is to focus on the study of the censored regression model, making a wide re-
view based on the common assumptions, and also introducing a different perspective

that will allows us to obtain new interest quantities in the statistical inference issue.

As a first motivating example, let’s analyze the problem of mobile phones con-
sumption in a particular city. If an investigator is interest in this phenomenon, he
needs to incorporate information about people who has a mobile phone. A person’s
needs in the last years often includes a communication media, even though a person’s
incoming are not enough. Should the investigator put such person out of his research?
The answer is commonly no, because the ”"non-mobile-person” is also an integral part
of the information, so instead of truncating the data we are censoring.

Most of the results on the normal censored regression model are based on the



development for the probit model, where the variable of theoretical interest, let’s say,
y*, is unobserved. Instead, we may observe a dummy variable, represented by 1 if it
is observed and 0 in other case. So, since James Tobin’s work (1958), the hybrid of
probit and regression analysis makes this kind of model be nicknamed Tobit model.
Specifically, we consider the truncation where the threshold is the zero, hence our
Tobit model accept those strictly positive observations. On his example, Tobin refers
to the relationship between the households incomes and the households expenditure,
on various categories of goods. The zero expenditure on some luxury goods reports
a low level of income. Compare with those households who in fact made that kind of
expenditure, the range of variability of the observe expenditure is wide, meaning that
there’s a group of observations concentrated around zero; besides, this reasoning im-
plies that there cannot be negative expenditures. That is, for some observations the
observed response is not the actual response, but rather the censoring value (zero),
and an indicator that censoring (from below) has occurred.

As we know, the limited response is directly related with the disturbances distribu-
tion, which typically is assume to be normal with common variance. Our primary
focus is to extend this assumption to the case where the error terms are Student-t

distributed, describing the likelihood function to find the estimators for the regression



parameters and of course to obtain the information matrix, that conduces us to the

standard errors of estimations.

A limited dependent variable, y, is, as its name suggests, one whose set of possible
values is restricted in some obvious way. Limited dependent variable models have tra-
ditionally been estimated using the method of maximum likelihood, which naturally
requires the specification of a parametric likelihood function. The idea of ” censoring”
is that some data above or below the threshold are misreported at the threshold, so
the observed data are generated by a mixed distribution with both a continuous and
a discrete component. The censoring process may be explicit in the data collection
process, or it may be a by-product of economic constraints involved in constructing

the data set.

The first censored regression model developed by Tobin in 1958 explains the con-
sumption of durable goods. Tobin observed that for many households, the consump-
tion level, i.e. the purchases, in a particular period was reported as zero. Such model,
specifies that the latent, or ideal, value of consumption may be negative, which means

that the households would prefer selling over buying. All that can be reported is that



the household purchased zero units of the good in question. Further examples of
limited dependent variables are: zero expenditure and corner solutions: labor force

participation, smoking, demand, among some others.

A regression model is said to be censored when the recorded data on the dependent
variable (the response) cuts off outside a certain range with multiple observations at
the endpoints of that range. When the data are censored, variation in the observed
dependent variable will understate the effect of the regressors on the "true” depen-
dent variable. As a result, standard ordinary least squares regression using censored
data will typically result in coefficient estimates that are biased toward zero. Tradi-
tional statistical analysis uses maximum likelihood or related procedures to deal with
the problem of censored data. However, the validity of such methods requires the
correct specification of the error terms distribution, which can be quite problematic

in practice.

If the distribution of the error terms (or disturbances), given the regressors has a
simple parametric form, for instance, normally distributed and homoscedastic errors,

we can derive and maximize the likelihood function. Thus, it is important to develop



estimation methods that provides consistent estimates for censored data even when

the error distribution is non normal or heteroscedastic.

On the other hand, a dependent variable in a model is truncated if observations
cannot be seen when it takes on values in some range. That is, both the independent
and the dependent variables are not observed when the dependent variable is in
that range. A natural example is when we have data on consumption purchases, if
a consumer’s willingness-to-pay for a certain product is negative, we will never see
evidence of it no matter how low the price goes. Price observations are truncated at
zero, along with identifying characteristics of the consumer in this kind of data. A
model is called truncated if the observations outside of a specified range are totally
lost. This kind of model will not be specifically study on this work, nevertheless some

relevant properties about truncated distributions will be recalled.

1.1.1 Some examples of the censored regression model in eco-
nomics.

Censored and truncated models have being used in different fields. For the Tobit model
there has been various generalizations, which have been specially popular among
economists, psychologists, and mostly social scientists. Goldberger (1964) named it

Tobit because of its similarities to probit models.



Economists and sociologists have used this kind of models to analyze the duration
of such phenomena as unemployment, welfare receipt, employment in a particular
job, residing in a particular region, marriage, and the time between births.

Between 1958 and 1970, when Tobin’s article appeared, the Tobit model was
infrequently used in econometric applications, but since the early 1970’s numerous
applications ranging over a wide area of economics have appeared and continue to
appear. This phenomenon is due to the recent increase in the availability of micro
sample survey data which the Tobit model analyzes well and to the recent advances
of technology that make possible the estimation of the model under a large scale data.

As a result of many methods of estimation, like maximum likelihood, moments,
two steps estimators, use of latent variables, etc., the results indicate that iter-
ative procedures are quite optimal in the sense that under some convenient re-
parametrization, such estimations are consistent and have desirable asymptotic prop-
erties. Some interesting papers have discussed this estimation problem. For instance,
in the survey by Heckman (1979) and Singer (1976) the problem of estimation bias is
mentioned on straight relationship with the estimators of the regression coefficients

[ and the scale parameter o.



An early empirical example is described by Tobin (1958), who obtained the max-
imum likelihood estimates of his model applied to data on 735 non-farm households
obtained from Surveys of Consumer Finances. The dependent variable of his esti-
mated model was actually the ratio of total durable goods expenditure to disposable
income and the independent variables were the age of the head of the household and
the ratio of liquid assets to disposable income.

Further examples about censored regression models are the following:

(1) Demand for durable goods.

If we have a survey data on consumer expenditures, we find that most house-
holds report zero expenditures on automobiles or major household goods during
a year. However, among those households that make any such expenditures,
there will be wide variation in the amounts. Thus, there will be a lot of ob-
servations concentrated around zero. As mentioned above, Tobin analyzed this
problem formulating the previous regression model taking as dependent variable

the expenditures, y, and considering a set of explanatory variables, x.

(2) Changes in holding of liquid assets.

Consider a change in a household’s holding of liquid assets during a year. This

variable can be positive or negative, but it can’t be smaller than the negative
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of the household’s assets at the beginning of the year, basically because there is
no chance of liquidate more assets that one owns. Note that here the threshold

is not the zero and is different for different individuals

(3) Married women in the labor force.

A problem that has been analyzed by Nelson (1975, 1977) is the reservation wage
of the housewife , named y*, based on her valuation of time in the household.
Let y be the market wage based on an employer’s valuation of her effort. The
woman participates in the labor force if y > y*. Otherwise, she does not. In
any given sample we have observations on y for those women who participate
in the labor force, and we have no observations on y for those who do not. For
these women we know only that we know only that y* > y. Given these data,
we have to estimate the coefficients in the equations explaining y* and y, as in

the following model:

T B+ ug
Yi = .
z; v+ ;.

1.1.2 Normal censored and truncated variables.
In this section we shall consider location-scale normal models in which the variable of
interest is limited by truncation or censoring. We shall first explain the difference be-

tween truncated and censored samples and then consider the analysis of this problem
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in the linear models context.

2. Suppose

Suppose y* has a normal distribution, with mean g and variance o
we consider a sample of size N (yf,v;...,yy) and record only those values of y*

greater than a constant c¢. For those values of y* < ¢ we record only the value c¢. The

observations are

y; ity >c
Yi = X )
c otherwise

with s =1,... V.

The resulting sample vy, 4o, ..., yn is said to be a censored sample. Note that, the
y; has the same distribution of the y when y > c. For the observations y; = c, all
we know is P(y; = ¢) = P(y; < c).

Hence, the likelihood function for estimation of the parameters p and o? is

Liwo® |y un) = ] §¢ <y;M> IIe (C;M>

y;>c y; <c

where ¢(-) and ®(-) are, respectively, the density function (pdf) and the cumulative

distribution function (cdf) of the standard normal.
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Suppose now that before the sample is drawn we truncate the distribution of y*
at the point y* = ¢, so that no observations are drawn for y* > c¢. Under these
conditions, the pdf of the truncated normal distribution from which the samples are

drawn is

fy ly <o) = %qb(y*_ﬂ)/@(c_”)? 00 <y* <e

o o
where ®[(¢ — p)/o] is the normalizing constant, because it is the integral of the
numerator over the range —oco < y* < c.

A sample from this truncated normal distribution is called a truncated sample.

For example, a sample drawn from families with incomes less than, say, $200,000.

In practice we can have samples that are doubly truncated, doubly censored,
truncated-censored, and so forth. As an example of a truncated-censored sample,
consider truncation at the level ¢; and censoring at level ¢s (¢ < ¢1); that is, only
samples of y* with y* < ¢; are drawn, and among these samples only values of y* > ¢,

are recorded. For those observations y* < ¢y, we record ¢y, that is, we observe

y;  ifyi >
Yi = )
Ca otherwise.
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The likelihood function for this model is

e L) = [ (S2)] e I 2o (52) T 0 (22)

y;>c2 F<ca
One can consider further combinations of double truncation and double censoring,

but the details are straightforward.

1.2 Tobit type model.

Since the use of econometric models with truncated or censored response variables
came into increasing, it is important that the information they provide is fully and
correctly used. One of these models that has an increasing use is the Tobit analysis,
a model devised by Tobin (1958), in which it is assumed that the dependent variable
has a number of its values clustered at a limited value, usually zero. For example,
data for demand on consumption goods often have values clustered at zero; data
on hours of work often have the same clustering. In other words, Tobit’s type of
models are censored regression models where the threshold that is considered is equal
to zero. The Tobit technique uses all the observations, both those at the threshold
and those above it, to estimate a regression line, and it is to be preferred, in general,

over alternative techniques that estimate a line only with the observations above the
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threshold. In what follows, we understand by the Tobit model the censored regression

model under the normality assumption.

The regression coefficients of the Tobit model frequently called the "beta” coeffi-
cients, provide more information than is commonly realized. In particular, it is well
known that the Tobit type of modeling can be use to determine both changes in the
probability of being above the threshold and changes in the value of the dependent
variable if it is already above the threshold. This last decomposition can be quantified
in rather useful and insightful ways.

The decomposition also has an important substantive economic and policy implica-
tions. For instance, in the question: how will the labor supply reduction induced by
a negative income tax be spread between marginal decreases in hours worked and
decreases the probability of working any hours?, it is not straightforward to know

how to use the beta coefficients.

Now we write the Tobit model (or censored regression model) through y; =

max{y;,0}, where yF = 278+ u;, i = 1,..., N; that is:

{ 2P B+, if2lB+wu; >0
Yi =

0, in other case.

Here, the error terms u; are assume to have F(u; | x;) = 0 and common scale
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parameter o2, hence

o f(z)

Flz) 2 = x; (B0, (1.1)

E(y |y >0) = 28+

where f and F' are the pdf and cdf of the distribution of u;, respectively.
As shown in the review of McDonald and Moffitt (1979), the basic relationship
between the expected value of any observation, E(y;), the expected value of y; given

y; > 0, and the probability of been above the threshold, F'(z;), is:

E(y:) = F(z)E(yi |y >0). (1.2)
The previous decomposition is achieved considering the effect produced by a

change in the ith variable from z; in y;:

) ey (220) ) (252)). (13)

Therefor, the total change in y; can be disaggregated into two very intuitive parts:
(1) the change of those y; above the limit, weighted by the probability of being above
the limit; and (2) the change in the probability of being above the limit, weighted by
the expected value of y; if above. The relatives magnitudes of these two quantities is

an important indicator with substantive economic implications.
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Assuming that § and o have been already calculated, each of the term in equation
(1.1) can be evaluated at some value of z! 3, usually on the mean of the /s, z. The
value of E(y}) can be calculated from equation (1.2), and the value of F'(z;) can
be obtained directly from statistical tables. The two partial derivatives are also

presented:

and from equation (1.2):

_ a0 Of(z)  of(z)0F(z)
Ox; ﬁZ—I—F(zi) dr;  F(z)® 0Oz

(
_ A _ zif (zi) _ f(z)?
- (1T ) )

using F'(z;) = f(z) and f'(z;) = —z;f(z;), for a standard normal density.

It should be noted from equation (1.3) that the effect of a change in z; on E(y})
is not equal to ;. It is a common error in the literature to assume that the Tobit
beta coefficients measures the correct regression coefficients for observations above
the threshold. As can be seen from equation (1.3), this is true only when z; equals
infinity, in which case F(z;) = 1 and f(z;) = 0. This will of course not hold at the

mean of the sample or for any individual observation.
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On the other hand, we should also note that when equations (1.2) and (1.3) are
substituted into equation (1.1), the total effect O E(y;)/0x; can be seen to equal simply
F(z;)5;. Furthermore, by dividing both sides of equation (1.1) by F'(z;)0;, it easily can
be seen that the fraction of the total effect above the threshold, 0E(y})/0x;, is just
(1—z:f(2)/F(z)— f(z)?/F(z)?). Thus, the information from the decomposition can
be obtained calculating this fraction. In addition, this is also the fraction by which the
0; coefficients must be adjusted to obtain correct regression effects for observations

above the limit.



Chapter 2

The Normal Tobit Model

"I remained for a while looking into the dark, this dense substance of dark-
ness that had no bottom, which I couldn’t understand. My thoughts could
not grasp such a thing. It seemed to be a dark beyond all measurement,
and I felt its presence weight me down. I closed my eyes and took to
singing half aloud and rocking myself back and forth on the cot to amuse
myself, but it did no good. The dark had captured my brain and gave me
not an instant of peace. What if I myself became dissolved into the dark,

turned into it?”

Paul Auster, The Art of Hunger

2.1 Introduction

In this chapter we give a complete description of the Tobit model, or so called the

normal censored regression model, based on several works developed in the context of

18
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econometric analysis and other fields such as biostatistics and social sciences. Tobit

models are refer to censored or truncated regression models in which the range of the
dependent variable is constrained in some way. In economics, such a model was first
suggested in a pioneering paper by Tobin (1958). He analyzed household expenditure
on durable goods using a regression model that specifically took account of the fact
that the expenditure ( the dependent variable of his regression model) cannot be
negative (see figure 2.1). Tobin called his model the model of limited dependent
variables. It and its various generalizations are known popularly among economists
as Tobit models, a phrase coined by Goldberger (1964), because of similarities to probit
models. These models are also known as censored or truncated regression models. The
model is called truncated if the observations outside a specified range are totally lost
and censored if we can at least observe the exogenous variables. A more precise
definition was given early in Chapter 1.

Censored and truncated regression models have been developed in other disciplines
(notably, biometrics and engineering) more or less independently of their development,
in econometrics: Biometrician use the model to analyze the survival time of a patient.
Censoring or truncation occurs when either a patient is still alive at the last observa-

tions date or he/she cannot be located. Similarly, engineers use the model to analyze
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the time to failure of material or of a machine or of a system. These model are also
called survival or duration models. Sociologists and economists have also used sur-
vival models to analyze the duration of such phenomena as unemployment, welfare
receipt, employment in a particular job, residence in a particular region, marriage,
and the period of time between births. Mathematically, survival models belong to
the same general class of models as Tobit models; survival models and Tobit models
share certain characteristics.

Between 1958, when Tobin ‘s article appear, and 1970, the Tobit model was used
infrequently in econometric applications, but since the early 1970s numerous appli-
cations ranging over a wide area of economics have appeared and continue to appear.
This phenomenon increase in the availability of micro sample survey data, which the
Tobit model analyzes well, and to a recent advance in computer technology that has
made estimation of large scale Tobit models feasible. At the same time, many gener-
alizations of the Tobit model and various estimation methods for these models have
been proposed. In fact, models and estimation methods are now so numerous and
diverse that it is difficult for econometricians to keep track of all the existing models
and estimation methods and maintain a clear notion of their relative merits. Thus

it is now particularly useful to examine the current situation and prepare a unified
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summary and critical assessment of existing results.

N + * y
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Figure 2.1: An example of censored data

2.2 The model specification.

The Tobit model is defined as follows

rff+u;  ifxl 4w >0

0 otherwise
where 3 is a k x 1 vector of unknown parameters; x; is a k X 1 vector of non stochas-
tic constants; u; are residuals that are independently and normally distributed, with

mean zero and a common variance 0'2.
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Our problem is to estimate 3 and ¢? on the basis of N observations on y; and
x;. This model was first studied by James Tobin (1958), and it’s basically a censored
normal regression model. As such, its estimation is related to the estimation of the

censored and truncated normal distributions.

The literature on estimations of the parameters of the truncated normal distri-
bution is extensive. However, it was Tobin who first discussed this problem in the
regression context. Because he related his study to the literature on probit analysis,
his model was nicknamed the tobit model (Tobin’s probit) by Goldberger (1964). In
this work, will be discussed the likelihood approach for the parameters estimations of

the Tobit model.

Note that the threshold value in equation ( 2.1) is zero. This is not a very restric-

tive assumption, because if the model is

{ 7B+ uy if y; > ¢
Yi =

G otherwise

we can define
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Yy, = Yi — G T, = < ) ) ﬁ = ( ) )
C; -1

as the model in (2.1) applies with y, z, and 3 replaced by y*, z*, and 3*.

Similarly, for models with an upper constraint, so that

{a:iTﬁjLui if 278 +u; <0
Yi =

0 otherwise
we multiply y;, z;, and u; by —1, and this reduces to the model in equation ( 2.1).
Thus the Tobit model can be specified as in equation 2.1 without any loss of generality.
Problems arise where the thresholds ¢; are known only as stochastic functions of some

other variables.

2.3 Maximum likelihood estimation.

For the model considered in equation ( 2.1), let Ny be the number of observations for
which y; = 0, and N; the number of observations for which y; > 0. Also, without any
loss of generality, assume that the N; non zero observations for y; occur first. For

convenience, we define the following (notation here follows closely that of Amemiya

(1973) and Fair (1977))
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o (‘iﬁ ) (2.2)
1

e PRdt teR,

~@TB? 20

V2mo?

where as was defined early, ® and ¢ are, respectively, the cdf and pdf of the stan-

dardized normal distribution.

1 -9,

<y17y27 e
(1,9, . ..
(Tnps1s -

QST

(2.4)

is a 1 x N7 vector of N7 non zero observations on ¥;
is a k x N7 matrix of values of z; for non zero y;
is a k X Ny matrix of values of z; for y; =0

is a 1 x Ny vector of values of ~; for y; = 0. (2.5)

For the observations y; that are zero, all that we know is
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For the observations y; that are greater than zero, we have

g

. _ T
Fi Ly > 0)- Py > 0) = %d)(u)

Hence the likelihood function is

NERE! Lo (1=t 26)

where the first product is over the Ny observations for which y; = 0 and the second

product is over the N; observations for which y; > 0.

logl = Zlog(l — ;) + Zlog < 507 1/2) Z %  —xlB)?, (2.7)
0 1

where the summation ), is over the N, observations for which y; = 0, and the

summation ), is over the Ny observations for which y; > 0.

We now write down the first and second derivatives of log L with respect to 3 and

o%. We use the following facts:



0P,

0P, 1

P02 = ogati PO
0¢; 1

(.;g = —@l’?ﬁ@xi
do? 204 "

Using these results, we get the first order conditions for a maximum as

alogL ¢Z£El 1 T

310gL 1 Z‘Tﬁ(]ﬁl N1 1 T N2

o - ___ B ——— _ ; — X =0.
Jo? 202 > 1—-®, o2 + 204 - (v =z )

Premultiplying ( 2.9) by z7 3 and adding the result to ( 2.10), we get

o 1
Ny -

(Y — Xip)

. _ T -
(yl xz ﬁ)yl Nl )

g

where was used the notations in ( 2.5).

Also, after multiplying throughout by o2, equation ( 2.9) can be written as

1
—Xg 0+ X[ (V1 = X1) =0,

26

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)
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or

B = (XT X)XV —o(X{ X1)% (2.13)

= Bows — o(X{ X1)%, (2.14)

where BO s is the ordinary least squares estimator for § obtained from the N; nonzero
observations on the response y = (y1,...,yn).

Equation ( 2.14) shows the relationship between the maximum likelihood estimator

for # and the ordinary least squares estimator obtained from the nonzero observations

of y.

2.4 Some important results on Tobit models.

Fair (1977) suggested an iteration method for obtaining the maximum likelihood es-

timates of 8 and o using equation ( 2.14). The method he suggested is the following:
(1) Compute (g, and calculate (X] X;)~' X,.

(2) Choose a value of 3, say 3!, and compute ¢ from ( 2.11). If this value of o2 is
less than or equal to zero, take for the value of 0? some small positive number.

Let 0 denote the squared root of this chosen value of o2.

(3) Compute the vector vy using 8 and (¥ . Denote this by 761).
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(4) Compute 3 from equation ( 2.14) using o) and fyél). Denote this value by 5O.

Let

B =W LAY - W), 0<A< L

(5) Using 5, go to step (2), and repeat the process until the iterations converge.

Fair (1977) suggested using zero as the starting value for 3 if there is a large number
of zero observations and using the least squares estimator BO s as the starting value
if there is a large number of nonzero observations. He also suggested using A = 0.4
and an iteration limit of twenty as a good initial strategy (these values worked best

in the examples he looked at).

The Newton-Raphson method uses the matrix of second derivatives. These ingre-

dients are as follows:
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g;ingi - EO: (1_¢—¢)2 [@ - %(1 - ‘Pi)wiTﬁ] TiT; — % 21: vl (2.15)
682012% _2; 20: (1 —d)icpi)z %(1 — ;) (2 )" — (1 — @) — x?ﬁ@} ;
% 21:(% — i B (2.16)
a;(l;g)f 4i4 20: {a _¢ iq)i)z [é(l — @) (2T B)® — 3(1 — @,)al 3 — (ﬁ@)?@,}
% - % (s =2 )" (2.17)

1

In the method of scoring, one uses the probability limits of these second derivatives

used in the Newton-Raphson method of iteration. This simplifies the expressions

considerably. Using the first order conditions for the maximum given by equations

(2.9) and ( 2.10) and substituing

d(1-)z by Y Z and
0
Y@z by > Z
1

where the summations now run over all the observations, the second derivatives can

be written compactly (Amemiya, 1973, p. 1007) as
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0%log L
0%log L
5705 —Zbixi (2.19)
0%log L
o - a (2.20)

The summations now run over all the N observations, and

a; = —% (Zi¢i - % - (I)i) (2-21)
bi = % (Zi2¢z' + ¢ — 1Z_Z—¢(;) (2.22)
¢ = —ﬁ (Zf@ + Zig; — % - 2@) : (2.23)
where
7 = %P (2.24)
o

The asymptotic covariance matrix of the estimates of (3, 0?) can be estimated as

V-1 where

V= ( Laiie; bz, ) : (2.25)

and a;, b;, and ¢; are as defined in ( 2.21)-( 2.23).
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2.4.1 A re-parametrization of the Tobit model.

In his study, Tobin (1958) reparametrized the model given by equation ( 2.1) by

dividing throughout by 0. We can write the reparametrized model as

ey 4+, ifaly 0 >0
we{y e (220

0 otherwise

where 7 = 1/0, v = 7/, and v; = u;/o has the standard normal distribution

N(0,1). The log-likelihood can now be written as

1
log L = E log ®(—x] ) + Ny log h — 5 E (Ty; — x v)>. (2.27)
0 1

Let 6 = (47, 7). Olsen (1978 b) showed that for the foregoing likelihood function,

the matrix 92 log L/00007 is negative semidefinite.

For the reparametrized version, the expressions for the second derivatives are less
cumbersome than the expressions in equations ( 2.15) through ( 2.17). The normal

equations for the model are
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dlog L d(—axl) T
= NS AT S (rys — )z = 0 2.28
7 EO B2y §1 (Ty 7) (2.28)
dlog L Ny T
_ B R 2.2
5, = (Tys — 2 7)ys = 0 (2.29)

The second derivatives are

&?log L ¢(—xly) < T cb(—x»Tv)) T T
o7 — |,y - — | mix; — Ti%; 2.30
T~ 2w\ 8 2 (2:30)
0 log L

= iy 2.31
ooT ;” (2:81)
0?log L N
5 = _7_21_ y2. (2.32)

To show that the matrix of second partial is negative semidefinite, we proceed as

follows. Let

() () ()

where X, X1, Y, and Y] are defined in (2.5). Then the matrix of second derivatives

given by equations ( 2.30) and ( 2.31) can be written as

9 log L X7 D 0 0 0
ST _<YT><0 ])<X Y>_<ON1/T2>’ (2.33)
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where D is a diagonal matrix whose ith diagonal element is

et (66T
b= @(—x?v)(” @(—xm) (234)

Thus, all that needs to be shown is that D; is positive. For this, we note first that

if w follows a standard normal distribution, and if we consider values of w > ¢, then,

obviously,

Ew|w>c) > c

Also, (see Appendix A)

Ew|w>0) = 1f<—<1(?(c)'
Hence,
9(c)
e < 0. (2.35)

Substituting x7+ for ¢, we see that D; as given by equation (2.34) is positive. This

proves the required result.
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The implication of this result is that the likelihood function for the Tobit model has
a single maximum. Thus, no matter what the starting value, as long as the iterative
process is continued to obtain a solution, that solution will be the global maximum
of the likelihood function. Also, as proved by Amemiya (1973), this estimator is

consistent and asymptotically normal.

2.4.2 Two stage estimation of the Tobit model.

Amemiya (1973) criticized Tobin’s initial estimator, saying that it was not consistent,
and he suggested an initial consistent estimator. He also showed that the second
round estimator that results from taking one iteration from this initial consistent
estimator is asymptotically equivalent to the maximum likelihood estimator. Many
empirical researchers found Tobin’s initial estimator satisfactory, and Olsen’s proof
that the likelihood function for the Tobit model has a single maximum explains why
they did not have trouble with their initial estimator. However, even though, the
estimation method suggested by Amemiya is not useful for the Tobit model, it will be
useful for more complicated models in which the likelihood function is likely to have

multiple maxima. Hence, we shall review the method and some of its extensions here.

Considering the model given by equation (2.1) and the nonzero observations y; we
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get

E(y; |y >0) = x?ﬁ + E(u; | u; > —ZBZTﬁ) = xiTﬁ + 0%. (2.36)

Also, using the formulas in the Appendix A for the second moments of the truncated

normal and simplifying, we get
E(? |y >0) = xlBE(y;) + o>

We can write this as

vi = i Byi+o’+m,
where F(n;) = 0. However, this equation cannot be estimated by OLS, because
Cov(n;, z;y;) # 0. What Amemiya suggested is to regress y; on x; and higher powers
of x;, get y; (the estimated value of y;) from this equation, and use z;7; as instru-
mental variables to estimate this equation. Although it is theoretically appealing, the

practical usefulness of this instrumental-variable approach is not known.

An alternative procedure first used by Heckman (1976 b) is given by the following.
Because the likelihood function for the probit model is well behaved, we define a

dummy variable
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1 ify; >0
I - vi
0 otherwise
Then, using the probit model, we get consistent estimates of 5/0. Using these,
we get estimated values of ¢; and ®;. Now we get consistent estimates of § and o by

estimating equation (2.36) by OLS, with ¢;/®; as the explanatory variable in place

Instead of using only the nonzero observations on y;, if we use all the observations,

we get

E(y;)) = P(y; >0)-E(y; |y >0)+ P(y; =0) - E(y; | i = 0)

(2

Dz B+ oo (2.37)

Thus, after getting estimates of ¢; and ®;, we estimate equation (2.37) by OLS.

2.4.3 Prediction in the Tobit model.

The prediction of y;, given x;, can be obtained from the different expectations func-

tions we have given. Note that if we define the model in (2.1) in terms of a latent
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variable framework, with

yr = xz-Tﬁ—Fui, and E(u;) =0,

modeling the latent variable yf (say, desired or potential expenditures), and if we

define y;, the observed variable, as

Yi =

yr it y> >0
0 otherwise

then clearly E(y;) = z1'3.

Thus, after estimating 3 , we can get predictions of the latent variable from this
equation. There are, in addition, two other predictions we can make, and these are
predictions about the observed y;, given the information that it is greater than zero
and not given any such information. These predictions are given by equations (2.36)
and (2.37) . What (2.36) gives is E(y; | yf > 0) or E(y; | v; > 0), that is the
mean of the positive y's. What (2.37) gives is E(y;), that is the mean of all observed
y's, positive and zero. Note that this is not E(y}) which is the mean of potential y's.
Thus, there are three predictions: one for the latent variable and two for the observed

variable (with or without the information that the observed variable is greater than
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zero). Note that E(y;) = ®;E(y; | y; > 0). Corresponding to these three expectations
functions we have the following derivatives to predict the effects of changes in the

exogenous variables.

Denote z; = z7 3/o and (3; the jth component of 5. We drop the subscript 4,
which refers to the ith observation. Then, using the formulas for derivatives in the

Appendix, we have, after simplifications,

OE(y")
837]' - ﬁ]
OF

—ag) = @(2)f;

and

OE(y | y* > 0) P(z) é(2) \”
O = A <1 CTok) ( ) )

2.5 Asymptotic theory: consistency of the estima-
tors.

From figure (2.1) it is clear that the least squares regression of expenditure on in-

come using all the observations including zero expenditures yields biased estimates.
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Although it is not so clear from the figure, the least square regression using only the
positive expenditures also yields biased estimates. These facts can be mathematically
demonstrated as follows.

First, consider the regression using only positive observations of y;. Recalling
equation ( 2.36), we obtain that the last term in the middle is generally nonzero
(even without assuming that u; is normal). This implies the biasedness of the OLS
estimator using positive observation on g; under more general models that the Tobit
model.

Goldberger (1981) evaluated the asymptotic bias (the probability limit minus
the true value) assuming that the elements of x; (except the first element, which is
assumed to be a constant) are normally distributed. More specifically, Goldberger

rewrote the model in ( 2.1) as

, (2.38)

' 0 otherwise

{60+j?51+ui if B+ B +u; >0
and assumed z; ~ N(0,3), distributed independently of u;. (here the assumption of

zero mean involves no loss of generality because a nonzero mean can be absorbed into

Bo). Under this assumption he obtained



40

. -T
plim(5,) = 11_ pQFﬁh (2.39)
where
I' = O'y_l)\(ﬁo/o-y) (60 + Uy)\(ﬁO/Uy))
P = 0, °B%h
where

Az = 28

It can be shown that 0 < T' < 1 and 0 < p? < 1; therefore ( 2.39) shows that /3,
shrinks 3; toward 0. However, the result may not hold if Z; is not normal.

Consider the regression using all the observations of y;, both positive an 0. To
see that the least squares estimator is also biased in this case, we should look at the

unconditional mean of y;,

E(y) = % + 0o (2.40)
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Writing again ( 2.1) as ( 2.38) and using the same assumptions as Goldberger,

Greene (1981) showed

plzm(@l) = (I)(ﬁo/a'y)ﬁl, (241)

where (3, is the LS estimator of 8y in the regression of y; on Z; using all the obser-
vations. This result is more useful than ( 2.39) because it implies than (Ny/N)G; is
a consistent estimator estimator of 31, where Ny is the number of positive observa-
tions of y;. A simple consistent estimator of 3y can be similarly obtained. Greene
(1983) gave the asymptotic variances of these estimators. However, we cannot use
this estimator without knowing its properties when the true distribution of z; is not

normal.

2.6 Summary of the Tobit model.

A truncated dependent variable arises when values of the dependent variable are
excluded from the sample, either by choice of the researcher to use a (non-randomly)
selected sample of the population.

The aim of this chapter was to introduce those methodological issues about the
Tobit model of major relevance, and the appropriate statistical methods developed to

allow for consistent and efficient estimation of models that involve a limited dependent
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variable. The basic model assumes homoscedastic error variances but this assumption
is easily relaxed to allow for a relatively general form of heteroscedasticity. Most
damaging to the Tobit model is violation of the assumption of normality of w;, since
violation of this assumption produces inconsistent maximum likelihood estimates (see
Greene, 2002, pp.771-772).

Under the reparametrized version of the Tobit model, Olsen’s result (1978) has
the implication that no matter what the starting value is, if the iterative process
yields a solution it will be the global maximum of the likelihood function and hence

such estimator will be consistent and asymptotically normal.



Chapter 3

The t-Censored Regression Model

"My brain grew clearer, I understood that I was close to total collapse.
I put my hands against the wall and shoved to push myself away from
it. The street was still dancing around. I began to hiccup from fury, and
struggled with every bit of energy against my collapse, fought a really stout

battle not to fall down. I didn’t want to fall, I wanted to die standing”.
Paul Auster, The Art of Hunger
3.1 Introduction.

An natural way of extending Tobin’s model is to suppose that the distribution of the
perturbations is not normal, allowing us to assume some other symmetric distribution
like the Student-t. This selection is based on the robustness that the Student-t

posses; the t distribution provides a useful extension of the normal distribution for

43
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the statistical modeling of data sets involving errors with tails heavier than those of

the normal distribution (see e.g. Lange et al., 1989).

3.2 The Student-t{ censored regression model

In this section, we study the t-censored regression model which is defined by assuming
in (2.1) that the disturbances uy, ..., uy are iid ¢(0, 02, v), where t(u, 0, v) denotes
the t-distribution with location parameter j, scale parameter o2 and v degrees of
freedom. This is equivalent to consider that the unobserved random random variables

Y, ..., Yk are independent, with y} ~ t(x7 3,02, v), i.e. with pdf given by

Flyr: 8, 0%) = lc(y) {1 . 2_2,2}—(%1)/2’

o v
where z; = (yf — 2] 8)/o and c(v) = T((v + 1)/2)/v/7v T(r/2). In that follows the
standardized t(0, 1, v)-pdf will be denotes by #(z;v) = c(v){1 + 2%/v}~*+V/2 and
its cdf by T'(z;v). Considering this notation, we have P(y; = 0) = 1 — T'(a7 3/0;v)
for i € Iy and y; ~ t(zF' 3,02, v) for i € I}, where Ny and N; are the number of
observations on the sets Iy = {i : y; = 0} and [; = {i : y; > 0}, respectively. Hence,
the t-censored regression likelihood will be given by

T

oo = T (L)] 0[5 (B22)].

i€lp i€l




45

Since (3.1) reduces to the Cauchy censored regression likelihood function when v = 1
and also it converges to the Tobit likelihood function in (2.6) as v — oo, the t-censored

regression model provides a robust generalization of the Tobit model.

3.2.1 The mean and variance of a censored t-response

Writing the observed response y = max{0, u+ou}, where yu = 273 and u ~ ¢(0, 1, v),

we have for the mean of y that
E(y) = E(yly > 0)P(y > 0) + E(yly = 0)P(y = 0) = {p+ 0 E(u|u > —c)}T(¢;v),

where ¢ = pu/o. Similarly, but after some straightforward algebra, we obtain for the

variance of y that
Var(y) = {p* + 2ucE(ulu > —c) + c*E(u?|lu > —c)}T(c;v){1 — T(c;v)}.

Consequently, we need to compute the truncated moment E(uflu > —c) for k = 1,2
in order to obtain the mean and variance of y. We give these results in the Appendix

A5, for k= 1,2, 3,4, following from there that:

Elulu > —¢) = (Vi1> <1+%2) ;((Z?), v 1,

E(W’lu> —c) = (,/ i 2) T(CT(QC;;VV)_ 2

—cE(ulu > —c), v > 2,

where c_y = N/VT_Q c. We note for v > 2 that the first truncated mean can be rewrite

te_asv—2 : ,
also as E(ulu > —c) = /-5 % Hence, we obtain for the mean and variance
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of the t-censored model that
v c?
E(y) =uT(c;v)+ 0o (m) (1 + ;) t(c;v) (3.2)

and

Vary) = {1-T(c)}

v

X {;BT(c; V) + po Stlesiv—2)+0° (V - 2) T(c_ov— 2)}

By letting v — oo, we obtain from (3.2) and (3.3) the following results for the normal
censored mean and variance, respectively:

E(y) — p®(c) +0¢(c) and Var(y) — {1 — ®(c)} {p*®(c) + pod (c) + 0P (c)} -

3.2.2 A two-stage estimation procedure

Following Heckman (1976) (see also Maddala, 1983, Section 6.5), an initial consistent
estimator can be obtained by maximizing the log-likelihood function corresponding

to the dummy variables

1 if ;>0
A

which is given by

Z(l —d;)log{1l — T(c;;v)} + Zdi log T(ci;v), with ¢ =] /o,

icly i€l
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and is well-behaved (see e.g. Amemiya, 1984). Then, we get consistent estimates of
B/o and v. Using these estimates, we get estimated values of ¢;, t; = t(c;;v) and

T; = T'(c;;v). Now, considering equation (3.2) we have for v > 1 that
E(yz) = (Exl)Tﬁ + (c?ti)o—u + tiVm L= 17 SRR N, (34)

where 0, = o/(v — 1) and v, = vo/(v — 1). Thus, after getting estimates &, ¢; and
T; of ¢;, t; and T}, respectively, we estimate equation (3.4) by OLS. This yields the

following OLS estimates of 3, ¢, and v,:

> N 2 T N 27 F N 7+ -1 N

B > Liwiwy 2y GtiTiwy Yo b > i1 Ty
~ _ N o7y T N ~479 N ~279 N ~27
Oy = Zi:l citilix; Zi:l Gl Zi:l Gl Zi:l Ciliyi
~ N 77 N ~279 N 74 N 7

Vo Zi:l tilix; Zi:l il Zi:l t; Zz’:l tiYi

Finally, from these results we can recuperate the estimates for ¢ and v given by
6= (w—1)5, and v = 1,/5,.

3.2.3 Maximum likelihood estimation

By convenience, we consider in that follows the Olsen’s (1978) re-parametrization
v =70 and 7 = 1/0. Under this new parametrization, the log-likelihood function for

0 = (v, 7,v)T obtained from (3.1) is given by:

log L) = Z log {1 —T (z]v;v)} + Nilog T + Z logt (zi;v), (3.5)

i€l i€l

where z; = Ty; — 21, and

v+1 v 1 v+1 22
log #(z: v) = log T _1 r(-)——l P e (145 3
ogt(z;v) = log ( 5 ) ogl' (5 5 og(mv) 5 og( + V> (3.6)
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To derive the scores components S, = (dlog L/07), S; = (0log L/OT) and S, =

(0log L/0v), consider first the following partial derivatives:

0z 0z OT (zF;v) o
oy = —Iy, a——yi, T—t(xiv,y)xi
dlogt(z;v) 1 v+1 v 1 1 22
o §{¢( 2 )—w@—;}—ék’g(”?
()3 (7)
+= iy
2 v v v
OT (xfy;v 1 v+1 A 1
% — 5{1/;( : )—¢<§>——}T($?7§V)_§b01 (z]v;v) T (2] v)
11

where (x) is the digamma function, and by, (cx; v + k) is the truncated moment

defined by

o 2\ t(z v+ k) v
bem (cr; V) = Fllog (14 = L d ith ¢ = :
ke (Crs V) /Ooz {Og( —i—y)} T(oev T 1) z, wi Ch V+kc

(3.7)
A proof of the above partial derivative of T'(z;v) with respect to v is given in the

Appendix B. Thus, by considering also the ratios

T(ai ;v
R(a]~y;v) = % and 7(—xz{v;v) =

(2

t(—axlvv)  t@lyv)
T(—zI;v) 1 — T(zl~;v)’
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we obtain from (3.5) and (3.6) the following scores functions:

S, = =Y r(—alrv +(1/+1)Z%<1+%2)1xi (3.8)

i€ly i€l
S, = %—(u+1)§%<1+%2)1yi (3.9)
5, = ;{w(”‘;l)—¢(g>—§}{m—§fuxm}
T %;mxh; v)bor (a7 ;) ———;O{l— Tl )} R v)
- %glog(1+z—5>+%(le);%?(wrz—j)_l, (3.10)

where as was defined above z; = Ty; — 27 7.

Note when v — oo that 7(z;v) — r(z) = g((’?)) and R(zi;v) — R(z) = i)

so that in equation (3.10) we have S, — 0, while the equations (3.8)-(3.9) reduce to

the following Tobit’s score functions:

S, = - Z r(—xly)z; + Z(Tyi — zly)w; (3.11)

icly i€l

N
S = =D i —a s (3.12)

i€ly
Equaling to zero and applying some algebra, the (3.11) and (3.12) expressions can
be reformulated in terms of the original parametrization (37, )T through the Tobit’s

likelihood equations given by (2.9) and (2.10).
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3.3 The information matrix

In this section we obtain the observed and expected information matrix for the
Student-¢ censored regression model from the second partial derivatives of the likeli-

hood function (3.5). For this, we denote by S,y = 9 log L(0)/0ad\T = 95, /0N the

second partial derivative with respect to the components o and X of 8 = (4, 7, v)7T.

Thus, from (3.8)-(3.9) we obtain after some extensive algebra (see Appendix B) that

Sy = =Y R yv;v)r(alyiv) {R@viv)r] v v)

i€lp

T(Iz‘T%; v+ 2) T T T
- T(J:;;% V) (x5 y2)r (371 Yo; vV + 2) TiZ;

v+1 2\ 2 22
— 14 2 22142
1<l

) i (3))
5= (S5 {(1+2) - 22 (1+2) o
(

i€ly
1 1
S’yl/ = —5 ;{R({E?V; y)}QT(:U;Tny; I/) {1/} (V—2|— ) _y g)
— b (aTi0) = Ll b 3 3 R rsr(af iy

()L )

1 1 1/2
- 57 (V " 2) > {1+ Rl v)}T (2] v v + 2) (2] 32)*r (2] 72; v) 2

icly

1 2\ ! 1 2\ 2
- = zi(l—l—Z—Z) —(V+ >ZS,(1+Z_1) x;
V2 4 v v v
i€ly




and

ol

e (55) v () - iR (s R

{o(55%) -0 (3) - tm leFrav) - é(;ﬁ)r(w?% o
i;mh {0 (5) =0 (5) -~ aler) = S rtelin
Ui 4 St = 3 S el {of () = (5)

%(xZV)r(xiT% V) {¢ (V—; 1) ¥ <g) a g ~log (1 ! @)}

1
{1+ R(xiTv; V)}T(JZZT’}/Q; v+ 2)(x?72)3r(x?72; v+ 2)}

v(v+2)
11 AN 1 2\’
i 02 (145 (YD) (142 ,
213 ¢ v v v
<
where v, = /42 .
Using again that r(z;v) — r(z) = g(é)), and R(z;v) — R(z) = fc(;()z), as v — 00,

we obtain for the second partial derivatives that:
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Syw — — Z r(2) (@ y = r(2)wiz] — Z TiT;

i€l i€l
S’YT - § YiZi
i€l

Syw — 0
S ol 2

T _? - 4 i

i€ly

S‘ru — 0
SZ/V - 07

which agree with the corresponding Tobit results given in (2.30)-(2.32)

3.3.1 Expected information matrix.

To obtain the expected information matrix I(0) = —E{0?log L(0)/0000"}, we need
truncated expectations the form of F {2‘1 (1 + Z—VQ)?S |z < c} , where z ~ t(0,1,v),
which are obtained from the results in the Appendix A. We need also truncated
expectations defined by (3.7) which need to be computed numerically. Hence, using

appropriately those results, we obtain that I(f) has (block-matrix) elements I, =

—E{S,\} given by
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Z R(x]~;v)r

1€y

T(xlva;v +2)

(

1

2

2

T(xfv;v)

$'77

T

(7 72

) {R(z]

v)r(

! viv)

. <xm;u+2>}wf

v+3

v+ 1 T(zfy9;v +2)
) Z Tyiv) L
i€ly ’

T(xf

1 /v—-1

i€l

i€lp

ZR

7,6]0

v+2

i€lp

|l

1%
= N
T2 (1/—1—3) v

1

T(v+1)(v+3)

v —
+
1

72

%}jumﬁmun%@?wm{w

ot {o

1 T
1) r(z; 7;

2
v+

1 /v+1 Z T(x;[
T\Vv+3)/ “ T(
i€l

TA, .
'%i")/ay

1

Y2;V

+2)

(55) -+ G) -t
_¢<%>—%—log(l+

1 1/2
2v ( ; ) > {1+ R(a] v )}T (2] v v + 2) (2] 72)*r (] y2; v) s

v+1

o)

@%@Nﬁ%w+”}%ﬁ

(2]

0

v+ 2

(455) T riatrin) + 2

i€ly

A

U 1/2 T(x?727 v+ 2)< T
T(z]v;v)

v+1

T V2
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) (i v);

(@] y)r(a]~; V)} r

AJV)}%

VT@?WHF+%}$

x; ’)/2,V+2)

v+ 3

)35

T(zlv;v)

(z; 7>2
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and
b= e {0 St e () v ()
n EZ{R(%T% )} {w (V —; 1) — 9 (g) —bor (7 7;v) — %(ﬁv)r(x?’% V)}2

i€lp

+ i {¢ (V; 1) _y <g)}§R(:riTy; V) {¢ (1/—2#1) Ly (g) oy (o)
(] y)r(a) V)} + % > Rl viv) (@] viv) {% +log (1 N @) }

icly
1
v(v+2)

| = NS

> Ry ) {1+ Ry v)}T(a]vo; v + 2) (2] 1) r (] 723 v + 2)
i€lp

! Z {(xiTW)r(xiT’Y; v)+ (V i 1) Tlwinziv+2) (] y2)* (@] as v + 2)} :

+
v(v+1)(v+3) ieh v+ 2 T(zl~;v)

DO | —

It follows as v — oo that

Z’ielo ciir] + Zie[l ] —% Zieh d;x; 0
I(@) - _% Zie[l bix; %Nl + %2 Zz‘eh (x?7>bi 0 )
0 0 0

where ¢; = R(z{7)r(afy) {R(ziy)r(z{v) — (27 72)r (z772) } and di = {r(z]v;v) + (z{7)}.
Finally, for the expected information matrix of the original parametrization ¢ =

(8,0,v), we have J(¢) = (00/0¢)T1(0)(00/0v)), where the Jacobian matrix (08/0v)

is given by
i =18 0
V=1 0 -% 0
0 0 1
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3.4 Consistency and asymptotic distributions.

Since our censored t-regression model satisfies the standard regularity conditions, we
have that the maximum likelihood estimator § = (T, 7,0), of 0 = (v, 7, v)T, verifies

that

VN —8) 5 Niyo(0,1(6)7Y),

as N — oo, where [(0) is the information matrix described above in Section 3.3.
Moreover, considering that the Jacobian of the transformation (17, 7,v)7
(BT, 0,v)T is given by V =, previously defined, we have for the MLE 7 = (BT, 7, 0)7

of n= (87, 7,v)T, that:

VN — 1) =5 Niyo (0, (VI()VT) 7).



Chapter 4

Applications and examples

"Memory, then, is not so much as the past contained within us, but as
proof of our life in the present. If a man is to be truly present among
his surroundings, he must be thinking not of himself, but of what he sees.
He must forget himself in order to be there. And from that forgetfulness
arises the power of memory. It is a way of living one’s life so that nothing

1s ever lost 7.

Paul Auster, The Invention of Solitude

4.1 A first illustrative example: Tobin’s data

In this section we provide to the reader two examples were the Student-t model is
applied. In the first place, we use the data used in Tobin’s paper and included in

the survival package from R. Two models are adjusted to the data set: the normal

26
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model, meaning, the Tobit model, and then with several values for the degrees of
freedom parameter (known), we fit a independent ¢ censored regression model. Thus,
when v — oo, the behavior of the t-model should behave as in the normal case.
For the data corresponding to Tobin’s paper, the response is the durable goods
purchase (the limited dependent variable), and the explanatory variables are age in
years of the head of the spending unit and liquidity ratio assets (x 1000).

In both cases, the normal and the Student-t cases, the estimations were obtained
throw a maximum likelihood numerical procedure. The standard error were taken
as the solution of the expected information matrix, on each corresponding set of
parameters. As can be seen in Table 4.2, the approximations of the estimates for the
beta parameters are quite reasonable, and according to what we supposed, when v
tends to infinity, the normal model is achieved. The results of the fitted models are

reported in the following tables:

Parameter Estimate SE Z p-value  log L(#)
Intercept 15.144 16.079 0.942  3.46e-01 -28.9
Age -0.129 0.218  -0.590 5.55e-01

Quant -0.045 0.058  -0.782 4.34e-01

log(c) 1.717 0.310

Table 4.1: Normal disturbances case.
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Parameter Estimate SE Z p-value  log L(6)
v=>717 Intercept 11.712 16.291 0.719  4.72e-01 -29.2
Age -0.124 0.196 -0.633 5.27e-01
Quant -0.0314 0.06 -0.519  6.04e-01
log (o) 1.609 0.340
v =15 Intercept 13.513 16.224 0.833  4.05e-01 -29.1
Age -0.127 0.208 -0.610 5.42e-01
Quant -0.038 0.059  -0.651 5.15e-01
log(o) 1.667 0.323
v = 50 Intercept 14.651 16.130 0.908  3.64e-01 -29
Age -0.128 0.215 -0.596 5.51e-01
Quant -0.043 0.058  -0.741 4.59e-01
log () 1.702 0.314
v = o0 Intercept 15.139 16.080 0.942  3.46e-01 -28.9
Age -0.129 0.218  -0.590 5.55e-01
Quant -0.0455 0.058  -0.781 4.35e-01
log (o) 1.717 0.310

Table 4.2: Independent Student-t case, v parameter is considered as known. log(o) is
the natural logarithm of o parameter.

4.2 A Monte Carlo simulated data application

A Monte Carlo study is employed to check the behavior of our estimations. We are
going to take the following configuration for the response variable: ¥ = max{m(X)—
e,0},m(X) = 1+ 3X, with X ~ Uniform[0,1] and e ~ #(0,1,v). The sample
size is N = 100,250 and 500. On the other hand, the number of Monte Carlo
simulations is 1000. Several values for the v parameter has been considered. The
reported estimations for 3y, 41,0 and v are detailed in Table 4.3. The values for the
beta parameters were Jy = 1,31 = 3, and o = 1. In all the cases, the estimated

parameters were very closed to the real values. The estimation for the degrees of
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freedom parameter shows to be quite similar to the real one chosen. A Newton type
optimization procedure was use to fit the simulated data in all cases. Standard errors
are given in the parenthesis form, and were estimated from the expected information
matrix. As the real value for v grows, the estimation has a larger standard error, as
in the v = 12 case, and probably many times over and under estimates the degrees
of freedom significantly. In general, estimations has a good behavior under different

values for the N sample size.

N 100 250 500 | N 100 250 500
v 16682 15522  1.5232 v 32345  3.0980  3.1298
(0.7506)  (0.2919)  (0.1836) (1.0621)  (0.7956)  (0.6569)
B 1.0080  0.9974  0.9994 Bo 1.0535  1.0174  0.9982
(0.2943)  (0.1745)  (0.1264) (0.2184)  (0.1737)  (0.1103)
v=15 f 29841  3.0002 3.0050 |v=3 B 29330  2.9491  3.0053
(0.5164)  (0.3024)  (0.1350) (0.4571)  (0.2931)  (0.1873)
o 09945  1.0042  1.0004 o 10014 09770  0.9983
(0.1685)  (0.0997)  (0.0697) (0.1366)  (0.0839)  (0.0637)
v 6.038  6.5105  6.5596 v 121033 13.0817  12.9580
(2.9812) (4.0862) (1.6359) (6.8763)  (6.7403)  (6.3284)
Bo 1.1317 09774  1.0313 Bo 13310  1.0289  1.0254
(0.2111)  (0.1404)  (0.1098) (0.1125)  (0.0876) (0.2332)
v=6 (B 28511  3.0301 29069 |v=12 B 29234  3.0140  3.1071
(0.4343)  (0.2115)  (0.1393) (0.3608)  (0.1936)  (0.4273)
o 09803  0.9654  1.0073 o 09763  1.0195  0.9982
(0.1487)  (0.1063)  (0.0773) (0.0260)  (0.0598)  (0.0170)

Table 4.3: Independent Student-t case, v unknown. All the parameters were estimated
using a 1000 Monte Carlo sample size.

Another simulation analysis was performed, considering a similar configuration
for the response variable on the previous example: Y = max{m(X) — e, 0}, m(X) =

143X, with X ~ Uniform[0,1] and e ~ (1—¢) X N(0,0%)+e x N(0,2 x ¢?), 0 = 3,
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and £ = 0.09999(contaminated normal distribution). The sample size is N = 250.

The results are presented in the following tables:

Parameter Estimate SE Z p-value  log L(6)
Bo 0.919 0.3843 2.39 1.68e-02 -549.3
061 2.962 0.6642 4.46 8.19e-06

log(cr) 1.061 0.0517

Table 4.4: Simulated analysis from e-contaminated normal distribution data, fitted

with a Student-t; log(o) is the natural logarithm of o parameter.

Parameter Estimate SE Z p-value  log L(0)
v="T Bo 0.917 0.3711 2.47 1.35e-02 -550.1
51 2.862 0.6524 4.39 1.15e-05
log() 0.956 0.0583
v=15 [ 0.914 0.3769 2.42 1.53e-02 -549.3
51 2.909 0.6572 4.43  9.56e-06
log(o) 1.007 0.0551
v=50 [y 0.916 0.3817 2.40 1.64e-02 -549.2
51 2.945 0.6617 4.45 8.53e-06
log(o) 1.043 0.0528
v=oo [ 0.918 0.384 2.39 1.67e-02 -549.2
01 2.958 0.664 4.46 8.27¢-06
log(o) 1.056 0.052

Table 4.5: Simulated analysis from e-contaminated normal distribution data, fitted
with a Student-t; he v parameter is considered as known. log(o) is the natural loga-

rithm of o parameter.

The fitted values seems to behave quite similar to the normal case, when v — oo, which shows the
capability of the t-model to fit the normal contaminated data.



Chapter 5

Conclusions and further work.

"The unknown is rushing in on top of us every moment. As I see it, my
job is to keep myself open to these collisions, to watch out for all these

mysterious goings-on in the world 7.

Paul Auster, The Art of Hunger

5.1 Conclusions.

In this work we developed the alternative approach of the censored regression model,
with emphasis on Tobit type models. We have shown how the analytical calculations
combined with simulations can be used to organized a systematic study of econometric
applications of these models.

The re-parametrization used shows that in our case, the global maxima is also

achieved. We have illustrated the ideas in the context of models with censoring on

61
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the left of zero, and real valued responses, which can also be extended to many other
econometric models.

Based on a robustness arguments, Student ¢ models make possible the analysis
and estimation with no significant difficulty.

The performance of Newton type algorithms allowed us to get adequate approxi-
mations of the regression parameters.

The calculations based on our simulated data in Chapter 4 have been enormously
useful for supervising how the degrees of freedom of the model can be estimated.

The information matrix was analytically obtained, throw straightforward deriva-
tives calculations, under the assumption of unknown v parameter.

Special features that includes different ways of estimate the ¢-censored model, and
how to conduct the statistical inference throw non normal assumptions, and rather
general conditions, are considered as future work. Part of these issues are briefly

discussed in the following sections.

5.2 The scale mixture representation of the Student-
t distribution.

As it is well known, the ¢-distribution can be represented as scale mixture of the

normal distribution. By exploring this fact, a EM algorithm type could be explored
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to obtain the maximum likelihood estimators. That is, considering that an equivalent

specification of the model, y; oy t(xfB,0% v),i=1,..., N, is given by

* ind.
Yi ’Ui ~

N(@TB,v7'0%) and v % Gamma(v/2,v/2),

i=1,..., N. Hence, by augmenting the data (y; = max{0,y;};i = 1,..., N) with the
missing quantities (v;;i = 1,..., N), we obtain the following completed log-likelihood

function:

v
log Lo (0) = Zlog (1_q><\/U_’TM)>+Nlloga—%Zvizi2

i€l

N
|
+ > {élogvi +logg(vi)}, (5.1)
=1

where as before z; = (y; — 21 3) /0, and g(v) is the Gamma(v/2,v/2)-pdf, i.e.:

v v v v v

log g(v) = 3 log <§) —logT <§> - (5 — 1) logv — V- (5.2)

Considering (5.1) the following EM scheme can be implemented to compute the MLE:
(i) Calculate the function: Q(0,6x) = E[log Lc(6k) | y1,-- -, yn]

(il) Maximize Q(6,6y) with respect to 6.

In the context of our Tobit model, we should define the information that we might

consider as latent, in order to simplify the resulting expressions. The variables may
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be written in the following representation:
Y; = Z1{Z; > 0}, Zi | xi ~ t,(x] B,0%).
So, what we actually need to apply this EM scheme is:
(i) Find the likelihood of (z;,Y;) and then (z;,Y;, Z;).
(i) Calculate the function: Q(6,0%) = Eflog LE(6%) | 21, Y1, ..., Tn, Y2

5.3 Further extensions of the censored regression
model.

Further work is steel needed in order to apply these models to new and existing prob-
lems, and also into a theoretical development work.

In first place, let’s consider presence of measurement error. Typically, it is assumed
in Tobit models that the exogenous variables are bounded constants and are exactly
observed. However, in many real problems, such assumptions are not always appro-
priate, and in most cases may result in inaccurate and inconsistent estimates. In this
context, several authors have considered the censored regression model with presence
of measurement errors. Wang (1998) considers the censored regression model with

errors-in-variables as
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yi = z/ B+
yi = max{y;,0}

T = &+ (5:3)

where & € R” are the unobserved variables; 3y, 31 the regression coefficients, y;, ;
the observed variables, and u;, v; the errors. In his work, Wang considered that u;, v;,
and ¢; are independently and normally distributed with means 0, 0, p¢ and variances

Ou, 2y, ¢, Tespectively.

As we know, the presence of measurement error causes many difficulties and com-
plexities in the statistical inference process of the model, basically because now the x;
are no longer constants and therefor its distribution must be included in the likelihood
function of the model.

The results of Olsen (1978) concerning the existence of the unique global max-
imum likelihood estimate (MLE) for the model (2.1), and the results of Amemiya
(1973) concerning the asymptotic normality of the MLE can be used to obtain the
corresponding results for the model in (5.3). The log-likelihood function of model

(5.3) is, up to a constant
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_ Yo + i N Ny 1 T \2
logL = Z@( NG )_TIOgUw_EEI:(%_%_%%)

N 1 &
— logdetS, — 5 2(1; — ) TS (s — ). (5.4)

where (Y0, 71, Ow, [z, 2z) are related to the original set of parameters (5o, 51, oy, fte, Le, 2y)

throw the identities

Bo = Yo — MZA% , P = (] + A)%, Oy = Ow — ’71TZxA’717

fe = o 5 Be=So(I+A)""

where A = Eglzv.

Because of the uniqueness mentioned above, the maximization of (5.4) can be
obtained using standard numerical methods such as Newton-Raphson. First and
second derivatives needed for this procedure are given in Wang, 1998. Potential work
is based on the same model proposed by Wang, with the assumption of Student-¢
distribution of the disturbances u;, ¢ = 1,..., N, and keeping v;, x; independent and
normally distributed, : =1,..., N.

Bayesian framework.
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Many applications of censored regression models are not just of frequentist’s in-
terest; there’s also simulation based methods (among some others) developed by
Bayesians (Chib & Greenberg 1995, Geweke 1989, Chib 1992), which are strongly
related to Markov chain Monte Carlo (MCMC) techniques. In the particular case of
Tobit models, the Bayesian approach focus on the posterior inference of the regression
coefficients.

Let’s consider the Tobit model of Tobin (1958), in which the observation is gen-
erated by the model in (2.1). Once the likelihood function of this model in (2.6) is
multiplied by the prior density, is difficult to simplify for use in the Gibbs sampling
algorithm (Geman & Geman, 1984; Gelfand & Smith, 1990). In this context, the
parameter space is enlarged considering as latent data those observations which are
censored. To see this, notice that z = (z;),7 € Iy, with [y as defined in Section 3.2, is
the vector containing the latent data, and Yy = (v1,...,yn) is the observed data.

Thus, the Gibbs sampler apply to the blocks 3, 02, and z, is based on the calcula-
tions of the full conditional distribution of 8 | Y, 2,02, 02 | Yy, 2,3, and 2 | Yy, 3, 0.
This distribution are all tractable and the Gibbs sampling is readily applied. (For
more details about these distributions, see Chib & Greenberg 1995). This MCMC ap-

proach can be straightly modified with the independent Student-¢ link with v degrees
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of freedom (see Albert & Chib 1993a).

Finally, another important topic is to consider the censored regression model with
skew-elliptical distribution of the error terms. This kind of approach generally pro-
vides more flexibility and more robust estimates of the parameters in the model.
Distributions such the Skew-t, and the Skew-normal are typically used to fit multiple
regression models. In order to extend, and also to compare performance and behavior
of censored regression models, further work is required, proposing different types of
error terms distribution. The work will focus again on the estimation and the infor-
mation matrix, which are basic inferential matters needed to overcome a complete

study.



Appendix A

Some results on truncated
distributions.

A.1 Moments of the truncated normal distribu-
tion.

Suppose the random variable X is N (0, 1), and we consider the distribution of X

given X > ¢;. The mean and variance of this truncated distribution are given by

<Z5(Cl)

E(X|X >c) T=o

= M,
VCL’I“(X | X Z Cl) = 1- Ml(Ml — Cl).

If the truncation is from above, so that we consider the distribution of X given X < ¢y,

then

E(X|X§CQ) = :Mg

VCLT’(X | X S CQ) = 1- MQ(MQ — CQ).
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If the distribution is double truncated, so that we consider ¢; < X < ¢y, then

EX|a<X<c) = %:M
P(c1) — cagp(ca)
(I)(CQ) - (I)(Cl) .

Var(X | < X <) = 124 &

If X has the normal distribution with mean p and variance ¢ (instead of mean 0
and variance 1), then in the preceding formulas we have to replace X, ¢, and ¢y by

(X—p)/o, (c1—p) /o, and (co—p) /o, respectively (Johnson and Kotz, 1970, pp. 81-3).

A more general result is given in the following lemma.
Lemma A.1: Let z ~ t(0,1,v). Then for any integrable function g:

E{g(2)|z < ¢} = E{g(—2)|z + ¢ > 0}.

A.2 Some derivatives of ¢(-) and ®(-).

Very often we need the derivatives of functions of the form ®(a/\) and ¢(a/A) with

respect to the parameters a and A. Using that

oly) = (2m) e

o) = [ o
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it can be verified (using the standard formulas for finding a derivative of an expression

with an integral sign) that

0P
Ox
0P
o\
¢
Oa
¢
O\

A.3 The Student-t Distribution.

The Student distribution with location parameter y, scale parameter o2, and v degrees

of freedom can be defined as the distribution of the random variable Z = X/\/Y /v,

where X and Y are independent random variables with X ~ N(u,0?) and Y ~ 2.

The notation Z ~ t(u,0?,v) is used to refer this distribution.

It is say that a random variable Z has standard Student-t distribution with v

degrees of freedom, now denoted by ¢(0, 1, ), if its density function is
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where

vl
clv) = —F(lz) e

FETG)

Note that t(—z;v) = t(z;v), and t'(z;v) = —

[NJAN

zt(z;v) (v + 1)
v+ 22

The associated

cumulative distribution function is:

T(Zv)=P(Z<z) = /Z t(w;v)dw.

Note that T"(z;v) = t(z;v) and T(—z;v) =1 — T'(z;v).

Letting Y = u+ 07, we get:

PY<y)=Pu+oZ<y) = P(Z<y_”) :T(y_“;u)

Hence, the density of YV is

] _ 1 1 _ 9\ —(¥+1)/2
fry) =—t (y 'u;l/) = —c(v) (1 + - (y M) ) , —oo <y <oo.
o o o v\ o

This distribution is called ¢-distribution with location parameter u, scale param-

eter 02, and v degrees of freedom. The notation Y ~ t(u,0? v) is used in such

case.

Another stochastic representation of Y ~ t(u, 0%, v), is given by
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Y £ u+oVi2X,

where V' ~ Gamma(v/2,v/2), and is independent of X ~ N(0,1). From this stochas-

tic representation, is easy to show that

EY) = p v>1

Var(Y) = o, v>2.

A.4 Truncated Student-¢ Distribution

Let Y ~ #(u,0% v). The truncated distribution of Y on the set A = [ay,as], —00 <
a; < as < o0, is given by

1 tley) forye A

fY|YeA(y) = o T(az;v)=T(azv)’ '
0, in other case,

where z = (y — p) /o, and o; = (a; — p) /o, i = 1,2.

The mean of Y given Y € A is

o tlayv)(v+a3) —tlag;v)(v + a?)
v—1 T(ag;v) —T(ay;v) ’

E(Y|Y €A =u+ v> 1.

Letting as — oo, we have
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v+ a?

v—1

E(Y|Y2a1):u+a( )R(al;u),

where R(o;v) = t(a;v)/T(—a;v) is known as the failure or hazard function, and in

the normal case with v — oo is called inverse Mill’s ratio.

Noticing that the rate ('ﬁfﬁ) > 0, provided v > 1, we have that E(Y) < E(Y |

Y € |a1,0)). Analogously,

V—i—ozg

2) Rl

EY|Y € (—00,a5]) = u—a(

]/ R
For Z ~ t(0, 1, v), a more general result can be obtained by using the scale mixture

representation

Z LV,

where V' ~ Gamma(v/2,v/2), and X ~ N(0,1). Thus, by letting Z ) £z | a <

Z < b, and my(Zap)) = E(Z*¥ | a < Z < b), we have:

Ey {V_k/z (T(\/Vb; V) —T(Va; 1/)) Exv (Xk |VVa< X < \/Vb)}

mk(Z(a,b)) = T(b, y) — T(a; V) )

provided v > k.

Given a = 0 and b = oo, the above expression for the truncated moments become:
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mi(Zoey) = Bv{V T 2Exy (X¥]0< X <o00)}

= E(V*HE(X*|0< X <o0),

with:

r(s)
ak

where Mx  , is given in the following lemma:
Lemma 1: Let X ~ N(0,1). The moment generating function for the random

variable X (qp) £x la < X <bis:

MX(a,b)(t) = MX(t)

where My (t) = e!*/2.

A.5 Further properties of the t-distributions and
its truncations parents.

Lemma A.2: Let t(z;v) be the t(0,1,v)-pdf. Then:

<1+Z—:)m/zt(z;y)— H0;v) )t< ’“;mz;wrm).

O v +m
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Lemma A.3: Let z,, ~ t(0,1,v +m), with z = zy. Then:
t(0;v) po 2 T(cm;v+m)
(1/ + m) T(c;v) k(O VM),

L2\ /2 i
E >0, =
( ) lz+c 100 + m)
= /%™ ¢ and T(-;v + m) denotes

1+ =
v
the cdf of zp,.
Lemma A.4: Let my(c;v) = E{z*|z + ¢ > 0}, v > k, where z ~ t(0,1,v). Then,

where my,(cpm; v+ m) = B{zF |2, + cpn > 0}, ¢

for k=1,2,3,4 it follows that:

2
v <1+C—) r(cv), v>1,
14

mi(cv) = U1
me(c;v) = ” i 2T (CT_(Q;;VV)_ 2) —cmy(cv), v>2,
ms(c;v) = = 12)1/;/ 3 (1 + %2>2 r(c;v) + *mi(cv), v >3,
mien) = g ey i, o
vk ey > k.

where r(c;v) = ;1((00;,1;)) and c_, = /%5
The proofs of Lemma 1 to Lemma 3 are straightforward, and for the proof of

Lemma 4 see Arellano-Valle and Genton (2008). Finally, from the Lemmas 2 and 4

we obtain following necessary truncated moments for the computation of the expected

information matrix of the ¢ censored model:
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Lemma A.5: Let z,, ~ t(0,1,v +m), with zo = z. Then:

E{(Hé)_lmm} - () e
E{(Hz_j)‘lzmwo} - () (U_VM)”T<;3(;;j)2>ml<@;y+z>
- (e
E{<1+—2)_1z2|z—|—c>0} - <V:1> (;/:2) T(gf(;cy;;;2)m2(c2,y+2)
- (%) o-erten
E{<1+Z—V2)222|2+c>0} = <y:1) (Zig) (V_VHL) T(;f(;c’j;r)4)mz(c4;u+4)
- () () 20
o\ —2 3/2
E{(1+%) 23|z+c>0} = <V:1) (Zig) (V:4) T(;f(’cljj)4)m3(c4;u+4)
N EV . 12 SQV;(;)U{Z()C; V:(C . 2)}
Ut 2 T(v) 2@V
ef(1+2) tremol = (525) (552) (%) T St v
- (wyrl) u:3){3_6”(0;”)
() )

where as before ¢, = @/%’“ c.



Appendix B

Derivatives.

B.1 The first derivatives T'(c;v) with respect to v

?
1V
toaurs ). PiGve2d
_ %{w(%)_w 5)—%}T(c;y)——/oot(z;u)log(l—l—%)d
b Sl G (6v),
sssss by Lemma A.1
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and by Lemma A.4

ViR (V+2

Zt(zv+2)dz =

)T(c; V) {1 — er(c;v)).

v

—00

B.2 Second derivatives

Considering again that 0z;/0y" = (02;/0y)T = —z! and 02;/01 = y; = (z; +x77) /T,

we obtain from (3.8)-(3.10) that

Sy = D R viv)r(@ viv) + R v o) (o] v v))ziw]

i€lp
v+1 2\ 7! 22 2\ T
_ 142 _9Zi 14z ]
() { (e 2) 22 (10 2) i
1 2\ 2 2\ 2
i€lq
OR(x] v;v) or(z!v;v)
Sw = —;{TT(IZ-T% v) + R(x]; V) (%
i€l

, 2\ 1 3 2\ 2
v 4 v v v v v
i€l
where R'(z;v) = OR(z;v)/0z = (1+R(z;v))R(z; v)r(z;v) and 7' (z;v) = Or(z;v) /02 =

[t'(z;v) /T (z;v)]|—[r(z;v)]?, with t/(2;v) = Ot(z;v)/0z = t(z;v)[0log t(z; v) /Dz] given

by (see also Lemma A.1)

1 2\ 2 2
t’(z;y):—(y+ )z(l—l—z—) t(z;v) = — v zt( v z;v—l—Q);
14 1% 1% 1%
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and

(Z) — b01(a:;fpﬁy; V) — %(:U?’y)ri(x?% V)}

ov v?

TA,.
— 5D Ry {%w' (V s %w’ (g) _ Owleiyiv) L @Iyt v)
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where, by applying appropriately the results in Lemmas A.1-A.5,

OR(xT;
R(a(;zl;% V) — {1+R(l‘?’7, )}2 (.CE iiid )
— LU+ RGT) {w ( 1) =0 (3) = bulal ) = L(al et}
or(z{v;v) [ Ologt(zfy;v) 1 0T(z{y;v)
ov = r(aivv) { v - T(xTv;v) v }

B %r@%? V) {—log (1 - (xiTJ)Q) + (le) (%TV’V)Z (1 N (xiTVV)Q)l

b () - 1= (e >}}

Obor (xlv;v) T 1 9T (x!v;v)
— a0 = Ttalw %V)T(:EiTv;y) v

1 wl 22 2\ dlogt(z;v)
+ T /_OO {_ﬁ (1 + ;) + log (1 + ) 5, t(z;v)dz

1 1
= 5{1701 (zlv;v)} - §boz(i€iT% V)

11 1
- G Il (i) - (1 = e}
N 1 1 T(/VJrQ(IjTrY,y—l—Q)b v+ 2 - L

20 +2 T (xT;v) 21 v iy '

With these results we obtain the second derivatives given in Section 3. Finally, to

compute the necessary ingredients of the expected information matrix, we note from
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Lemma A.5 that

E{(1+%2)1—§z?(1+2—5)2} — (V+3) CQ’CV;F)Q)
{es

027" 02,1/+2)}

1+

X

E{ () e (”—)} - <v+f><_ull3> R s %
( v )1/2T(02;1/—|—2)

v+2 T(c;v)

{02 - ()2 0+) ) - e ()

" v 1/2T(02,1/—|—2)
v+2 T(c;v)

E {ZZ? (1 + %2) = %Z? (1 * 272) _2} =W i(i)(_u?i 3 i(:)(_ugl gcrien)

202 T(co;v+2)
v+ +2)(v+3) T(gv)

car(cy v +2)

car(cy v +2)

x cyr(eyv+2)

E{ﬁ(“+§)l‘(yil)ﬁ(“+§)2} - TR T )

V2 T(co;v + 2) 8 (o
G Tr) 2ErT?

E{Q”? (”Z?ig)_l_(yjl)zf (“%2)_2} - _(V—T-(T)(_Vg—l)-?))—i_(y—i—lgzu—l—@ rav)

V2 T(co;v +2)
(v+2)(v+3) T(gv)

+ s r(caiv +2).

Under I, we need truncated expectation, the form of F {zq (1 + §>_ |z < c} ,
where z ~ t(0, 1, v), which can be obtained from the results in section 2. We need also

truncated expectations the form of {zq (1 + %)_ [log (1 + %)] |z < c} , which



need to be computed numerically.
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Appendix C

R routines and functions.

C.0.1 Fitting the normal model to Tobin’s data set.

library(survival)

tofit<- survreg(Surv(durable,durable>0,type=’left’) age+quant,data=tobin, dist=’gaussian’)
tobi<-cbind (y<-tobin$durable,x0<-1,x1<-tobin$age,x2<-tobin$quant)
toby <- transform(data.frame(y,x0,x1,x2))
toby [order(y),]

retobi<-toby[order(y),]
cen<-retobi[1:13,]

nocen<-retobi[14:20,]
X1<-cbind(nocen$x0,nocen$x1,nocen$x2)
X0<-cbind(cen$x0, cen$x1, cen$x2)
YO<-matrix(cen$y)

Yi<-matrix(nocen$y)
t0<-c(15.15,-0.129,-0.045,0.15)
NRcensored<-function(t0){

N1<-13

nu<-7

cont<-1

repeat{

h<-t0[4]

B<-rbind(t0[1],t0[2],t0[3])

£1<-dt (X0%*%B,nu)

£2<-1-pt (X0%*%B,nu)

suma0<-t (X0) %% (£1/£2)

£1<-(h*Y1-X1%*%B)

£2<- (nu+ (h*Y1-X1%*%B) ~2)
sumal<-t (X1) %*%(£1/£2)
grad1<--sumaO+(nu+1)*sumal
£1<-(h*Y1-X1%*%B)

£2<- (nu+ (h*Y1-X1%*%B) "2)
grad2<—N1/h—(nu+1)*t(Yl)%*%(fl/fQ)
grad<-c(gradl,grad2)

f1<-(nu- (h*Y1-X1%*%B) ~2)

£2<-(nu+ (h*xY1-X1%*%B) ~2) "2
hh<--N1/(h"2) - (nu+1) *t (Y1°2) %*%(£1/£2)
f1<-(nu- (h*Y1-X1%*%B) ~2)

£2<- (nu+ (h*Y1-X1%*%B) "2) "2
f3<-matrix(0,nc=1,nr=7)

for(i in 1:7){f3[i,1<-(f1/£2) [i,1*Y1[i,]}
f4<-matrix(0,nc=3,nr=7)
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for(i in 1:7){f4[i,]1<-t(X1)[,i1*£3[i,1]}
hBh<-(nu+1)*rbind (sum(£f4[,1]),sum(f4[,2]),sum(£f4[,3]))
£1<-dt (X0%*%B,nu)

£2<-1-pt (X0%*%B,nu)

£3<-((nu+1) * (X0%*%B) / (nu+ (X0%*%B) ~2) - (£1/£2))
f4<-0

for(i in 1:13){

£5<-f4+(£1/£2) [i,1]*£f3[i,1]*matrix (t(X0) [,1] ,nr=3,1)%*¥%matrix(X0[1,] ,nr=1,3)
f4<-f5

}

suma0<-f4

(nu- (h*Y1-X1%*%B) ~2) / (nu+ (h*Y1-X1%*%B) ~2)
m<-matrix(X1[i,],ncol=1,nrow=3)
sumal<-sumaO+(m%*%X1[i,])*esc[1,1]
sumaO<-suma2

}

suma2

hBB<-sumal-(nu+1) *suma?2

hi<-cbind (hBB,hBh)

h2<-c(hBh,hh)

H<-matrix(rbind(hl,h2),4,4)
theta<-t0-solve (H) %*%grad

print (theta)

dif<-(t(theta-t0))%*%(theta-t0)

if (sqrt(dif)<=0.1) break

t0<-theta

cont<-cont+1

}

return(theta,-solve(h),cont)

}

summary (NRcensored (t0=c(15.15,-0.129,-0.045,0.15)))

C.0.2 Fitting the Student-t model, with known r degrees of
freedom to Tobin’s data, and simulated data.

my.t<-survreg.distributions$t

tfitl<-survreg(Surv(durable,durable>0, type=’left’) age + quant,data=tobin,dist=my.t,parms=7)
tfit2<-survreg(Surv(durable,durable>0, type=’left’) age + quant,data=tobin,dist=my.t,parms=15)
tfit3<-survreg(Surv(durable,durable>0, type=’left’) age + quant,data=tobin,dist=my.t,parms=50)
tfit4<-survreg(Surv(durable,durable>0, type=’left’) age + quant,data=tobin,dist=my.t,parms=200)
summary (tfitl); summary(tfit2); summary(tfit3); summary(tfit4)

censoredsample<-function(n){
epsilon<-0.09999
y<-matrix(0,ncol=1,nrow=n)
x<-matrix(0,ncol=1,nrow=n)
for(i in 1:n){
m<-function(x){

14+3*x

}

x[i,1]=runif (1)

#e=rt (n=1,df=12)
e=(1-epsilon)*rnorm(n=1,0,3)+ epsilon*rnorm(n=1,0,3%2)
yast=m(x[1,1])- e
y[i,1]=max(yast,0)

}

list (y=y,x=x)

}

cns<-censoredsample (n=250)



yt<-cns$y

xt<-cns$x

contnormal<-transform(data.frame(yt,xt))

newtsimulated<-contnormal [order(yt),]

for(i in 1:(length(newtsimulated[,11))){

if ( newtsimulated$yt[i]==0) indice=i

else break;

}

tcen<-newtsimulated[1:indice,]

notcen<-newtsimulated[(indice+1): (length(newtsimulated[,1])),]
X1<-cbind(1,notcen$xt)

X0<-cbind(1,tcen$xt)

YO<-matrix(tcen$yt)

Yi<-matrix(notcen$yt)

NO<-length(YO)

Ni<-length(Y1)

my.t<-survreg.distributions$t

normfit<-survreg(Surv(yt,yt>0,type=’1left’) "xt,data=cns,dist=’gaussian’)
tfiti<-survreg(Surv(yt,yt>0,type=’left’) "xt,data=cns,dist=my.t,parms=7)
tfit2<-survreg(Surv(yt,yt>0,type=’1left’) “xt,data=cns,dist=my.t,parms=15)
tfit3<-survreg(Surv(yt,yt>0,type=’1left’) “xt,data=cns,dist=my.t,parms=50)
tfit4<-survreg(Surv(yt,yt>0,type=’left’) “xt,data=cns,dist=my.t,parms=200)
summary (normfit)

summary (tfit1)

summary (t£it2)

summary (t£it3)

summary (tfit4)

C.0.3 Simulated data, with unknown degrees of freedom.

mcestimates<-function(N){
estimates<-matrix(0,ncol=4,nrow=N)
for(k in 1:N){
tcensoredsample<-function(n){
y<-matrix(0,ncol=1,nrow=n)
x<-matrix(0,ncol=1,nrow=n)

for(i in 1:n){

m<-function(x){

1+43%*x

}

x[i,1]=runif (1)

e=rt(n=1,df=12)
y[i,1]=max(m(x[i,1])-e,0)

}

list (y=y,x=x)

}

tst<-tcensoredsample (250)

xt<-tst$x

yt<-tst$y
tsimulated<-transform(data.frame(yt,xt))
newtsimulated<-tsimulated[order(yt),]
for(i in 1:(length(newtsimulated[,11))){
if ( newtsimulated$yt[i]==0) indice=i
else break;

}

tcen<-newtsimulated[1:indice,]
notcen<-newtsimulated[(indice+1): (length(newtsimulated[,1])),]
X1<-cbind(1,notcen$xt)
X0<-cbind(1,tcen$xt)

YO<-matrix(tcen$yt)

86



Yi<-matrix(notcen$yt)

NO<-length(YO)

Ni<-length (Y1)

tl<-function(p){

g<-rbind(p[2],p[31)

logv=sum(log(1-pt (X0%*%(g/p[1]) ,df=p[4])))+
sum(log(dt ((Y1-X1%x%g) /p[1],df=p[4])))-Nixlog(p[1])
logver<--logv

}

k2<-nlm(tl,c(1,1,3,12))$estimate
estimates[k,]<-k2

}

est<-apply(estimates,2,mean)

list(est=est)

}

results<-mcestimates(1000)

results

nlm(tl,c(1,1,3,2))

nlminb(start=c(1,1,3,2), objective=tl)
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