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Chile to circulate and to have copied for non-commercial purposes, at its

discretion, the above title upon the request of individuals or institutions.

Signature of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND
NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY
BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR’S
WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED
FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS
THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER
ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH USE
IS CLEARLY ACKNOWLEDGED.

iii



To Paola and Emilio.

iv



Table of Contents

Table of Contents v

Abstract vii

Acknowledgements ix

1 Introduction 1

1.1 The Motivating Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 A Bayesian Classification Approach for Solving Authentication Problems 6

1.3 Prior Distributions on Probability Distributions . . . . . . . . . . . . 9

1.4 Dependent Dirichlet Processes . . . . . . . . . . . . . . . . . . . . . . 10

1.5 MCMC Methods in Conjugate Dirichlet Process Mixtures Models . . 14

1.6 Statistical Decision Theory . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Multivariate Bayesian Discrimination for Varietal Authentication of

Chilean Red Wine 21

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 The Motivating Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Classification Using Multivariate Bayesian Classifier . . . . . . 26

2.4.2 A General multivariate Bayesian Linear Model for Grape Vari-

ety Authentication . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.3 Application to the Wine Dataset . . . . . . . . . . . . . . . . 30

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Appendix MCMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

v



3 Multivariate Bayesian Semiparametric Models for Authentication of

Food and Beverages 40

3.1 abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 The motivating dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Some Background Material . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Classification performance of the proposed model . . . . . . . . . . . 50

3.7 Performance of the model with wine dataset . . . . . . . . . . . . . . 53

3.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Optimal Information in Authentication of Food and Beverages 63

4.1 abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Decision-theoretic approach to find optimal information . . . . 67

4.3.2 Estimation of the expected loss function . . . . . . . . . . . . 70

4.4 Application to the wine dataset . . . . . . . . . . . . . . . . . . . . . 74

4.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Further Research 86

5.1 Motivated by the wine dataset . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Motivated by near-infrared spectroscopic measurements . . . . . . . . 87

Bibliography 89

vi



Abstract

Food and beverage authentication is the process where food or beverages are ver-

ified as complying with their label description. From the viewpoint of consumers’

acquisition, the mislabeling of foods represents a commercial fraud. Authentication

is important for foods and beverages with high commercial value, like honey, wines

or olive oils, since their prices depend on their quality, variety or origin. Then, it

could be possible that these products will be mixed with similar of lower quality

substances to get a better price. Misleading labeling might also have negative health

implications, especially when food have not declared allergenic compounds.

The common way to deal with an authentication process is to measure a num-

ber of attributes on samples of food and then use these as input for a classification

problem. In this context, the present thesis proposes multivariate hierarchical mod-

els, parametric and semiparametric; these models are based on fixed and random

effects in order to model the mean response and different covariance matrices for

each category to be classified. The semiparametric model has the advantage of not

having to assume any parametric form, which may be particularly difficult to check

in multivariate cases. Furthermore, the model is formulated under the formalism of

dependent random probability measures for increasing its flexibility.

In many authentication applications there may be several types of measurable

attributes. Then, an important problem consists of determining which of these would

provide the best information, in the sense of achieving the highest possible classifica-

tion accuracy at the lowest cost. We approach the problem under a decision theoretic
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strategy. We adapted and applied two approaches for taking optimal decisions pro-

posed in a biomedical context, in order to solve the problem of selecting optimal

information.

The proposed models and methodology were applied to a dataset consisting of

concentration measurements of a number of chemical markers in samples of Chilean

red wines. The dataset includes determinations of nine Anthocyanins on 399 wine

samples, of which 228 were declared by the producers as Cabernet Sauvignon, 76

as Merlot and 95 samples as Carménère. The data set also includes determinations

of six Flavonols and four Organic acids, on 149 samples for which the anthocyanin

were also determined. The grape varieties in this subset were Cabernet Sauvignon

(101 samples), Merlot (19 samples) and Carménère (29 samples). All wine samples

has registered its valley and vintage. In the case of the semiparametric proposal, the

model was applied to a simulated dataset too.
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Chapter 1

Introduction

Consumers increasingly demand reassurance of the origin and content of their food

and beverages. The process through which food or beverages are verified as complying

with its label description is called food authentication (Winterhalter; 2007). From the

viewpoint of consumers’ acquisition, the mislabeling of foods represents commercial

fraud (Mafra et al.; 2008). Food authentication is important for foods and beverages

of high commercial value, like honey, wines or olive oil, because their prices depend

of their quality, variety or origin. It is then important to uncover unscrupulous

sellers who decide to increase their profit by adulterating these products with similar

but lower quality substances. Misleading labeling might also have negative health

implications, especially when the food has undeclared allergenic compounds.

Because of the growing demand from consumers of clarity and certainty in food ori-

gins and contents, the importance of food authentication has substantially increased

in recent years. The wine industry has been using the authentication procedure for

a long time. Substantial research efforts have been put into this particular topic.

Chilean wine represents an important part of Chile’s worldwide exports, which have

increased from 52 to 1,256 million U.S. dollars over the period 1997-2007. von Baer
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et al. (2005) report that some containers of Chilean red wine have been rejected in

Germany because they did not satisfy the parameters applied there to verify wine

varieties. These problems have a direct impact on producers and their income. The

main red wine varieties produced in Chile are Merlot, Carménère and Cabernet Sauvi-

gnon. Therefore, it is important for sustainable long-term growth to develop a reliable

system to verify product authenticity. In this sense, various authors have proposed

to differentiate among red wine varieties using their anthocyanin profiles (Eder et al.;

1994; Holbach et al.; 1997; Berente et al.; 2000; Holbach et al.; 2001; Otteneder et al.;

2002, 2004; von Baer et al.; 2005; Revilla et al.; 2001; von Baer et al.; 2007). Antho-

cyanins are a group of chemical compounds present in red wine, which confer to this

beverage its characteristic red color and are transferred from the grape skins to wine

during the winemaking process.

Holbach et al. (2001) and von Baer et al. (2007) additionally proposed combining

anthocyanin profiles with shikimic acid concentrations to differentiate between red

wine varieties. Fischerleitner et al. (2005) concluded that among Austrian wines,

Cabernet Sauvignon is the only variety that can be completely identified by its

shikimic acid content. The reason for this is that Cabernet Sauvignon concentra-

tions are far above those for other Austrian varieties. However, most authors con-

sider only simple relations between these compounds. The method approved by the

International Organization of Vine and Wine OIV in 2003 is also based on this princi-

ple (OIV; 2003). More sophisticated exploratory statistical methods for classification

purposes, based on anthocyanin profiles, have been proposed by Berente et al. (2000),

Otteneder et al. (2002), von Baer et al. (2005), de Villiers et al. (2005), and von Baer
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et al. (2007). Linear discriminant analysis and some variations of this methods (for-

ward or backward selection) have been used by de Villiers et al. (2005) and Aleixandre

et al. (2002). Other approaches include neural networks (Beltrán et al.; 2005; Kruzli-

cova et al.; 2009) and similarity index based on mid-infrared spectroscopy data (Bevin

et al.; 2006).

Probabilistic modeling for discrimination and authentication purposes was pro-

posed by Brown et al. (1999), who used Bayesian methods to discriminate 39 micro-

biological taxa using their reflectance spectra. In the special case of longitudinal data

analysis, Bayesian discrimination has been discussed and used by Brown et al. (2001),

De la Cruz-Meśıa and Quintana (2007), De la Cruz et al. (2007b), De la Cruz (2008)

and De la Cruz et al. (2008b). Binder (1978) describes a general class of normal-

mixture models, discussing some aspects of the use of such models for Bayesian clas-

sification, clustering and discrimination. Mixture models are extensively reviewed in

McClachlan and Peel (2000). Lavine and West (1992) describe Bayesian methods for

classification and discrimination using Gibbs sampling. Mallick et al. (2005) discussed

Bayesian classification using gene expression data, concluding from their comparison

with other methods, that the Bayesian classification approach performed better than

other popular alternatives. Rigby (1997) carries out a thorough comparison between

Bayesian and classical estimates of P , the probability that a new observation belongs

to one of two multivariate normal populations with equal covariance matrices. The

conclusion was that Bayesian methods generally provide less extreme and more re-

liable estimates of P . Similar conclusions were found by Brown et al. (1999) when

comparing Bayesian classification methods with classical alternatives such as linear or
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quadratic discriminant analysis. More recently, Agrawal et al. (2009) consider an in-

cremental framework for feature selection and Bayesian classification for multivariate

normal groups. In the present thesis we propose a model-based classification ap-

proach in order to verify that a food matches with its label description. The problem

of optimal information selection in an authentication process is also addressed.

1.1 The Motivating Dataset

We consider a dataset consisting of concentration measurements of a number of chem-

ical markers in samples of Chilean red wines. The dataset includes determinations

of Anthocyanins, Organic acids and Flavonols. All wine samples came directly from

wineries and include the grape variety as declared by the producer, the year of harvest

and the geographic origin or valley. Anthocyanins are a group of chemical compounds

present on the grape skins. They are transferred to the wine during the winemaking

process and confer to this beverages its characteristic red color. The dataset includes

measurements of nine anthocyanins (listed in Table 1.1) on 399 wine samples, of

which 228 were declared by the producers as Cabernet Sauvignon, 76 as Merlot and

95 samples as Carménère. The vintages included in the anthocyanin determinations

were 2001-2004. The valleys included in the anthocyanins determination sorted from

north to south of Chile are: Aconcagua, Maipo, Rapel, Curicó, Maule, Itata and B́ıo-

B́ıo. The Valleys range from 33 to 38 degrees latitude south, and provide a wide range

of soil types and weather conditions. Vinification was made at production scale and

samples were taken after malolactic fermentation, but before blending. Anthocyanin

determination was made by reverse phase HPLC (High Performance Liquid Chro-

matography) based on method described by Holbach et al. (1997), Otteneder et al.
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(2002) and OIV (2003) with minor modifications. More details about anthocyanin

determination can be found in von Baer et al. (2005) and von Baer et al. (2007).

Anthocyanin Abbreviation
delphinidin-3-glucoside DP
cyanidin-3-glucoside CY
petunidin-3-glucoside PT
peonidin-3-glucoside PE
malvidin-3-glucoside MV
peonidin-3-acetylglucoside PEAC
malvidin-3-acetylglucoside MVAC
peonidin-3-coumaroylglucoside PECU
malvidin-3-coumaroylglucoside MVCU

Table 1.1: Description of measured anthocyanins.

Flavonol and Organic acid are antioxidant compounds. The dataset include deter-

minations of six flavonol and four organic acids (listed in Table 1.2), on 149 samples

for which the anthocyanin were also determined. The grape varieties in this subset

were Cabernet Sauvignon (101 samples), Carménère (29 samples) and Merlot (19

samples) and the included valleys were Aconcagua, Maipo, Rapel, Curicó and Maule.

Most of the samples come from 2004 harvest and some of them come from 2002 har-

vest. Flavonols were determined by HPLC based on the methodology of McDonald

et al. (1998) with minor modifications. Organic acids were determined by a combi-

nation of reverse phase and ion exclusion chromatography in series, as described by

Holbach et al. (2001) and OIV (2004). More details about Flavonols and Organic

acid determination can be found in von Baer et al. (2007).
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Organic Acids Flavonol
Tartaric Myricetin
Shikimic Quercetin
Lactic Total myricetin
Acetic Total quercetin

Conjugate myricetin
Conjugate quercetin

Table 1.2: Measured compounds

1.2 A Bayesian Classification Approach for Solv-

ing Authentication Problems

We assume that an authentication problem can be solved by a classification approach.

In that context, we assume a training dataset comprising n units {(yi, xi, gi), i =

1, . . . , n}. Here yi = (yi1, . . . , yip)
′ ∈ Rp is the observed response vector for the ith

unit, xi = (xi1, . . . , xiq)
′ ∈ Rq is the vector of covariates for the ith unit and gi

denotes the known group label or class for the ith unit, gi ∈ {1, . . . , g}. Let yn =

(y1, . . . , yn, x1, . . . , xn, g1, . . . , gn) denote the complete data. Let yn+1 = (yn+1, xn+1)

be the observed data vector for a future unit, for which the corresponding label gn+1

is unknown. We adopt a predictive approach for classification, so the focuss is on

the inference about gn+1 i.e. we are interested in estimating P (gn+1 = k | yn, yn+1),

k = 1, . . . , g. The above probability can be approximated by

P (gn+1 = k|yn+1, y
n) ≈ 1

C

C∑
c=1

πkp(yn+1|θ(c)
k )∑

l πlp(yn+1|θ(c)
l )

. (1.2.1)



7

for details see Chapter 2. We propose classifying an existing unit, i, and a future one,

n+ 1, using

ĝi = arg max
k
P (gi = k|yn) and ĝn+1 = arg max

k
P (gn+1 = k|yn, yn+1). (1.2.2)

i.e. assigning the label as the category that maximizes the classification probability.

In practice, the authentication problem can be solved by computing the probability

that the product complies with its label description. To do so, we need a probability

model that adequately accounts for all the problem-specific features. We consider for

group k a generic hierarchical model of the form

yik | θik, xik ∼ p(yik | θik, xik), θik ∼ G(θik | φk). (1.2.3)

In simple words, the data vector yik for the ith sampling unit in group k are sam-

pled from a probability model parameterized by a vector θik. Here xik is vector of

covariates. The parameter vector θik can be partitioned into a common fixed effect

θFk and unit-specific random effects θRik. When the θRik are assumed to be generated

from a distribution parameterized by φk that belongs to a finite dimensional space,

the resulting model is of parametric type, which is the focus of Chapter 2. When φk

belongs to an infinite dimensional space, a nonparametric model for random effects

is implied, and this is the focus of Chapter 3.

When more than one group of chemical compounds are available for food au-

thentication, the dimension p of vector yik can be changed based on the available

information. For example, in the wine dataset, p = 9 when we use the anthocyanin

compounds, p = 4 when we use the Organic acid, p = 6 for flavonols, p = 19 when we

use a combinations of the three groups of compounds, but in all cases the dimension

of xik remains constant, so the covariates are the same for all models. Let Mpj be a
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model of the form (1.2.3) with the response vector yik ∈ Rpj , j = 1, 2, . . .. There are

costs cj associated with modelMpj , and losses in making wrong decisions. Selecting

a particular model Mpj implies selecting the compounds or combinations of them

that reached the best performance. For that, we mean that the cost or expenses cj

of determining the compounds should be low and the accuracy of the results should

be good. We propose a solution that implies the definition of a loss function that

combines the penalty associated to a wrong decision with the cost cj of each model

Mpj , and this is the focus of Chapter 4. In Chapter 5 we consider possible future

research directions.

This thesis addresses an issue that has been developed outside the statistics field.

In this context, the solutions proposed so far are mainly related to exploratory and

descriptive tools for data analysis. Early approaches to authentication problems from

a probabilistic point of view were made by Brown et al. (1999). Over the years there

are new studies such as Dean et al. (2006) and Toher et al. (2007). We propose a

Bayesian classification approach which is general enough for different authentication

problems. Our approach allows to incorporate covariate information in the modeling.

In addition, parametric assumptions are avoided supposing a flexible nonparametric

distribution.

When we address the problem of optimal information search, we propose a decision

theory approach. This approach is a standard tool, objective and is applied in many

decision problems in different fields. In a context of food authentication there are no

references about the use of decision theory in similar problems. Therefore, we believe

that our proposal is novel in the context of research in food authentication.

Finally, from a statistical point of view, this thesis is a good example of the
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application of the Bayesian methods and concepts to solve real problems.

The Chapters in this thesis can be read independently, because they have an

abstract, introduction, development and they finish with the conclusions. In the next

sections we give some background material, with basic concepts that will be used in

the next chapters.

1.3 Prior Distributions on Probability Distribu-

tions

Semi-parametric models have both a parametric and a nonparametric part. The para-

metric part of the model has parameters that belong to a finite dimensional space,

and the parameters of the nonparametric part belong to an infinite dimensional space.

Nonparametric Bayesian models are used mainly to avoid critical dependence on para-

metric assumptions, and one their main applications arise when modeling random

effects distributions in hierarchical models, where often little is known about the spe-

cific form of the random effects distributions (Müller and Quintana; 2004). To handle

the nonparametric part of the model we need to define a random measure on the space

of distribution functions. The most popular random measure on the space of distribu-

tions functions is the Dirichlet process (DP) (Ferguson; 1973). This process is defined

by Ferguson (1973) as follows. Let Ω be a space andA a σ-field of subsets of Ω, and G0

a probability measure on (Ω,A), where M is a scalar such that M > 0. The stochastic

process G indexed by elements A of A is a DP on (Ω,A) with parameter MG0(·) if

for any partition (A1, . . . , Ak) of Ω the random vector (G(A1), . . . , G(Ak)) follows a

Dirichlet distribution with parameters (MG0(A1), . . . ,MG0(Ak)). We denote this by
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G ∼ DP (M,G0). A key property of the DP is that if we have a sample x1, . . . , xn

i.i.d. from G and G ∼ DP (M,G0), then the posterior distribution G | x1, . . . , xn is

of the same type, namely DP (M + n, G̃), where G̃ ∝ G0 +
∑n

i=1 δxi and δx denotes

the measure giving mass one at the point x.

An important property of a DP, specially for computational purposes, is the Polya

urn representation by Blackwell and MacQueen (1973). This representation was used

by Escobar (1994) for estimating the mean of a normal distribution using a semi-

parametric model. Many of the posterior developments are based on the same repre-

sentation.

1.4 Dependent Dirichlet Processes

In a context of food authentication, it is common to collect food samples from different

regions of origin or some which were put through different processing technologies,

then, if a vector of responses is measured on these samples and also a covariates

vector given by the origin or technology is recorded, it is reasonable to assume that

the distribution that generates the responses may depend on the level of covariates.

In the above context, we introduce below the Dependent Dirichlet Processes (DDP).

Suppose we have a response vector Yi, a vector of covariates Xi, we are interesting

in modeling the distribution of Yi to include dependence on Xi. Then, if we think

about a model (Yi | θi, Xi) ∼ FY |X,θ(· | θi, Xi) and (θi | G) ∼ Gi it will be necessary

that Gi were dependent on the Xi level. Dirichlet Processes that include dependence

on covariates were proposed by MacEachern (1999). The main idea, following a

discrete covariates reasoning, was as follows. If a single distribution is assumed for all

Gi and a nonparametric prior placed on this distribution, then Gx1 = . . . = Gxd ; the
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other extreme approach to account for differences in Gi is to placed d nonparametric

prior distributions, the results is that Gx1 , . . . , Gxd are mutually independent.

MacEachern (1999) stated that in the first approach, the d distributions may

be allowed to differ by a small number of parameters, perhaps locations and scales,

but the distributions are identical in many ways; in the second approach, the d

distributions may be linked together through hyperparameters, but conditional on

these hyperparameters, the realized distributions are independent, so what is needed

is a modelling strategy that allows the set of random effects, distributions to be

similar, but not identical.

To introduce the definition of Dependent Dirichlet Processes (DDP), it is necessary

to present Sethuraman’s representation of DPs (Sethuraman; 1994). Assume G ∼

DP (MG0). Then G admits a stick-breaking representation as

G(·) =
∞∑
h=1

phδθh(·), (1.4.1)

where δθ is a probability measure concentrated at θ, ph = Vh
∏h−1

l=1 (1− Vl) for h ≥ 1

and all V ′hs and θ′hs are independent, with Vh i.i.d Be(1,M) and θh i.i.d. G0.

Definition 1. Dependent Dirichlet processes are defined by the relation

Gχ ∼ DDir(Mχ, G0,χ, Zχ, Uχ, TZ,θ;χ, TU,V ;χ), (1.4.2)

where Mχ is the mass parameter, 0 < Mχ <∞ for all x ∈ χ, G0,χ is the base measure,

Zχ and Uχ are stochastic processes providing draws that are turned into locations and

probabilities, respectively, TZ,θ;χ and TU,V ;χ are transformations specifying a mapping

of Zx into θx and from Ux into Vx for each x ∈ χ, respectively, and at each x ∈ χ, the
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distribution Gx is defined by

Gx =
∞∑
h=1

phxδθhx . (1.4.3)

MacEachern’s proposal allows the weights phx, (h = 1, . . . ,∞) and atoms θhx ,(h =

1, . . . ,∞) to vary with x according to a stochastic process. DDPs where ph is as-

sumed to be fixed with respect to x have been successfully applied to the analysis

of variance (De Iorio et al.; 2004), spatial modeling with a Gaussian process for the

atoms (Gelfand et al.; 2005), times series (Caron et al.; 2006), classification (De la

Cruz et al.; 2007b), dynamic density estimation (Rodriguez and ter Horst; 2008),

inferences on stochastic ordering (Dunson and Peddada; 2008), quantile regression

(Kottas and Krnjajić; 2009), survival analysis (De Iorio et al.; 2009) and recently,

by Jara et al. (2010) who proposed a Poisson-Dirichlet process for the analysis of

a data set coming from a dental longitudinal study. Griffin and Steel (2006) argue

that allowing only the values of θh to depend on the covariates will guide to cer-

tain problems with points far from the observed data in the domain. In particular,

MacEachern noted that the distribution of G can then be expressed as a mixture

of Dirichlet processes. The posterior process will have an updated mass parameter

M +n, where n is the sample size, at all values of the index. Griffin and Steel (2006)

think that the above property is counterintuitive, because it would be desirable that

the process reduces to the prior distribution (with mass parameter M) at points in

the domain far from the observed data. Therefore, they proposed an approach that

avoids this property by resorting to local updates of the process. Their proposal basi-

cally consist of inducing dependence in the weights through similarities in the ordering

of the atoms, by viewing the atoms as marks in a point process and implementing

such orderings through distance measure. Other works where covariate dependence
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is introduced in the weights are Dunson et al. (2007), and Dunson and Park (2008).

Müller et al. (1996) considered a completely different approach for inducing depen-

dence in G. They used a DP mixture of normals for the joint distribution of y and

z, and then focused on the implied conditional density of y given z for estimating

the mean regression function. Finally, a recent reference about DDPs is Chung and

Dunson (2011), who proposed the Local Dirichlet process to allow predictor depen-

dence. The almost sure discreteness of the Dirichlet process makes it inappropriate

as a model for a continuous quantity y. A standard procedure for overcoming this

difficulty is to introduce an additional convolution, with a continuous kernel, so that

H(y) =

∫
f(y | θ)dG(θ) with G ∼ DP (M,G0). (1.4.4)

Such models are known as DP mixtures (DPM) (Antoniak; 1974). The mixture

model Hjort et al. (2010) (1.4.4) can be equivalently written as a hierarchical model

by introducing latent variables θi and breaking the mixture as

yi | θi ∼ f(yi | θi), θi ∼ G, and G ∼ DP (M,G0). (1.4.5)

For the majority of food authentication problems the responses are continuous

multivariate and covariates are discrete. This is the case for the wine dataset, so the

ANOVA-DDP approach of De Iorio et al. (2004) is a natural way to build the desired

dependence. Thus we will adopt the popular semiparametric modeling strategy that

consists of introducing dependence in the random effects distribution and then adding

a convolution with a continuous kernel.



14

1.5 MCMC Methods in Conjugate Dirichlet Pro-

cess Mixtures Models

In this section we provide a brief discussion on the computational aspects for posterior

sampling of Conjugate Dirichlet Process Mixtures models, because this is the class of

models that we will employ in the next Chapters. Basically, we focuss the attention on

Markov Chain Monte Carlo (MCMC) algorithms (Escobar (1994); Escobar and West

(1995); Dey et al. (1998); Neal (2000)), because they have been used successfully in

the posterior sampling under Dirichlet Process priors, and they provide a mechanism

for fitting a wide class of hierarchical models. Consider a hierarchical generic model

Yi | θi
ind∼ F (· | θi), i = 1, . . . , n

θ1, . . . , θn | G
iid∼ G,

G |M,λ ∼ DP (MGλ),

(M,λ) ∼ p(M)p(λ). (1.5.1)

Here, Y1 . . . , Yn are part of an infinite exchangeable sequence, or equivalently, as being

independently drawn from some unknown distribution. The Yi may be multivariate,

as our applications in Chapter 3. The model from which the Yi’s are drawn, is a

mixture of distributions of the form F (· | θ), with the mixing distributions over θ

being G. We let the prior for this mixing distribution be a Dirichlet process with

concentration parameter M and base distribution G parameterized by λ. Now, we

show the first MCMC approach for DP priors proposed by Escobar (1994). The

Escobar’s algorithm simplify the use of the Dirichlet Process integrating G over its

prior distribution, the sequence of θi’s follows a general Polya urn scheme (Blackwell
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and MacQueen; 1973); that is

θ1 | λ ∼ Gλ,

θn | θ1, . . . , θn−1, λ,M

{
= θj, with probability 1

M+n−1
, for j = 1, . . . , n− 1

∼ Gλ, with probability M
M+n−1

.

With the above scheme, it is easy to sample a sequence θ1, . . . , θn given Gλ and M .

The conditional distribution for θj given θ(j) = (θ1, . . . , θj−1, θj+1, . . . , θn)T , M and λ

is given by

dP (θj | θ(j),M, λ) ∝MGλ(dθj) +
∑
i 6=j

δ(θi, dθj),

where δ(θ, ·) is a measure defined by

δ(θ, B) =

{
1, when θ ∈ B
0, when θ /∈ B.

To get the posterior distribution dP (θ,M, λ | Y1, . . . , Yn), Escobar proposed to use

a Gibbs sampling approach based on sampling from the appropriate full conditional

distributions, (θj | θ(j),M, λ, Y1, . . . , Yn), (M | θ1, . . . , θn, λ, Y1, . . . , Yn), and

(λ | θ1, . . . , θn,M, Y1, . . . , Yn). The conditional distribution of θj given θ(j), and

Y1, . . . , Yn has the following closed form

dP (θj | θ(j),M, λ, Y1, . . . , Yn) =
f(Yj | θj)

{
MGλ(dθj) +

∑
i 6=j δ(θi, dθj)

}
∫
f(Yj | θj)

{
MGλ(dθj) +

∑
i 6=j δ(θi, dθj)

} (1.5.2)

=
Mf(Yj | θj)Gλ(dθj) +

∑
i 6=j f(Yj | θi)δ(θi, dθj)

M
∫
f(Yj | θj)Gλ(dθj) +

∑
i 6=j f(Yj | θi)

The above distribution follows from the Bayes theorem and the conditional indepen-

dence of Yi ⊥⊥ θj | θi. The conditional distribution defined in equation (1.5.2) can be

sampled according to the following rule:

θj | θ(j),M,λ,Y1,...,Yn


θi i 6= j, with probability

f(Yj |θi)
M

∫
f(Yj |θj)Gλ(dθj)+

∑
i 6=j f(Yj |θi)

∼ Hj(θj | Yj), with probability
M

∫
f(Yj |θj)Gλ(dθj)

M
∫
f(Yj |θj)Gλ(dθj)+

∑
i 6=j f(Yj |θi)

,
(1.5.3)
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where Hj is the posterior density of θj given the data Yj and the prior distribution Gλ

for θj. The last algorithm produces and ergodic Markov chain, but the convergence

to the posterior distribution may be rather slow, and consequently, sampling under

this algorithm may be inefficient. As discussed in Neal (2000), the problem is that

there are often groups of observations with high probability that are associated with

the same θ. Since the algorithm cannot change the θ for more than one observation

simultaneously, a change to the θ values for observations in such a group can occur

rarely, as such a change requires passage through a low-probability intermediate state

in which observations in the group do not have all the same θ value. Bush and

MacEachern (1996) avoided this problem by adding a second stage to the Escobar’s

Gibbs sampling. In the second stage the cluster locations are moved. Neal (2000)

deals with the Escobar’s Gibbs sampling problems defining an equivalent model when

K (the number of components in a mixture) goes to infinity. The model is given by

Yi | ci, φ ∼ F (· | φci)

ci | p ∼ Discrete(p1, . . . , pK)

φc ∼ Gλ

p ∼ Dirichlet(M/K, . . . ,M/K) (1.5.4)

Here, ci indicates which latent class is associated with observations Yi, with no sig-

nificance in the numbering of ci. For each class, c, the parameters φc determine the

distribution of the observations from that class; the collection of all such φc is de-

noted by φ. The mixing proportions for the classes, p = (p1, . . . , pK), are given by a

symmetric Dirichlet prior, with concentration parameter written as M/K, so that it

approaches zero as K goes to infinity. Neal (2000) shows that letting θi = φci model

(1.5.4) is equivalent to the Dirichlet process mixture model (1.5.1) when K →∞. The
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problems in the Escobar (1994) algorithm are avoided if Gibbs sampling is applied

to the model formulated in (1.5.4), with the mixing proportions, p, integrated out.

In the first stage, the algorithm draws the configurations c, then a Gibbs sampling

for ci is based on the following conditional probabilities (with φ being the set of φc

currently associated with at least one observation):

if c = cj for some j 6= i : P (ci = c | c−i, Yi, φ) = b
n−i,c

n− 1 +M
f(Yi | φc)

P (ci 6= cjfor allj 6= i | c−i, Yi, φ) = b
M

n− 1 +M

∫
f(Yi | φ)dGλ(φ)

Here, c−i are all the cj for j 6= i, n−i,c is the number of cj for j 6= i that are equal

to c, b is the appropriate normalizing constant. When Gibbs sampling for ci chooses

a value not equal to any other cj, a value for φci is chosen from Hi, the posterior

distribution based on the prior Gλ and the single value Yi. In the second stage, for

all c ∈ {c1, . . . , cn}, the algorithm draws a new value of φc | Yi for which ci = c,

that is, drawn from the posterior distribution based on the prior Gλ and all the

data points associated with latent class c. The above algorithm is essentially the

method proposed by Bush and MacEachern (1996). MacEachern (1994) proposed to

integrate analytically over the φc, eliminating them from the algorithm. The state of

the Markov chain then consist only of the ci which are updated in a Gibbs sampling

using the following conditional probabilities

if c = cj for some j 6= i : P (ci | c−i, Yi) = b
n−i,c

n− 1 +M

∫
f(Yi | φ)dH−i,c(φ)

P (ci 6= cj for all j 6= i | c−i, Yi) = b
M

n− 1 +M

∫
f(Yi | φ)dGλ(φ).

Here, H−i,c is the posterior distribution of φ based on the prior Gλ an all observations

Yi for which j 6= i and ci = c.
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Jain and Neal (2004) stated that, although the Gibbs sampling approach is straight-

forward and easily implemented, it could be slow to reach convergence and mix poorly

too. In this context, they proposed a split-merge Markov chain algorithm. The

split-merge algorithm introduces a new Metropolis-Hastings method that avoids the

problems associated with the Gibbs sampling procedure and is suitable for high-

dimensional data. Typically, Metropolis-Hastings updates involve simple parametric

distributions as the proposal distribution. To split mixtures components, the Jain

and Neal (2004) algorithm employs a more complex proposal distribution obtained

by using a restricted Gibbs sampling scan for the latent class variables. This method

is able to quickly traverse the state space and frequently visit high-probability modes

because it splits or merges a group of observations in each update, thereby, bypassing

the incremental of the Gibbs sampler. Furthermore, although the proposal distribu-

tion used is complex, it does not need to be specially tailored to each model, since

the same scheme can be applied to any model with a conjugate prior. For details

of its computation refers to Jain and Neal (2004). Finally, Dahl (2005) proposed a

split-merge sampler for both conjugate and non-conjugate Dirichlet process mixture

models. The sampler borrows ideas from sequential importance sampling. Splits are

proposed by sequentially allocating observations to one of two split components using

allocations probabilities that condition on previously allocated data. For details of

its computation refers to Dahl (2005).

1.6 Statistical Decision Theory

This section provides the basic concepts involved in decision problems. We will use

the concepts in Chapter 4, where we deal with the search of optimal information
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in an authentication process. Decision theory, as the name implies, is concerned

with the problem of making decisions (Berger; 1985). Statistical decision theory

is concerned with the making of decisions in the presence of statistical knowledge

which sheds light on some of the uncertainties involved in the decision problem. We

assume that the uncertainties can be considered as unknown numerical quantities

represented by θ. The unknown quantity θ, which affects the decision process, is

commonly called the state of nature. The symbol Θ will be used to denote the

set of all possible states of nature. Typically, when experiments are performed to

obtain information about θ, they are designed so that the observations are distributed

according to some probability distribution which has θ as an unknown parameter. In

such situations, θ will be called the parameter and Θ the parameter space. In addition

to the sample information, two other types of information are typically relevant,

these are the knowledge of the possible consequences of the decisions and the prior

information about θ. The knowledge of the possible consequences of the decision can

be quantified by determining the loss that would be incurred for each possible decision

and for the various possible values of θ. Therefore, a key element of decision theory is

the loss function. The prior information about θ is the information that arises from

past experiences about similar situations involving similar θ. This information often

is represented by a probability distribution denoted by π(θ).

Decisions are more commonly called actions in the literature. Particular actions

will be denoted by a, while the set of all possible actions under considerations will be

denoted A. As mentioned in the last paragraph, a key element of decision theory is

the lost function. If a particular action a1 is taken and θ1 turns out to be the true

state of the nature, then a loss L(θ1, a1) will be incurred. Thus, we will assume a loss
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function L(θ, a), which is defined for all (θ, a) ∈ Θ×A.

When a statistical investigation is performed to obtain information about θ, the

outcome (a random variable) will be denoted as Y . Y = (Y1, . . . , Yn) is often a

vector, and Yi, i = 1, . . . , n are independent observations from a common distribution,

parameterized by θ. That distribution will be denoted by f(Y | θ), commonly named

the sample distribution. A particular realization of Y will be denoted by y. The set

of possible outcomes is the sample space, and will be denoted Y . When a particular

realization of Y is observed, we can update our prior information of π(θ) using the

Bayes theorem and obtain the posterior distribution π(θ | y).

The incurred loss L(θ, a), will be never known with certainty (at the time of the

decision making). A natural method of proceeding in the face of this uncertainty is

to consider the “expected” loss of making a decision, and then choose an “optimal”

decision with respect to this expected loss. In Bayesian decision theory, the posterior

expected loss of an action a, when the posterior distribution is π(θ | y), is

ρ(π(θ | y), a) =

∫
Θ

L(θ, a)π(θ | y)dθ. (1.6.1)

The simplicity of the Bayesian approach follows from the fact that and optimal action

can be found by simple minimization of (1.6.1). The above concepts are employed in

Chapter 4, where we proposed a methodology for finding optimal information in an

authentication process.



Chapter 2

Multivariate Bayesian
Discrimination for Varietal
Authentication of Chilean Red
Wine

2.1 Abstract

The process through which food or beverages are verified as complying with its label

description is called food authentication. We propose to treat the authentication

process as a classification problem. We consider multivariate observations and propose

a multivariate Bayesian classifier that extends results from the univariate linear mixed

model to the multivariate case. The model allows for correlation between wine samples

from the same valley. We apply the proposed model to concentration measurements

of nine chemical compounds named anthocyanins in 399 samples of Chilean red wines

of the varieties Merlot, Carménère and Cabernet Sauvignon, vintages 2001-2004. We

find satisfactory results, with a misclassification error rate based on a leave-one-out

cross-validation approach of about 4%. The multivariate extension can be generally

applied to authentication of food and beverages, where it is common to have several

21
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dependent measurements per sample unit, and it would not be appropriate to treat

these as independent univariate versions of a common model.

Key Words: Bayesian classifier, Gibbs sampling, hierarchical linear models, food

authentication.

2.2 Introduction

Consumers increasingly demand reassurance of the origin and content of their food

and beverages. The process through which food or beverages are verified as complying

with its label description is called food authentication (Winterhalter; 2007). The wine

industry has been using the authentication procedure for a long time. Substantial

research efforts have been put into this particular topic. von Baer et al. (2005) report

that some containers of Chilean red wine have been rejected in Germany because they

did not satisfy the parameters applied there to verify wine varieties. These problems

have a direct impact on producers and their income. Chilean wine represents an

important part of Chile’s worldwide exports, which have increased from 52 to 1,256

million U.S. dollars over the period 1997-2007. The main red wine varieties are Merlot,

Carménère and Cabernet Sauvignon. Therefore, it is important for sustainable long-

term growth to develop a reliable system to verify product authenticity. In this sense,

various authors have proposed to differentiate among red wine varieties using their

anthocyanin profiles (Eder et al.; 1994; Holbach et al.; 1997; Berente et al.; 2000;

Holbach et al.; 2001; Otteneder et al.; 2002, 2004; von Baer et al.; 2005; Revilla

et al.; 2001; von Baer et al.; 2007). Anthocyanins are a group of chemical compounds

present in red wine, which confer to this beverage its characteristic red color and are

transferred from the grape skins to wine during the winemaking process.
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Many of the works about wine authentication consider only simple relations be-

tween anthocyanins. The method approved by the OIV in 2003 is also based on this

principle (OIV; 2003). For a review of exploratory multivariate methods for classifica-

tion based on anthocyanin profiles and linear discriminant analysis, see von Baer et al.

(2007). Other approaches in wine authentication include neural networks (Beltrán

et al.; 2005; Kruzlicova et al.; 2009) and similarity index based on mid-infrared spec-

troscopy data (Bevin et al.; 2006).

Probabilistic modeling for discrimination and authentication purposes was pro-

posed by Brown et al. (1999). In the special case of longitudinal data analysis,

Bayesian discrimination has been discussed and used by Brown et al. (2001) and

De la Cruz-Meśıa and Quintana (2007). Lavine and West (1992) describe Bayesian

methods for classification and discrimination using Gibbs sampling. Mallick et al.

(2005) discussed Bayesian classification using gene expression data, concluding from

their comparison with other methods, that the Bayesian classification approach per-

formed better than other popular alternatives. A similar conclusion was obtained by

Rigby (1997) when comparing the Bayesian and classical estimates of P , the proba-

bility that a new observation belongs to one of two multivariate normal populations

with equal covariance matrices. More recently, Agrawal et al. (2009) consider an in-

cremental framework for feature selection and Bayesian classification for multivariate

normal groups.

In the present paper, we extend the univariate Bayesian linear mixed models to

the multivariate case, and use this model to build a Bayesian classifier of Chilean red

wine varieties using their anthocyanin profiles. In particular, we describe in detail

a Bayesian classification strategy based on multivariate hierarchical linear models.
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In the context of classical inference, multivariate linear mixed models were proposed

by Reinsel (1982) and Reinsel (1984). Our methods are based on a similar model,

but using a Bayesian viewpoint. Therefore, our contribution is two-fold in the sense

of coherency of the inferential approach, and the novelty of the application of such

methods to food authentication problems. In doing so, we treat the classes or groups

as predefined and the task is to understand the basis for the classification from a set

of labeled samples (training dataset). This information is then used to classify future

subjects.

The rest of this paper is organized as follows. We first give a brief description

of the dataset in Section 2.3. In Section 2.4.1, we expose a general multivariate

Bayesian classification approach. In Section 2.4.2 we present a general multivariate

Bayesian linear model for grape variety authentication. In Section 2.4.3 we illustrate

the proposed general classifier using data from Chilean anthocyanin profiles of red

wine and describe an appropriate posterior simulation scheme based on the Gibbs

sampling algorithm. In Section 2.5 we present the results of the selected model

application. Finally, Section 2.6 discusses the results.

2.3 The Motivating Dataset

We consider a dataset consisting of concentration measurements of a number of chem-

ical markers in samples of Chilean red wines. For the purpose of this study, we restrict

ourselves to measurements of anthocyanins, because these compounds are widely used

for red wine authentication, and the methodologies used in their determination are

sufficiently accepted and standardized. In addition, we also want to compare the

results with other studies carried out with the same data. The dataset includes the
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grape variety for each sample as declared by the producer, the year of harvest, and

the geographic origin or valley. All wine samples came directly from wineries located

in the valleys of Aconcagua, Maipo, Rapel, Curicó, Maule, Itata and B́ıo-B́ıo. As

listed, these valleys are geographically sorted north to south of Chile, and range from

33 to 38 degrees latitude south. The valleys have a wide range of soil types and

weather conditions. The largest one is Maule, which is where most of the available

samples were taken. The wine samples correspond to the vintages 2001 through 2004.

Vinification was made at production scale and samples were taken after malolactic

fermentation, but before blending. Anthocyanin determination was made by reverse

phase HPLC based on the method described by Holbach et al. (1997), Otteneder et al.

(2002) and OIV (2003), with some minor modifications. The response considered for

each anthocyanin in a given sample is its log-concentration. More details about an-

thocyanin determination for the dataset can be found in von Baer et al. (2005) and

in von Baer et al. (2007).

The sample size is 399, of which 228 were declared by the producers as Cabernet

Sauvignon, 76 as Merlot and 95 samples as Carménère. For later reference, Table 2.1

shows a list of the nine anthocyanins used in the present paper. A brief exploratory

analysis of the data uncovered some differences in the anthocyanin log-concentrations

across the three grape varieties, and correlations between the nine anthocyanins.

These observations support our choice of using the available measurements for dis-

crimination purposes under a multivariate approach, as it would not be reasonable

to consider nine separate univariate response models to deal with these data. The

multivariate extension we discuss next is thus relevant for the current classification

problem.
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Anthocyanin Abbreviation
delphinidin-3-glucoside DP
cyanidin-3-glucoside CY
petunidin-3-glucoside PT
peonidin-3-glucoside PE
malvidin-3-glucoside MV
peonidin-3-acetylglucoside PEAC
malvidin-3-acetylglucoside MVAC
peonidin-3-coumaroylglucoside PECU
malvidin-3-coumaroylglucoside MVCU

Table 2.1: Description of measured anthocyanins.

2.4 Model

We present next the model, discussing some of its properties and implementation

issues. The full MCMC details can be found in the Appendix.

2.4.1 Classification Using Multivariate Bayesian Classifier

We assume a classification problem featuring multivariate response observations,

and a training dataset comprising n units {(yi, xi, gi), i = 1, ..., n}. Here yi =

(yi1, ..., yip)
′ ∈ Rp represents the observed response vector for the ith unit, xi =

(xi1, ..., xiq)
′

is the vector of covariates for the ith unit and gi denotes the known

group label for the ith unit, gi ∈ {1, 2, ..., g}. Let yn = (y1, ..., yn, x1, ..., xn, g1, ..., gn)

denote the complete data. We adopt a predictive approach for classification. There-

fore, we assume an observed data vector yn+1 = (yn+1, xn+1) for a future unit, for

which the corresponding label gn+1 is unknown. The primary inferential target is

gn+1, i.e. we are interested in estimating {p(gn+1 = k|yn, yn+1) : k = 1, . . . , g}. Fol-

lowing De la Cruz-Meśıa and Quintana (2007), we consider an augmented model with
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marginal prior P (gi = k) = πk for k = 1, . . . , g. For instance, the πk probabilities

could be taken as the empirical group proportions.

Let θ denote the vector of all possible parameters and hyperparameters. The

classification probabilities are obtained by weighting the posterior conditional group

probabilities given θ with respect to the posterior distribution p(θ|yn). Concretely,

the classification probability that a new unit yn+1 belongs to the kth group is

P (gn+1 = k|yn+1, y
n) =

∫
p(gn+1 = k, yn+1, y

n, θ)

p(yn+1, yn)
dθ

=

∫
p(gn+1 = k|yn+1, y

n, θ)p(yn+1, y
n, θ)

p(yn+1, yn)
dθ

=

∫
p(gn+1 = k|yn+1, y

n, θ)p(θ|yn+1, y
n)dθ

=

∫
p(gn+1 = k|yn+1, θ)p(θ|yn+1, y

n)dθ

∝
∫
p(gn+1 = k|yn+1, θ)p(θ|yn)dθ

=

∫
πkp(yn+1|θk)∑g
l=1 πlp(yn+1|θl)

p(θ|yn)dθ. (2.4.1)

See further details in De la Cruz-Meśıa and Quintana (2007). In practice, direct

analytical evaluation of (2.4.1) is impossible so we resort to posterior simulation

methods. Assuming for now the availability of a sample {θ(c), c = 1, ..., C} from

the posterior distribution p(θ | yn) (we discuss methods for this later in Section 2.4.2

and in the Appendix), we approximate (2.4.1) by means of (De la Cruz-Meśıa and

Quintana; 2007)

P (gn+1 = k|yn+1, y
n) ≈ 1

C

C∑
c=1

πkp(yn+1|θ(c)
k )∑

l πlp(yn+1|θ(c)
l )

. (2.4.2)
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We propose classifying an existing unit, i, and a future one, n+ 1, using

ĝi = arg max
k
P (gi = k|yn) and ĝn+1 = arg max

k
P (gn+1 = k|yn, yn+1). (2.4.3)

In other words, the unit is classified in the group for which the highest posterior

probability is attained, thus minimizing the expected misclassification rate. This is

actually the Bayes rule under the zero-one loss function, as discussed in Hastie et al.

(2001).

2.4.2 A General multivariate Bayesian Linear Model for Grape

Variety Authentication

In practice, the authentication problem can be solved by computing the probability

that the product complies with its label description. We propose to do it using the

classification approach discussed in Section 2.4.1. To do so, we need a probability

model that adequately accounts for all the problem-specific features. We now describe

a linear mixed model that is useful for the classification of grape varieties.

We assume that the ith response vector is related to the covariates in a linear way.

Furthermore, we assume that there are fixed and random effects in the model. The

model for the ith unit in the kth group (grape variety) is thus given by

yki = Bxki + Uzki + εki , i = 1, . . . , n k = 1, . . . , g (2.4.4)

where yki is the p-dimensional response vector for the kth group, xki is the correspond-

ing q-dimensional covariate vector of fixed effects, and zki is the r-dimensional vector

of covariates for the random effects. Also, B is a p×q matrix of regression coefficients

for the fixed effects, which we synthetically write as

B = [β1, β2, ..., βq]



29

where β1, ..., βq are p× 1 column vectors. In addition, U is a p× r matrix of random

effects which we write as

U = [U1, U2, ..., Ur]

where U1, ..., Ur are p×1 column vectors. Finally εki is the p-dimensional error vector.

The formulation of our model is described next. For the top model (2.4.4) we

assume εki to be independent with

εki ∼ Np(0,Σk), i = 1, . . . , n, k = 1, . . . , g. (2.4.5)

As is usual in this context, we assume prior independence for all parameters. The

prior distributions for matrices B and U are assumed to be independent by columns,

that is β1, . . . , βk and U1, . . . , Ur are mutually independent, with distributions given

by

βj ∼ Np(β0j,Λ0), j = 1, . . . , q (2.4.6)

U1, . . . , Ur ∼ Np(0, S) (2.4.7)

The prior distribution for the variance-covariance matrices Σk, k = 1, . . . , g and S

are given by

Σ1, . . . ,Σg ∼ IW (Q0, ν0) (2.4.8)

S ∼ IW (K0,m0) (2.4.9)

We complete the Bayesian formulation of model (2.4.4) by specifying the prior for

hyperparameters β01, . . . , β0q and Λ0 as

β01, . . . , β0q ∼ Np(α0, τ0) (2.4.10)

Λ0 ∼ IW (L0, t0). (2.4.11)
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The full conditional posterior distributions for the fixed and random effects are nor-

mal. The variance-covariance matrices Σ1, . . . ,Σg and S have full conditional poste-

rior distributions of inverse Wishart type. Finally, the full conditional distribution

for hyperparameters Λ0 and β01, . . . , β0q are inverse Wishart and Normal, respec-

tively. Details about the complete set of full conditional distributions are given in the

Appendix.

2.4.3 Application to the Wine Dataset

In our application, we have that n = 399, g = 3, with gi = 1, gi = 2 and gi = 3

indicating Cabernet Sauvignon, Merlot and Carménère, respectively. The label gi in

our example corresponds to the variety declared by the producer for each wine sample.

This is an important clarification. See the discussion below. We assume that gi,

i = 1, . . . , n are known and gn+1 is unknown, which corresponds to the label of a new

sample wine for which we want to verify its authenticity.

We implemented three variations of the general model described in Section 2.4.2:

Model 1: This model has only fixed effects and assumes a common covariance ma-

trix Σ for the three grape varieties. In this model we set d = 11, p = 9 and the

design vector xi = (xi1, . . . , xi11)t is given by xi1, xi2 and xi3, each one assuming

the values 1 or 0 depending on whether the ith wine sample corresponds to Car-

bernet Sauvignon, Merlot or Carménère, respectively. We code xi4 as assuming

the values 1, . . . , 4, depending on whether the year of harvest was 2001, 2002,

2003 or 2004 respectively. This allows us, among other things, to incorporate

new data for 2005 that may potentially become available, without having to

modify the model if a new sample of harvest 2005, for example, is classified. In
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such case we could simply code the year of harvest 2005 as xi4 = 5. We set

xi5 = 1 if the ith sample comes from the Aconcagua valley and 0 otherwise. We

define xi6, . . . , xi11 in the same way, to represent samples of the Maipo, Rapel,

Curicó, Maule, Itata and B́ıo-B́ıo valleys, respectively.

Model 2: This model has both, fixed and random effects and assumes a common

covariance matrix Σ for the three grape varieties. In this model we take

d = 4, p = 9, and r = 7. The design vector for fixed effects is given by

xi = (xi1, xi2, xi3, xi4) where its components were defined exactly as in Model

1. The design vector for the random effects zi = (zi1, . . . , zi7) represents the

valley, where zi1 = 1 if the ith sample comes from the Aconcagua valley and

0 otherwise. We define zi2, . . . , zi7 in the same way, to represent samples of

the Maipo, Rapel, Curicó, Maule, Itata and B́ıo-B́ıo valleys, respectively. By

definition of the zi matrices, U1,. . . ,U7 represent valley-specific random effects

and we allow samples that come from the same valleys to be correlated.

Model 3: This model has fixed and random effects and grape variety-specific covari-

ance matrices, Σ1, Σ2 and Σ3. Here, d = 4, p = 9, r = 7, and the design vector

for random and fixed effects are the same as in Model 2. The only difference is

that we order the data in blocks so we can separate the roles of Σ1, Σ2 and Σ3.

The value of the hyperparameters in (2.4.8) - (2.4.11) for model 1 were taken as

α0 = (0, 0, 0, 0, 0, 0, 0, 0, 0)t, τ0 = 1000I9, Q0 = I9, L0 = I9, ν0 = 11 and t0 = 11.

For models 2 and 3 we need the additional choices K0 = I9 and m0 = 11. The prior

means for Σ and S were assumed to be the identity matrix. For the random effects

U , we assumed a prior centered at 0, with identity covariance matrix. The selected
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hyperparameter values imply proper but vague prior distributions, representing the

lack of genuine prior information on the parameters.

The Gibbs sampling algorithm was implemented in a computer program written

in FORTRAN. We generated 110,000 iterations. After 10,000 iterations, samples

were collected at a spacing of 100 iterations, to obtain independent samples. Finally

we totaled C = 1, 000 samples for calculating posterior quantities of interest. The

average time used to run each of the three models above in a standard PC (Intel Core

Duo CPU 2.4 Ghz and 2.0 Gb RAM) was 3 hours.

2.5 Results

To evaluate model adequacy and to select among the three models in Section 4.4

we use two model selection criteria, the Conditional Predictive Ordinates (CPOi)

(Chen et al.; 2000) and the Deviance Information Criterion (DIC) (Spiegelhalter

et al.; 2002). CPOi is a useful quantity for model checking, since it is based on how

much the ith observation supports the model. Large CPOi values indicate a good fit.

It is customary to summarize all the CPOs using the log-pseudo marginal likelihood

(LPML) statistic (Geisser and Eddy; 1979), defined as LPML =
∑n

i=1 log(CPOi). On

the other hand, DIC is an information criterion that was proposed to select Bayesian

hierarchical models, where models with smaller values of DIC are preferred. Table 2.2

shows the values of DIC and
∑n

i=1 log(CPOi) for the three models implemented.

Based on both criteria, we select model 2. This suggests that for this particular case

of wine data, a model with both, fixed and random effects, is appropriate and that

introducing grape variety-specific covariance matrices seems unnecessary. Therefore,

in what follows we restrict ourselves to model 2. Figure 2.1 shows the posterior



33

Criterion Model 1 Model 2 Model 3
LPML 829.2 834.9 699.6
DIC -1,682.1 -1,691.5 -1,405.3

Table 2.2: Bayesian Model Adequacy.

distributions of β1, β2 and β3. We clearly see differences across grape varieties for all

the anthocyanins. Our results thus support the standard practice of differentiating

grape varieties by considering their chemical properties. For example, MVAC presents

the same log-concentrations between Carménère and Cabernet Sauvignon, but they

differ for Merlot. In terms of classification, the most informative anthocyanins are

CY, PE and MV because they yield differences in their log-concentrations between

the three grape varieties. This can then be a key element in the classification effort.

Figure 2.2 presents the posterior distribution of U1, . . . , U7. We see that most of the

anthocyanins show differences between valleys, although these are very small in the

case of MV, the most abundant anthocyanine in most red wine varieties. For DP the

Itata and B́ıo-B́ıo valleys behave differently than the rest. The last result was to be

expected because the B́ıo-B́ıo and Itata valleys have special weather conditions due

to their southern geographic location, which implies substantially rainier conditions

throughout the year, and generally cooler climate than the northern valleys. Table 2.3

shows the classification results. The total error was 3.0%. We note here that von Baer

et al. (2007) quoted an error of 4.22% for the same dataset using classical methods

of discrimination. The major error in Table 2.3 is observed for Merlot, whereas for

the other varieties the error was very low (0.4 to 2 %). The high error obtained by

Merlot with the same dataset was explained by von Baer et al. (2007) as follows:

Some years ago, Carménère, which in other countries disappeared due to phylloxera,
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Figure 2.1: Posterior distribution of β1, β2 and β3. For each of the 9 available antho-
cyanins, the solid line represents β1 regression coefficients for Cabernet Sauvignon,
the dashed line represents β2 coefficients for Merlot, and the dotted line represents
β3 coefficients for Carménère

was rediscovered in Chile. Formerly, all vineyards planted with this grape variety

in Chile were declared as Merlot. Hinrichsen et al. (2001) using SSR DNA markers

to confirm the varietal identity, found that from a total of 93 vines of five Chilean

vineyards, originally planted as Merlot, four vines matched Carménère. This leads to

the conclusion that at the time of collecting wine samples, those vineyards declared

as Carménère are correctly identified with high probability, but certain percentage of

vineyards declared as Merlot, still correspond to Carménère. It is well known that

error rates obtained from applying the classification rule to the same data used to
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Figure 2.2: Posterior distribution of U1,...,U7. 1: Aconcagua, 2: Maipo, 3: Rapel, 4:
Curicó, 5: Maule, 6: Itata, 7: B́ıo-B́ıo

derive it, tend to be overly optimistic and biased. Several methods are available

to solve this problem. For moderately large datasets, we could consider a series of

random partitions of the data into two components, one reserved for deriving the

classification rule (the training sample) and the other to assessing this rule (the test

sample). Under this method, the estimated error rate is the average error rate over all

such partitions. For smaller datasets a cross-validation (CV) technique can be used to

compensate for the lack of data, which is the road we follow here. Table 2.3 shows the
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Variety Carménère C. Sauvignon Merlot Error
Carménère 93 (92) 1 (1) 1 (2) 2.1% (3.16%)

C. Sauvignon 1 (1) 227 (226) 0 (1) 0.44% (0.88%)
Merlot 9 (9) 0 (0) 67 (67) 11.84% (11.84%)

Total error 3.0% (3.51%)

Table 2.3: Misclassification rate for the three grape varieties. Values within paren-
theses were obtained using the leave-one-out cross-validation approach.

classification obtained by applying both, the classifier to the same data from which it

was computed, and using a leave-one-out CV approach. The latter values are within

parentheses. The error rate of 3.51% obtained with leave-one-out CV approach is still

quite good when compared to the validated error of 5.3% obtained by von Baer et al.

(2005) with classical methods.

2.6 Discussion

This paper proposes a general framework for the classification of multivariate obser-

vations from g groups. The underlying models in each group or population are given

by linear multivariate models with fixed and random effects. The proposed approach

allows to introduce covariates to model the mean responses. This is found to improve

the classification when compared to linear or quadratic discriminant analysis, the

most popular methods for food authentication. But the proposed method could be

used in any situation where the aim is to classify subjects or units into g groups, on

the basis of multiple responses as well as covariates.

This approach is particularly appropriate for verifying the authenticity of bever-

ages and food, as it gives us a method to estimate the probability that the food or
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beverages comply with the corresponding label description. In most cases, the data

collected for authentication purposes have a multivariate structure, because more than

one attribute is typically measured by unit sample. As a result, these measurements

are not independent and it would not be appropriate to treat them in an univari-

ate way. The proposed multivariate extension allows us to model the multivariate

structure in a simple way. For the specific data considered here, we used information

about chemical markers which are intrinsic characteristics of the food or beverages

that we want to authenticate. In this context, the approach we have presented solves

one important problem, as it allows to verify the authenticity of some exports that

are subject to heavy regulations prior to admission to the country of destination.

The mixed-effects linear model considered here is quite general and admits several

special cases. We compared three of these cases, selecting one of them for the final

analysis. One interesting feature of the selected model is that the assumptions on

random effects permit us to consider correlation between wine samples from the same

valley. This is a reasonable assumption, because the valleys considered here have wide

latitudinal variations, and these variations imply different weather and soil conditions.

In our example, we illustrated that anthocyanin profiles are very useful in the

process of classifying red wines. Other chemical markers like acid or flavonol con-

centrations can be used for the same purpose, but we need more research about it.

Incorporating information about those markers into the model is a subject currently

under study.
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2.7 Appendix MCMC

We list all the full conditional distributions below. The specific derivation details are

straightforward and therefore omitted. For fixed effect parameters we have that:

βj|other parameters and data ∼ Np(β̃j, Vj),

where

β̃j =Vj[

g∑
k=1

{Σ−1
k (

nk∑
i=1

{xkijyki − xkijxkil1βl1 − · · · − x
k
ijx

k
ilqβlq − x

k
ijz

k
i1U1 − xkijzki2U2

− · · · − xkijzkirUr})}+ Λ−1
0 β0j],

and Vj = [
∑g

k=1{Σ
−1
k

∑nk
i=1(xkij)

2}+ Λ−1
0 ]−1, where (l1, l2, ..., lq) 6= j for j = 1, ..., q.

For the random effect parameters, the full conditional distributions are as follows:

Uj|other parameters and data ∼ Np(Ũj,Wj),

where

Ũj = W j[

g∑
k=1

{Σ−1
k (

nk∑
i=1

{zkijyki − zkijxki1β1 − zkijxki2β2 − · · · − zkijxkiqβq − zkijzkil1Ul1

− · · · − zkijzkilrUlr})}],

and Wj = [
∑g

k=1{Σ
−1
k

∑nk
i=1(zkij)

2}+ S−1]−1, for (l1, l2, ..., lr) 6= j and j = 1, ..., r.

For the covariance matrices Σ1, . . . ,Σg the full conditionals are given by

Σk|other parameters and data ∼ IW (Hk,mk),
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where

Hk =

nk∑
i=1

{(yki − xki1β1 − xki2β2 − · · · − xkiqβq − zki1U1 − zki2U2 − · · · − zkirUr)

× (yki − xki1β1 − xki2β2 − · · · − xkiqβq − zki1U1 − zki2U2 − · · · − zkirUr)t}+Q0,

and mk = nk + ν0 for k = 1, . . . , g.

For S we get:

S|other parameters and data ∼ IW (J, l),

where J =
∑r

j=1 UjU
t
j +K0 and l = m0 + r.

Next, for the hyperparameters β01, . . . , β0q we have:

β0j|other parameters and data ∼ Np(β̃0j, D0),

where β̃0j = D0[Λ−1
0 βj + τ0α0], for j = 1, . . . , q and D0 = [Λ−1

0 + τ−1
0 ]−1.

Finally, the full conditional distribution for hyperparameter Λ0 is given by

Λ0|other parameters and data ∼ IW (E, d),

where E =
∑q

j=1(βj − β0j)(βj − β0j)
t + L0 and d = q + t0.



Chapter 3

Multivariate Bayesian
Semiparametric Models for
Authentication of Food and
Beverages

3.1 abstract

Food and beverage authentication is the process by which food or beverages are

verified as complying with its label description, e.g., verifying if the denomination of

origin of an olive oil bottle is correct or if the variety of a certain bottle of wine matches

its label description. The common way to deal with an authentication process is to

measure a number of attributes on samples of food and then use these as input for a

classification problem. Our motivation stems from data consisting of measurements

of nine chemical compounds denominated Anthocyanins, obtained from samples of

Chilean red wines of grape varieties Cabernet Sauvignon, Merlot and Carménère.

We consider a model-based approach to authentication through a semiparametric

multivariate hierarchical linear mixed model for the mean responses, and covariance

matrices that are specific to the classification categories. Specifically, we propose a

40
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model of the ANOVA-DDP type, which takes advantage of the fact that the available

covariates are discrete in nature. The results suggest that the model performs well

compared to other parametric alternatives. This is also corroborated by application

to simulated data.

Key Words: Classification, Dependent Dirichlet Process, Wines.

3.2 Introduction

Food and beverage authentication is the process in which food or beverages are verified

as complying with its label description (Winterhalter; 2007). From the viewpoint of

consumers’ acquisition, the mislabeling of foods represents commercial fraud (Mafra

et al.; 2008). On the other hand, producers and sellers could have problems if their

products are mislabeled. Food authentication is important for foods and beverages

of high commercial value, like honey, wines or olive oil, because their prices depend

of their quality, variety or origin. It is then important to uncover unscrupulous

sellers who decide to increase their profit by adulterating these products with similar

but lower quality substances. Misleading labeling might also have negative health

implications, especially when the food has undeclared allergenic compounds.

Because of the growing demand from consumers of clarity and certainty in food ori-

gins and contents, the importance of food authentication has substantially increased

in recent years. Many analytical tools and methods used for authenticity have been

consequently developed. In particular, there is a very active area of research on the

determination of chemical markers for classification and/or authentication of wines.

Anthocyanin profiles are known to be specially useful for the purpose of wine variety
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authentication. See, e.g., Eder et al. (1994), Berente et al. (2000), Holbach et al.

(2001), Revilla et al. (2001), Otteneder et al. (2004) and von Baer et al. (2007).

Data analysis methods for authentication purposes have been developed mainly

outside the statistics fields, and most of them are exploratory techniques designed to

deal with multivariate datasets. Probabilistic modeling for discrimination and authen-

tication purposes was proposed by Brown et al. (1999), who used Bayesian methods

to discriminate 39 microbiological taxa using their reflectance spectra. More recently,

Dean et al. (2006) used a Gaussian mixture model with labeled and unlabeled sam-

ples, with application to the authentication of meat samples from five species, and

the geographic origin of olive oils. Toher et al. (2007) compared model-based classi-

fication methods such as Gaussian mixtures, with partial least squares discriminant

analysis, considering samples of pure and adulterated honey.

We propose a model-based procedure to solve the authentication problem of food

and beverages. The motivation comes from a dataset consisting of measurements

of nine chemical compounds denominated Anthocyanins, obtained from samples of

Chilean red wines of grape varieties Cabernet Sauvignon, Merlot and Carménère.

We propose a semi-parametric Bayesian model that allows us to define a flexible

distribution G for the joint measurements. The model has the advantage of not

having to assume any parametric form, which may be particularly difficult to check

in multivariate cases. Increased flexibility is added by allowing G to be formulated

under the formalism of dependent random probability measures as in De Iorio et al.

(2004). A key aspect of the proposed approach is that we formally extend previous

univariate semi-parametric models as in De la Cruz et al. (2007b) to the multivariate

case.
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The rest of the paper is organized as follows. We first present the wine dataset and

the related authentication problem in Section 3.3. In Section 3.4 we give a brief theo-

retical background about Bayesian semi-parametric models and dependent Dirichlet

processes, and discuss our approach to the authentication problem. In Section 3.5 we

present the model, which is an extension of the univariate semi-parametric Bayesian

linear mixed model (Dey et al.; 1998) to the multivariate case. In Section 3.6 we illus-

trate the performance of the proposed model in a simulated data set. In Section 3.7

we apply the model to authenticate red wines samples based on their anthocyanin

profile. The paper concludes in Section 3.8 with a discussion and final remarks.

3.3 The motivating dataset

We consider a dataset consisting of measurements of concentrations of nine antho-

cyanins on samples of Chilean red wines. Anthocyanins are a group of chemical

compounds present in red wine, which confer to this beverage its characteristic red

color and are transferred from the grape skins to wine during the winemaking pro-

cess. The dataset includes the grape variety for each sample as declared by the

producer, the year of harvest and the geographical origin or valley. The grape va-

rieties in the dataset are Cabernet Sauvignon (228 samples), Carménère (95 samples)

and Merlot (76 samples). All wine samples came directly from wineries located in

the valleys of Aconcagua, Maipo, Rapel, Curicó, Maule, Itata and B́ıo-B́ıo in Chile.

They correspond to the vintages 2001, 2002, 2003 and 2004. Anthocyanin determi-

nation was made by reverse phase HPLC based on the method described by Holbach

et al. (1997), Otteneder et al. (2002) and OIV (2003), with some minor modifica-

tions. More details about anthocyanin determination for the dataset can be found
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in von Baer et al. (2005) and von Baer et al. (2007). A main concern for the de-

scribed dataset is the authentication of grape variety using the log-concentrations of

the following anthocyanins: delphinidin-3-glucoside (DP), cyanidin-3-glucoside (CY),

petunidin-3-glucoside (PT), peonidin-3-glucoside (PE), malvidin-3-glucoside (MV),

peonidin-3-acetylglucoside (PEAC), malvidin-3-acetylglucoside (MVAC), peonidin-3-

coumaroylglucoside (PECU), and malvidin-3-coumaroylglucoside (MVCU). To do so,

we will propose a multivariate linear mixed model in Section 3.5 that attempts to

characterize the variability in anthocyanin log-concentrations in terms of variety and

valley of origin. We also point out that we will ignore vintage year in our development.

The pragmatical reason for this is that by doing so we may easily incorporate data

from new years as they become available, without the need to modify the model. In

support of this choice, we refer to Gutiérrez et al. (2010) who used the year of harvest

as a continuous predictor when proposing a Bayesian parametric model for the same

data. The idea was to overcome this very same limitation. Yet, the effect of vintage

year was negligible in that context.

3.4 Some Background Material

Semi-parametric models have both, parametric and nonparametric parts, the dis-

tinction between these being that the parameters belong to a finite and infinite di-

mensional space, respectively. Semi- and non-parametric Bayesian models are used

mainly to avoid critical dependence on parametric assumptions. An important appli-

cation of such modeling line is to random effects distributions in hierarchical models,

where often little is known about the specific form of such distributions (Müller and

Quintana; 2004). To handle the nonparametric part of the model we need to define
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a random measure on the space of distribution functions. The most popular such

choice is the Dirichlet process (DP) (Ferguson; 1973).

In a food authentication context scenario, we need to build a model that ade-

quately accounts for all the problem-specific features. In the context of our motivat-

ing dataset, it is reasonable to think of wines coming from the same valley as being

correlated, because soil and weather conditions are similar within a given valley. The

usual (and simplest) way to induce a correlation structure is by incorporating random

effects or sample specific parameters in a model. Let αi denote the random effects and

let zi be a categorical covariate with k levels, (e.g. k different regions of origin). We

could assume a single nonparametric prior on αi for all samples, without reference to

the levels of zi. Alternatively, we could consider differences by putting k independent

priors on αi. These two extreme modeling strategies imply that Gz1 = · · · = Gzk for

the former and Gz1 . . . , Gzk to be mutually independent for the latter. MacEachern

(1999) proposes a modeling strategy, the Dependent Dirichlet Processes (DDP), that

allows the set of random effects distributions to be similar but not identical to each

other. MacEachern (1999) defines a nonparametric probability model for Gz in such

a way that marginally, for each z = zj, (j = 1, . . . , k), the random measure Gz follows

a DP. In this context, the DP representation proposed by Sethuraman (1994) is quite

useful. Sethuraman’s representation establishes that any G ∼ DP (M,G0) can be

represented as an infinite mixture of point masses:

G(·) =
∞∑
h=1

whδµh(·), µh
iid∼ G0

wh = Uh
∏
j<h

(1− Uj) with Uh
iid∼ Beta(1,M). (3.4.1)

The key idea behind the DDP is to introduce dependence across the Gz measures
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by assuming the distributions of the point masses to be dependent across different

levels of z (i.e. µzh), but still independent across h. If the weights are assumed to be

the same across z, the dependent probability measure can be represented as Gz(·) =∑∞
h=1 whδµzh . The last idea was used by De Iorio et al. (2004) in the construction of

an ANOVA DDP type model. The same approach was used in spatial modeling by

Gelfand et al. (2005), who used a Gaussian process for the atoms, Caron et al. (2006)

in times series, De la Cruz et al. (2007b) in classification, De Iorio et al. (2009) in

survival analysis and recently, by Jara et al. (2010) who proposed a Poisson-Dirichlet

process for the analysis of a data set coming from a dental longitudinal study. Griffin

and Steel (2006) point out that letting only the atoms to depend on covariate values

may lead to certain problems when points in the domain are far from the observed

data. They propose an approach that avoids this by locally updating the process

and inducing dependence in the weights through distance-based similarities in the

ordering of atoms, through viewing the atoms as marks in a point process. Other

works where covariate dependence is introduced in the weights are Dunson et al.

(2007), and Dunson and Park (2008). Müller et al. (1996) considered a completely

different approach for inducing dependence in G. They used a DP mixture of normals

for the joint distribution of y and z, and then focused on the implied conditional

density of y given z for estimating the mean regression function. A recent reference

about nonparametric Bayesian statistics, DDP models and their applications can be

found in Hjort et al. (2010).

The almost sure discreteness of the Dirichlet process makes it inappropriate as a

model for a continuous quantity y. A standard procedure for overcoming this difficulty
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is to introduce an additional convolution so that

H(y) =

∫
f(y | θ)dG(θ) with G ∼ DP (M,G0). (3.4.2)

Such models are known as DP mixtures (DPM) (Antoniak; 1974). The mixture

model (3.4.2) can be equivalently written as a hierarchical model by introducing

latent variables θi and breaking the mixture as

yi | θi ∼ f(yi | θi), θi ∼ G, and G ∼ DP (M,G0). (3.4.3)

For the majority of food authentication problems the responses are continuous

multivariate and covariates are discrete. This is the case for the data described in

Section 3.3. Thus we will adopt the popular semiparametric modeling strategy that

consists of introducing dependence in the random effects distribution and then adding

a convolution with a continuous kernel. The ANOVA-DDP approach of De Iorio et al.

(2004) is a natural way to build the desired dependence into the model, as will be

discussed below in Section 3.5. We remark here that a model that defines dependence

in terms of distances would not be appropriate for an authentication problem with

categorical covariates, as is our case.

3.5 The model

We first note that due to the multivariate nature of many authentication problems

(which is also the case of the wine data), it would not be appropriate to treat the

individual responses in an univariate way.

We assume that the i-th response vector is related to the covariates in a linear

way. Furthermore, we assume that there are fixed and random effects in the model.
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The model for the i-th unit in the u-th group is thus given by

(yiu | xiu, ziu) ∼ Np(Bxiu + θiu,Σu), i = 1, . . . , nu, u = 1, . . . , g (3.5.1)

θiu ∼ Hz(θiu)

Hz(θ) =

∫
N(θ | zα, τ)dG(α)

G ∼ DP (M,G0),

where yiu is a vector of responses in Rp, B is a p × q matrix of fixed effects, xiu

is a vector of covariates in Rq, θiu is a p × 1 vector of unit-specific random effects,

ziu is a p × pk design matrix for random effects and αi is a pk × 1 vector of latent

variables that define the random effects. The subscript u denotes the group or class

in a classification context. Model 3.5.1 implies that Hz(θ) =
∑∞

h=1whN(θ | zαh, τ)

is an infinite mixture of normal distributions. As usual in mixture models, posterior

simulation proceeds by breaking the mixture in (3.5.1) by introducing latent variables

αi:

θiu = ziuαi + ηi, αi ∼ G, G ∼ DP (M,G0), and ηi ∼ Np(0, τ). (3.5.2)

By simplicity, we choose a multivariate normal model for the base measure G0 ≡

Npk(0, R) and as usual in this context, we assume prior independence for all remain-

ing parameters. The prior distribution for matrix B = [β1, β2, . . . , βq] is assumed

to be independent by columns, that is β1, β2, . . . , βq are mutually independent with

distribution given by

β1, . . . , βq ∼ Np(β0j,Λ), j = 1, . . . , q. (3.5.3)

The prior distributions for the variance-covariance matrices Σu, u = 1, . . . , g, and τ
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are given by

Σ1, . . . ,Σg ∼ IWp(ν0, Q0), τ ∼ IWp(γ0,Φ0). (3.5.4)

We complete the Bayesian formulation of model (3.5.1) by specifying the prior for

hyperparameters R, β01, . . . , β0q, Λ and M as

R ∼ IWpk(r0, R0), β01, . . . , β0q ∼ Np(α0, τ0) (3.5.5)

Λ ∼ IWp(L0, t0), M ∼ Ga(a1, a2) (3.5.6)

The random distribution Hz(θ) in model 3.5.1 is dependent of the level of covariate

z. As such, this is a variation of the model proposed by De Iorio et al. (2004), but

our model adds fixed effects and allows us to work with multivariate data. For the

wine data analysis later in Section 3.7, we will let the fixed effects be varieties and

random effects be the different regions of origin. Matrix R in the model allows for

correlation between all components of the vector αi, which implies correlation between

different components of the response vector and between different levels of z. The

full conditional posterior distributions and details of the posterior simulation scheme

are given in the Appendix section.

Consider now the classification approach. Let yn = (y1, ..., yn, x1, ..., xn, z1, ..., zn, g1, ..., gn)

denote the training dataset, where yi is the response vector, xi is the vector of covari-

ates for fixed effects, zi is a vector of covariates for random effects and gi represents

the known group label for the ith unit. Consider a new unit for which the response

yn+1 and covariate vectors xn+1 and zn+1 are known, but its label gn+1 is unknown.

We want to assign a label u to the new unit, where u ∈ {1, . . . , g}. Consequently it is

necessary to estimate the classification probability P (gn+1 = u | yn+1, y
n). Following
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De la Cruz-Meśıa and Quintana (2007) and Gutiérrez et al. (2010) we use

P (gn+1 = u | yn+1, y
n) ≈ 1

C

C∑
c=1

πup(yn+1 | Θ(c)
u )∑

l πlp(yn+1 | Θ(c)
l )

. (3.5.7)

In (3.5.7), πu = P (gi = u) may be taken as the empirical group proportions. We

propose classifying an existing unit, i, and a future one, n+ 1, using the zero-one law

considered in Hastie et al. (2001)

ĝi = arg max
u

P (gi = u | yn) and ĝn+1 = arg max
u

P (gn+1 = u | yn, yn+1), (3.5.8)

i.e. assigning the label as the category that maximizes the classification probability

(3.5.7).

3.6 Classification performance of the proposed model

To evaluate the classification performance of the proposed model, we simulated a

dataset considering g = 2, n = 100, p = 2, q = 2, k = 2. The dataset was simulated

from a mixture of p-variate normal distributions,
∑8

i=1 ωiN(µi,Σ), where ω1, . . . , ω8

are given by (0.25, 0.12, 0.13, 0.1, 0.1, 0.05, 0.12, 0.13) respectively, µ1 = (1.1, 2.3)t,

µ2 = (0.1,−2)t, µ3 = (1.3, 5)t, µ4 = (−3, 3.4)t, µ5 = (−0.1, 7)t, µ6 = (1.8, 5)t,

µ7 = (−4, 1)t, µ8 = (1,−2)t and Σ is given by σ11 = 0.932, σ12 = 0.11 and σ22 = 1.632.

Figure 3.1 shows the simulated dataset. Here, g = 2 means that we have to classify

between two categories and k = 2 means that we have two levels for the covariate z.

The hyperparameters values were taken as β0 = (0, 0)t, τ0 = 100I2, Q0 = I2, L0 = I2,

ν0 = 4, r0 = 4, t0 = 4, R0 = Ipk, γ0 = 4, φ0 = 0.001Ip and a1 = a2 = 1. Table 1

shows the classification results of the proposed Bayesian semiparametric model (BSP),

comparing with linear discriminant analysis (LDA), which is the usual technique used
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Figure 3.1: Simulated dataset

in the literature for this type of problem, and a parametric (BP) version of model

(3.5.1), defined as:

(yiu | xiu, ziu) ∼ Np(Bxiu + θiu,Σu), i = 1, . . . , n, u = 1, . . . , g (3.6.1)

θiu = ziuα + ηi, ηi ∼ Np(0, τ)

α ∼ Npk(0, R)

Using the proposed BSP model, we obtained a classification error of 7.0% in the
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training set and 16% using leave-one-out cross-validation (LOOCV). In contrast, the

BP model resulted in a classification error of 12.0% in the training set and 24%

under LOOCV, while the corresponding figures for the LDA were 25.0% and 27%,

respectively. A common way to assess the performance of classification rules is the

Receiver Operating Characteristic curve (ROC) shown in Figure 3.2, which plots the

true positive rate against the false positive rate for all the different possible cutpoints.

From the ROC curves we also calculated the Area Under ROC curve (AUC) for the

three models, with higher values corresponding to models with better discrimination

capabilities. We obtained 0.9792 for the BSP model, 0.9334 for the BP model, and

0.7464 for LDA. These results clearly suggest the superiority of the proposed BSP

model for wine authentication, compared to the other alternatives.

Another important aspect of the analysis concerns comparing model adequacy of

the BP versus our BSP proposal. To this effect we calculated the Conditional Predic-

tive Ordinates (CPOi) (Chen et al.; 2000), summarized in the log-pseudo marginal

likelihood statistic LPML =
∑n

i=1 log(CPOi) (Geisser and Eddy; 1979), and the

Deviance Information Criterion (DIC) (Spiegelhalter et al.; 2002). Models with lower

DIC and with higher LPML values are to be preferred. The DIC values were 730.0

and 855.2 for the BSP and BP models, respectively. Furthermore, the corresponding

LPML values were -370.5 and -427.9. Both criteria consistently point to the superi-

ority of the BSP model compared to the BP one. Overall, the results suggest that

the BSP model is more flexible, specially when the data cluster between and within

covariate levels.
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BSP BP LDA
1 2 1 2 1 2

Category 1 46 (43) 4 (7) 47 (35) 3 (15) 42 (42) 8 (8)
2 3 (9) 47 (41) 9 (9) 41 (41) 17 (19) 33 (31)

Table 3.1: Classification performance. Values within parenthesis were obtained using
leave-one-out cross-validation technique

3.7 Performance of the model with wine dataset

We consider now application of the proposed BSP model to the wine dataset. The

response vector is formed by the nine anthocyanins listed in Section 3.3. As covariates,

we use grape variety (fixed effects) and valleys (random effects). The hyperparameter

values were taken as β0 = (0, 0, 0, 0, 0, 0, 0, 0, 0)t, τ0 = 100I9, Q0 = 0.1I9, L0 = 0.01I9,

ν0 = 11 r0 = 65, t0 = 11, R0 = 10Ipk, γ0 = 11, φ0 = 0.01Ip and a1 = a2 = 1, where

p = 9, q = 3 and k = 7. The resulting prior densities are proper, but the one for

B is vague and hence relatively uninformative. The prior density for R is relatively

uninformative too. All the variance covariance matrices priors were assumed diagonal.

Table 3.2 shows the classification results, where the values within parenthesis were

obtained using a LOOCV approach. The classification error obtained in the training

set was 0.5%, and 3.25% under LOOCV. These values are better than those obtained

by Gutiérrez et al. (2010) with the same dataset but applying a Bayesian parametric

model, namely, 3.0% in the training set and 3.51% using LOOCV.

Table 3.3 shows the AUC values, which were calculated based on separate ROC

curves for each grape variety, and for each of the BSP and BP models. All these

values are very high, with the BSP model attaining the best performance across the

three grape varieties. When comparing the BSP and BP models, the DIC and LPML
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Figure 3.2: ROC curves for classification under Bayesian semiparametric model BSP,
Bayesian parametric BP and linear discriminant analysis LDA.

statistics values were -5,901.5 and 2,430.1 for the former, and -5,578.7 and 2,291.8

for the second. Again, these results suggest that the proposed BSP model provides a

better fit.

Figure 3.3 displays bivariate posterior predictive distributions for Carménère wines

from the valleys of Aconcagua, Maipo, Rapel and Curicó considering anthocyanins

PECU and MVCU. The points on the graph are the observed values. We can see

the changes in the posterior predictive distribution across valleys. Predictions for the

Aconcagua valley shows less variation compared to Maipo valley. Predictions for The

Rapel valley show more variability, with some evidence of asymmetry, as dictated by
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Variety Carménère C. Sauvignon Merlot Error
Carménère 94 (93) 1 (1) 0 (1) 1.05% (2.1%)

C. Sauvignon 0 (0) 228 (225) 0 (3) 0.0% (1.31%)
Merlot 1 (8) 0 (0) 75 (68) 1.33% (10.52%)

Total error 0.5% (3.25%)

Table 3.2: Misclassification rate for the three grape varieties

Grape variety AUC BSM AUC BPM
Cavernet Sauvignon 0.999999 0.9969221

Merlot 0.999999 0.9967403
Carménère 0.999999 0.9963574

Table 3.3: Area under ROC curve

the observed data, but the model provides a reasonable fit to this behavior. Finally,

the Curicó valley also exhibit asymmetry.
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Figure 3.3: Bivariate posterior predictive distributions with BSP model for Carménère
wines from the Aconcagua, Maipo, Rapel and Curicó, with points representing ob-
served values. The anthocyanins considered here were PECU and MVCU.
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Figure 3.4 shows the bivariate predictive posterior distributions for Cabernet

Sauvignon, Carménère and Merlot from Curicó valley considering the DP and CY

anthocyanins. This plot is interesting because it shows how informative are DP and

CY in terms of the target classification. These two anthocyanins show that some

Merlot samples are located near the Carménère ones. This behavior is reasonable

because some years ago, Carménère, which in other countries disappeared due to

phylloxera, was rediscovered in Chile. Formerly, all vineyards planted with this grape

variety in Chile were declared as Merlot. Using SSR DNA markers to confirm varietal

identity, Hinrichsen et al. (2001) found that from a total of 93 vines of five Chilean

vineyards, originally planted as Merlot, four vines matched Carménère. This leads to

the conclusion that at the time of collecting wine samples, those vineyards declared

as Carménère are correctly identified with high probability, but certain percentage of

vineyards declared as Merlot, still correspond to Carménère.
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Figure 3.4: Bivariate posterior predictive distributions for Cabernet Sauvignon, Mer-
lot and Carménère wines from the Curicó valley, with points representing the observed
values.

3.8 Concluding Remarks
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We have proposed a linear mixed effects model for wine authentication, featuring

a flexible model for random effects that does not require the restricting ourselves to

a given parametric form. We did so by resorting to Dependent Dirichlet Processes,

which allow the set of random effects distributions to be similar but not identical

to each other, depending on levels of a covariate. For the authentication problem,

dependence on covariate levels is important because it is reasonable to think that

foods or beverages that come either from the same region of origin, or those which

were made with the same technology, could be similar or correlated. The ANOVA-

DDP approach was suitable to our purposes, but other types of nonparametric priors

could be considered.

The proposed BSP model provided a better fit to the data than a parametric

alternative, as we showed in the simulation example and in the application to the wine

data. In terms of the target classification, the BSP model also provided slightly better

results than other alternatives. Our proposal was motivated by food authentication,

but it could be used in any situation where the aim is to classify subjects or units

into g groups, on the basis of multiple responses and covariates.

3.9 Appendix

In this section we give the MCMC algorithm that was used for posterior simulation

under the proposed model. Because the model is of conjugate type, we use algorithm

2 in Neal (2000). Let c = (c1, . . . , cn) denote a vector that captures the clustering of

αi and let α = (αc : c ∈ {c1, . . . , cn}). To resample the configurations ci, we proceed

with the following two steps:
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Step 1

If c = cj for some j 6= i we compute the probability that the i-th element in c equals

other element in the same set as

P (ci = c | c−i, θi, α)

= b
n−i,c

n− 1 +M
(2π)−p/2|τ |−1/2 exp

{
−1

2
(θi − ziαc)tτ−1(θi − ziαc)

}
. (3.9.1)

Here ni,c is the number of ci that are qual to c, c−i are all the cj for j 6= i and b is

such that if c = cj then
∑

j:j 6=i{P (ci = c)}+P (ci 6= cj∀j 6= i) = 1. Next, we compute

the probability that ci is different to any other element in c as

P (ci 6= cjfor allj 6= i | c−i, θi, α) = b
M

n− 1 +M
(2π)−p/2|τ |−1/2|R|−1/2|Di|1/2×

exp

{
−1

2
[θtiτ

−1θi − [θtiτ
−1zi]Di[z

t
iτ
−1θi]]

}
. (3.9.2)

If the imputed value of ci, sampled based on (3.9.1) and (3.9.2), is not associated with

any other observation, it is necessary to draw a value of αci from Hi, the posterior

distribution for α based on the prior G0 and the single observation θi. In our case Hi

is given by Hi ≡ Npk(α̃i, Di) where Di = [ztiτ
−1zi +R−1]−1, and α̃i = Di[z

t
iτ
−1θi].

Step 2

In the second step, for all c ∈ {c1, . . . , cn} we draw a new value αc given all the θi for

which ci = c, that is, from the posterior distribution based on the prior G0 and all

the data points currently associated with latent class c. In our case, this is given by

Npk(α̃c, E), where E = [
∑

i:ci=c
ztiτ
−1zi +R−1]−1 and α̃c = E[

∑
i:ci=c

ztiτ
−1θi].

Now we list all the full conditional distributions for the parametric part of the

model. The specific derivation details are straightforward and therefore omitted.
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• For fixed effect parameters we have

βj | other parameters and data ∼ Np(β̃j, Vj), where

β̃j = Vj[

g∑
u=1

{Σ−1
u

nu∑
i=1

{xijyi − xijxil1βl1 − · · · − xijxilqβlq − xijθi}}+ Λ−1β0j], and

Vj = [

g∑
u=1

{
nu∑
i=1

x2
ijΣ
−1
u }+ Λ−1]−1 where (l1, l2, . . . , lq) 6= j j = 1, ..., q

• For the random effects parameters θ1u, . . . , θnu, u = 1, . . . , g we have that:

θiu | other parameters and data ∼ Np(θ̃iu, Qu), i = 1, . . . , n, where

Qu = [τ−1 + Σ−1
u ]−1 and θ̃iu = Qu[τ

−1ziαi + Σ−1
u yi − Σ−1

u Bxi]

• For hyperparameters β01, . . . β0q we have

β0j | other parameters and data ∼ Np(β̃0j, D0),where

B0j = D0[λ−1βj + τ−1
0 β0] j = 1, ..., q and D0 = [Λ−1 + τ−1

0 ]−1

• For hyperparameter Λ we have

Λ | other parameters and data ∼ IWp(d,E), where

E =

q∑
j=1

(βj − β0j)(βj − β0j)
t + L0 and d = q + t0

• Finally, for the covariance matrices Σ1, . . . ,Σg, τ and R we have

Σu | other parameters and data ∼ IWp(lu, Hu), where

Hu =
nu∑
i=1

(yi −Bxi − θi)(yi −Bxi − θi)t +Q0 and lu = nu + ν0

τ | other parameters and data ∼ IWp(s, T ), where

T =
n∑
i=1

(θi − ziαi)(θi − ziαi)T + Φ0 and s = n+ γ0
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R | other parameters and data ∼ IWpk(f,O), where

O =
n∑
i=1

αiα
t
i +R0 and f = n+ r0



Chapter 4

Optimal Information in
Authentication of Food and
Beverages

4.1 abstract

Food and beverage authentication is the process by which food or beverages are

verified as complying with their label descriptions (Winterhalter; 2007). A common

way to deal with an authentication process is to measure attributes such as groups of

chemical compounds on samples of food, and then use these as input for a classification

method. In many applications there may be several types of measurable attributes.

An important problem thus consists of determining which of these would provide the

best information, in the sense of achieving the highest possible classification accuracy

at low cost. We approach the problem under a decision theoretic strategy, by framing

it as the selection of an optimal test (Geisser and Johnson; 1992) or as the optimal

dichotomization of screening tests variables (Wang and Geisser; 2005), where the

“test” is defined through a classification model applied to different groups of chemical

compounds. The proposed methodology is applied and compared in the context of a

63
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dataset consisting of measurements of nineteen chemical compounds (anthocyanins,

organic acids and flavonols) on samples of Chilean red wines, where the main goal is to

determine the combination of chemical compounds that is best for authentication of

wine varieties, considering the losses of wrong decision and the cost of determination.

Key Words: Loss function; Classification; Wine

4.2 Introduction

Authentication of food and beverages is the process by which food or beverages are

verified to match their label description (Winterhalter; 2007). Authentication prob-

lems are typically treated from the viewpoint of classification (Brown et al. (1999);

Dean et al. (2006); Toher et al. (2007); Gutiérrez et al. (2010)). The accuracy of a

classification model used for authentication depends on the available information. An

important issue in this process is to determine what chemical compounds should be

analyzed to verify that a given food product complies with its label description. For

example, to verify the authenticity of tea varieties and products, different groups of

chemical compounds like catechins, total phenolics, theaflavins or caffeine, have been

proposed (Engelhardt; 2007).

Motivated by a dataset concerning samples of red wines from different varieties

and origins (Gutiérrez et al.; 2010), we address the problem of selecting the com-

pounds that give the best performance. By this we mean that the cost of analyzing

the compounds should be low and the accuracy of results good. From a Bayesian

viewpoint this is an optimal decision problem (Berger; 1985). A similar problem

arises in a biomedical context, when it is necessary to choose between two screening
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tests. A possible solution implies the definition of a loss function that combines the

penalty associated to a wrong decision with the cost of each test. See for example

Geisser and Johnson (1992). A related approach involves the optimal dichotomiza-

tion of screening test variables, as in e.g., (Wang and Geisser; 2005). See below for a

discussion of both methods.

We adapt the methods in Geisser and Johnson (1992) and in Wang and Geisser

(2005) to the optimal selection of information for the authentication process. We

assume that various types of chemical compounds can be potentially measured, and

that additional information leads to increased classification accuracy. Our “test” is a

multivariate classification model (Gutiérrez and Quintana; 2010) that can be applied

to the different groups of chemical compounds. We consider two populations: one

where food samples comply with their label description and the other where they do

not. For simplicity, we refer to these as populations having characteristics U or U c,

respectively. The method by Geisser and Johnson (1992) considers the problem of

optimally deciding whether a certain characteristic is present, based on one or two

screening tests. The authors discuss the relative merits of giving either one or two

tests, including the order in which they might be given, as well as their costs. For

this method, the input consists of the results of a screening test, e.g. the ELISA test

for presence or absence of AIDS. In our case we take the input as the results coming

from the classification model, namely, the posterior probability that the sample has

characteristic U . To do so, it is necessary to select a threshold for the posterior

probability that a given individual is assigned to characteristics U or U c. On the

other hand, the method by Wang and Geisser (2005) considers the problem of finding

a most favorable dichotomizer, that is, a cut-off value or threshold for which optimal
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test performance is obtained. This is so because the accuracy of the screening test

often depends on the dichotomization of the test outcome variable. Determination of

the optimal dichotomizer is considered under a decision-theoretic Bayesian approach.

For this method, the input consists of the outcome test variable values, e.g. in AIDS

screening, an ELISA test measuring the level of certain antigens in the blood for

ascertaining the presence of the human immunodeficiency virus (HIV) antibodies,

and a cut-off value is chosen for dichotomizing the screening outcomes, to indicate

the presence or absence of the antibodies (Wittes; 1987). When adapting the Wang

and Geisser (2005) method to our case, we take the log-posterior predictive density

for a new sample as input. It will be argued that the expected loss function depends

on this value, so that we simply proceed to find an “optimal” dichotomizer using

minimization techniques. In either case, we consider a loss function that balances the

worth of correctly classifying samples with the cost required to measure the chemical

compounds. The optimal decision is then the one that minimizes the expected loss.

The rest of the paper is organized as follows. In section 4.3 we introduce the ideas

and concepts for defining a loss function and the two approaches for estimating the

expected loss. In Section 4.4 we describe the motivating wine dataset, which includes

measurements of nineteen chemical compounds: Anthocyanins, Organic Acids and

Flavonols. We also briefly describe a classification model that we have found to

be particularly useful for authentication in this context (Gutiérrez and Quintana;

2010). We implement and compare the two methods for optimal information selection,

considering all possible combinations of groups of compounds that can be used. We

conclude in section 4.5, where the the results are compared, and a final discussion of

the proposed methodology is given.
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4.3 Methodology

4.3.1 Decision-theoretic approach to find optimal informa-

tion

We assume a classification approach for which a training dataset concerning n exper-

imental units {(yi, xi, gi)}, i = 1, . . . , n is available. Here, yi = (yi1, . . . , yip)
′ ∈ Rp

is the observed response vector for the ith unit, and xi = (xi1, . . . , xiq) and gi ∈

E = {1, . . . , g} denote the corresponding covariate vector and known group label,

respectively. Let yn = (y1, . . . , yn, x1, . . . , xn, g1, . . . , gn) denote the complete data.

Let yn+1 = (yn+1, xn+1) be the observed data vector for a future unit, for which the

corresponding label gn+1 is unknown. We adopt a predictive approach for classifi-

cation, so that the focus is on inference for the gn+1 value. Assume a partition of

E as E = U
⋃
U c, where U = {k}, k ∈ E and U c = {j ∈ E | j 6= k}. Using the

above setup, we consider two subpopulations: the units that comply with its label

description will be said to have characteristic U , and U c otherwise. In this context,

there are two possible actions, gn+1 = U denoted by A, and gn+1 = U c denoted Ac.

Assume that we have a generic hierarchical model for the available data, denoted by

M, of the form

yi | δi, xi ∼ p(yi | δi, xi), δi ∼ G(δi | φ). (4.3.1)

In simple words, the data vector yi for the ith sampling unit are assumed to be sampled

from a probability model parameterized by a vector δi, where xi represents a covariate

vector. We consider now an additional ingredient of the problem at hand, namely, the

dimension p of vector yi can be changed based on the available information, and on

the cost required to obtain that information. For example, in our application, p = 9
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when we choose to use the anthocyanin compounds, p = 4 when we use the Organic

acids, p = 6 for flavonols, and p = 19 when we use a combinations of the three

compound groups. See the appendix section for a full list of the mentioned groups

of chemical compounds. In all cases the dimension of xi remains constant, so the

covariates are the same for all models. Denote by Mpj a model of the form (4.3.1),

with a corresponding response vector yi ∈ Rpj , j = 1, 2, . . .. We assume there is a

cost cj associated with model Mpj , and losses in making wrong decisions. Selecting

a particular model Mpj implies selecting the compounds or combinations of them

that yield the best performance. By this we mean that the cost cj of determining

the compounds should be low and the accuracy of the results should be good. In

our case, we have information on all the different compounds, but we shall take the

perspective of identifying the groups or combinations thereof that are most useful

for classification. The idea is that, if in the future a producer needs to verify, for

example, whether a sample of wine is Cabernet Sauvignon or not, then the analyst

will not need to measure all compounds included in the current dataset, but only

those providing the best classification for this grape variety at low cost. Therefore

we propose a solution that implies the definition of a loss function that combines the

penalty associated to a wrong decision with the cost cj of each model Mpj .

In the case of the actions A and Ac and states U and U c, a useful loss function is

given in Table 4.1. For example, the loss of deciding action A is lAU when the true

state is U .

Now, given a decision rule R for model Mpj , the optimal decision is the one
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True State
Decision rule outcome U U c

A lAU lAUc
Ac lAcU lAcUc

Table 4.1: Loss function

minimizing E(Loss | R), given by

E(Loss | R) = lAUPr(A,U) + lAUcPr(A,U
c) + lAcUPr(A

c, U) + lAcUcPr(A
c, U c)

(4.3.2)

If the cost associated to model Mpj , cj, is expressed in the same unit as the losses,

then we would minimize E(Loss | R)+cj. We can therefore estimate the expected loss

for each model under consideration, and select the one yielding the lowest expected

loss. To do so, it is necessary to assign values to the losses and the corresponding

probabilities as expressed in (4.3.2). The order of magnitude of the quantities in

Table 4.1 is crucial for defining the optimal model, and this choice depends on the

analyst’s viewpoint. In authentication problems, it could be argued that from the

viewpoint of a “honest producer”, i.e. a producer that says the truth with probability

1,

lAU ≤ lAcUc ≤ lAUc ≤ lAcU . (4.3.3)

The worst-case scenario occurs when U is present in the food under authentication

but the model estimates this to be not true. A costumer may interpret such model

results, as an indication that the producer is committing a fraud, and the losses

for the producer could be devastating. A different situation arises when the food

under authentication does not have the characteristic U , but the model estimates
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that U is present. If so, a customer may think that the producer does not have

enough knowledge of their product, which could generate distrust and possible losses.

When U is absent from the food under authentication and the model estimates this

to be true, the image of the honest producer is strengthened and, probably, no loss

is generated. The best scenario is when U is present in the food, and the model

estimates this to be true, in which case the honest producer is reliable and most of

the time a profit will be made.

4.3.2 Estimation of the expected loss function

Note first that we can rewrite the expected loss function (4.3.2) as

E(Loss | R) = Pr(U)Pr(A | U)(lAU − lAcU)

+ (1− Pr(U))Pr(Ac | U c)(lAcUc − lAUc) + Pr(U)lAcU + (1− Pr(U))lAUc (4.3.4)

Denote the probabilities in (4.3.4) as π = Pr(U), the probability that a random drawn

unit from the population exhibits characteristic U ; η = Pr(A | U), the probability

that the model correctly estimates the presence of U (sensitivity); and ϕ = Pr(Ac |

U c), the probability that the model correctly estimates the absence of U (specificity).

Conceptually, when all of these quantities are known, we only need to introduce

the costs and/or losses, and a few manipulations to determine the optimal decision

procedure, given an outcome of the classification modelMpj . In our case, as in many

other practical situations, π, η and ϕ are all unknown.

A simple approach for estimating π, η and ϕ was proposed by Geisser and Johnson

(1992) in the context of a screening test. The method consists of applying the model

to n1 units which are known to have the characteristic U , and also to n2 units which



71

are known to be free of U . Assuming that r1 out of n1 yield A in the first sample,

and r2 out of n2 yield Ac in the second, we obtain binomial distributions for both

r1 and r2, with parameters η and ϕ, respectively. If π is unknown, we need an

additional independent sample of size ν, from which we can count the number tu of

units having U . We obtain another binomial distribution for tu with parameter π. Let

d = (r1, n1, r2, n2, tu, ν). Since the samples are independent, the likelihood function

is given by

L(η, ϕ, π | d) = L(η | n1, r1)L(ϕ | n2, r2)L(π | ν, tu). (4.3.5)

Under a Bayesian viewpoint it is necessary to assign prior distributions p(η, ϕ, π) on

(η, ϕ, π), from which the joint posterior density is obtained as

p(η, ϕ, π | d) ∝ p(η, ϕ, π)L(d | η, ϕ, π). (4.3.6)

We now describe how to obtain the quantities r1 and r2 from model Mpj , using

the predictive probability P (gn+1 = u|yn+1, y
n), which can be approximated as (De la

Cruz-Meśıa and Quintana; 2007; Gutiérrez et al.; 2010)

P (gn+1 = u|yn+1, y
n) ≈ 1

C

C∑
c=1

πup(yn+1|Θ(c)
u )∑

l πlp(yn+1|Θ(c)
l )

. (4.3.7)

We use (4.3.7) as follows: take action A if P (gn+1 = u|yn+1, y
n) > p0 and Ac otherwise.

This rule is of course dependent on the threshold or cut-off value p0. Therefore, the

results depend on the choice of p0 ∈ (0, 1), but it is easy to evaluate the expected loss

on a suitable grid of values on (0, 1), from which we can select the value of p0 that

gives the minimal expected loss.

A second approach for estimating η and ϕ, proposed by Wang and Geisser (2005)

in the context of dichotomization of screening test variables, consists of assuming that
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lAU = lAcUc = 0 (i.e., no loss for right decisions), lAUc = b and lAcU = a with b ≤ a.

Under these assumptions, (4.3.4) simplifies to

E(Loss) = b(1− π)(1− ϕ) + aπ(1− η). (4.3.8)

Wang and Geisser (2005) further assume that 1−η and ϕ can be reexpressed in terms

of two distribution functions, η = 1 − F1(`) and ϕ = F2(`) where ` is the result of

a classification model Mpj , which in our case corresponds to ` = log(p(yn+1 | yn)).

This approach allows us to find the minimum expected loss with respect to ` and to

find `0 = arg min`L(`), the optimal dichotomization of the classification modelMpj .

Assume that Fi has density function fi, depending on a parameter ξi, i = 1, 2. To

estimate ξ1 and ξ2, it is necessary to fit the model to n1 units for which U is present,

and also to n2 units for which U is absent. For i = 1, 2, let `ij = {`ij1, . . . , `ijni} be

the values of log(p(yn+1 | yn)) with modelMpj applied to each of the ni units above.

Wang and Geisser (2005) suggest using the predictive distribution

F̃ij(` | `ij) ∝
∫
Fi(` | ξi)

ni∏
m=1

fi(`ijm | ξi)pi(ξi)dξi i = 1, 2, (4.3.9)

from which the expected loss for model Mpj , as a function of `, can be expressed as

Lj(`) = b(1− π){1− F̃2j(` | `2j)}+ aπF̃1j(` | `1j). (4.3.10)

The value of π can be inferred just as in the first approach. For simplicity, and to

ensure availability of an analytical expression for the posterior predictive distribution,

we assume that `, the value of log(p(yn+1 | yn)), is distributed as Fi ∼ N(µi, σ
2
i ),

i = 1, 2 and that the prior distributions for µi and σ2
i are given by

pi(µi, σ
2
i ) = N(µi | µi0, ni0/σ2

i )IG(σ2
i | αi0, βi0). (4.3.11)
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It follows that the posterior predictive distribution follows a Student t distribution

t(τi, λi, νi), with parameters given by

τi =
ni0µi0 + ni ¯̀

ij

ni0 + ni

λi =
ni + ni0

ni + ni0 + 1
(αi0 +

1

2
ni)

[
βi0 +

1

2
(ni − 1)s2

i +
1

2

ni0ni
ni0 + ni

(µi0−¯̀
ij

)2

]−1

νi = 2αi0 + ni

The value of `0 can be obtained numerically from Newton-Raphson’s method. Given

an initial value `
(k=0)
0 , we iteratively evaluate

`
(k)
0 = `

(k−1)
0 − L′(`

(k−1)
0 )

L′′(`
(k−1)
0 )

, k = 1, 2, ...,

until convergence is reached. Once `0 has been computed, we can estimate the mini-

mum expected loss in terms of arbitrary choices of a and b. Under the above assump-

tions, we have that L′(`) and L′′(`) are given by

L′(`) = −b(1− π)A2

{
1 +

λ2

ν2

(`− τ2)2

}−(ν2+1)/2

+ aπA1

{
1 +

λ1

ν1

(`− τ1)2

}−(ν1+1)/2

L′′(`) = b(1− π)A2λ2
ν2 + 1

ν2

(`− τ2)

{
1 +

λ2

ν2

(`− τ2)2

}−(ν2+3)/2

− aπA1λ1
ν1 + 1

ν1

(`− τ1)

{
1 +

λ1

τ1

(`− τ1)2

}−(ν1+3)/2

,

where,

Ai =
Γ
(
νi+1

2

)
Γ
(
νi
2

)
Γ
(

1
2
)
(
λi
νi

)1/2
, for i = 1, 2.

In the case where the posterior predictive distribution is analytically unavailable,

Wang and Geisser (2005) proposed to generate a Markov Chain Monte Carlo (MCMC)

sample ξi1, . . . , ξiC , i = 1, 2. Conditional on each ξil, we would sample an `∗il from
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Fi(· | ξil), i = 1, 2, l = 1, . . . , C. Then `0 can be approximated by minimizing

b(1− π)

{
1− 1

C

C∑
l=1

1(−∞,`]`
∗
2l

}
+ aπ

1

C

C∑
l=1

1(−∞,`]`
∗
1l,

where

1(−∞,`]`
∗
il =

{
1, if `il ∈ (−∞, `]
0, if `il /∈ (−∞, `].

4.4 Application to the wine dataset

The wine dataset consists of measurements of concentration of nineteen chemical

compounds on 149 samples of Chilean red wines. The grape varieties in the dataset are

Cabernet Sauvignon (101 samples), Carménère (29 samples) and Merlot (19 samples).

All wine samples come directly from wineries located in the valleys of Aconcagua,

Maipo, Rapel, Curicó and Maule. Most of the samples come from 2004 vintage and

some of them from 2002 vintage. Our aim is to verify grape authenticity using the

decision theoretical approach laid up in Section 4.3. From the nineteen compounds,

nine correspond to anthocyanins, four are organic acids and six are flavonols. A

full list of the compounds is given in the Appendix. All the compounds have been

proposed and used for red wine variety authentication, see e.g. von Baer et al. (2007).

Anthocyanins are a group of chemical compounds present on the grape skins, which

are transferred to the wine during the winemaking process. They also confer red

wines their characteristic color. Anthocyanin determination was made by reverse

phase HPLC based on the method described by Holbach et al. (1997), Otteneder et al.

(2002) and OIV (2003) with minor modifications. More details about anthocyanin

determination can be found in von Baer et al. (2005) and von Baer et al. (2007).

Flavonol and Organic acids are antioxidant compounds. Flavonols were determined by
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HPLC based on the methodology of McDonald et al. (1998) with minor modifications.

Organic acids were determined by a combination of reverse phase and ion exclusion

chromatography in series, as described by Holbach et al. (2001) and OIV (2004).

More details about Flavonols and Organic acid determination can be found in von

Baer et al. (2007).

We apply the methodology developed in Section 4.3 to determine the best combi-

nation of chemical compounds for wine authentication. To do so, we consider fitting

several models, using the groups of compounds or combinations listed in Table 4.2 as

response vector, and grape variety and valley as covariates in all cases.

Model Information pj
Mp1 Anthocyanin 9
Mp2 Organic acids 4
Mp3 Flavonol 6
Mp4 Anthocyanin, Organic acids 13
Mp5 Anthocyanin, Flavonol 15
Mp6 Organic acids, Flavonol 10
Mp7 Anthocyanin, Organic acids, Flavonol 19

Table 4.2: Proposed response vectors for each model

We now need to specify a model for estimating P (gn+1 = u|yn+1, y
n) and ` =

log(p(yn+1 | yn)), the input quantities in the decision problem under the two ap-

proaches described in section 4.3. To this effect, we will use the model proposed

by Gutiérrez and Quintana (2010) for food and beverages authentication, which was

motivated by the analysis of part of the same dataset. This model turned out to be

flexible and useful for classification in that context, outperforming some other com-

peting alternatives. The model considers a semiparametric multivariate hierarchical

linear mixed specification for the mean responses, and covariance matrices that are
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specific to the classification categories. The model considers a flexible distribution for

the random effects, using the formalism of dependent random probability measures

as in De Iorio et al. (2004). Concretely, we assume

(yiu | xiu, ziu) ∼ Np(Bxiu + θiu,Σu), i = 1, . . . , nu, u = 1, . . . , g (4.4.1)

θiu ∼ Hz(θiu), Hz(θ) =

∫
N(θ | zα, τ)dG(α)

G |M,G0 ∼ DP (M,G0), G0 ≡ Npk(0, R)

Σ1, . . . ,Σg ∼ IWp(ν0, Q0), τ ∼ IWp(γ0,Φ0), R ∼ IWpk(r0, R0)

β01, . . . , β0q ∼ Np(α0, τ0), Λ ∼ IWp(L0, t0), M ∼ Ga(a1, a2).

In model (4.4.1), yiu is a vector in Rp, B is a p × q matrix of fixed effects, xiu is a

vector of covariates in Rq, θiu is a p × 1 vector of unit-specific random effects, ziu

is a p × pk design matrix for random effects, and αi is a pk × 1 vector of latent

variables that define the random effects. The subscript u denotes the group or class

in a classification context. Basically, the random effects in model (4.4.1) are modeled

from an infinite mixture, where the mixing distribution G depends on the level of

covariate z through an ANOVA DDP process (De Iorio et al.; 2004). This is a natural

approach to introduce dependence on factors. More details can be found in Gutiérrez

and Quintana (2010).

The hyperparameter values in model (4.4.1) were taken as β0 = (0, . . . , 0)t, τ0 =

100Ip, Q0 = 0.1Ip, L0 = 0.01Ip, ν0 = p + 2, r0 = pk + 2, t0 = p + 2, R0 = 10Ipk,

γ0 = p + 2, φ0 = 0.01Ip and a1 = a2 = 1. The resulting prior densities are proper,

but the one for B is vague and hence relatively uninformative. The prior density

for R is relatively uninformative too. All the prior variance-covariance matrices were

assumed diagonal.
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Table 4.3 shows two model adequacy measures, LPML and DIC. LPML (Geisser

and Eddy; 1979) is the log-pseudo marginal likelihood, defined as LPML =
∑n

i=1 log(CPOi),

where CPOi are the Conditional Predictive Ordinates (Chen et al.; 2000). Models

with higher LPML are preferred. DIC is the Deviance Information Criterion proposed

by Spiegelhalter et al. (2002), and models with the smallest DIC values are preferred.

From Table 4.3 we can generally conclude that models including more information

perform better.

Model LPML DIC
Mp1 1,095.7 -2,492.3
Mp2 163.2 -381.1
Mp3 294.2 -1,103.6
Mp4 1,348.7 -3,459.9
Mp5 1,833.7 -4,560.6
Mp6 665.2 -2,134.1
Mp7 2,097.3 -5,759.9

Table 4.3: Model adequacy measures

In our application, U is the grape variety of wine. Recall that the grape varieties

and sample sizes are Cabernet Sauvignon (101 samples), Merlot (19 samples) and

Carménère (29 samples). Then, when U = Cabernet Sauvignon, each model in Ta-

ble 4.2 was applied to n11 = 101 samples that are Cabernet Sauvignon, and n21 = 48

samples where U is absent, corresponding to the 29 Carménère plus 19 Merlot sam-

ples. Similarly, for Merlot we apply the models to n12 = 19 samples (so n22 = 130),

and for Carménère we have n13 = 29 and n23 = 120. With these samples we obtained

the values of rijm and `ijm, for i = 1, 2, j = 1, 2, . . . , 7, and m = 1, 2, 3 with i denoting

population, j denoting model Mpj, and m denoting the grape variety.

To estimate π we used an additional independent sample of size ν = 100, where the
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number of Cabernet Sauvignon samples (as declared by the producer) was tu1 = 54,

the number of Merlot was tu2 = 20 and the number of Carménère was tu3 = 26.

For the first approach, we completed the Bayesian formulation assuming independent

beta prior distributions for π, η and ϕ:

(ηi) ∼ Beta(1, 1), (ϕi) ∼ Beta(1, 1) i = 1, 2, 3

(π1) ∼ Beta(2, 2), (π2) ∼ Beta(1, 3), (π3) ∼ Beta(1, 5)

The prior distribution for ηi and ϕi are proper and uninformative. The prior for π1 =

Pr(U = Cabernet Sauvignon), π2 = Pr(U = Merlot) and π3 = Pr(U = Carménère)

were assigned using information about wine production (thousand of liters by grape

variety) supplied by the National Statistics Institute of Chile (INE; 2008).

From the discussion leading to (4.3.3), we choose lAU = 0 US$, lAcUc = 0 US$

(i.e., no loss for right decisions), lAcU = 10, 000 US$, and lAUc = 4, 000 US$. We note

that the actual costs for wrong decisions depend on additional information which we

do not have, such as the number of rejected bottles, transportation, publicity, etc.

Nevertheless, the above values were chosen having in mind that our goal is to select a

model, and that the expected loss for a particular model is not important in itself, but

in relative terms. Additionally, all models assume the same loss, so that what varies

between models is the cost of collecting data cj. The cost of an anthocyanin analysis

for wines in a lab in Chile is about US $ 73.7, an organic acid analysis costs US $

81.9, and a flavonol analysis costs US $ 102.4. Therefore the cost of collecting data

for the seven models were: c1 = 73.7, c2 = 81.9, c3 = 102.4, c4 = 155.6, c5 = 176.1,

c6 = 184.3 and c7 = 258 all in US$ (von Baer; 2010).

With the losses and costs described above we estimated the expected loss (4.3.4)

as a function of the threshold p0. The expected loss for Cabernet Sauvignon for each
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of the seven models is given in Figure 4.1. For almost all values of p0, Mp1 is the
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Figure 4.1: Expected loss for Cabernet Sauvignon as a function of p0

best model. Mp2 has similar expected loss than Mp1 . Therefore, measurements of

Anthocyanins or Organic Acid are most useful when a producer wants to verify that

a sample of wine is Cabernet Sauvignon.

Figure 4.2 shows the expected loss function for Merlot. In this case, Mp1 yields

good results but not for all range of p0 values, as Mp3 is better than Mp1 when p0

is near 1. Although the expected losses of Mp4 orMp5 are both bigger, they appear

almost invariant to the choice of p0. Therefore if a producer wants to verify that a

sample of wine is Merlot, measurements of Anthocyanin and Flavonol are needed.
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Figure 4.2: Expected loss for Merlot as function of p0

Finally, Figure 4.3 shows the expected loss function for Carménère. We find that

Mp1 is the best over a wide range of p0. When p0 is near 0.5, Mp2 has a similar

performance than Mp1 . On the other hand, Mp4 implies a bigger loss but it is

almost invariant to the choice of p0. Therefore if a producer wants to verify that a

sample of wine is Carménère, measurements of Anthocyanins and Organic acids are

needed.

For the second approach described in Section 4.3, we selected the prior distribution

parameters as µi0 = 0, ni0 = 1, αi0 = 3, βi0 = 1 for the three grape varieties. After

a minimization process we obtained `0, the optimal value of `, and evaluated the
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Figure 4.3: Expected loss for Carménère as a function of p0

expected loss as a function of losses a and b. For a we evaluated the expected loss

over the range from 50 (small loss) to 20, 000 US$ (big loss), keeping b fixed at 1

US$. For b the expected loss was calculated between 1 and 7, 000 US$, keeping a

fixed at 10,000 US$. These choices were motivated by inequality (4.3.3). Again, the

losses of wrong decisions are the same for all models and the cost of data collecting

cj varies across models. The ranges of losses were selected in order to obtain a broad

view of the minimum expected loss under different scenarios. The results are shown

in Figure 4.4. Figure 4.4 shows, for grape variety Cabernet Sauvignon, that Mp1

attains the minimal expected loss; A similar performance was obtained by Mp2 . For
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b, Mp2 attains the minimal expected loss uniformly over the whole range. In the

case of Merlot the minimum expected loss is attained by Mp1 as function of a and

Mp6 as function of b, especially when b increases. For Carménère, Mp1 reached the

minimum loss; as function of b, Mp2 attains the minimum loss for the same grape

variety. These results are consistent with those obtained with the first approach,

and with the results obtained by von Baer et al. (2007) with part of the same data,

but using linear discriminant analysis applied to the same groups of compounds.

Additionally, we performed a sensibility analysis for different values of prevalence

(fixing π in 0.1, 0.2, . . . , 0.8 for each grape variety). From this analysis we found

that the prevalence affects the expected loss, but for all values of prevalence, the

conclusions for each grape variety were not affected.

In summary, the two approaches lead to identical conclusions: (i) to verify whether

a wine sample is Cabernet Sauvignon or not, anthocyanin or organic acid measure-

ments are more appropriate than flavonols; (ii) to verify whether a wine sample is

Merlot or not, flavonols or anthocyanins are more appropriate than organic acids; and

(iii) to verify whether a wine sample is Carménère, organic acids or anthocyanins are

appropriate.
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4.5 Concluding remarks

The applied methodology allows us to select the optimal information when we need

to verify the grape authenticity of red wines. The methodology could be applied to

any authentication problem where more than one group of chemical markers could

be used for authentication. In the case of red wines, many chemical markers have

been proposed for authentication purposes, but as we can see in the results, different

groups of chemical markers provide different information. For instance, if we want

to verify whether a sample of wine is Cabernet Sauvignon or not, anthocyanin or

organic acid measurements are more appropriate than flavonols. The methodology

allows us to incorporate the cost of chemical determination, so an analyst can decide

the best combination of chemical compounds to use when verifying the authenticity

of each sample.

In our application we used a semiparametric Bayesian model, but the model could

be parametric as well, and there is no constrain about it. The focus is on the infor-

mation that the model uses, and as suggested by the adequacy measurements DIC

and LPLM, the more information we add to the model, the better fit we get. But im-

proving the fit might be too expensive, and so our approach balances the precision we

get with the cost we have to pay for using the additional information. In that sense,

the conclusions we draw can be useful to producers and consumers, as they allow to

focus their effort on the appropriate chemicals to consider for each wine variety.
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4.6 Appendix

Anthocyanin Organic Acids Flavonol
Delphinidin-3-glucoside Tartaric Myricetin

Cyanidin-3-glucoside Shikimic Quercetin
Petunidin-3-glucoside Lactic Total myricetin
Peonidin-3-glucoside Acetic Total quercetin
Malvidin-3-glucoside Conjugate myricetin

Peonidin-3-acetylglucoside Conjugate quercetin
Malvidin-3-acetylglucoside

Peonidin-3-coumaroylglucoside
Malvidin-3-coumaroylglucoside

Table 4.4: Measured compounds



85

0 5000 10000 15000 20000

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0

a

C. Sauvignon

0 1000 2000 3000 4000 5000 6000 7000

0
5

0
0

1
5

0
0

2
5

0
0

b
s
a

lC
s
C

1
b

[,
 2

]

C.Sauvignon

0 5000 10000 15000 20000

1
0

0
1

5
0

2
0

0
2

5
0

3
0

0

a

Merlot

0 1000 2000 3000 4000 5000 6000 7000

0
5

0
0

1
5

0
0

2
5

0
0

b

s
a

lM
tC

1
b

[,
 2

]

Merlot

0 5000 10000 15000 20000

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0

a

Carmenere

0 1000 2000 3000 4000 5000 6000 7000

0
1

0
0

0
2

0
0

0
3

0
0

0

b

s
a

lC
m

C
1

b
[,

 2
]

Carmenere

M1
M2
M3
M4
M5
M6
M7

Figure 4.4: Minimum expected loss as function of losses a and b



Chapter 5

Further Research

In this chapter we consider possible future research directions.

5.1 Motivated by the wine dataset

In Chapter 1 we used the vintage year as a continuous predictor when proposing a

Bayesian parametric model. The pragmatical reason for this was that by doing so we

may easily incorporate data from new years as they become available, without the

need to modify the model. The effect of vintage year was negligible in that context.

Therefore in Chapter 2, we ignored vintage year in our development. It is well known

that the vintage year could affect the wine properties, because the weather conditions

could change. In future work, we want to explore effective modeling strategies that

incorporate the vintage effect without the need to modify the model each year.

86
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5.2 Motivated by near-infrared spectroscopic mea-

surements

Many analytical chemistry techniques are used in food authenticity studies, including

high performance gas chromatography (HPLC), mass spectroscopy and vibrational

spectroscopy techniques. All of these techniques have been shown to be capable of

discriminating between certain sets of similar biological materials. Spectroscopy is

the study of the interaction between radiation and matter as a function of wave-

length. Spectrometry is the spectroscopic technique used to assess the concentration

or amount of a given chemical (atomic, molecular, or ionic) species. Downey (1996)

and Reid et al. (2006) provide reviews of food authenticity studies with emphasis

on spectroscopic methods. Near infrared (NIR) spectroscopy is the spectroscopic

technique that deals with the infrared region of the electromagnetic spectrum. Near

infrared (NIR) spectroscopy provides a quick and efficient method of collecting data

for use in food authenticity studies (Downey; 1996). It is particularly useful because

it requires very little sample preparation and is nondestructive to the samples being

tested.

Murphy et al. (2010) presents two food authenticity data sets which consist of

combined visible and near-infrared spectroscopic measurements from food samples of

different types. In the first dataset the aim is to classify meats into species (Beef,

Chicken, Lamb, Pork, Turkey). In the second, the aim is to classify olive oils into

geographic origin (Crete, Peloponese, other). In both studies, combined visible and

near infrared spectra were collected in reflectance mode using an NIRSystem 6500 in-

strument over the wavelength range 400-2498 nm at 2 nm intervals. Hence, the values
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collected for each food sample consist of 1050 reflectance values. The reflectance val-

ues in the visible and near-infrared region are produced by vibrations in the chemical

bonds in the substance being analyzed. This type of data exhibits high correlation

due to the presence of a large number of overlapping broad peaks in this region of

the electromagnetic spectrum and the presence of combinations and overtones. Most

of the time more variables than observation are available, that is, large p, small n

(n << p). Problems where (n << p) were described by West (2003) in a context of

factor regression models and Murphy et al. (2010) in model-based discriminant anal-

ysis for high dimensional data. The Murphy et al. (2010) proposal is an adaptation

of the model based clustering with variable selection method of Raftery and Dean

(2006), where the basic idea is to recast the variable selection problem as one of com-

paring competing models for all of the variables initially considered. This comparison

is made using approximate Bayes factor.

We think that more research is needed with near-infrared spectroscopic measure-

ments, especially under different viewpoints, because this type of data are quickly

obtained, and there is the possibility of developing portable sensor for food authen-

ticity. In fact, portable sensors have been development on a commercial basis for

the authentication of Scottish whiskeys (Connoly; 2006). The data used in Murphy

et al. (2010) are available online as supplementary material, and can be used as a

motivating example to adopt a different modeling approach.
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nung des Gehalts an Shikimisäure im Wein als Authentizitätsparameter, Mitteilun-

gen Klosterneuburg 54: 234–238.



93

Geisser, S. and Eddy, W. F. (1979). A predictive approach to model selection, Journal

of the American Statistical Association 74(365): 153–160.

Geisser, S. and Johnson, W. (1992). Optimal administration of dual screening test

for detecting a characteristic with special reference to low prevalence diseases, Bio-

metrics 48: 839–852.

Gelfand, A., Kottas, A. and MacEachern, S. (2005). Bayesian nonparametric spa-

tial modeling with Dirichlet process mixing, Journal of the American Statistical

Association 100(471): 1021–1035.

Griffin, J. and Steel, M. (2006). Order-based dependent Dirichlet processes, Journal

of the American Statistical Association 101(473): 179–194.

Gutiérrez, L. and Quintana, F. (2010). Multivariate Bayesian semiparametric models

for authentication of food and beverages. Submitted to The Annals of Applied

Statistics.

Gutiérrez, L., Quintana, F., von Baer, D. and Mardones, C. (2010). Multivariate

Bayesian discrimination for varietal authentication of Chilean red wine. Accepted

in Journal of Applied Statistics.

Hastie, T., Tibshirani, R. and Friedman, J. (2001). Elements of Statistical Learning:

Data Mining, Inference and Prediction, Springer-Verlag, New York.

Hinrichsen, P., Narvaez, C., Bowers, J., Boursiquot, J., Valenzuela, J., Muñoz, C.
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