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Abstract

For many countries is nowadays a common issue is searching for an improvement of
their educational systems. A solid and well established educational system will undoubtedly
lead to highly qualified students and to improve the quality of education. Although
assessment is often seen as a tool to measure the progress of individual students, it
also allows individuals, communities, and countries to track the quality of schools and
educational systems Cohen, Bloom, and Malin (1996). Having accurate and reliable
measures of schools performance is neccesary for to decide among educational options. A
growing emphasis is being placed upon measures of school performance , they are central
to school improvement efforts, system of accountability and school choice, and broader
educational policies OECD (2008). In this context, many countries have implemented
accountability systems which aim to monitor school to be accountable for their functioning.
The accountability system involve a process of evaluating school performance on the
basis of students’ performance measures. The obtained information is used by policy
makers, teachers and principals, and parents for developing educational policies, improve
professional practice, and school choice, respectively.

According to Mortimore (1991): “An effective school is one in which students
progress further than might be expected from consideration of its intake”. In educational
research studies, the school effectiveness is assessed through value-added techniques.
Broadly speaking the value added of a school is “the contribution of a school to students
progress towards stated or prescribed education objectives, the contribution is net of other
factors that contribute to students educational progress” OECD (2008); see also Braun,
Chudowsky, and Koening (2010) and Baker et al. (2010). Thus school effectiveness seeks
to identify the ‘Value Added’ by schools to student outcomes. Value-Added models are
used to estimate the contribution of teachers, educational programs or schools to student
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ABSTRACT

achievement. From a methodological point of view, this can be achieved by modeling
student’s scores taking into account the differences in prior achievements and possibly
other measured characteristics in the form of covariates at both the school level and the
student level; see Braun et al. (2010); OECD (2008); Raudenbush (2004) and Timmermans,
Doolaard, and Wolf (2011). The role of the covariates is to characterize a school of
reference with respect to which the Value-Added is substantively interpreted. As a matter
of fact, the Value-Added of a school is a comparison between the conditional expected
scores in a given school and the conditional expected score in the school of reference: if
the covariates are modified, the school of reference is also modified and the meaning of
the Value-Added changes. Because the interest is to know the net contribution of a school,
and the covariates have an influence on the student performance, an important requirement
for the covariates is that they have to be unrelated to the internal pedagogical processes
performed by a school. Using the econometric jargon, it is said that the covariates are
exogenous with respect to the school.

Due to the hierarchical structure of the data where students are nested into schools, a
standard approach to model the school Value-Added is the use of hierarchical linear models
(HLM), or multilevel models Goldstein (2002); Snijders and Bosker (1999). Under this
approach, students scores are explained by their previous achievement, some covariates
and a random effect representing the school effect. A measure of Value-Added has been
typically obtained as the prediction of the random school effect Aitkin and Longford
(1986); Longford (2012); Raudenbush and Willms (1995); Tekwe et al. (2004). As every
statistical model, some assumptions need to be met for the inferences to be valid. For
instance, the above mentioned requirement of exogeneity of covariates is key to isolate
the net effect of the school represented by the random effect in the model, yet it is not
considered by most of the models currently in used for the estimation of value-added
measures. This can have serious consequences as the reported measures of value added
could be misleading. Despite this problems, hierarchical linear models are widely accepted
for estimating Value-Added. Although constantly the students of schools are evaluated
across time, such that, they have information coming from more of a cohort of students,
understood by cohort, the group of students that were measured on two occasions (previous
and current score) and the set of them are different. When there are several cohorts is
not quite right considered independence among cohorts, because it is the same school
that treats students, the value added model are not considering an association among the
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schools effects across the time. These are only one example of various problems and
challenges seen in some educational data sets.

Many problems involving the value added models are due to the structured of
educational data, educational system, calculating measures of value added forgetting some
of the problems, could, however, lead to erroneous conclusions about the effectiveness of a
school. In this dissertation we addressed two problems; the endogeneity and dependence
across the time, these are challenges seen in some educational data sets, particularly in the
Chile case. The Chilean educational systems do not ensure the exogeneity (i.e., the fact
that covariates and the school effect in the model are uncorrelated) of the prior scores with
respect to the school effect, because students are typically educated by the same school
during the two test occasions, meaning that the prior score already contains the effect
of the school. Absence of exogeneity makes impossible to isolate the net contribution
of a school to student achievement. The Chilean educational systems do not ensure the
exogeneity (i.e., the fact that covariates and the school effect in the model are uncorrelated)
of the prior scores with respect to the school effect, because students are typically educated
by the same school during the two test occasions, meaning that the prior score already
contains the effect of the school. Absence of exogeneity makes impossible to isolate the
net contribution of a school to student achievement. Moreover, Chile has the information
of more a cohort of students on different times , the consequence of not consider a relation
across the time among the schools effect can lead to erroneous conclusions, a school may
worsen compared to a reference school but improve in comparison with itself.

This dissertation named; Toward a robust measure of school effectiveness through
value-added model: it is considered both problems of endogeneity as dependence on
time, separately and not jointly, however, it is possible and not so complicated, link these
methodologies. Our proposals addressed developing of two value added models, two
robust measures under the hierarchical linear mixed models and an application to real data,
specifically in Chilean educational data.
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Introduction

Nowadays countries seek to improve their educational systems since a solid and
well established educational system will undoubtedly lead to highly qualified students
and will improve the quality of education. Furthermore a growing emphasis is being
placed upon measures of school performance. Accurate and reliable measures of schools
performance are central to school improvement efforts, for systems of school accountability
and to broader educational policies. In this context, many countries have implemented
accountability systems which aim to monitor schools to be accountable for their functioning.
The accountability system involves a process of the school performance on the basis of
student performance measures. The obtained information is used by policy makers,
teachers, principals and parents for developing educational policies, improve professional
practice and school choice. It also allows to track the quality of schools and educational
systems Cohen et al. (1996).

According to Mortimore (1991): “An effective school is one in which students
progress further than might be expected from consideration of its intake”. Thus, school
effectiveness seeks to identify the ‘Value Added’ by schools to student outcomes. Value-
Added models are used to estimate the contribution of teachers, educational programs or
schools to student achievement. From a methodological point of view, this can be achieved
by modeling student’s scores taking into account the differences in prior achievements
and possibly other measured characteristics in the form of covariates at both the school
level and the student level; see Braun et al. (2010); OECD (2008); Raudenbush (2004) and
Timmermans et al. (2011). The role of the covariates is to characterize a school of reference
with respect to which the Value-Added is substantively interpreted. As a matter of fact,
the Value-Added of a school is a comparison between the conditional expected scores in a
given school and the conditional expected score in the school of reference: if the covariates
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are modified, the school of reference is also modified and the meaning of the Value-Added
changes. Because the interest is to know the net contribution of a school, and the covariates
have an influence on the student performance, an important requirement for the covariates
is that they have to be unrelated to the internal pedagogical processes performed by a
school. Using the econometric jargon, it is said that the covariates are exogenous with
respect to the school. A standard approach to model the school Value-Added is the use
of hierarchical linear models (HLM), or multilevel models Goldstein (2002); Snijders
and Bosker (1999), due to the hierarchical structure of the data where students are nested
into schools (see chapter 1). Under this approach, students scores are explained by their
previous achievement, some covariates and a random effect representing the school effect.
A measure of Value-Added has been typically obtained as the prediction of the random
school effect Aitkin and Longford (1986); Longford (2012); Raudenbush and Willms
(1995); Tekwe et al. (2004).

As every statistical model, some assumptions need to be made for the inferences to
be valid. For instance, the above mentioned requirement of exogeneity of covariates is
key to isolate the net effect of the school represented by the random effect in the model,
yet it is not considered by most of the models currently in use for the estimation of value-
added measures. This can have serious consequences as the reported measures of value
added could be misleading. Despite these problems, hierarchical linear models are widely
accepted for estimating Value-Added.

Chilean context

The Chilean educational system is not exempted of this reality. For instance, every
year when results of educational tests are released, a remarkable difference by social
economic status (SES), and types of schools (i.e., private or public) is seen not only at
the scores level but also in terms of variability. The model used to calculate measures
of value added should accordingly take into account this type of heterogeneity. Also,
chilean educational systems do not ensure the exogeneity (i.e., the fact that covariates
and the school effect in the model are uncorrelated) of the prior scores with respect to
the school effect, because students are typically educated by the same school during the
two test occasions, meaning that the prior score already contains the effect of the school.
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Absence of exogeneity makes impossible to isolate the net contribution of a school to
student achievement.

Over the last decades, Chile has been consolidating a national large-scale standard-
ized test called SIMCE (Sistema de Medición de la Calidad de la Educación, System
Measurement of Quality of Education). Since its creation at the end of 80s, it has had a
strong, increasing and persistent development as a key component of Chilean education
policies Manzi and Preiss (2013); Meckes and Carrasco (2010). SIMCE is a census na-
tional tests that measures three subjects (language, mathematics and science), and it is
administered at 2nd, 4th, 6th, 8th, 10th grade levels. For 2nd and 4th grade, the subjects of
language and mathematics are tested annually.

Between 2007 and 2009, the SIMCE office from the Chilean Ministry of Education
commissioned three Value-Added studies. One national Value-Added study was conducted
using the 2004 and 2006 SIMCE applications, using score information of the 8th and 10th
level in schools (see Del Pino, San Martı́n, Manzi, González, and Taut (2008)) and two
Value-Added analyses at the Metropolitan Region level (see Del Pino, González, Manzi,
and San Martı́n (2009); Del Pino, San Martı́n, de la Cruz, et al. (2008)). These studies are
relevant not only for being the first national Value-Added analyses performed in Chile with
governmental support, but also because they showed that the ranking of schools induced by
Value-Added indicators is dramatically different from the ranking induced by the average
SIMCE - scores. Currently, the schedule for SIMCE administrations considers 6 out of the
12 levels of Chilean education.

In 2009, Chile passed a law introducing a National Accountability System based
fundamentally on SIMCE results, but not exclusive. Accordingly, it was created the
National Agency for Quality (where the SIMCE office is now administratively located)
whose fundamental task is to classify schools according to an official methodology of
classification. This classification is not neutral for schools: schools poorly performing
will be closed after three years ranked in the category at the bottom of the four categories
introduced by the new classification school, whereas the practices of schools highly
performing will be transferred to the all of the system. The methodology of school
classification is essentially based on a linear regression, although the Law under which
such an accountability system is founded contemplates the possibility of using Value-
Added models. Note that because every year a measure of value-added is calculated for
each school, it would be of interest for schools to assess whether the value-added is stable
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or it changes across the years. Knowing how the value added evolves over time is crucial
information for schools decision-making.

The Chilean educational system shows particular features which are reflected in the
scores of SIMCE tests. For instance, every year when results are released, a remarkable
difference by social economic status (SES), and types of schools (i.e., private or public)
is seen not only at the scores level but also in terms of variability. Moreover, the Chilean
available longitudinal data at the student level, does not ensure the exogeneity of the prior
scores with respect to the school effect, because students were educated by the same school
during the two test occasions, therefore, the prior score measure contains the effect of the
school Manzi, San Martı́n, and Van Bellegem (2014).

Although these data have been used for some studies, apart from government
decision-making, the research agenda on School Effectiveness Research follows its own
path. Studies using Value-Added in Chile are practically non-existent with notable recent
exceptions as, Carrasco and San Martı́n (2012), San Martı́n and Carrasco (2012), González,
San Martı́n, Manzi, and Del Pino (2010, Agosto); Page, Orellana, San Martı́n, and González
(2015); Santelices, Galleguillos, González, and Taut (2015),Thieme, Prior, Tortosa-Ausina,
and Gempp (2013), this dissertation.

Motivation

To develop a robust measure of school effectiveness through value-added model for a
fairer classification of schools, has been the principal motivation for this dissertation and it
is certainly a great challenge. Commonly, as previously mentioned, the estimation of value-
added of a school is determined through standard hierarchical lineal models, but in some
educational data, these models have some problems to consider. For example in the chilean
case, the first measurement of SIMCE is taken when the student was already educated by
the same school, i.e. the exogeneity in model not met, as the students are educated by the
same school during the two SIMCE test occasions. Moreover, for the modeling of value
added across the time, it is at least arguable that currently is not considered a dependency in
time and the added value of each cohort is considered independent (understood by cohort,
the group of students that were measured on two occasions, for example the students give
a test SIMCE in 4th grade and four years after in 8th grade). Under this discussion is

8 Marı́a Inés Godoy Ávila
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possible that a school does not improve when it is compared with a school of reference,
but it does when it is compared with itself.

This way the problems associated in modeling educational data, leads us to a twofold
motivation, i) Develop an extension for model of value added developed by Manzi et al.
(2014), that consider the endogenous problem, and ii) Develop a model of value added that
include a dependence across the time.

Endogenous problem in data educational

The endogenous problem can be represented as in Figure 1, where students of a
school j are evaluated by SIMCE on two different occasions, 4th and 8th grades. In both
measurements the students belong to school j, therefore the results obtained are achieved
from human capital of students and the school effect that it is the same for both SIMCE.
Thus the school effect has a partnership between the prior and post scores of SIMCE test.

School j

��

Students

%%yy

SIMCE 4th grade SIMCE 8th grade

Figure 1: Example of endogenous problem in chilean context
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Longitudinal Value Added Models

The problem of dependence across time can be represented as shown in Figure 2,
where the students of a school j are evaluated by SIMCE on two different occasions, for
example 4th and 8th grades, but constantly the school j is being evaluated. Though we talk
about different students, they belong to the same school, then it is intuitive to think that
the school effect of the first cohort is associated with the school effect of second cohort,
assume independence is at least questionable.

SIMCE 4th grade

Students, Cohort I

55

��

SIMCE 4th grade

School j

==

!!

SIMCE 8th grade

Students, Cohort II

AA

))

SIMCE 8th grade

Figure 2: Example of dependence across the time in chilean context
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Organization of the thesis

For convenience of the reader, some concepts may be repeated on the later chapter.
This dissertation is organized in four chapters.

The first chapter focuses on the concept of school effectiveness. How the effective-
ness of a school is estimated. Recall the notation of value added under free-model and
it is described the standard methodology for estimate of school effectiveness. Finally its
difficulties and associated problems are mentioned it.

In chapter 2, we propose an extension of the endogenous value-added model as
introduced by Manzi et al. (2014). The extension essentially consists in specifying a
different correlation between an endogenous covariate and the school effect according
to the subgroup to which a school belongs. We derive its statistical properties and the
identification of interest parameter. Also, we show a study of simulation, and an application
in the chilean context.

In chapter 3 we propose a model of value added with dependence across the time.
We show the specification of model, the identification of interest parameters and its process
of estimation. Also we present, a study of simulation and an application to educational
data, in the chilean context.

Chapter 4 discusses the advantages and limitations of two value-added models
proposed, and of course possible extensions, improvements and future works.
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Chapter 1: School Effectiveness

This chapter focuses on what we know about the concept of school effectiveness,
how the effectiveness of a school is estimated, and what methodology is used commonly,
with their difficulties and problems associated.

1.1 School Effectiveness

The “school effectiveness” is an enduring problem in research (onward SER1).
In general terms, it tries to identify the “value added” from school on the outcomes of
their students. From a methodological point of view, this can be achieved by modelling
student’s scores, taking into account the differences in prior achievements and possibly
other measured characteristics in the form of covariates at both the school level and the
student level; see Raudenbush (2004), OECD (2008), Braun et al. (2010) and Timmermans
et al. (2011).

Moreover, it is very important to determine the school effectiveness consider the
structure of the educational data. These present evidently a hierarchical structure, because
each student belongs to one school and only one, in other words, students are grouped
within the schools, or students are nested in schools. Thus, the educational data have at
least 2 levels corresponding to students and schools, such that the lowest level are students
and the schools are on the top, as shown in Figure 1.1, borrowed from Goldstein (2002).

1SER : School Effectiveness Research.
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1.1. SCHOOL EFFECTIVENESS

School

Students

OO

Figure 1.1: Hierarchical relationship among units

Thus, following the structure of educational data, we denote by;

• Yij score (outcome in a standardized test) of student i belonging to school j.

• X ij be a vector of covariates at both the individual level and the school level; we
denote byXj the set of all the covariatesX ijs.

• The school effect θj is an unobserved random variable defined by two conditions:

Condition 1 For each school j, the scores {Y1j, . . . , Ynjj} are mutually indepen-

dent conditionally on both the school effect θj and the set of all the covariatesXj .

Condition 2 For each student i belonging to school j, the conditional distribution

of the score Yij depends on both the school effect θj and the covariatesX ij .

1.1.1 Definitions of school effect

Let us begin by defining the concept of school effect in a model-free way. By a
model-free way we mean that the basic concept of school effect should be defined without
resorting on a particular statistical specification (such as a hierarchical linear mixed model).

The condition 1 previously mentioned, identifies the factor by which the scores
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1.1. SCHOOL EFFECTIVENESS

{Y1j, . . . , Ynjj} are related between them. This factor is no longer captured by the covari-
ates, but it corresponds to the unobserved school effect. Heuristically speaking, this means
that a feature common to all the students of a given school (which it is supposed to be
captured by the scores Yijs) is due to the school effectθj , and not to the set of covariates
Xj . In a more technical fashion, condition 1 implies the following statements:

1. Conditionally on the covariatesXj , all the within relationships between the scores
{Y1j, . . . , Ynjj}, should be accounted for by the way in which each score, Yij , alone
is related to the latent variable, θj .

2. The school effect θj captures, therefore, the heterogeneity that is present in the scores
{Y1j, . . . , Ynjj} and that is not fully explained by the covariatesXj .

The condition 2 means that the score Yij of each student is stochastically generated
by two factors: a common one, the school effect; and a student-specific factor, the covariate
X ij . It is allowed to include inX ij covariates defined at the school level, as for instance
the socio-economic group of the school (they are the same for each pupil). However,
these observed covariates defined at the school level are different from the school effect
in the sense that the firsts do not explain the heterogeneity that is present in the scores
{Y1j, . . . , Ynjj}.

It should be remarked that this definition of school effect underlies the multilevel
models typically used in SER, such as two-level or three-level models, including or not
random slopes, and so on. However, the proposed model-free definition is relevant for
practitioners because it allows to answering the following question: What kind of internal
school dynamics are we representing when we adopt the concept of school effect intro-
duced above? The answer to this question is quadruple:

(a) We analyze a school in a specific context explicitly characterized by the covariates we
put in the model: if we modify the context (by including or excluding covariates), we
modify what we are studying regarding the school and its students.

(b) Given a context, we are representing a school which produces within-heterogeneity in
the scores of its students.
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1.1. SCHOOL EFFECTIVENESS

(c) Each of those scores is equally affected by the school effect.

(d) The covariates (at both individual and school level) do not explain the school ef-
fect, neither the heterogeneity we (suppose to) observe in the school, although such
covariates have an impact on the scores.

If some of these implications is not pertinent to a specific school context, then
the concept of school effect as defined above is inadequate; other approach needs to be
adopted.

Identify school effectiveness under a accountability system is extremely important.
It is relevant to know to what extend a specific school should be accounted by the score
obtained by their students in a national assessment. The answer to this question should
satisfy an ethical constraint: it is not fair that a school be accountable by factors which
affecting the score of a student and are far from the control of the school.

Heuristically speaking, the strategy to define a school effect consists in decomposing
the score of a student i,belonging to school j, Yij , into components, and thereafter to
identify which of these components are under the control of the school. From a modelling
point of view, each score Yij is affected by both the covariates and the school effect.
Therefore, it can be decomposed into three components, each of them being represented in
terms of conditional expectations, as follows:

Yij = E (Yij|ij)︸ ︷︷ ︸
Component 1

+ {E (Yij|X ij, θj)− E (Yij|X ij)}︸ ︷︷ ︸
Component 2

+ {Yij − E (Yij|X ij, θj)}︸ ︷︷ ︸
Component 3

(1.1)

for the semantic meaning of the conditional expectation, see Appendix A.1.2. The three
components of decomposition (1.1) are by construction uncorrelated between them. There-
fore, each of them represents a specific contribution to the students score Yij . Each of these
contributions has a specific meaning:

1. The first component measures the contribution of the covariates vectorX ij on the
score Yij .

2. The second component corresponds to the contribution of the school effect θj on Yij
after taking into account the contribution of the covariates vectorX ij on Yij .
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1.1. SCHOOL EFFECTIVENESS

3. The third component corresponds to the idiosyncratic error, that is, the “part” of
Yij which is not statistically explained either by the school effect θj , nor by the
covariates vectorX ij .

1.1.2 A model-free definition of school value-added

From decomposition (1.1), it is palatable that the second component is the one that
depends on the school and, consequently, it is under its control. This leads to define the
value-added of school j as the average of such a component,see (Manzi et al., 2014),
namely

VAj(Xj) = 1
nj

nj∑
i=1

E (Yij|X ij, θj)︸ ︷︷ ︸
Term 1

−E (Yij|X ij)︸ ︷︷ ︸
Term 2

 (1.2)

The first term represents an average of the expected score in a specific school, after
controlling by the covariates. The second term corresponds to an average of the expected
score in the reference school, after controlling by the covariates; this last interpretation
rests on the following general property: E(Yij|X ij) = E[E(Yij|X ij, θj)|X ij], that is, the
school effect is integrating out with respect to its distribution.

In the SER literature, school value added (onward VA2) is defined in terms of an
average or reference school; see, among many others, (Gray, Goldstein, & Thomas, 2003;
OECD, 2008; Raudenbush, 2004; Raudenbush & Willms, 1995; Timmermans et al., 2011).
Definition (1.2) not only provides an accurate meaning of the “average” or reference school,
but also shows in which sense the meaning of school value added is covariates-dependent.

Covariates

Given the definition of VA introduced in the previous section, equation (1.2), in very
simple words, one wants compare the expected outcomes of a standardized test of a school
specific and the expected results of a reference school, also called as “average school”.

2VA: Value Added
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1.1. SCHOOL EFFECTIVENESS

Let us illustrate this aspect with an example (taken from (Milla, San Martı́n, &
Van Bellegem, 2014)). Suppose we are considering three different secondary schools.
For each of them, the prior attainment score was measured by the end of primary school,
whereas the contemporaneous score was measured at the end of second year of secondary
school. In Figure 1.2, each school is represented for different colours, so the names of
schools are “Green-School”, “Blue-School”, and “Red-School”. All the students belonging
school are represented by points green, blue and red, respectively.
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Figure 1.2: Value Added using as only covariate “Prior Score”. The dotted lines green
blue and red represent the expected contemporaneous scores in each school respectively,
after controlling for the prior scores. The continuous dark red line represents the expected
contemporaneous scores in the reference school, after controlling for the prior scores.

Therefore, the value added of each school corresponds, to the difference between
those expected scores. Thus, in Figure 1, the school represented by the “green School” and
“blue School” have a positive value added, whereas the “red School” has a negative value
added.

This example shows that the value added is a concept relative to a reference (the dark
red line in Figure 1), which in turn is characterized by the covariates that are included in the
value added analysis. Therefore, it should be asked what is it the impact of the covariates
on the value added indicators. In this example, the reference school was computed using
the information of all students. However, it should be asked whether the definition of such
a reference based on the prior attainment score is fair. This question should be answered
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1.1. SCHOOL EFFECTIVENESS

taking into account a specific school context. For instance, it would be asked whether is it
fair to define the “average” school without considering the different geographical provinces
in a country, or if is it fair to define such an “average” school without distinguishing “highly
selective schools” from “moderate selective schools”. These questions lead to conclude
that the reference or average school is not a unique entity, but it is characterized in different
ways by covariates related to those and similar questions.

In order to illustrate this aspect, let us consider now a value added model in which
we control by the prior score and one characteristic of school. These characteristic of
school can be for example monthly cost, social economic group or the school composition
effect, etc. The compositional effect can be simply the average at school level of the prior
scores, or also with a correction, such that, the compositional effect of a student i is defined
as the average at school level of the prior scores without the student i, ie if Yij1 then the
compositional effect is defined as,

Ȳj,(−i)1 = 1
nj − 1

nj−1∑
i 6=j

Yij1 = 1
nj − 1

{
nj ¯Y.j1 − Yij1

}

In order to illustrate this aspect, let us consider now a value added model in which we
control by both the prior score and the compositional effect defined as the average at school
level of the prior scores.

In Figure 1.3, it considers a value added model in which we control by both the prior
score and the compositional effect. Such that, four schools are represented and grouped
into two groups: the two green schools (points and triangles) have the same compositional
effect (which is positive), whereas the two schools blue (squares and diamonds) also have
the same compositional effect, but a negative one. If one characteristic of school is included
as a control variable, changes the reference school, as shown in example, where the value
added of school “triangle green” is negative under this school (continuous line dark green).
Nevertheless, its value added is positive if compared with other reference school, where
only the prior scores is using as control (dotted line dark red).
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Figure 1.3: Value Added using as covariates “Prior Score” and characteristic of
school. The dotted lines green represent the expected contemporaneous scores in each
school respectively, after controlling for the prior scores. The continuous dark green line
represents the expected contemporaneous scores in the reference school, after controlling
for the prior scores and a characteristic of school. While, the dotted lines dark red is the
expected contemporaneous scores in the reference school, after controlling only by prior
scores

From this illustration, we conclude that the school value added not only changes
when the covariates are modified, but also shows how its meaning is modified. As a matter
of fact, continuing with the illustration, the following interpretation of the different value
added indicators can be proposed:

1. If both the individual prior score and the compositional effect are included in the
value added model, then we are not only controlling by the initial level of each
student, but also for the quality of the group of students. Therefore, this type of
value added model measures the effectiveness of a program to educate students after
taking into account not only the individual initial achievement level, but also the
group initial level. Consequently, the policy usability of this type of models is related
to the possible difference between pedagogical methods.

2. If the individual prior score is only included, then the value added measure the
effectiveness of a program to educate students after controlling for their initial
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prior scores. The effectiveness of the program is only related to the students and,
therefore, this type of indicators would be valuable for parents when they want to
know if their children are educated in a school producing the largest effect on the
contemporaneous performance.

Summarizing, the meaning of a value added indicator depends on the control variable
we put in the model. This is due to the fact that the “average” or reference school is
characterized by those covariates. Before performing a value added analysis, it is desirable
to make explicit the policy purposes of doing value added. The covariates should be chosen
according to those purposes.

1.2 Standard hierarchical linear mixed model, two levels

A standard approach to model the school value-added are the hierarchical linear
mixed models (onward HLM3), or multilevel models Goldstein (2002); Raudenbush and
Bryk (2002); Snijders and Bosker (1999). This class of models fits a specific feature of the
educational data typically used to perform value-added analysis, namely the hierarchical
structure of the data where students are nested into schools. In this context, the value-
added of a school is, on the one hand, modelled as a random effect and, on the other hand,
calculated as the estimated prediction of it (Aitkin & Longford, 1986; Longford, 2012;
Raudenbush & Willms, 1995; Tekwe et al., 2004).

1.2.1 Model specification

From the perspective of the HLM model and following with above notation, Yij
is the score of student i belongs school j in a particular area, for example mathematics,
language, etc., such that i ∈ {1, . . . , nj}, with nj is the number of students in the school
j and j ∈ {1, . . . , J}. Further, it is possible to identify a latent source of variation in the
results of students at the level of school, ie these are affected by a school effect, denoted
by θj . At the same time, this observed test score is explained by some covariables, denoted
asX ij , to individual level (level 1), as the prior score, and to school level (level 2), as a

3HLM: Hierarchical Lineal Models
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group effect captured by the average of the prior score, see Figure 1.4.

Yij

θj

LL

X ij

hh

Figure 1.4: Relationship among Post score (Yij), Covariates (X ij) and school effect (θj) in
a standard HLM model

Moreover, the random school effect is not correlated with the covariables. Con-
sequently, we assume that the test scores between students given the school effect are
independent, this assumption is called axiom of local independence (Lazarsfeld, 1950).
This way, if denote byX>j = (X1j, . . . ,Xnjj)> as the design matrix covariates of dimen-
sion nj ×K, where K is the number of covariates, then the axiom of local independence
is represented by,

⊥⊥
1≤i≤nj

Yij |Xj , θj

for each school j. The model structure is linear, then it is assumed that the expected final
individual score depend linearly of covariables and the school effect, i.e, for each student i
belonging to school j, it is assumed that exists a vector of k parameter, denoted by β, such
that,

E(Yij|θj) = X ijβ + θj

which is equivalent to writing

Yij = X ijβ + θj + εij

where εij is the idiosyncratic error, that are independent across students and school.

23 Marı́a Inés Godoy Ávila
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Structural model

Denote by Y >j = (Y1j, . . . , Ynjj) the vector of scores in outcome of school j, then
the model multidimensional of school j is write as,

Y j = Xjβ + ınj
θj + εj

where ınj
= (1, . . . , 1)> is a vector of ones of dimension nj . Now, the model multidimen-

sional of all school can be written as,

Y = Xβ +Lθ + ε

such that, L is a matrix of dimension N × J with entries 0 and 1 (see Appendix), where
N = ∑J

i=1 nj total number of students, Y = (Y 1, . . . ,Y J)> is the vector of scores
in outcome of all student. Similarly, X = (X>1 , . . . ,X>J )> is the matrix of covariates
of dimension N × K, and θ = (θ1, . . . , θJ)> is a vector of dimension J . Thereby, the
structure of model assumes the following conditions;

Assumption 1 : Exogeneity,

The covariates matrixX is independent of vector random effects θ.

Cov(X,θ) = 0

Assumption 2 : Independence of random effect,

The θj’s are mutually independent and their distribution for each j is,

θj ∼ N(0 , τ 2)

Assumption 3 : Distribution and Homoscedasticity of the idiosyncratic error,

The εj’s for each j are mutually independent with common distribution,

εij ∼ N(0 , INσ2)
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with σ2 > 0.

Assumption 4 : Local Independence

The local independence corresponds to

⊥⊥
1≤i≤nj

Yij |Xj , θj,

as it was seen previously.

Thus considering these four assumptions, HLM model is specified as follows,

Yij ∼ N
(
X ijβ + θj;σ2

)
, i = 1, . . . , nj, (1.3a)

where X ij is a covariates matrix of dimension nj × K, β ∈ RK , nj is the number of
students in the school j and σ2 > 0.

(i) θj ⊥⊥ X ij (ii) θj ∼∼ N
(
0; τ 2

)
(1.3b)

with τ 2 > 0 and (X ij) is left unspecified.

1.2.2 Parameter identification

The structural of model given by (1.3a) and (1.3b) explains the data generating
process that is characterized by the conditional distribution of (Y j) givenXj for j ∈ J ,
which correspond to a nj-multivariate normal distribution, such that,

Y j|Xj ∼ N
(
Xjβ ; σ2Inj

+ τ 2ınj
ı>nj

)
Recalling that the mean and the variance-covariance matrix of a multivariate normal

distribution are identified, we have that,

1. As E (Y j|Xj) is identified thenXjβ is identified, this way if the matrizXj is the
complete rank, ie r (Xj) = K, then the parameter β is identified.

2. From Var (Y ij|Xj) and Cov (Y ij,Y kj|Xj) for i 6= k τ 2 and σ2 become identified.

25 Marı́a Inés Godoy Ávila
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1.2.3 Definition of Value Added

Using the definition of value-added in a model, equation (1.2),

V Aj = 1
nj

nj∑
i=1

E (Yij|Xj, θj)−
1
nj

nj∑
i=1

E (Yij|Xj)

under the HLM model, E (Yij|Xj, θj) = X>ijβ + θj , and E (Yij|Xj, ) = X>ijβ.

This way, the value added of a school j under HLM models is equal to school effect,

VAj = θj

Estimation of school effect

For the prediction of random effect is used the empirical Bayes prediction in which
the unknown parameters are replaced by their estimators ( see next section 1.2.4, for the
estimation of parameters). It is used the following identity, equation (1.4), which is valid
under the linearity assumption of the conditional expectations; E (Y |X,θ) and E (θ),
(Florens, Marimoutou, & Péguin-Feissolle, 2007, see)

E (θj|Y j,Xj) = E (θj|Xj) + Cov (θj,Y j|Xj) [V (Y j|Xj)]−1 (Y j − E (Y j|Xj))

(1.4)

Therefore, using the prior expression (1.4), the prediction the school effect corre-
spond to,

E (θj|Y j,Xj) =
[

τ 2

σ2 + njτ 2

]
ı>nj

(Y j −Xjβ) (1.5)
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1.2.4 Parameter Estimation

To facilitate the calculations of the parameters estimates, we rewrite the conditional
distribution of score given the covariates as follows,

Y = Xβ + e, where e = Lnθ + ε (1.6)

Let V(e|X) = V, and V =


V n1

. . .

V nJ

, such that V nj
= ınj

ı>nj
τ 2 + σ2Inj

for each j = 1, . . . , J , such that

V = Qσ2 + PD2P>τ 2 + PDP>σ2

so thatQ is called Within-operator, and P is called Between-operator, see Appendix A.1.

1) Fixed effects estimators, β

(a) Ordinal least squared (OLS)

Using the equation (1.6) and OLS,

β̂OLS =
(
X>X

)−1 (
X>Y

)
. (1.7)

But, the two following properties are necessary for use OLS;

Assumption OLS.1 E(X>e) = 0

Assumption OLS.2 rank(X>X) = K is of completed rank

Assumption OLS.3 E(ee>) = σ2IN
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Properties of β̂OLS

(i) β̂OLS = β +
( 1
N

X>X
)−1 ( 1

N
X>e

)
using Assumption OLS.1, X>X is not singular then

(
1
N

X>X
)−1 P−→ A−1,

where A = E
(
X>X

)
. Further, under Assumption OLS.2, plim

(
1
N

X>e
)

=
E
(
X>e

)
= 0, plim means probability limit. Therefore, by Slutskys theorem

β̂OLS
P−→ β + A−10

Then, β̂OLS is a consistent estimator of β.

(ii) The asymptotic distribution is derived by

√
N
(
β̂OLS − β

)
=
( 1
N

X>X
)−1 ( 1√

N
X>e

)

where,
(

1
N

X>X
)−1
− A−1 = op(1), and by theorem central limit(

1√
N

X>e
)

D−→ N (0 ; B). This way,

√
N
(
β̂OLS − β

)
= A−1

(
1√
N

X>e
)

+ op(1)

because
(

1√
N

X>e
)
op(1) = op(1). Now, if Assumption OLS.3 is satisfied,

i.e. V = Iσ2 then,

√
N
(
β̂OLS − β

)
a∼ N

(
0 ; A−1BA−1

)

where B ≡ V
(

1√
N

X>e
)

= 1
N

X>X,

√
N
(
β̂OLS − β

)
a∼ N

(
0 ; A−1

)

this way
β̂OLS

a∼ N
(
β ; X>X

)
However, the Assumption OLS.3 is not satisfied in this model, the data set is

28 Marı́a Inés Godoy Ávila
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heteroscedastic thus to estimator of effects fixed by OLS is not suitable.

(b) Generalized Least Squares (GLS)

This methods of estimation have the following Assumptions,

Assumption GLS.1 E(X>e) = 0, that each element of e is uncorrelated with

each element of X.

Assumption GLS.2 Let,V ≡ E(ee>), whereV is positive definite and E(XV −1X>)
is not singular.

This way,

β̂GLS =
(
X>V−1X

)−1 (
X>V−1Y

)
(1.8)

Properties of β̂GLS

(i) β̂GLS = β +
( 1
N

X>V−1X
)−1 ( 1

N
X>V−1e

)
using Assumption GLS.2, X>V−1X is not singular, then(

1
N

X>V−1X
)−1 P−→ A−1, where A = E

(
X>V−1X

)
. Further, under As-

sumption GLS.1, plim
(

1
N

X>V−1e
)

= E
(
X>V−1e

)
= 0, plim means

probability limit. Therefore, by Slutskys theorem

β̂GLS
P−→ β + A−10

Then, β̂GLS is a consistent estimator of β.

(ii) The asymptotic distribution is derived by

√
N
(
β̂GLS − β

)
=
( 1
N

X>V−1X
)−1 ( 1√

N
X>V−1e

)

where,
(

1
N

X>V−1X
)−1
− A−1 = op(1), and by theorem central limit
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(
1√
N

X>V−1e
)

D−→ N (0 ; B), with B = 1
N

X>V−1X. This way,

√
N
(
β̂GLS − β

)
= A−1

(
1√
N

X>V−1e
)

+ op(1)

because
(

1√
N

X>V−1e
)
op(1) = op(1). Therefore,

√
N
(
β̂GLS − β

)
a∼ N

(
0 ; A−1

)
Obtaining the GLS estimator β requires knowing V , but often this variance
covariance is unknown.

(c) Feasible Generalized Least Squares (FGLS)

In practice, V is typically unknown so that the GLS estimator is not available.
Substituting an consistent estimator V̂ for V, which is readily computed from data,
then

β̂FGLS =
(
X>V̂−1X

)−1 (
X>V̂−1Y

)
(1.9)

where V̂ P−→ V. Consider the following assumptions,

Assumption FGLS.1 E(X>e) = 0, that each element of e is uncorrelated with

each element of X.

Assumption FGLS.2 Let, V ≡ E(ee>), where V is positive definite and

E(XV −1X>) is not singular.

By the Weak Law of Large Numbers (WLLN), plim
(

1
N
ee>

)
= V, the its natural

parameter is V̂ =
(

1
N
êê>

)
.

Note that under this standard HLM model the V̂ estimator depends of σ2 and τ 2

estimators.

Asymptotic Properties of β̂FGLS
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1.2. STANDARD HIERARCHICAL LINEAR MIXED MODEL, TWO LEVELS

√
N
(
β̂FGLS − β

)
=
( 1
N

X>V̂−1X
)−1 ( 1√

N
X>V̂−1e

)

but,
(

1√
N

X>V̂−1e
)

=
(

1√
N

X>V−1e
)

+ op(1), then with A =
(

1
N

X>V−1X
)
,

√
N
(
β̂FGLS − β

)
= A−1

(
1√
N

X>V−1e
)

+ op(1)

This way,using Assumption FGLS.2 and Slutsky’s theorem β̂FGLS is a consistent
estimator of β and moreover as we saw in GLS,

√
N
(
β̂FGLS − β

)
a∼ N

(
0 ; A−1

)

As we obtain an estimator of asymptotic variance, Avar(β̂GLS), by using the

consistent estimator of A; Âvar(β̂FGLS) = Â−1/N =
(
X>V̂−1X

)−1
.However

with heterocedasticity this is not robust, Thus, a robust estimator of the asymptotic
variance is

Âvar(β̂FGLS) =
(
X>V̂−1X

)−1 (
X>V̂−1êê>V̂−1X

) (
X>V̂−1X

)−1

2) Estimation variance components

The estimation of variance components is through the method of moments. Then,

Estimation of σ2

Apply the W-operator to in the equation (1.6), we obtain the following (see Appendix
A.1 for matricial notation),

QY = QXβ +QLnθ +Qε

butQ and Ln are orthogonal. So the within regression correponds to,

QY = QXβ +Qε (1.10)
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where,

(a) Var (Qε|X) = QV Q = σ2Q

(b) β̂
w = (X ′QX)−1X ′QY

Now, if be defined ε̂w = (Y −Xβ̂w), then

Qε̂w = Q(Y −Xβ̂w)

= (Q−QX(X ′QX)−1X ′Q)Y )

= MY

whereM = (Q−QX(X ′QX)−1X ′Q), such thatMM = M andM>M = M .
Then, ε̂w>Qε̂w = ε>Mε. This way,

E
(
ε̂>Mε̂

)
= tr (MV(ε))

= tr
(
QV −QX(X ′QX)−1X ′QV

)
= tr

(
Qσ2 −QX(X ′QX)−1X ′Qσ2

)
= σ2 (N − J)− σ2 (K∗)

whereK∗ ≤ K is the number of covariates non-zero in the within regression. Therefore,
the estimation of σ2 is given by,

σ̂2 =

(
Y −Xβ̂

w)>
Q
(
Y −Xβ̂

w)
N − J −K∗

(1.11)

Estimation of τ 2

The between-regression is formulated of the following way,

PY = PXβ + PLnθ + Pε

where,

(a) Var
(
PLnθ + Pε|X

)
= P V P> = τ 2IJ + σ2D−1
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(b) β̂
b = (X>P>PX)−1X>P>PY

Now, if be defined êb = (Y −Xβ̂b), then

P êb = TP (Lnθ + ε), where T = (IJ − PX(X>P>PX)−1X>P>), TT = T ,
and T>T = T . Then, êb>P>P êb = (Lnθ + ε)>P>TP (Lnθ + ε) and

E
(
êb>P>P êb

)
= tr

(
TVar(P (Lnθ + ε))

)
= τ 2tr (T ) + σ2tr

(
TD−1

)
= τ 2(J −K∗∗) + σ2

 J∑
j=1

(1/nj)−K∗∗∗


Thus be have,

τ̂ 2 =

(
Y −Xβ̂

b
)>
P>P

(
Y −Xβ̂

b
)
− σ2

(∑J
j=1(1/nj)−K∗∗∗

)
J −K∗∗

(1.12)

where,
K∗∗∗ = tr

{
(X>P>PX)−1X>P>D−1PX

}
, and

K∗∗ = tr
{

(X>P>PX)−1(X>P>PX)
}

1.2.5 Summary of the Estimation Process

1. When the process starts β is estimated by equation (1.7), OLS.

β̂OLS =
(
X>X

)−1 (
X>Y

)
.

2. Completed steps 1, be must estimate the Within Residual of the model (1.6). Then,
it is estimated σ2 by the equation (1.11), ie

σ̂2 =

(
Y −Xβ̂

w)>
Q
(
Y −Xβ̂

w)
N − J −K∗
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3. Completed steps 1–2, be must estimate the Between Residual of the model (1.6).
Then, τ̂ 2 is estimated by the equation (1.12), ie

τ̂ 2 =

(
Y −Xβ̂

b
)>
P>P

(
Y −Xβ̂

b
)
− σ2

(∑J
j=1(1/nj)−K∗∗∗

)
J −K∗∗

4. Completed the steps 1–3, it is possoble calculate the estimation of V̂.

V̂ = Qσ̂2 + PD2P>τ̂ 2 + PDP>σ̂2

5. Using the results of step 4, the estimation of β is recalculated by equation (1.9), i.e.
by feasible generalized least squared,

β̂FGLS =
(
X>V̂−1X

)−1 (
X>V̂−1Y

)
.

1.3 Some comments

In the context of school improvement is possible and important develop new sophis-
ticated techniques on modeling of value added, considering the associated problems in the
fit of educational data and thereby get results more accurate and and reliable not forgetting
of ensure the performance of its assumptions for a correct interpretation. Nevertheless the
modeling is not the only relevant since the covariates play an important role in any current
methods associated to value added school.

The choice of covariates as well as their meaning is highly dependent on the policy
context under which a value added analysis is required, as well as on the social context in
which an educational system is organized. The consequences of this paradigm are at least
the following:

1. The criteria to choosing covariates should be policy-driven. There does not exist
universal covariates that we need to include in a value added model.

2. Covariates are not included in a value added model to ensuring a more reliable
estimation of the effectiveness of a school. Covariates define the context under
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which a school effectiveness needs to be understood.

3. The role of the covariates in a value added model needs to be delimited with respect
to the school effect. Their endogeneity or exogeneity character depends on the
school context (in particular, the type of available data).

4. Covariates also allow us to define subgroups of schools. These subgroups need to be
considering when the school value added is estimated. The way in which this can be
done is through heterocedastic models.

5. Practices of effective schools are not automatically transferred. Although we control
by similar characteristics, the level of such characteristics need to be taken into
account before arguing transferability.
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Chapter 2:
Endogenous

Value-Added Models
for Subgroups of Schools

This chapter focuses on the problem of endogeneity in some educational data,
where it is developed the general structure of a endogenous value-added model and the
justification of its specification, beside to the identification the interest parameters, and
also it is explained estimation process. Furthermore, this chapter shows a simulation study
which compares this model proposed with a standard HLM model. Finally an application
in chilean educational data, SIMCE 2009-2013 with 4th and 8th grade respectively.

2.1 Introduction

The Value-added models are typically specified through hierarchical linear mixed
(HLM) models (this is discussed in the Chapter 1, Introduction), where the dependent
variable corresponds to examinees’ test scores (called contemporaneous scores), and the
vector of covariates or explanatory factors is assumed to be exogenous with respect to the
school effect. This exogeneity condition is characterized through a zero correlation between
the school effect and the explanatory factors; see Snijders and Bosker (1999). A lagged
score is typically included among the exogenous explanatory factors. The school effect
is in turn characterized by means of the Axiom of Local Independence, namely, for each
school, the examinees’ contemporaneous scores are mutually independent conditionally on
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both the covariates and the school effect. This last condition means that the school effect
explains the heterogeneity of the contemporaneous test scores that it is not explained by
the covariates.

Although in practice this type of models is widely used, not necessarily the exogene-
ity of the covariates is guaranteed in each real situation. Thus, for instance, as argued by
Spencer and Fielding (2002) and Manzi et al. (2014), the lagged score can be endogenous
by design in the sense that this score is measured after the school has treated students. In
this case, the lagged score measure already contains the school effect and, therefore, the
non-correlation between the lagged score and the school effect is questionable. For real
examples, beside the case study reported in this chapter (section 2.4.2) , see Gansle, Noell,
and Burns (2012). When this is the case, HLM models need to be extended to what we
call endogenous value-added models.

Before making explicit the underlying structure of endogenous value-added models,
let us make precise the endogeneity problem sketched above. The contemporaneous score
of pupil i belonging to school j is denoted as Yij , whereas the corresponding lagged score is
denoted as Zij . Assuming that a school j groups nj pupils, let Y j = (Y1j, . . . , Ynjj)> and
Zj = (Z1j, . . . , Znjj)>. Similarly, letXj = (X1j, . . . ,Xnjj)>, whereX ij corresponds
to a vector of explanatory exogenous variables related to pupil i belonging to school j.
Finally, let θj be the school effect corresponding to school j ∈ {1, . . . , J}. The structure
of a standard value-added model is summarized by the following conditions:

1. For each school j, {Yij : i = 1, . . . , nj} are mutually independent conditionally on
(Zj,Xj, θj).

2. For each school j and each pupil i in school j, the distribution of Yij depends on
(Zj,Xj, θj) through (Zij,X ij, θj) only. This condition, along with the previous
one, are known as the Axiom of Local Independence.

3. For each school j, the explanatory factors (Xj,Zj) are uncorrelated with the school
effect θj .

The endogeneity problem arises when by design the lagged score Zij is correlated with the
school effect. In this case, Zij is termed an endogenous variable.

It is known that an endogeneity problem leads to biased estimators. A standard
strategy to solve the problem is through an instrumental variable approach Kim and Frees
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(2007); Wooldridge (2008). An instrumental variable W ij is typically characterized by
the following three conditions:

i W ij is uncorrelated with the school effect θj;

ii W ij is correlated with the endogenous variable Zij;

iii W ij is uninformative to explain Yij once we condition on (Zij,X ij, θj)

To ensure model identification, the number of instrumental variables should be at
least equal to the number of endogenous variables. For a general discussion on instrumental
variables, see Angrist and Krueger (2001).

2.1.1 General Structure of Endogenous Value Added Models

A standard approach to specify structural models (as value-added models) is through
a recursive decomposition of the underlying global mechanism into an ordered sequence
of simpler sub-mechanisms, each one involving an endogenous variable and exogenous
variables. In a first stage of statistical modeling, this recursive decomposition should be
based on conditional distributions rather than on (linear) equations relating variables. By
doing so, not only it is shown why “endogeneity” and “exogeneity” are not “permanent”
features of variables, but it also displayed the level at which maintained hypotheses should
be introduced. These hypotheses, as the order in which the recursive decomposition should
be performed, are justified by contextual considerations; for details, see Mouchart, Russo,
and Wunsch (2010) and Wunsh, Mouchart, and Russo (2014).

Let us make precise those considerations in the context of value-added models
as sketched in the previous section. The aim is to show that the instrumental variable
approach used to solve the endogeneity problem, corresponds to a new model specifica-
tion that takes into account that both lagged and contemporaneous scores are generated
by both the school effect and (possibly) other exogenous covariates. We assume that
{(Y j,Zj,Xj,W j, θj)) : j = 1, . . . , J} are mutually independent, which means to con-
sider schools acting independently between them. Each vector (Y j,Zj,Xj,W j, θj) is
specified by the family of multivariate distributions

{pα(Y j,Zj,Xj,W j, θj) : α ∈ A} , j = 1, . . . , J (2.13)
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representing the underlying global mechanism of interest; here, α denotes the parameter
indexing such distributions, whileA denotes the corresponding parameter space.

A recursive decomposition of (2.13) requires substantive considerations to select
the sub-mechanisms of the decomposition. In the case of school effectiveness, both the
prior scores Zj and the contemporaneous scores Y j are due to two sources: the school
and the covariates that are far from the control of the school. Consequently, (2.13) should
be decomposed as follows: for each school j,

pα(Y j,Zj,Xj,W j, θj) = pα1(Y j,Zj |Xj,W j, θj) pα2(θj |Xj,W j) pα3(Xj,W j),
(2.14)

each component of the right hand side having mutually independent parameters, that is,

α = (α1, α2, α3) ∈ A1 ×A2 ×A3. (2.15)

Under condition (2.15), the decomposition (2.14) corresponds to a recursive decom-
position and, therefore, the conditioning variables of each term are the exogenous variables
of their corresponding component. More precisely, condition (2.15) is a condition ensuring
that the parameters α1, α2 and α3 are variation-free, that is, no restriction links those pa-
rameters. It ensures, therefore, that the inference on the parameter α1 can be based on the
conditional distribution pα1(Y j,Zj |Xj,W j, θj) only, being the distribution generating
(Xj,W j, θj) noninformative for such an inference; for details, see (Barndorff-Nielsen,
”1978, Chapter 4). In other words, the generating mechanism of (Xj,W j, θj) does not
contain any relevant information about the parameter α1, which means that (Xj,W j, θj)
are “exogenous” with respect to the parameter α1. In a similar sense, the variation-free
condition between α2 and α3 ensures that (Xj,W j) are exogenous with respect to the pa-
rameter α2 indexing the conditional distribution pα2(θj |Xj,W j). It should be remarked
that model specification should be performed in such a way that the validity of condition
(2.15) be guaranteed by construction.

Remark 1 The concept of variation-free parameterization has been used to define exo-
geneity in a rigorous way; for details and discussion, see, among others,Engle, Hendry,
and Richard (1983), Hendry and Richard (1983), Florens and Mouchart (1985), Florens et
al. (2007), Spanos (1994).
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Model specification is completed by assuming the Axiom of Local Independence,
namely that {(Yij, Zij) : i = 1, . . . , nj} are mutually independent conditionally on
(Xj,W j, θj), and that, for each pupil i, the distribution of (Yij, Zij) depends on (Xj,W j, θj)
through (X ij,W ij, θj) only.

One component of the previous specification, namely pα1(Y j,Zj |Xj,W j, θj), is
still decomposed in two subcomponents because in value-added analysis the lagged score
is typically considered as an exogenous explanatory factor of the contemporaneous score.
More precisely, for each school j,

pα1(Y j,Zj |Xj,W j, θj) = pα
1
1(Y j | Zj,Xj,W j, θj) pα

2
1(Zj |Xj,W j, θj), (2.16)

where
α1 = (α1

1, α
2
1) ∈ A1

1 ×A2
1. (2.17)

In order to make explicit the specific role of the explanatory factors Xj and W j , the
following maintained hypothesis is typically introduced:

Y j ⊥⊥ W j | Zj,Xj, θj, j = 1, . . . , J ; (2.18)

that is, once we condition on (Zj,Xj, θj), the explanatory factor W j is redundant to
explain the contemporaneous scores Y j . Under this condition, (2.16) is equivalently
rewritten as

pα1(Y j,Zj |Xj,W j, θj) = pα
1
1(Y j | Zj,Xj, θj) pα

2
1(Zj |Xj,W j, θj) (2.19)

for each j = 1, . . . , J , and the Axiom of Local Independence above introduced is equiva-
lent to the following conditions:

ALI1. For each school j, {Yij : i = 1, . . . , nj} are mutually independent conditionally on
(Zj,Xj, θj); and for each pupil i in school j, the distribution of Yij depends on
(Zj,Xj, θj) through (Zij,X ij, θj). This corresponds to assume the Axiom of Local
Independence for the conditional model (Y j | Zj,Xj, θj).

ALI2. For each school j, {Zij : i = 1, . . . , nj} are mutually independent conditionally
on (W j,Xj, θj); and for each pupil i in school j, the distribution of Zij depends
on (W j,Xj, θj) through (W ij,X ij, θj). This corresponds to assume the Axiom of
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Local Independence for the conditional model (Zj |Xj,W j, θj).

Summarizing, the general structure of endogenous value-added models is made
explicit in the following recursive decomposition: for each school j,

pα(Y j,Zj,Xj,W j, θj) =

(2.20)

= pα
1
1(Y j | Zj,Xj, θj) pα

2
1(Zj |Xj,W j, θj) pα2(θj |Xj,W j) pα3(Xj,W j),

where
α = (α1

1, α
2
1, α3, α4) ∈ A1

1 ×A2
1 ×A3 ×A4. (2.21)

Model specification is completed by conditions ALI1 and ALI2. The recursive
decomposition (2.20)-(2.21) can graphically be depicted through the following directed
graph:

Yij

θj

��

ZZ

X ij

��

mm

}}
Zij

MM

W ij
oo

OO

Figure 2.1: Structure of endogeneity problem using an instrumental variable approach

Following the structural equation modeling approach, the observed or manifest variables
are represented by rectangular or square boxes, whereas the unobservable variables are
represented by circles or ellipses; see Bollen (1989).

The so-called instrumental variable approach can be embedded in this structure. In
particular, the three conditions defining an instrumental variable are captured in a general
form. In fact, the exogenous character of the instrumental variable with respect to the
school effect is captured by the variation-free property (2.21); the dependency between the
instrumental variable and the endogenous variable Zij is captured by the second component
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at the right hand side of decomposition (2.20); and, finally, the non-informativeness of the
instrumental variable with respect to Yij once we “control” by (Zij,X ij, θj) is captured by
condition (2.18). Consequently, an instrumental variable approach consists in specifying a
value-added model taking into account a substantive aspect, namely that both the lagged
score and the contemporaneous score are generated by both the school and factors that are
far from the control of the school.

Model Specification

For the practical computation of the school value-added, it is necessary to specify the
different components of the recursive decomposition (2.20)-(2.21). Special attention should
be focused on the compatibility between the corresponding sub-models specifying each
component of decomposition (2.20) and the variation-free parametrization property (2.21).
Manzi et al. (2014) accordingly propose the following specification for heteroscedastic
hierarchical linear instrumental mixed (HHLIM) models, where the heteroscedasticity
intends to capture specific social and/or contextual characteristics grouping schools, as for
instance the socio-economic status of a school: it is firstly assumed that, for each school j,
ALI1 and ALI2 are valid. Under these structural hypotheses, for each school j,

(Yij | Zij,X ij,W ij, θj) ∼ N
(
X>ijβ +Z>ijγ + θj, σ

2
ρ(j)

)
, i = 1, . . . , nj, (2.22a)

for some β ∈ RK1 , γ ∈ RK2 and σ2
ρ(j) > 0. The function ρ(·) groups the school according

to a social or contextual characteristic. In the case study discussed in Section 2.4.2, this
characteristic corresponds to the socio-economic status (SES) of the school that it is
divided in 5 categories, from A to E being A the lowest SES. Thus, the function ρ(·)
is defined as follows: ρ(j) = A if the SES of school j is A; ρ(j) = B if the SES of
school j is B; and so on. In the sequel, the function ρ(·) will be called the grouping

school function. Note that in this specification we are assuming that the explanatory factor
Zij is K2-dimensional, whereas in the conceptual discussion developed previously it was
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assumed to be unidimensional;

(Zij |X ij,W ij, θj) ∼ NK2

(
A>X ij +H>W ij + δθj ıK2 ,Φρ(j)

)
, i = 1, . . . , nj

(2.22b)

withA = (αkl) a K1 ×K2 matrix of real coefficients,H = (ηlk) a L×K2 matrix of real
coefficients, δ ≥ 0, Φρ(j)

.= diag(φ2
1ρ(j), · · · , φ2

K2ρ(j)) is a K2 ×K2 diagonal matrix ( .= is
used to denote a definition), and ıK2 a K2-dimensional column vector of 1’s;

(i) θj ⊥⊥ (Xj,W j); (ii) θj
iid∼ N

(
0, τ 2

ρ(j)

)
, (2.22c)

with τ 2
ρ(j) > 0; and, finally, the distribution of (Xj,W j) is left unspecified.

Let us explain how the variation-free property is ensured in this specification:

1. Condition (2.22c.i) automatically implies the variation-free property between the
parameters indexing the distribution of (Xj,W j) and those indexing the distribution
of θj . This not only ensures that (Xj,W j) are exogenous with respect to the school
effect θj , but also explains why their distribution is typically left unspecified.

2. Conditions (2.22b) and (2.22c) correspond to a marginal-conditional decomposition
of the joint distribution of (Zij, θj) conditionally on (Xj,W j). In this case, it can
be verified that the parameters (A,H , δ,Φρ(j)) and τρ(j) are in variation-free; for a
proof, see (Engle et al., 1983, Example 3.1).

3. By a similar argument, it can be stated that the parameters (β,γ, σ2
ρ(j)) and (A,H , δ,

Φρ(j)) are in variation-free and, therefore, (Zij,X ij,W ij, θj) are exogenous ex-
planatory factors of Yij .

Remark 2 Specification (2.22a), (2.22b) and (2.22c) is not the only one which ensures a
recursive decomposition of the joint distribution generating (Y j,Zij,X ij,W ij, θj). Two
other possible specifications are the following:

1. Condition (2.22c) can be replaced by assuming that the conditional distribution
of θj given (Xj,W j) is normally distributed and that (Xj,W j) is also normally
distributed.

2. Specification (2.22a), (2.22b) and (2.22c) can be relaxed to a specification assuming
that conditional expectations are linear functions of the conditioning variables. In this
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case, the marginal-conditional decomposition of (Y j,Zij,X ij,W ij, θj) reduces
to compute both conditional expectations and conditional variances of the sub-
components at the right hand side of decomposition (2.20). The properties of linear
conditional expectations ensure a free-variation parametrization; for an exposition
of those properties, see (Florens et al., 2007, Chapter 7).

Value Added Under HHLIM Specification

Manzi et al. (2014) define the value-added of a school as the difference between two
conditional expectations: the first one corresponds to the conditional expectation of the
contemporaneous score Yij given the exogenous explanatory factors and the school effect.
The second one corresponds to the conditional expectation of the contemporaneous score
Yij given the exogenous explanatory factors only; it is obtained after integrating out the
first conditional expectation with respect to the school effect. This explains why the second
conditional expectation corresponds to the expected score in the “average” school. Using
the specification (2.22a), (2.22b) and (2.22c), the value added of school j is accordingly
given by

VAj
.= 1

nj

nj∑
i=1

E(Yij | Zij,X ij,W ij, θj)−
1
nj

nj∑
i=1

E(Yij | Zij,X ij,W ij)

= θj −
1
nj

nj∑
i=1

E(θj | Zij,X ij,W ij)

because

E(Yij | Zij,X ij,W ij) = E {E(Yij | Zij,X ij,W ij, θj) | Zij,X ij,W ij}

= X>ijβ +Z>ijγ + E(θj | Zij,X ij,W ij).

It can be seen that the value-added of a school is not longer equivalent to the school
effect, but corresponds to the school effect corrected by an additive term. This term is
the “part” of the school effect that is explained by the covariates. Consequently, the
school value-added is precisely the “part” of the school effect that is not explained by
the covariates: not only by those covariates that are under the control of the school (as
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2.2. EXTENDED HHLIM MODELS

the factor Zij in (2.22b)), but also by those covariates that are far from the control of the
school (as the factors (X ij,W ij) in (2.22c)). This additive term is given by

E(θj | Zij,X ij,W ij) = δτ 2
ρ(j)ı

>
K2

[
δ2τ 2

ρ(j)ıK2ı
>
K2 + Φρ(j)

]−1 (
Zij −A>X ij −H>W ij

)
.

Using Randolph (1988)’s approach, it is possible to compute explicitly the inverse
of δ2τ 2

ρ(j)ıK2ı
>
K2 + Φρ(j). By doing so, the value-added of school j reduces to the following

expression:

VAj = θj −
δτ 2
ρ(j)

1 + δ2τ 2
ρ(j)

∑K2
k=1 φ

−2
kρ(j)

1
nj

nj∑
i=1

ı>K2Φ
−1
ρ(j)

(
Zij −A>X ij −H>W ij

)
.

(2.23)

The parameter δ corresponds to the marginal effect of the school effect on Zij . This
parameter plays a role in the way in which the school effect should be corrected in order
to obtain the school value-added. In particular, under (2.22b), Zij ⊥⊥ θj | X ij,W ij if
and only if δ = 0. This last condition, along with condition (2.22c.i), are equivalent to
θj ⊥⊥ (Zij,X ij,W ij), which in turn implies the following statements:

1. E(θj | Zij,X ij,W ij) = E(θj) = 0 and, therefore, VAj = θj . The same conclusion
is reached by putting δ = 0 in (2.23).

2. Yij ⊥⊥ W ij | Zij,X ij; that is, at the observed level, the exogenous explanatory
factorW ij becomes uninformative to explain the contemporaneous score Yij once
we condition on (Zij,X ij) only. Therefore, the standard HHLM model nested into
the HHLIM is specified by the following conditions: for each school j,

(Yij | Zij,X ij, θj) ∼ N
(
X>ijβ +Z>ijγ + θj, σ

2
ρ(j)

)
, i = 1, . . . , nj; (2.24a)

(i) θj ⊥⊥ (Xj,Zj); (ii) θj
iid∼ N

(
0, τ 2

ρ(j)

)
. (2.24b)

2.2 Extended HHLIM Models

The grouping school function ρ(·) intends to incorporate characteristics common
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to a group of schools in the computation of the corresponding value-added. The specific
way in which those characteristics are incorporated is though variances σ2

ρ(j), Φρ(j) and
τ 2
ρ(j), the rationale being that characteristics common to a group of schools are specified

through both within-school and between-school heterogeneity. In the same sense, it should
be asked whether the marginal effect of the school effect on Zij depends or not on those
characteristics. Thus, for instance, it can be asked if the relationship between the school
effect and the lagged score (which is captured by the parameter δ) depends on the grouping
school function ρ(·). From a substantive point of view, this seems to be relevant because,
in a first approach, the way in which a school affects the lagged scores can be viewed as a
characteristic of a group of schools.

In applications, the variable Zij is not restricted to a unidimensional factor. Thus,
for instance, in the case study reported in Section 2.4.2, Zij is a two-dimensional vector,
the first coordinate being the lagged score of pupil i belonging to school j, the second
coordinate being the group effect captured by the average at the school level of lagged
scores. Similarly to the previous questions, it should be asked whether the dependency
between the school effect and each coordinate of Zij are equal or not.

These considerations lead to extend HHLIM models by considering a multidimen-
sional δ-parameter that depends on the grouping school function ρ(·). In what follows, we
discuss the specification of the model, its identifiability and estimability.

2.2.1 Model Specification

The grouping school function classifies schools into S mutually disjoints groups.
For instance, schools can be grouped according to their socio-economic status, or to a
geographical zone. If the set of groups’ labels is denoted by S, the grouping school
function is defined from {1, . . . , J} to {1, . . . , S} as j ∈ {1, . . . , J} 7−→ ρ(j) = s ∈
{1, . . . , S}. Therefore, the function ρ(·) induces a partition {J1, . . . ,JS} on {1, . . . , J},
where S = card(S) and Js = card(Js), namely

S⋃
s=1
Js = J , Js ∩ Js′ = ∅ when s 6= s′.
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Accordingly, let Y (s)
ij be the contemporaneous test score of student i belonging

to school j ∈ Js. Similarly, we denote as (X(s)
ij ,W

(s)
ij ,Z

(s)
ij ) ∈ RK1 × RL × RK2 the

explanatory factors associated to pupil i belonging to school j ∈ Js. The school effect of
school j ∈ Js is denoted as θ(s)

j . For each school j ∈ Js with s = 1, . . . , S.

Extended HHLIM models are specified as follows: It is firstly assumed that, for
each school j ∈ Js, with s = 1, . . . , S, ALI1 and ALI2 are valid. Under these structural
hypotheses, for each school j ∈ Js, with s = 1, . . . , S,

(Y (s)
ij | Z

(s)
ij ,X

(s)
ij ,W

(s)
ij , θ

(s)
j ) ∼ N

(
X

(s)>
ij β +Z(s)>

ij γ + θ
(s)
j , σ2

s

)
, i = 1, . . . , n(s)

j ,

(2.25a)

for β ∈ RK1 , γ ∈ RK2 and σ2
s > 0;

(Z(s)
ij |X

(s)
ij ,W

(s)
ij , θ

(s)
j ) ∼ NK2

(
A>X

(s)
ij +H>W (s)

ij + θ
(s)
j δs,Φs

)
, i = 1, . . . , n(s)

j ,

(2.25b)

with A = (αkl) a K1 × K2 matrix of real coefficients, H = (ηlk) a L × K2 matrix of
real coefficients, δs is a K2-dimensional vector with non-negative components, Φs

.=
diag(φ2

1s, · · · , φ2
K2s) is a K2 ×K2 diagonal matrix;

(i) θ
(s)
j ⊥⊥ (X(s)

j ,W
(s)
j ); (ii) θ

(s)
j

iid∼ N
(
0, τ 2

s

)
, (2.25c)

with τ 2
s > 0. Finally, the distribution of (X(s)

j ,W
(s)
j ) is left unspecified.

In this specification, the k-th coordinate of the vector δs (k = 1, . . . , K2) captures
the marginal effect of school j ∈ Js on the factor Z(s)

ijk. This marginal effect is specific to
each group of schools, that is, δs is in principle different from δs′ for s 6= s′. It should be
remarked that if δs = δ ıK2 for all s, specification (2.25a), (2.25b) and (2.25c) reduces to
the HHLIM given by (2.22a), (2.22b) and (2.22c). Similarly, if δs = 0 ıK2 , specification
(2.25a), (2.25b) and (2.25c) reduces to the HHLM given by (2.24a) and (2.24b).

Under specification (2.25a), (2.25b) and (2.25c), the value-added of school j ∈ Js
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is given by

VA(s)
j = θ

(s)
j − τ 2

s δs
(
τ 2
s δsδ

>
s + Φs

)−1 1
n

(s)
j

n
(s)
j∑
i=1

(
Z

(s)
ij −A>X

(s)
ij −H>W

(s)
ij

)
. (2.26)

2.2.2 Parameter Identification

Following the conceptual discussion developed in Section 2.1.1,the structural model
given by (2.25a), (2.25b) and (2.25c) intends to explain the generation of both the con-
temporaneous and lagged scores conditionally on the exogenous explanatory factors.
More precisely, the data generating process is characterized by the conditional distribu-
tion of

(
Y

(s)>
j , (vec(Z(s)>

j ))>
)>

given (X(s)
j ,W

(s)
j ) for j ∈ Js, which corresponds to a

n
(s)
j (K2 + 1)-multivariate normal distribution of conditional mean equal to


X

(s)
j β + (X(s)

j A+W (s)
j H)γ

vec
(
A>X

(s)>
j

)
+ vec

(
H>W

(s)>
j

)
 , (2.27)

and conditional variance-covariance matrix
Σ
Y

(s)
j Y

(s)
j

Σ
Y

(s)
j vec(Z(s)>

j )

Σvec(Z(s)>
j )Y (s)

j
Σvec(Z(s)>

j ) vec(Z(s)>
j )

 (2.28)

where
Σ
Y

(s)
j Y

(s)
j

= (γ>Φsγ + σ2
s)In(s)

j
+ τ 2

s (δ>s γ + 1)2J
n

(s)
j

; (2.29a)

Σvec(Z(s)>
j ) vec(Z(s)>

j ) = I
n

(s)
j
⊗Φs + J

n
(s)
j
⊗ τ 2

s δsδ
>
s ; (2.29b)

Σvec(Z(s)>
j )Y (s)

j
= I

n
(s)
j
⊗Φsγ + J

n
(s)
j
⊗ τ 2

s (δ>s γ + 1) δs; (2.29c)

and J
n

(s)
j

= ı
n

(s)
j
ı>
n

(s)
j

. For the computation of E[vec(Z(s)>
j ) | X(s)

j ,W
(s)
j ], we use the
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identity vec(BCD) = (D> ⊗B)vec(C) with B = A>, C = X(s)> and D = I
n

(s)
j

.

The parameters to be estimated are the regression coefficients (β,γ,A,H , δs) for
s = 1, . . . , S, and the variances (σ2

s , τ
2
2 ,Φs) for s = 1, . . . , S. In order to show that

these parameters are identified, recall that the mean and the variance-covariance matrix
of a multivariate normal distribution are identified. Therefore, it is enough to write
(β,γ,A,H , σ2

s , τ
2
2 ,Φs, δs) for s = 1, . . . , S as functions of them. As a matter of fact, for

each school j ∈ Js, with s = 1, . . . , S.

1. By standard arguments, fromE(Y j |X(s)
j ,W

(s)
j ), we identify β+Aγ andHγ pro-

vided that r[(X(s)
j W

(s)
j )] = K1 +L. Similarly, fromE[vec(Z(s)>

j ) |X(s)
j ,W

(s)
j ],

we identifyA andH . Therefore, γ is identified provided that r(H) = K2. Taking
into account that γ andA are identified, β is finally identified. Note that the condi-
tion r(H) = K2 implies that K2 ≤ L, that is, the number of instrumental variable
is at least equal to the number of endogenous variables, as it is typically required in
econometrics Wooldridge (2008).

2. From V ar(vec(Z(s)>
ij ) |X(s)

j ,W
(s)
j ) and cov(vec(Z(s)>

ij ), vec(Z(s)>
kj ) |X(s)

j ,W
(s)
j )

for i 6= k, τ 2
s δsδ

>
s and Φs become identified.

3. From V ar(Y (s)
ij | X

(s)
j ,W

(s)
j ) and cov(Y (s)

ij , Y
(s)
kj | X

(s)
j ,W

(s)
j ) for i 6= k, and

using the identifiability of γ and Φs, it follows that σ2
s is identified.

4. From cov(vec(Z(s)>
ij ),Y (s)

ij | X
(s)
j ,W

(s)
j ), and using the identifiability of τ 2

s δsδ
>
s ,

Φs and γ, it follows that τ 2
s δs is identified.

5. Using the identifiability of τ 2
s δs and τ 2

s δsδ
>
s , and assuming that δs 6= 0ıK2 , it

follows that
δsk = τ 2

s δ
2
sk

τ 2
s δsk

, k = 1, . . . .K2

are identified. The identification of τ 2
s is a direct consequence.

6. Finally, the parameter δs = 0 ıK2 is identified in the sense that the multivariate
normal distribution of (Y (s)>

j , (vec(Z(s)>
j ))>)> given (X(s)

j ,W
(s)
j ) under the con-

straints δs = 0 ıK2 is different from the multivariate normal distribution under the
constraints δs 6= 0ıK2 .

This identification analysis shows that the statistical model corresponding to the con-
ditional multivariate normal distribution of mean given by (2.27) and variance-covariance
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matrix given by (2.28) can be used to estimating δs’s such that δs 6= 0 ıK2 . For the case
δs = 0 ıK2 , the corresponding nested model is given by the specification (2.24a) and
(2.24b).
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2.2.3 Parameter Estimation in HHLIM Models

(i) Fixed Effects Estimators, second level of hierarchy (A andH)

From the equation (2.25b), one can write the following equality

Z
(s)
ij = A>X

(s)
ij +H>W (s)

ij + θ
(s)
j δs,+ε

(s)
ij

where, ε(s)
ij ∼ NK2 (0,Φs) , i = 1, . . . , n(s)

j and θ(s)
j ∼ N (0, τ 2

s ). Now, by school

Z
(s)
j = X

(s)
j A+W (s)

j H + ı
n

(s)
j
⊗ θ(s)

j δ
>
s + ε(s)

j

with ε(s)
j = (ε(s)

1j , . . . , ε
(s)
n

(s)
j j

)>. Finally, we can write,

Z = W F + η, where η =


ω(θ(1))

...
ω(θ(S))

+ ε, (2.30)

such that ω(θ(s)) =


θ

(s)
1 In(s)

1
. . .

θ
(s)
Js
I
n

(s)
Js


(
ıNs ⊗ δ>s

)
, F = (A>,H>)>,

ε ⊥⊥ θ, and W was defined in the previous section (ii). Furthermore, ηs = ω(θ(s)) +
εs, whose expected value is zero and varianceRs, where

Rs = INs ⊗Φs + P>sD2
sP s ⊗

(
τ 2
s δsδ

>
s

)
= Qs ⊗Φs + P>sDsP s ⊗Φs + P>sD2

sP s ⊗
(
τ 2
s δsδ

>
s

)
(2.31)

Then
vec

(
Z>

)
= vec

(
F>W>

)
+ vec

(
η>
)
, (2.32)

where vec
(
η>
)

is normally distributed with mean equal to 0 and variance-covariance
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matrixR = diag (R1, · · · ,Rs) .

Using the identity vec(AB) = (B>⊗ I) vec(A), (2.32) can equivalently be rewritten
as

vec
(
Z>

)
= (W ⊗ IK2) vec

(
F>

)
+ vec

(
η>
)
. (2.33)

Under the restriction that r(W) = K1 +L, vec
(
F>

)
can, therefore, be estimated as

vec
(
F̂
>
)

=
[(

W> ⊗ IK2

)
R−1 (W ⊗ IK2)

]−1 (
W> ⊗ IK2

)
R−1vec

(
Z>

)
.

Asymptotic Properties of F̂
>

In the estimation process of F through generalized least squares (GLS), it was
assumed that,

Assumption 3 Since equation (2.32), we can say the orthogonality condition for

consistent estimate of vec
(
F>

)
by GLS.

E
((

W> ⊗ IK2

)
⊗ vec

(
η>
))

= 0.

this means that each element of vec (η) is uncorrelated with each element of W .

Assumption 4 R is positive definite, E
((

W> ⊗ IK2

)>
R−1

(
W> ⊗ IK2

))
is

nonsingular and its rank is K1 + L

Under Assumption3 and 4 one can write,

vec
(
F̂
>
)

= E
((

W> ⊗ IK2

)>
R−1

(
W> ⊗ IK2

))−1

E
((

W> ⊗ IK2

)>
R−1vec

(
Z>

))
.
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Then,

vec
(
F̂
>
)

=
 J∑
j=1

(
W (s)>

j ⊗ IK2

)>
R−1
j

(
W (s)>

j ⊗ IK2

)−1

 J∑
j=1

(
W (s)>

j ⊗ IK2

)>
R−1
j vec

(
Z

(s)>
j

)
= vec

(
F>

)
+
N−1

J∑
j=1

(
W (s)>

j ⊗ IK2

)>
R−1
j

(
W (s)>

j ⊗ IK2

)−1

N−1
J∑
j=1

(
W (s)>

j ⊗ IK2

)>
R−1
j vec

(
η

(s)>

j

) . (2.34)

Now, if we define A ≡ E
((

W> ⊗ IK2

)>
R−1

(
W> ⊗ IK2

))
, then by Weak Law

of Large Numbers (WLLN)

N−1
J∑
j=1

(
W (s)>

j ⊗ IK2

)>
R−1
j

(
W (s)>

j ⊗ IK2

) P−→ A, when N →∞

and by Assumption 4 and Slutsky’s theorem,

N−1
J∑
j=1

(
W (s)>

j ⊗ IK2

)>
R−1
j

(
W (s)>

j ⊗ IK2

)−1
P−→ A−1, when N →∞

similarly, under Assumption 3 it can be shown that when N →∞
N−1

J∑
j=1

(
W (s)>

j ⊗ IK2

)>
R−1
j vec

(
η

(s)>
j

) P−→ E
((

W> ⊗ IK2

)>
R−1vec

(
η>
))

= 0

because,
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vec
(
E
((

W> ⊗ IK2

)>
R−1vec

(
η>
)))

=

= E
(

vec (η>)> ⊗
(
W> ⊗ IK2

)>)
vec

(
R−1

)
= E

((
vec (η>)⊗

(
W> ⊗ IK2

))>)
vec

(
R−1

)
= 0 under Assumption 3.

Therefore

vec
(
F̂
>
)

P−→ vec
(
F>

)
, when N →∞

Asymptotic Normality

Using equation (C.1) one obtains the following

√
N
(

vec
(
F̂
>
)
− vec

(
F>

))
=

=
N−1

J∑
j=1

(
W (s)>

j ⊗ IK2

)>
R−1
j

(
W (s)>

j ⊗ IK2

)−1

N− 1
2

J∑
j=1

(
W (s)>

j ⊗ IK2

)>
R−1
j vec

(
η

(s)>

j

)

but, by theorem central limit (TCL)
(
N−

1
2
∑J
j=1

(
W (s)>

j ⊗ IK2

)>
R−1
j vec

(
η

(s)>

j

))
D−→

N (0,B), where

B = E
((

W> ⊗ IK2

)>
R−1vec

(
η>
)

vec
(
η>
)>
R−1

(
W> ⊗ IK2

))
and as we

saw previously
(
N−1∑J

j=1

(
W (s)>

j ⊗ IK2

)>
R−1
j

(
W (s)>

j ⊗ IK2

))−1
P−→ A−1,

then
(
N−1∑J

j=1

(
W (s)>

j ⊗ IK2

)>
R−1
j

(
W (s)>

j ⊗ IK2

))−1
− A−1 = Op(1)
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√
N
(

vec
(
F̂
>
)
− vec

(
F>

))
=

= A−1

N− 1
2

J∑
j=1

(
W (s)>

j ⊗ IK2

)>
R−1
j vec

(
η

(s)>

j

)+Op(1)

Thus,

√
N
(

vec
(
F̂
>
)
− vec

(
F>

))
D−→ N

(
0, A−1BA−1

)

and the asymptotic variance of vec
(
F̂
>
)

corresponds to Avar
(

vec
(
F̂
>
))

=
A−1BA−1/N

Feasible GLS estimation ofA andH

But often one do not know the variance-covariance matrixR, then, one replace the
unknown matrix with a consistent estimator ofR.

Assumption 5 R̂ P−→ R, when N →∞, is a consistent estimator.

To obtain a feasible GLS estimator first thing you should do is an estimate by OLS
of vec

(
F>

)
, which we will denote by vec

(
F̂
>
)

OLS

that is a consistent estimator

of vec
(
F>

)
under Assumptions 3 and E

(
W>W

)
is nonsingular and its rank is

K1 + L. Now, by WLLN, when N →∞
N−1

J∑
j=1

vec
(
η

(s)>
j

)
vec

(
η

(s)>
j

)> P−→ R

then an estimator forR is R̂ =
N−1∑J

j=1 vec
(
η̂

(s) >
j

)
OLS

vec
(
η̂

(s) >
j

)>
OLS

, where

vec
(
η̂

(s)
j

)
OLS

= vec
(
Z>

)
− (W ⊗ IK2) vec

(
F̂
>
)

OLS

are the OLS residuals.
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This way, given R̂, the estimation of vec
(
F>

)
is

vec
(
F̂
>
)

=
[(

W> ⊗ IK2

)
R̂
−1 (W ⊗ IK2)

]−1 (
W> ⊗ IK2

)
R̂
−1

vec
(
Z>

)
.

we show that GLS is a consistent estimator, now as R̂ converges to R, this last
estimator is also consistent estimator, see Wooldridge (2002).

(ii) Fixed Effects Estimators, first level of hierarchy (β and γ)

Equation (2.25a) can equivalently be rewritten as

Y
(s)
ij = X

(s)>
ij β +Z(s)>

ij γ + θ
(s)
j + u(s)

ij

where u(s)
ij ∼ N (0, σ2

s) , and θ(s)
j ∼ N (0, τ 2

s ). Now, by school the data vector corre-
sponding to Y (s)

j = X
(s)
j β+Z(s)

j γ+ ı
n

(s)
j
θ

(s)
j +u(s)

j , with e(s)
j = (u(s)

1j , . . . ,u
(s)
n

(s)
j j

)>,

whit u(s)
j ⊥⊥ θ

(s)
j . Thus one can write,

Y = Xπ + e, (2.35)

such that, π = (β> γ>)> and X = (XZ). In this way we can define a new model,

W>Y = W>Xπ + W>e

Then, to estimate π it is necessary to specify some restrictions:

Assumption 6 The model specification implies the following system of K1 + L

moment restrictions:

E
[
W> (Y −Xζ)

]
= 0.

That is orthogonality condition.

Assumption 7 As Assumption 6 in not enough to identify π. An condition sufficient

for identification is the rank condition. Then,

r(W>X ) = K1 + K2, r(W>W) = K1 + L, therefore, necessarily the rank
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condition correspond to K2 ≤ L.

These conditions are ensured by the identification analysis; see Section 2.2.2.

Considering the Assumption 6 and 7, one can use the White’s (1980) approach to
estimate π,

π̂ =
(
X>WSW>X

)−1
X>WSW>Y (2.36)

where S−1 = V(W>e) = W>V(e|X,W)W = W>VW and X>WSW>X
is nonsingular, and identifiability condition is that the range of X>WSW>X is
complete. It should be remarked that S depends on τ 2

s , σ
2
s , δs,Φs for s = 1, . . . , S ,

and γ, since

Var
(
e(s)

)
= Qs(γ>Φsγ+σ2

s)+P sDsP
>
s (γ>Φsγ+σ2

s)+P sD
2
sP
>
s τ

2
s (δ>s γ+1)2

(2.37)

Asympotic Properties of π̂

As we saw in the item i, The estimation of π, is obtained by a estimation of S, such
that

π̂ =
(
X>WŜW>X

)−1
X>WŜW>Y

Assumption 8 Ŝ P→ S, when N→∞, and S is a nonrandom, symmetric, (L +
K1)× (L+K1) positive definite matrix.

Then, by Assumption 6, 7 and 8, π̂ P→ π. Since Assumption 6 E
[
W>e

]
= 0,

then N−1W>e→ 0, when N →∞, by Assumption 7, C ≡ E
(
W>X

)
has rank

K1 +K2, and adding Assumption 8 C>SC also has rank K1 +K2. This way as

π̂ =
(
X>WŜW>X

)−1
X>WŜW>Y

= π +
(
X>WŜW>X

)−1
X>WŜW>e

π̂
P→ π +

(
C>SC

)−1
C>SlimN→∞N

−1W>e

= π
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Therefore,
π̂

P→ π, whenN →∞

Asymptotic Normality

Analogous to that developed of the previous section, one find that

√
N (π̂ − π) =

((
N−1X>W

)
Ŝ
(
N−1W>X

))−1 (
N−1X>W

)
Ŝ
(
N−1/2W>e

)

where
(
N−1/2W>e

)
d→ N(0,W>VW) ≡ N(0,S−1). Then,

Avar (π) = (CSC)−1

Thus, √
N (π̂ − π) d→ N(0, (CSC)−1)

(iii) Estimators of variance components, Second level of Hierarchy

Estimation of Φs

We apply the within-operatorQ to equation (2.32) and we obtain

(Q⊗ IK2) vec
(
Z>

)
=

= (Q⊗ IK2) (W ⊗ IK2) vec
(
F>

)
+ (Q⊗ IK2) vec

(
η>
)

= (QW ⊗ IK2) vec
(
F>

)
+ (Q⊗ IK2) vec

(
η>
)
.

note that (Q⊗ IK2) vec
(
Z>

)
= vec

(
Z>Q>

)
. From this equation we obtain an

OLS estimator of F , that is,

vec
(
F̂
>
)

OLS

=

=
[
(W>Q⊗ IK2)(QW ⊗ IK2)

]−1
(W>Q⊗ IK2)(Q⊗ IK2)vec (Z>)

=
[
(W>QW)−1W>Q⊗ IK2

]
vec (Z>).
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Note that

vec
(
F̂
>
)

OLS

=
[
(W>QW)−1W>Q⊗ IK2

] [
(W ⊗ IK2)vec(F>) + vec(η>)

]
= vec(F>) +

[
(W>QW)−1W>Q⊗ IK2

]
vec(η>)

We define the following residual:

vec(η̂>)W = vec (Z>)− (W ⊗ IK2)vec
(
F̂
>
)

OLS

= (W ⊗ IK2)vec(F>)− (W ⊗ IK2)vec
(
F̂
>
)

OLS

+ vec(η>)

= (W ⊗ IK2)
[
vec(F>)− vec

(
F̂
>
)

OLS

]
+ vec(η>)

= (W ⊗ IK2)
[
−(W>QW)−1W>Q⊗ IK2 vec(η>)

]
+ vec(η>)

=
[
INK2 −W(W>QW)−1W>Q⊗ IK2

]
vec (η>).

Therefore

(Q⊗ IK2)vec(η̂>)w =

=
[
(Q⊗ IK2)−QW(W>QW)−1W>Q⊗ IK2

]
vec (η>)

=
[
Q−QW(W>QW)−1W>Q

]
⊗ IK2vec (η>)

=
[(
IN −QW(W>QW)−1W>

)
⊗ IK2

]
(Q⊗ IK2) vec (η>)

.= [MN ⊗ IK2 ] (Q⊗ IK2)vec(η>),

whereMN =
(
IN −QW(W>QW)−1W>

)
is an idempotent matrix.

Using the equation (2.31) is obtain that,

V
(
(Q⊗ IK2)vec(η>),

)
= (Q⊗ IK2)V

(
vec(η>)

)
(Q⊗ IK2)

= diag {(Qs ⊗ IK2)Rs(Qs ⊗ IK2)}Ss=1

= diag {(Qs ⊗ IK2) (Qs ⊗Φs) (Qs ⊗ IK2)}Ss=1

= diag {(Qs ⊗Φs)}Ss=1

In order to use the residual above defined to estimate Φs, it is necessary to consider
the coordinates of such a residual which are related to the k-th endogenous variable.

62 Marı́a Inés Godoy Ávila
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Thereby we define ek as the k-th vector of the canonical basis of RNK2 . Then, the
k-th endogenous variable of vec(Z>) is given by the following matrix Πk,

Πk =



e>k

e>k+K2

e>k+2K2
...
e>k+(N−1)K2


So, as an example Π1vec(Z>) is the first endogenous variable. On the other hand,

Π(s)
k =



e
(s) >
k

e
(s) >
k+K2

e
(s) >
k+2K2

...
e

(s) >
k+(Ns−1)K2



e
(s)
k as the k-th vector of the canonical basis of RNsK2 and Π(s)

k vec(Z(s) >) corre-
sponds to the endogenous variable k-th of group s.

Let us consider the residuals corresponding to both the k-th and l-th endogenous vari-
able of group s, then as (Qs ⊗ IK2)vec(η̂>s )w = [MNs ⊗ IK2 ] (Qs ⊗ IK2)vec(η>s ),
withMNs =

(
INs −QsWs(W>QW)−1W>

s

)
. Thus,

Π(s)
k (Qs ⊗ IK2)vec(η̂>s )w = Π(s)

k [MNs ⊗ IK2 ] (Qs ⊗ IK2)vec(η>s )
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Now

E
{ [

Π(s)
k (Qs ⊗ IK2)vec(η̂>s )w

]> [
Π(s)
l (Qs ⊗ IK2)vec(η̂>s )w

]}
=

= E
{ [

Π(s)
k [MNs ⊗ IK2 ] (Qs ⊗ IK2)vec(η>s )

]>
[
Π(s)
l [MNs ⊗ IK2 ] (Qs ⊗ IK2)vec(η>s )

]}

= E
{[

(Qs ⊗ IK2)vec(η>s )
]>

[MNs ⊗ IK2 ]>Π(s) >
k Π(s)

l

[MNs ⊗ IK2 ]
[
(Qs ⊗ IK2)vec(η>s )

]}

= tr
[
[MNs ⊗ IK2 ]>Π(s) >

k Π(s)
l [MNs ⊗ IK2 ] (Qs ⊗Φs)

]

= tr
[
Π(s) >
k Π(s)

l (MNsQsM
>
Ns

)⊗Φ
]

Therefore,

tr
[
Π(s) >
k Π(s)

l (MNsQsM
>
Ns

)⊗Φ
]

= φkl tr
[
MNsQsM

>
Ns

]
Thus, an estimator of φkls is given by

φ̂kls =

[
Π(s)
k (Qs ⊗ IK2)vec(η̂>s )w

]> [
Π(s)
L (Qs ⊗ IK2)vec(η̂>s )w

]
tr
[
MNsQsM

>
Ns

]
This result can be extended to,

Φ̂s
kl =

[
(Qs ⊗ IK2)vec(η̂>s )w

]> [
(Qs ⊗ IK2)vec(η̂>s )w

]
tr
[
MNsQsM

>
Ns

] (2.38)
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Estimation of τ 2
s δsδ

>
s

We apply the between-operator P to equation (2.32) and we obtain

vec
(
Z>P>

)
= (P ⊗ IK2) vec

(
Z>

)
= (P ⊗ IK2) (W ⊗ IK2) vec

(
F>

)
+ (P ⊗ IK2) vec

(
η>
)

= (PW ⊗ IK2) vec
(
F>

)
+ (P ⊗ IK2) vec

(
η>
)
.

From this equation we obtain an OLS estimator of F , that is,

vec
(
F̂
>
)

OLS

=
[
(W>P>PW)−1W>P>P ⊗ IK2

]
vec(Z>).

Note that

vec
(
F̂
>
)

OLS

=
[
(W>P>PW)−1W>P>P ⊗ IK2

]
{

(W ⊗ IK2)vec(F>) + vec(η>)
}

= vec(F>) +
[
(W>P>PW)−1W>P>P ⊗ IK2

]
vec(η>).

We define the following residual:

vec(η̂>)b = vec (Z>)− (W ⊗ IK2)vec
(
F̂
>
)

OLS

= (W ⊗ IK2)vec(F>)− (W ⊗ IK2)vec
(
F̂
>
)

OLS

+ vec(η>)

= (W ⊗ IK2)
[
vec(F>)− vec

(
F̂
>
)

OLS

]
+ vec(η>)

= (W ⊗ IK2)
{
−
[
(W>P>PW)−1W>P>P ⊗ IK2

]
vec(η>)

}
+

+vec(η>)

=
[
INK2 −W(W>P>PW)−1W>P>P ⊗ IK2

]
vec(η>).

65 Marı́a Inés Godoy Ávila
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Therefore,

(P ⊗ IK2)vec(η̂>)b =
[
(P ⊗ IK2)− PW(W>P>PW)−1W>P>P ⊗ IK2

]
vec(η>)

=
[
P − PW(W>P>PW)−1W>P>P

]
⊗ IK2vec(η>)

=
[
( IJ − PW(W>P>PW)−1W>P>)⊗ IK2

]
(P ⊗ IK2) vec(η>)

.= (T J ⊗ IK2)(P ⊗ IK2) vec(η>),

where T J = IJ −PW(W>P>PW)−1W>P> is a symmetric idempotent matrix.

Using the equation (2.31) is obtain that,

V
(
(P ⊗ IK2)vec(η>),

)
= (P ⊗ IK2)V

(
vec(η>)

)
(P ⊗ IK2)>

= diag
{

(P s ⊗ IK2)Rs(P>s ⊗ IK2)
}S
s=1

= diag
{

(P s ⊗ IK2)
(
P>sDsP s ⊗Φs + P>sD2

sP s⊗(
τ 2
s δsδ

>
s

)) (
P>s ⊗ IK2

)}S
s=1

= diag
{
D−1

s ⊗Φs + IJs ⊗
(
τ 2
s δsδ

>
s

)}S
s=1

Therefore, analogous to the calculation of Φs, it is necessary to consider the coordi-
nates of such a residual which are related to the k-th endogenous variable. We define
the matrix Γk of J × JK2 as follows:

Γk =


e>k

e>k+J
...
e>k+J(K2−1)


where ek is the vector of the canonical base of RJK2 . But as we are concerned the
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variance between each group, we define

Γ(s)
k =


e

(s) >
k

e
(s) >
k+K2

...
e

(s) >
k+K2(Js−1)



where e(s)
k is the vector of the canonical base of RJsK2 .

Now consider the residuals corresponding to both the k-th and l-th endogenous
variable of group s, and (P s ⊗ IK2)vec(η̂>s )w = [T Js ⊗ IK2 ] (P s ⊗ IK2)vec(η>s ),
with T Js = IJs −P sWs(W>P>PW)−1W>

s P
>
s a symmetric idempotent matrix.

Thus,

E
{ [

Γ(s)
k (P s ⊗ IK2)vec(η̂(s) >)b

]> [
Γ(s)
l (P ⊗ IK2)vec(η̂(s) >)b

]}
=

= E
{ [

Γ(s)
k (T Js ⊗ IK2)(P s ⊗ IK2)vec(η(s) >)

]>
[
Γ(s)
l (T Js ⊗Φs)(P s ⊗ IK2)vec(η(s) >)

]}

= E
{[

(P s ⊗ IK2)vec(η(s) >)
]>

(T Js ⊗ IK2)Γ(s) >
k Γ(s)

l

(T Js ⊗ IK2)
[
(P s ⊗ IK2)vec(η(s) >)

]}

= tr
[
(T Js ⊗ IK2)Γ(s) >

k Γ(s)
l (T Js ⊗ IK2){

D−1
s ⊗Φs + IJs ⊗ τ 2

s δsδ
>
s

}]

= tr
[
Γ(s) >
k Γ(s)

l [(T JsD
−1
s T Js)⊗Φs]

]
+

+tr
[
Π>k Πl(T JsT Js ⊗ τ 2

s δsδ
>
s )
]

Note that Γ>k Γl is a JK2 × JK2 matrix. Therefore, it is composed of J × J blocks
of size K2 ×K2: in each of these blocks there are a 1 in position (k, l). using the
same arguments as in ΦS . Thus, an estimator of δks δ

l
s is given by

67 Marı́a Inés Godoy Ávila
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τ̂ 2
s δ

k
s δ

l
s =

[
Γ(s)
k (P s ⊗ IK2)vec(η̂(s) >)b

]> [
Γ(s)
l (P ⊗ IK2)vec(η̂(s) >)b

]
tr(T JsT Js)

− φ̂s
kl

tr(T JsD
−1
s T Js)

tr(T JsT Js)

This result can be extended to,

τ̂ 2
s δsδ

>
s =

(
P s ⊗ IK2)vec(η̂(s) >)b

]> [
(P ⊗ IK2)vec(η̂(s) >)b

]
tr(T JsT Js)

−Φ̂str(T JsD
−1
s T Js)

tr(T JsT Js) (2.39)

(iv) Estimators of variance components, first level of hierarchy

Estimation of σ2
s

We apply the within-operatorQ to equation (2.35),

QY = QXπ +Qe.

It should be noticed that Q is an instrumental variable because in the previous
equation θ has any role (that is, there is any endogeneity problem). Then

π̂w
OLS =

(
X>QX

)−1
X>QY ,

and we define the following residual:

êw = Y −X π̂w
OLS

=
(
IN −X

(
X>QX

)−1
X>Q

)
Y .
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Therefore

Qêw =
(
IN −QX

(
X>QX

)−1
X>

)
QY

.= MQY , M is idempotent

= M (QXπ +Qe)

= MQe.

It follows that

E
(
êw>Qêw

)
= E

(
e>QMQe

)
= tr(MVar(Qe)).

But, Var(Qe) = diag
(
Var(Q1e

(1)), . . . ,Var(QSe
(S))

)
, where given the equation

(2.37) Var(Qse
(s)) = Qs(γ>Φsγ + σ2

s).

Thus, E
(
ê(s) w>Qsê

(s) w
)

= (γ>Φsγ + σ2
s)tr(M sQs),

such thatM sQs =
(
Qs −QsX (s)

(
X>QX

)−1
X (s)>Qs

)
. This way, we obtain

E
(
ê(s) w>Qsê

(s) w
)

= (γ>Φsγ + σ2
s)tr(M sQs)

= (γ>Φsγ + σ2
s) (Ns − Js−

tr
((

X>QX
)−1

X (s)>QsX (s)
))

where tr
((

X>QX
)−1

X (s)>QsX (s)
)
≤ K2. Therefore

σ̂2
s = ê(s) w>Qsê

(s) w

Ns − Js − tr
((

X>QX
)−1

X (s)>QsX (s)
) − γ̂>Φ̂sγ̂ (2.40)
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Estimation of τ 2
s (δ>s γ + 1)2

We apply the between-operator P to equation (2.35), PY = PXπ + Pe. This
equation still suffers from an endogeneity problem and therefore we apply the
instrument PW and therefore we obtain

πb
OLS =

(
X>P>PWW>P>PX

)−1
X>P>PWW>P>PY ,

and we define the following residual:

êb = Y −Xπb
OLS

=
(
IN −X

(
X>P>PWW>P>PX

)−1
X>P>PWW>P>P

)
Y .

Therefore

P êb =
(
IJ − PX

(
X>P>PWW>P>PX

)−1
X>P>PWW>P>

)
PY

=
(
IJ − PX

(
X>P>PWW>P>PX

)−1
X>P>PWW>P>

)
Pe

.= TPe,

where T is idempotent. It follows that

E
(
êb>P>P êb

)
= E

(
e>P>T>TPe

)
= tr[T>T Var(Pe)].

But, Var(Pe) = diag
(
Var(P 1e

(1)), . . . ,Var(P Se
(S))

)
, such that using (2.37), we

obtain Var(P se
(s)) = D−1

s (γ>Φsγ + σ2
s) + IJsτ

2
s (δ>s γ + 1)2. Therefore, if we de-

fined, T s = IJs−P sX (s)
(
X>P>PWW>P>PX

)−1
X (s)>P>s P sW (s)W (s)>P>s ,

then E
(
êb>P>P êb

)
= (γ>Φγ + σ2)tr[T>s T sD

−1
s ] + τ 2(δ>γ + 1)2tr[T>s T s],

Thus the following estimator is obtained

̂τ 2
s (δ>s γ + 1)2 = ê(s) b

>
P>s P sê(s) b − (γ̂>Φ̂sγ̂ + σ̂2

s)tr[T>s T sDs]
tr[T>s T s]

(2.41)
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(v) Estimators of Covariance Components Between Hierarchies

Estimation of τ 2
s δ
>
s

In the previous section iv, and iii we define the following

(a) P êb = TPe,

(b) (P ⊗ IK2)vec(η̂>)b = (T J ⊗ IK2)(P ⊗ IK2) vec(η>)

This way, if to consider the residuals corresponding to both the k-th endogenous
variable

Cov
(
Γk(P ⊗ IK2)vec(η̂>)b,P êb

)
=

= E
{[

Γk(P ⊗ IK2)vec(η̂>)b
]>
P êb

}
= E

[(
(P ⊗ IK2)vec(η>)b

)>
(T J ⊗ IK2)ΓkTPe

]
= tr

[
(T J ⊗ IK2)Γ>k TCov

((
(P ⊗ IK2)vec(η̂>)b

)>
,Pe

)]

But,

Cov
((

(P ⊗ IK2)vec(η̂>)b
)>
,Pe

)
=
{
D−1

s ⊗ γ>Φs + IJs ⊗ τ 2
s δ
>
s (γ>δs + 1)

}S
s=1

.
Thus, we can find the estimators for each of the groups s = 1, . . . , S, then

Cov
(
Γ(s)
k (P s ⊗ IK2)vec(η̂(s)>)b,P s ê(s) b

)
=

= tr
[
(T Js ⊗ IK2)Γ(s)>

k T s

(
D−1

s ⊗ γ>Φs + IJs ⊗ τ 2
s δ
>
s (γ>δs + 1)

)]
= tr

[
T sD

−1
s T Jsγ

>Φk
s + T sT Jsτ

2
s δ

k>
s (γ>δs + 1)

]

But, how τ 2
s δ

k>
s (γ>δs + 1) = τ 2

s γ
>δsδ

k>
s + τ 2

s δ
k>
s , it corresponds to the k − th

coordinate, which is associated with the k-th endogenous variable.

This way,

τ̂ 2
s δ

k>
s =

Γ(s)
k (P s ⊗ IK2)vec(η̂(s)>)bP s ê(s) b − tr

[
T sD

−1
s T Js

]
(γ̂>Φ̂)ks

tr [T sT Js ] −γ̂> ̂τ 2
s δsδ

k>
s
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This result can be extended to,

τ̂ 2
s δ
>
s =

Γ(s)
k (P s ⊗ IK2)vec(η̂(s)>)bP s ê(s) b − tr

[
T sD

−1
s T Js

]
(γ̂>Φ̂)s

tr [T sT Js ]

−γ̂> ̂τ 2
s δsδ

>
s (2.42)

2.2.4 Summary of the Estimation Process

1. Estimation of F , determined at item i. The estimate of this parameter consists of
two steps.

(a) When the process starts is estimated by OLS, ie

vec
(
F̂
>
)

=
[(

W> ⊗ IK2

)
(W ⊗ IK2)

]−1 (
W> ⊗ IK2

)
vec

(
Z>

)
.

(b) When you have already made steps 1-8, F is estimated again, but now with
Feasible GLS, ie,

vec
(
F̂
>
)

=
[(

W> ⊗ IK2

)
R̂
−1 (W ⊗ IK2)

]−1 (
W> ⊗ IK2

)
R̂
−1

vec
(
Z>

)
.

2. Completed step 1, be must estimate the Within Residual of the model (2.25b). Then,
it is estimated Φs by the equation (2.38), ie

Φ̂s =

[
(Qs ⊗ IK2)vec(η̂>s )w

]> [
(Qs ⊗ IK2)vec(η̂>s )w

]
tr
[
MNsQsM

>
Ns

]

3. Completed steps 1–2, be must estimate the Between Residual of the model (2.25b).
Then, it is estimated τ̂ 2

s δ
k
s δ

l
s by the equation (2.39), ie

τ̂ 2
s δsδ

>
s =

[
(P s ⊗ IK2)vec(η̂(s) >)b

]> [
(P ⊗ IK2)vec(η̂(s) >)b

]
− Φ̂str(T JsD

−1
s T Js)

tr(T JsT Js)

4. The Estimation of π, determined at section ii
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5. Completed steps 1–4, be must estimate the Within Residual of the model (2.25a).
Then, it is estimated σ2

s by the equation (2.40), ie

σ̂2
s = ê(s) w>Qsê

(s) w

Ns − Js − tr
((

X>QX
)−1

X (s)>QsX (s)
) − γ̂>Φ̂sγ̂

6. Completed steps 1–5, be must estimate the Between Residual of the model (2.25a).
Then, ̂τ 2

s (δ>s γ + 1)2 is estimated by the equation (2.41), ie

̂τ 2
s (δ>s γ + 1)2 = ê(s) b

>
P>s P sê(s) b − (γ̂>Φ̂sγ̂ + σ̂2

s)tr[T>s T sDs]
tr[T>s T s]

7. Completed steps 1–6, are used the Between Residuals estimation of model (2.25a)
and model (2.25b). This way τ 2

s δ
k>
s is estimated by the equation (2.42),

τ̂ 2
s δ
>
s =

Γ(s)
k (P s ⊗ IK2)vec(η̂(s)>)bP s ê(s) b − tr

[
T sD

−1
s T Js

]
(γ̂>Φ̂)s

tr [T sT Js ] −γ̂> ̂τ 2
s δsδ

>
s

8. Then, using the results of steps 3 and 7, can be calculated δks as,

δs =
diag

{
̂τ 2
s δsδ

>
s

}
̂
τ 2
s δ
>
s

9. Substituting the estimates obtained in step 8 in equation of step 6, we can get an
estimate of τ 2

s .

2.2.5 Prediction of the school effect and estimation of the value added

In order to estimate the value added of a school j ∈ Js, it is necessary to predict
the school effect θ(s)

j . The specification (2.25a), (2.25b) and (2.25c) imply that the joint
distribution of (Y (s)>

j ,Z
(s)>
j , θ

(s)
j )> conditionally on X(s)

j ,W
(s)
j ) is a multivariate normal
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distribution of mean 
X

(s)
j β + (X(s)

j A
> +W (s)

j H
>)γ

(I
n

(s)
j
⊗A>)X(s)

j + (I
n

(s)
j
⊗H>)W (s)

j

0

 ,

and conditional variance-covariance matrix
Σ
Y

(s)
j Y

(s)
j >

Σ
Y

(s)
j Z

(s)>
j

Σ
Y

(s)
j θ

(s)
j

Σ
Z

(s)
j Y

(s)
j >

Σ
Z

(s)
j Z

(s)
j >

Σ
Z

(s)
j θ

(s)
j

Σ
θ

(s)
j Y

(s)>
j

Σ
θ

(s)
j Z

(s)>
j

Σ
θ

(s)
j θ

(s)
j

 ,

where Σ
Y

(s)
j Y

(s)
j >

is given by (2.29a), Σ
Y

(s)
j Z

(s)>
j

is given by (2.29c), Σ
Z

(s)
j Z

(s)
j >

is given
by (2.29b),

Σ
Y

(s)
j θ

(s)
j

= τ 2
s (δ>s γ + 1)ı

n
(s)
j

; (2.43a)

Σ
Z

(s)
j θ

(s)
j

= ı
n

(s)
j
⊗ τ 2

s δs; (2.43b)

Σ
θ

(s)
j θ

(s)
j

= τ 2
s . (2.43c)

The prediction of θ(s)
j is, therefore, given by

θ̂
(s)
j =

(
Σ̂
θ

(s)
j Y

(s)>
j

Σ̂
θ

(s)
j Z

(s)>
j

)  Σ̂
Y

(s)
j Y

(s)
j >

Σ̂
Y

(s)
j Z

(s)>
j

Σ̂
Z

(s)
j Y

(s)
j >

Σ̂
Z

(s)
j Z

(s)
j >


−1

×


 Y

(s)
j

Z
(s)
j

−
 X

(s)
j β̂ + (X(s)

j Â
> +W (s)

j Ĥ
>)γ̂

(I
n

(s)
j
⊗ Â

>)X(s)
j + (I

n
(s)
j
⊗ Ĥ

>)W (s)
j


 .

Once the school effect has been predicted, the school value added is estimated using (2.26).
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2.3 Likelihood

Above, one saw that the conditional distribution is given by,

 Y
(s)
j

vec
(
Z

(s)>
j

)  ∼ N




X
(s)
j β + (X(s)

j A+W (s)
j H)γ

vec
(
A>X

(s)>
j

)
+ vec

(
H>W

(s)>
j

)
 ,


Σ
Y

(s)
j Y

(s)
j

Σ
Y

(s)
j vec(Z(s) >

j )

Σvec(Z(s) >
j )Y (s)

j
Σvec(Z(s) >

j ) vec(Z(s) >
j )


 (2.44)

such that the its expectation corresponds to the equation (2.27) and the elements of variance
are given in equations (2.29a), (2.29b) and (2.29c).

The likelihood function is determined by the joint distribution of
(
Y , vec

(
Z>

))
,

where the parameters associated to the distribution are ϑ = (β, γ,A,H, σ2
s , τ

2
s ,Φs, δs) para

cada s = 1, . . . , S. Then,

L(ϑ|Y , vec
(
Z>

)
) =

S∏
s=1

Js∏
j=1

f

 Y
(s)
j X

(s)
j ,W

(s)
j , ϑ

vec
(
Z

(s)>
j

) 

where f corresponds to the density function of the normal distribution defined in the
equation (2.44).

So, also the log-likelihood function is obtained, as following

l =
S∑
s=1

Js∑
j=1

log
(
L
(
ϑ|Y , vec

(
Z>

)))
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2.3.1 Likelihood Ratio Tests

In the specification (2.25a), (2.25b) and (2.25c), the K2-dimensional parameter δs
depends on the grouping school function ρ(·) and, therefore, δs 6= δs′ for s 6= s′. Moreover,
as it was remarked at Section 2.2.1, if δs = δ ıK2 for all s = 1, . . . , S, specification (2.25a),
(2.25b) and (2.25c) reduces to the HHLIM given by (2.22a), (2.22b) and (2.22c). Similarly,
if δs = 0 ıK2 , specification (2.25a), (2.25b) and (2.25c) reduces to the HHLM given by
(2.24a) and (2.24b). Therefore, it is of interest to explore if those equalities are statistically
significant. This leads to test the following hypotheses:

(1.) H0 : δs = δs′ for s 6= s′; versus H1 : δs 6= δs′ for s 6= s′. By doing so, we can test if
two groups of schools have different δs parameters.

(2). H0 : δs = δ for all s = 1, . . . , S; versus H1 : δs 6= δ for some s = 1, . . . , S. By
doing so, we test if the parameter δs is the same for all schools groups, although its
coordinates could be different.

(3). H0 : δs = δıK2 for all s = 1, . . . , S; versus H1 : δs 6= δıK2 for some s = 1, . . . , S.
By doing so, we test if the parameter δs is not only equal for all schools groups, but
also for all the explanatory factors Zijk with k = 1, . . . , K2.

(4). H0 : δs = 0 for all s = 1, . . . , S; versus H1 : δs 6= 0 for some s = 1, . . . , S. By
doing so, we test if the extended HHLIM model reduces to a standard HHLM model.

The standard strategy to contrast these hypotheses is a likelihood ratio test. More
specifically, for cases (1), (2) and (3), the likelihood ratio is based on the conditional
distribution of (Y (s)>

j , vec(Z(s)>
j )>)> given (X(s)

j ,W
(s)
j ), which corresponds to a multi-

variate normal distribution with a mean given by (2.27) and a variance-covariance matrix
given by (2.28). If we denote by Λ(Y ,Z) the likelihood ratio, then the rejecting zones are
respectively the following:

(1). −2 ln(Λ(Y ,Z)) ∼ χ2
K2 and the null hypotheses is rejected if

P (−2 ln(Λ(Y ,X) > χ2
K2) ≤ α).

(2). −2 ln(Λ(Y ,Z)) ∼ χ2
K2(S−1) and the null hypotheses is rejected if

P (−2 ln(Λ(Y ,X) > χ2
K2(S−1)) ≤ α).

(3). −2 ln(Λ(Y ,Z)) ∼ χ2
SK2−1 and the null hypotheses is rejected if
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P (−2 ln(Λ(Y ,X) > χ2
SK2−1) ≤ α).

(4). −2 ln(Λ(Y ,Z)) ∼ χ2
K2(K2S+K1+L) and the null hypotheses is rejected if

P (−2 ln(Λ(Y ,X) > χ2
K2(K2S+K1+L)) ≤ α).

2.3.2 Information criteria

Always it is interest for a dataset choose the “best model”, the better fit. For this
reason, presented below three measures of commonly used for the choice of the model.
(a) Akaike information criterion, AIC, (b) AIC with a correction, AICc and (c) Bayesian
information criterion, BIC. Note that the number of parameter the HHLIM model is

P = K1 +K2 + 2S +K2(L+K1 + SK2).

(a) AIC

AIC = − 2 ∗
S∑
s=1

Js∑
j=1

log
(
L
(
ϑ|Y , vec

(
Z>

)))
+ 2 ∗ P

(b) AICc

AIC = − 2 ∗
S∑
s=1

Js∑
j=1

log
(
L
(
ϑ|Y , vec

(
Z>

)))
+ 2 ∗ P + 2 ∗ P ∗ (P + 1)

N − P − 1

(c) BIC

BIC = − 2 ∗
S∑
s=1

Js∑
j=1

log
(
L
(
ϑ|Y , vec

(
Z>

)))
+ P ∗ log(N)
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2.4 Aplication of HHLIM to educational data

2.4.1 Simulation Study

In this simulation study we will generate data from HHLIM defined in equations,
(2.25a), (2.25b), (2.25c). To generate a simulation of a educational database, we consider
that the population comes from five different groups S = 5, such that the groups are made
up of card(Js) = 150 schools respectively, and in each of them there are 20 to 30 students.
The simulation procedure is detailed below,

1. Do i = 1 to S,

• Generate n(s)
j for each j ∈ Js, where 20 ≤ n

(s)
j ≤ 30

• θ
(s)
j ∼ N (0, τ 2

s ) for each j = 1, . . . , card(Js).

Where τ 2
s , s = 1, . . . , S are fixed by τ 2

1 = 28, τ 2
2 = 15, τ 2

3 = 32, τ 2
4 = 22 and

τ 2
5 = 11

2. Generate L instrumental variables, these may be generated from any distribution. In
this particular case, these are assumedW (s)

ij ∼ N (0, 2) for each scenario.

3. Generate K1 exogenous variables, also these can be generated from any distribution.
For each scenario are assumedX(s)

ij ∼ N(0, 1).

4. Generate K2 error of endogenous variables associated to the equation (2.25b). Then,
simulate η(s)

ij ∼ NK2(0; Φs). Such that are fixed each Φs con s = 1, . . . , S.

Φ1 =
 7 3

3 4

 Φ2 =
 3.5 1.3

1.3 6

 Φ3 =
 9 4.1

4.1 6.5

 Φ4 =
 6 1.5

1.5 4


Φ5 =

 5.3 2.9
2.9 3.8


5. Once the steps 1 – 4 were performed, must be simulated the K2 endogenous variates

by, Z(s)
ij = A>X

(s)
ij +H>W (s)

ij + θ
(s)
j δs + η(s)

ij . WhereA andH are the same for

each scenario, fixed inA =
 6.8 5.2
−0.9 6.1

 andH =


3.6 2.1
0.5 2.3
4.8 2.9


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But, δs, s = 1, . . . , S are fixed in three different scenarios.

6. Generate a error associated to the equation (2.25a). So, εij ∼ N (0;σ2
s), Where

σ2
s , s = 1, . . . , S are fixed by σ2

1 = 38, σ2
2 = 25, σ2

3 = 42, σ2
4 = 32 and σ2

5 = 21.

7. Once the steps 5 – 6 were performed, must be simulated the dependent variables
by, Y (s)

ij = X
(s)>
ij β + Z(s)>

ij γ + θ
(s)
j + εij . Where β and γ are the same for each

scenario, fixed in β =
 1

3

 and γ =
 7

4



Simulation Results

We study the performance of our estimation methods under the model defined above.
We consider three scenarios: (I) parameters of association (δs), between endogenous
variables and school effect, different for each groups and endogenous variables, i.e, we
have S ∗K2 parameters, (II) parameters of association (δ), between endogenous variables
and school effect, only different for each endogenous variables, i.e, we haveK2 parameters,
and (III) parameters of association (δ), between endogenous variables and school effect, is
same for each groups and endogenous variables, i.e, we have 1 parameters.

In the tables B.7, B.14 and B.21 we show te true value and Monte Carlo estimation
of the parameter δs for each scenarios, for samples of 50, 100, 500 and 1000. In each one
scenario and samples of Monte Carlo, the same trend is reflected, a proper and satisfactory
estimate of parameters, where the Monte Carlo error is low (this value is presented in the
tables between parentheses). Similary the estimates of the other parameters (β, γ,A,H ,
Φs, τ 2

s and σ2
s ), have estimates close to the real value, being the variances τ 2

s and σ2
s that

has a higher error Monte Carlo. See Annex B.

Moreover, to measure the accuracy in estimating the school effect and value added,
is calculated the average of the squared differences in each of the samples Monte Carlo,
thus the Tables B.1, B.8 and B.15 are a summary of what happened in the Monte Carlo
simulation. Thereby for different values of δs the accuracy in the estimation of both
indicators (value added and school effect) have an averaged low squared error, value
around of 0.003 in the case of value added and 0.30 in the school effect.
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Comparation among models

This section aims to illustrate through a simulation of educational data the differences
in fit between a standard hierarchical linear mixed model and the model proposed in this
chapter.

The Figures 2.2a, 2.3a and 2.4a shown three curves of cumulative distribution
corresponding to the real value added (red colour), the estimation of value added by means
of a standard HLM model (green curve) and the estimation of value added by HHLIM
(blue curves). We conclude that (to compare the red and green curves) in the three figures
mentioned, the distribution of estimations by a standard HLM is different to the distribution
of real values (curve red), its distribution are not close to the real and further it has tails
heavy. This means that in the presence of one o more endogenous variables classify the
school through a HLM model is unfair because this has serious problems in the estimation
of value added. In contrary, if we compare the distributions of real value added with the
estimation obtained through our proposed model (red and blue curves), where we saw
in the previous section that the Monte Carlo errors are low, we conclude that this model
generates estimates close to reality when there are some grade of endogeneity.

Moreover, in the Figures 2.2b, 2.3b and 2.4b of three scenarios one can observe that
the estimates of standard HLM model (green points) are concentrated arround zero and
increases dispersion on the tails, while in the estimation of HHLIM model (blue points) its
dispersion is constant.

It is important not to forget this possible endogeneity, because in the presence of this
the standard models have problems in the estimates of value added, therefore the schools
can be classified unfairly.
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Figure 2.2: Comparison between standard HLM and HHLIM model, Scenario I. (a)
Real value of Value Added (red) and estimation by HHLIM (blue) and standard HLM
(green). (b) Axis Y: Real value of Value Added, Axis X: Estimation of Value Added by
HHLIM (blue) and standard HLM (green).

−40 −20 0 20 40

0.
0

0.
4

0.
8

−40 −20 0 20 40

0.
0

0.
4

0.
8

−40 −20 0 20 40

0.
0

0.
4

0.
8

Real
HHLIM
HLM

(a) Cumulative distribution

−40 −20 0 20 40

−
15

−
5

5
15

Estimation

V
al

ue
 R

ea
l

−40 −20 0 20 40

−
15

−
5

5
15 HHLIM

HLM

(b) scatter plot

Figure 2.3: Comparison between standard HLM and HHLIM, Scenario II. (a) Real value
of Value Added (red) and estimation by HHLIM (blue) and standard HLM (green). (b)
Axis Y: Real value of Value Added, Axis X: Estimation of Value Added by HHLIM (blue)
and standard HLM (green).
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Figure 2.4: Comparison between standard HLM and HHLIM, Scenario III. (a) Real
value of Value Added (red) and estimation by HHLIM (blue) and standard HLM (green).
(b) Axis Y: Real value of Value Added, Axis X: Estimation of Value Added by HHLIM
(blue) and standard HLM (green).

2.4.2 Data application

In order to apply the endogenous value-added model for subgroups of schools, we
use the data set SIMCE applications in Mathematics 2007 and 2011. Then after merging
both data sets and eliminating the schools with less than 20 students, we obtain a data set
containing 157,737 students belonging to 3,305 schools. Table 2.1 summarizes the SIMCE
Mathematics scores at the school level controlling by SES.
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Table 2.1: SIMCE Mathematics scores at the school level controlling by SES

SES Number of SIMCE Math 2007 SIMCE Math 2011
schools Mean Std. Dev. Mean Std. Dev.

A 261 236.88 15.63 220.29 23.18

B 1150 241.19 17.50 230.22 21.52

C 1074 258.07 19.15 246.83 22.72

D 548 281.67 20.78 269.61 21.88

E 272 311.08 20.37 294.14 18.36

Taking into account that our main methodological concern deals with the endogeneity
of the prior score, the value added analysis will be focused on a subsample of schools
defined by the following condition: the percentage of students in a school in 2011 who
was in a different school in 2007 is at most 50%. Thus, the subsample includes 2,880
schools (that is, the 87% of the population of schools), which gather 139,071 students. Let
us mention that the distribution of the 2011 SIMCE Mathematics scores of these schools is
practically the same as the distribution of the 2011 SIMCE Mathematics scores in the full
sample of schools, see Figures 2.5a and 2.5b.
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(a) Distribution of SIMCE test 2007 in all the population
and the subpopulation

(b) Density of SIMCE test 2007 in all the population
and the subpopulation

Figure 2.5: From both figures we conclude that study population has the same distribution
and density of a subpopulation, this last considers only the schools that at least 50% of its
students remained in both measurements SIMCE 2007-2011.

The endogenous value added model for subgroups of schools and students is con-
structed using the following variables:

1. Dependent variable: the 2011 SIMCE Mathematics score, denoted as Math11ij .

2. Endogenous variables:

(a) Prior score: the 2007 SIMCE Mathematics score, denoted as Math07ij .

(b) Compositional effect: the mean, at the school level, of Math07ij , denoted as
AMath07j .

3. Exogenous variable:

(a) Student selection: along with the standardized SIMCE test, a survey is admin-
istered to parents. One of its questions deals with the three possible selection
mechanisms applied by the school to eventually choose a student: a play
session; a cognitive test; and an interview. We define a binary variable of

84 Marı́a Inés Godoy Ávila
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selection: it is equal to 1 if one of these mechanisms is declared by parents;
and it is zero otherwise. A logistic regression was fitted and used to impute
missing responses; the covariates used in the logistic regression were the SES
of the school, the administrative dependency of the school (public, subsidized
without co-payment, subsidized with copayment), a vulnerability index of the
school, rurality, and if the student have or not brothers in the same school. The
selection variable was defined as the probability to be selected by the school; it
is denoted as Selectij .

4. Instrumental variables:

(a) Mother educational level and father educational level, denoted as Motherij and
Fatherij . These are exogenous factors because the intra-school practices are af-
fected either by the national curriculum or by internal pedagogical organization.
In Chile, parents have not a relevant active role inside of school practices.

(b) The number of persons living in the same house with the student, denoted as
Habij . This is an exogenous variable because it is a factor uncontrolled by the
school.

Model Fit

Model (2.25a), (2.25b) and (2.25c) was fitted to the 2007-2011 SIMCE data using the
estimation procedure developed in this dissertation. In order to summarize the results, let us
begin by the degree of endogeneity, which is represented by a two-dimensional parameter
δ(s), where s takes the values A,B,C,D or E, depending on the SES level of the school.
For the data set under analysis, it should be said that the following two null hypotheses are
rejected (p−value = 0.000): that the degrees of endogeneity are unique irrespective of the
SES (Socioeconomic status) of schools as well as of the endogenous variables Math07ij
and AMath07j; and that the degrees of endogeneity are unique irrespective of the SES
of schools. The estimation of the degrees of endogeneity by both SES of the school and
endogenous variables are reported in Table 2.2.
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Table 2.2: Estimations of degree of endogeneity and of component variances

Endogeneity Endogeneity
SES degree related to degree related to σ2

s τ 2
s

Mat07 AMat07
A 4.916 5.914 822.322 26.356
B 4.230 5.556 816.742 35.879
C 2.664 3.576 936.926 65.176
D 1.945 2.546 999.591 96.423
E 2.674 2.298 913.834 58.994

These results suggest to testing that the degrees of endogeneity associated to
Math07ij is equal for the SES C and E. The null hypothesis is accepted (p − value =
0.87), which leads to conclude that the degree of endogeneity of schools of SES levels C
or E is different from schools of levels A or B or D. This feature is taken into account to
estimating the school value added.

Regarding the between-school and within-school variances, Table 2.2 shows the
estimations. The variability between schools of SES level D is the largest one, whereas
the variability between schools of SES level A is the smaller. For the within-variances, the
larger are those of students belonging to schools of SES level D, whereas the smaller is
the variance of students belonging to schools of SES level A.

The estimations of the marginal effects of the explanatory factors in equation (2.25a)
are the following: for the exogenous individual factor of selectivity, it is equal to 61.8; for
the endogenous individual factor Math07ij , it is equal to 0.57; for the group endogenous
factor AMath07j , it is −0.128.

Finally, let us report the value added indicators by comparing the effectiveness of
schools according to school characteristics other than those considered for estimation
purposes (degree of endogeneity by SES; within- and between-variability by SES). Taking
into account the Chilean policy context, we consider the following two characteristics:

1. The administrative dependency. In Chile, the administration of the schools is four-
fold: public schools administered by a county corporation (MC); public schools
administered directly by the county (MD); subsidized schools administered by
private providers, each of them receiving the voucher from the state (PS); and private
schools administered by private providers, not economically supported by the state
(PP). In the sample under analysis, there are 15.7% of MC public schools, 30.4% of
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MD public schools, 46.3% of subsidized schools and 7.6% of private schools.

2. Level of vulnerability4. As explained above, this index measures the percentage of
students at social risk. We define four groups of school according to the level of
vulnerability as shown in Table 2.3.

Table 2.3: Schools classified by vulnerability index and administrative dependency

MC MD PS PP Total
IVE 0-25% 17 11 320 219 577 (20 %)

IVE 25% -50% 105 137 622 1 865 (30 %)
IVE 50% -75% 183 285 253 0 721 (25 %)
IVE 75%-100% 148 445 129 0 722 (25%)

Total 453 878 1334 220 2885
(15.7%) (30.4%) (7.6%) (46.3%)

Figure 2.6 shows the box plot of the value added indicators for each school adminis-
trated dependency. It can be concluded that the dispersion of effectiveness in subsidized
schools (PS) is greater that PP, MC and MD schools. Furthermore, the effectiveness of the
MD schools is not quite different from the effectiveness of MC public schools.

4The vulnerability index (IVE) is constructed by the Junta Nacional de Auxilio Escolar y Becas (JUNAEB,
National Scholarship and School Aid Board). JUNAEB estimates IVE on the basis of the results of a parent
survey conducted by schools. These surveys provide information about the student’s background. The IVE
has a minimum value of 0, which represents 0 percent of children at social risk, and goes up to a maximum
value of 100, indicating the most disadvantaged schools (100 percent social risk).
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Figure 2.6: Distribution of Value added by dependence school

Figure 2.7 shows the box plot of the value added indicators for each group of schools
according to vulnerability level. It can be see that there are not an association between
effectiveness and vulnerability index, this results suggests to investigate why the presence
of students with social risk seems to not dramatically affect the effectiveness.
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Figure 2.7: Distribution of Value added by categories of IVE
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2.5 Final remarks

We proposed an extension to model presented by Manzi et al. (2014) that consist in
specify the association parameter no longer as a scalar, if not as a vector. It can be different
for each endogenous variables and school effect. Addition, if the educational data set is
heteroscedastic, means it is coming from a mixture distribution, then it is probably that the
vector of association parameter is different for each group of the population (δs).

From a methodological point of view, the novelty of this paper is the specification
and estimation of a value added model under endogeneity. Specifically,

• The model estimates the fixed effects as well as the component variances in an
unbiased way.

• The model estimates the correlation between the school effect and each endogenous
variable.

• The model estimates the value added by correcting the prediction of the school
effect.

From an empirical point of view, the novelties are the following:

• To perform a value added analysis of the Chilean educational system controlling
endogeneity problems by design.

• To make a comparison between the previous analysis and standard value added
analysis.

As a final comment, our model does not have a computational cost, its convergence
is quick, even when is used on SIMCE educational data that it has a large volume of
students.
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This chapter focuses in the school improvement problem through of value added
trajectories. In this part of dissertation we proposed a model with dependence across the
time that included in its structure an association parameter between the school effects of
two cohorts of students different (under the methodology proposed can be extended our
design to more cohorts). In addition to developing this model we present a simulation
study and an application in the Chilean educational data, using the SIMCE tests in cohorts
4th-8th grade students years 2007-2011 and 2009-2013.

3.1 Introduction

In this chapter, we have not intention of perform a literature review on the school
effectiveness, since these have been reviewed in the previous chapters and the literatures
have been regularly and systematically reviewed by others authors, see, for example
Teddlie and Reynolds (2000).

Recalling that typically the school effectiveness is assessed through a value added
model, technique widely accepted by School Effectiveness Research (SER) . The general
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definition of value added is the contribution of a school to students progress towards stated
or prescribed education objectives OECD (2008) . This contribution is net of other factors
that contribute to students’ educational progress, see also Braun et al. (2010) and Baker et
al. (2010). This type of statements leads to conclude that differences in school effectiveness
have important consequences for student progress.

A standard approach to model the school value-added are the hierarchical linear
mixed models, or multilevel models Goldstein (2002); Snijders and Bosker (1999) due to
the structure of educational data where students are nested into schools. In this context,
students scores are explained by their previous achievement, some covariates and a random
effect representing the school effect. A measure of Value-Added has been typically obtained
as the prediction of the random school effect Aitkin and Longford (1986); Longford (2012);
Raudenbush and Willms (1995); Tekwe et al. (2004).

OECD (2008) report recognizes that in the countries a growing emphasis is being
placed upon measures of school performance as they are central to school improvement
efforts, systems of school accountability and school choice, and broader educational
policies” OECD (2008). Alongside to growth of political interest in school measurements
and accountability system, also the volume of educational data increased, nowadays is
possible and becoming more common, find data-sets from of more one cohort of students.
This way the concept of school improvement has been defined in terms of trajectories of
indicators of added value, it is necessary to have of two measurements (pre and post test)
for those indicators.

With the trajectories of value added is of interest know if a school improved (or
not) across time, we make an implicit assumption, that the past of a school determines (in
some degree) the evolution future of the same. Thereby, our objective is to evaluate the
school improvement when different cohorts of students are treated by the same school. In
this work our attention is in two cohorts being possible easily generalize to more cohorts.
Specifically we consider two cohorts such that for each one them the outcome of two test
are available (post-test and outcomes contemporaneous, i.e pre-test). This situation can be
illustrated graph the following diagram.
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3.1. INTRODUCTION

Cohort I



 ��
t = 1 t = 3

t = 2 t = 4

Cohort II

XX JJ

Figure 3.1: Example of Chilean case, two cohorts

Investigating the evolution of value-added measures over time is not new and it has
been considered as an important topic in SER. The question on how the performance of
schools across time should be measured has been studied in several references. Among
others:

• Gray, Goldstein, and Jesson (1996) considered several cohorts of students, using a
different intercept for each cohort in a joint analysis.

– School effects are modelled via a linear trend or rolling averages (which
combine the results of 3 consecutive cohorts).

– Students (level 1) were nested in schools (level 2); the effect of each school for
each year is allowed to vary.

– 3-level model in which students (level 1) are grouped by year (level 2) within
school (level 3). At level 3 both year and prior achievement effects are allowed
to vary randomly across schools, as well as the intercept (sic).

• Thomas (2001), Gray, Goldstein, and Thomas (2001) showed that various methods
of analysis can result in different estimates of stability or instability in school effects
over the time. See also the debate in Pugh and Mangan (2003).
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• Briggs and Weeks (2011) used longitudinal data and propose a way to model persis-
tence of VA over time using an accumulation model:

Yj2 = µ2 + θ2 + εj2

Yj3 = µ3 + θ2 + θ3 + εj3
...

• This idea has been followed in many studies, including recent studies e.g. on teacher
VA persistence (e.g. Kinsler (2012); Rothstein (2010) ).

• Recently, models have been proposed to explicitly account for within-group dynam-
ics (Bauer, Gottfredson, Dean, and Zucker (2013); Steele, Rasbash, and Jenkins
(2013))

None of these approaches, however, consider the fact that the school value added
calculated at time t− 1, do influence the one calculated at time t. Ignoring this fact would
means that if a school has implemented changes in the internal educational policies to
improve student performance, its effects are not being reflected in the new measure of
value added at time t, see . This, in this research we propose to considered a longitudinal
structure such that the school effect at time t is calculated conditioning on the school effect
at time t − 1. This strategy will be used to assess the evolution of the proposed robust
measure of value added described above.

3.2 Dinamycal Models, Two Cohorts

3.2.1 Model Specification

In this section we provide the structural model that it is used to describe the educa-
tional data, where each student is submitted to two test in some moment of their school
life, for example in 4th and 8th grade. But the schools have several outcomes on the time,
as constantly students are evaluated, this way the schools of a school system have several
outcomes on the time.
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Now, the school improvement depend of trajectories of value added models. There-
fore in order to specify a VA model for two cohorts, the school effects should be dependent,
one them depends on time moments t=1 and t=3, and the other one depends by time
moment t=2 and t=4, schematically, this can be illustrated as follows,

Xij3

��

Yij1 // Yij3

θj3,1

FF

θj4,2

��

Yij2 // Yij4

Xij4

OO

Figure 3.2: Preliminary specification of VA model for two cohorts

Where, we denote Y ijt as test outcomes of student i belonging to school j on the
time t, with i = 1, . . . , njt, j ∈ J and t = 1, 2, 3, 4, J is the set of all school and njt is
the number of students in the school j, X ij3 and X ij4 are covariates that impact on the
post test score (that influence inX ij3 andX ij4 ) respectively. θj3 and θj4 are the schools
effect. Those effects are depend of the axiom of local independence (....), namely

1. Conditionally on (Xj3,Y j1, θj3,1), {Yij3 : i = 1 . . . , nj3} are mutually indepen-
dent.

2. (Yij3 |Xj3,Y j1, θj3,1 ) ≡ (Yij3 |X ij3, Yij1, θj3,1 ).

a relationship between both school effects, it is shown in the following diagram,

98 Marı́a Inés Godoy Ávila
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Xij3

��

Yij1 // Yij3

θj3

��

GG

θj4

OO

��

Yij2 // Yij4

Xij4

OO

Figure 3.3: Specification of VA model for two cohorts
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Strucural model

For simplicity of notation, you should note that X4j and X3j are covariates asso-
ciated at both cohorts, then from this moment we consider that the prior score of student
( Y j3 and Y 1j) is a covariate in the model VA, ie Y j3 ∈ X4j and Y 1j ∈ X3j . In this
chapter will not be discussed if the previous score is a exogenous or endogenous variable,
however this can be addressed and discuss in a future work, for the moment it is considered
an exogenous variable at school effect.

Taking into account that there are J schools different, it is reasonable to assume that
the set of school are independent, ie {(Y 4j, Y 3j, X4j, X3j, θj4,2, θj3,1) : j = 1, . . . , J }
are mutually independent, the results of school j are not related to the results of school j′.
This way, for each school j be have the following,

1. (Y j4|Y j3,Xj4,Xj3, θ4j, θj3,1 ) ≡ (Y j4|Xj4, θj4,2 ). This means that the students’
scores of the second cohort is independent of the set of “scores”, “covariates” and
“school effect” of the first cohort given the “covariates” and “school effect” of the
same cohort,

Y j4⊥⊥ (Y j3,Xj3, θj3,1) | (Xj4, θj4,2)

2. ⊥⊥
1 ≤ i ≤nj4

Y j4|Xj4, θj4,2. Then, by axiom of local independence

• Yij4| (X ij4, θj4,2) ∼ N(X ij4β4 + θj4, σ
2
4)

• Y j4| (Xj4, θj4,2) ∼ N(Xj4β4 + θj4ιnj4 , σ
2
4Inj4)

3. θj4,2|(Y j3,Xj4,Xj3, θj3,1) ≡ θj4,2|θj3,1) ∼ N(µθj3,1, τ 2
4 ). This means that,

θj4,2⊥⊥(Y j3,Xj4,Xj3)|θj3,1

4. (Y j3|Xj4,Xj3, θj3,1 ) ≡ (Y j3|Xj3, θj3,1 ), i.e

Y j3⊥⊥ (Xj4) | (Xj3, θj3,1)
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5. ⊥⊥
1≤l≤nj3

Yij3|X ij3, θj3,1, then the following distribution is assumed

• Yij3| (X ij3, θj3,1) ∼ N(X ij3β3 + θj3, σ
2
3)

• Y j3| (Xj3, θj3,1) ∼ N(Xj3β3 + θj3ιnj3 , σ
2
3Inj3)

6. (θj3,1|Xj4,Xj3) ∼ N(0, τ 2
3 ), ie,

θj3,1⊥⊥Xj4,Xj3

7. (Xj4,Xj3) are left unspecified since they are assumed to be exogenous variables.

This way, under this structure the dynamic value-added model of two cohorts, is
written as,

Yij3 = X ij3β3 + θj3 + εij3, where, εij3 ∼ N(0, σ2
3) (3.1a)

with with σ2
3 > 0. The equation (3.1a) correspond to the lineal regression of student’s score

i on first cohort, such that this dependent variable is explained through; the covariates by
the fixed effect 3β∈RK3 with an common school effect by all students of school j and the
idiosyncratic errors εij3, addition recalling that the number of covariates, K3, including the
prior score, Yij1. Moreover,

θj3 ∼ N(0, τ 2
3 ) (3.1b)

with τ 2
3 > 0. Now, the lineal regression of student’s score i on the second cohort correspond

to the equation (3.1c), this variable is explained through the covariates by the fixed effect
β4 ∈ RK4 with an common school effect by all students of school j and the idiosyncratic
errors εij4,

Yij4 = X ij4β4 + θj4 + εij4, where, εij4 ∼ N(0, σ2
4) (3.1c)

with σ2
4 > 0. The school effect in this second cohort is not centered in zero, because this
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effect depends of occurred in the past, this way it is assumed that,

θj4 ∼ N(µθj3,1, τ 2
4 ) (3.1d)

with τ 2
4 > 0.

In summary, the equations of model (3.1a–3.1d) assumes the following,

Assumption 1 : Exogeneity,

The covariates matrix X4 is independent of vector random effects θ4, and X3 is

independent of vector random effects θ3,

Cov(X4,θ4) = 0, and Cov(X3,θ3) = 0

Assumption 2 : Independence of random effect,

The θ4j’s are mutually independent for each j, and θ3j’s also are mutually indepen-

dent for each j, but not between them.

Assumption 3 : Distribution and Homoscedasticity of the idiosyncratic error,

The εj4’s and εj3’s for each j are mutually independent.

Assumption 4 : Local Independence

The local independence corresponds to,

⊥⊥
1≤i≤nj4

Yij4 |Xj4 , θj4,2, and ⊥⊥
1≤i≤nj3

Yij3 |Xj3 , θj3,1.

Joint Distribution

Thus we can write the joint distribution of each school, as following (see demonstra-
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tion in Annex C.1.2);


Y j4

Y j3

θj4,2

θj3,1

Xj4,Xj3

 ∼ N




µj4

µj3

µθ4

µθ3

 ;


Σ11 Σ12 Σ13 Σ14

Σ22 Σ23 Σ24

Σ33 Σ34

Σ44



 (3.2)

where,

1.


µj4

µj3

µθ4

µθ3

 =


Xj4β4

Xj3β3

0
0

,

is of dimension (nj4 + nj3 + 1 + 1)× 1

2.

 Σ11 Σ12

Σ22

 =
 σ2

4Inj4 + (τ 2
4 + µ2τ 2

3 )Jnj4 ιnj4ι
>
nj3
µτ 2

3

σ2
3Inj3 + τ 2

3Jnj3

,

is of dimension (nj4 + nj3)× (nj4 + nj3)

3.

 Σ13 Σ14

Σ23 Σ24

 =
 ιnj4(τ 2

4 + µ2τ 2
3 ) ιnj4µτ

2
3

ιnj3µτ
2
3 ιnj3τ

2
3

,

is of dimension (nj4 + nj3)× 2

4.

 Σ33 Σ34

Σ44

 =
 τ 2

4 + µ2τ 2
3 µτ 2

3

τ 2
3

,

is of dimension 2× 2

3.2.2 Parameter Identification

The identification of the parameters is a requirement necessary for parameter esti-
mation. The parameters of interest are K4 coefficients in vector β4, K3 coefficients in the
vector β3, µ and the variance components σ2

4 , σ2
3 , τ 2

4 and τ 2
3 . To verify the identification
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of these parameters, it is necessary integrate the schools effect in the joint distribution
expressed in equation (3.2). Then, the distribution corresponds to,

 Y j4

Y j3
Xj4,Xj3

 ∼ N

 Xj4β4

Xj3β3

 ;
 σ2

4Inj4 + (τ 2
4 + µ2τ 2

3 )Jnj4 ιnj4ι
>
nj3
µτ 2

3

σ2
3Inj3 + τ 2

3Jnj3

(3.3)

Given the equation (3.3) of joint distribution, it is possible to analyse the parameter
identification by the following standard arguments,

• By standard arguments from E (Y 3|X4,X3), is identify β3, with the condition that
the rank of the matrix,X>3 X3, is complete.

• The same way from E (Y 4|X4,X3), is identify β4, with the condition that the rank
of the matrix,X>4 X4, is complete.

• From V (Y 3|X4,X3), is identify σ2
3 and τ 2

3

• From Cov (Y 4,Y 3|X4,X3), is identify µτ 2
3 , but as τ 2

3 was identified in the last
step, so µ is identified.

• From V (Y 4|X4,X3), is identify σ2
4 and τ 2

4 + µ2τ 2
3 , as µ and τ 2

3 were identified,
also τ4 is identified.

This way all de parameters, β4, β3, τ
2
3 , τ

2
4 , σ

2
3, σ

2
4 and µ, are identified.

3.2.3 Prediction of the school effect and estimation of the value added

Following J. Gray, Hopkins, Reynolds, Wilcox, and Farrell (1999), J. Gray, Goldstein,
and Jesson (2012), we characterize school improvement in terms of trajectories of school
value added over time. The value added of a school at periods t and t + 1 (denoted as
VAt,t+1) corresponds to a difference of two conditional expected scores: the first one is the
expected student’s score (at period t+1) conditionally on both a set of covariates (including
the prior attainment score measured at time t) and the school effect; the second one is
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the expected score (at period t+ 1) of the student who would be treated by an “average”
school having a similar set of covariates; see Carrasco and San Martı́n (2012); Goldstein
(8); Timmermans et al. (2011) and Manzi et al. (2014)[section 2]. The improvement of a
school is consequently characterized by the trajectory defied by VA12, VA23, VA34, and so
on. Then in this dynamic model of two cohorts its value-added is,

VAj42 = 1
nj4

nj4∑
i=1

E (Y ij4|X ij,4,X ij,3, θj4,2, θj3,1) − 1
nj4

nj4∑
i=1

E (Y ij4|X ij4,X ij3)

= 1
nj4

nj4∑
i=1
X ij4β4 + θj4,2 −

1
nj4

nj4∑
i=1
X ij4β4

=θj4,2

VAj31 = 1
nj3

nj3∑
i=1

E (Y ij3|X ij,4,X ij,3, θj4,2, θj3,1) − 1
nj3

nj3∑
i=1

E (Y ij3|X ij4,X ij3)

= 1
nj3

nj3∑
i=1
X ij3β3 + θj3,1 −

1
nj3

nj3∑
i=1
X ij3β3

=θj3,1

Estimation of value added

The estimate of value added corresponds to the effect school estimation, ie

 V̂Aj42

V̂Aj31

 =
 θ̂j42

θ̂j31



Then, as

•

 θj4,2

θj3,1
Y j4,Y j3Xj4,Xj3

 ∼ N2 (αj; Λj), where
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– αj :=
 φ11ι

>
nj4

(Y j4 −Xj4β4) + φ12ι
>
nj3

(Y j3 −Xj3β3)
φ21ι

>
nj4

(Y j4 −Xj4β4) + φ22ι
>
nj3

(Y j3 −Xj3β3)



– Λj := 1
l2l4 − nj3nj4µ2τ 4

3

 σ2
4(τ 2

4 + µτ 2
3 )(l2 − nj3µ2τ 4

3 ) σ2
3σ

2
4τ

2
3µ

σ2
3σ

2
4τ

2
3µ τ 2

3σ
2
3 (σ2

4 + τ 2
4nj4)


where

φ11 =(1/(l2l4 − nj3nj4µ2τ 4
3 ))

{
(τ 2

4 + µ2τ 2
3 )l2 − nj3µ2τ 4

3 )
}

φ12 =(σ2
4µτ

2
3 )/(l2l4 − nj3nj4µ2τ 4

3 )

φ21 =(µτ 2
3σ

2
3)/(l2l4 − nj3nj4µ2τ 4

3 )

φ22 =τ 2
3 (σ2

4 + τ 2
4nj4)/(l2l4 − nj3nj4µ2τ 4

3 )

l4 =σ2
4 + (τ 2

4 + µ2τ 2
3 )nj4

l2 =σ2
3 + τ 2

3nj3

Therefore the expression for predict the value-added in the two cohorts is,

 V̂Aj42

V̂Aj31

 =
 φ̂11ι

>
nj4

(
Y j4 −Xj4β̂4

)
+ φ̂12ι

>
nj3

(
Y j3 −Xj3β̂3

)
φ̂21ι

>
nj4

(
Y j4 −Xj4β̂4

)
+ φ̂22ι

>
nj3

(
Y j3 −Xj3β̂3

) 

As specified in the model, the school effects of two cohorts (therefore also the values
added) are correlated between them. It is important mentioned that the estimation of the a
value added θjt not only depends on information of its cohort, but also of the information
of other cohort.

Now consider the case when the school effects across the time are mutually indepen-
dent, that is the covariace matrix of equation (3.2) is a diagonal matrix with zero covariance
elements. In that case µ = 0 and the school effects are equal to the estimation obtained in
a standard HLM, ie

 V̂Aj42

V̂Aj31

 =

 ι>nj4
τ̂4

2
(
σ̂4

2Inj4 + τ̂4
2Jnj4

)−1 (
Y j4 −Xj4β̂4

)
ι>nj3

τ̂ 2
3

(
σ̂3

2Inj3 + τ̂3
2Jnj3

)−1 (
Y j3 −Xj3β̂3

)

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Prediction Interval

Consider the following orthogonal decomposition:

 θj4,2

θj3,1

 =
 θ̂j4,2

θ̂j3,1

+


 θj4,2

θj3,1

−
 θ̂j4,2

θ̂j3,1


Such that, consider the estimated predictor ̂̂

θj4,2̂̂
θj3,1

 =
 φ11ι

>
nj4

(Y j4 −Xj4β̂4) + φ12ι
>
nj3

(Y j3 −Xj3β̂3)
φ21ι

>
nj4

(Y j4 −Xj4β̂4) + φ22ι
>
nj3

(Y j3 −Xj3β̂3)

,

the parameters φ11, φ12, φ21 y φ22 are supposed to be known in the following reasoning.

 θ̂j4,2

θ̂j3,1

 =Φj

 Y j4

Y j3



where Φj =
 φ11ι

>
nj4
M j4 φ12ι

>
nj3
M j3

φ21ι
>
nj4
M j4 φ22ι

>
nj3
M j3

,M j3 = and similarly,M j4 =, then

V


 θj4,2

θj3,1

−
 θ̂j4,2

θ̂j3,1

 =V


 θj4,2

θj3,1

+ V


 θ̂j4,2

θ̂j3,1


−C


 θj4,2

θj3,1

 ;
 θ̂j4,2

θ̂j3,1

−C


 θ̂j4,2

θ̂j3,1

 ;
 θj4,2

θj3,1


>
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such that

V


 θj4,2

θj3,1

 =
 τ 2

4 + µ2τ 2
2 µτ 2

2

µτ 2
2 τ 2

2


V


 θ̂j4,2

θ̂j3,1

 =Φj

 σ2
4Inj4 + (τ 2

4 + µτ 2
3 )Jnj4 ιnj4ι

>
nj3
µτ 2

3

ιnj3ι
>
nj4
µτ 2

3 σ2
3Inj3 + τ 2

3Jnj3

Φ>j

C


 θj4,2

θj3,1

 ;
 θ̂j4,2

θ̂j3,1

 =
 ι>nj4

(τ 2
4 + µ2τ 2

3 ) ι>nj3
µτ 2

3

ι>nj4
µτ 2

3 ι>nj3
τ 2

3

Φ>j

This way, if Vej
= V


 θj4,2

θj3,1

−
 θ̂j4,2

θ̂j3,1

, then


 θj4,2

θj3,1

−
 θ̂j4,2

θ̂j3,1

 ∼ N2(0,Vej
)

Then confidence intervals is given by,

{
θj4,2 − θ̂j4,2

}
∼ N1(0, l>1 Vej

l1), with l>1 = (0 1){
θj3,1 − θ̂j3,1

}
∼ N1(0, l>2 Vej

l2), with l>2 = (1 0)

Then,

IC{θj4,2; 1− α} =
{
θ̂j4,2 −

√
l>1 V̂ej

l1tα/2; θ̂j4,2 +
√
l>1 V̂ej

l1tα/2

}
IC{θj3,1; 1− α} =

{
θ̂j3,1 −

√
l>2 V̂ej

l2tα/2; θ̂j3,1 +
√
l>2 V̂ej

l2tα/2

}

3.3 Estimation Procedure

This section addressed, the estimation procedure of dynamic model of two cohorts,
such that for the estimation of the parameters is used the habitual procedure of the hierarchi-
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cal linear model, so, before performing the calculations of estimation is must consider the
equations (3.1a–3.1d), where we can rewritten the equations in matricial form considering
all the population, i.e., all the students of all schools, see appendix for matrix notation.
Then,

Y 3 = X3β3 +Ln3θ3 + ε3 (3.4a)

where Y 3 are the outcomes scores of all student on the time 3, X3 are the covariates
associated at cohort 1, θ3 are the school effects of all schools in the cohort 1, ε3 are
idiosyncratic error of all student and Ln3 is a block matrix, where each block is a 1’s vector.

Y 3 = X3β3 + e3, where e3 = Ln3θ3 + ε3 (3.4b)

Also, we defined V(e3|X3,X4) = V 3,

where V 3 =


V n13

. . .

V nJ3

, such that V nj3 = τ 2
3Jnj3 + σ2

3Inj3 ,

for each j = 1, . . . , J . But, using the notation annexed in the appendix we can write;

V 3 = τ 2
3Ln3L

>
n3 + σ2

3IN3 = σ2
3Q3 + σ2

3P 3D3P 3 + τ 2
3P 3D

2
3P 3.

Analogously,
Y 4 = X4β4 +Ln4θ4 + ε4 (3.5a)

such that Y 4 are the outcomes scores of all student on the time 4,X4 are the covariates
associated at cohort 2, θ4 are the school effects of all schools in the cohort 2, ε4 are
idiosyncratic error of all student and Ln4 is a block matrix, where each block is a 1’s vector.

Y 4 = X4β4 + e4 Where e4 = Ln4θ4 + ε4 (3.5b)

Also, we defined V(e4|X3,X4) = V 4,

109 Marı́a Inés Godoy Ávila
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where V 4 =


V n14

. . .

V nJ4

, such that V nj4 = (τ 2
4 + µτ 2

3 )Jnj4 + σ2
4Inj4 ,

for each j = 1, . . . , J . But, using the notation annexed in the appendix we can write;

V 4 = τ 2
4Ln4L

>
n4 + σ2

4IN4 = σ2
4Q4 + σ2

4P 4D4P 4 +
(
τ 2

4 + µτ 2
3

)
P 4D

2
4P 4

.

3.3.1 Fixed Effects Estimators

The methodology used for the parameters estimation corresponds to the same applied to a
standard model and que are used several results demonstrated in Chapter 1.

Estimation of β3 and β4

a) Ordinal least squared (OLS) Using the equation (3.4b) and ordinary least squares
(OLS) for the estimation of β3 and the equation (3.5b) for β4,

β̂3OLS =
(
X>3 X3

)−1 (
X>3 Y 3

)
and β̂4OLS =

(
X>4 X4

)−1 (
X>4 Y 4

)
(3.6a)

Assuming; i)E(X>3 e3) = 0, ii) rank(X>3 X3) = K3 is of completed rank iii) E(X>4 e4) =
0 and iv) rank(X>4 X4) = K4 is of completed rank.

These estimators are consistent and their asymptotic distribution are,

√
N3

(
β̂3OLS − β3

)
a∼ N

(
0 ; A−1

3

)
, with A3 =

( 1
N3
X>3 X3

)
+ op(1)√

N4
(
β̂4OLS − β4

)
a∼ N

(
0 ; A−1

4

)
, with A4 =

( 1
N4
X>4 X4

)
+ op(1)
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b) Generalized least squared (GLS)

β̂3GLS = (X>3 V −1
3 X3)−1X>3 V

−1
3 Y 3 and β̂4GLS = (X>4 V −1

4 X4)−1X>4 V
−1
4 Y 4

(3.6b)
Assuming; i) E(X>3 e3) = 0, ii) V 3 ≡ E(e>3 e3) is a matrix positive definite and
E(X>3 V −1

3 X3) is not singular iii) E(X>4 e4) = 0 and iv) V 4 ≡ E(e>4 e4) is a matrix
positive definite and E(X>4 V −1

4 X4) is not singular.

These estimators are consistent and their asymptotic distribution are,

√
N3

(
β̂3GLS − β3

)
a∼ N

(
0 ; A−1

3

)
, with A3 =

( 1
N3
X>3 V

−1
3 X3

)
+ op(1)√

N4
(
β̂4GLS − β4

)
a∼ N

(
0 ; A−1

4

)
, with A4 =

( 1
N4
X>4 V

−1
4 X4

)
+ op(1)

c) Feasible Generalized least squared (FGLS)

β̂3FGLS = (X>3 V̂
−1
3 X3)−1X>3 V̂

−1
3 Y 3 and β̂4FGLS = (X>4 V̂

−1
4 X4)−1X>4 V̂

−1
4 Y 4

(3.6c)
Assuming; i) E(X>3 e3) = 0, ii) V 3 ≡ E(e>3 e3) a matrix positive definite and
E(X>3 V 3X3) is not singular iii) V̂ 3

P−→ V 3, iv) E(X>4 e4) = 0, v) V 4 ≡ E(e>4 e4) a
matrix positive definite and E(X>4 V 4X4) is not singular and vi) V̂ 4

P−→ V 4.

These estimators are consistent and their asymptotic distribution are,

√
N3

(
β̂3FGLS − β3

)
a∼ N

(
0 ; A−1

3

)
, with A3 =

( 1
N3
X>3 V

−1
3 X3

)
+ op(1)√

N4
(
β̂4FGLS − β4

)
a∼ N

(
0 ; A−1

4

)
, with A4 =

( 1
N4
X>4 V

−1
4 X4

)
+ op(1)

Usually is used as asymptotic variance the following estimators; ̂Avar(β̂3FGLS) =
Â3
−1
/N3 and ̂Avar(β̂4FGLS) = Â4

−1
/N4, however with heteroskedasticity these are

not robust, thus robust estimators of the asymptotic variance are;

Âvar(β̂3FGLS) =
(
X>3 V̂ 3

−1
X3

)−1 (
X>3 V̂ 3

−1
ê3ê3

>V̂ 3
−1
X3

)(
X>3 V̂ 3

−1
X3

)−1

and

Âvar(β̂4FGLS) =
(
X>4 V̂ 4

−1
X4

)−1 (
X>4 V̂ 4

−1
ê4ê4

>V̂ 4
−1
X4

)(
X>4 V̂ 4

−1
X4

)−1
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3.3.2 Estimators of variance components

The estimation of variance components is through the method of moments. Then,

Estimation of σ2
3 , and σ2

4

Apply the W-operator to in the equations (3.4b) and (3.5b), we obtain the following
(see Appendix C.1.1 for matricial notation).

The within regressions of both cohorts are formulated of the following way,

Q4Y 3 = Q3X3β3 +Q3e3

Q4Y 4 = Q4X4β4 +Q4e4

where,

(a.1) V (Q3e3|X4,X3) = Q3V 3Q
>
3 = σ2

3Q3 (a.2) β̂3
w = (X>3 Q3X3)−1X>3 Q3Y 3

(a.3) V (Q4e4|X4,X3) = Q4V 4Q
>
4 = σ2

4Q4 (a.4) β̂4
w = (X>4 Q4X4)−1X>4 Q4Y 4

Now, if we are defined êw3 = (Y 3 −X3β̂3
w) and êw4 = (Y 4 −X4β̂4

w) then

Q3ê
w
3 = Q3(Y 3 −X3β̂3

w) Q4ê
w
4 = Q4(Y 4 −X4β̂4

w)
= M3Y 3 = M4Y 4

where M3 = (Q3 −Q3X3(X>3 Q3X3)−1X>3 Q3) and

M4 = (Q4 −Q4X4(X>4 Q4X4)−1X>4 Q4),

such that M3M3 = M3, M>
3 M3 = M3,

M4M4 = M4, M>
4 M4 = M4.

Then, it is easy to check that êw>3 Q3ê
w = e>3 M3e3 and êw>4 Q4ê

w
4 = e>4 M4e4.

This way,
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(b.1) E
(
ê3
>M 3ê3

)
= tr (M3V(e3))
= σ2

3 (N3 − J)− σ2
3 (K∗3)

(b.2) E
(
ê4
>M 4ê4

)
= tr (M4V(e4))
= σ2

4 (N4 − J)− σ2
4 (K∗4)

Thus be have,

σ̂2
3 =

(
Y 3 −X3β̂3

Q3
)>
Q3

(
Y 3 −X3β̂3

Q3
)

N3 − J −K∗3
(3.7)

σ̂2
4 =

(
Y 3 −X3β̂3

Q3
)>
Q3

(
Y 3 −X3β̂3

Q3
)

N3 − J −K∗3
(3.8)

where K∗4 ≤ K4 K
∗
3 ≤ K3 are the number of covariates non-zero in the within regression

of second and first cohort respectively.

Estimation of τ 2
3 , τ 2

4

Apply the Between-operator to in the equations (3.4b) and (3.5b), we the following
regression, The within regressions of both cohorts are formulated of the following way,

P 4Y 3 = P 3X3β3 + P 3e3

P 4Y 4 = Q4X4β4 + P 4e4

where,

(c.1) V (P 3e3|X4,X3) = P 3V 3P
>
3 = σ2

3P 3D3P
>
3 + τ 2

3P 3D
2
3P
>
3 ,

(c.2) β̂3
b = (X>3 P>3 P 3X3)−1X>3 P

>
3 P 3Y 3,

(c.3) V (P 4e4|X4,X3) = P 4V 4P
>
4 = σ2

4P 4D4P
>
3 + (τ 2

4 + µτ 2
3 )P 4D

2
4P
>
4 ,

(c.4) β̂4
b = (X>4 P>4 P 4X4)−1X>4 P

>
4 P 4Y 4.

Note that P 3D
2
3P
>
3 = P 4D

2
4P
>
4 = IJ , P 3D3P

>
3 = D−1

3 and P 4D4P
>
4 = D−1

4 .
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Now, we are defined

êb3 = (Y 3 −X3β̂3
b), and êb4 = (Y 4 −X4β̂4

b)

therefore, P 3ê
b
3 = P 3(Y 3 −X3β̂3

b) = T 3P 3(Ln3θ3 + ε3), and

P 4ê
b
4 = P 4(Y 4 −X4β̂4

b) = T 4P 4(Ln4θ4 + ε4)

where T 3 = (IJ − P 3X3(X>3 P>3 P 3X3)−1X>3 P
>
3 ), and

T 4 = (IJ − P 4X4(X>4 P>4 P 4X4)−1X>4 P
>
4 ),

such that T 3T 3 = T 3, T>3 T 3 = T 3.
T 4T 4 = T 4 and T>4 T 4 = T 4.

Then, as ê3
b>P>3 P 3ê

b
3 = (Ln3θ3 + ε3)>P>3 T 3P 3(Ln3θ3 + ε3), and

ê4
b>P>4 P 4ê

b
4 = (Ln4θ4 + ε4)>P>4 T 4P 4(Ln4θ4 + ε4).

This way,

(d.1) E
(
ê3

b>T 3êb3
)

= τ 2
3 tr (T 3) + σ2

3tr
(
T 3D

−1
3

)
= τ 2

3 (J −K∗∗3 ) + σ2
3

(∑J
j=1(1/nj3)−K∗∗∗3

)

(d.2) E
(
ê4

b>T 4êb4
)

= τ 2
4 tr (T 4) + σ2

4tr
(
T 4D

−1
4

)
= (τ 2

4 + µτ 2
3 )(J −K∗∗4 ) + σ2

4

(∑J
j=1(1/nj4)−K∗∗∗4

)

Thus be have,

τ̂ 2
3 =

(
Y 3 −X3β̂3

b
)>
P>3 P 3

(
Y 3 −X3β̂3

b
)
− σ̂2

3

(∑J
j=1(1/nj3)−K∗∗∗3

)
J −K∗∗3

(3.9)

τ̂ 2
4 =

(
Y 4 −X4β̂4

b
)>
P>4 P 4

(
Y 4 −X4β̂4

b
)
− σ2

4

(∑J
j=1(1/nj3)−K∗∗∗4

)
J −K∗∗4

− µ2τ 2
3

(3.10)

where, K∗∗∗3 = tr
{

(X>3 P>3 P 3P 3)−1X>3 P
>
3 D

−1
3 P 3X3

}
,

K∗∗3 = tr
{

(X>3 P>3 P 3P 3)−1(X>3 P>3 P 3X3)
}

,

K∗∗∗4 = tr
{

(X>4 P>4 P 4X4)−1X>4 P
>
4 D

−1
4 P 4X4

}
,

K∗∗4 = tr
{

(X>4 P>4 P 4X4)−1(X>4 P>4 P 4X4)
}
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Estimation of µ

Using the between-residues seen in the previous section

êb4 = (Y 4 −X4β̂4
b)

êb3 = (Y 3 −X3β̂3
b)

we obtain

E
(
êb>4 P

>
4 P 3ê

b
3

)
= µτ 2

3 tr
{
T>4 T 3

}

This way,

µ = êb4
>
P>4 P 3êb3

τ 2
3 (J −m∗ −m∗∗ +m∗∗∗) (3.11)

where

m∗ = r
{
X>4 P

>
4 P 4X4

}
m∗∗ = r

{
X>3 P

>
3 P 3X3

}
m∗∗∗ = tr

{
P 4X4(X>4 P>4 P 4X4)−1X>4 P

>
4 P 3X3(X>3 P>3 P 3X3)−1X>3 P

>
3

}
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3.3.3 Summary of the Estimation Process

1. The process starts using the model’s equations (3.4b)–(3.5b), such that β3 and β4

are estimated through of equations (3.6a) and (3.6b) respectively.

β̂3OLS =
(
X>3 X3

)−1 (
X>3 Y 3

)
β̂4OLS =

(
X>4 X4

)−1 (
X>4 Y 4

)

2. Completed steps 1, be must estimate the Within Residual of the regressions (3.4b)–
(3.5b). Then, they are estimated σ2

3 and σ2
4 by the equation (3.7) and (3.8) respec-

tively.

σ̂2
3 =

(
Y 3 −X3β̂3

Q3
)>
Q3

(
Y 3 −X3β̂3

Q3
)

N3 − J −K∗3

σ̂2
4 =

(
Y 3 −X3β̂3

Q3
)>
Q3

(
Y 3 −X3β̂3

Q3
)

N3 − J −K∗3

3. Completed steps 1–2, be must estimate the Between Residual of the regressions
(3.4b). Then, τ̂ 2

3 is estimated by the equation (3.9),

τ̂ 2
3 =

(
Y 3 −X3β̂3

b
)>
P>3 P 3

(
Y 3 −X3β̂3

b
)
− σ̂2

3

(∑J
j=1(1/nj3)−K∗∗∗3

)
J −K∗∗3

4. Completed steps 1–3, be must estimate the Between Residual of the regressions
(3.4b) and (3.5b). Then, µ̂ is estimated by the equation (3.11),

µ̂ = êb4
>
P>4 P 3êb3

τ̂3
2 (J −m∗ −m∗∗ +m∗∗∗)
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5. Completed steps 1–4, be must estimate the Between Residual of the regression
(3.5b). Then, and τ̂ 2

4 is estimated by the equation (3.10),

τ̂ 2
4 =

(
Y 4 −X4β̂4

b
)>
P>4 P 4

(
Y 4 −X4β̂4

b
)
− σ2

4

(∑J
j=1(1/nj3)−K∗∗∗4

)
J −K∗∗4

− µ2τ 2
3

6. Completed the steps 1–5, it is possible calculate the estimation of V̂3 and V̂4.

V̂ 3 = Q3σ̂
2
3 + P 3D

2
3P
>
3 τ̂

2
3 + P 3D3P

>
3 σ̂

2
3

V̂ 4 = Q4σ̂
2
4 + P 4D

2
4P
>
4 (τ̂ 2

4 + µ̂τ̂ 2
3 ) + P 4D4P

>
4 σ̂

2
4

7. Using the results of step 6, the estimation of β3 and β4 are recalculated by equation
(3.6c), i.e. by feasible generalized least squared,

β̂3FGLS = (X>3 V̂
−1
3 X3)−1X>3 V̂

−1
3 Y 3

β̂4FGLS = (X>4 V̂
−1
4 X4)−1X>4 V̂

−1
4 Y 4
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3.4 Aplication of HLM across the time to educational data

3.4.1 Simulation Study

In this simulation study we will generate data from a hierarchical lineal model
with dependence across the time defined in equations (3.1a), (3.1b), (3.1c) and (3.1d).
To generate a simulation of a educational database, we consider that the population of
300 schools, and in each school there are 20 to 30 students. The simulation procedure is
detailed below,

1. Do i = 1 to J , with J is the school total,

• Generate nj3 for each j, where 20 ≤ nj3 ≤ 30

• Generate nj4 for each j, where 20 ≤ nj4 ≤ 30

• θj31 ∼ N(0, 25) for each j.

• θj42 ∼ N(µθ31, 64), µ is considered in two sceneries different.

2. Generate 4 covariables, these may be generated from any distribution. In this
particular case, these are assumed as;X1j3 = ınj3 , X2j3 ∼ N(100, 20), X3j3 ∼
N(−1, 10) andX4j3 correspond to contemporaneous score ofX2j3.

3. Generate 4 covariables, these may be generated from any distribution. In this
particular case, these are assumed as;X1j4 = ınj4 , X2j4 ∼ N(200, 20), X3j4 ∼
N(0, 10) andX4j4 correspond to contemporaneous score ofX2j4.

4. Generate a error associated to the equation (3.1a). So, εij3 ∼ N(0; 289)

5. Generate a error associated to the equation (3.1c). So, εij3 ∼ N(0; 324)

6. Once the steps 5 – 6 were performed, must be simulated the dependent variables by,

• Yij3 = X>ij3β3 + θj31 + εij3, Where β>3 =
(

2 0.5 20 5
)

• Yij4 = X>ij4β4 + θj42 + εij4, Where β>4 =
(

7 0.9 15 0.5
)
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Simulation Results

This simulation study aims to analyse the computational performance of our model
proposed in this chapter. We consider two scenarios: (I) Small parameter of association on
the time between two cohorts different, µ = 0.5, and (II) Big parameter of association on
the time, µ = 5.

The study of simulation consider Monte Carlo samples of size 10, 50, 100 and 500.
Each sample was adjusted by both models standard HLM and dynamical HLM. Then, the
means a standard deviation of estimation all parameter are registered in the appendix C.2.
As a general conclusion, Independently of scenery in both models are observed that the
estimation of parameters are close to Their actual values, with the exception of tau2 4,
variance associated to school random effect in the second cohort, its real value is 144 but
the standard model overestimate this parameter, although when mu = 0.5 the differences
are slight, when µ = 5 the differences are high, it is 18 times higher that value real.

Moreover the value added estimation is represented in the following graphics, so
that it all the graphics in axis X is the order ascendant of real value-added (Colour red), the
blue points are the estimates through our proposed model and points green the estimation
of standard model. When µ is 0.5 the estimations of both models are close to real value,
although variability of estimation of value added is greater in the second cohort, see Figure
3.4. However this similarity between the estimates of both models begin to disappear with
value of µ at least 1, see Figures 3.5 to 3.9.
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(b) Second cohort with µ = 0.5

Figure 3.4: Comparation between of value-added estimates on both cohorts with µ = 0.5
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(b) Second cohort with µ = 1

Figure 3.5: Comparation between of value-added estimates on both cohorts with µ = 1
.
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(b) Second cohort with µ = 2

Figure 3.6: Comparation between of value-added estimates on both cohorts with µ = 2
.
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(b) Second cohort with µ = 3

Figure 3.7: Comparation between of value-added estimates on both cohorts with µ = 3
.
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(b) Second cohort with µ = 4

Figure 3.8: Comparation between of value-added estimates on both cohorts with µ = 4
.
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Figure 3.9: Comparation between of value-added estimates on both cohorts with µ = 5
.
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3.4.2 Data application

In this section we apply our value-added model proposed in this chapter on SIMCE.
Specifically we use the score of mathematics in the cohorts 2007-2011 and 2009-2013.
This application only consider schools of great cities; Región de Valparaı́so, Región del
Bı́o-Bı́o and Región Metropolitana. Moreover, the Figures 3.10 and 3.11 present the
distribution of mathematics SIMCE by group social economic in a sub-population of Chile,
in them not only appreciate the difference in scores by socioeconomic level, also it is
observed a decrease in the variability within groups of a measurement to compare the
previous and post score of the cohorts.

(a) Mathematic SIMCE 2007 (b) Mathematic SIMCE 2011

Figure 3.10: Distribution of first cohort 2007-2011 by GSE
.
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(a) Mathematic SIMCE 2009 (b) Mathematic SIMCE 2013

Figure 3.11: Distribution of second cohort 2009-2013 by GSE
.

Specifically, the analysis of school improvement considered 1,315 schools, such that
in the cohort 2007-2011 there are 60,889 students while that the cohort 2009-2013 has
50,364 students. For each cohort is a school effect. Then we say that the analysis of school
improvement explicit the assumption that the past determines the future if school effect for
the 2007-2011 dependent of school effect for 2009-2013.

The estimators of parameters obtained through dynamic value-added model with
the parameter of associated of school effects correspond to; σ2

3 = 922.638 , σ2
4 = 868.042,

τ 2
3 = 155.425, τ 2

4 = 1158.660, while that the estimation of fixed effects are β>3 =
(66.720, 0.581, 7.442, 0.572), β>4 = (80.305, 0.567, 8.144, 0.055) considering as covari-
ates; a intercept, the prior score, IVE and contemporaneous score. Moreover, estimation of
parameter µ is 0.48.

If the parameter of dependence is less than 1, we can say that, for the group of
schools under analysis, the past determines the future in a very weak way; If this parameter
is greater than 1, we say that the past determines the future strong way; bigger is µ the
dependence is stronger. Moreover, if the parameter is equal to 0, then past and future
are not at all related. Although the parameter is low µ = 0.48 Moreover, we classified
the schools according the quartile of value added estimation obtained through our model

124 Marı́a Inés Godoy Ávila
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proposed, then we graph the distribution of estimates of both cohorts (boxplot), such
that the green colour are the estimation of standard value-added model and blue is the
same model but considering the association parameter between school effects.See Figure
3.12, when we observed the difference in the estimation of value added those are not
non-existent, despite a small value of µ.
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Figure 3.12: Comparison by quantile for estimation of value-added through HLM and
dynamic HLM.
.
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3.5. FINAL REMARKS

3.5 Final remarks

From a methodological point of view, the novelty of this proposed is the specification
and estimation of a value added model under school effects dependent across the time.
Specifically,

• The model estimates the fixed effects as well as the component variances in an
unbiased way.

• The model estimates the correlation between the school effects across the time.

• The model estimates the values added by the schools effect, but the predictions
dependent on the whole trajectory of scores within the school.

From an empirical point of view, the novelties are the following:

• To perform a value added analysis of the Chilean educational system considering
the dependent school effects,

• To make a comparison between the standard value added analysis and this new
proposed.

As a final comment, our model does not have a computational cost, its convergence
is quick, even when is used on SIMCE educational data that it has a large volume of
students.
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Chapter 4: Conclusions and

Future Work

This thesis was developed in the context of school effectiveness. We have addressed
two different frameworks. In the chapter 2 we developed an extension to the hierarchical
linear mixed model that include instrumental variables for to resolve of endogeneity
problem, extention to Manzi et al. (2014). Whereas in chapter 3 we worked in a new
hierarchical lineal mixed model that include a parameter of association between school
effect across the time.

To conclude this work, in this last chapter we include; i) main conclusions, ii) some

final comments in the context of value added models, and iii) future works.

4.1 Conclusion

... An effective school is one in which students progress

further than might be expected from consideration of

its intake ......
Mortimore (1991)

School effectiveness seeks to identify the ‘Value Added’ schools through outcomes
of their student. Typically the value-added models are used to estimate the contribution of
teachers, educational programs or schools to student achievement. From a methodological
point of view, this can be achieved by modelling student’s scores taking into account the
differences in prior achievements and possibly other measured characteristics in the form
of covariates at both the school level and the student level; see Braun et al. (2010); OECD

128 Marı́a Inés Godoy Ávila
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(2008); Raudenbush (2004) and Timmermans et al. (2011). The role of the covariates is to
characterize a school of reference with respect to which the Value-Added is substantively
interpreted.

As a matter of fact, the Value-Added of a school is a comparison between the condi-
tional expected scores in a given school and the conditional expected score in the school of
reference: if the covariates are modified, the school of reference is also modified and the
meaning of Value-Added changes. Because the interest is to know the net contribution of
a school, and the covariates have an influence on the student performance, an important
requirement for the covariates is that they have to be unrelated to the internal pedagog-
ical processes performed by a school. Using the econometric jargon, it is said that the
covariates are exogenous with respect to the school. A standard approach to model the
school Value-Added is the use of hierarchical linear models (HLM), or multilevel models
Goldstein (2002); Snijders and Bosker (1999), due to the hierarchical structure of the
data where students are nested into schools (see chapter 1). Under this approach, students
scores are explained by their previous achievement, some covariates and a random effect
representing the school effect. A measure of Value-Added has been typically obtained as
the prediction of the random school effect Aitkin and Longford (1986); Longford (2012);
Raudenbush and Willms (1995); Tekwe et al. (2004).

Throughout this thesis we mention some problems associated with the methodology
used to estimate value added, that these are our motivation, the beginning of this dissertation.
A little update of this issues are mentioned below,

(i) Homogeneity of educational data sets:

In practice often be found in the educational data sets, more of a group of students or
of schools with similar social features in common, such that their yields are similar
within them, but different between groups. Examples of those features are social mix,
balance of intake, school mix and school composition Rutter, Maughan, Mortimore,
and Ouston (1979); Thrupp (1995). The solution is use heteroscedastic value added
model. Thus, for instance, if schools can be grouped in five socio-economics groups,
then the variance of the the distribution generating the school effects is specified as a
function of the socio-economic status (SES):
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(ii) Independence between school effect and covariates:

This was discussed in the chapter 2, the endogeneity is a problem present in some ed-
ucational data, SIMCE is a clear example. ? solved this difficult using to instrumental
variables in the structure of value added model. Also, we repeatedly mentioned that
the value added is different to school effect.

(iii) Independence across the time:

This consideration was addressed in chapter 3. While there are studies that have
evaluated the persistence of value added over time, the methodologies assume inde-
pendent between the cohorts school effect, because in the modelling of value added
no considered the past of schools.

The methodologies used and developed in this dissertation are contributions in
the context of school effectiveness. We have seen how sensitive are the estimates of
these models and the consequences which a unfair classification could cause under the
accountability system.

To finalized this section just mention that study of Monte Carlo suggest that both
models are defectives computationally, their estimation are quick , under time cost. Also,
they an adequate fit of error low. Then, the question is Why? and When? use these models,
as any statistical model the answer is depend, it depends the context and objectives.

4.2 Future Work

While the methodologies developed in this thesis are based on the educational
context, these are not restricted only educational data may well be applied in other contexts.
The future works derived of this dissertation are detailed below.

(a) Applications problem: What happens if we use a representative sample of population
for estimate and classify each school system school?, What are the problems associated
to the sample?, What must be the characteristics of sample design and sample size?,
How the value added can be stable on the time without it is affect by change subtitle
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on the population.

(b) Global Measures;

(i) A natural extension of this thesis is the developed of a global measure that
consider the endogeneity and dependence on the time, until now are two model
that compete for its capacity of fit.

(ii) Other extension but maybe no so natural it is to develop a robust measure of VA
when information on various levels within a school is available. The schools
commonly have scores of more than two educational levels. For example, two
group of students on level educational different that form two cohorts on the
same time. Illustrating this idea, the student of 4th and 6th degree have their
score on the time t (pre-score), the same student on the time t+1 have their
post-score on the levels 5th and 7th degree respectively. Of course, we think
and assumption that calculating measures of value-added using only part of the
score information could lead to erroneous conclusions about the effectiveness
of a school. For example, it could happen that the value added calculated for a
particular school using score information for levels 4rd and 5th is very different
from that calculated using information from the 6th and 7th grade in the same
school.

(iii) The following step will be monitoring student achievement every year. The fact
that a particular school assess several educational level every year, inevitably
leads to a complex data design.
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Del Pino, G., González, J., Manzi, J., & San Martı́n, E. (2009). Estudio de valor agregado

y progreso 3 básico 2006-4 básico 2007. Technical Report, Ministry of Education of

the Chilean Government.

132 Marı́a Inés Godoy Ávila
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A Appendix of chapter I: School
Effectiveness

A.1 Technical Appendix

A.1.1 Notation

First : For all dataset is defined the following expressions;

J : It represents the set of all school.

J : It represents the total school, card (J ).

nj : It represents total students in school j, j ∈ J .

Second : A student level the following expressions are defined;

Yij : It is the score (scalar), for the student i that belong school j, with j = 1, . . . , J
and i = 1, . . . , nj

X ij : It is a K-dimensional vector of K-explanatory variables for student i, in the
school j.
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Third : A school level the following expressions are defined;

Y j =


Y1j

...
Ynjj

 : It is a vector of all scores in school j, such that Y j ∈ Rnj .

Xj =


X>1j

...
X>njj

 : It is a matrix of dimension nj ×K, where K is the number of
covariates.

θj : It represents the school effect of school j.

Also, we define others matrices very useful, (to school level).

ınj
=


1
...
1

 : It is a vector 1’s of dimension nj × 1, for j = 1, 2 . . . , J .

Jnj
= ınj

ı>nj
: It is a matrix of dimension nj × nj of 1’s.

Jnj
= Jnj

/nj : It is a matrix of dimension nj × nj of 1/n′js.

Enj
= Inj

− Jnj
: It is matrix of dimension nj × nj .

Fourth : A dataset level the following expressions are defined;

Y =


Y 1

...
Y J

 : It is a vector of dimension N × 1, where N = ∑J
j=1 nj .
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X =


X1

...
XJ

 : It is a matrix of dimension N ×K.

θ =


θ1
...
θJ

 : It is a vector of dimension J .

Ln =


ın1

. . .

ınJ

 : It is a N × J matrix.

D =


n1

. . .

nJ

 : It is a diagonal matrix of dimension J × J

P =


ı>n1/n1

. . .

ı>nJ
/nJ

 : It is a matrix of dimension J ×N . Also It is called
Between-matrix, and It can be obtained by P =
D−1L>n

Q =


En1

. . .

EnJ

 : It is a idempotent matrix of dimension N×N . Also,
It is called Within-matrix .
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A.1. TECHNICAL APPENDIX

A.1.2 The semantic of the conditional expectation

The structure underlying most of the statistical models used in educational measure-
ment, and particularly in SER, can be depicted through conditional expectations. Broadly
speaking, the target of quantitative analysis is to relate a dependent variable Y to a set of
covariates or explanatory factors, denoted byX . This relationship has two components:
the part of Y that can be explained byX , and the part of Y that cannot be explained by
X . The first component corresponds to the conditional expectation of Y givenX , and it
is typically denoted as E(Y |X), also called the regression of Y onX . Accordingly, the
dependent variable Y is decomposed as

Y = E(Y |X) + {Y − E(Y |X)}

where the error or residual term {Y − E(Y |X)}, the part of Y that cannot be explained
by the covariatesX , is by construction uncorrelated with or orthogonal to E(Y |X).

Technically speaking, the conditional expectation E(Y |X) is computed on the basis
of the joint distribution of (Y ,X). However, in practice, this conditional expectation is
specified in a particular form. Thus, for instance, it can be assumed that the relationships
between Y andX is linear inX . As the reader can recognize, this corresponds to a linear
regression. Other specifications are possible, as for instance a nonlinear function of one or
more explanatory factors.
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B Appendix of chapter II:
Endogenous Value-Added Models

for Subgroups of Schools

B.1 Technical Appendix

B.1.1 Notation

First : For all dataset is defined the following expressions;

S : It represents the set of groups’ labels

S : It represents the total groups, card(S)

J : It represents the set of all school.

J : It represents the total school, card (J ).

ρ(·) : It is a function induces a partition of J , {J1, . . . ,JS} on {1, . . . , J}.
This way, ρ(.) Is the grouping school function is defined from {1, . . . , J} to
{1, . . . , S} as j ∈ {1, . . . , J} 7−→ ρ(j) = s ∈ {1, . . . , S}.

Js : It is a number of school in the group s, ie card(Js),
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n
(s)
j : It represents total students in school j, j ∈ Js.

Second : A student level the following expressions are defined;

Y
(s)
ij : It is the contemporaneous test score of student i belonging to school j ∈ Js.

X
(s)
ij : It is a vector K1-dimensional, the exogenous variables associated to pupil i

belonging to school j ∈ Js.

W
(s)
ij : It is a L-dimensional vector, the instrumental variables associated to pupil i

belonging to school j ∈ Js.

Z
(s)
ij : It is a K2-dimensional vector, the endogenous variables associated to pupil i

belonging to school j ∈ Js.

θ
(s)
j : It represents the school effect of school j ∈ Js.

Third : For each school j ∈ Js with s = 1, . . . , S following expressions are defined;

Y
(s)
j =


Y

(s)
1j
...

Y
(s)
n

(s)
j j

 : It is a vector of all scores in school j, such that Y (s)
j ∈ Rn

(s)
j .

X
(s)
j =


X

(s) >
1j
...

X
(s) >
n

(s)
j j

 : It is a matrix of dimension n(s)
j ×K1, whereK1 is the number

of exogenous variables.

W
(s)
j =


W

(s) >
1j
...

W
(s) >
n

(s)
j j

 : It is a matrix of dimension n(s)
j × L, where L is the number

of instrumental variables.
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Z
(s)
j =


Z

(s) >
1j
...

Z
(s) >
n

(s)
j j

 : It is a matrix of dimension n(s)
j ×K2, whereK2 is the number

of endogenous variables.

θ
(s)
j : It represents the school effect of school j ∈ Js.

Also, we define others matrices very useful, (to school level).

ı
n

(s)
j

=


1
...
1

 : It is a vector 1’s of dimension n(s)
j × 1, for j = 1, 2 . . . , Js.

J
n

(s)
j

= ı
n

(s)
j
ı>
n

(s)
j

: It is a matrix of dimension n(s)
j × n

(s)
j of 1’s.

J
n

(s)
j

= J
n

(s)
j
/n

(s)
j : It is a matrix of dimension n(s)

j × n
(s)
j of 1/n(s)

j ’s.

E
n

(s)
j

= I
n

(s)
j
− J

n
(s)
j

: It is matrix of dimension n(s)
j × n

(s)
j .

Fourth : For each s ∈ S, the following expressions are defined;

Ns = ∑
j∈Js

n
(s)
j : Total of students in the group s.

Y (s) =


Y

(s)
1
...

Y
(s)
Js

 : It is a vector of dimension Ns × 1.

X(s) =


X

(s)
1
...

X
(s)
Js

 : It is a matrix of dimension Ns ×K1.

W (s) =


W

(s)
1

...
W

(s)
Js

 : It is a matrix of dimension Ns × L.
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Z(s) =


Z

(s)
1
...
Z

(s)
Js

 : It is a matrix of dimension Ns ×K2.

θ(s) =


θ

(s)
1
...
θ

(s)
Js

 : It is a vector of dimension Js.

Lns
=


ı
n

(s)
1

. . .

ı
n

(s)
Js

 : It is a Ns × Js matrix.

Ds =


n

(s)
1

. . .

n
(s)
Js

 : It is a diagonal matrix of dimension Js × Js

P s =


ı>
n

(s)
1
/n

(s)
1

. . .

ı>
n

(s)
Js

/n
(s)
Js

 : It is a matrix of dimension Js×Ns. Also It is
called Between-matrix or Between-operator,
and It can be obtained by P s = D−1

s L
>
ns

Qs =


E
n

(s)
1

. . .

E
n

(s)
Js

 : It is a idempotent matrix of dimension Ns ×
Ns. Also, It is called Within-matrix or
Within-operator.
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Some useful matrix multiplications,;

D −1
s = P sP

>
s

P>sD
2
sP s =


J
n

(s)
1

. . .

J
n

(s)
Js



P>sDsP s =


J
n

(s)
1

. . .

J
n

(s)
Js

, is a Ns ×Ns matrix.

Fifth : A dataset level the following expressions are defined;

N = ∑S
s=1 Ns : It is the number of observations in the database

Y =


Y (1)

...
Y (S)

 : It is a N × 1 vector.

X =


X(1)

...
X(S)

 : It is a N ×K1 matrix.

Z =


Z(1)

...
Z(S)

 : It is a matrix of dimension N ×K2

W =


W (1)

...
W (S)

 : It is a matrix of dimension N × L matrix.
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θ =


θ(1)

...
θ(S)

 : It is a Js × 1 vector.

Q =


Q1

. . .

QS

 : It is a matrix of dimension N ×N .

P =


P 1

. . .

P S

 : It is a matrix of dimension J × J .

D =


D1

. . .

DS

 : It is a matrix of dimension J × J .

D−1 =


D−1

1
. . .

D−1
S

 : It is a matrix of dimension J × J . It can be written
asD−1 = PP>
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B.2 Study of Simulation

B.2.1 Results in scenario I, different parameter of association by en-
doguenous variables for each group

Table B.1: Results of Monte Carlo simulations , Scenario I

Monte Carlo estimations
Mean Mean standard deviation standard deviation
VA θ VA θ

0.003 0.258 0.007 0.576

0.003 0.225 0.009 0.551

0.003 0.256 0.009 0.600

0.004 0.303 0.010 0.684

Table B.2: Results of Monte Carlo simulations for fixed effects estimation on first level
(β,γ), Scenario I

Monte Carlo estimations
Real Sample= 50 Sample= 100 Sample= 500 Sample= 1000

V ec(β)
(

1.0
3.0

) 0.980 (0.053)
2.951 (0.093)

1.000 (0.069)
2.938 (0.102)

0.987 (0.066)
2.947 (0.098)

0.990 (0.063)
2.941 (0.103)

V ec(γ)
(

7.0
4.0

)
6.995 (0.010)
4.008 (0.012)

6.994 (0.011)
4.009 (0.015)

6.996 (0.010)
4.008 (0.014)

6.995 (0.011)
4.009 (0.014)
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Table B.3: Results of Monte Carlo simulations for fixed effects’s estimation (A,H) on
second level, Scenario I

Monte Carlo estimations
Real Sample= 50 Sample= 100 Sample= 500 Sample= 1000

V ec(A)


6.8
5.2
−0.9

6.1


6.801 (0.021)
5.204 (0.012)

− 0.897 (0.019)
6.101 (0.015)

6.800 (0.018)
5.198 (0.018)

− 0.901 (0.020)
6.098 (0.017)

6.800 (0.017)
5.200 (0.016)

− 0.900 (0.019)
6.100 (0.016)

6.800 (0.017)
5.200 (0.016)

− 0.900 (0.019)
6.101 (0.015)

V ec(H)


3.6
2.1
0.5
2.3
4.8
2.9


3.599 (0.017)
2.101 (0.019)
0.500 (0.016)
2.298 (0.015)
4.799 (0.017)
2.904 (0.017)

3.597 (0.020)
2.101 (0.017)
0.500 (0.017)
2.302 (0.016)
4.803 (0.014)
2.902 (0.014)

3.598 (0.019)
2.099 (0.017)
0.499 (0.017)
2.300 (0.015)
4.799 (0.019)
2.900 (0.016)

3.600 (0.018)
2.100 (0.017)
0.501 (0.018)
2.301 (0.015)
4.800 (0.019)
2.900 (0.016)

Table B.4: Results of Monte Carlo simulations for variance estimation (σ2
s ), Scenario I

Monte Carlo estimations
Real Sample= 50 Sample= 100 Sample= 500 Sample= 1000

σ2
1 38 37.995 (4.828) 38.015 (4.882) 37.739 (4.966) 38.087 (4.732)

σ2
2 25 24.358 (3.086) 24.536 (3.378) 24.813 (2.978) 24.529 (3.028)

σ2
3 42 43.117 (5.190) 42.384 (5.757) 41.885 (6.516) 41.795 (6.025)

σ2
4 32 31.273 (4.157) 31.844 (4.041) 31.675 (3.951) 31.857 (4.088)

σ2
5 21 19.969 (3.350) 21.556 (3.279) 20.842 (3.323) 20.974 (3.414)

Table B.5: Results of Monte Carlo simulations for variance estimation (τ 2
s ), Scenario I

Monte Carlo estimations
Real Sample= 50 Sample= 100 Sample= 500 Sample= 1000

τ2
1 28 24.203 (4.312) 25.976 (5.759) 25.316 (5.000) 25.034 (5.508)

τ2
2 15 12.835 (2.976) 12.838 (3.250) 13.002 (3.341) 12.807 (3.392)

τ2
3 32 30.087 (7.612) 31.948 (8.528) 31.291 (8.061) 31.552 (8.569)

τ2
4 22 20.788 (4.284) 22.102 (4.490) 21.238 (4.207) 21.422 (4.825)

τ2
5 11 10.470 (2.824) 10.567 (3.073) 10.340 (2.509) 10.502 (3.102)
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Table B.6: Results of Monte Carlo simulations for estimation of variance covariance matrix
(Φs), Scenario I

Monte Carlo estimations
Real Sample= 50 Sample= 100 Sample= 500 Sample= 1000

V ec(Φ1)


7.0
3.0
3.0
4.0


7.005 (0.174)
2.990 (0.111)
2.990 (0.111)
3.994 (0.099)

7.001 (0.165)
3.001 (0.111)
3.001 (0.111)
4.002 (0.106)

7.015 (0.168)
3.008 (0.100)
3.008 (0.100)
4.004 (0.093)

6.993 (0.162)
2.996 (0.105)
2.996 (0.105)
3.994 (0.095)

V ec(Φ2)


3.5
1.3
1.3
6.0


3.511 (0.083)
1.306 (0.072)
1.306 (0.072)
6.028 (0.120)

3.505 (0.084)
1.300 (0.090)
1.300 (0.090)
6.011 (0.145)

3.497 (0.087)
1.300 (0.081)
1.300 (0.081)
6.001 (0.139)

3.500 (0.083)
1.300 (0.083)
1.300 (0.083)
5.993 (0.143)

V ec(Φ3)


9.0
4.1
4.1
6.5


8.995 (0.247)
4.127 (0.162)
4.127 (0.162)
6.527 (0.156)

9.008 (0.199)
4.116 (0.124)
4.116 (0.124)
6.518 (0.154)

9.003 (0.205)
4.099 (0.140)
4.099 (0.140)
6.497 (0.150)

9.005 (0.222)
4.099 (0.150)
4.099 (0.150)
6.499 (0.156)

V ec(Φ4)


6.0
1.5
1.5
4.0


5.963 (0.136)
1.506 (0.075)
1.506 (0.075)
4.010 (0.064)

6.024 (0.140)
1.509 (0.088)
1.509 (0.088)
4.002 (0.099)

6.012 (0.153)
1.506 (0.087)
1.506 (0.087)
4.000 (0.093)

5.993 (0.145)
1.498 (0.084)
1.498 (0.084)
3.999 (0.098)

V ec(Φ5)


5.3
2.9
2.9
3.8


5.308 (0.128)
2.911 (0.105)
2.911 (0.105)
3.820 (0.109)

5.304 (0.130)
2.896 (0.091)
2.896 (0.091)
3.797 (0.088)

5.299 (0.134)
2.897 (0.093)
2.897 (0.093)
3.799 (0.092)

5.296 (0.127)
2.896 (0.092)
2.896 (0.092)
3.798 (0.093)
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Table B.7: Results of Monte Carlo simulations for the parameter of marginal effect of te
school effect and endogenous covariates (δs), Scenario I

Monte Carlo estimations
Real Sample= 50 Sample= 100 Sample= 500 Sample= 1000

δ1

δ2

δ3

δ4

δ5

(
1.57
3.38

)
(

2.39
1.13

)
(
−4.70
3.10

)
(

4.1
1.08

)
(

5.13
2.4

)

1.770 (0.209)
3.453 (0.235)

2.708 (0.450)
1.245 (0.447)

− 5.014 (0.541)
3.377 (0.446)

4.275 (0.372)
1.130 (0.099)

5.437 (0.527)
2.464 (0.310)

1.735 (0.278)
3.473 (0.319)

2.657 (0.439)
1.285 (0.376)

− 4.924 (0.518)
3.326 (0.386)

4.117 (0.293)
1.136 (0.129)

5.357 (0.568)
2.499 (0.272)

1.822 (1.636)
3.469 (0.245)

2.730 (1.155)
1.276 (0.405)

− 4.924 (0.545)
3.326 (0.419)

4.206 (0.354)
1.147 (0.148)

5.391 (0.641)
2.485 (0.287)

1.778 (0.265)
3.477 (0.268)

2.687 (1.043)
1.258 (0.426)

− 4.966 (0.612)
3.373 (0.502)

4.200 (0.418)
1.156 (0.329)

5.406 (0.771)
2.472 (0.329)

B.2.2 Results in scenario II, different parameter of association by en-
doguenous variables for each group

Table B.8: Results of Monte Carlo simulations , Scenario II

Monte Carlo estimations
Mean Mean standard deviation standard deviation
VA θ VA θ

0.006 0.147 0.014 0.278

0.007 0.158 0.015 0.303

0.007 0.156 0.017 0.308

0.007 0.157 0.016 0.302
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Table B.9: Results of Monte Carlo simulations for fixed effects’s estimation on first level
(β,γ), Scenario II

Monte Carlo estimations
Real Sample= 50 Sample= 100 Sample= 500 Sample= 1000

V ec(β)
(

1.0
3.0

) 0.991 (0.061)
3.151 (0.100)

0.985 (0.060)
3.180 (0.098)

0.990 (0.065)
3.177 (0.101)

0.991 (0.064)
3.168 (0.105)

V ec(γ)
(

7.0
4.0

)
7.020 (0.011)
3.977 (0.014)

7.022 (0.009)
3.974 (0.014)

7.021 (0.011)
3.975 (0.014)

7.020 (0.011)
3.975 (0.014)

Table B.10: Results of Monte Carlo simulations for fixed effects’s estimation on second
level (A,H), Scenario II

Monte Carlo estimations
Real Sample= 50 Sample= 100 Sample= 500 Sample= 1000

V ec(A)


6.8
5.2
−0.9

6.1


6.800 (0.016)
5.198 (0.015)

− 0.905 (0.014)
6.100 (0.013)

6.801 (0.016)
5.201 (0.013)

− 0.899 (0.015)
6.103 (0.016)

6.802 (0.018)
5.200 (0.016)

− 0.901 (0.018)
6.100 (0.015)

6.801 (0.017)
5.201 (0.015)

− 0.899 (0.018)
6.101 (0.015)

V ec(H)


3.6
2.1
0.5
2.3
4.8
2.9


3.601 (0.017)
2.099 (0.014)
0.501 (0.017)
2.302 (0.017)
4.801 (0.015)
2.899 (0.012)

3.599 (0.020)
2.100 (0.015)
0.497 (0.018)
2.297 (0.017)
4.802 (0.017)
2.903 (0.016)

3.601 (0.018)
2.100 (0.016)
0.501 (0.018)
2.300 (0.015)
4.800 (0.019)
2.902 (0.016)

3.600 (0.017)
2.100 (0.015)
0.500 (0.018)
2.300 (0.016)
4.800 (0.017)
2.900 (0.015)
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Table B.11: Results of Monte Carlo simulations for estimation of variance (σ2
s ), Scenario

II

Monte Carlo estimations
Real Sample= 50 Sample= 100 Sample= 500 Sample= 1000

σ2
1 38 37.634 (4.524) 37.166 (5.274) 37.408 (5.124) 37.335 (5.013)

σ2
2 25 26.342 (2.602) 25.808 (3.474) 25.417 (3.196) 25.351 (3.094)

σ2
3 42 41.967 (5.781) 41.511 (5.822) 42.077 (6.036) 41.181 (5.944)

σ2
4 32 30.763 (4.062) 31.375 (4.289) 31.336 (3.976) 31.558 (4.029)

σ2
5 21 20.541 (3.483) 20.262 (3.228) 21.091 (3.437) 20.818 (3.402)

Table B.12: Results of Monte Carlo simulations for estimation of variance school effect
(τ 2
s ), Scenario II

Monte Carlo estimations
Real Sample= 50 Sample= 100 Sample= 500 Sample= 1000

τ2
1 28 24.350 (3.307) 24.558 (3.678) 24.502 (3.677) 24.643 (3.809)

τ2
2 15 13.386 (2.348) 12.724 (1.995) 13.078 (2.207) 13.020 (2.164)

τ2
3 32 27.888 (4.116) 28.001 (4.261) 28.448 (4.455) 28.387 (4.100)

τ2
4 22 19.513 (3.126) 19.348 (2.966) 19.336 (2.954) 19.320 (3.066)

τ2
5 11 9.533 (1.592) 9.297 (1.632) 9.313 (1.702) 9.407 (1.712)

Table B.13: Results of Monte Carlo simulations for estimation of variance covariance
matrix (Φs), Scenario II

Monte Carlo estimations
Real Sample= 50 Sample= 100 Sample= 500 Sample= 1000

V ec(Φ1)


7.0
3.0
3.0
4.0


6.982 (0.168)
2.991 (0.109)
2.991 (0.109)
4.007 (0.102)

7.003 (0.157)
2.998 (0.097)
2.998 (0.097)
4.004 (0.092)

6.994 (0.166)
2.998 (0.106)
2.998 (0.106)
4.001 (0.097)

6.992 (0.166)
2.997 (0.101)
2.997 (0.101)
3.996 (0.094)

V ec(Φ2)


3.5
1.3
1.3
6.0


3.472 (0.085)
1.286 (0.081)
1.286 (0.081)
5.981 (0.121)

3.491 (0.085)
1.307 (0.081)
1.307 (0.081)
5.999 (0.139)

3.500 (0.085)
1.302 (0.079)
1.302 (0.079)
6.000 (0.148)

3.498 (0.087)
1.296 (0.080)
1.296 (0.080)
5.999 (0.149)

Continued on the next page
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V ec(Φ3)


9.0
4.1
4.1
6.5


8.974 (0.223)
4.114 (0.167)
4.114 (0.167)
6.525 (0.149)

9.020 (0.199)
4.114 (0.140)
4.114 (0.140)
6.528 (0.154)

8.979 (0.211)
4.090 (0.146)
4.090 (0.146)
6.507 (0.159)

8.994 (0.209)
4.102 (0.146)
4.102 (0.146)
6.506 (0.159)

V ec(Φ4)


6.0
1.5
1.5
4.0


5.975 (0.132)
1.501 (0.075)
1.501 (0.075)
4.005 (0.062)

5.984 (0.129)
1.514 (0.079)
1.514 (0.079)
4.001 (0.098)

5.998 (0.147)
1.499 (0.086)
1.499 (0.086)
4.000 (0.092)

6.001 (0.140)
1.505 (0.087)
1.505 (0.087)
4.004 (0.098)

V ec(Φ5)


5.3
2.9
2.9
3.8


5.298 (0.125)
2.889 (0.094)
2.889 (0.094)
3.791 (0.096)

5.290 (0.107)
2.887 (0.081)
2.887 (0.081)
3.786 (0.083)

5.293 (0.124)
2.898 (0.090)
2.898 (0.090)
3.797 (0.093)

5.298 (0.133)
2.897 (0.091)
2.897 (0.091)
3.798 (0.090)

Table B.14: Results of Monte Carlo simulations for the parameter of marginal effect of
school effect and endogenous covariates (δs), Scenario II

Monte Carlo estimations
Real Sample= 50 Sample= 100 Sample= 500 Sample= 1000

δ1

δ2

δ3

δ4

δ5

(
2.0
−0.5

)
(

2.0
−0.5

)
(

2.0
−0.5

)
(

2.0
−0.5

)
(

2.0
−0.5

)

2.126 (0.098)
− 0.531 (0.022)

2.153 (0.128)
− 0.542 (0.033)

2.134 (0.096)
− 0.533 (0.024)

2.164 (0.148)
− 0.541 (0.040)

2.176 (0.157)
− 0.539 (0.039)

2.149 (0.087)
− 0.535 (0.024)

2.197 (0.137)
− 0.553 (0.036)

2.144 (0.101)
− 0.538 (0.028)

2.145 (0.104)
− 0.535 (0.029)

2.195 (0.143)
− 0.546 (0.037)

2.146 (0.103)
− 0.536 (0.027)

2.165 (0.154)
− 0.543 (0.043)

2.135 (0.102)
− 0.534 (0.028)

2.150 (0.106)
− 0.537 (0.028)

2.203 (0.205)
− 0.551 (0.054)

2.146 (0.110)
− 0.536 (0.029)

2.164 (0.141)
− 0.541 (0.038)

2.132 (0.097)
− 0.533 (0.026)

2.152 (0.112)
− 0.538 (0.030)

2.198 (0.186)
− 0.550 (0.047)

B.2.3 Results in scenario III, same parameter of association by en-
doguenous variables for each group
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Table B.15: Results of Monte Carlo simulations , Scenario III

Monte Carlo estimations
Mean Mean standard deviation standard deviation
VA θ VA θ

0.057 0.054 0.134 0.129

0.061 0.053 0.144 0.130

0.056 0.049 0.126 0.115

0.057 0.050 0.130 0.119

Table B.16: Results of Monte Carlo simulations for fixed effects’s estimation on first level
(β,γ), Scenario III

Monte Carlo estimations
Real Sample= 50 Sample= 100 Sample= 500 Sample= 1000

β

(
1.0
3.0

)
1.103 (0.071)
3.170 (0.100)

1.100 (0.062)
3.159 (0.121)

1.112 (0.060)
3.152 (0.111)

1.112 (0.063)
3.164 (0.110)

γ

(
7.0
4.0

)
7.006 (0.010)
3.973 (0.013)

7.005 (0.013)
3.975 (0.016)

7.003 (0.011)
3.975 (0.015)

7.004 (0.011)
3.974 (0.015)

Table B.17: Results of Monte Carlo simulations for fixed effects’s estimation on second
level (A,H), Scenario III

Monte Carlo estimations
Real Sample= 50 Sample= 100 Sample= 500 Sample= 1000

V ec(A)


6.8
5.2
−0.9

6.1


6.800 (0.015)
5.199 (0.016)
−0.897 (0.017)

6.105 (0.015)

6.801 (0.018)
5.202 (0.018)
−0.900 (0.019)

6.101 (0.017)

6.801 (0.018)
5.200 (0.015)
−0.902 (0.017)

6.099 (0.015)

6.799 (0.017)
5.200 (0.015)
−0.901 (0.018)

6.100 (0.015)

V ec(H)


3.6
2.1
0.5
2.3
4.8
2.9


3.600 (0.018)
2.102 (0.015)
0.497 (0.017)
2.297 (0.017)
4.799 (0.016)
2.900 (0.015)

3.598 (0.017)
2.099 (0.015)
0.500 (0.018)
2.298 (0.016)
4.798 (0.017)
2.899 (0.015)

3.601 (0.017)
2.101 (0.016)
0.499 (0.018)
2.300 (0.017)
4.802 (0.017)
2.901 (0.015)

3.600 (0.017)
2.100 (0.015)
0.500 (0.018)
2.300 (0.015)
4.800 (0.018)
2.900 (0.016)
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Table B.18: Results of Monte Carlo simulations for variance estimation (σ2
s ), Scenario III

Monte Carlo estimations
Real Sample= 50 Sample= 100 Sample= 500 Sample= 1000

σ2
1 38 38.820 (4.802) 39.175 (5.241) 39.302 (4.999) 39.542 (5.012)

σ2
2 25 26.202 (3.728) 26.241 (3.453) 26.826 (3.103) 26.378 (3.234)

σ2
3 42 44.057 (6.064) 43.120 (6.231) 44.200 (5.776) 44.086 (6.090)

σ2
4 32 33.211 (4.250) 33.237 (3.689) 32.898 (4.047) 33.024 (3.847)

σ2
5 21 22.670 (3.976) 21.973 (3.370) 22.589 (3.224) 22.458 (3.363)

Table B.19: Results of Monte Carlo simulations for variance estimation (τ 2
s ), Scenario III

Monte Carlo estimations
Real Sample= 50 Sample= 100 Sample= 500 Sample= 1000

τ2
1 28 27.346 (3.078) 27.609 (3.165) 27.779 (3.448) 27.897 (3.612)

τ2
2 15 15.254 (1.870) 15.060 (1.733) 15.036 (1.979) 15.025 (1.938)

τ2
3 32 31.414 (3.592) 31.689 (4.242) 31.719 (3.945) 31.666 (3.859)

τ2
4 22 21.825 (2.471) 21.975 (2.977) 21.769 (2.619) 21.963 (2.817)

τ2
5 11 10.752 (1.401) 11.110 (1.640) 11.185 (1.510) 11.100 (1.475)

Table B.20: Results of Monte Carlo simulations for estimation of variance covariance
matrix (Φs), Scenario III

Monte Carlo estimations
Real Sample= 50 Sample= 100 Sample= 500 Sample= 1000

V ec(Φ1)


7.0
3.0
3.0
4.0


6.979 (0.171)
2.993 (0.111)
2.993 (0.111)
4.003 (0.094)

6.990 (0.153)
2.993 (0.096)
2.993 (0.096)
3.990 (0.099)

6.999 (0.170)
2.997 (0.107)
2.997 (0.107)
3.997 (0.096)

7.004 (0.166)
3.000 (0.102)
3.000 (0.102)
4.000 (0.095)

V ec(Φ2)


3.5
1.3
1.3
6.0


3.484 (0.083)
1.299 (0.077)
1.299 (0.077)
5.983 (0.146)

3.498 (0.093)
1.300 (0.073)
1.300 (0.073)
5.989 (0.127)

3.503 (0.088)
1.303 (0.078)
1.303 (0.078)
6.001 (0.140)

3.500 (0.082)
1.300 (0.081)
1.300 (0.081)
6.001 (0.147)

Continued on the next page
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B.2. STUDY OF SIMULATION

V ec(Φ3)


9.0
4.1
4.1
6.5


9.001 (0.220)
4.099 (0.139)
4.099 (0.139)
6.481 (0.170)

8.993 (0.233)
4.100 (0.150)
4.100 (0.150)
6.522 (0.146)

8.999 (0.214)
4.105 (0.148)
4.105 (0.148)
6.503 (0.158)

9.008 (0.214)
4.106 (0.146)
4.106 (0.146)
6.498 (0.151)

V ec(Φ4)


6.0
1.5
1.5
4.0


5.978 (0.138)
1.489 (0.074)
1.489 (0.074)
4.013 (0.079)

6.009 (0.146)
1.496 (0.088)
1.496 (0.088)
3.997 (0.087)

6.000 (0.140)
1.503 (0.085)
1.503 (0.085)
3.999 (0.095)

6.000 (0.139)
1.504 (0.086)
1.504 (0.086)
4.006 (0.095)

V ec(Φ5)


5.3
2.9
2.9
3.8


5.308 (0.135)
2.891 (0.101)
2.891 (0.101)
3.790 (0.103)

5.314 (0.142)
2.907 (0.103)
2.907 (0.103)
3.800 (0.098)

5.298 (0.127)
2.899 (0.091)
2.899 (0.091)
3.797 (0.092)

5.302 (0.123)
2.900 (0.092)
2.900 (0.092)
3.796 (0.093)

Table B.21: Results of Monte Carlo simulations for the parameter of marginal effect of
school effect and endogenous covariates (δs), Scenario III

Monte Carlo estimations
Real Sample= 50 Sample= 100 Sample= 500 Sample= 1000

δ1

δ2

δ3

δ4

δ5

(
−0.5
−0.5

)
(
−0.5
−0.5

)
(
−0.5
−0.5

)
(
−0.5
−0.5

)
(
−0.5
−0.5

)

−0.502 (0.015)
−0.505 (0.015)

−0.498 (0.017)
−0.501 (0.019)

−0.505 (0.014)
−0.505 (0.015)

−0.506 (0.016)
−0.507 (0.014)

−0.503 (0.022)
−0.503 (0.019)

−0.504 (0.015)
−0.504 (0.014)

−0.500 (0.016)
−0.502 (0.019)

−0.501 (0.016)
−0.502 (0.016)

−0.504 (0.012)
−0.506 (0.013)

−0.501 (0.021)
−0.500 (0.020)

−0.504 (0.015)
−0.504 (0.013)

−0.502 (0.017)
−0.503 (0.019)

−0.504 (0.015)
−0.504 (0.013)

−0.504 (0.015)
−0.504 (0.014)

−0.501 (0.021)
−0.501 (0.020)

−0.504 (0.014)
−0.504 (0.013)

−0.502 (0.016)
−0.503 (0.018)

−0.504 (0.015)
−0.505 (0.014)

−0.505 (0.016)
−0.504 (0.015)

−0.502 (0.020)
−0.501 (0.019)
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C
Appendix of chapter III: On the

modeling of school improvement
through a time dependent

value-added model

C.1 Technical Appendix

C.1.1 Notation

First : For all dataset is defined the following expressions;

J : It represents the set of all school.

J : It represents the total school, card (J ).

njt : It represents total students in school j on the time t, j ∈ Js.

Second : A student level the following expressions are defined;

Yijt : It is the score (scalar), for student i belonging to school j . Such that i =
1, . . . , njt, with njt total students in school j on the time t and j ∈ J .

X ijt : It is a Kt-dimensional vector of Kt-explanatory variables for student i, in the
school j on the time t. The vector of explanatory variables included as variable
to the prior score of student i.
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Third : A school level the following expressions are defined;

Y jt =


Y1jt

...
Ynjtjt

 : It is a vector of all scores in school j on the time t, such that
Y jt ∈ Rnjt .

Xjt =


X >

1jt
...

X >
njtjt

 : It is a matrix of dimension njt×Kt, where Kt is the number
of covariates.

θjt,t−1 : It represents the school effect of school j on the cohort t–
t− 1, j ∈ J .

Also, we define others matrices very useful, (to school level).

ınjt
=


1
...
1

 : It is a vector 1’s of dimension njt × 1, for j = 1, 2 . . . , J .

Jnjt
= ınjt

ı>njt
: It is a matrix of dimension njt × njt of 1’s.

Jnjt
= Jnjt

/njt : It is a matrix of dimension njt × njt of 1/njt’s.

Enjt
= Injt

− Jnjt
: It is matrix of dimension njt × njt.

Fourth : For each t the following expressions are defined;

Nt = ∑
j∈J njt : Total of students on the time t.

Y t =


Y 1t

...
Y Jt

 : It is a vector of dimension Nt × 1.
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X t =


X1t

...
XJt

 : It is a matrix of dimension Nt ×Kt.

θt =


θ1t,t−1

...
θJt,t−1

 : It is a vector of dimension J .

Lnt =


ın1t

. . .

ınJt

 : It is a Nt × J matrix.

Dt =


n1t

. . .

nJt

 : It is a diagonal matrix of dimension J×J

P t =


ı>n1t

/n1t
. . .

ı>nJt
/nJt

 : It is a matrix of dimension J ×Nt. Also
It is called Between-matrix, and It can be
obtained by P t = D−1

t L
>
nt

Qt =


En1t

. . .

EnJt

 : It is a idempotent matrix of dimension
Nt ×Nt. Also, It is called Within-matrix
.
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C.1.2 Joint Distribution

From the section 3.2.1, one can obtain the following calculations of averages.

1. µθ3 = E(θj3,1|,Xj4,Xj3) = 0

⇒ µθ3 = 0

2. µθ4 = E(θj4,2|,Xj4,Xj3) = E(E(θj4,2|θj3,1, ,Xj4,Xj3)|,Xj4,Xj3)

= E(µθj3,1|,Xj4,Xj3) = µE(θj3,1|,Xj4,Xj3) =

⇒ µθ4 = 0

3. µj3 = E(Yj3|,Xj4,Xj3) = E(E(Yj3|θj3,1, ,Xj4,Xj3)|,Xj4,Xj3)

= E(Xj3β3 + ιnj3θj3,1|,Xj4,Xj3) = Xj3β3 + E(ιnj3θj3,1|,Xj4,Xj3) = Xj3β3

= Xj3β3

⇒ µj3 = Xj3β3

4. µj4 = E(Yj4|,Xj4,Xj3) = E(E(Yj4|Yj3, θj4,2, ,Xj4,Xj3)|,Xj4,Xj3)

= E(Xj4β4 + ιnj4θj4,2|,Xj4,Xj3) = Xj4β4 + E(ιnj4θj4,2|,Xj4,Xj3) = Xj4β4

⇒ µj4 = Xj4β4

From the section 3.2.1, one can obtain the following calculations of variances,
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1. Σ44 = V(θj3,1|,Xj4,Xj3) = τ 2
3

⇒ Σ44 = τ 2
3

2. Σ33 = V(θj4,2|,Xj4,Xj3)

= E(V(θj4,2|Yj3, θj3,1, ,Xj4,Xj3)|,Xj4,Xj3)

+ V(E(θj4,2|Yj3, θj3,1, ,Xj4,Xj3)|,Xj4,Xj3)

= τ 2
4 + µ2V(θ3j|,Xj4,Xj3) = τ 2

4 + µ2τ 2
3

⇒ Σ33 = τ 2
4 + µ2τ 2

3

3. Σ22 = V(Yj3|,Xj4,Xj3)

= E(σ2
3Inj3|,Xj4,Xj3) + V(Xj3β2 + ιnj3θj3,1|,Xj4,Xj3)

= σ2
3Inj3 + ιnj3τ

2
3 ι
>
nj3

= σ2
3Inj3 + τ 2

3nj3
1
nj3

ιnj3ι
>
nj3

= σ2
3Inj3 + τ 2

3nj3J̄nj3

= σ2
3Enj3 + (σ2

3 + τ 2
3nj3)J̄nj3

⇒ Σ22 = σ2
3Enj3 + (σ2

3 + τ 2
3nj3)J̄nj3

4. Σ11 = V(Yj4|,Xj4,Xj3)

= E(σ2
4Inj4|,Xj4,Xj3) + V(Xj4β4 + ιnj4θj4,2|,Xj4,Xj3)

= σ2
4Inj4 + ιnj4(τ 2

4 + µ2τ 2
3 )ι>nj4

= σ2
4Inj4 + (τ 2

4 + µ2τ 2
3 )nj4J̄nj4

= σ2
4Enj3 + (σ2

4 + (τ 2
4 + µ2τ 2

3 )nj4)J̄nj4

⇒ Σ11 = σ2
4Enj4 + (σ2

4 + (τ 2
4 + µ2τ 2

3 )nj4)J̄nj4
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From the section 3.2.1, one can obtain the following calculations of variances,

1. Σ34 = Cov (θj4,2, θj3,1|,Xj4,Xj3)

= Cov (µθj3,1, θj3,1|,Xj4,Xj3) = µV (θj3,1, θj3,1|,Xj4,Xj3) = µτ 2
3

⇒ Σ34 = µτ 2
3

2. Σ24 = Cov (Yj3, θj3,1|,Xj4,Xj3)

=Cov
(
Xj3β2 + ιnj3θj3,1, θj3,1|,Xj4,Xj3

)
= ιnj3V (θj3,1|,Xj4,Xj3)

= ιnj3τ
2
3

⇒ Σ24 = ιnj3τ
2
3

3. Σ23 = Cov (Yj3, θj4,2|,Xj4,Xj3)

= Cov
(
Xj3β2 + θj3,1ιnj3 , θj4,2|,Xj4,Xj3

)
= Cov (θj3,1, θj4,2|,Xj4,Xj3) ιnj3 = µτ 2

3 ιnj3

⇒ Σ23 = µτ 2
3 ιnj3

4. Σ14 = Cov (Yj4, θj3,1|,Xj4,Xj3)

= Cov
(
Xj4β4 + θj4,2ιnj4 , θj3,1|,Xj4,Xj3

)
= Cov (θj3,1, θj4,2|,Xj4,Xj3) ιnj4

= µτ 2
3 ιnj4

⇒ Σ14 = µτ 2
3 ιnj4

5. Σ13 = Cov (Yj4, θj4,2|,Xj4,Xj3)

= Cov
(
Xj4β4 + θj4,2ιnj4 , θj4,2|,Xj4,Xj3

)
= V (θj4,2|,Xj4,Xj3) ιnj4

= (τ 2
4 + µ2τ 2

3 )ιnj4

⇒ Σ14 = (τ 2
4 + µ2τ 2

3 )ιnj4

6. Σ12 = Cov (Yj4,Yj3|,Xj4,Xj3)

= Cov
(
Xj4β4 + θj4,2ιnj4 ,Xj3β2 + θj3,1ιnj3|,Xj4,Xj3

)
= Cov

(
θj4,2ιnj4 , θj3,1ιnj3|,Xj4,Xj3

)
= µτ 2

3 ιnj4ι
>
nj3

⇒ Σ12 = µτ 2
3 ιnj4ι

>
nj3
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C.1.3 Inverse of a matrix

Let, A =
 A11 A12

A22

 a symmetric matrix, such that; AB = I, where I is the

identity matrix, ie, it is diagonal matrix of 1>s and B is the inverse matrix of A. Then,

AB =
 A11 A12

A22

 B11 B12

B22


=

 A11B11 + A12B>12 A11B12 + A12B22

A>12B12 + A22B22


=

 I 0
I



This way,

I = A11B11 + A12B>12 (C.1)

0 = A11B12 + A12B22 (C.2)

I = A>12B12 + A22B22 (C.3)

Therefore, from (C.2) A11B12 = −A12B22 ⇒ B12 = −A−1
11 A12B22, substituting

this equality into equation (C.3), it is obtained the following;

I = −A>12A−1
11 A12B22 + A22B22

I = (A22 −A>12A−1
11 A12)B22

⇒ B22 = (A22 −A>12A−1
11 A12)−1.
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Otherwise, substituting B12 into equation (C.1), it is obtained the following;

I = A11B11 + A12(−A−1
11 A12B22)>

= A11B11 −A12B22A>12A−1
11 /A−1

11

⇒ A−1
11 = B11 −A−1

11 A12B22A>12A−1
11

⇒ B11 = A−1
11 + A−1

11 A12B22A>12A−1
11

⇒ B11 = A−1
11 (I + A12B22A>12A−1

11 )

Therefore,

B =
 B11 B12

B22

 =
 A−1

11 (I + A12B22A>12A−1
11 ) −A−1

11 A12B22

B22


where B22 = (A22 −A>12A−1

11 A12)−1.
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AB =
 A11 A12

A22

 B11 B12

B22


=

 A11B11 + A12B>12 A11B12 + A12B22

A>12B12 + A22B22


=

 A11A−1
11 (I + A12B22A>12A−1

11 ) + A12(−A−1
11 A12B22)> A11B12 + A12B22

A>12B12 + A22B22


=

 (I + A12B22A>12A−1
11 )−A12B22A>12A−1

11 A11B12 + A12B22

A>12B12 + A22B22


=

 I −A11A−1
11 A12B22 + A12B22

−A>12A−1
11 A12B22 + A22B22


=

 I A12B22 + A12B22

(−A>12A−1
11 A12 + A22)B22


=

 I 0
(A22 −A>12A−1

11 A12)B22


=

 I 0
B−1

22 B22


=

 I 0
I



It demonstrated that B is the inverse of the symmetric matrix A
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Inverse of variance-covariance matrix

The variance-covariance matrix correspond to,

Σ =
 Σ11 Σ12

Σ22


Therefore, using appendix C.1.3 be have to,

Σ−1 =
 Σ−1

11 (I + Σ12GΣ>12Σ−1
11 ) −Σ−1

11 Σ12G
G



where G = (Σ22 − Σ>12Σ−1
11 Σ12)−1.

Now, in this case, model of two cohorts,

 Yj4

Yj3
Xj4,Xj3

 ∼ N

 µj4

µj3

 ;
 Σ11 Σ12

Σ22


the elements of variance covariance matrix correspond to,

Σ11 = σ2
4Enj4 + (σ2

4 + (τ 2
4 + µ2τ 2

3 )nj4)J̄nj4

Σ11 = σ2
4Enj4 + l4J̄nj4 , where l4 = σ2

4 + (τ 2
4 + µ2τ 2

3 )nj4

Σ12 = ιnj4ι
>
nj3
µτ 2

3

Σ22 = σ2
3Enj3 + (σ2

3 + τ 2
3nj3)J̄nj3

Σ22 = σ2
3Enj3 + l2J̄nj3 , where l2 = σ2

3 + τ 2
3nj3

166 Marı́a Inés Godoy Ávila
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therefore

Σ−1
11 = (1/σ2

4)Enj4 + (1/l4)J̄nj4

Σ−1
22 = (1/σ2

3)Enj4 + (1/l2)J̄nj3
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continue with the calculations of the matrix elements Σ−1, then

G =
(
σ2

3Enj3 + l2J̄nj3−

− ιnj3ι
>
nj4
µτ 2

3

(
(1/σ2

4)Enj4 + (1/l4)J̄nj4

)
ιnj4ι

>
nj3
µτ 2

3

)−1

=
(
σ2

3Enj3 + l2J̄nj3 − nj4µτ 2
3 (1/l4)ιnj3ι

>
nj3
µτ 2

3

)−1

=
(
σ2

3Enj3 +
(
l2 − nj3nj4µ2τ 4

3 (1/l4)
)

J̄nj3

)−1

=
(
σ2

3Enj3 + r2J̄nj3

)−1
, where r2 =

(
l2 − nj3nj4µ2τ 4

3 (1/l4)
)

= (1/σ2
3)Enj3 + (1/r2)J̄nj3

⇒ G = (1/σ2
3)Enj3 + (1/r2)J̄nj3

Σ−1
11 Σ12G =

(
(1/σ2

4)Enj4 + (1/l4)J̄nj4

) (
ιnj4ι

>
nj3
µτ 2

3

)
(
(1/σ2

3)Enj3 + (1/r2)J̄nj3

)
=

(
(1/σ2

4)Enj4 + (1/l4)J̄nj4

) (
ιnj4ι

>
nj3
µτ 2

3 /r2
)

=
(
µτ 2

3 /(r2l4)
)
ιnj4ι

>
nj3

⇒ Σ−1
11 Σ12G =

(
µτ 2

3 /(r2l4)
)
ιnj4ι

>
nj3

Σ−1
11 (I + Σ12GΣ>12Σ−1

11 ) =
(
(1/σ2

4)Enj4 + (1/l4)J̄nj4

)
(
I + ιnj4ι

>
nj3
µτ 2

3

(
µτ 2

3 /(r2l4)
)
ιnj3ι

>
nj4

)
=

(
(1/σ2

4)Enj4 + (1/l4)J̄nj4

)
(
I + nj3µ

2τ 4
3 /(r2l4)ιnj4ι

>
nj4

)
=

(
(1/σ2

4)Enj4 + (1/l4)J̄nj4

)
(
I + nj3nj4µ

2τ 4
3 /(r2l4)J̄nj4

)
= (1/σ2

4)Enj4 + (1/l4)J̄nj4 + nj3nj4µ
2τ 4

3 /(r2l
2
4)J̄nj4

= (1/σ2
4)Enj4 +

(
1/l4 + nj3nj4µ

2τ 4
3 /(r2l

2
4)
)

J̄nj4

⇒ Σ−1
11 (I + Σ12GΣ>12Σ−1

11 ) = (1/σ2
4)Enj4 +

(
1/l4 + nj3nj4µ

2τ 4
3 /(r2l

2
4)
)

J̄nj4
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this way,

Σ−1 =


(1/σ2

4)Enj4 + (1/l4 + nj3nj4µ
2τ 4

3 /(r2l
2
4)) J̄nj4 − (µτ 2

3 /(r2l4)) ιnj4ι
>
nj3

(1/σ2
3)Enj3 + (1/r2)J̄nj3



However, note that

(
1/l4 + nj3nj4µ

2τ 4
3 /(r2l

2
4)
)

= 1
l24

(
l4 + 1

r2
nj3nj4µ

2τ 4
3

)
= 1
r2l24

(
r2l4 + nj3nj4µ

2τ 4
3

)
= 1
r2l24

(
(l2 − nj3nj4µ2τ 4

3 /l4)l4 + nj3nj4µ
2τ 4

3

)
= 1
r2l24

(
(l2l4 − nj3nj4µ2τ 4

3 ) + nj3nj4µ
2τ 4

3

)
= 1
r2l24

(l2l4)

= l2
r2l4

This way,

Σ−1 =


(1/σ2

4)Enj4 + (l2/(r2l4)) J̄nj4 − (µτ 2
3 /(r2l4)) ιnj4ι

>
nj3

(1/σ2
3)Enj3 + (1/r2)J̄nj3


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C.1.4 Determinant of block matrices

Suppose A, B, C, and D are matrices of dimension n × n, n ×m, m × n, and m ×m,
respectively. Then, from the Leibniz formula, or from a decomposition like one has

 A B

C D

 =
 A 0
C Im

 In A−1B

0 D − CA−1B


This way, when A is invertible, one has∣∣∣∣∣∣

 A B

C D

∣∣∣∣∣∣ = |A||D − CA−1B|

Determinant of variance-covariance matrix

The variance-covariance matrix correspond to,

Σ =
 Σ11 Σ12

Σ22


Therefore, using appendix C.1.4 be have to,

|Σ| = |Σ11||Σ22 − Σ21Σ−1
11 Σ12|

Now, in this case, model of two cohorts, the elements of variance covariance matrix
correspond to,
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Σ11 = σ2
4Enj4 + (σ2

4 + (τ 2
4 + µ2τ 2

3 )nj4)J̄nj4

Σ11 = σ2
4Enj4 + l4J̄nj4 , where l4 = σ2

4 + (τ 2
4 + µ2τ 2

3 )nj4

Σ12 = ιnj4ι
>
nj3
µτ 2

3

Σ22 = σ2
3Enj3 + (σ2

3 + τ 2
3nj3)J̄nj3

Σ22 = σ2
3Enj3 + l2J̄nj3 , where l2σ

2
3 + τ 2

3nj3

Therefore,

|Σ11| =
∣∣∣σ2

4Enj4 + l4J̄nj4

∣∣∣
=

nj4∏
i=1

λi whereλiare the eigen values

= σ
2(nj4−1)
4 l4

Σ21Σ−1
11 Σ12 = µ2τ 4

3 ιnj3ι
>
nj4

(
1
σ2

4
Enj4 + 1

l4
J̄nj4

)
ιnj4ι

>
nj3

= nj4µ
2τ 4

3 ιnj3

1
l4
ι>nj3

= nj3nj4µ
2τ 4

3 J̄nj3

∣∣∣Σ22 − Σ21Σ−1
11 Σ12

∣∣∣ =
∣∣∣σ2

3Enj3 + l2J̄nj3 − nj3nj4µ2τ 4
3 J̄nj3

∣∣∣
=

∣∣∣σ2
3Enj3 + (l2 − nj3nj4µ2τ 4

3 )J̄nj3

∣∣∣
= σ

2(nj3−1)
3

(
l2 − nj3nj4µ2τ 4

3

)

This way,
|Σj| = σ

2(nj4−1)
4 σ

2(nj3−1)
3 l4

(
l2 − nj3nj4µ2τ 4

3

)
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C.1.5 School effects

Expected of school effects

αj =E

 θj4,2

θj3,1
Xj4,Xj2

+ Cov

 θj4,2

θj3,1
;

Yj4
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where
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Variance of school effects
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C.2 Study of Simulation

C.2.1 Results in scenario I, µ = 5

Table C.1: Results of Monte Carlo simulations of components variance in 2HLM model,
with µ = 5

Monte Carlo estimations
Real Sample= 10 Sample= 50 Sample= 100 Sample= 500

µ 5 4.998 (0.113) 4.957 (0.238) 5.047 (0.231) 5.006 (0.226)

σ2
3 729 724.633 (13.905) 730.450 (11.869) 728.943 (13.575) 728.852 (11.519)

σ2
4 900 895.184 (12.494) 900.134 (17.582) 902.952 (13.473) 899.340 (16.298)

τ2
3 100 97.939 (7.281) 99.349 (9.366) 97.615 (9.354) 99.793 (10.768)

τ2
4 144 160.096 (61.952) 143.173 (81.978) 139.715 (87.748) 140.902 (90.239)

Table C.2: Results of Monte Carlo simulations of fixed effects on 2HLM model, with
µ = 5

Monte Carlo estimations
Real Sample= 10 Sample= 50 Sample= 100 Sample= 500

β4


7.0
0.9

15.0
5.0


6.986 (0.179)
0.905 (0.022)

14.998 (0.032)
4.997 (0.021)

6.999 (0.187)
0.901 (0.016)

15.001 (0.035)
5.000 (0.020)

6.987 (0.187)
0.899 (0.017)

14.997 (0.035)
5.002 (0.021)

6.992 (0.176)
0.899 (0.017)

15.001 (0.035)
5.000 (0.022)

β3


2.0
0.5

20.0
0.5


2.018 (0.141)
0.480 (0.146)

20.011 (0.025)
0.499 (0.014)

2.007 (0.320)
0.492 (0.321)

20.001 (0.029)
0.502 (0.017)

2.039 (0.304)
0.463 (0.303)

19.999 (0.035)
0.497 (0.018)

1.994 (0.338)
0.505 (0.337)

19.999 (0.033)
0.499 (0.017)
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C.2. STUDY OF SIMULATION

Table C.3: Results of Monte Carlo simulations of variance components in 1HLM model,
with µ = 5

Monte Carlo estimations
Real Sample= 10 Sample= 50 Sample= 100 Sample= 500

σ2
3 729 724.63 (13.906) 730.45 (11.870) 728.94 (13.576) 728.85 (11.520)

σ2
4 900 895.18 (12.495) 900.13 (17.583) 902.95 (13.473) 899.34 (16.298)

τ2
3 100 97.94 (7.282) 99.35 (9.366) 97.61 (9.354) 99.79 (10.768)

τ2
4 144 2606.82 (178.095) 2580.02 (201.911) 2620.50 (212.442) 2634.00 (232.330)

Table C.4: Results of Monte Carlo simulations of fixed effects estimation in 1HLM model,
with µ = 5

Monte Carlo estimations
Real Sample= 10 Sample= 50 Sample= 100 Sample= 500

β4


7.0
0.9

15.0
5.0


6.981 (0.181)
0.905 (0.022)

14.999 (0.032)
4.997 (0.021)

7.001 (0.188)
0.901 (0.016)

15.001 (0.036)
5.000 (0.020)

6.987 (0.186)
0.899 (0.017)

14.997 (0.036)
5.002 (0.021)

6.992 (0.176)
0.899 (0.017)

15.001 (0.035)
5.000 (0.022)

β3


2.0
0.5

20.0
0.5


2.018 (0.141)
0.480 (0.146)

20.011 (0.025)
0.499 (0.014)

2.007 (0.322)
0.492 (0.321)

20.001 (0.029)
0.502 (0.017)

2.039 (0.304)
0.463 (0.303)

19.999 (0.035)
0.497 (0.018)

1.994 (0.338)
0.505 (0.337)

19.999 (0.033)
0.499 (0.017)
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C.2.2 Results in scenario II, µ = 0.5

Table C.5: Results of Monte Carlo simulations of components variance in 2HLM model,
with µ = 0.5

Monte Carlo estimations
Real Sample= 10 Sample= 50 Sample= 100 Sample= 500

µ 0.5 0.542 (0.0833) 0.498 (0.084) 0.494 (0.0811) 0.5 (0.0932)

σ2
3 729 731.831 (15.5124) 730.304 (12.8073) 729.225 (10.9322) 729.457 (11.6532)

σ2
4 900 905.915 (11.5656) 893.665 (14.7667) 901.438 (14.0915) 899.972 (15.5468)

τ2
3 100 100.422 (14.7331) 101.656 (10.6117) 100.505 (9.7297) 99.597 (10.3115)

τ2
4 144 140.523 (18.1887) 143.08 (15.28) 146.446 (13.4957) 142.284 (16.1153)

Table C.6: Results of Monte Carlo simulations of fixed effects estimation in 2HLM model,
with µ = 0.5

Monte Carlo estimations
Real Sample= 10 Sample= 50 Sample= 100 Sample= 500

β4


7.0
0.9

15.0
5.0


7.046 (0.102)
0.907 (0.012)

14.990 (0.018)
4.992 (0.011)

6.998 (0.106)
0.900 (0.009)

15.001 (0.019)
4.999 (0.009)

7.008 (0.111)
0.899 (0.010)

15.002 (0.020)
5.000 (0.011)

7.004 (0.106)
0.900 (0.009)

14.998 (0.019)
5.000 (0.010)

β2


2.0
0.5

20.0
0.5


2.036 (0.148)
0.461 (0.147)

19.993 (0.019)
0.503 (0.011)

2.022 (0.218)
0.477 (0.222)

20.001 (0.019)
0.500 (0.010)

2.013 (0.208)
0.4863 (0.209)
20.001 (0.018)
0.500 (0.009)

1.999 (0.216)
0.5009 (0.215)
20.000 (0.018)
0.500 (0.010)

177 Marı́a Inés Godoy Ávila
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Table C.7: Results of Monte Carlo simulations of variance components estimation in
1HLM model, with µ = 0.5

Monte Carlo estimations
Real Sample= 10 Sample= 50 Sample= 100 Sample= 500

σ2
3 729 731.831 (15.5124) 730.304 (12.8073) 729.225 (10.9322) 729.457 (11.6532)

σ2
4 900 905.915 (11.5656) 893.665 (14.7667) 901.438 (14.0915) 899.972 (15.5468)
τ2

3 100 100.422 (14.7331) 101.656 (10.6117) 100.505 (9.7297) 99.597 (10.3115)

τ2
4 144 169.989 (14.3712) 168.783 (16.2507) 171.643 (15.1116) 167.929 (17.4677)

Table C.8: Results of Monte Carlo simulations of fixed effects estimation in 1HLM model,
with µ = 0.5

Monte Carlo estimations
Real Sample= 10 Sample= 50 Sample= 100 Sample= 500

β4


7.0
0.9

15.0
5.0


7.046 (0.101)
0.907 (0.012)

14.990 (0.018)
4.992 (0.011)

6.998 (0.106)
0.900 (0.009)

15.001 (0.019)
4.999 (0.009)

7.008 (0.111)
0.899 (0.010)

15.002 (0.020)
5.000 (0.011)

7.004 (0.106)
0.900 (0.009)

14.998 (0.019)
5.000 (0.010)

β3


2.0
0.5

20.0
0.5


2.036 (0.148)
0.461 (0.147)

19.993 (0.019)
0.503 (0.011)

2.022 (0.218)
0.477 (0.222)

20.001 (0.019)
0.500 (0.010)

2.013 (0.208)
0.486 (0.208)

20.001 (0.018)
0.500 (0.009)

1.999 (0.216)
0.500 (0.215)

20.000 (0.018)
0.500 (0.010)
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