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Garćıa-Zattera, M. J., Jara, A., Lesaffre, E. & Declerck, D. (2007).
Conditional independence of a multivariate binary data with an application
in caries research. Computational Statistics and Data Analysis 51 3223–3234.

Chapter 3:
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Garćıa-Zattera, M. J., Jara, A., Lesaffre, E. & Marshall, G. (2010).
Multivariate modelling of a monotone disease process in the presence of
misclassification. In A. Bowman, ed., Proceedings of the 25th Workshop of
Statistical Modelling. Glasgow, UK: University of Glasgow, 221–226.
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Mutsvari, T., Lesaffre, E., Garćıa-Zattera, M. J., Diya, L. & De-

clerck, D. (2010). Factors that influence data quality in caries experience
detection: a multi-level modeling approach. Caries Research 44(5) 438–444.

2009

Riquelme, A., Arrese, M., Soza, A., Morales, A., Baudrand, R.,
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Summary

Oral diseases, such as dental caries, are a major health problem worldwide. Even
though the prevalence of dental caries in children of Western countries has declined
considerably in the last three decades, the disease has now become concentrated in
a small group of children. Only a small proportion of the population experiences
50% of all caries lesions. The most likely explanation for the difference in oral
health seems to be socio-economic environmental factors and it occurs during
childhood. Therefore, to improve dental health, early identification of groups at a
particular risk of developing caries becomes essential.

The identification of risk groups for dental caries is challenging because often
oral health data show a complex structure. Caries experience (defined as past
or present caries on teeth) data have a hierarchical structure (mouth, jaw, tooth,
surface on tooth) with the lowest levels of highest interest to oral health researchers.
This leads to the analysis of high dimensional correlated data, because events on
tooth surfaces of the same child are dependent and, therefore, the conclusions
arising from statistical methods ignoring such an association may be misleading.
On top of that, the detection of dental caries might be difficult for a variety of
reasons. Hence, misclassification of dental caries is likely to happen in practice.
The fact that scoring caries is done with considerable error further complicates
inference. The previous complexities of dental caries data sets, make necessary
the development of adequate statistical methods that take into account all these
aspects of the data at the same time in order to obtain valid inferences.

The understanding of the association structure of the caries process is important
for the understanding of the etiology of the disease and can help the dentists
in optimizing their clinical examination of the patient and direct preventive and
restorative approaches. Motivated by dental data gathered from a longitudinal
oral health study conducted in Flanders (Belgium), the Signal-Tandmobielr study,
we have studied the interpretation and the effect of the misclassification on the
association parameters associated with two models for the analysis of multivariate
binary data.

xiii



xiv SUMMARY

We have also proposed uni- and multi-variate Markov models for the analysis
of longitudinal monotone binary data subject to misclassification. These models
account for the effects of the covariates on the prevalences and incidences, and
allow for the existence of different classifiers. Empirical and theoretical evidence
are provided to show that the model parameters can be estimated from the main
data without the need of external information on the misclassification parameters.
In the multivariate Markov model, the joint distributions are defined through
the specification of compatible full conditional distributions. The proposed
multivariate hidden Markov model permits the study of the within- and across-
time association parameters among the responses.



Samenvatting

Mondziekten, zoals tandcariës, zijn nog steeds een belangrijk gezondheidsprobleem
en dit wereldwijd. Hoewel de prevalentie van cariës bij kinderen in de westerse
landen aanzienlijk is gedaald in de laatste drie decennia, merken we dezer dagen een
polarisatie op van het fenomeen. Namelijk cariës is nu vooral geconcentreerd in een
vrij kleine groep van kinderen en dit reeds vanaf een zeer jonge leeftijd. Dit verschil
in mondgezondheid is terug te brengen tot een verschil in sociaal-economische
omgevingsfactoren. Om de tandheelkundige gezondheid in de populatie in zijn
globaliteit te verbeteren, is daarom de vroege identificatie van de hoog risico groep
(voor het ontwikkelen cariës) van essentiëel belang.

De identificatie van risicofactoren voor tandcariës (actieve of behandelde lesies)
kan veeleisend zijn omwille van de hierarchische structuur van de gegevens.
Tandcariësgegevens hebben namelijk een hiërarchische structuur (mond, tand,
tandvlak) waarbij vooral het tandvlak de meeste interesse wegdraagt van de
tandarts. De zoektocht naar risicofactoren voor tandcariës (nog actief of ontstaan
in het verleden en verholpen) leidt snel tot statistische technieken voor hoog-
dimensionale gecorreleerde data. Immers tandoppervlakken binnen éénzelfde
mond zijn blootgesteld aan dezelfde omgevingsfactoren, bvb diëet en tandhygiëne.
Het negeren van deze structuur in de statistische analyse kan leiden tot misleidende
conclusies.

Daarenboven is de diagnose van tandcariës minder triviaal dan op het eerste gezicht
de meesten vermoeden. De cariësstatus wordt immers vaak verkeerd ingeschat,
men spreekt dan van misclassificatie van de cariësstatus. Uiteraard compliceert
deze misclassificatie verder de besluittrekking. De statistische technieken zullen
dan ook moeten rekening houden met dit scoringsproces om correcte besluiten te
bekomen.

Het begrijpen van de spatiale spreiding van het cariësproces in de mond kan
inzicht geven in het ontstaan van de ziekte en kan de tandartsen helpen om
de klinische behandeling van de patiënt, zowel preventief als restauratief, te
optimaliseren. Gemotiveerd door tandheelkundige gegevens uit een longitudinaal
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mondgezondheidsstudie uitgevoerd in Vlaanderen (België), genaamd de Signal-
Tandmobielr studie, hebben we de spatiale structuur van tandcariës onderzocht
alsook de impact van het fout scoren hierop en dit met behulp van twee multivariate
statistische modellen voor binaire data. We hebben verder ook uni-en multi-
variate Markov modellen voorgesteld voor de analyse van longitudinale monotone
binaire data onderworpen aan misclassificatie. Deze modellen meten het effect
van covariaten op de prevalenties en incidenties en houden rekening met het feit
dat meerdere tandheelkundige scoorders de gegevens noteerden. Empirische en
theoretische details worden gegeven die moeten aantonen dat de model parameters
kunnen worden geschat zonder gebruik te maken van externe validatie data. In
het multivariate Markov-model zijn de gezamenlijke verdelingen bepaald aan de
hand van compatibele conditionele verdelingen. Het voorgestelde latente Markov
model laat toe om de verbanden tussen tandcariës (binair gescoord) te schatten
zowel cross-sectioneel als longitudinaal.



Preface

The developments of this thesis were motivated by data gathered in a longitudinal
oral health study, the Signal-Tandmobielr study. The complex structure of dental
data, makes unfeasible the use of standard statistical approaches and requires the
development of adequate statistical methods that take into account all challenging
aspects involved in order to obtain valid inferences. This thesis is devoted to
the study and development of models for the analysis of multivariate binary data.
Despite the fact that our motivation comes from dental data, the results equally
apply to other research areas. Since the majority of the chapters of this manuscript
correspond to either published or submitted papers, they are self-contained and
every appendix corresponds to the supplementary material of the corresponding
original paper.

Chapter 1 gives an introduction to oral health issues and describes the motivating
data. An overview of the main topics involved in the analysis of dental data is also
provided in this chapter. Specifically, Section 1.5 describes approaches to analyzing
correlated data and Section 1.4 presents an outline of the effect of misclassification
and different approaches to correct for it.

Even though, in general, the main interest is on the inferences on the mean
structure and the association parameters can be considered as nuisance, in many
situations the association structure is as crucial as the mean structure to answer the
scientific questions. For instance, in oral health research it is of interest to assess
the association of caries experience among different teeth. This knowledge can help
the dentists in their clinical examination of the patient and in the understanding
of the etiology of the disease. In Chapter 2 we study the relationship between the
association structure induced by two different statistical models for the analysis of
correlated binary data. We present a numerical example and a theoretical proof
showing that the results and conclusions can be markedly different depending on
the model considered.

Binary variables in epidemiological studies are often subject to misclassification.
The diagnosis of caries experience is not an easy task, therefore misclassification is
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likely to happen in oral health data. The effect of misclassification on the statistical
inference has been widely investigated in the literature and, as a consequence,
several approaches have been proposed to correct for it. However, most of the
literature has been focused on the effect of misclassification on the inferences of
regression coefficients and relatively less attention has been paid on its effect on
the association parameters. Chapter 3 evaluates the effect of misclassification on
the inferences about the association parameters induced by two models for the
analysis of multivariate binary data.

The approaches proposed to correct for misclassification in cross-sectional studies
rely on the availability of extra information about the misclassification process.
Since this information is difficult to obtain, in Chapter 4 we investigate whether a
misclassified monotone process contains all the necessary information to identify
the model parameters without this extra information. In this chapter we study
the identifiability of the parameters of a simple hidden Markov Model and extend
it to allow the inclusion of covariates and different classifiers.

It is well known that the presence of misclassification implies a loss of power, which
might be strengthened in case of univariate analyzes. This lead us to extend the
simple hidden Markov model of Chapter 4 and to propose a multivariate hidden
Markov model for monotone data. In Chapter 5 we propose and evaluate the
small sample properties of a multivariate binary inhomogeneous Markov model in
which unobserved monotone response variables are subject to misclassification. A
Bayesian version of the model is described in detail where the multivariate baseline
distributions and Markov transition matrices are defined as a function of covariates,
throughout the specification of compatible full conditional distributions. In this
proposal, the association structure is studied trough within- and across-time odds
ratio parameters.

Finally, general conclusions and topics for future research are given in Chapter 6.
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otherwise.
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Chapter 1

Introduction and

Background Material

1.1 Why Oral Health?

Oral health means more than just an attractive smile. Poor oral health and
untreated oral diseases and conditions can have a significant impact on quality of
life. The link between oral infections and stroke, heart disease, and pre-term low-
birth-weight babies, is becoming well documented and accepted within the health
care community (see, e.g. Desvarieux et al., 2010). Likewise, more than 90% of all
systemic diseases have oral manifestations, meaning the dentist may be the first
health care provider to diagnose a health problem. Further, the early detection of
oral diseases, contributes to the early diagnosis, prevention and treatment of major
diseases like HIV/AIDS, which usually show up first in the form of oral fungal
infections and injuries, bacterial or viral infections, and cardiovascular diseases.

According to the World Health Organization, oral diseases such as dental
caries, periodontitis, and cancers of the mouth and pharynx are a major health
problem worldwide, affecting developed countries and, with increasing frequency,
developing countries, especially among poorer communities. The effects of oral
diseases on pain, suffering and reduced quality of life are extensive and expensive.
Treatment is estimated to represent between 5% and 10% of health costs in
industrialized countries, and is beyond the resources of many developing countries.
Dental caries and periodontal diseases have historically been considered the most
important global oral health burdens (World Health Organization, 2003). Dental
caries is the most prevalent oral disease in several Asian and Latin American
countries. Although it seems that the problem is less severe in most African
countries, the report states that, with the change in living conditions, is likely to
increase dental caries in many developing countries of that continent, especially
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due to growing consumption of sugars and inadequate exposure to fluorides.

Despite the fact that the past three decades have witnessed a dramatic decline
in the prevalence of dental caries in children in countries of the Western World
(see, e.g. Glass, 1982; Petersson & Bratthall, 1996), dental caries remains an
important childhood disease affecting a considerable proportion of young children.
About 10 to 15% of the children experience 50% of all caries lesions and 25
to 30% suffer 75% of the lesions (see, e.g. Marthaler et al., 1996). The most
likely explanation for the difference in oral health seems to be socio-economic
environmental factors, indicating that a considerable proportion of the target
group does not benefit from traditional preventive approaches (Hausen et al.,
2000). Therefore, the identification of groups at a particular risk of developing
caries becomes essential to improve dental health. In particular, the estimation of
the prevalence and incidence of dental caries, and the assessment of risk factors
and of the association of caries among different teeth, is of major importance to
direct preventive programs since childhood. This prevention is overriding in the
deciduous dentition, given that the presence of caries in the primary dentition
implies a higher risk of developing caries on the permanent teeth and accelerates
the emergence of the successors (see, e.g. Leroy et al., 2003)

1.2 Dental Caries and Diagnostic

Dental caries, also known as tooth decay or cavity, is a disease wherein bacterial
processes dissolve tooth enamel (outer layer of a tooth). This tissue progressively
breaks down, producing dental caries (cavities, holes in the teeth), followed by the
spread into the dentine and eventually the pulp. If left untreated, the disease can
lead to pain, tooth loss, infection, and, in severe cases, death.

All sugars or carbohydrates present in the food (e.g. sucrose, fructose, and glucose)
can easily remain in the mouth, sticking to the teeth if they are not cleaned
regularly after every meal. These sugars are defined fermentable because they can
be easily metabolized by the bacteria present in dental plaque to produce organic
acid compounds, very aggressive for teeth enamel. On the other hand, exposure
to alkali, such as sodium bicarbonate in saliva, reverses this process and aids in
remineralization. Therefore, a tooth (which is primarily mineral in content) is in a
constant state of back-and-forth de- and re-mineralization between the tooth and
surrounding saliva. When demineralization proceeds faster than remineralization,
dental caries occurs (see, e.g. Moynihan, 2000).

The presentation of caries is highly variable. Initially, it may appear as a small
chalky area that may eventually develop into a large cavitation. Sometimes caries
may be directly visible, however other methods of detection such as radiographs
are used for less visible areas of teeth and to judge the extent of destruction.
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Caries lesions are commonly scored in four levels of severity: d4 (dentine caries
with pulpal involvement), d3 (dentine caries with obvious cavitation), d2 (hidden
dentine caries) and d1 (white or brown-spot initial lesions in enamel without
cavitation) (see, e.g. Fyffe et al., 2000; Pitts, 2004). Depending on the extent
of tooth destruction, various treatments can be used to restore teeth to proper
form, function, and aesthetics, but so far, there is no known method to regenerate
large amounts of tooth structure. Instead, dental health organizations advocate
preventive and prophylactic measures, such as regular oral hygiene and dietary
modifications, to avoid dental caries.

1.3 Motivation

The motivation for the developments of this thesis, comes from dental data
gathered in a longitudinal study. In the next sections, we introduce the motivating
data set and explain the main difficulties found in this kind of data.

1.3.1 Motivating Data Set: the Signal-Tandmobiel® study

The Signal-Tandmobiel® (ST) study is a longitudinal prospective oral health
screening study conducted in Flanders (the north part of Belgium) between 1996
and 2001. This study involved a sample of Flemish children born in 1989, which
was obtained using a technique of stratified cluster (i.e. school) sampling without
replacement. The fifteen considered strata were obtained combining the three
types of educational systems (public, municipal and private schools) and the
five Flemish provinces (West Flanders, East Flanders, Brabant, Antwerp and
Limburg).

The selection was performed in such a way that each child had the same probability
of being selected. Whenever a school was selected, all children in the first class of
the selected school were included. Selecting individual children instead of schools
would not have been feasible for ethical, practical and economical reasons. The
schools were selected with a probability proportional to their size, i.e. the number
of children in the first year.

The sample represents 7.3% of the corresponding Flemish population of the same
age and consists of 4 468 schoolchildren, 2 153 (48.2%) girls and 2 315 (51.8%)
boys. Detailed oral health data at tooth and tooth-surface level (caries experience,
gingivitis, etc.) were annually collected on pre-scheduled visits (from the age of 7
to the age of 12) by a team of 16 dental examiners whose examination method was
calibrated every six months. In addition, data on oral hygiene and dietary habits
were collected using a questionnaire completed by the parents. Every survey year
117 to 1 177 children were not available for examination. The major reasons for
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non-participation were not related to the objectives of the study: illness or absence
on the day of the examination or change of school. Hence the data set consists
of a series of at most 6 longitudinal dental observations and reported oral health
habits.

In order to maintain a high level of intra- and inter-examiner reliability during
the study period, three calibration exercises (involving 92, 32 and 24 children,
respectively) were devoted to the scoring of caries experience at d3 level, according
to the guidelines of training and calibration published by the British Association
for the Study of Community Dentistry (Pitts et al., 1997). At the end of each of the
three calibration exercises the sensitivity and specificity of each dental examiner
vis-a-vis a benchmark examiner was determined.

The information obtained in the calibration exercises were used as validation data
set in previous work of the research team (see, e.g. Mwalili et al., 2005). However,
these validation data were not taken at random from the main data. Rather
a school was selected with a presumed high prevalence of caries experience. A
pure random sample would be impractical, but also a validation data set sampled
in a clustered manner (first sampling schools and then children within schools)
would imply a too high investment in time and personnel. Further, both sampling
approaches would likely involve too few children with caries experience implying
that the sensitivity would be poorly estimated.

For a more detailed description of the study design and research methods we refer
to Vanobbergen et al. (2000).

Here, we concentrate on caries experience on deciduous or permanent molars,
which is defined as a binary variable indicating whether a tooth is decayed at d3

level, missing or filled due to caries. The FDI (Federation Dentaire Internationale)
notation to indicate the position of a tooth within the oral cavity is used
throughout this thesis. In this two-digit notation, the first digit represents the
quadrant number (1 to 4 for permanent teeth and 5 to 8 for deciduous teeth)
starting with the maxillary right quadrant, moving around the maxillary arch to
the left, then down and back to the right, and ending with the mandibular right
quadrant. The second digit represents each tooth in the quadrant, numbered
distally from the midline. The upper and lower jaws are also referred to as
the maxilla and the mandible, respectively. Figure 1.1 (see page 7) shows the
numbering of the permanent (panel a) and deciduous (panel b) teeth according to
the FDI notation. Contralateral teeth (left-right), opponent teeth (upper-lower)
and diagonal teeth (upper left-lower right or vice versa) are specific pairs of teeth
that are analyzed within this manuscript.
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(a) (b)

Figure 1.1: Federation Dentaire Internationale notation for the position of
permanent (panel a) and deciduous (panel b) teeth. Maxilla = upper jaw,
mandible = lower jaw. Quadrants 1 and 4, and quadrants 5 and 8 are at the
right-hand side of the subject in panels (a) and (b), respectively. The left-hand
side of the subject corresponds to quadrants 2 and 3, and quadrants 6 and 7 for
permanent and deciduous teeth, respectively.

1.3.2 Challenging Statistical Problems

The analysis of oral health data and the identification of risk groups for dental
caries are often challenging due to the complex data structure. The following
three characteristics appear in most statistical problems related with dental data.

1. High dimensionality of the problem: there are more than 100 tooth surfaces
in the permanent dentition and, in caries research, dentists are interested in
lesions at tooth surfaces.

2. Correlation among measurements: events on tooth surfaces of the same
child are dependent and, therefore, the conclusions arising from statistical
methods ignoring such an association may be misleading. Furthermore, the
understanding of the association structure of the caries process is important
for the understanding of the etiology of the disease and can help the dentists
in optimizing their clinical examination of the patient and direct preventive
and restorative approaches.
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3. Misclassification: the diagnosis of dental caries might be difficult for a variety
of reasons. The process starts at microscopic level, passes initial stages of
visible demineralization without loss of tooth substance and confinement to
the enamel, which is difficult to detect. Additionally, nowadays composite
materials can imitate the natural enamel so well that it is sometimes difficult
to spot a restored lesion. Another reason is that the location of the cavity,
e.g. far back in the mouth, hampers the view of dental examiners. Hence,
overlooking dental caries is likely to happen in practice, but the dental
examiner could also classify discolorations as dental caries.

The previous characteristics of dental caries data sets arise also in other areas of
scientific research but usually independently, and have motivated the development
of statistical methods for each problem separately. However, in oral health research
these characteristics meet each other, requiring the development of adequate
statistical methods that take into account all these aspects of the data at the
same time in order to obtain valid inferences. Therefore, although this research
focuses on the development of statistical methodology for the analysis of dental
caries experience data, it equally applies to other research areas.

In Sections 1.4 and 1.5, we review the main issues of correlated data and
misclassification, respectively.

1.4 Approaches to Analyzing Correlated Data

Correlated data arise from many epidemiological studies. This term can be used
in a generic sense and understand it to encompass such structures as clustered
data, multivariate observations, repeated measurements, longitudinal data, and
spatially correlated data (Verbeke & Molenberghs, 2000).

The term clustered data is used whenever groups or clusters of individuals
are randomized to an intervention or when naturally occurring groups in the
population are randomly sampled. For example, families, households, hospitals
wards, neighborhoods, and schools are instances of naturally occurring clusters
in the population that might be the primary sampling units in a study. When
more than one characteristic is measured on the same unit, we are dealing with
multivariate observations. For instance, recording the presence or absence of caries
experience on all the teeth of the same child of the ST study, corresponds to
multivariate responses and individuals can be thought of as clusters. We refer
to repeated measurements when the same measure is collected multiple times for
the same subject but under different conditions. When repeated measurements
are collected to study change in a response variable over time as well as to relate
these changes in explanatory variables over time, we refer to longitudinal data.
The prime advantage of longitudinal studies, over cross-sectional ones, is their
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effectiveness for studying change, i.e. they can distinguish changes over time within
individuals from differences among people in their baseline levels, something that
a cross-sectional study cannot. Spatial data arise in a similar setting, but then the
interest is to asses the effect of one or more spatial dimensions, instead of time.

Whatever the nature of the correlation, the lack of independence among
observations must be accounted for when analyzing data from these studies in
order to make valid inferences. There are several models for analyzing correlated
data. In the following sections we give a brief overview of these models.

1.4.1 The Summary Statistic Approach

The simplest strategy to deal with correlated data is to avoid the multiple responses
of each experimental unit, generating a summary statistic (i.e. mean, median,
maximum, etc.) over all observations in the cluster. This produces independent
observations and therefore, standard statistical methods can be applied. The latter
is one of the main advantages of this approach, along with the fact that it is simple
and intuitive.

The possible loss of power and precision due to the decreased sample size and the
lack of a way to control for confounding at the site level, are some the disadvantages
of this approach.

1.4.2 Generalized Linear Models for Correlated Data

Generalized linear models (GLMs) (Nelder & Wedderburn, 1972) can deal with
continuous and discrete outcomes, and can be generalized to deal with unequal
cluster sizes and general correlation structures. GLMs assume that a suitable
transformation of the mean response is a linear function of the coefficients. Suppose
data contain I independent clusters. Let Yij denote the outcome for observation j
in cluster i (i = 1, . . . , I, j = 1, . . . , Ji). Let Y i = (Yi1, . . . , YiJi

)′ be the vector of
responses for cluster i and xij be a design vector for the jth response of cluster i.
If observations are independent of each other, the data can be fitted using a GLM
given by

g(µij) = x′
ijβ,

where µij = E(Yij |xij), β is the vector of regression coefficients quantifying the
covariate effect, and g(· ) is a monotone and differentiable function, known as the
link function, which provides the relationship between the linear predictor, x′

ijβ,
and the mean of the distribution function. For continuous responses, the link
function is usually the identity function g(u) = u. For binary responses, commonly
used link functions include the logit link g(u) = log{u/(1−u)}, the complementary
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log-log link g(u) = log{−log(1 − u)}, and the probit link g(u) = Φ−1(u), where
Φ(· ) is the cumulative distribution function of a standard normal variable.

In the presence of within-cluster associations, GLMs are no longer appropriate
and need to be extended to deal with correlated data. Depending on the target of
inference, there are three major extensions of GLMs for clustered data: marginal,
random effects, and conditional models. The selection of the class of models
depends on the research questions to be answered and on the assumptions the
investigator is willing to make. Below we provide an overview of these three
general approaches. For a deeper insight on GLMs to correlated data see, e.g.
Diggle et al. (2002), Molenberghs & Verbeke (2005) and Fitzmaurice et al. (2009).

Marginal Models

In marginal models, the regression of the response, Y i, on explanatory variables
is modelled separately from within-unit association. In a marginal model, a link
function is specified to connect the marginal expectation of a response, E(Yij |xij),
to the linear predictor without conditioning on unobserved random components or
on other outcomes, as opposed to random effects models and conditional models,
respectively. The term marginal is used to emphasize that the average response
over the sub-population that shares common values of the covariates, E(Yij |xij),
is being modelled. This implies that the regression coefficients have a population-
averaged interpretation. In other words, marginal models are natural analogues
for correlated data of GLMs for independent data.

It is important to note that these models assume that the conditional mean of the
jth response, given xi1, . . . , xiJi, depends only on xij , that is E(Yij |xi1, . . . , xiJi) =
E(Yij |xij). This assumption necessarily holds with time-invariant covariates and
time-varying covariates that are fixed by design of the study. However, the
assumption may no longer hold when a time-varying covariate changes randomly
over time. As a consequence, some precaution is required when fitting marginal
models with time-varying covariates that are not fixed by design of the study.
This problem has been studied by econometricians (see, e.g. Engle et al., 1983)
and statisticians (see, e.g. Robins et al., 1999), producing an extensive statistical
literature on this topic.

Parametric and semi-parametric marginal models have been discussed in the
literature. Examples of parametric models include the multivariate probit model
(Ashford & Sowden, 1970; Lesaffre & Molenberghs, 1991; Chib & Greenberg, 1998),
the bivariate log-normal and t-student models (Albert, 1992), the scale mixture
of normals (Chen & Dey, 1998), the multivariate logit model (O’Brien & Dunson,
2004), the multivariate skew-normal model (Chen, 2004), the Dale model (see, e.g.
Dale, 1986; Molenberghs & Lesaffre, 1994), the Bahadur model (Bahadur, 1961)
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and the marginal models of Heagerty (see, e.g. Heagerty & Zeger, 2000), among
many others.

Semi-parametrically specified models for multivariate categorical data have gained
popularity because their parameters can most often be conveniently estimated
using generalized estimating equations (GEE) (Liang & Zeger, 1986), which is
an extension of the quasi-likelihood approach. In semi-parametric models, a full
parametric assumption for the joint distribution of the multivariate responses
is not imposed, but a regression model for the mean responses (i.e. making
assumptions on the first and second moments of the responses). In particular,
the association parameters are considered as nuisance characteristics of the joint
distribution and left unspecified. By adopting a “working” assumption about
the correlation structure, the GEE approach yields consistent estimators of the
regression coefficients, even when the “working” association structure is not close to
the true correlation structure. The GEE estimate of β is essentially a multivariate
analog of the quasi-score function estimate based on quasi-likelihood method.
Estimation can be carried out using the iterative Fisher scoring algorithm. Semi-
parametric models where some association parameters are parametrically specified
have been discussed in Prentice (1988), Zhao & Prentice (1990), Carey et al. (1993),
among others.

Random Effects Models

Although marginal models account for correlated data, they do not provide
any explanation for the potential source of correlation among the responses.
The random effects approach provides a source for the within-unit association
introducing random effects in the model of the mean response. These models are
known as generalized linear mixed models (GLMMs), but in other areas, they are
also known as hierarchical, multilevel, or random coefficient models.

In GLMMs, the model for the mean response is conditional on measured exogenous
covariates and on unobserved random effects. The inclusion of the random effects
induces the marginal correlation among the responses, when averaged over their
distribution. In a GLMM, given a vector of random effects bi, the elements of
the response vector Y i are assumed to be conditionally independent following a
distribution from the exponential family, such that

g {E(Yij |β, bi)} = x′
ijβ + z′

ijbi

where β is a vector of fixed effects associated to the design vector xij and bi is
a vector of random effects associated with the design vector zij . The random
effects are assumed to be independent of the covariates and to have a common
multivariate distribution with mean zero, f(bi|D). Usual implementations of the
model, assume that f(bi|D) is a multivariate normal distribution, where D is the
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covariance matrix. The implied marginal distribution of Y i is given by

fi (Y i|β, D) =

∫ Ji∏

j=i

f (Yij |bi, β, D) f (bi|D) dbi, (1.1)

and the covariance between the observations within a cluster is given by

cov {Yij , Yik} = cov {E(Yij |β, bi), E(Yik|β, bi)} + E {cov(Yij , Yik|β, bi)}

= cov {µij , µik} + E(0)

= cov
{

g−1(x′
ijβ + z′

ijbi), g−1(x′
ikβ + z′

ikbi)
}

.

It is important to note that in general, the marginal distribution in expression (1.1)
no longer follows a GLM, due to the non-linearity of the link function typically
adopted in regression models for discrete responses. Furthermore, in these cases
the marginal mean of Y i is given by

E (Yij | β) = E {E(Yij | β, bi)}

= E
{

g−1(x′
ijβ + z′

ijbi)
}

,

which in general cannot be simplified. This shows that the interpretation of the
fixed effects parameters β is at the level of the conditional mean, given the random
effects, and not at the population level. In other words, the regression parameters
have cluster-specific interpretation because they represent the effects of covariates
on changes in an individual’s possible transformed mean response per unit change
in the covariate, while controlling for all other covariates and the random effects.

Since marginal models yield straightforward interpretation of the regression
coefficients, but the random effects approach offers a basis for the interpretation
of the association structure, some authors have sought for models that combine
the features of both approaches. For example, Heagerty (1999) and Heagerty
& Zeger (2000) have developed models that combine the versatility of GLMMs
for modelling the within-cluster association with a marginal regression model for
the marginal expectation of the responses. They refer to their general class of
models as marginalized random effects models. Unlike the standard GLMMs,
the marginalized random effects models of Heagerty (1999) have no closed form
expression for the conditional probability of response (conditional on the random
effects).
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Conditional Models

In a conditional model, the parameters describe a feature of responses, for
instance, expectation, probability, odds or logit, conditioning on values of the
other outcomes (Cox, 1972). A popular class of conditional models is given by the
so-called transition models, used for the analysis of longitudinal data. Members
of this class are extensions of GLMs for describing the conditional distribution
of each response Yij as an explicit function of the past responses Yi1, . . . , Yij−1

and covariates xij . Popular members of this class are Markov chains for which
the conditional distribution Yij | Yi1, . . . , Yij−1 depends only on the q prior
observations Yij−q , . . . , Yij−1. The integer q is referred to as the order of the
model. Examples of applications of binary Markov chains can be found in Korn
& Whittemore (1979), Stern & Coe (1984) and Zeger et al. (1985), among others.
Applications of Markov chains for count data can be found, for instance, in Wong
(1986) and Zeger & Qaqish (1988).

Transition models have been criticized because the interpretation of the regression
coefficient parameters of one response is conditional on the past responses
of the same subject, which is not necessarily of interest if the focus is on
marginal inferences. To overcome this problem, Azzalini (1994) proposed a non-
homogeneous first-order Markov chain, parameterized such that the regression
coefficients have a marginal interpretation. This approach has been extended by
Heagerty (2002) and Chen et al. (2009), to allow for more general dependence
structures.

Transition models are applicable for longitudinal data but not for other classes
of correlated data types. Conditionally specified models for correlated data can
be considered to account for more general association structures. An example
of this approach is the conditionally specified logistic regression model of Joe
& Liu (1996). These authors define a multivariate distribution for binary data
by specifying compatible Bernoulli conditional distributions with the conditional
probabilities expressed as logistic regression models. This model covers a wide
range of dependence structure, allows for the use of known diagnostic methods
for logistic regression in the model assessment, and belongs to the exponential
family, making the estimation process computationally feasible. Other examples
of this approach can be found, for instance, in Rosner (1984) and Connolly &
Liang (1988).

1.5 Measurement and Misclassification Errors

Measurement error occurs whenever we cannot exactly observe one or more
of the variables that enter into a model of interest and are present in nearly
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every discipline. When the true and observed values are both categorical, then
measurement error is more specifically referred to as misclassification. For instance,
in epidemiology, the outcome variable is often presence or absence of a disease, such
as AIDS, breast cancer, caries experience, etc. This is often assessed through an
imperfect diagnostic procedure, which can lead to either false positives or false
negatives.

There are two main issues in a misclassification problem: (i) the evaluation of
the consequences of the naive analyses which ignore the misclassification, and
(ii) the development of methods to correct for misclassification. With some
exceptions, correcting for measurement error requires information or data from
external sources. These aspects are reviewed in the following sections.

1.5.1 Effects of Misclassification

The effect of measurement errors has been studied at the response and covariate
levels. Much of the research interest in this area has been focused on measurement
error in the covariates, particularly in continuous covariates. We refer the reader
to Fuller (1987) and Carroll et al. (1995) for general overviews of measurement
error problems at the covariates level in multiple linear regression models and
GLMs, respectively. Errors in the response, however, has received relatively less
attention in the literature. In the remaining of the section we restrict ourselves to
misclassification on the response variables.

The effect of misclassification on the responses depends on whether the misclassi-
fication generating mechanism is non-differential or differential. Suppose the true
categorical response is denoted by Y and the possible error-corrupted response by
Y ∗. Consider a regression of the response Y on covariates X . Non-differential
misclassification of the response means Y ∗ is conditionally independent of Y given
X , i.e. f(Y ∗|Y, X) = f(Y ∗|Y ). On the other hand, if f(Y ∗|Y, X) 6= f(Y ∗|Y ),
differential misclassification of the response has occurred. Reviews on the effects
of misclassification include Dalenius (1977), Chen (1989) and Kuha & Skinner
(1997).

In an early reference, Bross (1954) showed that non-differential misclassification
on a binary response does not affect the validity of the significance test used
to compare samples from two populations but the power may be drastically
reduced. He also showed that severely biased estimates can be obtained when
misclassification is ignored. Tests about the difference between proportions are
further discussed by Rubin et al. (1956), Katz & McSweeney (1979), and Zelen &
Haitovsky (1991) for the binary case, and Mote & Anderson (1965) and Tenenbein
(1970) for the multinomial case. The bias associated to the estimator of relative risk
has been studied by Copeland et al. (1977) and Hofler (2005). Several authors have
extended these analyzes to the regression context (see, e.g. Buonaccorsi, 2010). In
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general, the results suggest that under non-differential misclassification the bias in
the regression coefficients is predictable in direction, namely toward the null value.
Contrary to popular misconceptions, however non-differential misclassification can
sometimes produce bias away from the null, if the response variable has more than
two levels (see, e.g. Dosemeci et al., 1990) or if the classification errors depend on
errors made in other variables (see, e.g. Chavance et al., 1992; Kristensen, 1992).

The effects of differential misclassification is unpredictable and the induced bias
can be in any direction. Because of that, some investigators go through elaborated
sampling designs to ensure that the misclassification will be non-differential.
Despite that, data manipulations can bring back the problem. For instance,
changes in the categorization of a misclassified variable may turn a non-differential
misclassification into a differential one (see, e.g. Wacholder et al., 1991), and also if
a non-differentially mismeasured continuous variable is dichotomized, differential
error may be induced (see, e.g. Flegal et al., 1991).

1.5.2 Approaches to Correcting for Misclassification

Different approaches to correcting for misclassification processes have been
developed to study the effect of misclassification errors and to protect the
validity of data analyzes. Such approaches have been applied in a number of
biostatistical contexts and analytic epidemiology. Specific scientific questions in
these contexts may require inferences about (i) an underlying biological process,
reflected in statistical associations that might be obscured or distorted by nuisance
misclassification, (ii) the misclassification process itself, or (iii) both the underlying
and misclassification processes.

The approaches to correcting for misclassification can be classified in two
major groups: (i) the approaches that correct the estimators obtained without
considering the misclassification process (naive estimators), and (ii) the approaches
that estimate the parameters of interest based on the proposal of a full probability
model for the observed and unobserved variables. Examples of the former includes
the matrix method (Barron, 1977; Morrissey & Spiegelman, 1999), the inverse
matrix method (Marshall, 1990), and the MC-SIMEX method (Küchenhoff et al.,
2006).

The proposal of a model for correcting for misclassification includes three
ingredients: (i) a model for the true (unobserved) values, which can be essentially
any statistical model, (ii) a misclassification model, which involves specification
of the relationship between the true and the observed values, and (iii) extra data,
information or assumptions that may be needed to correct for measurement error.
Using these ingredients, several authors have proposed model-based approaches for
correcting for misclassification in regression settings for uncorrelated or correlated
data under both differential and non-differential misclassification. We refer the
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reader to Geng & Asano (1989), Evans et al. (1996), Magder & Hughes (1997),
Neuhaus (1999), Paulino et al. (2003), Mwalili et al. (2005), Küchenhoff et al.
(2006), McGlothlin et al. (2008), and references therein, for different approaches
for the correction for misclassification in uncorrelated data contexts. Methods
for correcting for misclassified correlated data have been proposed by Espeland
et al. (1988), Espeland et al. (1989), Nagelkerke et al. (1990), Schmid et al. (1994),
Singh & Rao (1995), Albert et al. (1997), Cook et al. (2000), Rekaya et al. (2001),
Rosychuk & Thompson (2001), Neuhaus (2002), Rosychuk & Thompson (2003),
Paulino et al. (2005), Rosychuk & Islam (2009) and Roy & Banerjee (2009).

In all of the previously described approaches a misclassification model needs to be
assumed. The simplest misclassification model for misclassified binary data can
be completely described through the misclassification probabilities

P (Y ∗ = j|Y = k) = τjk, j, k ∈ {0, 1},

which may be located in a 2 × 2 matrix as follows:

Π =

(
τ00 1 − τ11

1 − τ00 τ11

)
,

where τ11 = P (Y ∗ = 1|Y = 1) is called the sensitivity of the measuring instrument
or examiner, and τ00 = P (Y ∗ = 0|Y = 0) is the specificity. In other words, the
sensitivity is the probability of testing positive when the disease is present, and
the specificity corresponds to the probability of testing negative when the disease
is absent.

In many practical situations, typically in cross-sectional studies, the available data
(main data) contain no information about the misclassification parameters. Thus,
to correct for misclassification, external information about these parameters is
needed. The auxiliary data sources can be grouped into two main categories:
internal study, i.e. a random subset of the primary data, and external study,
which corresponds to an independent study. An internal validation data set is the
ideal, because it can be used with all known analytical techniques, permits direct
examination of the error structure and tests of critical error model assumptions,
typically leads to much greater precision of estimation and inference, and has
strong links to the well developed theory of missing data analysis (see, e.g. Little
& Rubin, 1987). With external validation data, one must assume that the error
structure in those data also applies to the primary data set. An external validation
study is useful when there are a priori reasons to believe that misclassification is
non-differential. For both validity and efficiency considerations, internal validation
studies are preferred over external ones.

Within each of the previously described broad categories, there are three types
of data: (i) validation data, in which the true (or latent) variable is observable
together with its possible corrupted version, (ii) replication data, in which
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replicates of the misclassified variables are available, and (iii) instrumental data,
in which another variable, correlated with the true variable, is measured without
error, jointly with the misclassified variable. Validation data are typically obtain
by comparing the results from the classifier with the ones from a gold standard.
A gold standard refers to a measuring instrument or examiner that is error-free.
However, in practice many practical situations an infallible classifier may not exist
or may be prohibitively expensive. Thus, the measurements are often made by
what is called a benchmark scorer, an experienced examiner or a tested measuring
instrument which is assumed to be error-free or is nearly so.

1.6 Aims of the Thesis

Motivated by the ST study, we propose and evaluate models to tackle the main
challenges mentioned in Section 1.3.2. From a methodological point of view, the
main objectives of this thesis are:

1. To evaluate two regression models for the analysis of correlated binary data.
Specifically, we considered the multivariate probit model (Ashford & Sowden,
1970) and the conditionally specified logistic regression model (Joe & Liu,
1996) for the evaluation of risk factors and of the association structure of
caries experience in the primary dentition. Special attention is given to the
different interpretation of association structures arising from these models.
These analyses, assuming error-free responses, are presented in Chapter 2.

2. To evaluate the effect of misclassification on the inferences about the
association parameters for multivariate binary data. Although there is a rich
literature on methods for correcting for misclassification in regression models
for categorical data, the impact about the inference on model parameters has
received relatively less attention and almost exclusively focused on the effect
of the inferences on the mean structure. Because in the understanding of the
etiology of caries experience it is of relevance to understand the association
structure, we study the impact of different misclassification processes on the
multivariate probit model (Ashford & Sowden, 1970) and the conditionally
specified logistic regression model (Joe & Liu, 1996) in Chapter 3.

3. To propose and study the properties of models for univariate longitudinal
binary data. In Chapter 4, we study whether the parameters associated
to binary Markov models in which the response variable is subject
to an unconstrained misclassification process and follows a progressive
behavior, can be estimated without the need of external information on the
misclassification parameters. We propose an extension of the simple version
of the binary Markov model to describe the relationship between covariates
and prevalence and incidence allowing for different classifiers.
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4. To propose and study the properties of models for multivariate longitudinal
binary data. In Chapter 5, we propose and evaluate the small sample
properties of a multivariate binary inhomogeneous Markov model in which
unobserved correlated response variables are subject to an unconstrained
misclassification process and have a monotone behavior. The multivariate
baseline distributions and Markov transition matrices of the unobserved
processes are defined as a function of covariates, throughout the specification
of compatible full conditional distributions. Distinct misclassification models
are discussed, where the existence of different classifiers for each subject
across time is taken into account.
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Abstract

For the analysis of caries experience in seven year old children the association
between the presence or absence of caries experience among deciduous molars
within each child is explored. Some of the high associations have an etiological
basis (e.g., between symmetrically opponent molars), while others (diagonally
opponent molars) are assumed to be the result of the transitivity of association
and to disappear once conditioned on the caries experience status of the other
deciduous molars, covariates and random effects. However, using discrete models
for multivariate binary data, conditioning does not remove the diagonal association.
When the association is explored on a latent scale, e.g. by a multivariate probit
model, then conditional independence can be concluded. This contrast is confirmed
when using other models on the (observed) binary scale and on the latent scale.
Depending on the point of view, the differences in conditional independence might
be seen as a consequence of different types of measurements or as a consequence
of different models. An example shows that the results and conclusions can
be markedly different with important consequences on model building. The
explanation for this result is exemplified mathematically and illustrated using
dental data from the Signal Tandmobielr study.

Key Words: Conditional independence, Multivariate binary data, Latent
variable representation, Multivariate probit model.

2.1 Introduction

In oral health research it is of interest to assess the association of caries experience
(CE) among different teeth. The knowledge that caries development on one tooth is
related to caries development on another tooth can help the dentists in optimizing
their clinical examination of the patient and directs preventive and restorative
approaches. Further, the exploration of CE patterns in the mouth can also help in
further refining the understanding of the etiology of the disease. Indeed, it is still
not established whether caries is a spatially local disease or not and the answer to
that question might be related to a variety of factors determining caries activity
(see, e.g. Hujoel et al., 1994, and references therein).

Based on data obtained in seven-year old children recruited in the Signal
Tandmobielr (ST) study, we examined the association between the pres-
ence/absence of CE on the eight deciduous molars and found a high association
between symmetrically opponent molars, vertically opponent molars (maxilla
versus mandible) and diagonally opponent molars. The first association is known
and relatively easy to explain (Psoter et al., 2003). The second association is
somewhat more difficult to understand. However, the high association between
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diagonally opponent molars is believed to be the result of the (assumed) transitivity
of the associations, i.e. due to the high association between symmetrically
opponent molars and vertically opponent molars. This was verified by fitting
a classical random effects logistic regression model (with subject as random effect)
explaining the occurrence of CE on a deciduous molar by the CE on the other
molars and subject specific characteristics. However, this model was not able
to remove this high association, and the same was true for all other considered
discrete models for multivariate binary vectors. In contrast, when the association
was explored on a latent scale, say by a multivariate probit model (MPM), then
the partial correlation matrix indicated conditional independence.

While we acknowledge that conclusions can change when different statistical
models are used, we were initially surprised to see such a major difference when
switching from the observed binary scale (one class of models) to the latent
continuous scale (another class of models). A similar behavior would be observed
if measurement error is added to the latent variable (see Section 2.2). In this paper
we will highlight a possible reason why conditional independence is not invariant
to the scale used for the analysis.

To illustrate the markedly different conclusions that can be obtained from different
statistical models for multivariate binary responses, we analyzed the CE data with
(a) the conditionally specified logistic regression model (CSLRM) as suggested
by Joe & Liu (1996), and (b) the MPM (see, e.g., Ashford & Sowden 1970,
Lesaffre & Molenberghs 1991 or Chib & Greenberg 1998). As for the log-linear
model (LLM), the CSLRM acts on the observed binary scale, but the CSLRM
allows the inclusion of covariates. Further, the CSLRM is intimately related
to logistic regression. Namely, in the CSLRM, the association is measured by
their odds ratio of a pair of binary responses conditional on the remaining binary
responses and covariates. Consequently, the estimated odds ratios automatically
express conditional (in)dependence. The MPM expresses the association between
the binary responses via the correlation matrix of a multivariate normal latent
random vector. Conditional (in)dependence can then be evaluated by the partial
correlation matrix.

In Section 2.2, independence and conditional independence are reviewed. In
Section 2.3, we briefly review the CSLRM and the MPM. An application to oral
health data from the ST study is shown in Section 2.4. Finally, Section 2.5 gives
some concluding remarks.

2.2 Independence and Conditional Independence

Suppose that V is a m-dimensional normally distributed random vector and that
a random sample of n individuals is available yielding vectors V i (i = 1, . . . , n).
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However, we assume that V is not observed but is latent and that either Y or Z is
observed. The random vector Zi is continuous, namely Zi = V i+εi (i = 1, . . . , n),
where εi is normally distributed and independent of V i. On the other hand, Y i is
a random multivariate binary response vector defined as Yij = I(Vij > cj), where
cj (j = 1, . . . , m) are specific cut off points.

The correlation matrix R ≡ (ρjk)jk corresponding to V describes the association
structure of the latent vector and conditional independence is seen from the
elements of the partial correlation matrix C ≡ (cjk)jk, obtained from appropriately
standardizing R−1. Namely, Vj is conditionally independent of Vk given the other
Vm for m 6= k, j when cjk = 0. This property does not hold for other multivariate
distributions and hence in these cases a partial correlation equal to zero does not
automatically imply conditional independence.

In this paper we are interested in the relationship between the association structure
on the latent scale (of V ) and that on the observed scale (of Y and Z), especially
with respect to conditional independence. Clearly, if R is the identity matrix,
then also the components of Y and Z are statistically independent. Further,
the association structure of Z depends on the magnitude of the measurement
error component defined by ε. For instance, even when the components of V

are perfectly related, the components of Z could show a poor correlation if the
variability of ε is quite high. Furthermore, conditional independence can not be
expected for Z even when it holds for V . For the binary case, ρjk = 0, j 6= k
implies independence of Yj and Yk. But again, conditional independence for V

does not imply conditional independence for Y and this will be illustrated now.

Consider the random vector V ∼ N3 (µ, R), with,

µ =




0
0
0



, R =




1.00 0.64 0.80
0.64 1.00 0.80
0.80 0.80 1.00



 ,

and the categorical variables Yj , (j = 1, 2, 3) defined as above. The partial
correlation matrix then becomes

C =




1.00 0 0.62
0 1.00 0.62

0.62 0.62 1.00


 .

Since c12 = 0 the partial correlation coefficient ρV1,V2.V3 = 0 and thus V1 ⊥⊥ V2|V3.
However, the probability of Y1 and Y2 given Y3 is,

P (Y1 = 1, Y2 = 1|Y3 = 1) = 0.6557,

while P (Y1 = 1|Y3 = 1) = P (Y2 = 1|Y3 = 1) = 0.7952, and,

P (Y1 = 1|Y3 = 1) P (Y2 = 1|Y3 = 1) = 0.6323.
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Hence, we have shown numerically that conditional independence of variables
V1 and V2 given V3 does not imply Y1 ⊥⊥ Y2|Y3. The evaluation of these
expressions involves the computation of multivariate normal probabilities which
was carried out using the methodology described in Genz (1992) and Genz (1993).
A theoretical proof of this result is shown in Section A.1 of Appendix A.

The concept of conditional independence is a key notion in graphical models (see,
e.g. Whittaker, 1990; Cox & Wermuth, 1996). Indeed, the key idea is to utilize
the correspondence between separation in graphs and conditional independence in
probability. Therefore, the results from this paper could have been derived from
the theory of graphical models. Namely, our paper in fact deals with the result
that X ⊥⊥ Y |Z does not necessarily imply that h(X) ⊥⊥ h(Y )| h(Z).

2.3 Two models for the analysis of multivariate binary

responses

In this section we will describe two models that were used to illustrate the difference
between analyzing the multivariate binary response on the observed binary scale
and on the latent continuous scale. But, the contrast remains when these models
are replaced by other similar models, as indicated below.

2.3.1 The Conditionally Specified Logistic Regression Model: a

model on the observed binary scale

Let Y i be defined as before and let xij be the corresponding covariate vector. Joe
& Liu (1996), suggested a model for multivariate binary responses with covariates.
The conditional distribution of each binary response Yij given the other binary
responses Yik = yik, k 6= j and the covariates xij is equivalent to a logistic
regression with parameter vector βj and parameters γjk, k 6= j. That is, for
j = 1, ..., m,

logit P (Yij = 1|Yik = yik, k 6= j, xij) = x′
ijβj +

∑

k 6=j

γjkyik. (2.1)

Joe & Liu (1996) showed that a necessary and sufficient condition for compatibility
of conditional distributions is that γjk = γkj , j 6= k, and that the joint distribution
is given by,

p(Y |X) =
n∏

i=1


c(Xi, β, γ)−1 exp





m∑

j=1

(
x′

ijβj

)
yij +

∑

1≤j<k≤m

γjk yijyik






 ,(2.2)
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with normalizing constant,

c(Xi, β, γ) =
1∑

y1=0

· · ·
1∑

ym=0

exp





m∑

j=1

(
x′

ijβj

)
yj +

∑

1≤j<k≤m

γjk yjyk



 . (2.3)

In (2.1) to (2.3), the parameters γjk are interpreted as conditional log-odds ratios,
since,

exp{γjk} =
P (Yij = 1, Yik = 1|xij , xik, Yil = yil, l 6= j, k)

P (Yij = 1, Yik = 0|xij , xik, Yil = yil, l 6= j, k)
×

P (Yij = 0, Yik = 0|xij , xik, Yil = yil, l 6= j, k)

P (Yij = 0, Yik = 1|xij , xik, Yil = yil, l 6= j, k)
.

Note that for m = 2, there are no Yil’s so that γ12 is also the unconditional log-
odds ratio and it is constant over the covariates. For m ≥ 3, it is straightforward to
show that the bivariate marginal distributions from (2.2), and the log-odds ratios
depend on the covariates. Note also that the exponential family in (2.2) is not
closed under marginalization and can be easily extended if interaction terms are
needed.

In the absence of covariates, it is popular to analyze conditional independence on
the observed binary scale with a log-linear model. For Y1, Y2 and Y3 a LLM up to
two-way interactions is given by

log (µjkl) = λ + λY1

j + λY2

k + λY3

l + λY1Y2

jk + λY1Y3

jl + λY2Y3

kl ,

where λ is the overall mean of the natural logarithm of the expected frequencies,
λY1

j , λY2

k , λY3

l represent the main effects for variables Y1, Y2 and Y3, respectively;

and λY1Y2

jk , λY1Y3

jl , and λY2Y3

kl represent the respective interaction effects. In this
case, the null hypothesis of conditional independence between two variables given
the other one, for instance Y1 and Y2 given Y3, is H0 : λY1Y2

jk = 0, ∀ j, k. We
applied also the LLM to the dental example but with basically the same results.

An R-program (R Development Core Team, 2004), calling FORTRAN subroutines,
was written for the analysis of the multivariate binary data with the CSLRM
(cslogistic) using a likelihood and a Bayesian approach. The program
cslogistic is available from the Comprehensive R Archive Network (CRAN) or
upon request to the authors.



ANALYSIS OF THE ORAL HEALTH EXAMPLE 33

2.3.2 The Multivariate Probit Model: a model on the latent

continuous scale

A commonly used alternative modelling strategy for multivariate binary (or
ordinal) data involves the introduction of latent variables, i.e. by considering
the binary variables as a discretized continuous variables. Indeed, the key idea is
to introduce an m-dimensional latent variable vector V i = (Vi1, ..., Vim) such that

Yij = I(Vij > 0),

with j = 1, ..., m. A common distributional assumption, leading to the MPM, is
V i ∼ Nm (Xiβ, R), where Xi is a matrix of covariates associated to the regression
parameters vector β and, for identifiability reasons the matrix R must be in
correlation form (Chib & Greenberg, 1998). The correlations ρjk = corr (Vj , Vk)
are known as the tetrachoric correlation coefficients.

Likelihood and Bayesian analyzes were performed. Maximum likelihood estimates
were obtained using the SAS procedure QLIM (version 9.1). For the Bayesian
analysis, noninformative prior distributions were given for all parameters of the
model. Posterior distributions of the parameters were estimated using Markov
Chain Monte Carlo techniques and the Metropolized hit-and-run algorithm
proposed by Chen & Schmeiser (1993) was used to generate correlation matrices.
The Markov chain was initialized with all the regression coefficients, except the
intercepts, equal to zero. The first 10000 samples were discarded as burn-in and an
additional 400000 iterations were used to compute posterior summaries (posterior
mean and 95% highest posterior density (95% HPD) credible intervals using the
method of Chen & Shao, 1999). Convergence was checked using standard criteria
(Cowles & Carlin, 1996) as implemented in the BOA package (Smith, 2005).

The Bayesian Multivariate Logistic Model (MLM) of O’Brien & Dunson (2004)
was also fitted. Since the posterior distribution of regression coefficients, marginal
and partial correlation coefficients were basically the same as for the MPM, they
are not shown. However, it is important to note that in the MLM framework a
zero partial correlation does not imply conditional independence.

2.4 Analysis of the Oral Health Example

2.4.1 The Oral Health Question

The ST study is a longitudinal prospective oral health screening study conducted in
Flanders (Belgium) between 1996 and 2001. For this project, 4468 children were
examined on a yearly basis during their primary school time by one of sixteen
trained and calibrated dental examiners. Data on oral hygiene and dietary habits
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were obtained through structured questionnaires, completed by the parents. For a
more detailed description of the ST study we refer to Vanobbergen et al. (2000).

Based on the first year oral health data, we examined the association pattern of
CE in the mouth. It is well known that a strong association between neighboring
teeth exists. However, it is also of interest to know whether other relationships
exist.

Here, CE of the 8 deciduous molars was analyzed using a CSLRM and a MPM. For
ease of exposition, the European notation to indicate the location of a deciduous
tooth in the mouth is shown in Figure 2.1. Covariates included in the models were
age (in years; Age), gender (boys versus girls; Gender), age at start of brushing
(in years; Startbr), regular use of fluoridated supplements (yes versus no; Sysfl),
daily use of sugar containing drinks (no versus yes; Drinks), number of between-
meal snacks (two or less than two a day versus more than two a day; Meals)
and frequency of tooth brushing (once or more a day versus less than once a day;
Freqbrus). Except for the intercept, it was assumed that the covariates have a
common effect on the probabilities of CE for all teeth molars.

Figure 2.1: European notation to indicate the location of the deciduous teeth in
the mouth.

Table 2.1 (see page 35) shows the unconditional odds ratios (95% confidence
interval; 95% CI) expressing the association of CE in the eight deciduous molars.
The table shows that adjacent molars (e.g., 54 and 55), homologous molars (e.g.,
54 and 64) and vertically opponent molars (e.g., 54 and 84) have a high association.
However, also the association between diagonally opponent molars (e.g., 54 and
74) seems to be high. Observe that in this analysis no correction for covariates was
made nor did we take into account the CE pattern of other molars in the mouth.
The dentists speculated that the high association between the diagonally opponent
molars was due to the high association between the homologous molars and the
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high association between the opponent molars. It was hoped that a conditional
analysis could demonstrate this.

Table 2.1: Signal-Tandmobielr Study: unconditional odds ratios (95% confidence
interval) for caries experience in deciduous molars.

Tooth
Tooth

64 74 84 55 65 75 85

54
16.54 8.59 7.87 11.00 7.08 5.68 5.60

(13.40 ; 20.34) (7.08 ; 10.43) (6.49 ; 9.55) (9.03 ; 13.41) (5.85 ; 8.56) (4.71 ; 6.85) (4.65 ; 6.75)

64
8.33 7.48 7.05 11.84 5.29 5.22

(6.89 ; 10.07) (6.20 ; 9.03) (5.85 ; 8.50) (9.74 ; 14.41) (4.40 ; 6.35) (4.35 ; 6.26)

74
24.18 6.64 6.19 9.46 7.58

(19.88;29.40) (5.58 ; 7.91) (5.20 ; 7.36) (7.93 ; 11.29) (6.38 ; 9.01)

84
6.48 6.46 8.27 8.88

(5.44 ; 7.71) (5.43 ; 7.68) (6.95 ; 9.84) (7.46 ; 10.58)

55
14.69 8.89 8.61

(12.12 ; 17.79) (7.42 ; 10.65) (7.19 ; 10.31)

65
7.79 8.13

(6.52 ; 9.30) (6.80 ; 9.72)

75
20.31

(16.70 ; 24.70)

Since the results obtained in the likelihood and Bayesian approaches were the same
for both models, we have opted for the Bayesian solution.

2.4.2 Conditionally Specified Logistic Regression

Table 2.2 presents the posterior summaries of the regression coefficients of the
CSLRM. The results indicate clear differences in CE with respect to age of the
child, age at start of brushing, regular use of fluoridated supplements, daily use
of sugar containing drinks and number of between-meal snacks. The posterior

Table 2.2: Signal-Tandmobielr Study: posterior means and 95% highest posterior
density (95% HPD) credible intervals of regression coefficients obtained from
the conditionally specified logistic regression model for caries experience in eight
deciduous molars.

Covariate Estimate 95% HPD
Age (years) 0.075 ( 0.061 ; 0.089)
Gender (girls) 0.015 (-0.014 ; 0.042)
Startbr (years) 0.033 ( 0.020 ; 0.046)
Sysfl (no) 0.103 ( 0.071 ; 0.134)
Drinks (yes) 0.099 ( 0.065 ; 0.129)
Meals (> 2/day) 0.044 ( 0.016 ; 0.078)
Freqbrus (< 1/day) 0.015 (-0.033 ; 0.057)

summaries of the conditional odds ratios for CE in deciduous molars are shown
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in Table 2.3. The table shows that adjacent, homologous and vertically opponent
molars have a high association. However, all the associations between diagonally
opponent molars remained highly positive and significant.

Table 2.3: Signal-Tandmobielr Study: posterior means (95% highest posterior
density credible intervals) of conditional odds ratios for caries experience in
deciduous molars, obtained from the conditionally specified logistic regression
model.

Tooth
Tooth

64 74 84 55 65 75 85

54
5.80 1.90 2.02 5.42 0.88 1.05 1.08

(4.06 ; 7.52) (1.54 ; 2.37) (1.75 ; 2.23) (4.11 ; 6.41) (0.67 ; 1.04) (0.83 ; 1.26) (0.94 ; 1.24)

64
2.07 1.61 0.79 6.34 1.12 1.00

(1.75 ; 2.54) (1.27 ; 1.89) (0.68 ; 0.95) (5.45 ; 7.39) (0.93 ; 1.37) (0.84 ; 1.18)

74
10.68 1.37 1.05 3.29 1.23

(9.35 ; 12.28) (1.13 ; 1.67) (0.81 ; 1.24) (2.80 ; 4.01) (0.96 ; 1.41)

84
1.15 1.46 1.51 2.49

(0.99 ; 1.30) (1.27 ; 1.71) (1.33 ; 1.68) (2.21 ; 2.79)

55
6.71 1.84 2.36

(5.28 ; 8.11) (1.57 ; 2.19) (2.04 ; 2.71)

65
1.97 2.07

(1.64 ; 2.33) (1.61 ; 2.38)

75
9.61

(8.19 ; 11.07)

2.4.3 Multivariate Probit Model

In the MPM model, associations of CE in the mouth were high and significant
for symmetrical and vertically opponent molars but also important for diagonally
opponent molars, see Table 2.4 (page 37). The analysis revealed that all correlation
coefficients were significant and considerably high. The posterior estimate of the
correlation matrix indicates that the equicorrelation assumption on the correlation
structure is not valid. For example, the 95% HPD intervals for the tetrachoric
correlation coefficient between tooth 55 and 64, and tooth 54 and 75 are (0.74 ;
0.81) and (0.50 ; 0.59), respectively.

The posterior summaries of the regression coefficients in the model showed basically
the same results as for the CSLRM and hence not shown.

From the estimated correlations one can calculate the partial correlation matrix.
Here all partial correlations are smaller than the corresponding correlations, but
the difference was the largest for the diagonally opponent molars. For instance,
Figure 2.2 (see page 37) shows the posterior distributions of tetrachoric correlations
and partial correlations for the homologous pair 54 and 64 (panel a), and the
diagonal opponent pair 54 and 74 (panel b), respectively. Clearly, the largest
difference between the two correlation coefficients is seen for molars 54 and 74.
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Table 2.4: Signal-Tandmobielr Study: posterior means (95% highest posterior
density credible intervals) of latent marginal correlation matrix for caries
experience, obtained from the multivariate probit model.

Tooth
Tooth

64 74 84 55 65 75 85

54
0.78 0.65 0.62 0.70 0.61 0.55 0.55

(0.74 ; 0.81) (0.62 ; 0.69) (0.58 ; 0.66) (0.65 ; 0.74) (0.56 ; 0.66) (0.50 ; 0.59) (0.49 ; 0.62)

64
0.64 0.61 0.61 0.72 0.53 0.53

(0.60 ; 0.68) (0.56 ; 0.65) (0.56 ; 0.66) (0.68 ; 0.76) (0.48 ; 0.58) (0.46 ; 0.58)

74
0.85 0.61 0.60 0.69 0.64

(0.82 ; 0.87) (0.56 ; 0.66) (0.55 ; 0.64) (0.64 ; 0.73) (0.59 ; 0.69)

84
0.60 0.60 0.66 0.67

(0.55 ; 0.65) (0.56 ; 0.64) (0.61 ; 0.70) (0.62 ; 0.71)

55
0.77 0.67 0.67

(0.73 ; 0.81) (0.63 ; 0.71) (0.62 ; 0.72)

65
0.64 0.66

(0.60 ; 0.68) (0.60 ; 0.70)

75
0.82

(0.79 ; 0.85)

 

Corr T54−T64

−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

95% HPD = (0.494 ; 0.645)

95% HPD = (0.742 ; 0.805)
 

Corr T54−T74

−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

95% HPD = (−0.019 ; 0.227)

95% HPD = (0.618 ; 0.692)

(a) (b)

Figure 2.2: Signal-Tandmobielr Study: tetrachoric correlation coefficients for
caries experience in molars 54 and 64 (panel a) and in molars 54 and 74 (panel
b). The marginal and the partial correlations are shown in solid and dashed lines,
respectively
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Table 2.5 presents posterior summaries of the whole partial correlation matrix.
A zero entry in this matrix corresponds to conditional independence between
corresponding latent variables. While all the associations between neighboring
and symmetrical molars remained highly positive and significant, the association
between opponent and diagonally opponent molars were in most of the cases
not significant, suggesting that the highly observed marginal association could be
explained to a large extent by the transitivity of the correlation structure. Further,
compared to the results of the CSLRM, a total of ten discordant results were found.
In eight of these cases, the conditional odds ratios are significant while the partial
correlations are not.

Table 2.5: Signal-Tandmobielr Study: posterior means (95% highest posterior
density credible intervals) of latent partial correlation matrix for caries experience,
obtained from the multivariate probit model.

Tooth
Tooth

64 74 84 55 65 75 85

54
0.57 0.10 0.06 0.42 -0.23 -0.03 0.02

(0.49 ; 0.65) (-0.02 ; 0.23) (-0.07 ; 0.18) (0.33 ; 0.51) (-0.37 ; -0.13) (-0.16 ; 0.09) (-0.09 ; 0.15)

64
0.14 0.01 -0.21 0.49 -0.03 -0.04

(0.02 ; 0.26) (-0.11 ; 0.14) (-0.32 ; -0.10) (0.41 ; 0.58) (-0.16 ; 0.09) (-0.17 ; 0.08)

74
0.65 0.03 -0.05 0.26 -0.08

(0.60 ; 0.70) (-0.08 ; 0.14) (-0.17 ; 0.06) (0.16 ; 0.36) (-0.19 ; 0.02)

84
-0.01 0.06 -0.05 0.22

(-0.13 ; 0.09) (-0.05 ; 0.18) (-0.16 ; 0.06) (0.11 ; 0.32)

55
0.50 0.14 0.10

(0.42 ; 0.58) (0.03 ; 0.26) (-0.03 ; 0.21)

65
0.07 0.13

(-0.06 ; 0.19) (0.02 ; 0.26)

75
0.58

(0.52 ; 0.65)

2.4.4 Model Comparison

To exclude that our conclusion of conditional independence in the MLM is due to a
badly fitted model, we compared the goodness-of-fit of both models. As measures
we used Akaike’s information criteria (AIC) for the frequentist approaches. For the
Bayesian approaches we used the Bayesian information criteria (BIC), conditional
predictive ordinates (CPO) and pseudo Bayes factors (PsBF). In Table 2.6 (see
page 39), we see that MPM performed slightly better than the CSLRM for AIC
and BIC. The cross validation model comparison criteria showed basically the same
results as information criteria. In Figure 2.3 (see page 39) we present a scatter
plot of the CPO for the MPM versus CSLRM. Clearly, the MPM was better than
the CSLRM and the PsBF confirmed this, namely the value of 2 × log10 P sBF for
MPM versus CSLRM was 115.50.
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Table 2.6: Akaike’s Information Criteria (AIC) and Bayesian Information Criteria
(BIC) for the conditionally specified logistic regression model (CSLRM) and the
multivariate probit model (MPM).

AIC BIC
CSLRM 20471.36 20772.09
MPM 20346.00 20606.73

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

CPO CSLRM

C
P

O
 M

P
M

Figure 2.3: Scatter plot of the conditional predictive ordinates (CPO) for the
multivariate probit model (MPM) and conditionally specified logistic regression
model (CSLRM).

In order to compare the conditional independence structure of the binary random
vector implied by the fitted MPM reporting conditional independence of the
underlying latent vector, the conditional odds ratios were calculated. Table 2.7
(see page 40) shows the posterior summaries of the conditional odds ratios derived
from the MPM.

The conditional odds ratios derived from the MPM gave the same conclusions of
the results obtained with the CSLRM shown in Table 2.3 (see page 36). Again,
the importance of this finding is that although we base our analysis on the better
model, conditional independence on the latent continuous scale is not transferable
to the observed binary scale.

Finally, based on the symmetry on the association structure observed in Table 2.4
(see page 37), we fitted the MPM under equality constraints in the correlation
matrix. The conclusions regarding the association structure remained.
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Table 2.7: Signal-Tandmobielr Study: posterior means (95% highest posterior
density credible intervals) of conditional odds ratios for caries experience in
deciduous molars, based on the results of the multivariate probit model.

Tooth
Tooth

64 74 84 55 65 75 85

54
5.58 1.92 1.62 3.37 0.90 1.15 1.24

(4.23 ; 6.88) (1.41 ; 2.45) (1.19 ; 2.03) (2.53 ; 4.20) (0.64 ; 1.61) (0.88 ; 1.44) (0.92 ; 1.55)

64
1.92 1.48 0.95 4.11 1.07 1.06

(1.42 ; 2.42) (1.06 ; 1.88) (0.71 ; 1.22) (3.22 ; 5.11) (0.82 ; 1.34) (0.80 ; 1.34)

74
9.64 1.36 1.14 2.76 1.33

(7.45 ; 12.05) (1.02 ; 1.71) (0.82 ; 1.45) (2.04 ; 3.46) (0.98 ; 1.68)

84
1.29 1.46 1.57 2.36

(0.94 ; 1.63) (1.09 ; 1.85) (1.14 ; 2.02) (1.81 ; 2.97)

55
4.85 2.08 1.97

(3.63 ; 6.04) (1.60 ; 2.64) (1.46 ; 2.49)

65
1.71 2.02

(1.28 ; 2.16) (1.52 ; 2.59)

75
6.97

(5.44 ; 8.44)

2.5 Concluding Remarks

Conditional independence is regarded as a fundamental concept not only in the
theory of statistical inference (see, e.g. Dawid, 1979; Nogales et al., 2000), but
also in structural modelling (Pearl, 1995). Model building most often deals with
structural properties underlying a process generating latent as well as observed
variables.

The MPM represents one of the strategies for the analysis of clustered multivariate
binary data, which is described in terms of a correlated Gaussian distribution
for underlying latent variables that are manifested as discrete variables through
a threshold specification. Although latent variable modelling could be viewed
as a dubious exercise fraught with unverifiable assumptions and naive inferences
regarding causality, the MPM is a natural way of relating stimulus and response
where such an interpretation for a threshold approach is readily available; examples
include attitude measurement, assigning pass/fail gradings for examinations based
on mark cut-off, and bioassay settings were the underlying continuous scale can
be a lethal dose of a drug.

On the other hand, from a formal point of view a statistical model is defined
as a family of probability distributions on a sample space, i.e., explains the
observed data (see, e.g. McCullagh, 2002). In this context the latent variable
representation is only a convenient stochastic representation of the statistical
model. Unfortunately, whether this is a comparison of models or types of
measurements, is an unverifiable hypothesis. An interesting discussion about the
difference between true variables measured with error and the latent variables, can
be found in Skrondal & Rabe-Hesketh (2004).
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We showed that the association structure on the latent continuous scale is
not transferable to the observed binary scale. In particular that conditional
independence on the latent scale does not transfer to the observed scale. Which of
the two scales provide us with the answer will depend on the problem and biological
evidence there is. The important issue of this paper is to show that the two analyses
can and often will yield two different interpretations. With regard to our oral
health example on CE we conclude that, while there will always be an apparent
relationship between diagonally opponent molars, they are indeed (conditionally)
independent for CE. The basis for this conclusion is: (a) our findings with the
MPM and (b) the absence of a biological explanation for a direct association
of CE in diagonally opponent teeth. There is further dental evidence for our
conclusion. Indeed, Veerkamp & Weerheijm (1995) pointed out that CE also very
much depends on the eruption stage. Namely, that caries can only develop when
the respective tooth has been exposed long enough. Now teeth in the maxilla
emerge earlier than teeth in the mandible. Hence, symmetrically opponent molars
have about the same emergence time while opponent and diagonally opponent
teeth emerge at different ages providing extra evidence that these associations are
not etiological.

Our findings are also of importance in model building exercises in general. In fact,
the decision to increase the complexity of the model depends on whether the extra
variate has a (significant) relationship with a particular response, conditional on
the already included covariates and the remaining responses. In this context, Webb
& Forster (2004) suggested a MPM, characterized by the structure of the inverse
correlation matrix of the latent variables. Their model building exercise was based
on tests for conditional dependence on the latent scale while the interpretations
were done on the observed binary scale. Hence if their analyses were done on the
observed scale, quite different models could have been obtained implying a quite
different interpretation.

Finally, it is worth mentioning that a similar phenomenon will occur when the
actual data are continuous but discretized for the sake of the analysis, a practice
that is often seen in medical papers. For the same reason as pointed out above,
markedly different conclusions might be drawn from the analysis on the continuous
scale and the analysis on the discretized scale.
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independence and the relationship between sufficiency and invariance under the
Bayesian point of view. Statistics and Probability Letters 46 75–84.

O’Brien, S. & Dunson, D. (2004). Bayesian multivariate logistic regression.
Biometrics 60 739–746.

Pearl, J. (1995). Causal diagrams for empirical research (with discussion).
Biometrika 82 669–710.

Psoter, W. J., Zhang, H., Pendrys, D. G., Morse, D. E. & Mayne, S. T.

(2003). Classification of dental caries patterns in the primary dentition: a
multidimensional scaling analysis. Community Dent Oral Epidemiol 31 231–
238.

R Development Core Team (2004). R: A language and environment for
statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
ISBN 3-900051-00-3, URL http://www.R-project.org.

Skrondal, A. & Rabe-Hesketh, S. (2004). Generalized Latent Variable
Modeling. Multilevel, Longitudinal, an Structural Equation Models. New York,
USA: Chapman & Hall/CRC

Smith, B. J. (2005). Bayesian Output Analysis Program (BOA) for
MCMC. College of Public Health, University of Iowa, Iowa, USA. URL
http://www.public-health.uiowa.edu/boa.

Vanobbergen, J., Martens, L., Lesaffre, E. & Declerck, D. (2000). The
Signal-Tandmobiel® project, a longitudinal intervention health promotion study
in Flanders (Belgium): baseline and first year results. European Journal of
Paediatric Dentistry 2 87–96.

Veerkamp, J. S. & Weerheijm, K. L. (1995). Nursing-bottle caries: the
importance of a development perspective. Journal of Dentistry for Children
62(6) 381–386.

Webb, E. L. & Forster, J. J. (2004). Bayesian model determination for
multivariate ordinal and binary data. Tech. rep., University of Southampton,
School of Mathematics.

http://www.R-project.org
http://www.public-health.uiowa.edu/boa


44 CHAPTER 2. ANALYSIS OF CORRELATED BINARY DATA

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. New
York, USA: Wiley.



Chapter 3

Effect of Misclassification on

the Association Parameters

of Multivariate Binary Data

This draft is under preparation for publication:
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Abstract

We evaluate the small sampling behavior of naive maximum likelihood estimators
of the association parameters of multivariate models for correlated binary
responses, when the responses are subject to an unconstraint misclassification
process. The small sample properties of the estimators of the association
parameters of multivariate probit and conditionally specified logistic regression
models, are evaluated using Monte Carlo simulation. Differential and non-
differential misclassification processes are considered in the simulation scenarios.
The results indicate that naive estimators are strongly biased towards the null of
no association, regardless the type of misclassification process.

Key Words: Misclassification; Multivariate Binary Data; Association Parame-
ters.

3.1 Introduction

Standard approaches to analyze correlated binary data are often based on the
assumption that there are no classification errors in the observations. However,
in many research areas, the observed status may not perfectly reflect the true
state of a subject due, for instance, to limitations of experience/knowledge of the
examiners, or to imperfect diagnostic instruments or procedures. The problem
is especially important in health sciences where misdiagnoses occur when sick
individuals are diagnosed as healthy or vice versa, or when the severity of the
disease is misjudged. The evaluation of caries experience (CE), typically defined
as a binary variable indicating whether a tooth is decayed, missing or filled due
to caries, is an oral health example where misclassification occurs. The diagnosis
of CE is not an easy task for a variety of reasons, including the existence of high
quality composite materials, location of the cavity, discolorations, among many
others (see, e.g. Garćıa-Zattera et al., 2010).

The effect of misclassification on the statistical inference has been widely
investigated in the literature. An early reference is Bross (1954) who discusses
the biases caused by misclassification in binary contingency tables. He shows that
when misclassification is ignored, the estimated difference between two proportions
is biased toward the null of no difference, the significance level of an hypothesis
test is correct if both populations have the same misclassification probabilities
(non-differential or covariate independent), but its power is reduced. Tests about
the difference between proportions are further discussed by Rubin et al. (1956),
Katz & McSweeney (1979), and Zelen & Haitovsky (1991) for the binary case,
and Mote & Anderson (1965) for the multinomial case. Gladen & Rogan (1979)
show that the power of tests about relative risk is reduced when data are affected
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by misclassification. Schwartz (1985) studies the bias of the naive estimator of
a single probability and shows how the misclassification probabilities affect the
coverage probability of conventional confidence intervals.

Several approaches have been proposed in the literature to correct for misclas-
sification. These can be classified into the approaches that correct the naive
estimators and the approaches that estimate the parameters of interest based
on the proposal of a full probability model for the true and error-prone variables.
Examples of the former, in the context of contingency tables, include the matrix
method (Barron, 1977; Morrissey & Spiegelman, 1999) and the inverse matrix
method (Marshall, 1990). By assuming that the misclassification probabilities
are known, Barron (1977) proposes a correction method, known as the matrix
method (Morrissey & Spiegelman, 1999) or indirect method (Marshall, 1990),
to obtain unbiased estimators from misclassified 2 × 2 contingency table data.
Marshall (1990) compares the relative efficiency of the direct method (also known
as reclassification or inverse matrix method) with the indirect method and shows
that the direct method is more efficient than the indirect method. Greenland (1988)
derives the variance of corrected estimators when the misclassification probabilities
are estimated from external or internal validation data.

With some exceptions, the development of model-based approaches for correcting
for misclassification, requires information from external sources about the
misclassification parameters. Tenenbein (1970, 1971) proposes double sampling
(i.e. internal validation data) to obtain the maximum likelihood estimator (MLE)
and its asymptotic variance for misclassified binomial data. Espeland & Hui (1987)
demonstrate how to model misclassified data with validation data as an incomplete
data problem using a log-linear model.

Several authors have extended the previous approaches to regression settings for
uncorrelated or correlated data. We refer the reader to Geng & Asano (1989),
Magder & Hughes (1997), Neuhaus (1999), Paulino et al. (2003), Mwalili et al.
(2005), McGlothlin et al. (2008), and references therein, for different approaches
for the correction for misclassification in uncorrelated data contexts. Methods
for correcting for misclassified correlated data have been proposed by Espeland
et al. (1988), Espeland et al. (1989), Nagelkerke et al. (1990), Schmid et al. (1994),
Singh & Rao (1995), Albert et al. (1997), Cook et al. (2000), Rekaya et al. (2001),
Rosychuk & Thompson (2001), Neuhaus (2002), Rosychuk & Thompson (2003),
Paulino et al. (2005), Rosychuk & Islam (2009), Roy & Banerjee (2009) and Garćıa-
Zattera et al. (2010).

Compared to the rich literature on methods for correcting for misclassification
in regression models for categorical data, the impact about the inference on
model parameters has received relatively less attention and almost exclusively
focused on the effect of the inferences on the mean structure (i.e., regression
coefficients). Neuhaus (1999) examines the magnitude of bias and efficiency loss



48 CHAPTER 3. MISCLASSIFICATION IN MULTIVARIATE BINARY DATA

due to misclassification in binary regression with a single covariate and obtained
some approximate bias-correction factor for regression parameter. Neuhaus (2002)
studies the influence of response misclassification in generalized linear mixed
models for the analysis of data from clustered and longitudinal studies. Although
the association parameters can be considered as nuisance parameters in many
correlated data problems, there are also many instances where understanding the
association structure is just as central as understanding the mean structure to the
proper solution of the scientific problems. For instance, in oral health research it is
of interest to assess the association of caries experience among different teeth. The
knowledge that caries development on one tooth is related to caries development on
another tooth can help the dentists in optimizing their clinical examination of the
patient and direct preventive and restorative approaches. Further, the exploration
of caries experience patterns in the mouth can also help in further refining the
understanding of the etiology of the disease.

In this paper, we study the impact of differential and non-differential misclassifica-
tion in response variables on the association parameters of some common models
for the analysis of multivariate binary data. Specifically, we investigate the small
sample behavior, using Monte Carlo simulation, of naive MLE for the association
parameters associated to the multivariate probit and conditionally specified logistic
regression models, when the misclassification of the response is ignored. The paper
is organized as follows. Section 3.2 discusses the models under consideration.
Although most of the material in this section is not original, the discussion is
necessary for the sake of completeness. The evaluation of the properties of the
naive estimators under both misclassification types are presented in Section 3.3.
A final discussion section concludes the article.

3.2 Two Regression Models for Multivariate Binary

Data

Assume that for each of I experimental units and J variables of interest, the
regression data (Yij , x′

ij), i = 1, . . . , I, j = 1, . . . , J is recorded, where Yij ∈ {0, 1}
is the response variable of interest and xij ∈ R

p is a p-dimensional design
vector. Let Y i = (Yi1, . . . , YiJ )′ and Xi = diag(x′

i1, . . . , x′
iJ ) be the vector

of binary responses and design matrix, respectively. In the remaining of this
section we describe two regression models describing the conditional distribution
of P (Y i = yi | Xi), yi ∈ {0, 1}J , that are used to illustrate the effect of the
misclassification on the association parameters.
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3.2.1 The Multivariate Probit Model

The multivariate probit model (MPM) was introduced by Ashford & Sowden
(1970), and further considered, for instance, by Amemiya (1972), Ochi & Prentice
(1984), Lesaffre & Molenberghs (1991), Lesaffre & Kaufmann (1992), McCulloch
(1994), Chan & Kuk (1997), Chib & Greenberg (1998), Edwards & Allenby (2003),
and Jara et al. (2007). Under the MPM the joint distribution of the binary
responses is given by

P (Y i = yi | Xi) =

∫

A(yiJ ,xiJ ,βP
J )

· · ·
∫

A(yi1,xi1,βP
1 )

φJ (v | 0J , R) dv,

where φJ (v | 0J , R) is the density of a J-variate normal distribution with mean
vector 0 and covariance matrix R, βP

j ∈ R
p, j = 1, . . . , J , are regression coefficients

for the jth-response variable, and A
(

yij , xij , βP
j

)
is the interval given by

A(yij , xij , βP
j ) =






(
−∞ , x′

ijβP
j

]
if yij = 1,

[
x′

ijβP
j , ∞

)
if yij = 0,

.

Due to identifiability issues, R must be in correlation form. In fact, a
parameterization in terms of a unconstraint covariance matrix is not identified.

An alternative and useful formulation of the MPM is in terms of Gaussian latent
variables. In this formulation, the binary responses are seen as indicators of the
event that some unobserved latent variables exceed a threshold value of zero. The
key idea is to introduce a J-dimensional latent variable vector V i = (Vi1, ..., ViJ )
following a multivariate linear model, such that

Yij = I(Vij){Vij>0},

where I(·)A is an indicator function for the set A. The MPM arises when it is
assumed that

V i
ind.∼ NJ

(
Xiβ

P , R
)

,

where βP =
(

βP ′

1 , . . . , βP ′

J

)′

∈ R
Jp. Under this formulation, the joint distribution

of the binary variables may be expressed as

P (Y i = yi | Xi) =

∫

B(yiJ )

· · ·
∫

B(yi1)

φJ

(
V i | XP

i βP , R
)

dV i, (3.1)

where

B(yij) =





(−∞, 0 ] if yij = 0,

( 0 , ∞) if yij = 1,
.
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This latent variable representation shows how the model parameters determine the
joint distribution of the observed variables. In particular, the correlation matrix
R = {ρjk} completely captures the association among the observed variables
and the correlations ρjk = corr (Vij , Vik) are known as the tetrachoric correlation
coefficients. This modelling perspective is both flexible and general. In contrast,
attempts to model the correlation of the binary responses directly may lead to
difficulties.

The latent variable representation also forms the basis for likelihood inference
based on the EM algorithm and posterior sampling. Classical inference in the
MPM has been considered by Ashford & Sowden (1970), Amemiya (1972), Ochi &
Prentice (1984), Lesaffre & Molenberghs (1991), McCulloch (1994), Chan & Kuk
(1997) and Chib & Greenberg (1998). Bayesian inference has been discussed by
Chib & Greenberg (1998), McCulloch et al. (2000), Liu (2001), Edwards & Allenby
(2003), Liu & Daniels (2006) and Zhang et al. (2006).

In the analyzes presented in Section 3.3, maximum likelihood estimates are
obtained using the R (R Development Core Team, 2010) library mprobit, which is
available from CRAN. In this library, quasi-Newton minimization of negative log-
likelihood is used with the approximation of Joe (1995) for rectangle multivariate
normal probabilities in expression (3.1).

3.2.2 The Conditionally Specified Logistic Regression Model

The conditionally specified logistic regression model (CSLRM) for correlated
binary data was introduced by Liu (1994) and Joe & Liu (1996). Under this
model, the multivariate joint distributions P (Y i = yi | X i) are defined by the
specification of their full conditional distributions. Specifically, Liu (1994) and
Joe & Liu (1996) assume that, for j = 1, . . . , J , the conditional distribution of
the corresponding binary response Yij , given the other binary responses Yik = yik,
∀k 6= j, and the covariates xij , is a Bernoulli distribution with probability following

a logistic regression model with parameter vector βL
j ∈ R

p and parameters γjk ∈ R,
k 6= j, given by

logit {P (Yij = 1 | Yik = yik, k 6= j, xij)} = x′
ijβL

j +
∑

k 6=j

γjkyik.

Joe & Liu (1996) show that a necessary and sufficient condition for compatibility
of conditional distributions is that γjk = γkj , j 6= k, and that the joint distribution
of the binary vector Y i is given by

P (Y i = yi | Xi) = c(Xi, β
L

, γ)−1 exp

{
J∑

j=1

(x′
ijβ

L
j )yij +

∑

1≤j<k≤J

γjk yijyik

}
,(3.2)
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where βL =
(

βL′

1 , . . . , βL′

J

)′

∈ R
Jp, γ = {γjl : 1 ≤ j < k ≤ J}, and c(Xi, β, γ) is

a normalizing constant given by

c(X i, βL, γ) =

1∑

y1=0

· · ·
1∑

yJ=0

exp





J∑

j=1

(x′
ijβL

j )yj +
∑

1≤j<k≤J

γjk yjyk



 .

In the CSLRM, the γjk parameters are interpreted as conditional log-odds ratios,
since

exp{γjk} =
P (Yij = 1, Yik = 1 | xij , xik, Yil = yil, l 6= j, k)

P (Yij = 1, Yik = 0 | xij , xik, Yil = yil, l 6= j, k)
×

P (Yij = 0, Yik = 0 | xij , xik, Yil = yil, l 6= j, k)

P (Yij = 0, Yik = 1 | xij , xik, Yil = yil, l 6= j, k)
.

Liu (1994) and Joe & Liu (1996) show that for J = 2, there are no Yil’s so that
γ12 is also the unconditional log-odds ratio and it is constant over the covariates.
For J ≥ 3, it is straightforward to show that the bivariate marginal distributions
from (3.2), and the log-odds ratios depend on the covariates. Note also that the
exponential family in (3.2) is not closed under marginalization and can be easily
extended if interaction terms are needed.

Liu (1994) discusses likelihood inferences based on the Newton-Raphson algorithm
and evaluate the quality of approximations to point estimators of the regression
parameters based on an approximated likelihood inference. The approximation
is based on the likelihood arising from the conditional distributions of the
model. An R-program (R Development Core Team, 2010), calling FORTRAN
subroutines, was written for the analysis of the multivariate binary data with the
CSLRM (cslogistic) using likelihood and Bayesian approaches. The program
cslogistic is available from the Comprehensive R Archive Network (CRAN) and
was used in Section 3.3.

3.3 The Empirical Evaluation of the Misclassification

Effect

We evaluated the finite sample performance of naive MLE of the parameters
associated to the CSLRM and MPM under response misclassification, by using
Monte Carlo simulation. For each scenario under consideration, we generated
1000 data sets from the true model. The responses generated from the model,
Y i, were misclassified using non-differential and differential misclassification
processes, yielding Y ∗

i = (Y ∗
i1, . . . , Y ∗

iJ )
′
. For each simulated data set, we fitted
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the corresponding model to Y ∗. The maximum likelihood estimates of the
association parameters were used to obtain Monte Carlo estimates of the bias
and mean squared error (MSE) of the corresponding estimators. In order to
quantify the effect of misclassification, the bias and MSE of the MLE under no
misclassification were also estimated, for the same true models and simulation
scenarios. The different true models and misclassification models are described in
the next sections.

3.3.1 The True Models

We simulated data from the CSLRM and MPM for J = 3 response variables,
and assumed the same design vector and regression effects for each response, i.e.
xi ≡ xi1 = · · · = xiJ , βL

C ≡ βL
1 = · · · = βL

J and βP
C ≡ βP

1 = · · · = βP
J .

We considered design vectors containing a single continuous predictor wi ∈ R, i.e.
xi = (1, wi)

′, where the wi’s were simulated independently from a standard normal

distribution, wi
iid.∼ N(0, 1), and took βL

C = βP
C = (−1, 1)′.

In order to reduce the number of possible simulation scenarios, we considered
equal association parameters between the variables. Specifically, for the CSLRM
we took γ ≡ γ12 = γ13 = γ23. Equivalently, for the MPM we considered an
exchangeable correlation matrix with parameter ρ. Different degrees of association
between the binary response variables were considered. Specifically, we considered
γ ∈ {0.4, 1.1, 1.8, 2.5} and ρ ∈ {0.2, 0.4, 0.6, 0.8} as values for the CSLRM and
MPM, respectively. For each association scenario, three different sample sizes
were considered (I = 200, 400 and 1000). Therefore, 12 different scenarios were
considered for each model. Finally, for each sample size, the same realization of the
continuous predictor wi was used to simulate the data under the different models.

3.3.2 The Misclassification Models

We considered non-differential and differential misclassification processes for each
of the 12 scenarios described in the previous section and for each model. For
the former, the misclassified responses, Y ∗

ij , were generated from a Bernoulli
distribution, with parameter depending on the status of the realization of the
corresponding true response,

Y ∗
ij | Yij = yij

ind.∼
{

Bernoulli
(
τ11
)

, if yij = 1,
Bernoulli

(
1 − τ00

)
, if yij = 0,

where τ11 ∈ [0, 1] is the sensitivity and τ00 ∈ [0, 1] is the specificity of the
classification procedure. Four non-differential misclassification processes were
considered by taking

(
τ11, τ00

)
∈ {0.85, 0.95} × {0.85, 0.95}.
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For the differential misclassification process, we considered three different values
for the sensitivity and specificity parameters, τ11

1 , τ11
2 and τ11

3 , and τ00
1 , τ00

2 and τ00
3 ,

respectively. In this case, the Y ∗
ij ’s were generated from a Bernoulli distribution,

with parameter depending on the status of the realization of the corresponding
true response and on the continuous predictor wi. Specifically, we considered

Y ∗
ij | Yij = 1, wi

ind.∼





Bernoulli
(
τ11

1

)
, if wi < −0.44,

Bernoulli
(
τ11

2

)
, if wi ∈ [−0.44, 0.44),

Bernoulli
(
τ11

3

)
, if wi ≥ 0.44,

and

Y ∗
ij | Yij = 0, wi

ind.∼






Bernoulli
(
1 − τ00

1

)
, if wi < −0.44,

Bernoulli
(
1 − τ00

2

)
, if wi ∈ [−0.44, 0.44),

Bernoulli
(
1 − τ00

3

)
, if wi ≥ 0.44.

Two differential misclassification processes were considered. In the first case, a
positive association between the precision of the classification process and the
value of the continuous predictor, by taking τ11

1 = τ00
1 = 0.75, τ11

2 = τ00
2 = 0.85,

and τ11
3 = τ00

3 = 0.95. In the second case, a negative association between the
precision of the classification process and the value of the continuous predictor, by
taking τ11

1 = τ00
1 = 0.95, τ11

2 = τ00
2 = 0.85, and τ11

3 = τ00
3 = 0.75.

3.3.3 The Results

We fitted the MPM and CSRLM for each of the simulated misclassified data sets,
assuming a common intercept and predictor effect, and an unstructured association
structure. In order to illustrate the effect of the misclassification, the bias and
MSE are expressed as the ratio with respect to the corresponding values under
no misclassification. The results are shown for non-differential and differential
misclassification separately in the next sections.

Non-Differential Misclassification

For the MPM, the results suggested that under non-differential misclassification,
the MLE of the tetrachoric correlations and the associated partial correlations can
be strongly and negatively biased. Under all the considered scenarios, the bigger
the sample size the greater is the ratio between the absolute bias of the estimators
of the tetrachoric correlations under misclassification and no misclasssifcation,
which is explained by the reduction in the bias of the estimators as long as the
sample size increases, under no misclassification. In general, a similar pattern was
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observed for the partial tetrachoric correlations. For a given sample size and error
structure, the stronger the association between the unobserved binary variables,
the bigger the bias of the naive estimators with respect to the one observed without
misclassification in the corresponding scenario. Similarly, the difference between
the biases increases, with increasing misclassification errors. Under the worst
scenario, the bias of the naive estimator was as big as 496 times the one observed
under no misclassification. The results for the worst misclassification scenario are
presented in Table 3.1. The results of the remaining scenarios follow a similar
pattern and are given in Tables B.1, B.3 and B.5 of Section B.1 of Appendix B.

Table 3.1: Bias of the estimators of the association parameters of the multivariate
probit model under non-differential misclassification and τ11 = τ00 = 0.85. The
results correspond to the absolute ratio between the bias of the naive maximum
likelihood estimator, B∗, and the bias of the maximum likelihood estimator when
there is no misclassification, B, i.e. |B∗/B |.

True Values Sample Size
Correlation Partial Correlation

ρ12 ρ13 ρ23 ρ12.3 ρ13.2 ρ23.1

ρ12 = ρ13 = ρ23 = 0.2
200 7.5 6.1 15.6 9.3 5.7 55.0
400 13.5 10.7 7.8 26.5 14.1 7.4

1000 18.4 31.8 25.2 20.2 49.0 32.3

ρ12 = ρ13 = ρ23 = 0.4
200 14.2 20.8 15.4 15.4 85.0 14.8
400 19.1 29.2 19.1 24.0 82.0 18.7

1000 65.0 43.3 43.5 163.0 54.3 41.0

ρ12 = ρ13 = ρ23 = 0.6
200 19.1 29.1 14.1 25.6 107.0 8.0
400 65.8 57.0 49.3 102.0 52.0 40.6

1000 95.8 77.2 96.3 98.0 50.0 198.0

ρ12 = ρ13 = ρ23 = 0.8
200 39.9 31.9 34.5 32.3 10.3 22.5
400 56.3 83.8 126.3 11.6 106.5 72.3

1000 123.8 496.0 164.3 23.4 70.7 209.0

The results regarding the MSE for the MPM under non-differential misclassifi-
cation were similar to the ones described for the bias. Specifically, when the
sample size, degree of association or misclassification errors increase, the difference
between the MSE of the MLE of the tetrachoric correlations with and without
misclassification increases. The results for the partial correlations followed a
similar pattern but the ratios were lower in magnitude. The results suggest
that the MSE of the naive estimator for the tetrachoric correlations and partial
correlations can be as big as 248 and 6.2 times bigger than the corresponding
values without misclassification, respectively. The MSE results for the worst
non-differential misclassification scenario in the MPM are shown in Table 3.2
(see page 55). The remaining scenarios are given in Tables B.2, B.4 and B.6
of Section B.1 of Appendix B.
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Table 3.2: Mean squared error (MSE) of the estimators of the association
parameters of the multivariate probit model under non-differential misclassification
and τ11 = τ00 = 0.85. The results correspond to the ratio between the MSE of the
naive maximum likelihood estimator, MSE∗ under misclassification and the MSE
of the maximum likelihood estimator when there is no misclassification, MSE, i.e.
MSE∗/MSE .

True Values Sample Size
Correlation Partial Correlation

ρ12 ρ13 ρ23 ρ12.3 ρ13.2 ρ23.1

ρ12 = ρ13 = ρ23 = 0.2
200 1.5 1.5 1.4 1.1 1.0 1.0
400 2.1 2.1 2.0 1.5 1.4 1.4

1000 4.0 4.0 3.8 2.8 2.6 2.6

ρ12 = ρ13 = ρ23 = 0.4
200 4.2 4.0 4.5 1.5 1.5 1.6
400 7.9 8.7 7.3 2.6 2.6 2.5

1000 17.8 17.8 17.8 6.0 5.0 5.0

ρ12 = ρ13 = ρ23 = 0.6
200 11.1 13.1 12.3 1.8 1.9 1.8
400 27.3 27.8 23.4 3.2 3.3 3.2

1000 75.0 50.7 50.3 7.0 7.2 7.2

ρ12 = ρ13 = ρ23 = 0.8
200 40.6 39.3 40.3 1.5 1.3 1.6
400 88.3 86.7 87.3 2.4 2.7 2.7

1000 247.0 249.0 246.0 6.0 6.0 6.7

Under the CSLRM, the results followed a similar behavior regarding the direction
of the bias and MSE than for the MPM. However, the difference between the
bias of the estimators with and without misclassification were bigger than the
ones observed for the MPM. These results can be explained by the smaller bias
obtained under no misclassification for the MLE of the association parameters in
the CSLRM than in the MPM, which can be due to the higher marginal prevalence
considered in the simulation scenarios of the CSRLM than in the MPM and, to the
fact that the MPM requires an approximation of the likelihood function in order to
obtain the inferences. The magnitude of the MSE ratios of the parameters in the
CSLRM were similar to the ones observed for the partial tetrachoric correlations
of the MPM. However, in contrary to the observed in the MPM, the MSE of the
estimator under misclassification can be as big as 57.6 times the one observed under
no misclassification. Table 3.3 (see page 56) shows the bias and MSE results for the
CSLRM in the worst misclassification scenarios. The results under the remaining
scenarios showed a similar behavior and are given in Tables B.7, B.8 and B.9 of
Section B.2 of Appendix B.
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Table 3.3: Bias and mean squared error (MSE) of the estimators of the association
parameters of the conditionally specified logistic regression model under non-
differential misclassification and τ11 = τ00 = 0.85. The results correspond to
the ratio between the bias and MSE of the naive maximum likelihood estimator
(MLE) under misclassification, B∗ and MSE∗ respectively, and the corresponding
values of the MLE when there is no misclassification, B and MSE respectively.

True Values Sample Size
|B∗/B | MSE∗/MSE

γ12 γ13 γ23 γ12 γ13 γ23

γ12 = γ13 = γ23 = 0.4
200 24.6 14.2 11.0 1.4 1.5 1.5
400 35.7 31.3 220.8 2.1 2.2 2.1

1000 24.0 603.9 48.0 3.5 3.8 3.5

γ12 = γ13 = γ23 = 1.1
200 84.2 339.3 148.9 5.4 5.2 5.2
400 455.4 265.2 662.9 10.5 8.9 9.6

1000 11516.6 685.0 1210.4 23.1 24.7 22.1

γ12 = γ13 = γ23 = 1.8
200 34.1 39.1 50.2 8.9 9.4 8.4
400 60.2 52.2 397.0 17.3 18.0 20.9

1000 81161.3 620.2 142.9 48.5 51.5 50.2

γ12 = γ13 = γ23 = 2.5
200 21.5 26.1 19.2 9.4 9.0 9.5
400 147.7 364.8 40.8 21.1 20.3 21.3

1000 128.9 277.8 143.9 55.3 57.6 54.1

Differential Misclassification

Under differential misclassification, the MLE of the association parameters of
the MPM showed a similar behavior, namely, they are strongly biased to the
null of no association and the MSE, in comparison with the results obtained
under no misclassification, increases with the sample size and the degree of
association. The effect of the differential misclassification was bigger when there
was a negative association between the continuous predictor and the precision of
the classification than in the positive case. In general, the results under positive
association were similar to the ones obtained under an intermediate non-differential
misclassification process. The results under negative association were similar
to the ones obtained under the worst non-differential misclassification scenario.
Tables 3.4 and 3.5 (see pages 57 and 58, respectively) show the results for the bias
and MSE, respectively, for the MPM in this case. The results obtained for the
positive association between the covariate and the precision of the classification
showed a similar pattern with a lower magnitude and shown in Tables B.10 and
B.11 of Section B.3 of Appendix B.

Similarly to the observed in the non-differential misclassification processes, the
results for the CSLRM under differential misclassification showed a bigger effect
of the misclassification for this model than for the MPM. The bias and MSE for the
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Table 3.4: Bias of the estimators of the association parameters of the multivariate
probit model under differential misclassification with positive association between
the precision of the classification and the continuous predictor. The results
correspond to the absolute ratio between the bias of the naive maximum likelihood
estimator, B∗, and the bias of the maximum likelihood estimator when there is no
misclassification, B, i.e. |B∗/B |.

True Values Sample Size
Correlation Partial Correlation

ρ12 ρ13 ρ23 ρ12.3 ρ13.2 ρ23.1

ρ12 = ρ13 = ρ23 = 0.2
200 4.5 4.0 10.0 5.3 3.6 33.5
400 8.1 6.5 4.8 15.0 8.3 4.4

1000 11.0 19.3 15.0 11.4 28.5 18.3

ρ12 = ρ13 = ρ23 = 0.4
200 11.7 17.2 12.2 12.2 68.0 10.8
400 14.7 23.0 15.1 17.4 61.5 14.1

1000 49.5 32.8 33.3 117.0 38.7 30.0

ρ12 = ρ13 = ρ23 = 0.6
200 15.9 24.3 11.8 19.9 84.5 6.4
400 53.5 46.1 40.8 77.5 39.3 32.2

1000 78.8 62.8 77.8 77.0 38.3 149.0

ρ12 = ρ13 = ρ23 = 0.8
200 33.8 27.7 28.9 25.9 8.8 17.1
400 47.4 70.5 105.5 9.3 84.5 55.7

1000 101.3 406.0 136.0 17.8 54.0 164.0

estimators under positive and negative differential misclassification are presented
in Tables 3.6 and 3.7 (see pages 59 and 60), respectively. The results showed that
the negative differential misclassification has a stronger effect on the estimates of
the association parameters. These results also showed that for the CSLRM, the
effect of the misclassification on the estimation of the association parameters is
bigger under differential than under non-differential misclassification.

3.4 Concluding Remarks

This paper attempts to shed light on the effect of response misclassification
on the small sample behavior of naive estimators of the association parameters
of regression models for multivariate binary data. The simulation results
show that the MLE of the association parameters can be strongly biased if
the misclassification process is ignored. Furthermore, regardless the type of
misclassification, the naive MLE are strongly biased towards the null of no
association, thus showing a different behavior than the one of the estimators of
regression coefficients. Indeed, under a non-differential misclassification process,
the estimators of the regression coefficients are attenuated towards to the null of
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Table 3.5: Mean squared error (MSE) of the estimators of the association
parameters of the multivariate probit model under differential misclassification
with positive association between the precision of the classification and the
continuous predictor. The results correspond to the ratio between the MSE of the
naive maximum likelihood estimator, MSE∗ under misclassification and the MSE
of the maximum likelihood estimator when there is no misclassification, MSE, i.e.
MSE∗/MSE .

True Values Sample Size
Correlation Partial Correlation

ρ12 ρ13 ρ23 ρ12.3 ρ13.2 ρ23.1

ρ12 = ρ13 = ρ23 = 0.2
200 0.8 0.9 0.8 0.7 0.7 0.7
400 1.0 1.2 1.2 0.8 0.8 0.9

1000 1.8 1.8 1.8 1.2 1.2 1.2

ρ12 = ρ13 = ρ23 = 0.4
200 3.0 2.8 3.0 1.1 1.1 1.0
400 4.9 5.6 4.6 1.6 1.6 1.5

1000 10.5 10.5 10.8 3.4 2.8 2.8

ρ12 = ρ13 = ρ23 = 0.6
200 7.8 9.2 8.7 1.2 1.3 1.3
400 18.2 18.5 16.1 2.0 2.0 2.1

1000 51.0 33.7 33.0 4.5 4.3 4.2

ρ12 = ρ13 = ρ23 = 0.8
200 29.3 29.7 28.4 1.0 1.0 1.0
400 62.7 61.3 61.3 1.6 1.8 1.7

1000 167.0 167.0 169.0 3.6 3.6 4.3

no effect, while under differential misclassification, the bias of the estimators can
be in both directions, leading to an apparent effect or an apparent lack of effect
of the covariate when the reverse is true (see, e.g. Buonaccorsi, 2010).

Although the results reported here could be intuited from the analogy of a
misclassification process with classical continuous measurement error models, we
argue that the conclusions derived from the continuous cases cannot be directly
extended to the discrete one because of the different assumptions of the models. In
particular, when a mismeasured variable is binary (or more generally has a known
finite support), the independence assumption between the measurement error and
the true values of the variable invoked by the standard models for measurement
error is particularly untenable.

Similar results to the ones obtained here are expected for other models for
multivariate categorical data, such as generalized linear mixed models, multivariate
logistic models and log-linear models. Therefore, the development and study of
strategies for the correction for misclassification for multivariate binary data seems
to be an important subject of research.

The natural next step on this research, would be to try to correct for
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Table 3.6: Bias and mean squared error (MSE) of the estimators of the association
parameters of the conditionally specified logistic regression model under differential
misclassification with positive association between the precision of the classification
and the continuous predictor. The results correspond to the ratio between
the bias and MSE of the naive maximum likelihood estimator (MLE) under
misclassification, B∗ and MSE∗ respectively, and the corresponding values of
the MLE when there is no misclassification, B and MSE respectively.

True Values Sample Size
|B∗/B | MSE∗/MSE

γ12 γ13 γ23 γ12 γ13 γ23

γ12 = γ13 = γ23 = 0.4
200 19.5 15.6 17.3 1.2 1.6 2.5
400 29.7 42.0 181.1 1.6 3.1 1.6

1000 24.0 713.9 74.8 3.6 5.0 7.5

γ12 = γ13 = γ23 = 0.1.1
200 89.6 324.2 196.5 6.0 4.8 8.5
400 551.5 370.0 520.3 14.9 16.7 6.1

1000 12991.6 712.7 1730.3 29.2 26.7 44.4

γ12 = γ13 = γ23 = 1.8
200 41.0 35.0 61.3 12.6 7.6 12.1
400 81.3 71.3 324.8 31.2 33.1 14.2

1000 92781.6 614.7 188.8 63.2 50.5 87.1

γ12 = γ13 = γ23 = 2.5
200 25.9 24.8 20.8 13.4 8.1 11.1
400 190.6 470.3 36.6 35.0 33.6 17.2

1000 146.7 279.9 169.6 71.5 58.5 75.1

misclassification and to analyze whether this correction would decrease the
attenuation of the estimators of the association parameters towards the null.
However, we argue that it is important to evaluate the advantages of the usage of
approaches to correct for misclassification. Although the use of this approaches
can reduce the bias of a particular estimator, it may introduce more variability at
the same time and thus, yield an estimator with a greater MSE than the naive
one (see, e.g. Luan et al., 2005). This issue should be explored in the context of
misclassified binary data because it might not always be beneficial to correct for
misclassification.

Moreover, as the data could contain no information on the misclassification param-
eters, the identification study of proposals trying to estimate the misclassification
parameters without using external information is also needed. These and other
topics are the subject of ongoing research.
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Table 3.7: Bias and mean squared error (MSE) of the estimators of the
association parameters of the conditionally specified logistic regression model
under differential misclassification with negative association between the precision
of the classification and the continuous predictor. The results correspond to the
ratio between the bias and MSE of the naive maximum likelihood estimator (MLE)
under misclassification and the corresponding values of the MLE when there is no
misclassification.

True Values Sample Size
|B∗/B | MSE∗/MSE

γ12 γ13 γ23 γ12 γ13 γ23

γ12 = γ13 = γ23 = 0.4
200 31.7 13.5 5.2 1.8 1.5 1.0
400 37.1 18.2 227.6 2.3 1.3 2.3

1000 24.4 709.0 76.5 3.6 5.0 7.7
γ12 = γ13 = γ23 = 1.1 200 76.1 376.7 89.7 4.6 6.2 2.4

400 309.5 130.0 843.1 5.3 2.7 15.2
1000 12966.5 706.2 1732.0 29.2 26.2 44.6

γ12 = γ13 = γ23 = 1.8 200 25.3 46.3 37.2 5.2 13.0 4.8
400 29.8 24.5 507.0 4.8 4.5 33.8

1000 92760.3 614.1 189.1 63.1 50.5 87.4
γ12 = γ13 = γ23 = 2.5 200 16.0 28.7 16.4 5.3 10.8 7.0

400 76.3 195.1 48.0 5.9 6.1 29.4
1000 146.3 278.9 169.4 71.1 58.1 74.9

Acknowledgements

The first author is supported by the National Scholarship for Doctoral Studies 2009,
Conicyt (Chile) and by the Research Grant OT/05/60. She also acknowledges the
partial support from the Interuniversity Attraction Poles Program P6/03, Belgian
State, Federal Office for Scientific, Technical and Cultural Affairs.

References

Albert, P. S., Hunsberger, S. A. & Biro, F. M. (1997). Modeling
repeated measures with monotonic ordinal responses and misclassification, with
applications to studying maturation. Journal of American Statistical Association
92 1304–1311.

Amemiya, T. (1972). Bivariate probit analysis: minimum chi-square methods.
Journal of the American Statistical Association 69 940–944.

Ashford, J. R. & Sowden, R. R. (1970). Multi-variate probit analysis.
Biometrics 26 535–546.



REFERENCES 61

Barron, B. A. (1977). Effects of misclassification on estimation of relative risk.
Biometrics 33 414–418.

Bross, I. (1954). Misclassification in 2 x 2 tables. Biometrics 10 478–486.

Buonaccorsi, J. P. (2010). Measurement Error. New York, USA: Chapman &
Hall/CRC.

Chan, J. S. K. & Kuk, A. Y. C. (1997). Maximum likelihood estimation for
probit-linear mixed models with correlated random effects. Biometrics 53 86–97.

Chib, S. & Greenberg, E. (1998). Analysis of multivariate probit models.
Biometrika 85 347–361.

Cook, R. J., Ng, E. T. M. & Meade, M. O. (2000). Estimation of operating
characteristics for dependent diagnostic tests based on latent Markov models.
Biometrics 56 1109–1117.

Edwards, Y. D. & Allenby, G. M. (2003). Multivariate analysis of multiple
response data. Journal of Marketing Research 40 321–334.

Espeland, M. A. & Hui, S. L. (1987). A general approach to analyzing
epidemiologic data that contain misclassification errors. Biometrics 43 1001–
1012.

Espeland, M. A., Murphy, W. C. & Leverett, D. H. (1988). Assessing
diagnostic reliability and estimating incidence rates associated with a strictly
progressive disease: dental caries. Statistics in Medicine 7 403–416.

Espeland, M. A., Platt, O. S. & Gallagher, D. (1989). Joint estimation of
incidence and diagnostic error rates from irregular longitudinal data. Journal
of the American Statistical Association 84(408) 972–979.
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Abstract

Motivated by a longitudinal oral health study, we evaluate the performance
of binary Markov models in which the response variable is subject to an
unconstrained misclassification process and follows a monotone or progressive
behavior. Theoretical and empirical arguments show that the simple version of
the model can be used to estimate the prevalence, incidences and misclassification
parameters without the need of external information and that the incidence
estimators associated to the model outperformed approaches previously proposed
in the literature. We propose an extension of the simple version of the binary
Markov model to describe the relationship between covariates and prevalence and
incidence allowing for different classifiers. We implemented a Bayesian version of
the extended model and show that, under the settings of our motivating example,
the parameters can be estimated without any external information. Finally, the
analyses of the motivating problem are presented.

Key Words: Misclassified binary data; Monotone processes; Incidence estimation;
Hidden Markov model; Identifiability.

4.1 Introduction

Errors in the determination of disease outcome occur very often in epidemiological
studies. Diagnostic tests or classifiers may not perfectly reflect the true individuals’
condition leading to misclassified disease outcomes where sick individuals may be
diagnosed as healthy, healthy individuals may be diagnosed as sick, or the severity
of the case may be misjudged. The effect of misclassification on estimation and
hypothesis testing has been widely investigated in the literature. Bross (1954)
showed that misclassification on a binary response does not affect the validity
of the significance test used to compare samples from two populations but the
power may be drastically reduced. He also showed that, although the data
contain no information regarding the misclassification probabilities, severely biased
estimates can be obtained when misclassification is ignored. Tenenbein (1970,
1971) extended the analysis to multinomial data and proposed a double sampling
scheme to obtain information concerning the misclassification probabilities.

Several authors have extended the analyses to regression settings for uncorrelated
or clustered data gathered in cross-sectional studies under both differential (co-
variate dependent) and non-differential (covariate independent) misclassification,
and proposed strategies for correcting the estimates. See, for instance, Geng
& Asano (1989), Magder & Hughes (1997), Neuhaus (1999, 2002), Rekaya
et al. (2001), Mwalili et al. (2005) and Küchenhoff et al. (2006), for different
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approaches to misclassified categorical data under several sampling schemes. The
findings are that under non-differential misclassification the regression coefficients
are attenuated to the null. However, the attenuation effect of non-differential
misclassification does not preclude that for an individual study the misclassification
process had the opposite effect, (see, e.g. Jurek et al., 2005). Under differential
misclassification the bias can lead either to an apparent (but non-existing)
association or to an apparent lack of association when it does exist.

The basic difficulty in the proposed models for correcting for misclassification in
cross-sectional studies is the identifiability of the model parameters by the available
data. Without additional information beyond the main data, it is not possible to
take into account the effect of misclassification. Therefore, the approaches rely
on 1) the existence of a validation study, along the lines of Tenenbein’s double
sampling approach, or on 2) expert information, incorporated through out a prior
distribution in a Bayesian analysis, to provide the required additional information
on the misclassification parameters. A difficulty with 1) is the necessity of an
infallible classifier, which may not exist or may be prohibitively expensive. Further,
since the variability on the estimation of the misclassification parameters has an
important effect on the variability of the regression parameters, the validation
study should be taken as large as possible. Unfortunately, often an internal
validation study cannot be taken large, if it can be taken at all in practice, as
will be seen in the next section. A difficulty with 2) is the existence of expert
knowledge on parameters that have not been estimated previously.

In the context of longitudinal studies, the impact of misclassification on
transition probability estimates for an unobservable alternating binary Markov
process, i.e. where a subject may alternate between two states over time (e.g.
uninfected/infected, healthy/sick, etc) has been discussed by Cook et al. (2000),
Nagelkerke et al. (1990), Rosychuk & Thompson (2001, 2003), Rosychuk & Islam
(2009). Motivated by research questions associated to a longitudinal oral health
study conducted in Flanders (Belgium), the Signal-Tandmobielr (ST) study, this
paper focuses on misclassified longitudinal binary data where the true response
follows a progressive or monotone process, i.e. when the subjects cannot alternate
between the two stages once the severe stage (e.g. infected, diseased, death) is
reached over time. Some medical examples of progressive processes are rheumatoid
arthritis, systemic lupus, osteoporosis, AIDS, chronic kidney disease and caries
experience (CE).

Hidden Markov models (HMM) for longitudinal monotone data have been
considered by Espeland et al. (1988, 1989), Schmid et al. (1994), Singh & Rao
(1995) and Albert et al. (1997). In these proposals the authors did not make
use of external information on the misclassification parameters and suggested
that those parameters can be estimated from the main data. However, neither
formal proofs nor empirical evidences have been provided establishing that the
model parameters are identified. Although in a simple inhomogeneous HMM for
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a monotone binary process, the existence of at least three observations over time
and constant misclassification parameters ensure that the number of identified
parameters is greater than the number of parameters of interest, these conditions
do not ensure the identifiability of model parameters. For instance, restriction on
the misclassification parameters of the kind η + θ > 1 may be still needed, where
η ∈ [0, 1] and θ ∈ [0, 1] is the sensitivity and specificity, respectively. Further,
even though those restrictions may be sufficient for the identification of the model
parameters in the simple version of the model they do not ensure the identification
of the parameters in more realistic extensions of the simple HMM.

In this paper we evaluate the identifiability properties of simple inhomogeneous
HMM under the absence of external information on the misclassification pa-
rameters, and compare the performance of the associated estimators with early
approaches proposed for incidence estimation. We also propose and evaluate an
extension of the simple HMM to account for predictors, different time intervals
between examinations for each subject, and different classifiers. The analyses of
our motivating problem are also presented, where we look at the prevalence and
incidence of CE and at the evaluation of risk factors. The paper is organized as
follows. Section 4.2 introduces the ST study and the research questions. The
evaluation of the properties and performance of the estimators associated with
the simple HMM without validation data are presented in Section 4.3, along with
the comparison with early approaches for incidence estimation in the presence of
misclassified data. In Section 4.4 we propose an extension of the simple HMM
and evaluate its performance under the setting of the motivating example. In
Section 4.5, the analyses of the ST data are presented. A final discussion section
concludes the article.

4.2 The Signal-Tandmobielr Study and Research

Questions

In this section we provide a brief description of the ST study and the associated
research questions. For a more detailed description we refer to Vanobbergen et al.
(2000). The ST study is a longitudinal prospective oral health screening study
conducted in Flanders, Belgium, between 1996 and 2001. For this project, 4468
children were examined on a yearly basis during their primary school time (between
7 and 12 years of age) by one of sixteen dental examiners. Clinical data were
collected by the examiners based on visual and tactile observations (no X-rays
were taken), and data on oral hygiene and dietary habits were obtained through
structured questionnaires completed by the parents.

Caries lesions are scored in four levels of lesion severity: d4 (dentine caries
with pulpal involvement), d3 (dentine caries with obvious cavitation), d2 (hidden
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dentine caries) and d1 (white or brown-spot initial lesions in enamel without
cavitation). Here we consider CE as a binary variable indicating whether the tooth
is decayed at d3 level, missing or filled due to caries, which defines a progressive
disease. Thus observed reversals, i.e. teeth or surfaces initially recorded as being
carious subsequently recorded as caries-free, represent diagnostic errors. The
diagnosis of CE might be difficult for a variety of reasons. For instance, nowadays
composite materials can imitate the natural enamel so well that it is sometimes
difficult to spot a restored lesion. Another reason may be that the location of
the cavity e.g. far back in the mouth, hampers the view of the dental examiner.
Hence, overlooking CE is likely to happen in practice, but the dental examiner
could also classify discolorations as CE.

In the ST study, the dental examiners were calibrated for scoring CE. The
calibration exercises were performed according to the guidelines of training and
calibration published by the British Association for the Study of Community
Dentistry (Pitts et al., 1997). The calibration of the dental examiners was done by
comparing their scores on the tooth surfaces of a group of children to those of a
benchmark examiner. Note that there exists no infallible scorer for CE. The best
one can do is to take a dental examiner with a lot of experience, in this case one
of the authors (DD). In order to maintain a high level of intra- and inter-examiner
reliability, calibration exercises were carried out twice a year for all examiners
involved. During the study period (1996-2001), three calibration exercises were
devoted to the scoring of CE. At the end of each of the three calibration exercises
the sensitivity and specificity of each dental examiner vis-a-vis the benchmark
examiner were determined, yielding a misclassification table for each examiner for
scoring on d3 at tooth and surface levels. The results suggest that some examiners
overscore or underscore the true CE status. It is important to stress that although
children that participated in the calibration exercises were used as a validation
data set in previous work of the research team (see, e.g. Mwalili et al., 2005) the
validation data were not taken at random from the main data. Rather a school was
selected with a presumed high prevalence for CE. Because of this, the information
provided by the calibration exercises on the misclassification parameters cannot be
formally used in the main analysis of the ST data. Notice also that a pure random
sample would be impractical, but also a validation data set sampled in a clustered
manner (first sampling schools and then children within schools) would imply a
too high investment in time and personnel. Further, both sampling approaches
would likely involve too few children with CE implying that the sensitivity would
be poorly estimated.

The statistical findings reported below were applied to the scoring of the four
permanent first molars, i.e., teeth 16, 26 on the maxilla (upper quadrants), and
teeth 36 and 46 on the mandible (lower quadrants). The numbering of the teeth
follows the FDI (Federation Dentaire Internationale) notation which indicates the
position of the tooth in the mouth (an illustrative figure is available in Section C.1
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of Appendix C). Position 26, for instance, means that the tooth is in quadrant 2
(upper left quadrant) and position 6 where numbering starts from the mid-sagittal
plane. The primary interest of the present analysis is to evaluate the prevalence
and incidence of CE and to address the influence of oral hygiene and dietary habits
and of geographical information on the presence and evolution of CE over time.

4.3 The Simple Hidden Markov Model

In this section we introduce the simple HMM for the analysis of longitudinal
monotone binary data and discuss its identifiability properties. The discussion
is based on theoretical and empirical arguments. We evaluate the performance
of the associated estimators under the absence of external information on the
misclassification parameters and compare the estimates with early approaches
proposed for incidence estimation.

4.3.1 The Model and Some Identification Results

Suppose that m subjects are examined at the same n time points (t1, . . . , tn).
Let Y(i,j) be the true unobserved binary response for subject i at time tj

and denote the vector of n true binary responses for subject i by Y i =
(Y(i,1), . . . , Y(i,n)). We assume that the vectors Y i, i = 1, . . . , m, are iid following
a monotone inhomogeneous first-order Markov process. This process is completely
characterized by the prevalence, p = P (Y(i,1) = 1), and by the vector of incidences
q = (q1, . . . , qn−1), where qj = P (Y(i,j+1) = 1|Y(i,j) = 0), j = 1, . . . , n − 1. Note
that P (Y(i,j+1) = 1|Y(i,j) = 1) = 1 since we assumed a monotonic binary process.
Therefore, the transition matrix between time points tj and tj+1, Qj(qj), is given
by

Qj(qj) =

(
1 − qj qj

0 1

)
, j = 1, . . . , n − 1.

Let V ⊂ {0, 1}n the set of admissible monotone response patterns. For instance,
for n = 3, V = {(000), (001), (011), (111)}. The joint probability distribution for
the true latent responses is given by

P (Y 1, . . . , Y m | p, q) =

m∏

i=1

P
(

Y(i,1) = y(i,1), . . . , Y(i,n) = y(i,n) | p, q
)

,

=

m∏

i=1

{
P
(

Y(i,1) = y(i,1)

) n−1∏

j=1

P
(

Y(i,j+1) = y(i,j+1)|Y(i,j) = y(i,j)

)
}

,
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=

m∏

i=1

{
p

y(i,1) (1 − p)1−y(i,1)

n−1∏

j=1

[
q

y(i,j+1)

j
(1 − qj)1−y(i,j+1)

]1−y(i,j)

}
,

where yi ∈ V .

We assume that the response vectors Y i, i = 1, . . . , m, are prone to misclassi-
fication. Let Y ∗

(i,j) be the observed binary response at time tj and denote the

vector of corrupted binary responses for subject i by Y ∗
i = (Y ∗

(i,1), ...., Y ∗
(i,n)). Let

τ10 = P (Y ∗
(i,j) = 1 | Y(i,j) = 0) and τ01 = P (Y ∗

(i,j) = 0 | Y(i,j) = 1), ∀ i, j, be
the misclassification parameters. We assume that the misclassification process is
characterized by the following conditional independence assumptions:

A.1) ⊥⊥ 1≤i≤m Y ∗
i | Y 1, . . . , Y m, τ10, τ01, i.e. the observed response patterns

for each subject are independent given the true unobserved pattern and
misclassification parameters,

A.2) Y ∗
i ⊥⊥ Y 1, . . . , Y i−1, Y i+1, . . . , Y m | Y i, τ10, τ01, ∀ i, i.e. the distribution

of the observed response pattern for a subject depends only on his true
unobserved pattern and the misclassification parameters,

A.3) ⊥⊥ 1≤j≤n Y ∗
(i,j) | Y i, τ10, τ01, ∀ i, i.e. the observed responses for a subject are

independent given his unobserved response pattern and the misclassification
parameters, and

A.4) Y ∗
(i,j) ⊥⊥ Y i | Y(i,j), τ10, τ01, ∀ i, j, i.e. the observed response for a subject

at time tj depends only on the unobserved response at time tj and the
misclassification parameters.

These assumptions imply that the observed binary vectors form an iid process
with common probability given by

P (Y ∗
i = y∗

i | p, q, τ10, τ01) =
∑

y∈V

P (Y ∗
i = y∗

i , Y i = y | p, q, τ10, τ01) , (4.1)

where y∗
i ∈ {0, 1}n, and the joint distribution for the observed and latent binary

variables is given by

P (Y ∗
i = y

∗
i , Y i = yi | p, q, τ10, τ01 ) =

n∏

j=1

P
(
Y

∗
(i,j) = y

∗
(i,j) | Y(i,j) = y(i,j), τ10, τ01 )

×

{
P
(
Y(i,1) = y(i,1) | p )

n−1∏

j=1

P
(
Y(i,j+1) = y(i,j+1)|Y(i,j) = y(i,j), q

)
}
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=
[
τ

1−y∗

(i,1)

01 (1 − τ01)
y∗

(i,1) p

]y(i,1)
[
τ

y∗

(i,1)

10 (1 − τ10)
1−y∗

(i,1) (1 − p)
]1−y(i,1)

×

n−1∏

j=1

[
τ

1−y∗

(i,j+1)

01 (1 − τ01)
y∗

(i,j+1)

]y(i,j)

×

n−1∏

j=1

[
τ

1−y∗

(i,j+1)

01 (1 − τ01)
y∗

(i,j+1) qj

]y(i,j+1)(1−y(i,j))

×

n−1∏

j=1

[
τ

y∗

(i,j+1)

10 (1 − τ10)
1−y∗

(i,j+1) (1 − qj)
](1−y(i,j+1))(1−y(i,j))

,

where y∗
i ∈ {0, 1}n and y ∈ V . The above model can be generalized by allowing for

dropouts and intermittent missing responses under the assumption of missing at
random. In the first case the number of time points differs between subjects,
i.e. in the above expressions n is replaced by ni. Allowing for intermittent
missingness involves an extra summation in the likelihood contribution. Namely,
suppose that the response at the kth time point, Y ∗

k , is missing. Then
P
(
Y ∗

1 = y∗
1 , . . . , Y ∗

k−1 = y∗
k−1, Y ∗

k+1 = y∗
k+1, . . . , Y ∗

n = y∗
n | p, q, τ10, τ01

)
in the like-

lihood contribution is rewritten as
∑1

y∗

k
=0 P (Y ∗

1 = y∗
1 , . . . , Y ∗

k = y∗
k, . . . , Y ∗

n = y∗
n)

and each of the two components in the summation is then decomposed as in (4.1).
When more responses are missing intermittently then the summation is done over
the missing parts.

It is important to stress that there are 2n possible observed binary patterns y∗.
Thus, the 2n associated probabilities given by the corresponding evaluations of
expression (4.1) are identified by the data in an equivalence to the iid sampling
from a multinomial distribution. Because the identified parameters are functions
of the parameters of interest θ = (p, q, τ10, τ01), a possible strategy for the
identification analysis of the simple HMM is to express the parameter of interest
as functions of the identified parameters. Indeed, as the probability of the possible
observed patterns add to one, 2n − 1 independent relations can be used to identify
the parameters in the simple HMM.

For n = 2 time points, three equations are available to find the solution for
four unknown parameters and the model parameters are clearly unidentified.
In this case, an intuitive identifying restriction would be to assume the same
misclassification errors regardless the true underlying status, i.e. τ = τ10 = τ01,
leading to a restricted HMM. For n > 2 time points, the number of independent
relations, 2n − 1, is greater than the number parameters of interest, n + 2,
suggesting that the parameters are identified in an unrestricted HMM. However,
even though the number of free identified parameters is equal or greater than
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the number of parameters of interest in the restricted and unrestricted HMM,
respectively, the parameters are unidentified. In fact, any point in the parameter
space of the form θ = (p, q1, . . . , qn−1, τ10 = 0.5, τ01 = 0.5) induce the same
probabilities P (Y ∗

i = y∗ | p, q1, . . . , qn−1, τ10 = 0.5, τ01 = 0.5) = 1/2n, ∀ i ∈ N
and ∀ y∗ ∈ {0, 1}n. This result shows that identifying restrictions are needed in
both situations.

The following proposition provides an identifying restriction for the first case. The
proof is given in Section C.2 of Appendix C.

Proposition 4.1. In a simple HMM with n = 2 time points, the assumptions
i) τ = τ10 = τ01 and τ < 0.5 or ii) τ = τ10 = τ01 and τ > 0.5 are sufficient
restrictions for the identification of the model parameters θ = (p, q1, τ10, τ01).

For the unrestricted HMM and n > 2 time points, an equivalent identification
restriction would be τ10 + τ01 < 1. Although in principle a similar strategy to that
in Proposition 4.1 could be considered to provide a theoretical proof, we would
need to show the existence of a unique solution in a highly nonlinear equation
system. Instead, we provide empirical evidence that the model parameters are
identified under this restriction by means of a simulation study in Section 4.3.3.
As the identification of the model parameters is a necessary condition for the
existence of consistent estimators, we evaluate the behavior of the bias and the
variance of maximum likelihood estimators (MLE) when the sample size increases.
Therefore, a reduction in the mean square error (MSE) of the estimators would
give, although no conclusive evidence, good insights on the identifiability of the
model parameters. The simulation study is also used to compare the performance
of the estimators with respect to early approaches proposed in the dental literature
for incidence estimation. These methods are discussed in the next section.

4.3.2 Early approaches to estimate incidence in presence of

misclassified data

Bias associated with misclassification of carious lesions has been documented and
discussed in the dental literature for a long time. As a consequence, different
methods have been proposed for correcting for misclassification of caries at tooth
and surface level (Radike & Muhler, 1954; Radike, 1960; Carlos & Senning, 1968;
Lu, 1968; Poole et al., 1973). Radike & Muhler (1954) and Radike (1960) discussed
two approaches that deal with the exclusion or inclusion of the observed reversals
in the estimation of the incidence. The reversals excluded (RE) method remove the
observed reversals from the analysis and considers the apparent incidence, i.e. the
observed proportion of caries-free teeth which become carious between two time
points, as the estimator of the incidence. The reversals included (RI) method
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considers the quantity resulting from subtracting the proportion of reversals to
the apparent incidence as the estimator of the incidence.

Carlos & Senning (1968) noted that the reversals represent only partially the total
number of classification errors and that both RE and RI methods ignores the fact
that in the first examination the presence of caries can be misclassified. They
proposed the method of moments estimator, denoted by CS, for n = 2 time points
by assuming that both types of misclassification errors are equal, i.e. τ = τ01 = τ10

in our notation. Using a similar strategy, Lu (1968) parameterized the examiner’s
accuracy in terms of the true proportion of surfaces over which his diagnoses are
certain to be correct and a random guessing misclassification. Poole et al. (1973)
generalized CS and LU estimators by assuming τ10 6= τ01, and proposed the PCS
estimator using the restricted least squares method. In order to avoid identifiability
problems, the approach relies on the existence of a second sample with the same
misclassification parameters but different transition probabilities.

4.3.3 The Simulation Study and Results

To explore the performance of estimators associated to the simple HMM for n > 2
time points and to compare them with the early approaches, we conducted a
simulation study. Different settings were considered. Full results of the simulation
study are available in Section C.3 of Appendix C. Here we illustrate the conclusions
by discussing the results obtained by simulating two longitudinal data settings,
n = 3 and n = 6 time points, and two sample sizes, m = 2000 and m = 5000.
In each case, different true values for the parameters were considered, yielding
36 scenarios. Low true values for prevalence, p = 0.02, 0.10, 0.15, and incidences
q1 = . . . = q5 = 0.04, 0.10, 0.15 were considered in order to mimic the ST study to
a certain extent. Finally, four combinations of misclassification parameters were
considered: (τ10, τ01) = (0.15, 0.15), (0.05, 0.15), (0.15, 0.05) and (0.05, 0.05).

For each scenario we simulated 1000 data sets from the simple HMM and obtained
the MLE under the constrained parameter space given by τ10 + τ01 < 1. The RE,
RI, CS and LU methods where applied repeatedly for each of two consecutive time
points. The PCS method was also considered by using the correlated data from
an adjacent pair of time points as a second independent sample. For all methods
we computed the bias and MSE of the estimators for the incidence parameters.
The bias and MSE for the prevalence and the misclassification parameters were
computed only for the MLE arising from the simple HMM.

For the misclassification parameters, the bias of MLE for the simple HMM,
expressed as a percentage of the true value, was lower than 1% in 99% of the
scenarios for n = 3 time points. For n = 6 time points the bias was lower than
0.1% of the true value of the parameters in all scenarios. In both longitudinal
settings, the bias reduced with more than 50% when the sample size increased
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from m = 2000 to m = 5000. Similar conclusions were obtained for the MSE
of the MLE of the misclassification parameters. The largest MSE was observed
in the scenarios with the lowest true prevalence and incidences and the greatest
true misclassification parameters. However, the largest MSE observed value was
as small as 0.012. The results for some selected and representative scenarios are
displayed in Table 4.1 (see page 76).

The MSE for the MLE of the incidences obtained for n = 6 time points are
also presented in Table 4.1 (see page 76). As expected, reductions greater than
50% were observed when the sample size increases. The bias of the MLE for the
prevalence was lower than 1% of the true value in 76% and 96% of the scenarios
for n = 3 and n = 6 time points, respectively. The MSE for the MLE of the
prevalence showed the same behavior observed for the other model parameters.

The simulation study indicates that the maximum likelihood procedure always
performs better than the other methods in terms of bias and MSE, even for
scenarios where the assumptions required by the early approaches are fulfilled,
e.g. when τ01 = τ10. The results suggest that nearly unbiased estimates of
the parameters can be obtained for the simple HMM. Furthermore, as important
reductions in the MSE were observed when the sample size increases, the results
suggest the identifiability of the parameters under the restriction τ10 + τ01 < 1.
Therefore, the results suggest that the parameters can be estimated in a HMM
for monotone binary data without the need of external information on the
misclassification parameters.

4.4 An Extension of the Simple Hidden Markov

Model

In most practical applications, the assumptions required for the simple HMM are
not met. For instance, at the start of the ST study the age, but also the oral health
and dietary habits differed across the children, affecting the prevalence most likely.
Additionally, the timing of the examinations is not the same for all the children and
the oral hygiene and dietary habits evolved differently for each child, potentially
leading to different incidences across children. Finally, 16 different examiners were
involved in the study who most likely have different misclassification patterns. This
issue is particularly important for the ST study because the examiners switched
over time. Indeed, none of the children were evaluated within the conduct of the
study by the same examiner. In this section we extend the simple HMM in order
to accommodate for these considerations. The performance of the proposed model
is evaluated using simulated data with the same characteristics as the ST study.
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Table 4.1: Mean squared error (MSE ×103) for the incidence parameters estimated
using the early approaches and the simple hidden Markov model with n = 6 time
points for m = 2000 and m = 5000 subjects, and for different true values of the
prevalence p, incidences q1 = ... = q5, and misclassification parameters τ01 and τ10.
The MSE (×103) for the maximum likelihood estimator of the sensitivity (1 − τ01)
and specificity (1 − τ10), associated to the simple hidden Markov model are also
presented.

True Values
Parameter m

Method
p q1/q2/q3/q4/q5 τ01 τ10 RE RI CS LU PCS MLE

0.03 0.04 0.15 0.15

q1
2000 12.37 0.29 0.25 0.59 0.24 0.06
5000 12.27 0.22 0.12 0.38 0.14 0.02

q2
2000 12.06 0.33 0.25 0.52 0.27 0.06
5000 12.05 0.24 0.10 0.29 0.14 0.03

q3
2000 11.94 0.34 0.26 0.50 0.28 0.08
5000 11.83 0.28 0.12 0.24 0.16 0.03

q4
2000 11.77 0.37 0.27 0.47 0.31 0.10
5000 11.67 0.30 0.13 0.24 0.18 0.04

q5
2000 11.63 0.42 0.31 0.47 0.35 0.26
5000 11.47 0.35 0.16 0.21 0.22 0.11

1 − τ01
2000 0.37
5000 0.14

1 − τ10
2000 0.02
5000 0.01

0.10 0.04 0.05 0.05

q1
2000 1.50 0.11 0.08 0.07 0.09 0.03
5000 1.49 0.08 0.04 0.03 0.05 0.01

q2
2000 1.41 0.14 0.10 0.08 0.11 0.03
5000 1.39 0.10 0.06 0.04 0.06 0.01

q3
2000 1.33 0.16 0.11 0.09 0.12 0.03
5000 1.30 0.13 0.08 0.05 0.08 0.01

q4
2000 1.24 0.19 0.14 0.11 0.15 0.04
5000 1.23 0.15 0.09 0.05 0.10 0.01

q5
2000 1.17 0.21 0.16 0.12 0.17 0.07
5000 1.14 0.18 0.12 0.07 0.13 0.03

1 − τ01
2000 0.04
5000 0.01

1 − τ10
2000 0.01
5000 0.00

0.03 0.10 0.15 0.05

q1
2000 0.63 0.57 0.26 0.12 0.23 0.08
5000 0.595 0.52 0.20 0.06 0.15 0.03

q2
2000 0.63 1.01 0.52 0.24 0.49 0.09
5000 0.59 0.97 0.47 0.17 0.42 0.04

q3
2000 0.65 1.48 0.84 0.42 0.82 0.11
5000 0.61 1.41 0.76 0.33 0.74 0.04

q4
2000 0.65 1.97 1.20 0.64 1.20 0.13
5000 0.62 1.96 1.16 0.58 1.15 0.06

q5
2000 0.68 2.51 1.63 0.94 1.63 0.18
5000 0.65 2.42 1.51 0.81 1.51 0.07

1 − τ01
2000 0.10
5000 0.04

1 − τ10
2000 0.01
5000 0.00
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4.4.1 The Model

Suppose that subject i is examined at n time points
(
t(i,1), . . . , t(i,n)

)
, i = 1, . . . , m.

Now Y(i,j) is the true unobserved binary response for subject i at time t(i,j). As
before, denote the vector of unobserved true binary responses for subject i by
Y i =

(
Y(i,1), . . . , Y(i,n)

)
. Let x(i,j) ∈ R

k be a vector of covariates for subject
i at examination j, i = 1, . . . , m, j = 1, . . . , n. We assume that Y 1, . . . , Y m are
independent vectors following monotone inhomogeneous first-order Markov models
with parameters pi and qi = (q(i,1), . . . , q(i,n−1)), which follow logistic regression
models

logit(pi) = wT
i βp,

and, for j = 1, . . . , n − 1,

logit(q(i,j)) = zT
(i,j)βqj

,

where wi =
(

xT
(i,1), t(i,1)

)
, z(i,j) =

(
xT

(i,j), t(i,j), t(i,j+1) − t(i,j)

)
, and βp ∈ R

k+1,

βq1
∈ R

k+2, . . . , βqn−1
∈ R

k+2 are regression coefficients associated with the
prevalence and incidences, respectively.

Similar to the simple HMM, we assume that the response vector Y i is prone
to misclassification. Let Y ∗

(i,j) be the observed binary response at time t(i,j)

and denote the vector of corrupted binary responses for subject i by Y ∗
i =(

Y ∗
(i,1), ...., Y ∗

(i,n)

)
. Here we suppose that the scoring is performed by Q examiners.

Denote by ξ(i,j) ∈ {1, . . . , Q} the indicator variable of examiner that scores

subject i at time point t(i,j), and let ξi =
(
ξ(i,1), . . . , ξ(i,n)

)
be the vector of

indicators of the examiners that score the responses of subject i over time. We
also assume that the scoring behavior of the examiners is the same across the
study. Let τ 01 =

(
τ(1,01), . . . , τ(Q,01)

)
and τ 10 =

(
τ(1,10), . . . , τ(Q,10)

)
be the vectors

of misclassification parameters characterizing the examiners’ scoring behavior.
In this setting, the misclassification process is characterized by the following
conditional independence assumptions:

B.1) ⊥⊥ 1≤i≤m Y ∗
i | Y 1, . . . , Y m, ξ1 . . . , ξm, τ 10, τ 01, i.e. the observed response

patterns for each subject are independent given the true unobserved pattern,
examiners indicators, and misclassification parameters,

B.2) Y ∗
i ⊥⊥ Y 1, . . . , Y i−1, Y i+1, . . . , Y m | Y i, ξi, τ 10, τ 01, ∀ i, i.e. the distribution

of the observed response pattern for a subject depends only on his true
unobserved pattern, the examiners that score his responses, and the
misclassification parameters,

B.3) ⊥⊥ 1≤j≤n Y ∗
(i,j) | Y i, ξi, τ 10, τ 01, ∀ i, i.e. the observed responses for a subject

are independent given his unobserved response pattern, the examiners that
score his responses and the misclassification parameters, and
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B.4) Y ∗
(i,j) ⊥⊥ Y i | Y(i,j), ξ(i,j), τ 10, τ 01, ∀ i, j, i.e. the observed response for

a subject at time ti,j depends only on the unobserved response and the
examiner that scores that response at time t(i,j) and the misclassification
parameters.

The above assumptions imply that the observed binary vectors are not iid. In this
case, only the observed responses of subjects with the same covariate vectors w,
z1, . . . , zn−1, and with the same examiner patterns ξ, form an iid process. Now
the likelihood function is given by

L(βp, βq1
, . . . ,βqn−1

, τ 10, τ 01) =

m∏

i=1

P (Y ∗
i = y∗

i | βp, βq1
, . . . , βqn−1

, τ 10, τ 01, ξi)

=

m∏

i=1





∑

y∈V

P (Y ∗
i = y∗

i , Y i = y | βp, βq1
, . . . , βqn−1

, τ 10, τ 01, ξi)




 ,

where y∗
i ∈ {0, 1}n, and the joint distribution for the observed and latent binary

variables is given by

P (Y ∗
i = y∗

i ,Y i = yi | βp, βq1
, . . . , βqn−1

, τ 10, τ 01, ξi)

=

[
τ

1−y∗

(i,1)

(ξ(i,1),01)

(
1 − τ(ξ(i,1),01)

)y∗

(i,1)

p1

(
wi, βp

)]y(i,1)

×
[
τ

y∗

(i,1)

(ξ(i,1),10)

(
1 − τ(ξ(i,1),10)

)1−y∗

(i,1)

p2

(
wi, βp

)]1−y(i,1)

×
n−1∏

j=1

[
τ

1−y∗

(i,j+1)

(ξ(i,j+1),01)

(
1 − τ(ξ(i,j+1) ,01)

)y∗

(i,j+1)

]y(i,j)

×
n−1∏

j=1

[
τ

1−y∗

(i,j+1)

(ξ(i,j+1),01)

(
1 − τ(ξ(i,j+1) ,01)

)y∗

(i,j+1)

δ1

(
z(i,j), βqj

)]y(i,j+1)(1−y(i,j))

×
n−1∏

j=1

[
τ

y∗

(i,j+1)

(ξ(i,j+1),10)

(
1 − τ(ξ(i,j+1) ,10)

)1−y∗

(i,j+1)

δ2

(
z(i,j), βqj

)](1−y(i,j+1))(1−y(i,j))

,

where y∗
i ∈ {0, 1}n, y ∈ V , p1

(
wi, βp

)
=

exp{wT
i βp}

1+exp{wT
i

βp}
, p2

(
wi, βp

)
=

1
1+exp{wT

i
βp}

, δ1

(
z(i,j), βqj

)
=

exp{zT
(i,j)βqj

}

1+exp{zT
(i,j)

βqj
}
, and δ2

(
z(i,j), βqj

)
= 1

1+exp{zT
(i,j)

βqj
}
.
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The identification results obtained in the previous section for the simple HMM,
which strongly depend on the iid property, are not directly applicable for this
extended model. For the current model, we conjecture that sufficient identification
restrictions are that the design matrices W , Z1 . . . , Zn−1 are of full rank, and
that τ(i,10) + τ(i,01) < 1, ∀ i ∈ {1, . . . , Q}. However, a formal evaluation of these
restrictions is highly complicated due to the relatively complex likelihood function
and the great number of potential scenarios. We do not provide any formal
proof here and restrict ourselves to the empirical evaluation of the behavior of
the estimators under the same setting of the ST study. Specifically, we evaluated
the behavior of a Bayesian implementation of the model using simulated data. We
opted for the Bayesian implementation of the model because of simplicity. As
explained latter in this section, the use of a data augmentation algorithm renders
the likelihood to the one arising from the product of independent logistic regression
models which simplifies the computation and solved the numerical difficulties
that we have observed in the direct (not data-augmented) maximization of the
likelihood function with some simulated datasets. The results of the simulation
study are presented after the introduction of the Bayesian model.

4.4.2 The Bayesian Implementation

A Bayesian version of the model requires the specification of prior distributions
for the model parameters. Independent normal prior distributions were assumed
for the logistic regression coefficients,

βp ∼ Nk+1 (bp, V p) ,

and, for j = 1, . . . , n − 1,
βqj

∼ Nk+2(bqj
, V qj

).

As a default choice prior specification of the prior covariance matrix of the
regression coefficients we consider a suitably modified version of Zellner’s g-prior
(Zellner, 1983), originally developed as a “reference prior” for Gaussian linear
models. Specifically we assume V p = gp(W T W )−1 and V qj

= gqj
(ZT

j Zj)−1,
where gp, gq1 , . . . , gqn−1 are positive constants. This specification produces priors
that are scale invariant in terms of the predictors and takes into account the
correlation in the coefficients induce by the design matrices. In our applications
of the model we set bp = 0k+1, bqj

= 0k+2, and for the g-prior constants we have
taken gp = gq1 , . . . = gqn−1 = 2m.
For the misclassification parameters, we assume independent beta distributions,
under the restriction τ(i,01) + τ(i,10) < 1, i.e.,

(
τ(i,01), τ(i,10)

)
∼ Beta

(
α1

(i,01), α2
(i,01)

)
× Beta

(
α1

(i,10), α2
(i,10)

)
×

I
(
τ(i,01), τ(i,10)

)
{(τ(i,01),τ(i,10)):τ(i,01)+τ(i,10)<1}

,

(4.2)
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where I(·)A is an indicator function for the set A. We next explain the
computational strategy used for posterior sampling under the model. A function
implementing the Markov chain Monte Carlo (MCMC) algorithm described here
was written in a compiled language and incorporated into the R-program (R
Development Core Team, 2009), which is available upon request to the authors. A
Metropolis within Gibbs algorithm is used to generate samples from the posterior
distribution. The MCMC algorithm is based on a data augmentation step treating
the unobserved true responses Y i as unknown parameters. The full conditionals
for sampling the latent data are straightforward to derive. The introduction of
latent data greatly simplify the computations. Indeed, given the latent data Y i,
i = 1, . . . , m, the full conditionals for the regression coefficients correspond to the
one arising from logistic regression models with the priors previously described
and applied to the corresponding subsets of the data. For the full conditional
of the regression coefficients associated to the prevalence, βp, the vector formed

for the responses
(
Y(i,1), . . . , Y(m,1)

)
is used in a logistic regression setting. For

the full conditional of the regression coefficients associated to the incidences, βqj
,

the coordinates of the vector
(
Y(i,j+1), . . . , Y(m,j+1)

)
for which Y(i,j) = 0 are used

in a logistic regression setting. Therefore, any sampling method developed for
logistic regression parameters can be used to sample from these full conditional
distributions. In our function we consider Metropolis-Hastings’ steps based on
multivariate normal proposals. The mean and the covariance matrix of these
proposals are created based on a first order Taylor series approximation to the
target distribution and on one step of the Newton-Raphson algorithm (see, e.g.
Gamerman, 1997). The full conditionals for the latent data and the Metropolis-
Hastings’ steps for the logistic regression coefficients, are available in Sections C.4
and C.5 of Appendix C, respectively.

Finally, the full conditionals for the misclassification parameters are truncated beta
distributions where the prior parameters are updated by the number of different
errors incurred by the corresponding examiner, i.e.

τ(i,01) | rest ∼ Beta
(

α1
(i,0)1 + n1

(i,01), α2
(i,01) + n2

(i,01)

)
×

I
(
τ(i,01)

)
{τ(i,01):τ(i,01)<1−τ(i,10)}

,

and

τ(i,10) | rest ∼ Beta
(

α1
(i,10) + n1

(i,10), α2
(i,10) + n2

(i,10)

)
×

I
(
τ(i,10)

)
{τ(i,10):τ(i,10)<1−τ(i,01)}

,
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where

n1
(i,01) =

m∑

l=1

n∑

j=1

I
(

Y ∗
(l,j), Y(l,j)

)

{Y ∗

(l,j)
=0,Y(l,j)=1}

I
(
ξ(l,j)

)
{ξ(l,j)=i}

,

n2
(i,01) =

m∑

l=1

n∑

j=1

I
(

Y ∗
(l,j), Y(l,j)

)

{Y ∗

(l,j)
=1,Y(l,j)=1}

I
(
ξ(l,j)

)
{ξ(l,j)=i}

,

n1
(i,10) =

m∑

l=1

n∑

j=1

I
(

Y ∗
(l,j), Y(l,j)

)

{Y ∗

(l,j)
=1,Y(l,j)=0}

I
(
ξ(l,j)

)
{ξ(l,j)=i}

,

and

n2
(i,10) =

m∑

l=1

n∑

j=1

I
(

Y ∗
(l,j), Y(l,j)

)

{Y ∗

(l,j)
=0,Y(l,j)=0}

I
(
ξ(l,j)

)
{ξ(l,j)=i}

.

4.4.3 The Simulation Study and Results

We evaluated the performance of the Bayesian implementation of the model
introduced in the previous section using simulated data. We consider the same
covariates used in the analysis of the ST data in Section 4.5 and the same
examination structure as that of the ST study. The true values of the regression
coefficients and misclassification parameters are given in Tables 4.2 and 4.3 (see
pages 83 and 84), respectively. The true values for the regression coefficients were
motivated by estimates observed in the real analysis of the ST data.

We simulated 1000 data sets with the previously described structure and fitted
the above Bayesian model in each case. For the misclassification parameters we
considered independent uniform priors, under the restriction τ(i,10) + τ(i,01) <
1, by taking α1

(i,10) = α1
(i,01) = α2

(i,10) = α2
(i,01) = 1 in (4.2). As a sensitivity

analysis, we also consider a concentrated beta prior by taking α1
(i,10) = α1

(i,01) =

0.5 and α2
(i,10) = α2

(i,01) = 4.5. For each of the models, one Markov chain was
generated. A conservative total number of 420000 scans of the Markov chain cycle
were completed. Standard convergence tests (not shown), as implemented in the
BOA R library (Smith, 2007), suggested that shorter chains can be considered.
Because of storage limitations the full chain was subsampled every 20 steps after
a burn-in period of 20000 samples, to give a reduced chain of length 20000.

Tables 4.2 and 4.3 (see pages 83 and 84, respectively) show the means, across
simulation, the bias and the MSE of the posterior means of the model parameters.
The results suggest that the regression parameters as well as the misclassification
parameters are estimated with only a minimal bias and with a reasonable precision.
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It is further seen that the regression coefficients of the incidences are estimated
with greater error towards the end of the study. As expected, a greater variability
in the estimates for the regression parameters as well as for the misclassification
parameters is observed under the uniform prior for the misclassification parameters.
Indeed, in 30 out of 47 regression parameters (64%), the MSE is greater under the
uniform prior. The same result is observed for the misclassification parameters
in 23 out of 32 estimates (72%). However, concentrated information on the
misclassification parameters is not needed to obtain nearly unbiased and precise
estimates for the regression coefficients and the misclassification parameters.
Therefore, the results show that, under the setting of the ST study, the model
parameters can be estimated from the raw data without extra information on the
misclassification parameters.

4.5 The Analyses of the Signal-Tandmobielr Data

In this section we show the results of the analyses of the ST study. Here the main
focus is the estimation of the prevalence and the incidence of CE in permanent
first molars and the evaluation of potential risk factors for CE.

4.5.1 Global incidence estimation

We estimated the prevalence and incidences using the simple HMM studied in
Section 4.3. The analysis obtained using information of 2,281 children who
participated in all six examinations of the ST study, gave CE prevalence estimates
(95% confidence interval, 95%CI) of 3.6% (2.9 - 4.6%), 4.1% (3.3 - 5.0%), 4.2%
(3.4 - 5.2%) and 4.2% (3.4 - 5.2%), for tooth 16, 26, 36, and 46, respectively, at
the age of seven.

Figure 4.1 (see page 85) shows the estimates and 95%CI for the incidences in the
5 time intervals for the four first permanent molars. For comparison purposes, the
estimates obtained using the early dental approaches are also presented. The CE
incidences are lower than 7 percent in all cases. Further, we observed that the
CE incidence was higher in the beginning than at the end of the study period.
This can be explained by the following facts: i) when the molars emerge in the
mouth (starting from the age of 6) their enamel is not yet fully developed and
the tooth is more vulnerable to caries than later, ii) around the emergence time
the molar is still partially covered by the gingiva, which makes brushing the tooth
more complicated, or iii) during eruption the tooth remains for a prolonged period
(up to 12 months and more) below the occlusal plane and, as a consequence,
does not (fully) participate in the chewing process increasing the risk for plaque
accumulation. The results also illustrate that different estimates can be obtained
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Table 4.2: Simulated Data: true values, and Monte Carlo means, bias and mean
squared error (MSE) of the posterior means of the logistic regression parameters
under a Beta(1,1) and Beta(0.5,4.5) prior for the misclassification parameters,
respectively.

Parameter Covariate True Value
Beta(1,1) Beta(0.5,4.5)

Mean Bias MSE Mean Bias MSE

Prevalence

Intercept -9.21 -8.41 0.81 21.69 -9.10 0.12 16.47
Gender 0.33 0.34 0.01 0.17 0.41 0.08 0.16
Age 0.93 0.87 -0.06 0.34 0.97 0.03 0.27
x-ordinate -0.03 -0.04 -0.00 0.15 -0.04 -0.00 0.11
y-ordinate -0.85 -1.01 -0.16 1.88 -1.10 -0.25 1.64
Age Start Brushing 0.22 0.19 -0.03 0.03 0.18 -0.04 0.03
Meals 0.08 -0.03 -0.11 0.18 0.10 0.01 0.19

Incidence 1

Intercept -8.97 -9.42 -0.44 30.49 -8.82 0.16 24.84
Gender -0.07 -0.06 0.01 0.17 -0.13 -0.06 0.16
Age 0.82 0.78 -0.04 0.37 0.82 0.00 0.26
x-ordinate 0.34 0.35 0.02 0.16 0.38 0.04 0.14
y-ordinate -0.20 -0.01 0.18 1.55 -0.19 0.00 1.13
Days Between Exam. 0.00 0.00 0.00 0.00 0.00 -0.00 0.00
Age Start Brushing -0.10 -0.12 -0.02 0.03 -0.14 -0.04 0.04
Meals 0.24 0.21 -0.03 0.15 0.17 -0.07 0.17

Incidence 2

Intercept -2.40 -2.22 0.18 31.91 -3.86 -1.46 25.58
Gender 0.46 0.50 0.03 0.21 0.44 -0.03 0.13
Age -0.43 -0.49 -0.06 0.25 -0.29 0.14 0.30
x-ordinate -0.11 -0.09 0.02 0.15 -0.06 0.06 0.16
y-ordinate -0.48 -0.53 -0.04 1.39 -0.46 0.03 1.79
Days Between Exam. 0.01 0.01 0.00 0.00 0.01 0.00 0.00
Age Start Brushing 0.14 0.12 -0.02 0.03 0.12 -0.02 0.03
Meals 0.14 0.04 -0.10 0.17 0.06 -0.08 0.18

Incidence 3

Intercept -6.89 -6.76 0.13 39.02 -5.78 1.11 37.77
Gender 0.23 0.21 -0.02 0.30 0.29 0.06 0.25
Age 0.19 0.15 -0.04 0.43 0.18 -0.07 0.46
x-ordinate 0.85 0.80 -0.05 0.23 0.80 -0.06 0.26
y-ordinate -1.15 -0.89 0.26 2.47 -1.10 0.05 1.77
Days Between Exam. 0.01 0.01 -0.00 0.00 0.01 -0.00 0.00
Age Start Brushing 0.04 0.00 -0.03 0.06 -0.00 -0.04 0.05
Meals 0.42 0.27 -0.15 0.39 0.23 -0.19 0.40

Incidence 4

Intercept -0.82 0.99 1.80 44.39 -0.24 0.58 36.70
Gender 0.04 0.04 0.00 0.25 0.03 -0.00 0.22
Age -0.38 -0.45 -0.06 0.37 -0.40 -0.02 0.26
x-ordinate 0.81 0.87 0.06 0.24 0.84 0.03 0.21
y-ordinate -0.65 -1.14 -0.49 2.48 -0.74 -0.09 1.76
Days Between Exam. 0.00 0.00 -0.00 0.00 0.00 -0.00 0.00
Age Start Brushing 0.39 0.36 -0.03 0.03 0.33 -0.07 0.04
Meals -0.04 -0.10 -0.05 0.25 -0.07 -0.03 0.21

Incidence 5

Intercept -5.07 -5.31 -0.25 101.91 -4.83 0.23 63.23
Gender -0.10 -0.21 -0.11 0.40 -0.08 0.02 0.39
Age 0.24 0.23 -0.01 0.64 0.25 0.01 0.43
x-ordinate 0.20 0.26 0.06 0.32 0.27 0.07 0.35
y-ordinate -1.75 -1.01 0.74 3.61 -1.43 0.32 2.26
Days Between Exam. 0.01 0.00 -0.00 0.00 0.00 -0.00 0.00
Age Start Brushing -0.21 -0.17 0.04 0.06 -0.17 0.04 0.07
Meals 1.44 0.77 -0.67 0.83 0.81 -0.62 0.72
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Table 4.3: Simulated Data: true values, and Monte Carlo means, bias (×10) and
mean squared error (MSE ×103) of the posterior means of the sensitivity (1 − τ01)
and specificity (1 − τ10) for each examiner, under a Beta(1,1) and Beta(0.5,4.5)
prior for the misclassification parameters, respectively.

Examiner True Value
Beta(1,1) Beta(0.5,4.5)

Mean Bias MSE Mean Bias MSE

1 − τ01

1 0.95 0.86 0.91 12.87 0.94 0.12 1.86
2 0.95 0.89 0.62 7.06 0.94 0.13 1.67
3 0.95 0.93 0.25 1.59 0.94 0.09 0.83
4 0.95 0.92 0.31 2.42 0.95 0.04 0.99
5 0.90 0.86 0.37 4.24 0.90 0.01 2.46
6 0.90 0.87 0.26 3.07 0.90 0.05 2.67
7 0.90 0.86 0.36 4.43 0.89 0.07 2.49
8 0.90 0.86 0.40 5.63 0.91 -0.08 3.11
9 0.85 0.66 1.91 56.25 0.88 -0.34 4.75

10 0.85 0.81 0.42 5.82 0.86 -0.08 3.19
11 0.85 0.81 0.36 6.37 0.84 0.14 3.01
12 0.85 0.82 0.34 7.46 0.86 -0.05 4.07
13 0.92 0.89 0.28 2.89 0.91 0.07 1.96
14 0.92 0.86 0.60 7.08 0.92 -0.01 2.01
15 0.92 0.90 0.24 1.93 0.91 0.07 1.35
16 0.92 0.90 0.23 1.80 0.91 0.07 1.37

1 − τ10

1 0.90 0.89 0.07 0.71 0.90 -0.02 0.72
2 0.90 0.90 0.04 0.50 0.90 0.00 0.30
3 0.90 0.90 0.01 0.16 0.90 0.00 0.12
4 0.90 0.90 0.00 0.22 0.90 0.01 0.24
5 0.95 0.95 0.01 0.16 0.95 0.02 0.18
6 0.95 0.95 0.04 0.11 0.95 0.02 0.13
7 0.95 0.95 0.00 0.12 0.95 0.00 0.11
8 0.95 0.95 0.02 0.19 0.95 0.01 0.24
9 0.92 0.91 0.10 0.66 0.92 0.00 0.67

10 0.92 0.92 0.00 0.23 0.92 0.00 0.25
11 0.92 0.92 0.01 0.27 0.92 0.02 0.23
12 0.92 0.92 -0.01 0.27 0.92 0.02 0.18
13 0.85 0.85 0.01 0.30 0.85 0.00 0.24
14 0.85 0.84 0.06 0.51 0.85 -0.04 0.56
15 0.85 0.85 0.01 0.16 0.85 0.01 0.20
16 0.85 0.85 0.02 0.19 0.85 0.01 0.16
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Figure 4.1: Caries experience incidence estimates for molars 16 (panel a), 26 (panel
b), 36 (panel c) and 46 (panel d). The estimates and 95% confidence interval for the
maximum likelihood estimator in the simple hidden Markov model (MLE-HMM)
are presented in black. Point estimates associated to the early approaches (RE,
RI, CS, LU and PCS) are also presented.
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by using the early approaches proposed in the literature. The estimates based
on the early approaches may even lie outside the asymptotic confidence intervals
obtained by maximum likelihood estimation. In agreement with what we observed
in the simulation study, the RE method tends to overestimate the incidence while
the other early approaches underestimate the incidence.

4.5.2 Evaluation of the effect of covariates

We fitted the extended HMM proposed in Section 4.4 under the Bayesian
framework using the same priors and the same MCMC specification as in
Section 4.4.3. We evaluated the effect of gender (boys vs girls; Gender), age
at start of brushing (in years; Startbr), the number of between-meal snacks (two
or less than two a day vs more than two a day; Meals), the geographical location,
represented by the standardized (x, y) co-ordinate of the municipality of the school
to which the child belongs (x-ordinate and y-ordinate), and t(i,1), corresponding
to the age (in years; Age) at first examination, on the prevalence of CE. For the
incidence parameters, we evaluated the effect of gender, age at start of brushing,
the x- and y-ordinate, the number of between-meal snacks at the beginning of the
time interval, t(i,j) corresponding to the age (in years) at the beginning of the time

interval, and
(
t(i,j+1) − t(i,j)

)
corresponding to the time between examinations (in

years; Years-exam).

Initially two models were fitted. In Model 1 we assume different intercepts and
covariate effects on the incidence parameters. Model 2 is a reduced version of
Model 1 with different intercepts but where the covariates are assumed to have
a constant effect on the incidences. The choice between the models was based
on the Bayesian information criterion (BIC) (Schwarz, 1978). The results suggest
that the reduced version of the model is preferred. For instance, for tooth 26, the
BIC for Model 1 and Model 2 was 3696.5 and 3526.4, respectively, suggesting no
evidence of a time-dependent effect of the covariates. Therefore, we only report
the results based on Model 2. For ease of exposition, we show the results for tooth
26. Similar results were observed for the other teeth under consideration.

Posterior means and 95% highest posterior density (95% HPD) credible intervals,
computed as proposed by Chen & Shao (1999), for the logistic regression
coefficients are displayed in Table 4.4 (see page 87). The results show that the
older the child at the beginning of the study the higher the prevalence of CE. The
results also show that the higher the number of between-meal snacks the higher the
incidence of CE. Furthermore, a significant effect of the x-ordinate was observed on
the incidences, suggesting the existence of an east-west gradient for the incidence
of CE in permanent molars in Flanders. Although a non-significant effect of the
x-ordinate was observed on the prevalence for permanent molars at approximately
the age of seven, which can be explained by the relatively short exposition of the
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Table 4.4: Posterior means and 95% highest posterior density (95% HPD) credible
intervals, for the logistic regression coefficients associated to the prevalence and
incidences for tooth 26.

Covariate Posterior Mean 95%HPD

Prevalence

Intercept -10.13 (-17.30; -3.32)
Gender 0.32 ( -0.34; 0.97)
Age 1.06 ( 0.17; 1.95)
x-ordinate -0.05 ( -0.71; 0.61)
y-ordinate -0.76 ( -2.87; 1.34)
Startbr 0.20 ( -0.07; 0.49)
Meals 0.05 ( -0.65; 0.75)

Incidences

Intercept 1 -3.63 ( -5.26; -1.95)
Intercept 2 -3.45 ( -5.18; -1.76)
Intercept 3 -3.73 ( -5.61; -1.94)
Intercept 4 -3.39 ( -5.45; -1.51)
Intercept 5 -3.70 ( -5.91; -1.66)
Gender 0.13 ( -0.16; 0.42)
Age -0.05 ( -0.30; 0.22)
x-ordinate 0.33 ( 0.05; 0.62)
y-ordinate -0.78 ( -1.65; 0.08)
Years-exam 1.49 ( 0.30; 2.66)
Startbr 0.11 ( -0.02; 0.24)
Meals 0.36 ( 0.05; 0.67)

teeth at this age, the significant regional effect on the incidences induce a significant
regional effect on the prevalence at the end of the study. This geographical gradient
has also been observed on the prevalence of CE in primary dentition, with a similar
period of exposition, by Mwalili et al. (2005), where an analysis of aggregate
data was performed using an ordinal logistic regression model for correcting for
misclassification. Figure 4.2 (see page 88) shows the misclassification parameters
for each examiner for molar 26. In general, the examiners were more specific than
sensitive. The results suggest a greater variability in the sensitivity estimates which
is explained by the low prevalence and incidences of CE. All examiners showed a
sensitivity greater than 0.8, with the exception of examiner 9 who showed a rather
poor scoring behavior. The latter result is explained by the lower information
available for this examiner. In fact, examiner 9 was only involved in the first two
years of the ST study.
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Figure 4.2: Posterior means and 95% highest posterior density credible intervals
for examiners’ specificity (panel a) and sensitivity (panel b), respectively.

4.6 Concluding Remarks

We have studied the properties and evaluated the performance of simple HMM
for monotone binary processes. We showed that the associated MLE always
outperform the early approaches proposed in the dental literature for incidence
estimation under the presence of misclassified data. We also showed that
restrictions in the parameter space are needed for the identification of the model
parameters. Specifically, we showed that in a simple HMM for two time points
and under the assumption τ = τ10 = τ01, and in a simple HMM for more than two
time points and assuming that τ10 6= τ01, the parameters are unidentified by the
data even though the number of free equations matches the number of parameters
in the model.

We provided theoretical and empirical evidence showing that, under some
restrictions on the parameter space, the parameters in a simple HMM are identified
and can be estimated from the raw data, thus avoiding the need of external
information on the misclassification parameters. Because the external information
on the misclassification parameters is in general difficult to obtain, the simple
HMM has a clear advantage over the models for cross-sectional data which require
of such an input. We noted that if external information on the misclassification
parameters is available, this can be easily incorporated into the HMM specification
leading to more efficient estimates of the parameters. Further, the fact that the
misclassification parameters can be estimated from the main data allows us to test
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whether the misclassification parameters in the main and available validation data
are equal, implying the existence of real internal validation data.

We proposed an extension of the simple HMM model in order to describe the
relationships between covariates and the prevalence and incidence, and where
different classifiers are present. In addition, we developed a Bayesian version of the
extended model and showed empirically that, under the settings of our motivating
example, the parameters can be estimated without any external information. The
results suggest that even under the use of uniform priors on the misclassification
parameters, unbiased and precise estimates of the parameters can be obtained.
The formal identification analysis for this extension of the model is the subject of
current research.

Several extensions of this work can be done. For instance, relaxing the assumptions
A.3 or B.3 can be of interest. This was suggested by one of the reviewers and it
might be justified by the existence of easy/difficult to diagnose subjects. We are
currently working on a multivariate extension of the extended model, and exploring
the connection between HMM and survival models. Since, the prevalence and
incidences can be written as functions of the survival function for the time to
event, the resulting model corresponds to a model for misclassified survival data.
Finally, the extension of the results for models for multinomial data is also the
subject of ongoing research.
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Abstract

Motivated by a longitudinal oral health study, the Signal-Tandmobielr, we
propose a multivariate binary inhomogeneous Markov model in which unobserved
correlated response variables are subject to an unconstrained misclassification
process and have a monotone behavior. The multivariate baseline distributions
and Markov transition matrices of the unobserved processes are defined as a
function of covariates, throughout the specification of compatible full conditional
distributions. Distinct misclassification models are discussed. In all cases, the
existence of different classifiers for each subject across time is taken into account.
A full Bayesian implementation of the model is described and its performance is
evaluated using simulated data. We show that under the settings of our motivating
example, the parameters can be estimated without any external information on
the misclassification parameters. Finally, the analyses of the motivating problem
are presented.

Keywords: Multivariate binary data; Monotone binary processes; Misclassifica-
tion; Incidence estimation; Hidden Markov model.

5.1 Introduction

Based on dental data gathered in a longitudinal oral health study, the Signal-
Tandmobielr (ST) study, we aim to asses potential risk factors for the incidence
of caries experience (CE), which is defined as a binary variable indicating whether a
tooth is decayed at d3 level (see, e.g. Reis et al., 2006), missing or filled due to caries.
This involves the analysis of a misclassified multivariate monotone binary process
since: (i) CE, as previously defined, is a progressive or monotone disease because
teeth cannot alternate between the presence or absence of CE once CE occurs
over time, (ii) events on teeth of the same child are dependent, and (iii) several
examiners were involved in the study and their CE scoring may not perfectly reflect
the tooth’s true condition and, therefore, the presence of CE can be misdiagnosed
leading to misclassified outcomes.

The effect of response misclassification on estimation and hypothesis testing
has been widely investigated in the literature (see, e.g. Küchenhoff, 2009;
Buonaccorsi, 2010). For regression models, non-differential (covariate independent)
misclassification, can cause the estimates of the regression coefficients to be
attenuated strongly towards to the null and that, although the associated
significance tests are still valid, its power may be drastically reduced. Under
differential (covariate dependent) misclassification, the bias of the estimates can
be in both directions, leading to an apparent effect or an apparent lack of effect
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of the covariate when the reverse is true (see, e.g. Bross, 1954; Tenenbein, 1970,
1971; Magder & Hughes, 1997; Neuhaus, 1999; Jurek et al., 2005).

In cross-sectional studies, where the data contain no information regarding the
misclassification parameters, several strategies have been proposed in the literature
for correcting for misclassification (see, e.g. Geng & Asano, 1989; Magder &
Hughes, 1997; Neuhaus, 1999, 2002; Rekaya et al., 2001; Mwalili et al., 2005;
Küchenhoff et al., 2006). In the context of longitudinal univariate categorical
data, generalized linear mixed models (see, e.g. Neuhaus, 2002), generalized
estimating equation (GEE) based approaches (see, e.g. Neuhaus, 1999), and
transition models (see, e.g. Garćıa-Zattera et al., 2010) have been proposed for
correcting for misclassification. Due to the monotone nature of our motivating
problem and because the main scientific objective here is the incidence estimation,
we restrict ourselves to the latter class of models, where the parameters have a
direct interpretation in terms of the conditional probabilities of developing CE in
a given time-interval.

Hidden Markov models (HMM) for the analysis of misclassified alternating
longitudinal responses has been considered in the literature by Cook et al. (2000),
Rosychuk & Thompson (2001), Rosychuk & Thompson (2003), Nagelkerke et al.
(1990), and Rosychuk & Islam (2009), whereas Espeland et al. (1988), Espeland
et al. (1989), Schmid et al. (1994), Singh & Rao (1995), Albert et al. (1997),
and Garćıa-Zattera et al. (2010) addressed the problem of misclassified monotone
longitudinal responses. It is important to stress that in a longitudinal setting,
unlike cross-sectional studies, the model parameters might be estimated without
the use of external information about the misclassification parameters. For
instance, Garćıa-Zattera et al. (2010) showed that under simple restrictions on
the parameter space, the model parameters associated to an inhomogeneous
HMM for monotone responses are identified by the available data. They also
proposed a univariate model to account for predictors allowing for irregulary
spaced time intervals and different classifiers. This development was motivated
by the analysis of the ST data. However, the proposed model only allows for
univariate longitudinal processes and, therefore, the analyses were performed for
each tooth separately, with a potential loss of power in detecting significant effects.

In this paper, we propose an extension of the univariate HMM proposed by Garćıa-
Zattera et al. (2010) to the multivariate case, thus providing a general framework
for analysing multivariate hidden monotone processes as a function of covariates.
Specifically, we define multivariate binary distributions associated to the monotone
Markov processes by specifying compatible Bernoulli conditional distributions with
the conditional probabilities expressed as logistic regression models (Joe & Liu,
1996; Garćıa-Zattera et al., 2007). Different misclassification models allowing for
different classifiers for each subject across examinations are discussed.

The rest of the paper is organized as follows. Section 5.2 introduces the ST study
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and the research questions. The proposed model is introduced in Section 5.3. The
Bayesian implementation of the model along with the results of the evaluation of
its performance using simulated data is given in Section 5.4. The proposed model
is applied to our motivating problem in Section 5.5. A final discussion section
concludes the paper.

5.2 The Signal-Tandmobielr study and research ques-

tions

The ST study is a longitudinal prospective oral health screening study conducted
in Flanders, Belgium, between 1996 and 2001. For this project, 4468 children were
examined on a yearly basis during their primary school time (between 7 and 12
years of age) by one of sixteen trained and calibrated dental examiners. Clinical
data were collected by the examiners based on visual and tactile observations (no
X-rays were taken), and data on oral hygiene and dietary habits were obtained
through structured questionnaires completed by the parents. For a more detailed
description we refer to Vanobbergen et al. (2000).

Caries lesions were scored in four levels of lesion severity: d4 (dentine caries
with pulpal involvement), d3 (dentine caries with obvious cavitation), d2 (hidden
dentine caries) and d1 (white or brown-spot initial lesions in enamel without
cavitation). Here we consider CE as a binary variable indicating whether the tooth
is decayed at d3 level, missing or filled due to caries, which defines a progressive
disease. Thus observed reversals, i.e. teeth or surfaces initially recorded as being
carious and subsequently recorded as caries-free, represent diagnostic errors. The
diagnosis of CE might be difficult for a variety of reasons. For instance, nowadays
composite materials can imitate the natural enamel so well that it is sometimes
difficult to spot a restored lesion. Another reason may be that the location of
the cavity e.g. far back in the mouth, hampers the view of the dental examiner.
Hence, overlooking CE is likely to happen in practice, but the dental examiner
could also classify discolorations as CE.

The statistical findings reported below were applied to the scoring of the four
permanent first molars, i.e., teeth 16, 26 on the maxilla (upper quadrants), and
teeth 36 and 46 on the mandible (lower quadrants). The numbering of the teeth
follows the FDI (Federation Dentaire Internationale) notation which indicates the
position of the tooth in the mouth. Position 26, for instance, means that the tooth
is in quadrant 2 (upper left quadrant) and position 6 where numbering starts from
the mid-sagittal plane.

The purpose of the present investigation is to asses the effect of potential risk
factors on the prevalence and incidence of CE, and to study the (within- and
across-time) association structures. Since the main objective is the CE incidence
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estimation, the model building strategy is based on transition models, where the
covariates are included at the level of the Markov transition matrices instead of
marginalized versions (see, e.g. Azzalini, 1994; Heagerty & Zeger, 2000; Heagerty,
2002), where the main focus is the assesment of the effect of covariates on the
marginal means.

5.3 The multivariate hidden Markov model

In this section we introduce the proposed model. The elements of the model
are discussed in a sequential manner. Section 5.3.1 contains the development of
the multivariate Markov model, while Section 5.3.2 discusses the misclassification
component of the model. Finally, these components are pooled to produce the
statistical model in Section 5.3.3.

5.3.1 The multivariate Markov model

Suppose that J teeth are examined for the ith subject, i = 1, . . . , I, at time
points t(i,k), k = 1, . . . , K. Let Y(i,j,k) be the true unobserved binary response
for tooth j of subject i at time t(i,k) and let Y (i,k) = (Y(i,1,k), . . . , Y(i,J,k))

′ be the
J-dimensional vector of true responses for all teeth of subject i at time t(i,k). Let
x(i,j) be a p-dimensional vector of exogenous covariates associated with the first
examination of jth tooth of the ith subject, and let z(i,j,k), k = 2, 3, . . . , be q-
dimensional vectors of exogenous but possibly time-varying covariates associated
to the jth tooth of the ith subject. Further, set Xi =

(
x(i,1), . . . , x(i,J)

)′
and

Z(i,k) =
(
z(i,1,k), . . . , z(i,J,k)

)′
, k = 1, . . . , K. We assume that the vectors Y (i,k)

follow independent multivariate monotone inhomogeneous first-order Markov
processes. In order to relate the covariates to the initial distributions and elements
of the transition matrices, and to evaluate the association among the responses
of the same subject, multivariate distributions are defined by the specification of
their full conditional distributions (see, e.g. Arnold et al., 1992).

Following Joe & Liu (1996), we assume that, for j = 1, . . . , J , the conditional
distribution of the corresponding binary response at the first examination, Y(i,j,1),
given the other binary responses Y(i,l,1) = yl, ∀l 6= j, and the covariates x(i,j), is a
Bernoulli distribution with probability following the logistic regression model

logit
[
PXi

(
Y(i,j,1) = 1 | β

P
j , γ

P
, Y(i,l,1) = yl, ∀l 6= j

)]
= x

′
(i,j)β

P
j +

∑

l6=j

γ
P
jlyl, (5.1)
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where βP
j is a p-dimensional vector of logistic regression coefficients for the jth

tooth, and γP
jl are conditional log-odds ratio parameters given by

exp{γP
jl} =

PXi
(Y(i,j,1) = 1, Y(i,l,1) = 1|Y(i,m,1) = ym, ∀m 6= j, l)

PXi
(Y(i,j,1) = 1, Y(i,l,1) = 0|Y(i,m,1) = ym, ∀m 6= j, l)

×

PXi
(Y(i,j,1) = 0, Y(i,l,1) = 0|Y(i,m,1) = ym, ∀m 6= j, l)

PXi
(Y(i,j,1) = 0, Y(i,l,1) = 1|Y(i,m,1) = ym, ∀m 6= j, l)

.

Joe & Liu (1996) showed that the conditional probability distributions given by
expression (5.1) are compatible if and only if γP

jl = γP
lj , for all j 6= l. Under these

restrictions, the joint distribution for the initial time point is given by

PXi
(Y (i,1) = y | β

P
, γ

P ) = c1(Xi, β
P

, γ
P )−1 ×

exp

{
J∑

j=1

(
x

′
(i,j)β

P
j

)
yj +

∑

1≤j<l≤J

γ
P
jlyjyl

}
, (5.2)

where y ∈ {0, 1}J , βP = (βP
1 , . . . , βP

J )′, γP = {γP
jl : 1 ≤ j < l ≤ J}, and

c1(X i, βP , γP ) is a normalizing constant given by

c1(Xi, β
P

, γ
P ) =

1∑

y1=0

. . .

1∑

yJ =0

exp

{
J∑

j=1

(
x

′
(i,j)β

P
j

)
yj +

∑

1≤j<l≤J

γ
P
jlyjyl

}
.

In order to model the conditional joint distributions associated with the transition
matrices of the Markov processes, we extend the approach of Joe & Liu (1996).
The monotone nature of the process implies that 2J − 1 rows of the transition
matrices contain structural zeros. In fact, each row corresponds to the conditional
joint distribution PZ(i,k)

(
Y (i,k) = yk | Y (i,k−1) = yk−1

)
, with support B{yk−1} ⊂

{0, 1}J defined by the realizations yk−1 of the response vector in the previous
examination Y (i,k−1). For ease of exposition, consider the case of J = 2 binary

response variables Y (i,k) =
(
Y(i,1,k), Y(i,2,k)

)′
. In this case, the form of the

transition matrices is shown in Figure 5.1 (see page 99).

As shown in Figure 5.1, B{(0, 0)} = {0, 1}2, B{(0, 1)} = {(0, 1), (1, 1)}, B{(1, 0)} =
{(1, 0), (1, 1)}, and B{(1, 1)} = {(1, 1)} for the two-dimensional example.

Let y[−j] = (y1, . . . , yj−1, yj+1, . . . , yJ) be a (J − 1)-dimensional vector resulting
by removing the jth coordinate of y. We assume that conditional on the
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Y (i,k)

Y (i,k−1)

(0,0) (0,1) (1,0) (1,1)

(0,0)

(0,1)

(1,0)

(1,1)

Πk
11 Πk

12 Πk
13 Πk

14

0 Πk
22 0 Πk

24

0 0 Πk
33 Πk

34

0 0 0 1

Figure 5.1: Illustration of a valid transition matrix Πk in a bivariate monotone
Markov model.

design vector of covariates z(i,j,k), Y (i,k−1) = yk−1 and Y (i,k)[−j] = yk
[−j],

for all yk ∈ B{yk−1}, Y(i,j,k) follows a Bernoulli distribution with probability

πj

(
yk−1, yk

[−j] | βI
j , γI , αI

)
, with

πj

(
y

k−1
, y

k
[−j] | β

I
j , γ

I
, α

I
)

=

{
h

(
z

′
(i,j,k)β

I
j +
∑

l6=j

γ
I
ljy

k
l +

∑

l6=j

α
I
ljy

k−1
l

)}1−y
k−1
j

,(5.3)

where h(·) = exp{·}/(1+exp{·}), βI
j is a q-dimensional vector of logistic regression

coefficients for the jth tooth, and γI
lj and αI

lj are, within- and across-time
conditional log-odds ratio parameters, respectively, since

exp{γI
lj} =

PZ(i,k)

(
Y(i,j,k) = 1, Y(i,l,k) = 1, Y(i,j,k−1) = 0, Y(i,l,k−1) = 0 | · · ·

)

PZ(i,k)

(
Y(i,j,k) = 0, Y(i,l,k) = 1, Y(i,j,k−1) = 0, Y(i,l,k−1) = 0 | · · ·

) ×

PZ(i,k)

(
Y(i,j,k) = 0, Y(i,l,k) = 0, Y(i,j,k−1) = 0, Y(i,l,k−1) = 0 | · · ·

)

PZ(i,k)

(
Y(i,j,k) = 1, Y(i,l,k) = 0, Y(i,j,k−1) = 0, Y(i,l,k−1) = 0 | · · ·

) ,

and

exp{αI
lj} =

PZ(i,k)

(
Y(i,j,k) = 1, Y(i,l,k) = 1, Y(i,j,k−1) = 0, Y(i,l,k−1) = 1 | · · ·

)

PZ(i,k)

(
Y(i,j,k) = 0, Y(i,l,k) = 1, Y(i,j,k−1) = 0, Y(i,l,k−1) = 1 | · · ·

) ×

PZ(i,k)

(
Y(i,j,k) = 0, Y(i,l,k) = 1, Y(i,j,k−1) = 0, Y(i,l,k−1) = 0 | · · ·

)

PZ(i,k)

(
Y(i,j,k) = 1, Y(i,l,k) = 1, Y(i,j,k−1) = 0, Y(i,l,k−1) = 0 | · · ·

) .

In the context of our motivating problem, the γI
lj parameters are interpreted as the

difference in the conditional log-odds of developing CE for the jth tooth between
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the examinations (k −1) and k, when the lth tooth has developed or not CE in the
same interval. On the other hand, the αI

lj parameters represent the difference in the
conditional log-odds of developing CE for the jth tooth between the examinations
(k − 1) and k, when the lth tooth had CE in the previous examination, (k − 1),
versus when the lth tooth develops CE between the examinations (k − 1) and k.

We show that, similar to the model proposed by Joe & Liu (1996), the restrictions
γI

lj = γI
jl, ∀ j 6= l, are necessary and sufficient conditions for the full conditionals

given by expression (5.3) to define a proper probability model for each row of the
Markovian transition matrices. The following proposition is proved in Section D.1
of Appendix D.

Proposition 5.1. The full conditional distributions given by expression (5.3) are
compatible if and only if γI

lj = γI
jl, for all j 6= l. Under these conditions, the

conditional joint distributions are given by

PZ(i,k)
(Y (i,k) = y

k | Y (i,k−1) = y
k−1

, β
I
, γ

I
, α

I) = c2(Z(i,k), β
I
, γ

I
, α

I)−1 ×

exp

{
∑

j∈S

(
z

′
(i,j,k)β

I
j

)
y

k
j +

∑

{1≤l<j:j∈S,l∈Sc}

γ
I
ljy

k
j +

∑

{j<l≤J:j∈S,l∈S}

γ
I
jly

k
l y

k
j

+
∑

{j<l≤J:j∈S,l∈Sc}

γ
I
jly

k
j +

∑

{(j,l):j∈S,l∈Sc}

α
I
lj y

k
j




 ,

where yk ∈ B{yk−1}, S = {j : yk−1
j = 0}, Sc = {j : yk−1

j = 1}, βI =

(βI
1, . . . , βI

J )′, γI = {γI
jl : 1 ≤ j < l ≤ J}, αI = {αI

jl : j, l = 1, . . . , J, j 6= l},

and c2(Z(i,k), βI , γI , αI) is a normalizing constant given by

c2(Z(i,k), β
I
,γ

I
, α

I) =
∑

yk∈B{yk−1}

exp




∑

j∈S

(
z

′
(i,j,k)β

I
j

)
y

k
j +

∑

{1≤l<j:j∈S,l∈Sc}

γ
I
ljy

k
j

+
∑

{j<l≤J:j∈S,l∈S}

γ
I
jly

k
l y

k
j +

∑

{j<l≤J:j∈S,l∈Sc}

γ
I
jly

k
j +

∑

{(j,l):j∈S,l∈Sc}

α
I
lj y

k
j



 .

5.3.2 The misclassification model

We assume that the response variables Y(i,j,k) are prone to misclassification. Let
Y ∗

(i,j,k) be the corrupted observed binary response for tooth j of subject i at time
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t(i,k), and set Y ∗
(i,k) =

(
Y ∗

(i,1,k), . . . , Y ∗
(i,J,k)

)′

and Y ∗
i =

(
Y ∗

(i,1), . . . , Y ∗
(i,K)

)
.

Here we suppose that the scoring is performed by Q examiners. Denote by
ξ(i,k) ∈ {1, . . . , Q} the variable indicating the examiner that scores all teeth
of subject i at time t(i,k), and let ξi = (ξ(i,1), . . . , ξ(i,K)) be the vector of
indicators of the examiners that score the responses of subject i over time. We
further assume that the scoring behavior of the examiners is the same across

the study. Let τ 00
q =

(
τ00

(q,1), . . . , τ00
(q,J)

)
and τ 11

q =
(

τ11
(q,1), . . . , τ11

(q,J)

)
, q =

1, . . . , Q, be the vectors containing the tooth-specific specificity and sensitivity
parameters for the qth examiner, respectively. Finally, let τ 11 = (τ 11

1 , . . . , τ 11
Q )

and τ 00 = (τ 00
1 , . . . , τ 00

Q ) be the matrices containing all sensitivity and specificity
parameters, respetively. In this setting, the misclassification model assumes

that P
(

Y ∗
(i,j,k) = 1 | Y(i,j,k) = 1

)
= τ11

(ξ(i,k),j) and P
(

Y ∗
(i,j,k) = 0 | Y(i,j,k) = 0

)
=

τ00
(ξ(i,k),j) and the process is characterized by the following conditional independence

assumptions. Note that assumptions (A.1) - (A.6) represent natural extensions of
the commonly used assumptions for the analysis of univariate and multivariate
misclassified binary data (see, e.g. Geng & Asano, 1989; Magder & Hughes, 1997;
Neuhaus, 1999, 2002).

(A.1) ⊥⊥ 1≤i≤I Y ∗
i | Y 1, . . . , Y I , ξ1 . . . , ξI , τ 00, τ 11, i.e. the observed response

matrices for each subject are independent given the true unobserved
responses, examiner indicators, and sensitivity and specificity parameters,

(A.2) Y ∗
i ⊥⊥ Y 1, . . . , Y i−1, Y i+1, . . . , Y I | Y i, ξi, τ 00, τ 11, ∀ i, i.e. the distribution

of the observed response matrix for a subject only depends on his true
unobserved response matrix, the examiners that score his responses, and
the sensitivity and specificity parameters,

(A.3) ⊥⊥ 1≤k≤K Y ∗
(i,k) | Y i, ξi, τ 00, τ 11, ∀ (i, k), i.e. the observed response vectors

for a subject are independent across time given his unobserved response
matrix, the examiners that score his responses and the sensitivity and
specificity parameters,

(A.4) Y ∗
(i,k) ⊥⊥ Y (i,1), . . . , Y (i,k−1), Y (i,k+1), . . . , Y (i,K) | Y (i,k), ξ(i,k), τ 00

ξ(i,k)
, τ 11

ξ(i,k)
,

i.e., the distribution of the observed response vector in the kth examination
only depends on his true unobserved response vector at the same exami-
nation, the examiner that scores his responses at examination k, and the
examiner-specific sensitivity and specificity parameters,

(A.5) ⊥⊥ 1≤j≤J Y ∗
(i,j,k) | Y (i,k), ξ(i,k), τ 00

ξ(i,k)
, τ 11

ξ(i,k)
, ∀ (i, k), i.e. the observed

responses at the kth examination are independent given the unobserved
response vector at the same examination, the examiner that scores his
responses at the kth examination, and the examiner-specific sensitivity and
specificity parameters,
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(A.6) Y ∗
(i,j,k) ⊥⊥ Y(i,1,k), . . . , Y(i,j−1,k), Y(i,j+1,k), . . . , Y(i,J,k) | Y(i,j,k), ξ(i,k), τ00

(ξ(i,k),j),

τ11
(ξ(i,k),j) , i.e., the distribution of the jth observed response at the kth

examination only depends on the true unobserved response at the same
examination, the examiner that scores his responses at examination k, and
the sensitivity and specificity parameters of this examiner for the jth tooth.

In order to evaluate the effect of the examiner and the tooth on the misclassification
parameters, three misclassification models, varying in complexity regarding these
effects, were considered. In a general model we assume unstructured examiner-
tooth specific sensitivity and specificity parameters (M 1). In a second version of
the model, we assume the same misclassification parameters across teeth for each
examiner (M 2), i.e., for q = 1, . . . , Q, τ00

(q,j) = τ00
(q) and τ11

(q,j) = τ11
(q), ∀j. Finally, an

intermediate case assuming examiner-tooth specific misclassification parameters
under an additive model was assumed (M 3), by considering

logit
(

τ00
(q,j)

)
= w′

qjδ00 and logit
(

τ11
(q,j)

)
= w′

qjδ11,

where wqj is a design vector including an intercept term and dummy variables for
the examiners and teeth, and δ00 and δ11 are regression coefficients of the additive
model associated to the examiner-tooth-specific specificities and sensitivities,
respectively.

Following Garćıa-Zattera et al. (2010), we consider restricted parameter spaces for
the misclassification parameters in order to avoid identification problems. For the
misclassification models M1 and M 2 , we consider the parameter space

{(
τ00

(q,j), τ11
(q,j)

)
∈ [0, 1]2 : τ00

(q,j) + τ11
(q,j) > 1

}
, q = 1, . . . , Q, j = 1, . . . , J,

and {(
τ00

(q), τ11
(q)

)
∈ [0, 1]2 : τ00

(q) + τ11
(q) > 1

}
, q = 1, . . . , Q,

respectively. Equivalently, for the misclassification model M 3 we consider the
parameter space

{(
δ

00′

, δ
11′

)′

∈ R
2J+2Q−2 : h

(
w

′
qjδ

00
)

+ h
(
w

′
qjδ

00
)

> 1
}

, q = 1, . . . , Q, j = 1, . . . , J.

5.3.3 The implied statistical model

Regardless of the misclassification model, the assumptions (A.1) - (A.6), along with
the assumptions associated to the Markov model, imply that the joint probability
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model for the observed and unobserved responses for each subject is given by

PXi,Zi
(Y ∗

i = y∗
i , Y i = yi | βP , γP , βI , γI , αI , τ 00, τ 11

)
=





J∏

j=1

K∏

k=1

P
(

Y ∗
(i,j,k) = y∗

(i,j,k) | Y(i,j,k) = y(i,j,k), ξi,k, τ 00, τ 11
)


×

{
K∏

k=2

PZ(i,k)

(
Y (i,k) = y(i,k) | Y (i,k−1) = y(i,k−1), βI , γI , αI

)}
×

PXi

(
Y (i,1) = y(i,1) | βP , γP

)
,

where

P
(

Y ∗
(i,j,k) = y∗

(i,j,k) | Y(i,j,k) = y(i,j,k), ξ(i,k), τ 00, τ 11
)

=

{
τ11

(ξ(i,k),j)

y∗

(i,j,k) (1 − τ11
(ξ(i,k),j))

1−y∗

(i,j,k)

}y(i,j,k) ×

{
τ00

(ξi,k,j)

1−y∗

(i,j,k) (1 − τ00
(ξi,k,j))

y∗

(i,j,k)

}1−y(i,j,k)

,

and y(i,1) ∈ {0, 1}J , y(i,2) ∈ B{y(i,1)}, . . . , y(i,K) ∈ B{y(i,K−1)}. Therefore, the
likelihood function is given by

L
(

βP , γP , βI , γI , αI , τ 00, τ 11
)

=

I∏

i=1

PXi,Zi

(
Y ∗

i = y∗
i | βP , γP , βI , γI , αI , τ 00, τ 11

)
,

=

I∏

i=1

∑

yi∈V

PXi,Zi

(
Y ∗

i = y∗
i , Y i = yi | βP , γP , βI , γI , αI , τ 00, τ 11

)
,

(5.4)

where V = {0, 1}J × B{y(i,1)} × · · · × B{y(i,K−1)}.

5.4 The Bayesian implementation

In this section the model is completed by specifying prior distributions for the
parameters in Section 5.4.1. The algorithms used for posterior computation in the
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proposed models are described in Section 5.4.2. Finally, the performance of the
model is evaluated using simulated data in Section 5.4.3.

5.4.1 The prior specification

Independent normal prior distributions were assumed for the conditionally
specified logistic regression coefficients associated with the multivariate baseline
distribution and Markov model,

βP ∼ NJp(mβP , V βP ), γP ∼ NJ(J−1)/2

(
mγP , V γP

)
, (5.5)

βI ∼ NJq(mβI , V βI ), γI ∼ NJ(J−1)/2

(
mγI , V γI

)
, (5.6)

αI ∼ NJ(J−1) (mαI , V αI ) , (5.7)

For the unstructured misclassification model M 1, we assume that for all q ∈
{1, . . . , Q} and j ∈ {1, . . . , J},

(
τ00

(q,j), τ11
(q,j)

)
ind.∼ Beta

(
ǫ00

(1,qj), ǫ00
(2,qj)

)
× Beta

(
ǫ11

(1,qj), ǫ11
(2,qj)

)
×

I
(

τ00
(q,j), τ11

(q,j)

)
{

(τ 00
(q,j)

,τ 11
(q,j)

):τ 00
(q,j)

+τ 11
(q,j)

>1
} ,

(5.8)

where I(·)A is an indicator function for the set A. Similarly, for the misclassi-
fication model assuming equal misclassification parameters across teeth for each
examiner, M2, we assume that for all q ∈ {1, . . . , Q},

(
τ00

(q), τ11
(q)

)
ind.∼ Beta

(
ǫ00

(1,q), ǫ00
(2,q)

)
× Beta

(
ǫ11

(1,q), ǫ11
(2,q)

)
×

I
(

τ00
(q), τ11

(q)

)
{

(τ 00
(q)

,τ 11
(q)

):τ 00
(q)

+τ 11
(q)

>1
} .

(5.9)

Finally, for the additive misclassification model, M3, we assume that

(
δ00′

, δ11′

)′

∼ NJ+Q−1 (mδ00 , V δ00) × NJ+Q−1 (mδ11 , V δ11) ×

I
(
δ00, δ11

)
{(δ00′

,δ11′)
′

∈R2J+2Q−2:h(w′

qj
δ00)+h(w′

qj
δ00)>1,∀q,j} .

(5.10)
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5.4.2 The posterior computation

We next explain the computational strategy used for posterior inference, which is
based on Markov chain Monte Carlo (MCMC) simulation. Functions implementing
the MCMC algorithms described here for each model were written in a compiled
language and incorporated into a library of the R program (R Development Core
Team, 2010). This library is available upon request to the first author. Under the
prior specification given in Section 5.4.1, the posterior distributions

pMi

(
βP , γP , βI , γI , αI , τ 00, τ 11 | Y ∗

)
, i = 1, 2,

and
pM3

(
βP , γP , βI , γI , αI , δ00, δ11 | Y ∗

)
,

arising under the misclassification models M 1, M2 and M 3, are proportional to
the product of expressions (5.4) - (5.7) with (5.8), (5.9), and (5.10), respectively. To
explore these posterior distributions, Metropolis within Gibbs algorithms (Tierney,
1994) are used. In all cases, the MCMC algorithm is based on a data augmentation
step treating the unobserved true responses Y(i,j,k) as unknown parameters.
Although the full conditionals for the latent data Y(i,j,k) are straightforward to
derive and sample from under each misclassification model, we propose a blocked
step to update the latent vectors Y (i,k) in order to improve the mixing of the chain.
The full conditionals for the latent vectors Y (i,k) are discrete distributions with
appropriate probability parameters. Indeed, the misclassification assumptions
(A.1) - (A.6), along with the assumptions of the monotone Markov model imply
that for all ym ∈ {0, 1}J , the discrete probabilities are given by

P
(
Y (i,1) = ym | · · ·

)
∝ P

(
Y

∗
(i,1) = y(i,1) | Y (i,1) = ym, ξ(i,1), τ

00
ξ(i,1)

, τ
11
ξ(i,1)

)
×

PXi

(
Y (i,1) = ym | β

P
, γ

P
)

×

I(ym){ym∈{0,1}J :y(i,2)∈B{ym}},

P
(
Y (i,k) = ym | · · ·

)
∝ P

(
Y

∗
(i,k) = y(i,k) | Y (i,k) = ym, ξ(i,k), τ

00
ξ(i,k)

, τ
11
ξ(i,k)

)
×

PZ(i,k+1)

(
Y (i,k+1) = y(i,k+1) | Y (i,k) = ym, β

I
, γ

I
, α

I
)

×

PZ(i,k)

(
Y (i,k) = ym | Y (i,k−1) = y(i,k−1), β

I
, γ

I
, α

I
)

×

I(ym){ym∈{0,1}J :ym∈B{y(i,k−1)},y(i,k+1)∈B{ym}},
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for k ∈ {2, . . . , K − 1}, and

P
(
Y (i,K) = ym | · · ·

)
∝ P

(
Y

∗
(i,K) = y(i,K) | Y (i,K) = ym, ξ(i,K), τ

00
ξ(i,K)

, τ
11
ξ(i,K)

)
×

PZ(i,K)

(
Y (i,K) = ym | Y (i,K−1) = y(i,K−1), β

I
, γ

I
, α

I
)

×

I(ym){ym∈{0,1}J :ym∈B{y(i,K−1)}}.

In all the models, the introduction of latent data greatly simplify the computations.
Given the latent data for the first examination,

(
Y (1,1), . . . , Y (I,1)

)
, the full

conditionals for the parameters βP and αP correspond to the one arising from the
conditionally specified logistic regression model given by expression (5.2). Since
these full conditionals are not standard, one-coordinate-at-a-time slice sampling
(Neal, 2003) or Metropolis-Hastings (MH) algorithms (Tierney, 1994) can be used
to update the elements of βP , αP , βI , γI and αI . Alternatively, we consider

MH steps to update the joint vectors θP =
(

βP ′

, γP ′

)′

and θI =
(

βI′

, γI′

, αI′

)′

,

based on multivariate normal proposals. The mean and the covariance matrix of
these proposals are created based on a first order Taylor series approximation to
the logistic regressions associated to the full conditional distributions of all latent
response variables at the corresponding examinations, given by expressions (5.1)
and (5.3), and on one step of the Newton-Raphson algorithm (see, e.g. Gamerman,
1997). A complete description of these steps is given in Section D.2 of Appendix D.

Assumptions (A.1) - (A.6), along with the assumptions of the monotone Markov
model, imply that the full conditionals for the misclassification parameters under
the unstructured misclassification model M 1 are truncated beta distributions
given by

τ00
(q,j) | · · · ∼ Beta

(
ǫ00

(1,qj) + n00
(1,qj), ǫ00

(2,qj) + n00
(2,qj)

)
×

I
(

τ00
(q,j)

)
{

τ 00
(q,j)

:τ 00
(q,j)

>1−τ 11
(q,j)

} ,

and

τ11
(q,j) | · · · ∼ Beta

(
ǫ11

(1,qj) + n11
(1,qj), ǫ11

(2,qj) + n11
(2,qj)

)
×

I
(

τ11
(q,j)

)
{

τ 11
(q,j)

:τ 11
(q,j)

>1−τ 00
(q,j)

} ,
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where

n00
(1,qj) =

I∑

l=1

K∑

k=1

I
(

Y ∗
(l,j,k), Y(l,j,k)

)
{

Y ∗

(l,j,k)
=0,Y(l,j,k)=0

} I
(
ξ(l,k)

)
{ξ(l,k)=i} ,

n00
(2,qj) =

I∑

l=1

K∑

k=1

I
(

Y ∗
(l,j,k), Y(l,j,k)

)
{

Y ∗

(l,j,k)
=1,Y(l,j,k)=0

} I
(
ξ(l,k)

)
{ξ(l,k)=i} ,

n11
(1,qj) =

I∑

l=1

K∑

k=1

I
(

Y ∗
(l,j,k), Y(l,j,k)

)
{

Y ∗

(l,j,k)
=1,Y(l,j,k)=1

} I
(
ξ(l,k)

)
{ξ(l,k)=i} ,

and

n11
(2,qj) =

I∑

l=1

K∑

k=1

I
(

Y ∗
(l,j,k), Y(l,j,k)

)
{

Y ∗

(l,j,k)
=0,Y(l,j,k)=1

} I
(
ξ(l,k)

)
{ξ(l,k)=i} .

Similar expressions are obtained for the model assuming the same examiner-
specific misclassification parameters for each teeth. Finally, under the additive
misclassification model M3, the full conditionals of the parameters correspond
to the one arising from logistic regressions with normals priors, applied to the
corresponding subsets of the data. Specifically, the full conditionals for δ00 and
δ11 are given by

p
(
δ

00 | · · ·
)

∝

I∏

i=1

J∏

j=1

K∏

k=1

exp
{

wξ(i,k),jδ00(1 − y∗
(i,j,k))

}

1 + exp
{

wξ(i,k),jδ00
} × I

(
y(i,j,k)

)
{y(i,j,k)=0}

×

exp
{

−0.5(δ00 − mδ00 )′
V

−1
δ00 (δ00 − mδ00 )

}
×

I
(
δ

00
){

δ00∈RJ+Q−1:h
(

w′

qj
δ00
)

+h

(
w′

qj
δ00
)

>1,∀q,j

} ,

and

p
(
δ

11 | · · ·
)

∝

I∏

i=1

J∏

j=1

K∏

k=1

exp
{

wξ(i,k),jδ11y∗
(i,j,k)

}

1 + exp
{

wξ(i,k),jδ11
} × I

(
y(i,j,k)

)
{y(i,j,k)=1}

×

exp
{

−0.5(δ00 − mδ00)′
V

−1
δ00 (δ00 − mδ00)

}
×

I
(
δ

11
){

δ11∈RJ+Q−1:h
(

w′

qj
δ00
)

+h

(
w′

qj
δ00
)

>1,∀q,j

} ,
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respectively. Therefore, sampling methods for constrained logistic regression
parameters can be used to sample from these full conditional distributions. In
our function we consider the slice sampling algorithm proposed by Neal (2003).

5.4.3 A limited simulation study and the results

Problems in measurement error models and HMM include lack of parameter
identification. Parameters in a model are nonidentified if more than one set of
parameter values gives the same distribution function for the observations. To
validate the proposed multivariate HMM model, we conducted the analysis of
simulated datasets, which mimic to a certain extent the ST data. For this purpose
the covariates and the same examination structure considered were as that of
the ST study. The true values for the multivariate HMM were motivated by
estimates observed in a preliminary analysis of the ST data under the more general
misclassification model M1 and assuming a common effect of the predictors for
each response but different intercepts terms. The true values for the Markov
models parameters are given in Tables 5.1 and 5.2 (see pages 109 and 110,
respectively).

We simulated 100 data sets with the previously described structure and fitted
the model in each case. For the misclassification parameters we considered
independent constraint uniform priors by taking ǫ11

(1,qj) = ǫ11
(2,qj) = · · · = ǫ11

(1,QJ) =

ǫ11
(2,QJ) = ǫ00

(1,qj) = ǫ00
(2,qj) = · · · = ǫ00

(1,QJ) = ǫ00
(2,QJ) = 1 in (5.8). For the remaining

hyper-parameters independent normal N(0, 103) distributions were considered.
For each simulated dataset, one Markov chain was generated completing a total
number of 105000 scans of the Markov chain cycle described in Section 5.4 were
completed. Standard tests (not shown), as implemented in the BOA R library
(Smith, 2007), suggested convergence of the chains. Because of storage limitations
the full chain was subsampled every 5 steps after a burn-in period of 5000 samples,
to give a reduced chain of length 20000.

Tables 5.1 and 5.2 (see pages 109 and 110, respectively) show the means,
across simulation, the biases and the MSEs of the posterior means of the
HMM parameters. The results suggest that the regression parameters and
association parameters can be estimated with only a minimal bias and with a
reasonable precision. With the exception of one coefficient, which was close
to zero, the sign of the regression coefficients and association parameters was
correctly estimated. Similar results regarding bias and MSE were observed for
the misclassification parameters (see Figures 5.2 and 5.3 in pages 111 and 112,
respectively). Therefore, the results suggest that, under the setting of the ST
study, concentrated information on the misclassification parameters is not needed
to obtain nearly unbiased and precise estimates for the regression coefficients and
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Table 5.1: Simulated data: true values, and Monte Carlo means, biases and mean
squared errors (MSE) of the posterior means of the logistic regression parameters.

Covariate True Value Mean Bias MSE ×10
Prevalence

Intercept T16 -6.094 -6.204 -0.110 24.222
Intercept T26 -5.621 -5.480 0.141 18.050
Intercept T36 -5.668 -5.474 0.195 18.070
Intercept T46 -5.453 -5.442 0.011 15.724
Startbr 0.091 0.109 0.018 0.034
Age 0.345 0.337 -0.008 0.230
Meals 0.142 0.140 -0.002 0.099
x-ordinate 0.007 -0.010 -0.017 0.137
y-ordinate -0.614 -0.716 -0.101 1.865

Incidence
Intercept T16 -4.581 -4.545 0.035 1.099
Intercept T26 -4.316 -4.318 -0.003 1.096
Intercept T36 -4.709 -4.658 0.050 1.423
Intercept T46 -4.189 -4.220 -0.031 1.146
Startbr 0.086 0.092 0.006 0.004
Age -0.041 -0.046 -0.005 0.003
Meals 0.153 0.164 0.011 0.014
x-ordinate 0.061 0.070 0.009 0.010
y-ordinate -0.156 -0.182 -0.027 0.060
Years-exam 0.398 0.374 -0.024 0.263

misclassification parameters. Thus, the model parameters can be estimated from
the raw data without extra information on the misclassification parameters.

5.5 The analysis of the Signal-Tandmobielr data

In this section we show the results of the analyses of the ST study. Here the main
focus is the assesment of potential risk factors on the prevalence and the incidence
of CE in permanent first molars.

Specifically, we evaluated the effect of the gender (boys vs girls; Gender), age at
start of brushing (in years; Startbr), the number of between-meal snacks (two or
less than two a day vs more than two a day; Meals), the geographical location
(in terms of the standardized (x, y) co-ordinate of the municipality of the school
to which the child belongs; x-ordinate and y-ordinate), and the age (in years;
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Table 5.2: Simulated data: true values, and Monte Carlo means, biases and mean
squared errors (MSE) of the posterior means of the association parameters.

Parameter True Value Mean Bias MSE
Prevalence

γP
16,26 4.003 4.048 0.044 0.557

Within γP
16,36 0.424 0.449 0.025 0.561

Time γP
16,46 2.442 2.103 -0.339 1.146

Association γP
26,36 1.700 1.592 -0.108 0.782

Parameters γP
26,46 0.443 0.592 0.149 0.838

γP
36,46 2.748 2.991 0.242 1.380

Incidence

γI
16,26 3.824 3.919 0.095 0.135

Within γI
16,36 2.729 3.081 0.352 0.308

Time γI
16,46 0.950 1.330 0.380 0.357

Association γI
26,36 1.003 1.213 0.210 0.696

Parameters γI
26,46 2.288 3.354 1.066 1.518

γI
36,46 3.912 4.072 0.160 0.435

αI
16,26 -2.770 -2.854 -0.084 0.316

αI
16,36 -1.950 -2.087 -0.138 0.342

αI
16,46 -0.241 -0.262 -0.021 0.431

Across αI
26,16 -1.918 -2.226 -0.308 0.376

Time αI
26,36 1.140 1.767 0.627 0.617

Association αI
26,46 -1.724 -2.580 -0.856 1.622

Parameters αI
36,16 -2.378 -2.857 -0.479 0.537

αI
36,26 1.515 2.426 0.911 1.396

αI
36,46 -2.728 -3.303 -0.575 0.567

αI
46,16 -0.426 -0.617 -0.192 0.211

αI
46,26 -1.183 -2.123 -0.940 1.273

αI
46,36 -1.349 -1.604 -0.255 0.497

Age) on the prevalence and incidence of CE for permanent first molars, teeth
16, 26 on the maxilla (upper quadrants), and teeth 36 and 46 on the mandible
(lower quadrants). In addition, the length of time between examinations (in years;
Years-exam) was included in a linear way in z(i,j,k). The number of between-meal
snacks was considered as a time dependent covariate and was included with a one
year lag in the corresponding design matrices.

The inclusion of the geographical components, expressed in terms of the x- and y-
coordinates, was motivated by the results of previous analyses (without correcting
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Figure 5.2: Simulated data: true value (×), mean across simulations (•) +/-√
MSE for the sensitivity of each examiner for tooth 16 (panel a), tooth 26 (panel

b), tooth 36 (panel c) and , tooth 46 (panel d).

for mislcassification) that showed a significant East-West gradient in the prevalence
of CE in Flanders. A possible cause for the apparent trend in CE is a different
scoring behavior of the 16 dental examiners and the non-homogeneous spatial
distribution of them in the study area (Mwalili et al., 2006).

We fitted the Bayesian version of the models M1, M2 and M3. Based on
preliminary analyses, a common effect of the predictors for each tooth was assumed
for the initial distributions and for the elements of the transition matrices. In all
models, we assume independent N(0, 103) prior distributions for the coordinates
in βP , βI , γP , γI and αI , by taking mβP = 0J+(p−1), mβI = 0J+(q−1),
mγP = mγI = 0J(J−1)/2, mαI = 0J(J−1), V βP = diag{103}J+(p−1), V βI =
diag{103}J+(q−1), V γP = V γI = diag{103}J(J−1)/2, and V αI = diag{103}J(J−1)
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Figure 5.3: Simulated data: true value (×), mean across simulations (•) +/-√
MSE for the specificity of each examiner for tooth 16 (panel a), tooth 26 (panel

b), tooth 36 (panel c) and , tooth 46 (panel d).

in the expressions (5.5), (5.6), and (5.7). For models M1 and M2, constrained
independent uniform priors distributions were assumed by taking ǫ11

(1,qj) = ǫ11
(2,qj) =

· · · = ǫ11
(1,QJ) = ǫ11

(2,QJ) = ǫ00
(1,qj) = ǫ00

(2,qj) = · · · = ǫ00
(1,QJ) = ǫ00

(2,QJ) = 1

in (5.8), and ǫ11
(1,q) = ǫ11

(2,q) = · · · = ǫ11
(1,Q) = ǫ11

(2,Q) = ǫ00
(1,q) = ǫ00

(2,q) = · · · =

ǫ00
(1,Q) = ǫ00

(2,Q) = 1 in (5.9), respectively. Finally, for the additive misclassification

model M3, constrained independent N(0, 103) prior distributions were assumed
for the misclassification parameters by taking mδ00 = mδ11 = 02J+2Q−2 and
V δ00 = V δ11 = diag{103}2J+2Q−2 in expression (5.10).

We run the Markov chain cycle described in Section 5.4 for each model. In each
case, a conservative total number of 420000 samples were obtained. The full
chain was subsampled every 20 steps after a burn-in period of 20000 samples,
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to give a reduced chain of length 20000. Model comparison was performed
using the pseudo Bayes factor (PsBF) developed by Geisser & Eddy (1979) and
further considered by Gelfand & Dey (1994). The PsBF for the comparison of
M i versus M j corresponds to the ratio between the pseudo marginal likelihood
(PML) for model M i and model M j . In our context, the PML for model

M i is defined as PMLMi
=
∏I

i=1

∏J
j=1

∏K
k=1 PMi

(
Y ∗

(i,j,k) | Y ∗
[−(i,j,k)]

)
, where

PMi

(
Y ∗

(i,j,k) | Y ∗
[−(i,j,k)]

)
is the posterior predictive distribution for observation

Y ∗
(i,j,k), based on the data Y ∗

[−(i,j,k)], under model M i, with Y ∗
[−(i,j,k)] being the

observed data matrix that excludes the observation jth observation of subject i
in examination k. Therefore, PsBF for model M i versus model M j is defined

as PsBFMi,Mj
=
∏I

i=1

∏J
j=1

∏K
k=1

PMi (Y ∗

(i,j,k)|Y ∗

[−(i,j,k)])
PMj

(
Y ∗

(i,j,k)
|Y ∗

[−(i,j,k)]

) . The individual cross-

validation predictive densities known as conditional predictive ordinates (CPO)
have also been used. The CPOs measure the influence of individual observations
and are often used as predictive model checking tools. The method suggested by
Gelfand & Dey (1994) was used to obtain estimates of CPO statistics from the
MCMC output.

The log PML for model M 1, M2, and M 3 was -3984, -3937 and -3956, respectively.
Therefore, the 2 × log10PsBF for M2 versus M1 and for M2 versus M 3 was
40.8 and 16.5, respectively. These results suggest no evidence for the hypothesis
of tooth-specific misclassification parameters for each examiner. Because of that,
only the results arising from model M2 are reported here. Table 5.3 (see page 114)
shows the posterior means and 95% highest posterior density (95% HPD) credible
intervals for the logistic regression coefficients. HPD intervals were computed using
the method described by Chen & Shao (1999).

The results suggest that the older the child the higher the prevalence of CE in
permanent molars. The lack of other significant covariates on the prevalence of
CE might be due to the fact that permanent teeth have recently erupted at the
age of seven, and they have not been exposed enough to infectious agents and/or
to the well known loss of power associated to the presence of misclassification
(see, e.g. Luan et al., 2005). Regarding the incidence of CE, the results indicate
that the later the child starts brushing or the higher the number of between-meal
snacks, the higher the probability of developing caries. The lack of a significant
geographical trend in the prevalence and incidence of CE, supports the hypothesis
that the observed geographical gradient is due to the different scoring behavior of
the examiners rather than to real local geographical differences.

Posterior means and 95% HPD credible intervals for the association parameters
are shown in Table 5.4 (see page 115). The posterior inferences for the within-
time conditional log-odds suggest a high positive association in the presence of
CE between symmetrically opponent molars and right vertically opponent molars
(maxilla versus mandible) at the age of 7. At this age, a non-significant conditional
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Table 5.3: Signal-Tandmobielr data: posterior means and 95% highest posterior
density (95% HPD) credible intervals, for the conditionally specified logistic
regression coefficients associated to the prevalence and incidence for caries
experience in permanent first molars.

Prevalence Incidence
Posterior

95%HPD
Posterior

95%HPD
Mean Mean

Intercept T16 -6.16 (-8.86 ; -3.51) -4.67 (-5.62 ; -3.71)
Intercept T26 -5.63 (-8.42 ; -3.11) -4.39 (-5.35 ; -3.50)
Intercept T36 -5.75 (-8.38 ; -3.06) -4.71 (-5.68 ; -3.79)
Intercept T46 -5.59 (-8.25 ; -2.98) -4.27 (-5.20 ; -3.38)
Startbr 0.10 (-0.01 ; 0.21) 0.09 ( 0.04 ; 0.13)
Gender 0.23 (-0.02 ; 0.49) 0.10 (-0.01 ; 0.21)
Age 0.35 ( 0.02 ; 0.67) -0.03 (-0.08 ; 0.01)
Meals 0.15 (-0.11 ; 0.41) 0.15 ( 0.05 ; 0.27)
x-ordinate -0.01 (-0.25 ; 0.25) 0.07 (-0.04 ; 0.17)
y-ordinate -0.63 (-1.50 ; 0.18) -0.16 (-0.48 ; 0.15)
Years-exam - - 0.39 (-0.05 ; 0.85)

association was found between diagonally opponent teeth. High positive within-
time conditional associations were found between symmetrically, right vertically
opponent molars and diagonally opponent teeth as the process evolves.

The posterior inference for the across-time odds ratio parameters suggest
significant and negative associations between symmetrically and diagonally
opponent molars. These results suggest that the probability of developing caries on
a tooth is higher when a symmetrically or diagonally opponent molar is affected at
the same time but sound at the previous examination, than when it was affected in
the previous examination. For instance, αI

16,26 = −2.81 in Table 5.4 (see page 115)
means that the log-odds of developing caries for tooth 26 is higher when tooth 16
is affected at the same time interval than when it was already affected at the
previous examination. These results can be explained by the fact that once a
tooth is affected by caries, it is probably treated and the infection is no longer
spreading in the next examination.

In order to evaluate the posterior evidence against the hypothesis of symmetry
in the across time log-odds parameters αI

lj = αI
jl, ∀j 6= l, the pseudo contour

probability (PsCP) for this hypothesis was evaluated. The PsCP was computed
based on simultaneous credible bands which were estimated using the method
proposed by Besag et al. (1995). The PsCP for the hypothesis of symmetry, defined
as 1 minus the smallest credible level for which the null hypothesis is contained
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Table 5.4: Signal-Tandmobielr data: posterior means and 95% highest posterior
density (95% HPD) credible intervals of conditional log-odds ratios for caries
experience in permanent first molars.

Parameter Posterior Mean 95% HPD
Prevalence

γP
16,26 3.93 ( 2.80 ; 5.09)

Within γP
16,36 0.67 (-1.43 ; 3.04)

Time γP
16,46 2.23 ( 0.23 ; 4.01)

Association γP
26,36 1.45 (-1.02 ; 3.60)

Parameters γP
26,46 -0.16 (-2.40 ; 2.34)

γP
36,46 2.56 ( 1.25 ; 3.85)

Incidence

γI
16,26 3.84 ( 3.16 ; 4.53)

Within γI
16,36 2.36 ( 1.31 ; 3.37)

Time γI
16,46 1.08 ( 0.15 ; 2.09)

Association γI
26,36 -0.63 (-1.89 ; 0.71)

Parameters γI
26,46 2.12 ( 1.21 ; 3.03)

γI
36,46 3.70 ( 3.07 ; 4.36)

αI
16,26 -2.81 (-3.87 ; -1.76)

αI
16,36 -1.48 (-2.75 ; -0.24)

αI
16,46 -0.38 (-1.54 ; 0.77)

Across αI
26,16 -1.91 (-2.91 ; -0.97)

Time αI
26,36 0.80 (-0.67 ; 2.27)

Association αI
26,46 -1.57 (-2.63 ; -0.45)

Parameters αI
36,16 -2.09 (-3.32 ; -0.93)

αI
36,26 1.05 (-0.39 ; 2.49)

αI
36,46 -2.46 (-3.45 ; -1.52)

αI
46,16 -0.46 (-1.54 ; 0.58)

αI
46,26 -1.03 (-2.11 ; 0.01)

αI
46,36 -1.24 (-1.98 ; -0.54)
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Figure 5.4: Signal-Tandmobielr data: posterior means and 95% highest posterior
density credible intervals for examiner’s sensitivity (panel a) and specificity (panel
b).

in the corresponding simultaneous credible bands (see, e.g. Held, 2004), was 0.059.
This result suggests that there is no strong evidence against the hypothesis of
symmetry in the caries process across time.

Finally, Figure 5.4 shows the posterior means and 95% HPD credible intervals
for the sensitivity and specificity for each examiner. The results suggest a
greater variability in the sensitivity than in the specificity estimates, which can
be explained by the low prevalence and incidence of CE. All examiners showed a
sensitivity greater than 0.72, with rather narrow 95% HPD credible intervals, with
one exception. The latter result is explained by the fact that this examiner was
only involved in the first two years of the ST study, having less information for the
estimation of his parameters. The posterior means for the specificity parameters
were higher than 0.96 for all examiners.

5.6 Concluding Remarks

We have proposed a multivariate HMM for monotone binary processes. Although
the methodology was motivated by an oral health application, it can be applied to
any situation where correlated binary responses have an absorvent state and are
subject to misclassification, such as studies about kidney failure or vision loss.

In the proposal, the multivariate initial distributions and the conditional
distributions associated to the Markov transition matrices are defined by
conditionally specified logistic regression models that account for the effect of
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covariates on the prevalence and incidence in a conditional but population-average
fashion. The association structure is taken into account by within- and across-time
odds ratio parameters. Three misclassification models were proposed that consider
the existence of different classifiers and different structures in the examiner-specific
misclassification errors.

We provided empirical evidence showing that, under the settings of our motivating
example and with simple restrictions on the parameter space, the model
parameters in the proposed multivariate HMM can be estimated from the raw
data only, thus avoiding the need of external information on the misclassification
parameters. The results suggest that even under the use of uniform priors on
the misclassification parameters, unbiased and relatively precise estimates can
be obtained. We noted that if external information on the misclassification
parameters is available, this can be easily incorporated into the multivariate HMM
specification.

Several extensions of this work can be done. Justified by the existence of
easy/difficult to diagnose subjects, the relaxation of some of the assumptions
(A.1) - (A.6) could be of interest; for instance, a possible improvement of the
scoring behavior of the examiners accross the study could be considered. The
inclusion of time-dependent within- and across-time association parameters or
their dependence on covariates can also be pursued, as well as the extension of the
model for handling multinomial data.
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Garćıa-Zattera, M. J., Jara, A., Lesaffre, E. & Declerck, D. (2007).
Conditional independence of a multivariate binary data with an application in
caries research. Computational Statistics and Data Analysis 51 3223–3234.
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Chapter 6

General Conclusions and

Further Research

In this thesis, we have evaluated and proposed models for the analysis of
multivariate binary data. In Chapters 2 and 3, we have studied the properties of
two models to analyze multivariate binary data, with respect to the interpretation
and the effect of the misclassification on the inferences of their association
parameters. In Chapters 4 and 5, uni- and multi-variate models for the analysis of
longitudinal monotone binary data subject to misclassification were developed. In
this chapter we summarize the main conclusions obtained throughout this thesis
and highlight some topics for further research.

6.1 General Conclusions

The interpretation of the association parameters associated with two population-
average models for the analysis of multivariate binary data were studied and
illustrated in Chapter 2. On the one hand, we considered the multivariate
probit model (MPM) (Ashford & Sowden, 1970), where the binary variables can
be interpreted as a discretized version of correlated Gaussian underlying latent
variables, which are manifested through a threshold specification. In the MPM,
the association between the binary responses is induced by the correlation matrix of
the multivariate normal latent random vectors. On the other hand, we considered
the conditionally specified logistic regression model (CSLRM) (Joe & Liu, 1996),
where the association parameters have a direct interpretation on the binary scale.
In the CSLRM, the association is characterized by conditional odds ratios between
pairs of binary variables, given the remaining binary responses and covariates. We
showed that conditional independence assumptions on the underlying continuous
latent variables, evaluated by the partial correlation matrix in the MPM, are not
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transferred to the binary scale. This result implies that conditional independence
structure for binary variables cannot be evaluated using the information of the
tetrachoric correlation coefficients. Moreover, this result provides a possible
explanation for the existence of spurious associations or associations without
etiological basis. For instance, based on data obtained from the first year of
the ST study, we found a high association of caries experience (CE) between
diagonally opponent molars, which was believed to be the result of transitivity
and to disappear by conditioning on the CE status of the other teeth. However,
using models for multivariate binary data (e.g. the CSLRM), we found that this
diagonal association did not disappear. When the association was explored on a
latent scale, e.g. by using a MPM, conditional independence could be concluded.
This contrast was confirmed when using other models. A similar phenomenon
occurs when the continuous data are discretized for the sake of the analysis, a
practice that is often seen in medical research.

Motivated by the lack of literature about the effect of misclassification on the
estimation of the association parameters for multivariate binary data, in Chapter 3
we explored the effect of response misclassification on the small sample behavior of
naive estimators of the association parameters of the MPM and CSLRM. We found
that, under either non-differential or differential misclassification, the maximum
likelihood estimators of the association parameters can be strongly biased towards
the null of no association, if the misclassification process is ignored. Under non-
differential misclassification the bias and mean squared error of naive estimators
of the association parameters in the MPM and CSLRM are greater than the ones
obtained under no misclassification when sample size, degree of association or
misclassification errors increase. Under a differential misclassification process, the
effect on the estimation of the association parameters is greater when there is a
negative association between the predictors and the precision of the classification
procedure.

The monotone feature of CE, as defined throughout this thesis, led us to inves-
tigate whether a monotone process subject to misclassification contains enough
information to identify all the model parameters, including the misclassification
parameters, without adding extra information. In Chapter 4 we gave theoretical
and empirical arguments to show that, the parameters associated with simple
binary hidden Markov models (HMMs), can be estimated without the need of
external information. In order to take into account in a better manner the
characteristics of the ST data, an extension of the simple HMM was also proposed
in this chapter. This extension allowed us to assess the effect of covariates on
the parameters of the Markov model and the existence of different classifiers. We
showed that, under the settings of our motivating example, the parameters can be
estimated without any external information in a Bayesian version of the model.

In order to gain power for the hypothesis testing and to understand the within-
and across-time association structure of a multivariate binary monotone process,
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in Chapter 5 we proposed an extension to the HMM described in Chapter 4. This
extension was based on a generalization of the CSLRM discussed in Chapters 2
and 3. As in Chapter 4, we provided empirical evidence to show that, under the
settings of the ST study and with simple restrictions on the parameter space, all
the model parameters can be estimated from the main data only, avoiding the
need of extra information about the misclassification parameters.

The results of Chapters 4 and 5, show that in longitudinal studies external
information is not necessary to estimate all the model parameters. This shows
another advantage of longitudinal over cross-sectional studies. Because, in general,
cross-sectional data contain no information about the misclassification parameters,
the approaches to correct for misclassification in this context rely on the existence
of extra data or on expert knowledge. Since this information is usually difficult to
obtain, the possibility of estimate the misclassification parameters using only the
main data, is an important characteristic associated to longitudinal studies.

6.2 Further Research

Further research could focus on some of the topics considered in this thesis.
As we pointed out throughout this thesis, misclassification occurs frequently in
epidemiology and several approaches to correct for it have been proposed. In
Chapter 3 we highlighted the impact of misclassification on the inferences about
the association parameters. We found that, regardless the type of misclassification
process, the maximum likelihood estimators of the association parameters are
strongly biased towards the null. Based on this result, the conclusions obtained
in Chapter 2 regarding conditional independence on the latent and observed
scales, should be verified. The lack of significance found in the partial tetrachoric
correlation coefficients could be due to the underestimation induced by the
misclassification of CE. In other words, it might be that the same association
structure is concluded using either the latent or the observed scale, once correcting
for misclassification. Thus, in general, correction for misclassification would be an
intuitively solution to obtain better inferences. However, the benefits of correcting
for misclassification should be explored before applying correction methods since
they can reduce the bias of the estimators, but increase their variability (see, e.g.
Luan et al., 2005).

In Chapters 4 and 5 we proposed HMMs for monotone binary data. These models
can be extended to handle covariate measurement error and multinomial or multi-
state data to model, for instance, different degrees of CE. In addition, the existence
of easy/difficult to diagnose subjects and possible improvements of the scoring
behavior of the examiners across the study can be considered in the specification
of the misclassification process. Given the hierarchical structure of dental data, i.e
surfaces in teeth, teeth in jaws and jaws in mouths, the extension of the proposed
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HMM of Chapter 4 considering a multilevel modelling which takes into account
the spatial structure, could also be considered.

The HMM of Chapter 5 allows us to study the within- and across-time association
structure of monotone multivariate binary data. In this context, the inclusion of
time-dependent association parameters can be explored as well as their dependence
on covariates.

An important aspect associated with models for data subject to measurement error
is the identifiability of the parameters. The results of the simulation studies in
Chapters 4 and 5 suggest that the regression coefficients and the misclassification
parameters can be estimated from the data, when they have a similar structure
than the ST study. The formal study of this property in general contexts seems to
be needed. The identification study of hidden alternating binary and multinomial
Markov models can also be considered.

The connection between HMMs and survival models is also subject of further
research. Time to caries, which is defined as the time length of onset of caries
since emergence, can be modeled as a function of covariates. Since, the prevalence
and incidences can be written as functions of the survival function for the time to
event, the resulting model corresponds to a model for misclassified survival data.
This involves the analyzes of misclassified uni- and multivariate doubly-interval
censored data, since time to emergence and time to caries are both censored. Very
little has been written on models for multivariate doubly-interval-censored data
with the exception of the frailty models of Komárek & Lesaffre (2008) and Jara et al.
(2010). However, none of these models have taken into account the misclassification
problem.
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Komárek, A. & Lesaffre, E. (2008). Bayesian accelerated failure time model
with multivariate doubly-interval-censored data and flexible distributional
assumptions. Journal of the American Statistical Association 103(482) 523–533.

Jara, A., Lesaffre, E., De Iorio, M. & Quintana, F. (2010). Bayesian
semiparametric inference for multivariate doubly-interval-censored data. Annals
of Applied Statistics (To appear).

Joe, H. & Liu, Y. (1996). A model for a multivariate binary response
with covariates based on compatible conditionally specified logistic regressions.
Statistics and Probability Letters 31 113–120.



REFERENCES 129

Luan, X., Pan, W., Gerberich, S. G. & Carlin, B. P. (2005). Does it always
help to adjust for misclassification of a binary outcome in logistic regression?
Statistics in Medicine 24 2221–2234.





Part IV

Supplementary Material

131





Appendix A

Supplementary Material for

Chapter 2

A.1 Proof that conditional independence on the

latent scale does not imply conditional indepen-

dence on the binary scale

Let V ∼ N3 (µ, R), where,

µ =




µV1

µV2

µV3


, R =




1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1


 .

When V1 ⊥⊥ V2|V3 holds, then e.g.,

P (V1 > 0, V2 > 0|V3 > 0) =

∫∞

0

∫∞

0

∫∞

0 f(v1|v3) f(v2|v3) f(v3) dv1 dv2 dv3∫∞

0 f(v3) dv3

=

∫∞

0
Φ
(

µ∗

1

σ∗

1

)
Φ
(

µ∗

2

σ∗

2

)
f(v3) dv3

∫∞

0 f(v3) dv3

=

∫

A

Φ

(
µ∗

1

σ∗
1

)
Φ

(
µ∗

2

σ∗
2

)
h(x) dx, (A.1)

where, A = [0, ∞), µ∗
1 = µV1 +ρ13(x−µX), µ∗

2 = µV2 +ρ23(x−µX), σ2∗
1 =

√
1 − ρ2

13,

σ2∗
2 =

√
1 − ρ2

23, and h(x) ≡ T N(0,∞)(µX , σ2
X), which means Truncated Normal

between zero and infinity with location µX and scale σ2
X .
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On the other hand, when Y1 ⊥⊥ Y2|Y3 holds,

P (Y1 = 1, Y2 = 1|Y3 = 1) = P(Y1 = 1|Y3 = 1)P(Y2 = 1|Y3 = 1)

= P(V1 > 0|V3 > 0)P(V2 > 0|V3 > 0)

=

∫

A

Φ

(
µ∗

1

σ∗
1

)
h(x)dx ×

∫

A

Φ

(
µ∗

2

σ∗
2

)
h(x)dx. (A.2)

Expression (A.1) is greater than expression (A.2), because

E (g1 (X) g2 (X)) ≥ E (g1 (X)) E (g2 (X)) , (A.3)

holds for all real-valued functions g1 and g2 which are nondecreasing (in each
component) and are such that the expectations in (A.3) exist. The equality
holds iff g1(X) = c or g2(X) = c (a.s.) (see, e.g., Esary et al. 1967). This
shows that conditional independence on the latent scale does not imply conditional
independence on the observed scale and vice versa.

�

References

Esary, J. D., Proschan, F. & Walkup, D. W. (1967). Association of random
variables, with applications. Annals of Mathematical Statistics 38 1466–1474.



Appendix B

Supplementary Material for
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B.1 Results of the Multivariate Probit Model under

Non-Differential Misclassification

Table B.1: Bias of the estimators of the association parameters of the multivariate
probit model under non-differential misclassification and τ11 = 0.85 and τ00 = 0.95.
The results correspond to the absolute ratio between the bias of the naive
maximum likelihood estimator, B∗, and the bias of the maximum likelihood
estimator when there is no misclassification, B, i.e. |B∗/B |.

True Values Sample Size
Correlation Partial Correlation

ρ12 ρ13 ρ23 ρ12.3 ρ13.2 ρ23.1

ρ12 = ρ13 = ρ23 = 0.2
200 5.5 4.7 11.9 6.5 4.3 40.0
400 9.3 7.9 5.3 17.3 10.3 4.7

1000 12.3 21.3 16.4 13.0 32.0 20.3

ρ12 = ρ13 = ρ23 = 0.4
200 10.5 14.6 10.8 11.1 53.0 9.6
400 12.5 19.7 12.8 14.3 51.5 11.7

1000 43.0 28.3 28.5 100.0 33.0 24.8

ρ12 = ρ13 = ρ23 = 0.6
200 12.5 18.7 9.2 15.1 59.5 4.7
400 41.8 35.6 32.3 57.0 28.0 25.0

1000 60.0 48.4 60.3 54.5 28.3 110.0

ρ12 = ρ13 = ρ23 = 0.8
200 24.5 20.3 21.3 17.0 6.1 11.7
400 34.1 51.0 76.3 6.2 57.5 37.3

1000 74.0 296.0 98.7 12.1 36.7 110.0
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Table B.2: Mean squared error (MSE) of the estimators of the association
parameters of the multivariate probit model under non-differential misclassification
and τ11 = 0.85 and τ00 = 0.95. The results correspond to the ratio
between the MSE of the naive maximum likelihood estimator, MSE∗ under
misclassification and the MSE of the maximum likelihood estimator when there is
no misclassification, MSE, i.e. MSE∗/MSE .

True Values Sample Size
Correlation Partial Correlation

ρ12 ρ13 ρ23 ρ12.3 ρ13.2 ρ23.1

ρ12 = ρ13 = ρ23 = 0.2
200 1.4 1.5 1.4 1.1 1.2 1.1
400 1.5 1.7 1.5 1.2 1.3 1.1

1000 2.4 2.4 2.2 1.8 1.8 1.6

ρ12 = ρ13 = ρ23 = 0.4
200 3.0 2.5 2.9 1.4 1.2 1.2
400 4.1 4.6 3.8 1.6 1.6 1.5

1000 8.5 8.3 8.5 3.0 2.3 2.5

ρ12 = ρ13 = ρ23 = 0.6
200 5.4 6.1 6.1 1.1 1.1 1.2
400 11.8 11.8 10.9 1.5 1.5 1.8

1000 30.5 20.7 20.7 2.8 2.8 2.8

ρ12 = ρ13 = ρ23 = 0.8
200 16.6 17.3 16.7 0.9 0.9 0.9
400 34.3 33.7 33.3 1.1 1.3 1.2

1000 90.0 90.0 90.0 2.1 2.1 2.4

Table B.3: Bias of the estimators of the association parameters of the multivariate
probit model under non-differential misclassification and τ11 = 0.95 and τ00 = 0.85.
The results correspond to the absolute ratio between the bias of the naive
maximum likelihood estimator, B∗, and the bias of the maximum likelihood
estimator when there is no misclassification, B, i.e. |B∗/B |.

True Values Sample Size
Correlation Partial Correlation

ρ12 ρ13 ρ23 ρ12.3 ρ13.2 ρ23.1

ρ12 = ρ13 = ρ23 = 0.2
200 6.1 5.0 13.1 7.4 4.6 46.0
400 10.8 9.0 6.5 20.5 11.7 6.0

1000 14.9 25.5 20.6 15.8 38.5 26.0

ρ12 = ρ13 = ρ23 = 0.4
200 12.3 18.2 12.7 13.0 73.0 11.3
400 16.1 25.3 16.3 19.4 70.0 15.3

1000 54.5 36.3 36.7 131.0 43.7 33.3

ρ12 = ρ13 = ρ23 = 0.6
200 16.3 24.3 11.9 21.1 83.0 6.4
400 55.5 47.1 42.4 81.5 39.8 34.4

1000 81.5 64.8 81.5 80.0 39.5 160.0

ρ12 = ρ13 = ρ23 = 0.8
200 33.6 26.8 28.9 26.1 8.0 17.5
400 46.2 70.0 105.0 8.6 85.0 57.0

1000 102.0 406.0 135.0 18.3 53.7 159.0
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Table B.4: Mean squared error (MSE) of the estimators of the association
parameters of the multivariate probit model under non-differential misclassification
and τ11 = 0.95 and τ00 = 0.85. The results correspond to the ratio
between the MSE of the naive maximum likelihood estimator, MSE∗ under
misclassification and the MSE of the maximum likelihood estimator when there is
no misclassification, MSE, i.e. MSE∗/MSE .

True Values Sample Size
Correlation Partial Correlation

ρ12 ρ13 ρ23 ρ12.3 ρ13.2 ρ23.1

ρ12 = ρ13 = ρ23 = 0.2
200 1.2 1.2 1.2 0.9 0.9 0.9
400 1.5 1.6 1.6 1.1 1.2 1.1

1000 2.8 2.8 2.8 2.0 2.0 2.0

ρ12 = ρ13 = ρ23 = 0.4
200 3.3 3.1 3.3 1.3 1.3 1.2
400 5.9 6.7 5.5 1.9 2.1 1.8

1000 12.8 12.5 12.8 4.0 3.3 3.5

ρ12 = ρ13 = ρ23 = 0.6
200 8.3 9.4 8.9 1.4 1.4 1.3
400 19.7 19.3 17.4 2.3 2.1 2.4

1000 54.5 36.0 36.3 4.8 4.7 4.8

ρ12 = ρ13 = ρ23 = 0.8
200 29.3 28.1 28.9 1.1 0.9 1.2
400 59.7 61.0 60.7 1.5 1.9 1.8

1000 169.0 167.0 166.0 3.9 3.6 4.1

Table B.5: Bias of the estimators of the association parameters of the multivariate
probit model under non-differential misclassification and τ11 = τ00 = 0.95. The
results correspond to the absolute ratio between the bias of the naive maximum
likelihood estimator, B∗, and the bias of the maximum likelihood estimator when
there is no misclassification, B, i.e. |B∗/B |.

True Values Sample Size
Correlation Partial Correlation

ρ12 ρ13 ρ23 ρ12.3 ρ13.2 ρ23.1

ρ12 = ρ13 = ρ23 = 0.2
200 4.1 3.3 7.8 4.8 3.1 25.5
400 6.2 5.3 3.9 11.3 6.6 3.6

1000 8.9 14.3 11.6 9.2 20.5 13.7

ρ12 = ρ13 = ρ23 = 0.4
200 7.5 10.8 7.3 7.5 41.0 5.8
400 9.4 14.6 8.7 10.7 38.0 7.1

1000 30.0 19.7 19.5 68.0 22.0 16.0

ρ12 = ρ13 = ρ23 = 0.6
200 9.2 13.6 6.5 11.3 42.0 3.0
400 29.5 25.6 21.8 39.0 20.5 14.6

1000 43.3 34.0 42.3 39.0 18.5 72.0

ρ12 = ρ13 = ρ23 = 0.8
200 17.4 13.8 14.9 12.0 3.6 8.2
400 23.4 34.7 52.5 4.1 35.5 25.3

1000 49.5 201.0 67.0 7.3 23.7 72.0
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Table B.6: Mean squared error (MSE) of the estimators of the association
parameters of the multivariate probit model under non-differential misclassification
and τ11 = τ00 = 0.95. The results correspond to the ratio between the MSE of the
naive maximum likelihood estimator, MSE∗ under misclassification and the MSE
of the maximum likelihood estimator when there is no misclassification, MSE, i.e.
MSE∗/MSE .

True Values Sample Size
Correlation Partial Correlation

ρ12 ρ13 ρ23 ρ12.3 ρ13.2 ρ23.1

ρ12 = ρ13 = ρ23 = 0.2
200 1.2 1.1 1.0 1.0 0.9 0.9
400 1.2 1.3 1.3 1.0 1.1 1.1

1000 1.6 1.4 1.6 1.4 1.2 1.2

ρ12 = ρ13 = ρ23 = 0.4
200 2.0 1.8 1.8 1.1 1.0 0.9
400 2.7 3.0 2.2 1.2 1.2 1.0

1000 4.5 4.5 4.3 1.8 1.5 1.3

ρ12 = ρ13 = ρ23 = 0.6
200 3.5 3.8 3.4 1.0 1.0 0.8
400 6.5 6.7 5.4 1.1 1.2 1.0

1000 16.5 10.7 10.7 1.8 1.7 1.7

ρ12 = ρ13 = ρ23 = 0.8
200 9.1 8.7 9.0 0.8 0.7 0.9
400 17.0 16.3 16.7 0.8 0.9 0.9

1000 41.0 42.0 43.0 1.1 1.3 1.4
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B.2 Results of the Conditionally Specified Logistic

Regression Model under Non-Differential Mis-

classification

Table B.7: Bias and mean squared error (MSE) of the estimators of the association
parameters of the conditionally specified logistic regression model under non-
differential misclassification and τ11 = 0.85 and τ00 = 0.95. The results correspond
to the ratio between the bias and MSE of the naive maximum likelihood estimator
(MLE) under misclassification, B∗ and MSE∗ respectively, and the corresponding
values of the MLE when there is no misclassification, B and MSE respectively.

True Values Sample Size
|B∗/B | MSE∗/MSE

γ12 γ13 γ23 γ12 γ13 γ23

γ12 = γ13 = γ23 = 0.4
200 14.3 10.1 6.7 1.1 1.3 1.2
400 23.2 21.9 153.9 1.4 1.6 1.6

1000 16.0 403.7 31.7 2.2 2.4 2.2

γ12 = γ13 = γ23 = 1.1
200 59.1 245.7 103.3 3.3 3.2 3.0
400 336.3 185.2 474.2 6.2 4.8 5.4

1000 8391.9 496.8 869.8 12.7 13.5 11.9

γ12 = γ13 = γ23 = 1.8
200 27.4 31.5 40.8 6.0 6.4 5.7
400 49.8 42.5 325.7 12.1 12.2 14.3

1000 67692.4 518.1 118.4 33.9 36.1 34.6

γ12 = γ13 = γ23 = 2.5
200 19.5 23.4 17.4 7.7 7.3 7.8
400 134.6 331.7 37.1 17.6 16.8 17.6

1000 118.2 253.7 131.5 46.6 48.1 45.3
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Table B.8: Bias and mean squared error (MSE) of the estimators of the association
parameters of the conditionally specified logistic regression model under non-
differential misclassification and τ11 = 0.95 and τ00 = 0.85. The results correspond
to the ratio between the bias and MSE of the naive maximum likelihood estimator
(MLE) under misclassification, B∗ and MSE∗ respectively, and the corresponding
values of the MLE when there is no misclassification, B and MSE respectively.

True Values Sample Size
|B∗/B | MSE∗/MSE

γ12 γ13 γ23 γ12 γ13 γ23

γ12 = γ13 = γ23 = 0.4
200 19.0 11.5 8.1 1.0 1.2 1.1
400 27.3 25.4 175.5 1.5 1.7 1.5

1000 18.7 457.3 36.4 2.4 2.5 2.3

γ12 = γ13 = γ23 = 1.1
200 61.6 243.8 103.7 3.2 3.1 2.9
400 323.5 188.8 475.6 5.6 4.9 5.3

1000 8155.2 474.6 847.1 12.0 12.3 11.2

γ12 = γ13 = γ23 = 1.8
200 22.1 25.5 32.7 4.1 4.4 3.9
400 39.7 34.0 259.5 8.0 8.0 9.4

1000 52704.3 403.7 93.3 20.8 22.3 21.9

γ12 = γ13 = γ23 = 2.5
200 13.4 16.3 11.8 3.9 3.7 3.8
400 93.5 230.1 25.4 8.7 8.4 8.5

1000 82.2 177.8 91.6 22.8 23.9 22.2

Table B.9: Bias and mean squared error (MSE) of the estimators of the association
parameters of the conditionally specified logistic regression model under non-
differential misclassification and τ11 = τ00 = 0.95. The results correspond to
the ratio between the bias and MSE of the naive maximum likelihood estimator
(MLE) under misclassification, B∗ and MSE∗ respectively, and the corresponding
values of the MLE when there is no misclassification, B and MSE respectively.

True Values Sample Size
|B∗/B | MSE∗/MSE

γ12 γ13 γ23 γ12 γ13 γ23

γ12 = γ13 = γ23 = 0.4
200 10.1 6.1 4.1 1.0 1.1 1.0
400 14.8 13.9 96.0 1.1 1.1 1.2

1000 10.1 253.5 20.0 1.4 1.5 1.4

γ12 = γ13 = γ23 = 1.1
200 34.9 137.8 59.6 1.7 1.5 1.5
400 186.9 104.7 281.0 2.6 2.1 2.5

1000 4581.8 266.6 485.2 4.4 4.5 4.2

γ12 = γ13 = γ23 = 1.8
200 14.1 16.7 21.1 2.1 2.3 2.0
400 25.7 22.4 171.7 3.7 3.9 4.6

1000 35725.4 274.1 63.1 10.0 10.8 10.5

γ12 = γ13 = γ23 = 2.5
200 10.7 12.9 9.6 2.7 2.5 2.7
400 75.8 187.3 20.8 6.0 5.7 5.9

1000 68.1 146.5 75.7 15.8 16.4 15.3
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B.3 Results of the Multivariate Probit Model under

Differential Misclassification

Table B.10: Bias of the estimators of the association parameters of the multivariate
probit model under differential misclassification with negative association between
the precision of the classification and the continuous predictor. The results
correspond to the absolute ratio between the bias of the naive maximum likelihood
estimator, B∗, and the bias of the maximum likelihood estimator when there is no
misclassification, B, i.e. |B∗/B |.

True Values Sample Size
Correlation Partial Correlation

ρ12 ρ13 ρ23 ρ12.3 ρ13.2 ρ23.1

ρ12 = ρ13 = ρ23 = 0.2
200 7.8 6.9 17.3 9.7 6.6 62.0
400 14.7 12.1 8.4 29.5 16.4 7.9

1000 20.4 35.3 28.0 22.6 55.5 36.3

ρ12 = ρ13 = ρ23 = 0.4
200 16.4 23.3 16.6 18.7 97.5 16.0
400 20.6 31.8 20.6 26.6 91.5 20.6

1000 70.8 47.0 47.2 181.0 60.0 45.3

ρ12 = ρ13 = ρ23 = 0.6
200 20.2 30.5 14.7 27.9 113.5 8.4
400 69.5 59.6 52.8 110.0 54.8 45.0

1000 104.5 82.4 104.3 111.0 53.8 221.0

ρ12 = ρ13 = ρ23 = 0.8
200 42.5 34.1 36.0 35.9 11.5 23.3
400 59.7 88.8 133.8 12.5 116.0 78.3

1000 133.5 530.0 176.7 26.2 77.0 231.0
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Table B.11: Mean squared error (MSE) of the estimators of the association
parameters of the multivariate probit model under differential misclassification
with negative association between the precision of the classification and the
continuous predictor. The results correspond to the ratio between the MSE of the
naive maximum likelihood estimator, MSE∗ under misclassification and the MSE
of the maximum likelihood estimator when there is no misclassification, MSE, i.e.
MSE∗/MSE .

True Values Sample Size
Correlation Partial Correlation

ρ12 ρ13 ρ23 ρ12.3 ρ13.2 ρ23.1

ρ12 = ρ13 = ρ23 = 0.2
200 1.7 1.9 1.7 1.2 1.4 1.2
400 2.5 2.6 2.3 1.8 1.8 1.6

1000 4.8 4.6 4.8 3.4 3.2 3.2
ρ12 = ρ13 = ρ23 = 0.4 200 5.6 4.9 5.2 2.1 1.9 1.8

400 9.4 10.2 8.5 3.2 3.1 2.9
1000 21.0 20.8 21.0 7.4 6.0 6.2

ρ12 = ρ13 = ρ23 = 0.6 200 12.4 14.4 13.4 2.1 2.1 2.0
400 30.5 30.5 26.9 3.7 3.6 3.8

1000 89.0 57.7 59.3 8.8 8.3 8.8
ρ12 = ρ13 = ρ23 = 0.8 200 46.6 45.1 44.4 1.8 1.6 1.8

400 99.3 97.3 98.0 2.8 3.2 3.0
1000 288.0 285.0 285.0 7.4 7.1 8.1
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C.1 Federation Dentaire Internationale Notation for

Permanent Teeth

Figure C.1: Federation Dentaire Internationale notation for the position of
permanent teeth. Maxilla = upper jaw, mandible = lower jaw. The first and
the fourth quadrants are at the right-hand side of the subject, the second and the
third quadrants are at the left-hand side of the subject.

143



144 APPENDIX C. SUPPLEMENTARY MATERIAL FOR CHAPTER 4

C.2 Proof of Proposition 4.1

The proof is based on the expression of the parameters of interest as functions of
identified parameters and follows similar arguments to the ones used by Carlos and
Sening (1968) in the context of the derivation of method of moments estimators.
It is easy to show that in the HMM for two time points the sampling probabilities,
the probabilities of the observed response patterns, are identified parameters. Let
Q1 = P (Y ∗

1 = 0, Y ∗
2 = 0), Q2 = P (Y ∗

1 = 0, Y ∗
2 = 1), Q3 = P (Y ∗

1 = 1, Y ∗
2 = 0) and

Q4 = P (Y ∗
1 = 1, Y ∗

2 = 1) be the corresponding sampling probabilities. Under the
restriction τ = τ01 = τ10, these sampling probabilities are the following functions
of the parameters of interest

Q1 = (1 − p)(1 − q1)(1 − τ)2 + (1 − p)q1(1 − τ)τ + pτ2,

Q2 = (1 − p)q1(1 − τ)2 + (1 − p)(1 − q1)(1 − τ)τ + p(1 − τ)τ,

Q3 = (1 − p)(1 − q1)(1 − τ)τ + (1 − p)q1τ2 + p(1 − τ)τ,

Q4 = (1 − p)q1(1 − τ)τ + (1 − p)(1 − q1)τ2 + p(1 − τ)2.

Notice that the probability of an observed reversal, Q3, can be rewritten as follows

Q3 = (1 − p)(1 − q1)(1 − τ)τ + (1 − p)q1τ2 + p(1 − τ)τ,

= τ [1 − τ − (1 − p)q1(1 − 2τ)︸ ︷︷ ︸],

= τ [1 − τ − (Q2 − Q3)],

= −τ2 + (1 − Q2 + Q3)τ. (C.1)

Expression (C.1) corresponds to a two degree polynomial in τ which can be used
to express the misclassification parameter as a function of the identified sampling
probabilities. By assuming τ < 0.5 this polynomial has a unique solution which is
given by

τ = 0.5
[
(1 − Q2 + Q3) −

√
(1 − Q2 + Q3)2 − 4Q3

]
. (C.2)

The restriction τ < 0.5 implies the existence of a unique solution since it is
equivalent to consider the part of the quadratic function smaller than its inflection

point, 1−(Q2−Q3)
2 . In fact, as 1−(Q2−Q3)

2 = 1 − (1 − p)q1(1 − 2τ), τ < 1
2 =⇒ τ <

1−(Q2−Q3)
2 . Therefore, since τ is a function of the identified parameters Q2 and

Q3 under the restriction τ < 0.5, the misclassification parameter is identified.
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Now notice that Q2−Q3 = (1−p)q1(1−2τ). It follows that Λ = (1−p)q1 = Q2−Q3
(1−2τ)

is a function of the identified parameters τ , Q2, and Q3, and, therefore, is also an
identified parameter. By noticing that

Q1 − Q4 = [1 − (1 − p)q1 − 2p](1 − 2τ),

= (1 − Λ − 2p)(1 − 2τ),

it is possible to show that p is a function of the identified parameters Q1, Q4, τ ,
and Λ, given by

p =
1

2

[
1 − Λ − Q1 − Q4

1 − 2τ

]
,

=
1

2

[
1 − Q2 − Q3

(1 − 2τ)
− Q1 − Q4

1 − 2τ

]
.

Therefore, p is also an identified parameter. Finally, as the incidence is a function
of the identified parameters Λ and p, given by q1 = Λ

(1−p) , it is an identified

parameter. Thus, we conclude that the constraints τ = τ10 = τ0,1 and τ < 0.5,
are sufficient identifying restrictions for the parameters in the simple HMM. The
proof showing that the constraints τ = τ10 = τ0,1 and τ > 0.5 are sufficient for
the identification of the HMM parameters follows the same arguments. However,
in this case τ is the following function of the identified parameters Q2 and Q3,

τ = 0.5
[
(1 − Q2 + Q3) +

√
(1 − Q2 + Q3)2 − 4Q3

]
. (C.3)

�
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C.3 Full results for Section 4.3.3

Table C.1: Mean squared error (MSE ×103) for the maximum likelihood estimator
of the sensitivity (1−τ01) and specificity (1−τ10), associated to the simple hidden
Markov model with n = 3, for n = 6 time points for m = 2000 and m = 5000
subjects, and for different true values of the prevalence p, incidences q = q1 =
. . . = qn−1, and misclassification parameters τ10 and τ01.

True Values
n = 3 n = 6

1 − τ01 1 − τ10 1 − τ01 1 − τ10

p q τ01 τ10 m = 2000 5000 2000 5000 m = 2 000 5 000 2 000 5 000
0.03 0.04 0.15 0.15 12.33 5.92 0.10 0.04 0.37 0.14 0.02 0.01
0.03 0.10 0.15 0.15 7.80 3.68 0.12 0.05 0.16 0.06 0.03 0.01
0.03 0.15 0.15 0.15 4.53 1.86 0.13 0.05 0.12 0.04 0.03 0.01
0.03 0.04 0.05 0.05 1.26 0.58 0.02 0.01 0.08 0.03 0.01 0.00
0.03 0.10 0.05 0.05 1.14 0.52 0.03 0.01 0.04 0.01 0.01 0.03
0.03 0.15 0.05 0.05 0.86 0.38 0.03 0.01 0.02 0.01 0.01 0.00
0.10 0.04 0.15 0.15 1.85 0.73 0.08 0.04 0.17 0.07 0.02 0.01
0.10 0.10 0.15 0.15 1.98 0.84 0.12 0.05 0.12 0.04 0.03 0.01
0.10 0.15 0.15 0.15 1.78 0.66 0.15 0.06 0.08 0.03 0.04 0.02
0.10 0.04 0.05 0.05 0.26 0.10 0.02 0.01 0.04 0.01 0.01 0.00
0.10 0.10 0.05 0.05 0.25 0.11 0.03 0.01 0.02 0.01 0.01 0.00
0.10 0.15 0.05 0.05 0.28 0.10 0.03 0.01 0.02 0.01 0.01 0.00
0.15 0.04 0.15 0.15 1.01 0.36 0.09 0.03 0.12 0.05 0.03 0.01
0.15 0.10 0.15 0.15 0.99 0.39 0.12 0.05 0.10 0.03 0.04 0.01
0.15 0.15 0.15 0.15 0.94 0.40 0.14 0.06 0.07 0.03 0.04 0.02
0.15 0.04 0.05 0.05 0.14 0.06 0.02 0.01 0.03 0.01 0.01 0.00
0.15 0.10 0.05 0.05 0.15 0.06 0.02 0.01 0.02 0.01 0.01 0.00
0.15 0.15 0.05 0.05 0.17 0.06 0.03 0.01 0.02 0.01 0.01 0.00
0.03 0.04 0.15 0.05 3.22 1.28 0.02 0.01 0.22 0.09 0.01 0.00
0.03 0.10 0.15 0.05 2.58 1.02 0.04 0.01 0.10 0.04 0.01 0.00
0.03 0.15 0.15 0.05 1.59 0.65 0.04 0.02 0.07 0.03 0.01 0.01
0.03 0.04 0.05 0.15 0.63 0.27 0.02 0.01 0.11 0.04 0.01 0.00
0.03 0.10 0.05 0.15 0.70 0.26 0.03 0.01 0.07 0.03 0.01 0.00
0.03 0.15 0.05 0.15 0.68 0.24 0.04 0.02 0.06 0.02 0.01 0.01
0.10 0.04 0.15 0.05 0.43 0.17 0.03 0.01 0.08 0.03 0.01 0.00
0.10 0.10 0.15 0.05 0.42 0.18 0.03 0.01 0.06 0.02 0.01 0.00
0.10 0.15 0.15 0.05 0.41 0.17 0.04 0.02 0.05 0.02 0.02 0.01
0.10 0.04 0.05 0.15 5.36 2.54 0.07 0.03 0.12 0.05 0.02 0.01
0.10 0.10 0.05 0.15 3.58 1.86 0.09 0.04 0.06 0.02 0.02 0.01
0.10 0.15 0.05 0.15 2.17 1.23 0.09 0.05 0.04 0.01 0.03 0.01
0.15 0.04 0.15 0.05 0.92 0.40 0.07 0.03 0.05 0.02 0.02 0.01
0.15 0.10 0.15 0.05 0.94 0.40 0.09 0.04 0.04 0.01 0.02 0.01
0.15 0.15 0.15 0.05 0.90 0.43 0.11 0.05 0.03 0.01 0.03 0.01
0.15 0.04 0.05 0.15 0.47 0.20 0.07 0.03 0.04 0.02 0.02 0.01
0.15 0.10 0.05 0.15 0.50 0.19 0.09 0.04 0.03 0.01 0.03 0.01
0.15 0.15 0.05 0.15 0.46 0.19 0.11 0.05 0.02 0.01 0.03 0.01
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C.4 Full Conditional for the Latent Data

The full conditional for the true status Y(i,j) of subject i in examination j is
a Bernoulli distribution with probability π(i,j) depending on the position in the
sequence. The different cases are described in page 148.
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4
For j = 1, π(i,1) = P

(
Y(i,1) = 1 | rest

)
is given by,

π(i,1) =






0 if Y(i,2) = 0,

(1−τξi,1,10)p1(wi,βp)
(1−τξi,1,10)p1(wi,βp)+τξi,1,01p2(wi,βp)δ1(z(i,1),βq1

)
if Y ∗

(i,1) = 1, and Y(i,2) = 1,

τξi,1,10p1(wi,βp)
τξi,1,10p1(wi,βp)+(1−τξi,1,01)p2(wi,βp)δ1(z(i,1),βq1

)
if Y ∗

(i,1) = 0, and Y(i,2) = 1.

For j ∈ {2, 3, 4, n − 1}, π(i,j) = P
(
Y(i,j) = 1 | rest

)
is given by,

π(i,j) =






0 if Y(i,j−1) = 0, and Y(i,j+1) = 0,

(1−τξi,j ,10)δ1

(
z(i,j−1),βqj−1

)

(1−τξi,j,10)δ1

(
z(i,j−1),βqj−1

)
+τξi,j,01δ2

(
z(i,j−1) ,βqj−1

)
δ1

(
z(i,j),βqj

) if Y ∗
(i,j) = 1, Y(i,j−1) = 0, Y(i,j+1) = 1,

τξi,j,10δ1

(
z(i,j−1),βqj−1

)

τξi,j ,10δ1

(
z(i,j−1) ,βqj−1

)
+(1−τξi,j ,01)δ2

(
z(i,j−1) ,βqj−1

)
δ1

(
z(i,j),βqj

) if Y ∗
(i,j) = 0, Y(i,j−1) = 0, Y(i,j+1) = 1,

1 if Y(i,j−1) = 1.

For j = n, π(i,n) = P
(
Y(i,n) = 1 | rest

)
is given by,

π(i,n) =





(1−τξi,n,10)δ1

(
z(i,n−1),βqn−1

)

(1−τξi,n,10)δ1

(
z(i,n−1),βqn−1

)
+τξi,n,01δ2

(
z(i,n−1),βqn−1

) if Y ∗
(i,n) = 1, and Y(i,n−1) = 0,

τξi,n,10δ1

(
z(i,n−1),βqn−1

)

τξi,n,10δ1

(
z(i,n−1),βqn−1

)
+(1−τξi,n,01)δ2

(
z(i,n−1),βqn−1

) if Y ∗
(i,n) = 0, and Y(i,n−1) = 0,

1 if Y(i,n−1) = 1.
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C.5 Weighted Least Squares MH Step

In the weighted least square normal proposal, the candidates for the regression
coefficients associated to the prevalence are generated from the multivariate normal
distribution β∗

p ∼ Nk+1

(
mp(βp), Cp(βp)

)
, where

mp(βp) = Cp(βp)
{

V −1
p bp + W T Γp(βp) η̃

p(βp)
}

,

and

Cp(βp) =
(

V −1
p + W T Γp(βp)W

)−1

,

where η̃
p(βp) is a vector of “pseudo-data” with coordinates

η̃p
i (βp) = wT

i βp +
Y(i,1) − p1

(
wi, βp

)

p1

(
wi, βp

)
p2

(
wi, βp

) ,

and Γp(βp) = diag(γp
1,1(βp), . . . , γp

m,m(βp)), with γp
i,i(βp) = p1

(
wi, βp

)
p2

(
wi, βp

)
,

i = 1, . . . , m. The candidate is accepted with probability

1 ∧ φk+1

(
β∗

p|bp, V p

)

φk+1

(
βp|bp, V p

) φk+1

(
βp|mp(β∗

p), Cp(β∗
p)
)

φk+1

(
β∗

p|mp(βp), Cp(βp)
)

[
m∏

i=1

exp{wT
i (β∗

p − βp)}Y(i,1)

[1 + exp(wT
i β∗

p)]/[1 + exp(wT
i βp)]

]
,

(C.4)

where φk+1 (·|µ, Σ) is the density of a k +1-variate normal distribution with mean
and covariance matrix µ and Σ, respectively.

Equivalently, the candidates for the regression coefficients associated to the
incidences are generated from the multivariate normal distribution β∗

qj
∼

Nk+2

(
mqj (βqj

), Cqj (βqj
)
)

, where

mqj (βqj
) = Cqj (βqj

)
{

V −1
qj

bqj
+ ZT

j Γqj (βqj
) η̃

qj (βqj
)
}

,

and

Cq(βqj
) =

(
V −1

qj
+ ZT

j Γqj (βqj
)Zj

)−1

.

Now η̃
qj (βqj

) is the vector of “pseudo-data” with coordinates

η̃
qj

i (βqj
) = zT

i,jβqj
+

Y(i,j+1) − q1

(
z(i,j), βqj

)

q2

(
z(i,j), βqj

)
q2

(
z(i,j), βqj

) ,
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and Γqj (βqj
) = diag(γ

qj

1,1(βqj
), . . . , γ

qj
m,m(βqj

)). However, the weights now are
defined by

γ
qj

i,i(βqj
) =

{
0 if Y(i,j) = 1,

q1

(
z(i,j), βqj

)
q2

(
z(i,j), βqj

)
if Y(i,j) = 0.

Finally, the candidate is accepted with probability

1 ∧
φk+2

(
β∗

qj
|bqj

, V qj

)

φk+2

(
βqj

|bqj
, V qj

)
φk+2

(
βqj

|mqj (β∗
qj

), Cqj (β∗
qj

)
)

φk+2

(
β∗

qj
|mqj (βqj

), Cqj (βqj
)
)×




m∏

i=1

{
exp{zT

(i,j)(β
∗
qj

− βqj
)}Y(i,j+1)

[1 + exp(zT
(i,j)β

∗
qj

)]/[1 + exp(zT
(i,j)βqj

)]

}1−Y(i,j)


 .

(C.5)



Appendix D

Supplementary Material for

Chapter 5

D.1 Proof of Proposition 5.1

The proof of Proposition 1 is similar to the one provided by Joe & Liu (1996)
for the compatibility of the full conditionals of their conditionally specified
logistic regression model. The proof of the necessary condition is based on the
compatibility conditions provided by Gelman & Speed (1993).

D.1.1 Sufficient condition

Set Y (i,k)[−m] =
(
Y(i,1,k), . . . , Y(i,m−1,k), Y(i,m+1,k), . . . , Y(i,J,k)

)
, for all m ∈

{1, . . . , J} and k ∈ {2, . . . , K}, and θI =
(

βI , γI , αI
)

and let PZ(i,k)

(
Y (i,k)[−m] |

Y (i,k−1) = yk−1, θI
)

be the marginal distribution of Y
[−m]
(i,k) . If yk−1

m = 0, the joint

distribution given by expression (5.4), with γI
jl = γI

lj , j 6= l, implies that

PZ(i,k)

(
Y (i,k)[−m] = y

k
[−m] | Y (i,k−1) = y

k−1
, θ

I
)

=

1∑

yk
m=0

PZ(i,k)

(
Y (i,k) = y

k | Y (i,k−1) = y
k−1

, θ
I
)

,

=

1∑

yk
m=0

c
−1
(2,i) exp



z

′
(i,m,k)β

I
my

k
m +

∑

{j∈S:j 6=m}

z
′
(i,j,k)β

I
j y

k
j +

∑

l∈Sc

γ
I
lmy

k
m +
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∑

{(j,l):j∈S,l∈Sc,j 6=m}

γ
I
ljy

k
l +

∑

{l∈S:m<l≤J:}

γ
I
mly

k
l y

k
m +

∑

{j∈S:j<m}

γ
I
jmy

k
my

k
j +

∑

{j<l≤J:j∈S,l∈S,l6=m,j 6=m}

γ
I
jly

k
l y

k
j +

∑

l∈Sc

α
I
lmy

k
m +

∑

{(j,l):j∈S,l∈Sc,j 6=m}

α
I
ljy

k
j



 ,

= c
−1
(2,i)


exp





∑

{j∈S:j 6=m}

z
′
(i,j,k)β

I
j y

k
j +

∑

{(j,l):j∈S,l∈Sc,j 6=m}

γ
I
ljy

k
l +

∑

{j<l≤J:j∈S,l∈S,l6=m,j 6=m}

γ
I
jly

k
l y

k
j +

∑

{(j,l):j∈S,l∈Sc,j 6=m}

α
I
ljy

k
j




×

(
1 + exp

{
z

′
(i,m,k)β

I
m +

∑

l6=m

γ
I
lmy

k
l +

∑

l6=m

α
I
lmy

k−1
l

})]
,

where c(2,i) ≡ c2(Z(i,k), θI). Thus, if yk−1
m = 0 then for all m ∈ {1, . . . , J}, for all

k ∈ {2, . . . , K}, and for all yk−1
[−m] ∈ {0, 1}J−1, it follows that,

PZ(i,k)

(
Y(i,m,k) = y

k
m | Y (i,k)[−m] = y

k
[−m], Y (i,k−1) = y

k−1
, θ

I
)

=
PZ(i,k)

(
Y (i,k) = yk | Y (i,k−1) = yk−1, θI

)

PZ(i,k)

(
Y (i,k)[−m] = yk

[−m]
| Y (i,k−1) = yk−1, θI

) ,

=
exp
{(

z′
(i,m,k)β

I
m +

∑
l6=m

γI
lmyk

l +
∑

l6=m
αI

lmyk−1
l

)
yk

m

}

1 + exp
{

z′
(i,m,k)

βI
m +

∑
l6=m

γI
lmyk

l +
∑

l6=m
αI

lmyk−1
l

} .

(D.1)

Now, if yk−1
m = 1, then yk

m = 1 and
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PZ(i,k)

(
Y (i,k)[−m] = y

k
[−m] | Y (i,k−1) = y

k−1
, θ

I
)

=

1∑

yk
m=1

PZ(i,k)

(
Y (i,k) = y

k | Y (i,k−1) = y
k−1

, θ
I
)

,

=

1∑

yk
m=1

c
−1
(2,i) exp




z
′
(i,m,k)β

I
my

k
m +

∑

{j∈S:j 6=m}

z
′
(i,j,k)β

I
j y

k
j +

∑

l∈Sc

γ
I
lmy

k
m +

∑

{(j,l):j∈S,l∈Sc,j 6=m}

γ
I
ljy

k
l +

∑

{l∈S:m<l≤J:}

γ
I
mly

k
l y

k
m +

∑

{j∈S:j<m}

γ
I
jmy

k
my

k
j +

∑

{j<l≤J:j∈S,l∈S,l6=m,j 6=m}

γ
I
jly

k
l y

k
j +

∑

l∈Sc

α
I
lmy

k
m +

∑

{(j,l):j∈S,l∈Sc,j 6=m}

α
I
ljy

k
j



 ,

= PZ(i,k)

(
Y (i,k) = y

k | Y (i,k−1) = y
k−1

, θ
I
)

.

Therefore, if yk−1
m = 1 then for all m ∈ {1, . . . , J}, for all k ∈ {2, . . . , K}, and for

all yk−1
[−m] ∈ {0, 1}J−1, it follows that,

PZ(i,k)

(
Y(i,m,k) = y

k
m | Y (i,k)[−m] = y

k
[−m], Y (i,k−1) = y

k−1
, θ

I
)

=
PZ(i,k)

(
Y (i,k) = yk | Y (i,k−1) = yk−1, θI

)

PZ(i,k)

(
Y (i,k)[−m] = yk

[−m]
| Y (i,k−1) = yk−1, θI

) ,

= 1.

(D.2)

From expressions (D.1) and (D.2), it follows that Y(i,m,k) conditional on the design

vector z(i,j,k), Y (i,k−1) = yk−1 and Y (i,k)[−m] = yk
[−m], for all yk ∈ B{yk−1},

follows a Bernoulli distribution with probability




h


z′

(i,m,k)β
I
m +

∑

l 6=m

γI
lmyk

l +
∑

l 6=m

αI
lmyk−1

l









1−yk−1
m

, (D.3)

where h(·) = exp{·}/(1 + exp{·}). �
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D.1.2 Necessary condition

Let θI =
(

βI , γI , αI
)

be the vector of parameters. From the result of Gelman &

Speed (1993), it follows that

PZ(i,k)

(
Y (i,k) = yk | Y (i,k−1) = yk−1, θI

)
∝ A

B

where

A =

J∏

j=1

P
(
Y(i,j,k) = yk

j | Y(i,1,k) = ŷk
1 , . . . , Y(i,j−1,k) = ŷk

j−1,

Y(i,j+1,k) = yk
j+1, . . . , Y(i,J,k) = yk

J , Y (i,k−1) = yk−1, θI
)

and

B =

J∏

j=1

P
(
Y(i,j,k) = ŷk

j | Y(i,1,k) = ŷk
1 , . . . , Y(i,j−1,k) = ŷk

j−1,

Y(i,j+1,k) = yk
j+1, . . . , Y(i,J,k) = yk

J , Y (i,k−1) = yk−1, θI
)

.

Thus,

PZ(i,k)

(
Y (i,k) = y

k | Y (i,k−1) = y
k−1

, θ
I
)

=

∏
j∈S

exp
{(

z′
(i,j,k)β

I
j +
∑

l<j
γI

lj ŷk
l +

∑
l>j

γI
ljyk

l +
∑

l6=j
αI

ljyk−1
l

)
yk

j

}

∏
j∈S

exp
{(

z′
(i,j,k)

βI
j +
∑

l<j
γI

lj ŷk
l +

∑
l>j

γI
ljyk

l +
∑

l6=j
αI

ljyk−1
l

)
ŷk

j

}

∝ exp

{
∑

j∈S

(
z

′
(i,j,k)β

I
j +
∑

l>j

γ
I
ljy

k
l +

∑

l6=j

α
I
ljy

k−1
l

)
y

k
j +

∑

j∈S

(
∑

l<j

γ
I
lj ŷ

k
l

)
y

k
j −

∑

j∈S

(
∑

l>j

γ
I
ljy

k
l

)
ŷ

k
j

}
,

(D.4)

for any arbitrary vector ŷk =
(
ŷk

1 , . . . , ŷk
J

)
∈ B(yk−1).
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Note that by taking ŷk
j = yk−1

j , j = 1, . . . , J , it follows that

PZ(i,k)

(
Y (i,k) = y

k | Y (i,k−1) = y
k−1

, θ
I
)

∝ exp

{
∑

j∈S

(
z

′
(i,j,k)β

I
j +

∑

l>j

γ
I
ljy

k
l +

∑

l6=j

α
I
ljy

k−1
l

)
y

k
j +

∑

j∈S

(
∑

l<j

γ
I
lj ŷ

k
l

)
y

k
j −

∑

j∈S

(
∑

l>j

γ
I
ljy

k
l

)
ŷ

k
j

}
,

= exp




∑

j∈S


z

′
(i,j,k)β

I
j +

∑

{j<l≤J:l∈S}

γ
I
ljy

k
l +

∑

{j<l≤J:l∈Sc}

γ
I
lj +

∑

{l<j:l∈Sc}

γ
I
lj +

∑

l∈Sc

α
I
lj


 y

k
j




 ,

(D.5)

which corresponds, up to a normalizing constant, to the joint marginal distribution
given by expression (5.4) Chapter 5.

Now, let

C =
J∏

j=1

P
(
Y(i,j,k) = ỹk

j | Y(i,1,k) = ỹk
1 , . . . , Y(i,j−1,k) = ỹk

j−1,

Y(i,j+1,k) = yk
j+1, . . . , Y(i,J,k) = yk

J , Y (i,k−1) = yk−1, θI
)

and

D =

J∏

j=1

P
(
Y(i,j,k) = yk

j | Y(i,1,k) = ỹk
1 , . . . , Y(i,j−1,k) = ỹk

j−1,

Y(i,j+1,k) = yk
j+1, . . . , Y(i,J,k) = yk

J , Y (i,k−1) = yk−1θI
)

For arbitrary vectors ŷk ∈ B(yk−1) and ỹk ∈ B(yk−1), set

R
(
y

k | ŷ
k
, ỹ

k
, y

k−1
, θ

I
)

=
A

B
×

C

D
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=
∏

j∈S

exp

{(
z

′
(i,j,k)β

I
j +
∑

l<j

γ
I
lj ŷ

k
l +

∑

l>j

γ
I
ljy

k
l +

∑

l6=j

α
I
ljy

k−1
l

)
(
y

k
j − ŷ

k
j

)
}

×

∏

j∈S

exp

{(
z

′
(i,j,k)β

I
j +
∑

l<j

γ
I
lj ỹ

k
l +

∑

l>j

γ
I
ljy

k
l +

∑

l6=j

α
I
ljy

k−1
l

)
(
ỹ

k
j − y

k
j

)
}

,

=
∏

j∈S

exp







z
′
(i,j,k)β

I
j +

∑

{l<j:l∈S}

γ
I
lj ŷ

k
l +

∑

{l<j:l∈Sc}

γ
I
lj +

∑

{l>j:l∈S}

γ
I
ljy

k
l +

∑

{l>j:l∈Sc}

γ
I
lj +

∑

l∈Sc

α
I
lj


(yk

j − ŷ
k
j

)



×

∏

j∈S

exp







z

′
(i,j,k)β

I
j +

∑

{l<j:l∈S}

γ
I
lj ỹ

k
l +

∑

{l<j:l∈Sc}

γ
I
lj +

∑

{l>j:l∈S}

γ
I
ljy

k
l +

∑

{l>j:l∈Sc}

γ
I
lj +

∑

l∈Sc

α
I
lj



(ỹk
j − y

k
j

)



 ,

∝
∏

j∈S

exp





∑

{l<j:l∈S}

γ
I
lj ŷ

k
l y

k
j −

∑

{l<j:l∈S}

γ
I
lj ỹ

k
l y

k
j +

∑

{l>j:l∈S}

γ
I
ljy

k
l

(
ỹ

k
j − ŷ

k
j

)


 ,

=
∏

j∈S

exp





∑

{l<j:l∈S}

γ
I
ljy

k
j

(
ŷ

k
l − ỹ

k
l

)
−

∑

{l<j:l∈S}

γ
I
jly

k
j

(
ŷ

k
l − ỹ

k
l

)


 ,

= exp





∑

{l<j:(j,l)∈S×S}

[(
γ

I
lj − γ

I
jl

)
y

k
j

(
ŷ

k
l − ỹ

k
l

)]



 . (D.6)

The full conditional compatibility condition of Gelman & Speed (1993) implies
that, for arbitrary vectors ŷk ∈ B(yk−1) and ỹk ∈ B(yk−1) such that ŷk 6= ỹk,

the ratio R
(

yk | ŷk, ỹk, yk−1, θI
)

must not depend on yk. Convenient choices of

ŷk ∈ B(yk−1) and ỹk ∈ B(yk−1) show that, for all yk−1 ∈ {0, 1}J , expression (D.6)
does not depend on yk only if γI

jl = γI
lj for all j 6= l. For instance, for yk−1 = 0J ,
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the choices ỹk = 0J and ŷk = (0, . . . , 0, 1, 0) leads to

R
(

yk | ŷk, ỹk, yk−1, θI
)

∝ exp
{(

γI
J−1,J − γI

J,J−1

)
yk

J

}
, (D.7)

which is independent of yk only if γI
J−1,J = γI

J,J−1. Other convenient choices of

ŷk ∈ B(yk−1) and ỹk ∈ B(yk−1) show the need of the symmetry constraint in the
remaining conditional log-odds parameters.

�

D.2 Metropolis-Hastings steps for the Markov model

parameters

D.2.1 Updating θP

Let θP =
(

βP ′

1 , . . . , βP ′

J , γP ′

)′

be the R-dimensional vector of parameters

associated to the initial distribution, with R = Jp + J(J − 1)/2, and η̃P be a
I × J-dimensional vector of “pseudo-data” with coordinates

η̃P

(
θP
)

=
(

η̃P
(1,1)

(
θP
)

, . . . , η̃P
(1,J)

(
θP
)

, . . . , η̃P
(I,1)

(
θP
)

, . . . , η̃P
(I,J)

(
θP
))′

,

where

η̃P
(i,j)

(
θP
)

= wP ′

(i,j)θ
P +

Y(i,j,1) − h
(

wP ′

(i,j)θ
P
)

{
h
(

wP ′

(i,j)θ
P
) [

1 − h
(

wP ′

(i,j)θ
P
)]} ,

with wP
(i,j) being an appropriate design vector created such that wP ′

(i,j)θ
P =

x′
(i,j)β

P
j +

∑
l 6=j γP

jlY(i,l,1) and h(·) = exp{·}/(1 + exp{·}). The candidates
for the parameters associated to the initial distribution are generated from the
multivariate normal distribution

θP ∗ ∼ NR

(
mP

(
θP
)

, CP

(
θP
))

,

with mean vector given by

mP

(
θP
)

= CP

(
θP
){

V −1
P bP + W P ΓP

(
θP
)

η̃P

(
θP
)}

,
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and covariance matrix given by

CP
(

θP
)

=
(

V −1
P + W P ΓP

(
θP
)

W ′
P

)−1

,

where bP =
(

m′
βP , m′

γP

)′

, V P = V βP ⊕ V γP , with ⊕ denoting the direct

product,

W P =
(

wP
(1,1), . . . , wP

(1,J), . . . , wP
(I,1), . . . , wP

(I,J)

)′

,

and

ΓP

(
θP
)

= diag
{

ζP
(1,1)

(
θP
)

, . . . , ζP
(1,J)

(
θP
)

, . . . , ζP
(I,1)

(
θP
)

, . . . , ζP
(I,J)

(
θP
)}

,

with

ζP
(i,j)

(
θP
)

= h
(

wP ′

(i,j)θ
P
) [

1 − h
(

wP ′

(i,j)θ
P
)]

, i = 1, . . . , I, j = 1, . . . , J.

The candidate θP ∗ is accepted with probability

1 ∧
φR

(
θP ∗|bP , V P

)

φR

(
θP |bP , V P

)
φR

(
θP |mP

(
θP ∗

)
, CP

(
θP ∗

))

φR

(
θP ∗|mP

(
θP
)

, CP

(
θP
))




I∏

i=1

PXi

(
Y (i,1) | θP ∗

)

PXi

(
Y (i,1) | θP

)



 ,

where φR (·|µ, Σ) denotes the density of a R-variate normal distribution with mean

and covariance matrix µ and Σ, respectively, and PXi

(
Y (i,1) | θP

)
is defined as

in expression (2) in the paper.

D.2.2 Updating θI

Let θI =
(

βI′

1 , . . . , βI′

J , γI′

, αI′

)′

be the D-dimensional vector of parameters

associated to the initial distribution, with D = Jq + 3J(J − 1)/2, and η̃I be
a I × J × (K − 1)-dimensional vector of “pseudo-data” with coordinates

η̃I

(
θ

I
)

=
(
η̃

I
(1,1,2)

(
θ

I
)

, . . . , η̃
I
(1,1,K)

(
θ

I
)

, . . . , η̃
I
(1,J,2)

(
θ

I
)

, . . . , η̃
I
(1,J,K)

(
θ

I
)

, . . . ,

η̃
I
(I,1,2)

(
θ

I
)

, . . . , η̃
I
(I,1,K)

(
θ

I
)

, . . . , η̃
I
(I,J,2)

(
θ

I
)

, . . . , η̃
I
(I,J,K)

(
θ

I
))′

,

where

η̃I
(i,j,k)

(
θI
)

= wI′

(i,j,k)θ
I +

Y(i,j,k) − h
(

wI′

(i,j,k)θ
I
)

{
h
(

wI′

(i,j,k)θ
I
) [

1 − h
(

wI′

(i,j,k)θ
I
)]} ,
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with wI
(i,j,k) being an appropriate design vector created such that

wI′

(i,j,k)θ
I = z′

(i,j,k)β
I
j +

∑

l 6=j

γI
ljY(i,l,k) +

∑

l 6=j

αI
ljY(i,l,k−1).

The candidates for the parameters associated to the initial distribution are
generated from the multivariate normal distribution

θI∗ ∼ ND

(
mI

(
θI
)

, CI

(
θI
))

,

with mean vector given by

mI

(
θI
)

= CI

(
θI
){

V −1
I bI + W IΓI

(
θI
)

η̃I

(
θI
)}

,

and covariance matrix given by

CI
(

θI
)

=
(

V −1
I + W IΓI

(
θI
)

W ′
I

)−1

,

where bI =
(

m′
βI , m′

γI , m′
αI

)′

, V I = V βI ⊕ V γI ⊕ V αI ,

W I =
(

wI
(1,1,2), . . . , wI

(1,1,K), . . . , wI
(1,J,2), . . . , wI

(1,J,K), . . . ,

wI
(I,1,2), . . . , wI

(I,1,K), . . . , wI
(I,J,2), . . . , wI

(I,J,K)

)′

,

and

ΓI

(
θ

I
)

= diag
{

ζ
I
(1,1,2)

(
θ

I
)

, . . . , ζ
I
(1,1,K)

(
θ

I
)

, . . . , ζ
I
(1,J,2)

(
θ

I
)

, . . . , ζ
I
(1,J,K)

(
θ

I
)

, . . . ,

ζ
I
(I,1,2)

(
θ

I
)

, . . . , ζ
I
(I,1,K)

(
θ

I
)

, . . . , ζ
I
(I,J,2)

(
θ

I
)

, . . . , ζ
I
(I,J,K)

(
θ

I
)}

,

with

ζI
(i,j,k)

(
θI
)

=
{

h
(

wI′

(i,j,k)θ
I
) [

1 − h
(

wI′

(i,j,k)θ
I
)]}1−Y(i,j,k−1)

,

i = 1, . . . , I, j = 1, . . . , J, k = 2, . . . , K.

The candidate θI∗ is accepted with probability

1 ∧
φD

(
θI∗|bI , V I

)

φD

(
θI |bI , V I

)
φD

(
θI |mI

(
θI∗
)

, CI

(
θI∗
))

φD

(
θI∗|mI

(
θI
)

, CP

(
θI
))




I∏

i=1

K∏

k=2

PZ(i,k)

(
Y (i,k) | Y (i,k−1), θI∗

)

PZ(i,k)

(
Y (i,k) | Y (i,k−1), θI

)


 ,
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where PZ(i,k)

(
Y (i,k) | Y (i,k−1), θI

)
is defined as in expression (5.4) in Chapter 5.
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