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By
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ABSTRACT

Firstly, we introduce ellipticity criteria for random walks in i.i.d. random environ-

ments, under which we can extend the ballisticity conditions of Sznitman’s and the poly-

nomial effective criteria of Berger, Drewitz and Ramı́rez originally defined for uniformly

elliptic random walks. We prove under these ellipticity criteria the equivalence of Sznit-

man’s (T ′) condition with the polynomial effective criterion (P )M , for M large enough.

We furthermore give ellipticity criteria under which a random walk satisfying (P )M for

M large enough, is ballistic, satisfies the annealed central limit theorem or the quenched

central limit theorem.

Secondly, we consider a random walk in a time-dependent random environment on the

lattice Zd. Recently, Rassoul-Agha, Seppäläinen and Yilmaz [RSY11] proved a general

large deviation principle under mild ergodicity assumptions on the random environment

for such a random walk, establishing first level 2 and 3 large deviation principles. Here we

present two alternative short proofs of the level 1 large deviations under mild ergodicity

assumptions on the environment: one for the continuous time case and another one for

the discrete time case. Both proofs provide the existence, continuity and convexity of the

rate function. Our methods are based on the use of the sub-additive ergodic theorem as

presented by Varadhan in [Var03].
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CHAPTER 1

INTRODUCTION

1.1 Random walks in static random environment

1.1.1 Introduction

A random walk in random environment (RWRE) is one of the fundamental models of

random motions in random media. The first works which can be related in a direct way

to this model were done in 1967 by Chernov [Che67] and in 1972 by Temkin [Tem72].

Chernov’s work can be described as a model of replication of DNA, while Temkin gave

a computer simulation about investigations concerning phase transitions in alloys. In

1982, Sinai in [Sin82b] showed that the RWRE model can be mathematically derived

from turbulence phenomena as a simplified version of the so called Lorentz gas, which

is a dynamical system of statistical mechanics where non-interacting particles move with

constant velocities between elastic collisions from fixed scatterers. In Sinai’s words, the

mathematical formalism that he develops can be explained as follows: in this kind of

system each particle moves under the action of forces of interaction with neighboring

particles. One can imagine such motion as a sequence of transitions between collisions

which look like transitions of random walk in random media due to the randomness of

configurations of particles.

Let us now introduce the RWRE model. For x ∈ Rd, denote by |x|1 and |x|2 its l1 and

l2 norm respectively. Now, we consider the lattice Zd and the set

P :=

(p(e))|e|=1,e∈Zd : p(e) ∈ (0, 1), and
∑
|e|1=1

p(e) = 1

 , (1.1.1)

which is the space of probability measures on the set {e ∈ Zd : |e|1 = 1}. Let Ω := PZd
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be the environment space and for each environment ω = (ω(x, .))x∈Zd ∈ Ω we define the

random walk in the environment ω as the Markov chain (Xn)n∈N on Zd with law Px,ω

defined by

Px,ω(X0 = x) = 1, Px,ω(Xn+1 = z + e|Xn = z) = ω(z, e), |e|1 = 1, z ∈ Zd, (1.1.2)

whenever Px,ω(Xn = z) has positive probability. Furthermore, let P be a probability

measure on Ω. Whenever the coordinates (ω(x, .))x∈Zd of the environment ω are i.i.d.

under P we will say that the environment is i.i.d. Thus if µ is a probability measure on

P then P = µ⊗Z
d

.

The random environment (or also P) is called elliptic if

P
(

min
|e|=1

ω(0, e) > 0

)
= 1. (1.1.3)

In the case that there is a constant κ ∈ (0, 1) such that

P(ω(0, e) ≥ κ, ∀e ∈ Zd, |e| = 1) = 1, (1.1.4)

it is called uniformly elliptic.

We call Px,ω the quenched law of the random walk in random environment (RWRE)

starting from x and correspondingly we define the averaged (or annealed) law of the RWRE

as the semi-direct product on Ω× (Zd)N:

Px := P× Px,ω, for x ∈ Zd,

i.e, Px(.) =

∫
Ω

Px,ω(.)dP = EPx,ω(.), where E is the expectation with respect to P. Note

that the RWRE is not a Markov chain anymore under the annealed law. This fact is

really an important handicap in the study of this model.

Let us define some basic concepts, which will be very important in the development

of the thesis. Let ` ∈ Sd−1. We say that the random walk Xn is transient in direction ` if

P0(A`) = 1, (1.1.5)

2



where

A` := {ω : lim
n→∞

Xn · ` =∞}.

The random walk Xn is ballistic in direction ` if P0-a.s it satisfies

lim
n→∞

Xn · `
n

> 0. (1.1.6)

As we will see in the next subsection, in dimension 1 transience in one direction does

not imply necessarily ballisticity in the same direction. However, it is conjectured that in

dimensions greater than 1, there is a positive answer to the following open problem

Open problem 1. Given a RWRE in a uniformly elliptic i.i.d. environment in dimen-

sions d ≥ 2, does transience in direction ` imply ballisticity in the same direction `?

According to this problem, a heuristic explanation is derived from a slowdown phe-

nomena, which suffers the walk during its trajectory. This is explained by the existence of

traps in the medium, which can be defined as zones where the walk spends an important

amount of time with a relatively low cost. For instance, one of these traps is a ball of

radius (log n)
1
d , where the walk spends a fraction of time n. The cost of this event is

of order e−c(logn)d . So, in particular in dimension 1, this kind of event has a polynomial

decay. This is very different compared to the situation in d ≥ 2.

1.1.2 Random walk in random environment in d = 1

In [Sol75], Solomon proved that when d = 1 the RWRE can be either recurrent or transient

according to a specific property of the law of the environment. To simplify notation we

will write ω+
x instead of ω(x, 1) and ω−x for ω(x,−1). Define for x ∈ Z,

ρx =
ω−x
ω+
x

.

In [Al99], Alili generalized Solomon’s work.

Theorem 1.1.1. (Solomon and Alili) Assume that

(A1) P is stationary and ergodic.

3



(A2) E(log ρ0) is well defined (with +∞ or −∞ as possible values).

(A3) P(ω+
0 + ω−0 > 0) = 1.

Then

(a) E(log ρ0) < 0⇒ P0-a.s., lim
n→∞

Xn = +∞,

(b) E(log ρ0) > 0⇒ P0-a.s., lim
n→∞

Xn = −∞

(c) E(log ρ0) = 0⇒ P0-a.s., −∞ = lim
n→∞

Xn < lim
n→∞

Xn = +∞.

Note that (c) implies that P0-a.s Xn is recurrent. In the particular case where (ω+
x )x∈Z

is a collection of i.i.d. random variables such that the support of the law of ω+
0 is contained

in (0, 1), our chain is called Sinai’s random walk [Sin82a]. Sinai proved that in contrast

to the ordinary random walk for large n, the walk takes values of order log2 n (extremely

subdiffusive behavior). In a more concrete way, he showed that

σ2

(log n)2
Xn

law→ b∞, (1.1.7)

where σ2 := E(log ρ0)2 and b∞ is a random variable. Then Golosov in [Gol86] and Kesten

in [Kes86] obtained independently the distribution of b∞, which is described by

P(b∞ ∈ dx) = z(x)dx :=
2

π

∞∑
k=0

(−1)k

2k + 1
e
−(2k+1)2π2

8
|x|dx. (1.1.8)

(Note that 2z(t), t > 0, is the probability that standard Brownian motion starting at 0

does not exit the interval [−1, 1] prior to time t. See for example [DH00] and [MP10]).

The second part of Solomon’s work [Sol75] was concerned with the law of large num-

bers. Again in [Al99], Alili extended Solomon’s result to ergodic and stationary environ-

ments.

Theorem 1.1.2. (Solomon and Alili) Assume that

(A1) P is stationary and ergodic.

(A2) E(log ρ0) is well defined (with +∞ or −∞ as possible values).

4



(A3) P(ω+
0 + ω−0 > 0) = 1.

Then,

(a) E(S̄) <∞⇒ P0-a.s., lim
n→∞

Xn

n
=

1

E(S̄)
,

(b) E(F̄ ) <∞⇒ P0-a.s., lim
n→∞

Xn

n
= − 1

E(F̄ )
,

(c) E(S̄) =∞ and E(F̄ ) =∞ ⇒ P0-a.s., lim
n→∞

Xn

n
= 0.

where

S̄ :=
∞∑
i=1

1

ω+
(−i)

i−1∏
j=0

ρ(−j) +
1

ω+
0

and

F̄ :=
∞∑
i=1

1

ω−i

i−1∏
j=0

ρ−1
j +

1

ω−0
.

In the case that P is i.i.d. Theorem 1.1.2 becomes

(a’) E(ρ0) < 1⇒ P0-a.s., lim
n→∞

Xn

n
=

1− Eρ0

E
(

1
ω+

0

) ,

(b’) E(ρ−1
0 ) < 1⇒ P0-a.s., lim

n→∞

Xn

n
= −

1− E
(

1
ρ0

)
E
(

1
ω−0

) ,

(c’)
1

Eρ0

≤ 1 ≤ Eρ−1
0 ⇒ P0-a.s,. lim

n→∞

Xn

n
= 0.

By Jensen’s inequality E log ρ0 ≤ logEρ0, where a strict inequality holds whenever

P is non-degenerate. Using this and both theorems, one can find examples, where the

walk is transient but not ballistic (see the last paragraph of the previous subsection).

This behavior is quite unusual as compared to the ordinary random walk and indicates

some kind of slowdown in the transient case. In Solomon’s words: “randomizing the

environment” is in some sense “slowdown” the random walk.

5



1.1.3 Random walk in random environment in d ≥ 2

In general, the situation in higher dimensions is poorly understood. Simple questions are

yet unanswered. In particular, there is no result as described in Theorems 1.1.1 and 1.1.2.

The following is an example of an open problem.

Open problem 2. For a RWRE in elliptic i.i.d. environment in dimensions d ≥ 3,

does P0(Al) ∈ {0, 1} for all ` ∈ Sd−1?

In the case d = 2, Zerner and Merkl gave an affirmative answer to this question in

[ZeM01]. On the other hand, under the assumption that the environment is uniformly

elliptic and i.i.d. Sznitman and Zerner [SZ99] proved the Kalikow’s zero-one law when

d ≥ 2, which is described by the condition

P0(A` ∪ A−`) ∈ {0, 1}.

The content of the proof basically can be founded in [Kal81]. Subsequently in [ZeM01],

Zerner and Merkl extended this result to elliptic i.i.d. environments.

A second example of a basic question which remains unsolved is open problem 1, which

we restate here

Open problem 1 Given a RWRE in a uniformly elliptic i.i.d. environment in dimensions

d ≥ 2, does transience in direction ` imply ballisticity in the same direction `?

The main focus of the first half of this thesis is on the concept of ballisticity for random

walks in elliptic random environments which are not necessarily uniformly elliptic, and

turns around versions of open problem 1 for non-uniformly elliptic random walks. To

present a summary of the progress that has been made about ballisticity questions for

RWRE, we subdivide the rest of this section in seven subsections. In the subsection 1.1.3.1

we will introduce the asymptotic direction, which will be useful later. In subsection 1.1.3.2

we will discuss the special case of random walks in random Dirichlet environment. The

random Dirichlet environment is an example of an elliptic but non-uniformly elliptic

environment where many explicit computations can be performed. Also, it is an example

6



of a RWRE, where a lack of uniform ellipticity on the environment produces cases of

transience in a given direction without ballisticity. In subsection 1.1.3.3 we will present

the first results which gave some light about open problem 1 within the context of RWRE

satisfying a condition known as Kalikow’s criterion, which is an hypothesis stronger than

transience. In subsection 1.1.3.4 we define the Sznitman’s ballisticity conditions with

respect to one fixed direction ` ∈ Sd−1 and a parameter γ ∈ (0, 1]. These conditions

are equivalent to transience in direction ` plus the finiteness of an exponential moment

of the maximum displacement between two regeneration times of the random walk. In

subsection 1.1.3.5 we introduce Sznitman’s effective criterion, which is the most important

tool to prove several central statements about ballisticity of the walk. One of them is

the possible equivalence between Sznitman’s ballisticity conditions. In subsection 1.1.3.6

we give a brief presentation about recent developments on this equivalence. Finally in

subsection 1.1.3.7, we introduce the effective polynomial condition defined in [BDR12] by

Berger, Drewitz and Ramı́rez, which is an a priori weaker condition than the ballisticity

conditions of Sznitman. Berger, Drewitz and Ramı́rez proved in [BDR12] that in fact the

effective polynomial condition is equivalent to the so called (T ′)|` condition of Sznitman.

1.1.3.1 The asymptotic direction

We say that there is an asymptotic direction v̂ if P0-a.s. the limit

v̂ := lim
n→∞

Xn

|Xn|2
,

exists. Simenhaus in [Sim07] proved the following theorem on an elliptic i.i.d. environ-

ment.

Theorem 1.1.3. (Simenhaus) The following are equivalent:

(a) There exists a non-empty open set O ⊂ Rd such that

P0(A`) = 1 ` ∈ O.

(b) There exists v̂ ∈ Sd−1 such that P0-a.s.

7



lim
n→∞

Xn

|Xn|2
= v̂.

(c) There exists v̂ ∈ Sd−1 such that P0(A`) = 1 for all ` ∈ Rd with ` · v̂ > 0.

Thus, the existence of the asymptotic direction v̂ can be defined in terms of transience

in an open neighborhood of Rd. A natural question is if transience in one direction is

enough to conclude the existence of v̂:

Open problem 3. Does transience in at least one direction ` ∈ Sd−1 imply the existence

of the asymptotic direction v̂?

We will now introduce a random walk in an i.i.d. environment where the distribution at

each site is given by the Dirichlet distribution. This is an important example of a random

environment which is elliptic but not uniformly elliptic, where several computations and

results can be done in an explicit way.

1.1.3.2 Random Dirichlet Environment

The random walk in the random Dirichlet environment (RWDE) is a random walk in an

i.i.d. environment where the law of the environment at each site is given by a Dirichlet

distribution. More precisely, given a family (α1, . . . , α2d) of positive numbers, the Dirichlet

distribution of parameter (αi)i∈{1,...,2d} is the probability distribution D
(
(αi)i∈{1,...,2d}

)
on

P of density

(xi)i∈1,...,2d 7→
Γ
(∑2d

i=1 αi

)
∏2d

i=1 Γ(αi)

2d∏
i=1

xαi−1
i ,

with respect to the Lebesgue measure
2d−1∏
i=1

dxi on the simplex P . Note that this distribu-

tion does not satisfy the uniform ellipticity condition.

Denote ej = −ej−d, for j = d+ 1, . . . , 2d and let

λ := 2

(
2d∑
i=1

αi

)
− max

i=1,...,d
(αi + αi+d). (1.1.9)

8



The following theorem was proved by Sabot [Sa12], building up on previous results of

Sabot [Sa11] and Sabot and Tournier [ST11].

Theorem 1.1.4. (Sabot and Tournier) Consider a random walk in a random Dirichlet

environment with parameters (αi)1≤i≤2d. Assume that there is an 1 ≤ i ≤ d such that

αi < αi+d. Then there is an asymptotic direction v̂ = ei. In particular, the random walk

is transient in direction ei. Furthermore, the random walk is ballistic if and only if λ > 1.

The above theorem displays already examples of random walks which are transient in

a given direction but not ballistic. Similar examples have been constructed within the

context of random walks in random conductances (see [F11]).

We will now discuss the state of the art regarding open problem 1, beginning with the

Kalikow’s ballisticity criterion.

1.1.3.3 Kalikow’s ballisticity criterion

In order to deal with the open problem 1, Sznitman considered the Kalikow criterion

with respect to a vector ` ∈ Sd−1. Consider an environment ω with an elliptic law. This

criterion is defined in terms of the Kalikow random walk, which is defined on U ∪ ∂U ,

where U is any connected subset of Zd containing 0, and has a transition probability given

by

P̂U(x, x+ e) =
E
[
E0,ω

[∑TU
n=0 1{Xn=x}ω(x, e)

]]
E
[
E0,ω

[∑TU
n=0 1{Xn=x}

]] , (1.1.10)

when x ∈ U and e ∈ Zd, with |e| = 1, while P̂U(x, x) = 1 when x ∈ ∂U . Here TU stand

the exit time of Xn in U . The canonical law of this Markov chain starting from x ∈ U∪∂U

is denoted by P̂x,U . Note that (1.1.10) is well-defined by the fact that the environment

is elliptic and the fact that U is connected. The most relevant properties of this Markov

chain, in relation to ballisticity of the RWRE, are

P̂0,U(TU <∞) = 1⇒ P0(TU <∞) = 1 and

P0(XTU ∈ .) = P̂0,U(XTU ∈ .).
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In particular, these properties establish a relation between a Markov chain and our RWRE

under the annealed law, which is not markovian.

Now the Kalikow’s criterion relative to ` ∈ Sd−1 is defined by the following property:

∃ ε > 0, such that inf
U,x∈U

∑
|e|=1

` · e P̂U(x, x+ e) ≥ ε; (1.1.11)

where U runs over all possible connected strict subsets of Zd, which contain 0. As a first

important result, Kalikow showed in [Kal81] that (1.1.11) implies P0(Al) = 1.

Regarding the ballisticity problem, Sznitman and Zerner considered a certain regene-

ration time τ1 with respect to a vector ` ∈ Sd−1 (see ([SZ99]). For arbitrary a > 0, its

definition in words can be summarized as follows: it is the first time where Xn ·` increases

by an amount of at least a above its previous local maxima and never goes below this

level from then on.

Figure 1.1: A realization of a trajectory of a RWRE with the stopping times which define
the regeneration time τ1.

In 1999, Sznitman and Zerner in [SZ99] proved that this regeneration time is integrable
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if (1.1.11) holds. One year later, Sznitman improved this result showing in [Sz00] that τ1

has moments of any order. More precisely, the following theorem was deduced by them

Theorem 1.1.5. (Sznitman-Zerner)

Assume that (1.1.11) holds relative to `, then

P0 − a.s.
Xn

n
→ v =

E0(Xτ1|D =∞)

E0(τ1|D =∞)
, (1.1.12)

with v · ` > 0. Moreover,

ε1/2
(
X[ε−1n] − [ε−1n]v

)
(1.1.13)

converges in law on D(R+,Rd) under P0 to the law of a non-degenerate Brownian motion

with covariance matrix:

A =
E0 ((Xτ1 − τ1v)t(Xτ1 − τ1v)|D =∞)

E0(τ1|D =∞)
,

where D = D` := min{n ≥ 0 : Xn · ` < X0 · `}.

In dimension one, the Kalikow’s criterion with respect to ` = 1, or ` = −1, precisely

characterizes the case of a non vanishing limit velocity. This is not the case in dimensions

d ≥ 2. Indeed, in [Sz01] and [Sz02] Sznitman introduced a family of ballisticity conditions

which turn out to be weaker than Kalikow’s condition.

1.1.3.4 Sznitman’s ballisticity conditions

In order to improve his results in [Sz00], Sznitman introduced a family of ballisticity

conditions that are weaker than Kalikow’s condition, and which imply for dimensions

d ≥ 2 a ballistic behavior, an annealed central limit theorem and a quenched central limit

theorem.

Definition 1.1.1. Let γ ∈ (0, 1] and ` ∈ Sd−1. Condition (T )γ holds relative to ` (and

we write (T )γ|`) if for all `′ ∈ Sd−1 in some neighborhood of `,

lim
L→∞

L−γ logP0

(
XTU`′,b,L

· `′ < 0
)
< 0 ∀b > 0, (1.1.14)
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where U`′,b,L := {x ∈ Zd : −bL < x · `′ < L} denotes a slab and

TU`′,b,L := inf{n ∈ N0 : Xn 6∈ U`′,b,L}

is the first exit time of this slab. Furthermore, we say that (T ′)| holds relative to ` (and

write (T ′)|`) when (T )γ|` holds for each γ ∈ (0, 1), while we say that condition (T )|` holds

relative to ` (and write (T )|`) (Tγ)|` for γ = 1.

In other words, condition (T )γ|` means that the walk exits by the back part of the

slab U`′,b,L with an annealed probability bounded from above by e−L
γ

. Sznitman studied

these conditions for uniformly elliptic random walks. He showed that (T )γ|` is equivalent

to the conditions

P0(Al) = 1, and for some c > 0, E0

(
ecmax0≤k≤τ1 |Xk|

γ)
<∞. (1.1.15)

In [Sz02], Sznitman gave an example for which (T ′) holds but Kalikow’s criterion breaks

down. Hence, (T ′) is a genuinely weaker condition than Kalikow’s condition. On the other

hand, he also proved that condition (T ′) implies that all moments of the regeneration

time τ1 are integrable. In particular, this shows that Theorem 1.1.5 is valid under (T ′).

Furthermore, one can prove a quenched central limit theorem with the help of the following

theorem, proved by Rassoul-Agha and Seppäläinen in [RAS09].

Theorem 1.1.6. (Rassoul-Agha and Seppäläinen) Consider a RWRE in an elliptic

i.i.d. environment. Let l ∈ Sd−1 and let τ1 be the corresponding regeneration time. Assume

that

E0[τ p1 ] <∞,

for some p > 176d. Then P-a.s. we have that

ε1/2
(
X[ε−1n] − [ε−1n]v

)
converges in law under P0,ω to a Brownian motion with non-degenerate covariance matrix.

Neither this theorem nor (1.1.15) require the environment to be uniformly elliptic. Berger

and Zeitouni in [BZ08] also proved a quenched central limit theorem, where assumptions
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on the moments of the regeneration times are weaker, but the environment is assumed to

be uniformly elliptic.

Within the context of the way that Sznitman’s ballisticity conditions are defined, it

is natural to wonder if the required exit estimates could be assumed only with respect to

one direction. This leads to the following open problem.

Open problem 4. Is (T )γ|` equivalent to

lim
L→∞

L−γ logP0

(
XTU`,b,L

· ` < 0
)
< 0 ∀b > 0? (1.1.16)

1.1.3.5 Sznitman’s Effective Criterion

The main result in [Sz02] (recall that under the assumption that the environment is

uniformly elliptic) is that when d ≥ 2, (T ′) is equivalent to an effective criterion, which is

defined by the property

inf
B,a∈[0,1]

{
c(d) log

(
1

κ

)3(d−1)

L̃d−1L3(d−1)+1E(ρaB)

}
< 1, (1.1.17)

with

ρB :=
P0,ω(XTB /∈ ∂+B)

P0,ω(XTB ∈ ∂+B)
=
qB
pB
,

where qB := P0,ω(XTB /∈ ∂+B), pB := P0,ω(XTB ∈ ∂+B), TB := inf{n ≥ 0 : Xn 6∈ B} and

B is a finite box determined by a rotation R of Rd such that R(e1) = ` and defined by

B = B(L, L̃) := R
(

(2− L,L+ 2)× (−L̃, L̃)d−1
)

(1.1.18)

with L̃ < L3. Note that (1.1.17) means a certain control on a potential small value of

pB. The effective character of this criterion comes from the fact it can be checked in

boxes that satisfy a description as (1.1.18). Furthermore, the constant κ which appears

in (1.1.17), is lower bound for the jump probabilities appearing in the definition of the

uniform ellipticity condition.
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Figure 1.2: The effective criterion implies a control on a potential small value of pB

With the help of the effective criterion, Sznitman [Sz02] proved the following theorem

Theorem 1.1.7. Let d ≥ 2 and P be uniformly elliptic. Then for each γ ∈ (0.5, 1) and

` ∈ Sd−1, (T )γ|` is equivalent to (T ′)|`.

More precisely, Sznitman proved in [Sz02], with the help of an induction argument along a

sequence of boxes Bk with growing scales, that for γ ∈ (0.5, 1), (T )γ|` implies the effective

criterion, which in turn implies something stronger than (T ′)|`, but weaker than (T )|`,

lim
L→∞

L−1ec(logL)1/2

logP0

(
XTU`′,b,L

· `′ < 0
)
< 0 for b > 0, (1.1.19)

for all `′ ∈ Sd−1 in a neighborhood of ` and for some c > 0. Note that the exponential

factor in the above inequality leaves condition (T )|` out of reach. Thus, we can state a

new open problem

Open problem 5. Let d ≥ 2 and P be uniformly elliptic. Then for each ` ∈ Sd−1, (T )|`

is equivalent to (T ′)|`.

The next subsection deals with extensions of Proposition 1.1.7.
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1.1.3.6 Equivalence between (T ′)|` and (T )γ|` for γ ∈ (0, 1)

In [DR11] and [DR12], Drewitz and Ramı́rez improved Sznitman’s Proposition 1.1.7.

In the first of these papers, they showed that there is a γd ∈ (0.37, 0.39) such that if

γ ∈ (γd, 1) then (T )γ implies (T ′). In that opportunity, they based their approach in a

method created by Sznitman [Sz01]. Regarding [DR12], they used a multi-scale method

development by Berger in [Ber12], which is more sophisticated than Sznitman’s, to prove

that for γ ∈ (0, 1) and for d ≥ 4, (T )γ|` is equivalent to (T ′)|`.

Recently, Berger, Drewitz and Ramı́rez in [BDR12] introduced a new family of ballis-

ticity conditions, which are polynomial in nature, a priori more general than any of Sznit-

man’s ballisticity condition and which in addition can in principle for each environment

be checked on finite boxes.

1.1.3.7 The polynomial ballisticity conditions

The progress that was made in [DR11, DR12] about the equivalence between the dif-

ferent Sznitman’s ballisticity conditions was not totally satisfactory. Nevertheless, this

situation changed when a weaker family of ballisticity conditions was introduced with a

new approach for dealing with this equivalence problem. These conditions correspond

to changing the strechted exponential e−L
γ

which implicitly appears in the definition of

condition (T )γ, by a polynomial. Furthermore, these conditions will have an effective

character, as it is the case for the effective criterion.

Let us consider the boxes

B(R,L, L′, L̃) := R
(

(−L,L′)× (−L̃, L̃)d−1
)
∩ Zd.

Let M > 0. Assuming L′ ≤ 5

4
L and L̃ ≤ 72L3 with L large enough, the polynomial

condition (P )M in direction ` is defined by

P0(XTB(R,L,L′,L̃)
· ` < L) ≤ 1

LM
. (1.1.20)

The equivalence between (T )γ|` and (T ′)|` for γ ∈ (0, 1) in any dimension d ≥ 2 is

deduced from the following theorem, which was proved by Berger, Drewitz and Ramı́rez

in [BDR12]
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Theorem 1.1.8. (Berger-Drewitz-Ramı́rez) Let d ≥ 2 and P be uniformly elliptic.

Assume that (P )M in direction ` holds for some M ≥ 15d+ 5. Then (T ′)|` holds.

To prove this theorem, Berger, Drewitz and Ramı́rez, show that (P )M implies the

effective criterion. To do this, they introduce a new ballisticity condition which is defined

as follows: condition (T )0|` is satisfied if there exists a neighborhood V ⊂ Sd−1 of ` such

that for all `′ ∈ V

lim
L→∞

1

LγL
logP0(XTU`,β,L

· `′ < 0) < 0, (1.1.21)

where

γL :=
log 2

log logL
. (1.1.22)

Berger, Drewitz and Ramı́rez first prove that (P )M |` implies (T )0|`. Then, they derive

from (T )0|` the following weak atypical quenched exit estimate.

Proposition 1.1.1. Consider a random walk in a uniformly elliptic i.i.d. environment.

Furthermore, assume that (T )0 is satisfied. Then, for ε(L) :=
1

(log log)2
, c > 0 and each

function β : (0,∞)→ (0,∞), there exists C > 0 such that

P
(
P0,ω(XTB ∈ ∂+B) ≤ e−cL

βL+εL

)
≤ 1

C
e−CL

βL . (1.1.23)

where B is a box which satisfies the specification given by (1.1.18).

If Proposition 1.1.1 holds then the effective criterion is satisfied ((1.1.23) controls small

values of pB, see subsection 1.1.3.5). In the proof of Proposition 1.1.1, they consider a

collection of mesoscopic boxes D(x) with their corresponding central parts D̃(x). A box

D(x) is called good box if

inf
z∈D̃(x)

Pz,ω(XTD(x)
∈ ∂+D(x)) ≥ 1− Lε(L)−1

. (1.1.24)

At this point, they used a very simple strategy: they compute the quenched probability

that appears in (1.1.23) for configurations which have a number of bad boxes intersecting
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the box B which is at most Lβ(L). In this case, if the walk exits all mesoscopic boxes

encountered through their frontal part then it leaves B through ∂+B (see Figure 1.3).

But by (2.3.34) the probability of doing this satisfies the inequality

P0,ω(XTB ∈ ∂+B) > e−cL
βL+εL .

Figure 1.3: The walk exits each mesoscopic box through its frontal part

Thus, (1.1.23) comes from computing the probability of having a number of bad boxes

intersecting B greater than Lβ(L).

The other half of the proof of Theorem 1.1.8, is to show that (P )M implies (T )0.

Berger, Drewitz and Ramı́rez in [BDR12] build another collection of mesoscopic boxes

B(x, k), indexed by their center x ∈ Zd and by their scale k. Each mesoscopic box has

a middle front part B̃(x, k) which are the possible starting points of the random walk.

A box of scale k = 0 is defined to be good if the quenched probability of leaving B(x, 0)

through ∂+B(x, 0) starting from B̃(x, 0) is bigger than 1 − N−5
0 , where N0 is a fixed

number chosen large enough. A box of scale k ≥ 1 is defined to be good if essentially it

has at most one box of scale k − 1 intersecting it which is bad. It is then necessary to
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show that whenever a box of scale k ≥ 1 is good, there is a high enough probability to

exit it through ∂+B(x, k) whenever the walk starts from B̃(x, k). This probability turns

out to be basically of the order 1− e−k!. Then, it is shown through the binomial theorem

that the probability that a box of scale k is bad is of the order 1 − e−2k . Since k! is the

size of the side of a box of scale k, choosing k so that k! = L one obtains the bound e−L
γL

in the ballisticity condition (T )0.

1.2 Random walks in Markovian time-dependent random envi-

ronment

1.2.1 Introduction

Here we will consider a class of random walks which evolve in time-dependent random

environments which have a Markovian dynamics. In general terms, the model of a random

walk in a dynamic environment changes drastically in comparison with the static case.

The reason which explains this fact is that somehow the medium will be much more

disordered than in the static case. For instance, the phenomena of traps encountered

for RWRE, which determines in a crucial way the velocity of the walk, will not play a

predominant role in the dynamic case. Within a more general context, where the random

walk could affect the dynamics of the environment so that it is not necessarily Markovian,

one of the first works in dynamic environment was made by Harris in [H65], who studied

interactions between particles that move independently as long as they are not in contact

and according to some diffusion process (for instance the Wiener process). Subsequently,

within the context of interacting particle systems, Spitzer [Sp70] studied tagged particles,

which are essentially random walks in a special kind of dynamic random environment

which influence each other (an extended bibliography can be found for example in Liggett

[L99, L05]). Other examples of random walks in dynamic random environment can appear

within the context of self-interacting random walks. For example, the excited or cookie

random walk introduced by Benjamini and Wilson [BW03], which moves on the lattice

Zd and has a bias whenever it visits a site for the first time. The focus in the second half
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of this thesis is on the quenched large deviation principles for random walk in Markovian

time-dependent random environments at continuous time as well as at discrete time.

Let us now define the class of models of random walk in Markovian time-dependent

random environment (RWMRE) which will be considered. They will be defined both in

continuous and discrete time.

We will start with the continuous time case. Let G := {e1, e−1, . . . , ed, e−d} the set

of unit vectors in Zd and Q := {v = {v(e) : e ∈ G} : v(e) ∈ (0,∞)}. Consider a

continuous time Markov process ω := {ω(t) : t ≥ 0} with state space Ωc := QZd , so that

ωt := {ωt(x) : x ∈ Zd} with ωt(x) := {ωt(x, e) : e ∈ G} ∈ Q. We assume that for each

initial condition ω0, the process ω defines a probability measure Qω0 on the Skorokhod

space D([0,∞[,Ωc). Furthermore, we assume that the process ω has an invariant measure

µ and then define Qµ(.) :=

∫
Ωc

Qωdµ, where with a slight abuse of notation, ω ∈ Ωc.

Assume that µ is also invariant under the action of space-translations. We will call each

realization ω ∈ D([0,∞[,Ωc) an environment. Now, for each environment ω we define

formally a process {Xt : t ≥ 0} by the generator

Lsf(x) :=
∑
e∈G

ωs(x, e)(f(x+ e)− f(x)) (1.2.1)

for s ≥ 0. For each x ∈ Zd we define P c
x,ω the law on D([0,∞[;Zd) of this random walk

with initial condition X0 = x. We call P c
x,ω the quenched law of the continuous time

random walk in Markovian time-dependent environment starting from x.

For each s > 0 and x ∈ Zd, let Ts,x : D([0,∞[; Ωc) → D([0,∞[; Ωc) be defined

by (Ts,xω)t(y) := ωt+s(y + x). We assume that {Ts,x : s > 0, x ∈ Zd} is an ergodic

family of transformations acting on the space
(
D([0,∞[; Ωc),B(D([0,∞[; Ωc)), Q

c
µ

)
, i.e.

whenever A ∈ B(D([0,∞[; Ωc)) is such that T−1
s,xA = A for every s > 0 and x ∈ Zd, then

Qc
µ(A) ∈ {0, 1}. As usual, for a set E, B(E) is the σ-algebra generated by Borel sets in

E. We say that the law of the environment ω is uniformly elliptic if there exists constants

κ1, κ2 with 0 < κ < κ2 such that for each t ≥ 0 and x ∈ Zd one has that

µ

(
κ1 ≤ inf

e∈G
ωt(x, e) ≤ sup

e∈G
ωt(x, e) ≤ κ2

)
= 1.
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For the discrete time case, let R ⊂ Zd finite and

P := {v = {v(e) : e ∈ R} : v(e) ∈ (0, 1),
∑
e∈R

v(e) = 1}.

We consider a discrete time Markov process ω := {ωn : n ≥ 0} with state space Ωd := PZd ,

so that ωn := {ωn(x) : x ∈ Zd} with ωn(x) := {ωn(x, e) : e ∈ R} ∈ P . Let QN
d be the

corresponding law of this process defined on the space ΩN
d and assume that this process

ω has an invariant measure µ. Assume that µ is also invariant under the action of space-

translations. We will call a realization ω ∈ ΩN
d of this process an environment. Define

Qd
µ(.) :=

∫
Ωd

Qω(.)dµ, where again with a slight abuse of notation, ω ∈ Ωd. Now, for

each environment ω and x ∈ Zd, we define a discrete time random walk {Xn : n ≥ 0}

with a law P d
x,ω on (Zd)N given by the condition P d

x,ω(X0 = x) = 1 and the transition

probabilities

P d
x,ω = (Xn+1 = x+ e|Xn = x) = ωn(x, e), (1.2.2)

for n ≥ 0 and e ∈ R. The nearest neighbor case corresponds to case where

R = {e ∈ Zd : |e|1 = 1}.

We call P d
x,ω the quenched law of the discrete time random walk in Markovian time-

dependent environment starting from x.

For each x ∈ Zd, let T1,x : D([0,∞[: Ωd)→ D([0,∞[: Ωd) be defined by

(T1,xω)n(y) = ωn+1(y + x).

We assume that the set {T1,x : x ∈ R} is an ergodic family of transformations acting on

the space (ΩN
d ,B(ΩN

d ), Qd
µ). It is straightforward to check that whenever A ∈ B(ΩN

d ) is

such that A = T−1
n,xA for every x ∈ R and n ∈ N then Qd

u(A) ∈ {0, 1}. We say that the

law of the environment ω is uniformly elliptic if there is a constant κ ∈ (0, 1) such that

for each n ∈ N0 and x ∈ Zd one has that

µ

(
inf
e∈R

ωn(x, e) ≥ κ

)
= 1.
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Throughout the rest of this section we will review the principal results that have been

obtained about quenched large deviations for random walks in both static and Markovian

time-dependent random environments.

1.2.2 Quenched large deviations for random walks in a static random envi-

ronment

We will begin reviewing the development of the quenched large deviation principle for

static random environment. Some ideas from there have been applied for the case of

a Markovian time-dependent random environment. In subsection 1.2.2.1 we will give a

brief summary on the two main results in dimension one. Subsection 1.2.2.2 explains

the Varadhan’s quenched large deviation principle for RWRE based on the use of the

subadditive ergodic theorem. The result of Varadhan does not give a lot information

about the rate function. To deal with this handicap, a perspective of homogenization

for Hamilton-Jacobi equations can be very useful. This topic is described in subsection

1.2.2.3. In subsection 1.2.2.4 Rosenbluth used as reference the so called point of view

of the particle, applying some ideas developed by Kosygina, Rezakhanlou and Varadhan

in [KRV06] within the context of homogenization for Hamilton-Jacobi equations. In

subsection 1.2.2.5 we discuss the level 2 quenched large deviation principle proved by

Yilmaz in [Yil09b].

1.2.2.1 Quenched large deviation principle in d = 1

In [GdH94] Greven and den Hollander proved the first quenched large deviation principle

(QLDP) for RWRE in dimension d = 1. They assumed that the environment is uniformly

elliptic and i.i.d. and that E log ρ0 ≤ 0, which implies that the random walk is either

recurrent or is transient to the right (see Theorem 1.1.1). Furthermore they obtained a

variational formula for the rate function and proved several properties of it.

In 2000, Comets, Gantert and Zeitouni improved this result, assuming that the envi-

ronment is stationary and ergodic (see [CGZ00]). Their approach was based on Gärtner-

Ellis theorem, being completely different to the one used in [GdH94].
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1.2.2.2 First results about the multidimensional quenched large deviation

principle

Zerner worked in [Z98] on the model described in Section 1.1.1 (an elliptic i.i.d. environ-

ment). He assumed that the walk is nestling (i.e. the convex hull of the support of the

local drift contains the origin) and that the transition probabilities satisfy the moment

condition,

E(− logω(0, e))d <∞. (1.2.3)

Zerner deduced a QLDP for RWRE in d ≥ 2 applying the subadditive ergodic theorem

to passage times. His approach is based on Sznitman’s work on Brownian motion in

Poissonian obstacles (see [S98]).

Varadhan in [Var03] generalizes Zerner’s work proving a QLDP for random walks

(Xn)n∈N defined on a probability space (Ω,B,P, Tz) that satisfies

P is ergodic and stationary under {Tz}z∈Zd . (1.2.4)

Here Tz is a tranformation on Ω defined by

(Tzω)x := ωx+z, (1.2.5)

for each z ∈ Zd. Varadhan assumed in [Var03] an additional hypothesis: the environment

is uniformly elliptic. His approach starts regularizing the n-th transition probability

between sites x and y, π(n)(x, y), defining the expression

sup
n≥0

[π(n)(ω, x, y)e−c|n−t|], (1.2.6)

which is supermultiplicative and does not have singularities. Taking logarithms, one can

apply the subadditive ergodic theorem. Varadhan took advantage of this fact and the

equicontinuity properties of the regularization of the transition probabilities.

An important difference between Zerner’s [Z98] and Varadhan’s work [Var03] is that

while Zerner applied the subadditive ergodic theorem to passage times, Varadhan applied
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it directly to the smoothed up transition probabilities (this approach is the one that we

will use in our QLDP), which a priori can give stronger results. However, we will not get

too much information about the rate function.

Theorem 1.2.1. (Varadhan 2003) Consider a RWRE, whose random environment is

stationary and ergodic with respect to the transformations Tz defined in (1.2.5). Moreover,

assume that the environment is uniformly elliptic. Then there is a nonrandom convex rate

function h(ξ) such that for almost all ω with respect to P,

lim
n→∞

1

n
logP0,ω

(
Xn

n
∈ C

)
≤ − inf

ξ∈C
h(ξ) for closed C ⊂ Rd,

lim
n→∞

1

n
logP0,ω

(
Xn

n
∈ O

)
≥ − inf

ξ∈O
h(ξ) for open O ⊂ Rd.

1.2.2.3 Homogenization of the stochastic Hamilton-Jacobi-Bellman equation

To deal with the lack of information about the rate function, Rosenbluth in [Ros06]

made a parallelism with homogenization of the stochastic Hamilton-Jacobi-Bellman equa-

tion. Previously Kosygina, Rezakhanlou and Varadhan in [KRV06] studied solutions uε

of Hamilton-Jacobi-Bellman type equations,

∂uε
∂t

=
ε

2
4uε +H

(
∇uε,

x

ε
, ω
)
, (t, x) ∈ [0,∞[×Rd, uε(0, x) = f(x). (1.2.7)

Here H(x, p, ω) is a convex function of p that is a stationary random process in x. Under

additional assumptions on H (see [KV08]) one can obtain a homogenization result, where

with probability 1 the solution uε(t, x, ω) converges locally uniformly in t and x to a

nonrandom limit u(t, x), which is the solution of

∂u

∂t
= H̄(∇u), u(0, x) = f(x), (1.2.8)

where H̄ is a convex Hamiltonian function. The connection between the Hamilton-Jacobi-

Bellman equation and RWRE, is given by the choice

H̄(z) := logE
(
e〈z,X1〉

)
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where E is the expectation with respect to the law of X1 and 〈·〉 is the Euclidean inner

product. The solution to (1.2.8) is given by the Hopf-Lax-Oleinik formula so that

u = sup
v

(f(x+ vt)− tL̄(v))

where L̄ is the Fenchel-Legendre transform of H̄. (see [KRV06], [KV08], [R11]). Then,

following standard arguments one gets that

lim
n→∞

1

n
logE

(
enf(

1
n
X[nt])

)
= u(x, t),

which is valid for every bounded continuous function f : Rd → R.

1.2.2.4 Variational formula for the level 1 quenched rate function

In [Ros06] Rosenbluth weakened the hypothesis of Varadhan’s quenched large deviation

principle for RWRE. Following the approach of the previous subsection based on the

Hamilton-Jacobi-Bellman equation he also obtained more information on the rate func-

tion, showing that it satisfies a variational problem (see subsection 1.2.2.3). He considered

the point of view of the particle method: let Ω be the space of environments and con-

sider an ergodic family of transformations {Te}e∈U with U := {e ∈ Zd : |e|1 = 1}. Let

p : Ω× U → [0, 1] be a function such that
∑
e∈U

p(x, ω) = 1, for each ω ∈ Ω (this is a more

general assumption than each Te is ergodic). Now, denote by

p(ω, Teω) := p(ω, e) (1.2.9)

and consider the Markov chain {ω̄n} with state space Ω, whose transition kernel is de-

termined by (1.2.9) and the induced measure Pω(ω̄0 = ω) = 1. In his work, Rosenbluth

dropped the uniform ellipticity condition on the environment and assumed that

E(− logω(0, e))d+α <∞. (1.2.10)

for some α > 0. Note that (1.2.10) is a slightly stronger than (1.2.3), but Rosenbluth

considered a more general model, where stationary and ergodic environments substitute
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the i.i.d. environments and the nestling hypothesis is dropped (α can be taken to be 0 in

the case d = 1).

Rosenbluth proved the existence of the logarithmic moment generating function (LMGF),

i.e. the limit

lim
n→∞

1

n
logE0,ω

(
e〈λ,Xn〉

)
(1.2.11)

where 〈·〉 is the Euclidean inner product. To do this, Rosenbluth considered a collection

K of functions F : Ω× U → R that satisfies three conditions:

(a)Moment: for each e ∈ U , E(F d+α) <∞, for some α > 0.

(b)Mean zero: for each e ∈ U , E(F (ω, e)) = 0.

(c)Closed loop: for any finite sequence {xi}n−1
i=0 ∈ Zd, such that xi+1−xi ∈ U and x0 = xn

F (Txiω, xi+1 − xi) = 0.

and showed that (1.2.11) is equal to

Λ(λ) := inf
F∈K

ess sup
ω

log
∑
e∈G

ω(0, e)e〈λ,e〉+F (ω,e).

With the LMGF well-defined, Rosenbluth followed standard arguments to show that the

rate function is the Fenchel-Legendre transform of Λ:

Theorem 1.2.2. (Rosenbluth 2006) Let (Ω,F ,P, Te) be a probability space and an

ergodic family of commuting measure preserving transformations. Suppose that (1.2.10)

holds for some α > 0. Then P-a.s.
Xn

n
obeys a large deviation principle (LDP) with

respect to its law P0,ω with rate function

I(x) = sup
λ
{〈λ, x〉 − Λ(λ)}. (1.2.12)
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1.2.2.5 Quenched univariate level 2 large deviation principle of Yilmaz

In [Yil09b], Yilmaz deduced more information than just the sample mean through the

pair empirical measure environmental (PEME) of a random walk (Xn)n∈N0 on Zd whose

environment is stationary and ergodic and with bounded jumps. (PEME) is defined by

νn,X :=
1

n

n−1∑
k=0

1TXkω,Xk+1−Xk . (1.2.13)

Yilmaz followed the same approach than Rosenbluth (the point of view of the particle) and

deduced that P-a.s. (P0,ω(νn,X ∈ ·))n∈N satisfies a QLDP. Moreover, applying the contrac-

tion principle, this result implies a QLDP for the sample mean
Xn

n
, where in particular a

variational formula for the corresponding Rosenbluth’s rate function is deduced.

1.2.3 Quenched large deviations for random walks in a Markovian time-

dependent random environment

Throughout the rest of this section we will review three different works on QLDP in

a Markovian time-dependent random environment. In subsection 1.2.3.1, we describe a

random walk in a space-time product environment, which can be considered as a random

walk in a static random environment as well. Yilmaz deduced both quenched and annea-

led large deviations, but with the additional fact that both rate functions coincide in

a neighborhood around the velocity vector of the walk. Subsection 1.2.3.2 describes an

article written by Rassoul-Agha, Seppäläinen and Yilmaz [RSY11], which takes relevance

by its high level of generality. They deduced a level 3 large deviation principle for several

models, among them the random walk in a static random environment and the random

walk in a Markovian time-dependent random environment. Finally, in subsection 1.2.3.3

we introduce the model of a random walk among a Poisson system of moving traps that

satisfies a level 1 QLDP (see [DGRS12]). The proof of our level 1 QLDP for RWMRW in

continuous time is inspired in techniques that Drewitz, Gärtner, Ramı́rez and Sun used

to prove their level 1 QLDP in [DGRS12], namely: application of the subadditive ergodic

theorem and an extension of the domain of a certain expression which in turn solves an

equicontinuity issue.
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1.2.3.1 Large deviations for random walk in a space-time product environ-

ment: Yilmaz’s work at discrete time

We consider a random walk (Xn)n≥0 in a time-dependent random environment such that

the environment ω = {ωn : n ≥ 0} with ωn = {ωn(x) : x ∈ Zd} is such that the random

variables

{ωn(x)n,x : n ∈ Z, x ∈ Zd} (1.2.14)

are i.i.d. Recall that ωn(x) := {ωn(x, e) : e ∈ G} where G is the range of the jumps and

ωn(x, e) is the probability that the walk jumps from site x at time n to site x+ e at time

n + 1. Note also that the time runs through all Z. (Xn)n≥0 can be viewed as a random

walk on a static random environment in Zd+1, defining a new walk as Yn := (n,Xn).

However, if one wants to deduce a QLDP, Varadhan’s result is not applicable here, since

our new extended walk Yn is not uniformly elliptic. So, it is necessary a new approach.

Under this “restriction”, Yilmaz in [Yil09a] obtained a QLDP for this model. In fact, he

also proved an annealed large deviation principle with rate function Ia and a law of large

numbers (LLN) for the mean velocity of the particle under P0,0 that is, with a slightly

abuse of notation, the annealed measure of the random walk starting at the space-time

point (0,0). Assuming a uniform ellipticity condition (on Xn), Yilmaz in [Yil09a] took the

point of view of the particle and focused on the environment Markov chain (Tn,Xn , ω)n≥0

to prove the following theorem

Theorem 1.2.3. (Yilmaz 2009) If d ≥ 3, there is a η > 0 such that the QLDP for

the mean velocity of the particle holds in the η-neighborhood of v and the rate function is

identically equal to the rate function Ia of the annealed LDP in this neighborhood.

Here v is the limiting velocity, which comes from a law of large numbers (LLN).
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1.2.3.2 Quenched free energy and large deviations for random walk in ran-

dom potentials: discrete time

Rassoul-Agha, Seppäläinen and Yilmaz studied quenched distributions on random walks

in a random potential on Zd and with an arbitrary finite set of admissible steps in [RSY11].

The potential can be unbounded.

Let us introduce the model. Fix a finite subset R ⊂ Zd. We consider X0,∞ := (Xn)n≥0

as a reference random walk, where Px denotes the distribution of this walk starting at x

and has jump probability p̂(z) =
1

|R|
if z ∈ R and p̂(z) = 0 otherwise. They considered

(Ω,G,P, {Tz : z ∈ G}) a measurable ergodic dynamical system, where {Tz : z ∈ G} is a

group of measurable commuting bijections that satisfy Tx+y = TxTy and T0 is the identity

and G is the additive subgroup of Zd generated byR. A potential is a measurable function

V : Ω×Rl → R, for some l ∈ N0. Given an environment ω and a starting point x ∈ Zd,

for n ≥ 1 define the quenched polymer measures

QV,ω
n,x (X0,∞ ∈ A) =

1

ZV,ω
n,x

Ex

(
e−

∑n−1
k=0 V (TXkω,Zk+1,k+l)1A(X0,∞)

)
(1.2.15)

where ZV,ω
n,x is called the quenched partition function, Zk = Xk−Xk−1 is a step of the walk

and Xi,j = (Xi, Xi+1, . . . , Xj).

RWRE is a special case of (1.2.15) with V (ω, z1,l) = − logω(0, z1). Furthermore this

model includes random walks in a dynamic random environment if R ⊂ {x : x · e1 = 1}.

They proved the P-a.s existence of the quenched free energy

lim
n→∞

1

n
logZV,ω

n,0 (1.2.16)

and derived two variational formulas for the limit (here the authors used a class of func-

tions, which is a generalization of the class of functions K introduced by [Ros06]; see

subsection 1.2.2.4).

On the other hand, they also deduced LDP for the quenched distributions

QV,ω
n,0 (R∞n ∈ ·) (1.2.17)

of the empirical process
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R∞n := n−1

n−1∑
k=0

δTXkω,Zk+1,∞ ,

where Zk+1,∞ = (Zi)k+1≤i<∞ is the entire sequence of future steps. A level 2 QLDP

means that the path component in the empirical measure has only one step: δTXkω,Zk+1
.

Therefore, a QLDP on (1.2.17) implies a level 2 QLDP as well as a level 1 QLDP through

the contraction principle. Coming back to the particular case of RWRE, they assumed

that

| logω(0, z)| ∈ L, for each z ∈ R, (1.2.18)

where L is the following class of functions:

Definition 1.2.1. A function g : Ω → R is in class L if g ∈ L1(P) and for any nonzero

z ∈ R

lim
ε→0

lim
n→∞

max
x∈∪k=0nDk

1

n

∑
0≤i≤εn

|g ◦ Tx+iz| = 0, P− a.s.,

where Dn is the set of points accessible from the origin in exactly n steps from R.

In particular, a condition as (1.2.10) guarantees (1.2.18). Thus, it is straightforward to

deduce that uniform ellipticity implies (1.2.18). Finally, Rassoul-Agha, Seppäläinen and

Yilmaz obtained an explicitly formula for the rate function. In the case of RWRE, it can

be expressed directly as the lower semicontinuous regularization of an entropy.

1.2.3.3 Random walks among a Poisson system of moving traps: continuous

time

Drewitz, Gärtner, Ramı́rez and Sun in [DGRS12] considered a model of random walks

among a Poisson system of moving traps at continuous time. Consider a system of inde-

pendent simple random walks on Zd with jump rate ρ > 0 and initial distribution being

the product of Poisson distribution with intensity ν. For each x ∈ Zd and t ≥ 0 call ξ(t, x)

the number of walks at site x and time t. This defines a field ξ := {ξ(t, x) : t ≥ 0, x ∈ Zd}

which can be represented as
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ξ(t, x) =
∑

y∈Zd,1≤j≤ny

δx(Y
y
j (t)), (1.2.19)

where {ny}y∈Zd are independent Poisson random variables with mean ν, and {Y t
j }y∈Zd,1≤j≤ny

is a family of independent simple random walks each with jump rate ρ and ny particles

start from site y. Let us call P their joint law. Consider now a simple random walk

{Xt : t ≥ 0} with jump rate κ > 0. Let us call PX
x its law starting from x and EX

x the

corresponding expectation.

The collection of walks Y are interpreted as traps and at each time t so that the walk X

is killed with rate γξ(t,X(t)) for some parameter γ > 0. Conditional on the realization

of the field of traps ξ, the probability that the walk survives by time t is given by

Zγ
t,ξ := EX

0

(
e−γ

∫ t
0 ξ(s,X(s))ds

)
. (1.2.20)

We call this the quenched survival probability, which depends on the random medium ξ.

For x ∈ Zd and s ≥ 0 define a(s, t, x, y, ξ) := − log e(s, t, x, y, ξ) with

e(s, t, x, y) := EX
x,s

(
e−γ

∫ t
s ξ(s,X(u))du1X(t)=y

)
(1.2.21)

where PX
x,s and EX

x,s denote respectively probability and expectation for a jump rate κ

simple symmetric random walk X, starting from x at time s.

To prove the level 1 QLDP, Drewitz, Gärtner, Ramı́rez and Sun in [DGRS12] applied

the subadditive ergodic theorem to a(s, t, x, y) := − log e(s, t, x, y) to show the existence

of a function α that can be defined on Qd. At this point, it is necessary to solve an

equicontinuous issue. To deal with this, Drewitz, Gärtner, Ramı́rez and Sun used well

known large deviation estimates of the simple symmetric random walk on Zd. From this,

they extended the function α to all Rd and deduced a shape theorem (terminology used

by Sznitman in [S98]), which is an uniform approximation on a compact K of Rd between

the mean of a(0, t, 0, x) and α
(x
t

)
for each x ∈ Zd∩tK, which is in turn the most difficult

part in the proof of their QLDP.
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1.3 Our results

In this section we will state the main results of the thesis. The thesis is divided in two

parts: (1) ballisticity for elliptic RWRE; (2) quenched large deviations for RWMRE. In

the first part we will introduce a new class of ellipticity conditions on the environment

which ensures the applicability of the classical ballisticity conditions. In the second part,

our interest will be oriented to the establishment of a quenched large deviation principle

for the mean of the walk, whose proofs will be short and direct. Several models are covered

since our assumptions are very general.

1.3.1 Main results for RWRE

Let us first introduce the following class of ellipticity criteria.

Definition 1.3.1. For each V ⊂ U consider the set of non-negative numbers {α(e) : e ∈

V }. Let

EV :=
{
{α(e) : e ∈ V } : E

[
e
∑
e∈V α(e) log 1

ω(0,e)

]
<∞

}
.

For each e ∈ U , we will use the notation Ee := E{e} and define

Fe := sup{α ≥ 0 : {α} ∈ Ee}.

Let β ≥ 0. We say that the law of the environment satisfies the ellipticity condition (E)β

if for every e ∈ U we have that

min
e∈U

Fe > β. (1.3.1)

Note that the polynomial ballisticity condition (cf. subsection 1.1.3.7) can be defined even

if the environment is not uniformly elliptic. Our first main result is the following one:

Theorem 1.3.1. Consider a random walk in an i.i.d. environment in dimensions d ≥ 2.

Let l ∈ Sd−1 and M ≥ 15d + 5. Assume that the environment satisfies the ellipticity

condition (E)0. Then the polynomial condition (P )M |l is equivalent to (T ′)|l.
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Let us now define a second class of ellipticity criteria. Let β ≥ 0. We say that the law

of the environment satisfies the ellipticity condition (E ′)β if there exists an ᾱ := {α(e) :

e ∈ U} such that

(i)
∑
e

α(e) > β.

(ii) ᾱ ∈ EU .

(iii) Condition (E)0 is satisfied.

(iv) min
e∈U∩Hv̂

Fe ≥ max
e∈U

α(e),

where Hv̂ is the half space determined by the asymptotic direction v̂ and defined by

Hv̂ := {l ∈ Sd−1 : l · v̂ ≥ 0}.

Assuming our polynomial ballisticity condition (P )M , v̂ is well-defined (see [Sim07]). From

this, our second main result on RWRE can be written in terms of either the ellipticity

condition (E) 1
2

or the ellipticity condition (E ′)1.

Theorem 1.3.2. (Law of large numbers) Consider a random walk in an i.i.d. envi-

ronment in dimensions d ≥ 2. Let l ∈ Sd−1 and M ≥ 15d + 5. Assume that the random

walk satisfies condition (P )M |l. Also, assume that either (E)1/2 or (E ′)1 is satisfied. Then

the random walk is ballistic in direction l. Furthermore, there is a v ∈ Rd, v 6= 0 such

that

lim
n→∞

Xn

n
= v, P0 − a.s.

Assuming greater values of β and β′ in the ellipticity conditions (E)β and (E ′)β′ respec-

tively, we have a third main result.

Theorem 1.3.3. Consider a random walk in an i.i.d. environment in dimensions d ≥ 2.

Let l ∈ Sd−1 and M ≥ 15d+ 5. Assume that the random walk satisfies condition (P )M |l.

Assume that the environment satisfies the ellipticity condition (E)0.

a) (Annealed central limit theorem) If (E)1 or if (E ′)2 is satisfied then
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ε1/2(X[ε−1n] − [ε−1n]v)

converges in law under P0 as ε → 0 to a Brownian motion with non-degenerate

covariance matrix.

b) (Quenched central limit theorem) If (E)88d or if (E ′)176d is satisfied, then P-a.s.

we have that

ε1/2(X[ε−1n] − [ε−1n]v)

converges in law under P0,ω as ε → 0 to a Brownian motion with non-degenerate

covariance matrix.

1.3.2 Main results for RWMRE

The main results deduced for RWMRE are quenched large deviation principles in con-

tinuous time as well as in discrete time. In both cases, the proofs are short and direct

and take into consideration works which follow an approach to deal with quenched large

deviations, which is different from the one presented in [Yil09b] and [RSY11], being really

a development of Varadhan’s original ideas using the subadditive ergodic theorem.

In the continuous case, we take advantage of the approach given in [DGRS12], where

large deviation estimates of a simple symmetric random walk are very useful. In our case,

the environmental process ω = (ωt)t≥0 has bounded rates and thus it is possible to find a

Radon-Nikodym derivative which relates this process with the law of a continuous simple

symmetric random walk.

Theorem 1.3.4. Consider a continuous time random walk {Xt : t ≥ 0} in a uniformly

elliptic time-dependent environment ω such that {Ts,x : s > 0, x ∈ Zd} is an ergodic

family. Then, there exists a convex continuous rate function Ic(x) : Rd → [0,∞) such

that the following are satisfied.

(i) For every open set G ⊂ Rd we have that Qc
µ-a.s.

lim
t→∞

1

t
logP c

0,ω

(
Xt

t
∈ G

)
≥ − inf

x∈G
Ic(x).
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(ii) For every closed set C ⊂ Rd we have that Qc
µ-a.s.

lim
t→∞

1

t
logP c

0,ω

(
Xt

t
∈ C

)
≤ − inf

x∈C
Ic(x).

In the discrete case, we denote by R the set of admissible steps of the walk (cf.

subsection 1.2.1). We will prove a large deviation principle assuming that either R is

finite, convex, symmetric and there is a neighborhood of 0 which belongs to the convex

hull of R or R corresponds to the nearest neighbor case. Let U be the set defined by

U :=
{
x ∈ Rd : x = lim

n→∞
xn, for some sequence xn ∈ Un

}
(1.3.2)

where Un :=
Rn

n
, being Rn the set of sites that a random walk with jump rate R visits

with probability positive at time n. Now, our discrete time version of a large deviation

principle is the following theorem.

Theorem 1.3.5. Consider a discrete time random walk {Xn : n ≥ 0} in a uniformly

elliptic time-dependent environment ω such that {T1,x : x ∈ R} is an ergodic family with

jump range R. Assume that either (i) R is finite, convex, symmetric and there is a

neighborhood of 0 which belongs to the convex hull of R; (ii) or that R corresponds to the

nearest neighbor case. Consider U defined in (1.3.2). Then U equals the convex hull of

R and there exists a convex rate function Id(x) : Rd → [0,∞] such that Id(x) ≤ | log κ|

for x ∈ U , Id(x) =∞ for x /∈ U , I is continuous for every x ∈ U o and the following are

satisfied.

(i) For every open set G ⊂ Rd we have that Qd
µ-a.s.

lim
n→∞

1

n
logP d

0,ω

(
Xn

n
∈ G

)
≥ − inf

x∈G
Id(x).

(ii) For every closed set C ⊂ Rd we have that Qd
µ-a.s.

lim
n→∞

1

n
logP d

0,ω

(
Xn

n
∈ C

)
≤ − inf

x∈C
Id(x).
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CHAPTER 2

ELLIPTICITY CRITERIA FOR BALLISTIC BEHAVIOR OF

RANDOM WALKS IN RANDOM ENVIRONMENT

2.1 Introduction

We introduce ellipticity criteria for random walks in random environment which enable

us to extend to environments which are not necessarily uniformly elliptic the ballisticity

conditions for the uniformly elliptic case of Sznitman [Sz02] and of Berger, Drewitz and

Ramı́rez [BDR12], their equivalences and some of their consequences [SZ99, Sz00, Sz01,

Sz02, RAS09, BZ08].

For x ∈ Rd, denote by |x|1 and |x|2 its l1 and l2 norm respectively. Call U := {e ∈

Zd : |e|1 = 1} = {e1, . . . , e2d} the canonical vectors with the convention that ed+i = −ei

for 1 ≤ i ≤ d and let P := {p(e) : p(e) ≥ 0,
∑
e∈U

p(e) = 1}. An environment is an element

ω of the environment space Ω := PZd so that ω := {ω(x) : x ∈ Zd}, where ω(x) ∈ P .

We denote the components of ω(x) by ω(x, e). The random walk in the environment ω

starting from x is the Markov chain {Xn : n ≥ 0} in Zd with law Px,ω defined by the

condition Px,ω(X0 = x) = 1 and the transition probabilities

Px,ω(Xn+1 = x+ e|Xn = x) = ω(x, e)

for each x ∈ Zd and e ∈ U . Let P be a probability measure defined on the environment

space Ω endowed with its Borel σ-algebra. We will assume that {ω(x) : x ∈ Zd} are i.i.d.

under P. We will call Px,ω the quenched law of the random walk in random environment

(RWRE) starting from x, while Px :=

∫
Px,ωdP the averaged or annealed law of the

RWRE starting from x.
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We say that the law P of the RWRE is elliptic if for every x ∈ Zd and e ∈ U one has

that P(ω(x, e) > 0) = 1. We say that P is uniformly elliptic if there exists a constant

κ > 0 such that for every x ∈ Zd and e ∈ U it is true that P(ω(x, e) ≥ κ) = 1. Given

l ∈ Sd−1 we say that the RWRE is transient in direction l if

P0(Al) = 1,

where

Al := { lim
n→∞

Xn · l =∞}

We say that it is ballistic in direction l if P0-a.s.

lim inf
n→∞

Xn · l
n

> 0.

The following is conjectured (see for example [Sz04]).

Conjecture 2.1.1. Let l ∈ Sd−1. Consider a random walk in a uniformly elliptic i.i.d.

environment in dimension d ≥ 2, which is transient in direction l. Then it is ballistic in

direction l.

Some partial progress towards the resolution of this conjecture has been made in

[Sz01, Sz02, DR11, DR12, BDR12]. In 2001 and 2002 Sznitman in [Sz01, Sz02] introduced

a class of ballisticity conditions under which he could prove the above statement. For each

subset A ⊂ Zd define the first exit time from the set A as

TA := inf{n ≥ 0 : Xn /∈ A}. (2.1.1)

For L > 0 and l ∈ Sd−1 define the slab

Ul,L := {x ∈ Zd : −L ≤ x · l ≤ L}. (2.1.2)

Given l ∈ Sd−1 and γ ∈ (0, 1), we say that condition (T )γ in direction l (also written as

(T )γ|l) is satisfied if there exists a neighborhood V ⊂ Sd−1 of l such that for all l′ ∈ V
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lim sup
L→∞

1

Lγ
logP0(XTUl′,L

· l′ < 0) < 0.

Condition (T ′)|l is defined as the fullfilment of condition (T )γ|l for all γ ∈ (0, 1). Sznitman

[Sz02] proved that if a random walk in an i.i.d. uniformly elliptic environment satisfies

(T ′)|l then it is ballistic in direction l. He also showed that if γ ∈ (0.5, 1), then (T )γ implies

(T ′). In 2011, Drewitz and Ramı́rez [DR11] showed that there is a γd ∈ (0.37, 0.39) such

that if γ ∈ (γd, 1), then (T )γ implies (T ′). In 2012, in [DR12], they were able to show

that for dimensions d ≥ 4, if γ ∈ (0, 1), then (T )γ implies (T ′). Recently in [BDR12],

Berger, Drewitz and Ramı́rez introduced a polynomial ballisticity condition, weakening

further the conditions (T )γ. The condition is effective, in the sense that it can a priori be

verified explicitly for a given environment. To define it, for each L,L′, L̃ > 0 and l ∈ Sd−1

consider the box

Bl,L′,L,L̃ := R

(
(−L′, L)×

(
−L̃, L̃

)d−1
)
∩ Zd,

where R is a rotation of Rd defined by the condition

R(e1) = l. (2.1.3)

Let also

L0 :=
2

3
329d. (2.1.4)

Given M ≥ 1, we say that condition (P )M in direction l is satisfied (also written as

(P )M |l) if for every L ≥ L0, L′ ≤ 5

4
L and L̃ ≤ 72L3 one has the following upper bound

for the probability that the walk does not exit the box Bl,L′,L,L̃ through its front side

P0(XTB
l,L′,L,L̃

· l < L) ≤ 1

LM
.

In [BDR12], Berger, Drewitz and Ramı́rez prove that every random walk in an i.i.d.

uniformly elliptic environment which satisfies (P )M for M ≥ 15d+5 is necessarily ballistic.

On the other hand, it is known (see for example Sabot-Tournier [ST11]) that in di-

mension d ≥ 2, there exist elliptic random walks which are transient in a given direction
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but not ballistic in that direction. The purpose of this chapter is to investigate to which

extent can the assumption of uniform ellipticity be weakened. To do this we introduce

several classes of ellipticity conditions on the environment. For each V ⊂ U consider the

set of non-negative numbers {α(e) : e ∈ V }. Let

EV :=
{
{α(e) : e ∈ V } : E

[
e
∑
e∈V α(e) log 1

ω(0,e)

]
<∞

}
.

For each e ∈ U , we will use the notation Ee := E{e} and define

Fe := sup{α ≥ 0 : {α} ∈ Ee}.

Let β ≥ 0. We say that the law of the environment satisfies the ellipticity condition (E)β

if for every e ∈ U we have that

min
e∈U

Fe > β.

The first main result of this chapter is the following one.

Theorem 2.1.1. Consider a random walk in an i.i.d. environment in dimensions d ≥ 2.

Let l ∈ Sd−1 and M ≥ 15d + 5. Assume that the environment satisfies the ellipticity

condition (E)0. Then the polynomial condition (P )M |l is equivalent to (T ′)|l.

In this chapter we go further from Theorem 2.1.1, and we obtain assuming (T ′), good

enough tail estimates for the distribution of the regeneration times of the random walk.

Let us recall that there exists an asymptotic direction if the limit

v̂ := lim
n→∞

Xn

|Xn|2
exists P0-a.s. Simenhaus in [Sim07], shows that if there is a neighborhood V of direction

l such that for every l′ ∈ V the random walk is transient, then the asymptotic direction

exists (cf. Subsection 1.1.3.1). It follows that under the polynomial condition (P )M the

asymptotic direction exists. In this case, let us define the half space

Hv̂ := {l ∈ Sd−1 : l · v̂ ≥ 0}.
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Let ᾱ := {α(e) : e ∈ U} ∈ [0,∞)2d. Let β ≥ 0. We say that the law of the environment

satisfies the ellipticity condition (E ′)β if there exists an ᾱ := {α(e) : e ∈ U} such that

(i)
∑
e

α(e) > β.

(ii) ᾱ ∈ EU .

(iii) Condition (E)0 is satisfied.

(iv) min
e∈U∩Hv̂

Fe > max
e∈U

α(e).

The second main result of this chapter is the following theorem.

Theorem 2.1.2. (Law of large numbers) Consider a random walk in an i.i.d. envi-

ronment in dimensions d ≥ 2. Let l ∈ Sd−1 and M ≥ 15d + 5. Assume that the random

walk satisfies condition (P )M |l. Also, assume that either (E)1/2 or (E ′)1 is satisfied. Then

the random walk is ballistic in direction l. Furthermore, there is a v ∈ Rd, v 6= 0 such

that

lim
n→∞

Xn

n
= v, P0 − a.s.

It should be noted that condition (E)1/2 does not imply (E ′)1, nor vice-versa.

On the other hand, the the value 1/2 of condition (E)1/2 in Theorem 2.1.2 is optimal.

Indeed, in analogy to the random conductance model studied by Fribergh in [F11], it is

easy to construct an environment such that for every ε > 0 one has that

sup
e

E

[(
1

ω(0, e)

)1/2−ε
]
<∞,

but the walk is transient in direction e1 but not ballistic in direction e1. Let φ be any

random variable taking values on the interval (0, 1/4) and such that the expected value

of φ−1/2 is infinite, while for every ε > 0, the expected value of φ−(1/2−ε) is finite. Let

X be a Bernoulli random variable of parameter 1/2. We now define ω1(0, e1) = 2φ,

ω1(0,−e1) = φ, ω1(0,−e2) = φ and ω1(0, e2) = 1− 4φ and ω2(0, e1) = 2φ, ω2(0,−e1) = φ,

ω2(0, e2) = φ and ω2(0,−e2) = 1− 4φ. We then let the environment at site 0 be given by

the random variable ω(0) := 1X(1)ω1(0)+1X(0)ω2(0). This environment has the property
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that traps can appear, where the random walk gets caught in an edge, as shown shown

in Figure 2.1. Furthermore, as we will show, it is not difficult to check that the random

walk in this random environment is transient in direction e1 but not ballistic. We cannot

say at this moment if this environment satisfies or not the polynomial condition (P )M for

M ≥ 15d+ 5.

Figure 2.1: A trap produced by an elliptic environment which does not satisfy (E) 1
2
.

Similar examples of random walks in elliptic i.i.d. random environment which are

transient in a given direction but not ballistic have been exhibited within the context

of the Dirichlet environment. Here, the environment is chosen i.i.d. with a Dirichlet

distribution at each site D(β1, . . . , β2d) of parameters β1, . . . , β2d > 0 (see for example

[Sa11, Sa12, ST11]), the parameter βi being associated with the direction ei. For a

random walk in Dirichlet random environment (RWDRE), condition (E)1/2 is equivalent

to the condition

min
1≤i≤2d

βi >
1

2
.

On the other hand, condition (E ′)1 is equivalent to

d∗β∗ +
∑

j:ej /∈Hv̂

βj ∧ β∗ > 1,
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where β∗ is the minimal value of βi among those directions which lie in the half space Hv̂

and d∗ is the number of directions which lie in the half spcae Hv̂. These conditions are

stronger than the ballisticity condition for RWDRE given by Tournier in [T11]. Further-

more, they are also stronger than the characterization of ballisticity for RWDRE given by

Sabot in [Sa12] for random walks in random Dirichlet environments in dimension d ≥ 3.

Indeed, Sabot defines the parameter

λ := 2
2d∑
i=1

βi − max
1≤i≤d

(βi + βi+d). (2.1.5)

Tournier in [T11] proved that if λ ≤ 1, then the RWDRE is not ballistic in any direction.

Sabot in [Sa12], showed that if λ > 1, and if there is an i = 1, . . . , d such that βi 6= βi+d,

then the random walk is ballistic. It is thus natural to wonder to what general condition

corresponds (not restricted to random Dirichlet environments), the characterization of

Sabot and Tournier. In section 2.2, we will see that there are several formulations of the

condition of Sabot and Tournier for RWDRE, but which are not equivalent for general

RWRE. Among these formulations, the following one is the weakest one in general. We

say that condition (ES) is satisfied if

max
i:1≤i≤d

E
[

1

1− ω(0, ei)ω(ei,−ei)

]
<∞.

We have furthermore the following proposition whose proof will be presented in section

2.2.

Proposition 2.1.1. Consider a random walk in a random environment. Assume that

condition (ES) is not satisfied. Then the random walk is not ballistic.

We will see in the proof of Proposition 2.1.1 how important is the role played by certain

edges which play the role of traps.

Another consequence of Theorem 2.1.1 and the machinery that we develop to estimate

the tails of the regeneration times, is the following theorem.
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Theorem 2.1.3. Consider a random walk in an i.i.d. environment in dimensions d ≥ 2.

Let l ∈ Sd−1 and M ≥ 15d+ 5. Assume that the random walk satisfies condition (P )M |l.

Assume that the environment satisfies the ellipticity condition (E)0.

a) (Annealed central limit theorem) If (E)1 or if (E ′)2 is satisfied then

ε1/2(X[ε−1n] − [ε−1n]v)

converges in law under P0 as ε → 0 to a Brownian motion with non-degenerate

covariance matrix.

b) (Quenched central limit theorem) If (E)88d or if (E ′)176d is satisfied, then P-a.s.

we have that

ε1/2(X[ε−1n] − [ε−1n]v)

converges in law under P0,ω as ε → 0 to a Brownian motion with non-degenerate

covariance matrix.

Part (b) of the above Theorem is based on a result of Rassoul-Agha and Seppäläinen

[RAS09], which gives as a condition so that an elliptic random walk satisfies the quenched

central limit theorem that the regeneration times have moments of order higher than

176d. As they point out in their paper, this particular lower bound on the moment

should not have any meaning and it is likely that it could be improved. For example,

Berger and Zeitouni in [BZ08], also prove the quenched central limit theorem under lower

order moments for the regeneration times but under the assumption of uniform ellipticity.

It should be possible to extend their methods to elliptic random walks in order to improve

the moment condition of part (b) of Theorem 2.1.3.

The proof of Theorem 2.1.1 requires extending the methods that have already been

developed within the context of random walks in uniformly elliptic random environments.

Its proof is presented in section 2.3. To do this, we first need to show as in [BDR12], that

the polynomial condition (P )M for M ≥ 15d+ 5, implies the so called effective criterion,
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defined by Sznitman in [Sz02] for random walks in uniformly elliptic environments, and

extended here for random walks in random environments satisfying condition (E)0. Two

renormalization methods are employed here, which need to take into account the fact that

the environment is not necessarily uniformly elliptic. These are developed in subsections

2.3.1 and 2.3.2. In subsection 2.3.4 it is shown, following [Sz02], that the effective criterion

implies condition (T ′). The adaptation of the methods of [BDR12] and [Sz02] from uni-

formly elliptic environments to environments satisfying some of the ellipticity conditions

that have been introduced is far from being straightforward.

The proof of Theorems 2.1.2 and 2.1.3, is presented in sections 2.4 and 2.5. In section

2.4, an atypical quenched exit estimate is derived which requires a very careful choice

of the renormalization method, and includes the definition of an event which we call the

confinement event, which ensures that the random walk will be able to find a path to

an exit column where it behaves as if the environment was uniformly elliptic. In section

2.5, we derive the moments estimates of the regeneration time of the random walk using

the atypical quenched exit estimate of section 2.4. Here, the conditions (E)1/2 or (E ′)1

are required, and appear as the possibility of finding either two or 2d different paths,

respectively, connecting two points in the lattice.

2.2 Notation and preliminary results

Here we will fix up the notation of the chapter and will introduce the main tools that will

be used. In subsection 2.2.2 we will prove Proposition 2.1.1. Its proof is straightforward,

but instructive.

2.2.1 Setup and background

Throughout the whole chapter we will use letters without subindexes like c, ρ or κ to

denote any generic constant, while we will use the notation c3,1, c3,2, . . . , c4,1, c4,2, . . . to

denote the specific constants which appear in each section of the chapter. Thus, for exam-

ple c4,2 is the second constant of section 4. On the other hand, we will use c1, c2, c3, c4, c
′
1

and c′2 for specific constants which will appear several times in several sections. Let c1 ≥ 1
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be any constant such that for any pair of points x, y ∈ Zd, there exists a nearest neighbor

path between x and y with less than

c1 max{|x− y|2, 1} (2.2.1)

sites. Given U ⊂ Zd, we will denote its outer boundary by

∂U := {x /∈ U : |x− y|1 = 1, for some y ∈ U}.

We define {θn : n ≥ 1} as the canonical time shift on ZdN. For l ∈ Sd−1 and u ≥ 0, we

define the times

T lu := inf{n ≥ 0 : Xn · l ≥ u} (2.2.2)

and

T̃ lu := inf{n ≥ 0 : Xn · l ≤ u}.

Throughout, we will denote any nearest neighbor path with n steps joining two points

x, y ∈ Zd by (x1, x2, . . . , xn), where x1 = x and xn = y. Furthermore, we will employ the

notation

∆xi := xi+1 − xi, (2.2.3)

for 1 ≤ i ≤ n − 1, to denote the directions of the jumps through this path. Finally, we

will call {tx : x ∈ Zd} the canonical shift defined on Ω so that for ω = {ω(y) : y ∈ Zd},

tx(ω) = ω̄ := {ω(x+ y) : y ∈ Zd}. (2.2.4)

Let us now define the concept of regeneration times with respect to direction l. Let

a > 2
√
d (2.2.5)

and

Dl := min{n ≥ 0 : Xn · l < X0 · l}.
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Define S0 := 0, M0 := X0 · l,

S1 := T lM0+a, R1 := Dl ◦ θS1 ,

M1 := sup{Xn · l : 0 ≤ n ≤ R1},

and recursively for k ≥ 1,

Sk+1 := T lMk+a, Rk+1 := Dl ◦ θSk+1
+ Sk+1,

Mk+1 := sup{Xn · l : 0 ≤ n ≤ Rk+1}.

Define the first regeneration time as

τ1 := min{k ≥ 1 : Sk <∞, Rk =∞}.

The condition (2.2.5) on a will be eventually useful to prove the non-degeneracy of the

covariance matrix of part (a) of Theorem 2.1.3. Now define recursively in n the (n + 1)-

st regeneration time τn+1 as τ1(X·) + τn(Xτ1+· − Xτ1). Throughout the sequel, we will

occasionally write τ l1, τ
l
2, . . . to emphasize the dependence of the regeneration times with

respect to the chosen direction. It is a standard fact (see for example Sznitman and Zerner

[SZ99]) to show that the sequence ((τ1, X(τ1+·)∧τ2 −Xτ1), (τ2 − τ1, X(τ2+·)∧τ3 −Xτ2), . . .) is

independent and except for its first term also i.i.d. with the same law as that of τ1 with

respect to the conditional probability measure P0(·|Dl = ∞). This implies the following

theorem (see Zerner [Z02] and Sznitman and Zerner [SZ99] and Sznitman [Sz00]).

Theorem 2.2.1. (Sznitman and Zerner [SZ99], Zerner [Z02], Sznitman [Sz00])

Consider a RWRE in an elliptic i.i.d. environment. Let l ∈ Sd−1 and assume that there

is a neighborhood V of l such that for every l′ ∈ V the random walk is transient in the

direction l′. Then there is a deterministic v such that P0-a.s. one has that

lim
n→∞

Xn

n
= v.
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Furthermore, the following are satisfied.

a) If E0[τ1] <∞, the walk is ballistic and v 6= 0.

b) If E0[τ 2
1 ] <∞ we have that

ε1/2
(
X[ε−1n] − [ε−1n]v

)
converges in law under P0 to a Brownian motion with non-degenerate covariance

matrix.

Rassoul-Agha and Seppäläinen in [RAS09] and Berger and Zeitouni in [BZ08] were

able to prove a quenched central limit theorem under good enough moment conditions

on the regeneration times. The result of Rassoul-Agha and Seppäläinen which does not

require a uniform ellipticity assumption is the following one.

Theorem 2.2.2. (Rassoul-Agha and Seppäläinen [RAS09]) Consider a RWRE in

an elliptic i.i.d. environment. Let l ∈ Sd−1 and let τ1 be the corresponding regeneration

time. Assume that

E0[τ p1 ] <∞,

for some p > 176d. Then P-a.s. we have that

ε1/2
(
X[ε−1n] − [ε−1n]v

)
converges in law under P0,ω to a Brownian motion with non-degenerate covariance matrix.

We now define the n-th regeneration radius as

X∗(n) := max
τn−1≤k≤τn

|Xk −Xτn−1|1.

The following theorem was stated and proved without using uniform ellipticity by

Sznitman as Theorem A.2 of [Sz02], and provides a control on the lateral displacement of

the random walk with respect to the asymptotic direction. We need to define for z ∈ Rd
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π(z) := z − (z · v̂)v̂.

Theorem 2.2.3. (Sznitman [Sz02]) Consider a RWRE in an elliptic i.i.d. environment

satisfying condition (T )γ|l. Let l ∈ Sd−1 and γ ∈ (0, 1). Then, for any c > 0 and

ρ ∈ (0.5, 1),

lim sup
u→∞

u−(2ρ−1)∧(γρ) logP0

(
sup

0≤n≤T lu
|π(Xn)| ≥ cuρ

)
< 0,

where T lu is defined in (2.2.2).

Define the function γL : [2,∞)→ R as

γL :=
log 2

log logL
. (2.2.6)

Given l ∈ Sd−1, we say that condition (T )0 in direction l (also written as (T )0|l) is satisfied

if there exists a neighborhood V ⊂ Sd−1 of l such that for all l′ ∈ V

lim sup
L→∞

1

LγL
logP0(XTUl′,L

· l′ < 0) < 0,

where the slabs Ul′,L are defined in (2.1.2). An important consequence of Theorem 2.2.3

is the following equivalence proved by Sznitman [Sz02], for the case γ ∈ (0, 1) and which

does not use uniform ellipticity. It is easy to extend Sznitman’s proof to include the case

γ = 0.

Theorem 2.2.4. (Sznitman [Sz02]) Consider a RWRE in an elliptic i.i.d. environ-

ment. Let γ ∈ [0, 1) and l ∈ Sd−1. Then the following are equivalent.

(i) Condition (T )γ|l is satisfied.

(ii) P0(Al) = 1 and if γ > 0 we have that E0[exp{c(X(1))γ}] <∞ for some c > 0, while

if γ = 0 we have that E0[exp{c(X(1))γL}] <∞ for some c > 0.

(iii) There is an asymptotic direction v̂ such that l · v̂ > 0 and for every l′ such that

l′ · v̂ > 0 one has that (T )γ|l′ is satisfied.
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The following corollary of Theorem 2.2.4 will be important.

Corollary 2.2.1. (Sznitman [Sz02]) Consider a RWRE in an elliptic i.i.d. environ-

ment. Let γ ∈ (0, 1) and l ∈ Sd−1. Assume that (T )γ|l holds. Then there exists a constant

c such that for every L and n ≥ 1 one has that

P0

(
X∗(n) > L

)
≤ 1

c
e−cL

γ

. (2.2.7)

2.2.2 Comments and proof of Proposition 2.1.1

Let us show that (E) 1
2

and (E ′)1 are stronger conditions than (ES). We will do this

passing through another ellipticity condition. We say that condition (ES ′) is satisfied if

there exist nonnegative real numbers α1, . . . , αd and α′1, . . . , α
′
d such that

min
1≤i≤d

(αi + α′i) > 1

and

max
1≤i≤d

E
[(

1

1− ω(0, ei)

)αi]
<∞ and max

1≤i≤d
E

[(
1

1− ω(0, ei+d)

)α′i]
<∞. (2.2.8)

We have the following lemma.

Lemma 2.2.1. Consider a random walk in an i.i.d. random environment. Then either

condition (E)1/2 or (E ′)1 imply (ES ′) which in turn implies (ES). Furthermore, for a

random walk in a random Dirichlet environment, (ES) and (ES ′) are equivalent to λ > 1

(cf. (2.1.5)).

Proof. It is easy to check that (E)1/2 implies (ES ′) and that for random Dirichlet envi-

ronments (ES ′) and (ES) are equivalent to λ > 1. We therefore first prove that (ES ′)

implies (ES). Note first that by the independence between ω(0, ei) and ω(ei,−ei), (2.2.8)

is equivalent to

max
1≤i≤d

E

[(
1

1− ω(0, ei)

)αi ( 1

1− ω(ei,−ei)

)α′i]
<∞.
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Then it is enough to prove that for each pair of real numbers u1, u2 in (0, 1) one has that

1

1− u1u2

≤ 1

(1− u1)α(1− u2)α′
(2.2.9)

for any α, α′ ≥ 0 such that α+ α′ > 1. Now if we denote by v1 = 1− u1 and v2 = 1− u2

then (2.2.9) is equivalent to

v1v2 + vα1 v
α′

2 ≤ v1 + v2. (2.2.10)

But (2.2.10) follows easily by our conditions on v1, v2, α and α′. To prove that (E ′)1

implies (ES ′), we choose for each 1 ≤ i ≤ d

αi =
∑

α(e)6=α(ei)

α(e), α′i =
∑

α(e)6=α(ei+d)

α(e).

Note in particular that

αi + α′i > 1, ∀i ∈ {1, . . . , d}. (2.2.11)

Furthermore, by (E ′)1 and the monotonocity of the function log x one has that

E
(
e−

∑
e 6=ei

α(e) logω(0,e)
)
<∞, αi log

∑
e 6=ei

ω(0, e) ≥
∑
e6=ei

α(e) logω(0, e). (2.2.12)

for each 1 ≤ i ≤ d. Then (ES ′) follows by (2.2.11) and (2.2.12).

Let us now prove Proposition 2.1.1. If the random walk is not transient in any direc-

tion, there is nothing to prove. So assume that the random walk is transient in a direction

l and hence the corresponding regeneration times are well defined. Essentially, we will

exhibit a trap as the one depicted in Figure 2.1, in the edge (0, ei). Define the first exit

time of the random walk form the edge (0, ei), so that

F := min {n ≥ 0 : Xn /∈ (0, ei)} .

We then have for every k ≥ 0 that
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Px,ω(F = 2k + 2) = ωk+1
1 ωk2(1− ω2),

and

Px,ω(F = 2k + 1) = ωk1ω
k
2(1− ω1).

Hence,

Px,ω(F > 2k) = (ω1ω2)k

and

∞∑
k=0

Px,ω(Fx > 2k) =
1

1− ω1ω2

. (2.2.13)

This proves that under the annealed law,

E0(F ) =∞.

We can now show using the strong Markov property under the quenched measure and the

i.i.d. nature of the environment, that for each natural m > 0, the time Tm := min{n ≥

0 : Xn · l > m} can be bounded from below by a sequence F1, . . . , Fm of random variables

which under the annealed measure are i.i.d. and distributed as F . This proves that P0-a.s.

Tm/m→∞ which implies that the random walk is not ballistic in direction l.

2.3 Equivalence between the polynomial ballisticity condition

and (T ′)

Here we will prove Theorem 2.1.1, establishing the equivalence between the polynomial

condition (P )M and condition (T ′). To do this, we will pass through both the effective

criterion and an version of condition (T )γ which corresponds to the choice of γ = γL

according to (2.2.6) (see [BDR12]). Now, to prove Theorem 2.1.1, we will first show in

subsection 2.3.1 that (P )M implies (T )0 for M ≥ 15d+5. In subsection 2.3.2, we will prove

that (T )0 implies a weak kind of an atypical quenched exit estimate. In these first two
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steps, we will generalize the methods presented in [BDR12] for random walks satisfying

condition (E)0. In subsection 2.3.3, we will see that this estimate implies the effective

criterion. Finally, in subsection 2.3.4, we will show that the effective criterion implies

(T ′), generalizing the method presented by Sznitman [Sz02], to random walks satisfying

(E)0.

Before we continue, we will need some additional notation. Let l ∈ Sd−1. Let L,L′ > 0,

L̃ > 0,

B(R,L, L′, L̃) := R
(

(−L,L′)× (−L̃, L̃)d−1
)
∩ Zd (2.3.1)

and

∂+B(R,L, L′, L̃) := ∂B ∩
{
x ∈ Zd : x · l ≥ L′, |R(ej) · x| < L̃, for each 2 ≤ j ≤ d

}
.

(2.3.2)

Here R is the rotation defined by (2.1.3). When there is no risk of confusion, we will drop

the dependence of B(R,L, L′, L̃) and ∂+B(R,L, L′, L̃) with respect to R, L, L′ and L̃ and

write B and ∂+B respectively. Let also,

ρB :=
P0,ω(XTB /∈ ∂+B)

P0,ω(XTB ∈ ∂+B)
=
qB
pB
,

where qB := P0,ω(XTB /∈ ∂+B) and pB := P0,ω(XTB ∈ ∂+B) and for 0 < α < min
e∈U

Fe,

ηα := sup
e∈U

E
[(

1

ω(0, e)

)α]
. (2.3.3)

2.3.1 Polynomial ballisticity implies (T )0

Here we will prove that the Polynomial ballisticity condition implies (T )0. To do this, we

will use a multi-scale renormalization scheme as presented in Section 3 of [BDR12]. Let

us note that [BDR12] assumes that the walk is uniformly elliptic.

Proposition 2.3.1. Let M > 15d+ 5 and l ∈ Sd−1. Assume that conditions (P )M |l and

(E)0 are satisfied. Then (T )0|l holds.
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Let us now to prove Proposition 2.3.1. Let N0 ≥
3

2
L0, where L0 is defined in (2.1.4). For

k ≥ 0, define recursively the scales

Nk+1 := 3(N0 + k)2Nk. (2.3.4)

Define also for k ≥ 0 and x ∈ Rd the boxes

B(x, k) :=

{
y ∈ Zd : −Nk

2
< (y − x) · l < Nk, |(y − x) ·R(ei)| < 25N3

k for 2 ≤ i ≤ d

}
(2.3.5)

and their middle frontal part

B̃(x, k) :=
{
y ∈ Zd : Nk −Nk−1 ≤ (y − x) · l < Nk, |(y − x) ·R(ei)| < N3

k for 2 ≤ i ≤ d
}

(2.3.6)

with the convention that N−1 := 2N0/3. We also define the the front side

∂+B(x, k) := {y ∈ ∂B(x, k) : (y − x) · l ≥ Nk},

the back side

∂−B(x, k) := {y ∈ ∂B(x, k) : (y − x) · l ≤ −Nk

2
},

and the lateral sides

∂lB(x, k) := {y ∈ ∂B(x, k) : |(y − x) ·R(ei)| ≥ 25N3
k for 2 ≤ i ≤ d}.

We need to define for each n,m ∈ N the sub-lattices

Ln,m := {x ∈ Zd : [x · l] ∈ nZ, [x ·R(ej)] ∈ mZ, for 2 ≤ j ≤ d}

and refer to the elements of

Bk :=
{
B(x, k) : x ∈ LNk−1−1,N3

k−1

}
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as boxes of scale k. When there is no risk of confusion, we will denote a typical element

of this set by Bk or simply B and its middle part as B̃k or B̃. Furthermore, we have

∪B∈BkB̃ = Zd,

which will be an important property that we will be useful. In this subsection, it is enough

to assume a weaker condition than (P )M |l. The following lemma is straightforward, so

its proof will be omitted.

Lemma 2.3.1. Let M > 0 and l ∈ Sd−1. Assume that condition (P )M |l is satisfied.

Then, whenever N0 ≥
2

3
L0 one has that

sup
x∈B̃0

Px
(
XTB0

6∈ ∂+B0

)
< N−M0 . (2.3.7)

We now say that box B ∈ B0 is good if

sup
x∈B̃0

Px,ω
(
XTB0

6∈ ∂+B0

)
< N−5

0 . (2.3.8)

Otherwise, we say that the box B ∈ B0 is bad. The following lemma appears in [BDR12]

as Lemma 3.3.

Lemma 2.3.2. Let M > 0 and l ∈ Sd−1. Assume that (P )M |l holds. Then for all B0 ∈ B0

and N0 ≥
2

3
L0,

P(B0 is good) ≥ 1− 2d−1N3d+3−M
0 .

Proof. Note that

P(B0 is bad) ≤
∑
x∈B̃0

P
(
Px,ω

(
XTB0

6∈ ∂+B0

)
≥ N−5

0

)
. (2.3.9)

Now by Markov’s inequality we have for x ∈ B̃0 that

P
(
Px,ω

(
XTB0

6∈ ∂+B0

)
≥ N−5

0

)
≤ N5

0 sup
x∈B̃0

Px
(
XTB0

6∈ ∂+B0

)
. (2.3.10)
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Now, with the help of Lemma 2.3.1, (2.3.9), (2.3.10) and from a routine counting argument

we obtain

P(B0 is bad) ≤ 2d−1N3d+3−M
0 .

Now, we want to extend the concept of good and bad boxes of scale 0 to boxes of any

scale k ≥ 1. To do this, due to the lack of uniform ellipticity, we need to modify the

notion of good and bad boxes for scales k ≥ 1 presented in Berger, Drewitz and Ramı́rez

[BDR12]. Consider a box Qk−1 of scale k − 1 ≥ 1. For each x ∈ Q̃k−1 we associate a

natural number nx and a self-avoiding path π(x) := (π
(x)
1 , . . . , π(x)

nx ) starting from x so that

π
(x)
1 = x, such that (π(x)

nx − x) · l ≥ Nk−2 and so that

c3,1Nk−2 ≤ nx ≤ c3,2Nk−2,

for some pair of constants c3,1 and c3,2. Now, let

ξ :=
1

2
e
−
c3,2 log ηα+9d

c3,1 . (2.3.11)

We say that the box Qk−1 ∈ Bk−1 is elliptically good if for each x ∈ Q̃k−1 one has that

nx∑
i=1

log
1

ω(π
(x)
i ,∆π

(x)
i )
≤ nx log

(
1

ξ

)
. (2.3.12)

Otherwise the box is called elliptically bad. We can now recursively define the concept of

good and bad boxes. For k ≥ 1 we say that a box Bk ∈ Bk is good, if the following are

satisfied:

(a) There is a box Qk−1 ∈ Bk−1 which is elliptically good.

(b) Each box Ck−1 ∈ Bk−1 of scale k− 1 satisfying Ck−1 ∩Qk−1 6= ∅ and Ck−1 ∩Bk 6= ∅

is elliptically good.

(c) Each box Bk−1 ∈ Bk−1 of scale k− 1 satisfying Bk−1 ∩Qk−1 = ∅ and Bk−1 ∩Bk 6= ∅,

is good.
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Otherwise, we say that the box Bk is bad. Now we will obtain an important estimate on

the probability that a box of scale k ≥ 1 is good, corresponding to Lemma 3.4 of [BDR12].

Nevertheless, note that here we have to deal with our different definition of good and bad

boxes due to the lack of uniform ellipticity. Let

c3,3 := c3,1 log
1

ξ
− c3,2 log ηα − 9d = c3,1 log 2 > 0.

We first need the following estimate.

Lemma 2.3.3. For each k ≥ 1 we have that

P(Bk is not elliptically good) ≤ e−c3,3Nk−1 . (2.3.13)

Proof. By translation invariance and using Chebychev’s inequality as well as indepen-

dence, we have that for any α > 0

P(Bk is not elliptically good) ≤
∑
x∈B̃k

P

(
nx∑
i=1

log
1

ω(π
(x)
i ,∆π

(x)
i )

> nx log

(
1

ξ

))

≤ Nk−1N
3(d−1)
k e−Nk−1(c3,1α log( 1

ξ )−c3,2 log ηα)

≤ e−Nk−1(c3,1 log( 1
ξ )−c3,2 log ηα−9d)

where Nk−1N
3(d−1)
k is an upper bound for |B̃k| and we have used the inequality Nk ≤

12N3
k−1. But this expression can be bounded by e9dNk due to our choice of N0. Then for

any α > 0, using the definition of ξ in (2.3.11), we have that

P(Bk is not elliptically good) ≤ e−c3,3Nk−1 .

We can now state the following lemma giving an estimate for the probability that a box

of scale k ≥ 0 is bad. We will use Lemma 2.3.1.

Lemma 2.3.4. Let l ∈ Sd−1, M ≥ 15d + 5, and assume that (P )M |l is satisfied. Then

for N0 ≥
3

2
L0 one has that for all k ≥ 0 and all Bk ∈ Bk,

P(Bk is good) ≥ 1− e−2k . (2.3.14)

55



Proof. By Lemma 2.3.2 we see that

P(B0 is bad) ≤ e−c3,0 ,

where

c′3,0 := log
NM−3d−3

0

2d−1
.

We will show that this implies for all k ≥ 1 that

P0(Bk is bad) ≤ e−c
′
3,k2k , (2.3.15)

for a sequence of constants {c′3,k : k ≥ 0} defined recursively by

c′3,k+1 := c′3,k −
log
(
316d(N0 + k)12d

)
2k+1

. (2.3.16)

We will now prove (2.3.15) using induction on k. To simplify notation, we will denote

by qk for k ≥ 0, the probability that the box Bk is bad. Assume that (2.3.15) is true

for some k, k ≥ 0. Let A be the event that all boxes of scale k that intersect Bk+1 are

elliptically good, and B the event that each pair of bad boxes of scale k have a non-empty

intersection. Note that the event A∩B implies that the box Bk+1 is good. Therefore, the

probability qk+1 that the box Bk+1 is bad is bounded by the probability that there are

at least two bad boxes Bk which intersect Bk+1 plus the probability that there is at least

one elliptically bad box of scale k, so that by Lemma 2.3.3, for each k ≥ 0 one has that

qk+1 ≤ m2
kq

2
k +mke

−c3,3Nk , (2.3.17)

where mk is the total number of bad boxes of scale k that intersect Bk+1. Now note that

√
2mk ≤ 38d(N0 + k)6d. (2.3.18)

But by the the fact that c3,3Nk ≥ c′3,k2
k+1 for k ≥ 0 we have that

e−c3,3Nk ≤ e−c
′
3,k2k+1

.
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Hence, substituting this estimate and estimate (2.3.18) back into (2.3.17) and using the

induction hypothesis, we conclude that

qk+1 ≤ 316d(N0 + k)12de−c
′
3,k2k+1

= e−c
′
3,k+12k+1

.

Now note that the recursive definition (2.3.16) implies that

c′3,k ≥ log
NM−3d−3

0

2d−1
−
∞∑
k=0

log
(
316d(N0 + k)12d

)
2k+1

.

Using the inequality log(a+ b) ≤ log a+ log b valid for a, b ≥ 1, we see that

∞∑
k=0

log
(
316d(N0 + k)12d

)
2k+1

≤ 16d log 3 + 12d logN0 + 12d.

From these estimates we see that whenever M ≥ 15d+ 5 and

logN0 − log 2d−1316de12d+1 ≥ 0, (2.3.19)

then for every k ≥ 0, one has that c′3,k ≥ 1. But (2.3.19) is clearly satisfied for N0 ≥ 329d.

The next lemma establishes that the probability that a random walk exits a box Bk

through its lateral or back side is small if this box is good.

Lemma 2.3.5. There is a constant c3,4 > 0 such that for each k ≥ 0 and Bk ∈ Bk which

is good one has

sup
x∈B̃k

Px,ω

(
XTBk

6∈ ∂+Bk

)
≤ e−c3,4Nk . (2.3.20)

Proof. Let us first note that for each k ≥ 0,

Px,ω

(
XTBk

6∈ ∂+Bk

)
≤ Px,ω

(
XTBk

∈ ∂−Bk

)
+ Px,ω

(
XTBk

∈ ∂lBk

)
.

We denote by pk := sup
x∈B̃k

Px,ω

(
XTBk

∈ ∂lBk

)
and rk := sup

x∈B̃k
Px,ω

(
XTBk

∈ ∂−Bk

)
. We

will first show by induction on k that
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pk ≤ e−c
′′
3,kNk and (2.3.21)

rk ≤ e−c
′′
3,kNk , (2.3.22)

where

c′′3,k :=
5 logN0

N0

−
k∑
j=1

log 27(N0 + j)4

Nj−1

−
k∑
j=1

5Nj−1 + log 24 + 6d(log ξ)2Nj−1

Nj

, (2.3.23)

and ξ is defined in (2.3.11). The case k = 0 follows easily by the definition of good box

at scale 0 with

c′′3,0 :=
5 logN0

N0

.

Now, we assume that (2.3.21) and (2.3.22) hold for some k ≥ 0 and will show that this

implies that (2.3.21) is satisfied for k + 1. Let κ1 be the first time that the random walk

exits some fixed box of scale k whose middle part frontal part contains the point x. Define

recursively for every n ≥ 1, κn+1 as the first time after time κn such that the random

walk exits some fixed box of scale k whose middle frontal part contains the point Xκn . We

choose these fixed boxes arbitrarily. We now define the rescaled random walk {Yn : n ≥ 0}

as

Y0 := x and Yn := Xκn ,

for n ≥ 1. Since the box Bk+1 is good, we know that there exists a box Qk ∈ Bk such

that every box of scale k, intersecting Bk+1 but not Qk, is good. Let us now define for

each k ≥ 1 the collection of sets

Sk :=
{Bk ∈ Bk : Bk ∩Bk+1 6= ∅, and ∀ i ∈ {2, . . . , d}, x ·R(ei) = y ·R(ei),

for somex ∈ Bk, y ∈ Qk} .

In words, this is the collection of boxes of scale k which have at least one point whose

component orthogonal to l coincides with the component orthogonal to l of some point

in Qk. Now, define the strip
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Sk :=
⋃

Bk∈Sk

Bk.

(See Figure 2.2)

Figure 2.2: The bad box Qk with its strip Sk.

Let m1 be the first time that the random walk {Yn} is at a distance larger than 7N3
k+1

from the strip Sk and from the sides ∂lBk+1 of the box Bk+1,

m1 := inf
{
n ≥ 0 : dist(Yn, Sk) ≥ 7N3

k+1 and dist(Yn, ∂lBk+1) ≥ 7N3
k+1

}
.

Let m2 be the first time that the random walk {Yn} exits the box Bk+1 so that

m2 := inf{n ≥ 0 : Yn 6∈ Bk+1}

and note that on the event
{
XTBk+1

∈ ∂lBk+1

}
one has that

m1 < m2 <∞.
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Also, define

m3 := {n > m1 : Yn ∈ Sk}.

Define

Jk :=
3Nk+1/2

Nk−1

+ 1.

This is the minimal number of steps needed by the random walk {Yn} to exit the box

Bk+1 through its front side. Then, we have that a.s. on the event
{
XTBk+1

∈ ∂lBk+1

}
the

following inequality is satisfied

m2 ∧m3 −m1 ≥
7N3

k+1

25N3
k

≥ 4

25
Jk
Nk+1

Nk

+ 1. (2.3.24)

Now note that starting from Ym1 if the random walk {Yn} consecutively exits Jk boxes of

scale k through their front side, it would leave the box Bk+1 through ∂+Bk+1. Therefore,

by the induction hypothesis we have that

PYm1 ,ω
(Yj ∈ Bk, for all 1 ≤ j ≤ Jk) ≤ Jke

−c′′3,kNk .

Thus, by the Markov property we get that

Px,ω(XTBk+1
∈ ∂lBk+1) ≤

(
e−c

′′
3,kNk+log Jk

)Nk+1/Nk
≤ e−c

′′
3,k+1Nk+1 .

This completes the proof of (2.3.21) for k.

Recall the definition of rk. We will now assume that (2.3.21) and (2.3.22) hold for

some k ≥ 0 and will show that (2.3.22) is satisfied for k + 1. Define

LQk := inf{l · z : z ∈ Qk} −Nk−1 RQk := sup{l · z : z ∈ Qk}+
3

2
Nk,

where Qk is a box of scale k in Bk+1 with the property that any other box of scale k

which does not intersect it but which intersect Bk+1 is good, while any other box of scale

k which does intersect it but which intersects Bk+1 is elliptically good. We will define

a one dimensional random walk which at most sites has a very strong drift to the right
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(towards the front side of the box) whenever it is at any site x ∈ Z\([LQk , RQk ] ∩ Z):

we define {Zn : n ≥ 0} as a random walk which at each unit time, if it is at site

x ∈ Z\([LQk , RQk ]∩Z), it jumps Nk−1 steps to the right with probability 1− e−c′′3,kNk and

3

2
Nk steps to the left with probability e−c

′′
3,kNk , while if it as a site x ∈ Z ∩ [LQk , RQk ]

it jumps Nk−1 steps to the right with probability ξNk−1 and
3

2
Nk steps to the left with

probability 1 − ξNk−1 . We will call Pz the law of this random walk starting from z ∈ Z.

Let us call Hk the first hitting time of the random walk to the strip defined by LQk and

RQk so that

Hk := inf {n ≥ 0 : Xn · l ∈ [LQk , RQk ]} .

Coupling in the natural way the random walk {Xn} with the random walk {Zn}, now

note that

sup
x∈B̃k+1

Px,ω(XTBk+1
∈ ∂−Bk+1)

≤ sup
x∈B̃k+1

Px,ω(Hk ≤ T∂lBk+1
∧ T∂+Bk+1

)× sup
z∈[LQk ,RQk ]∩Z

Pz

(
T−

(
RQk+

Nk+1
2

) < TNk+1−RQk

)
.(2.3.25)

But,

sup
x∈B̃k+1

Px,ω(Hk ≤ T∂lBk+1
∧ T∂+Bk+1

)

≤ sup
x∈B̃k+1

Px,ω(XTBk+1
∈ ∂lBk+1) + sup

x∈B̃k+1

Px,ω(Hk ≤ T∂lBk+1
∧ T∂+Bk+1

, T∂Bk+1
6= T∂lBk+1

).

Now, by the estimate already done concerning the probability to exit the box Bk+1 through

the sides, we know that the first term is bounded from above by e−c
′′
3,k+1Nk+1 . For the

second term, we couple the random walk to the random walk {Zn} previously defined.

It is easy to see that {Zn} can be coupled to a random walk {Z ′n} which jumps
3

2
Nk

steps to the right with probability (1− e−c′′3,kNk)3Nk/(2Nk−1) and
3

2
Nk steps to the left with

probability 1− (1− e−c′′3,kNk)3Nk/(2Nk−1). Now, the probability that a random walk which

jumps one step to the right with probability p and one to the left with probability q to

exit the interval [−a, b] ∩ Z through −a, where a, b ∈ Z is given by
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qa
pb − qb

pb+a − qb+a
.

Applying the above formula with a = (Nk+1 − Nk − RQk)/(3Nk/2), b = 2, p = (1 −

e−c
′′
3,kNk)3Nk/(2Nk−1) and q = 1− p we get that for N0 ≥ log

1

ξ
,

sup
x∈B̃k

Px,ω(Hk ≤ T∂lBk ∧ T∂+Bk , T∂Bk 6= T∂lBk) ≤ e−
c′′3,k

4
(Nk+1−Nk−RQk ).

We will now find an upper bound for the second factor of (2.3.25). Let z ∈ [LQk , RQk ]∩Z

and define the events

D+ :=
{
TNk+1−RQk < Tz ◦ θ1(Z)

}
and D− :=

{
T−

(
RQk+

Nk+1
2

) < Tz ◦ θ1(Z)

}
.

It is straightforward to see that

sup
z∈[LQk ,RQk ]∩Z

Pz

(
T−

(
RQk+

Nk+1
2

) < TNk+1−RQk

)
≤ sup

z∈[LQk ,RQk ]∩Z

Pz(D
−)

Pz(D+)
. (2.3.26)

Now, by the fact that the box Qk and those which intersect it are elliptically good, we

conclude as in [BDR12] that for N0 large enough,

Pz(D
+) ≥ 1

2
ξc3,24Nk ,

where ξ is defined in (2.3.11). On the other hand, by the strong Markov property we

conclude that

Pz(D
−) ≤ 3

(
e−c

′′
3,kNk

)LQk+Nk+1/2

Nk .

From here we see that

sup
x∈B̃k

Px,ω

(
XTBk

∈ ∂−Bk

)
≤ e−c

′′
3,kNk .

It is easy to check that

c3,4 := inf
k
c′′3,k > 0.
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We can now repeat the last argument of Proposition 2.1 of [BDR12], which does not

require uniform ellipticity, to finish the proof of Proposition 2.3.1.

2.3.2 Condition (T )0 implies a weak atypical quenched exit estimate

In this subsection we will prove that the condition (T )0 implies a weak atypical quenched

exit estimate. Throughout, we will denote by B the box

B := B(R,L, L, L), (2.3.27)

as defined in (2.3.1), with R the rotation which maps e1 to l. Let

εL :=
1

(log logL)2
.

Proposition 2.3.2. Let l ∈ Sd−1. Assume that the ellipticity condition (E)0 and that

(T )0|l are fulfilled. Then, for each function βL : (0,∞) → (0,∞) and each c > 0 there

exists c3,11 > 0 such that

P
(
P0,ω(XTB ∈ ∂+B) ≤ e−cL

βL+εL

)
≤ 1

c3,11

e−c3,11L
βL (2.3.28)

where B is the box defined in (2.3.27).

Let us now prove Proposition 2.3.2. Let ρ > 0. We will perform a one scale renormali-

zation analysis involving boxes of side ρL
εL
d+1 which intersect the box B. Without loss of

generality, we assume that e1 belongs to the intersection of the half-spaces so that

e1 ∈ {x ∈ Zd : x · l ≥ 0} (2.3.29)

and

e1 ∈ {x ∈ Zd : x · v̂ ≥ 0}. (2.3.30)

Define the hyperplane perpendicular to direction e1 as

63



H := {x ∈ Rd : x · e1 = 0}. (2.3.31)

We will need to work with the projection on the direction l along the hyperplane H defined

for z ∈ Zd as

Plz :=

(
z · e1

l · e1

)
l, (2.3.32)

and the projection of z on H along l defined by

Qlz := z − Plz. (2.3.33)

Let r > 0 be a fixed number which will eventually be chosen large enough. For each

x ∈ Zd and n define the mesoscopic box

Dn(x) := {y ∈ Zd : −n < (y − x) · e1 < n, −rn ≤ |Ql(y − x)|∞ ≤ rn},

and their front boundary

∂+Dn(x) := {y ∈ ∂Dn(x) : (y − x) · e1 ≥ n}.

Define the set of mesoscopic boxes intersecting B as

D := {Dn(x) with x ∈ Zd : Dn(x) ∩B 6= ∅}.

From now on, when there is no risk of confusion, we will write D instead of Dn for a

typical box in D. Also, let us set n := ρL
εL
d+1 . We now say that a box D(x) ∈ D is good if

Px,ω(XTD(x)
∈ ∂+D(x)) ≥ 1− 1

L
. (2.3.34)

Otherwise we will say that D(x) is bad.

Lemma 2.3.6. Let l ∈ Sd−1 and M > 15d + 5. Consider a RWRE satisfying condition

(P )M |l and the ellipticity condition (E)0. Then, there is a c3,5 such that for r ≥ c3,5 one

has that

lim sup
L→∞

L−
εLγL
d+1 logP(D(0) is bad) < 0. (2.3.35)
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Proof. By (2.3.34) and Markov inequality we have that

P (D(0) is bad) ≤ P
(
P0,ω(XTD(0)

6∈ ∂+D(0)) >
1

L

)
≤ LP0

(
XTD(0)

6∈ ∂+D(0)
)
. (2.3.36)

Now, by Proposition 2.3.1 of Section 2.3.1, we know that the polynomial condition (P )M |l

and the ellipticity condition (E)α imply (T )0|l. But by Theorem 2.2.4, and the fact that

e1 is in the half spaces determined by l and v̂ (see (2.3.29) and (2.3.30), we can conclude

that (T )0|l implies (T )0|e1 . On the other hand, it is straightforward to check that there

are constants c3,5, c3,6 > 0 such that for r ≥ c3,5, (T )0|e1 implies that

P0

(
XTD(0)

6∈ ∂+D(0)
)
≤ 1

c3,6

e−c3,6L
εLγL
d+1

.

Substituting this back into inequality (2.3.36) we see that (2.3.35) follows.

For each m such that 0 ≤ m ≤
⌈

2L(l · e1)

n

⌉
define the block Rm as the collection of

mesoscopic boxes (see Figure 2.3)

Rm := {D(x) ∈ D : for some x such that x · e1 = nm}. (2.3.37)

Figure 2.3: A box B with a set of inner boxes Dn(x), which belong to a block Rm.
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The collection of these blocks is denoted by R. We will say that a block Rm is good if

every box D ∈ Rm is good. Otherwise, we will say that the block Rm is bad. Now, for

each x ∈ Rm we associate a self-avoiding path π(x) such that

(a) The path π(x) = (π
(x)
1 , . . . , π

(x)
2n+1) has 2n steps.

(b) π
(x)
1 = x and the end-point π

(x)
2n+1 ∈ Rm+1.

(c) Whenever D(x) does not intersect ∂+B, the path π(x) is contained in B. Otherwise,

the end-point π
(x)
2n+1 ∈ ∂+B.

Define next J as the total number of bad boxes of the collection D and define

G1 := {ω ∈ Ω : J ≤ LβL+ d
d+1

εL}. (2.3.38)

We will now denote by {m1, . . .mN} a generic subset of {0, . . . , |R|−1} havingN elements.

Let ξ ∈ (0, 1). Define

G2 :=

{
ω ∈ Ω : sup

N,{m1,...,mN}

N∑
j=1

sup
xj∈Rmj

2n∑
i=1

log
1

ω(π
(xj)
i ,∆π

(xj)
i )

≤ 2n log

(
1

ξ

)
LβL+ d

d+1
εL

}
,

(2.3.39)

where the first supremum runs over N ≤ LβL+ d
d+1

εL and all subsets {m1, . . . ,mN} of the

set of blocks. Now, we can say that

P
(
pB ≤ e−cL

βL+εL

)
≤ P

(
pB ≤ e−cL

βL+εL , G1 ∩G2

)
+ P(Gc

1) + P(Gc
2). (2.3.40)

Let us now show that the first term on the right-hand side of (2.3.40) vanishes. Indeed,

on the event G1 ∩ G2, the probability pB is bounded from below by the probability that

the random walk exits every mesocopic box from its front side. Since ω ∈ G1, the random

walk will have to do this for at most LβL+ d
d+1

εL bad boxes. On each bad box D(x) it will

follow the path π(x) defined above. But then on the event G2, we have a control on the

product of the probability of traversing all these paths through the bad boxes. Hence,

applying the strong Markov property and using the definition of good box, we conclude

that for fixed ξ there is a c3,7 > 0 such that for 0 < ρ ≤ c3,7 and on the event G1 ∩G2,
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pB ≥ e−2LβL+εLρ log( 1
ξ )
(

1− 1

L

)L
> e−cL

βL+εL . (2.3.41)

Let us now estimate the term P(Gc
1) of (2.3.40). Note first that the set D of mesocopic

boxes can be divided into less that 2drd−1ρdL
dεL
d+1 collections of boxes, whose union is D

and each collection has only disjoint boxes. Let us call M the number of such collections.

We also denote by Di and Ji, where 1 ≤ i ≤ M , the i-th collection and the number of

bad boxes in such a collection respectively. We then have that

P(Gc
1) ≤

M∑
i=1

P
(
Ji ≥

1

M
LβL+ d

d+1
εL

)
. (2.3.42)

Now, by Chebychev inequality

P
(
Ji ≥

1

M
LβL+ d

d+1
εL

)
≤ e−

L
βL+ d

d+1
εL

M E[eJi ]

= e−
L
βL+ d

d+1
εL

M

|Di|∑
n=0

(
|Di|
n

)
(epL)n(1− epL)|Di|−n

(
1− pL
1− epL

)|Di|−n
, (2.3.43)

where pL is the probability that a box is bad. Now the last factor of each term after the

summation of the right-hand side of (2.3.43) is bounded by

(
1− pL
1− epL

)|Di|
,

which clearly tends to 1 as L→∞ by the fact that |Di| ≤ c3,8L
d, the definition of εL and

by Lemma 2.3.6 for some c3,8 > 0. Thus, there is a constant c3,9 > 0 such that

P
(
Ji ≥

1

M
LβL+ d

d+1
εL

)
≤ c3,9e

−L
βL+ d

d+1
εL

M .

Substituting this back into (2.3.42) we hence see that

P (Gc
1) ≤ c3,9(2ρ)drd−1L

d
d+1

εLe
− LβL

(2ρ)drd−1 . (2.3.44)

Let us now bound the term P(Gc
2) of (2.3.40). Define β′L := βL +

d

d+ 1
εL. Note that for

each 0 < α < min
e
Fe one has that
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P (Gc
2) ≤

Lβ
′
L∑

N=1

P
(
∃ {m1, . . . ,mN} and xj ∈ Rmj such that

N∑
j=1

2n∑
i=1

log
1

ω
(
π

(xj)
i ,∆π

(xj)
i

) > 2n log

(
1

ξ

)
LβL


≤

Lβ
′
L∑

N=1

(
|R|
N

)
rd−1(2ρ)L

β′Le(logL)
εL
d+1

Lβ
′
L
e(log ηα)2nLβ

′
L−2αn log( 1

ξ )L
β′L

≤ Lβ
′
Ld2L(l · e1)

n
eL

β′Lrd−1(2ρ)L
β′Le(logL)

εL
d+1

Lβ
′
L
e(log ηα)2nLβ

′
L−2αn log( 1

ξ )L
β′L
. (2.3.45)

It now follows that for ξ such that log

(
1

ξ2αη3
α

)
> 0 one can find a constant c3,10 such

that

P (Gc
2) ≤ 1

c3,10

e−c3,10L
βL+εL . (2.3.46)

Substituting back (2.3.44) and (2.3.46) into (2.3.40) we end up the proof of Proposition

2.3.2.

2.3.3 Condition (T )0 implies the effective criterion

Here we will introduce a generalization of the effective criterion introduced by Sznitman

in [Sz02] for RWRE, dropping the assumption of uniformly ellipticity and replacing it by

the ellipticity condition (E)0. Let l ∈ Sd−1 and d ≥ 2. We will say that the effective

criterion in direction l holds if

c2(d) inf
L≥c3,3

√
d≤L̃<L3

inf
α>0

inf
0<a≤α

{
Υ3(d−1)L̃d−1L3(d−1)+1E[ρaB]

}
< 1, (2.3.47)

where

B = B(R,L− 2, L+ 2, L̃) and Υ := max

{
α

24
,

(
2c1

c1 − 1

)
log η2

α

}
, (2.3.48)

while c2(d) and c3(d) are dimension dependent constants that will be introduced in sub-

section 2.3.4. Note that in particular, the effective criterion in direction l implies that

condition (E)0 is satisfied. Here we will prove the following proposition.
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Proposition 2.3.3. Let l ∈ Sd−1. Assume that the ellipticity condition (E)0 and that

(T )0|l are fulfilled. Then, the effective criterion in direction l is satisfied.

To prove Proposition 2.3.3, we begin defining the following quantities

β1(L) :=
γL
2

=
log 2

2 log logL
(2.3.49)

σ(L) :=
γL
3

=
log 2

3 log logL
(2.3.50)

a := L−σ(L). (2.3.51)

We will write ρ instead of ρB, where B is the box defined in (2.3.48) (see 2.3.1) with

L̃ = L2. Following [BDR12], it is convenient to split Eρa according to

Eρa = E0 +
n−1∑
j=1

Ej + En (2.3.52)

where

n := n(L) :=

⌈
4(1− γL/2)

γL

⌉
+ 1,

E0 := E
(
ρa, pB > e−cL

β1
)
,

Ej := E
(
ρa, e−cL

βj+1
< pB ≤ e−cL

βj
)

for j ∈ {1, . . . , n− 1}, and

En := E
(
ρa, pB ≤ e−cL

βn
)

with parameters

βj(L) := β1(L) + (j − 1)
γL
4
, (2.3.53)
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for 2 ≤ j ≤ n(L). We will now estimate each of the n terms appearing in (2.3.52). For

the first n− 1 terms, we now state two lemmas proved by Berger, Drewitz and Ramı́rez

in [BDR12], whose proofs we omit. The following lemma is a consequence of Jensen’s

inequality.

Lemma 2.3.7. Assume that (T )0 is satisfied. Then

E0 ≤ ecL
γL
6 −L

2
3 γL(1+o(1))

(2.3.54)

as L→∞.

The second lemma follows from Proposition 2.3.2.

Lemma 2.3.8. Assume that the weak atypical quenched exit estimate (2.3.28) is satisfied.

Then there exists a constant c3,12 > 0 such that for all L large enough and all j ∈

{1, . . . , n− 1} one has that

Ej ≤
1

c3,12

ecL
( 1

6 +
j
4)γL−c3,12L

( 1
4 +

j
4)γL−ε(L)

. (2.3.55)

In [BDR12], where it is assumed that the environment is uniform elliptic, one has that

En = 0 for a suitable constant c > 0. Nevertheless, since here we are not assuming uniform

ellipticity this is not the case.

Lemma 2.3.9. Assume that (E)0 and (T )0 are satisfied. Then there exists a constant

c3,16 > 0 such that for all L large enough we have

En ≤
1

c3,16

e−c3,16L1−ε(L)

. (2.3.56)

Proof. Choose 0 < α < min
e
Fe. Consider a nearest neighbor self-avoiding path (x1, . . . , xm)

from 0 to ∂+B, so that x1 = 0 and xm ∈ ∂+B, x1, . . . , xm−1 ∈ B and which has the mini-

mal number of steps m. Then,

E
[
ρa, pB ≤ e−cL

βn
]
≤ E

[
e
α
2

∑m
1 log 1

ω(xi,∆xi) ,
m∑
1

log
1

ω(xi,∆xi)
>

3m

α
log ηα

]

+E

[
e
a
∑m

1 log 1
ω(xi,∆xi) ,

m∑
1

log
1

ω(xi,∆xi)
≤ 3m

α
log ηα, pB ≤ e−cL

βn

]
, (2.3.57)
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where in the first line, we have used that for any α > 0, a ≤ α

2
for L large. Now,

using Cauchy-Schwartz inequality, Chebyshev inequality and (2.3.28), we can see that the

right-hand side of (2.3.57) is smaller than

E
[
e
α
∑m

1 log 1
ω(xi,∆xi)

]1/2

P

(
m∑
1

log
1

ω(xi,∆xi)
>

3m

α
log ηα

)1/2

+ e
3am
α

log ηαP
(
pB ≤ e−cL

βn
)

≤ e−m log ηα +
1

c3,13

e
3am
α

log ηα−c3,13Lβn(L)−ε(L)

, (2.3.58)

for some constant c3,13 > 0. Now, using the fact that there are constants c3,14 and c3,15

such that

c3,14L ≤ m ≤ c3,15L,

we can substitute (2.3.58) into (2.3.57) to conclude that there is a constant c3,16 such that

E
[
ρa, pB ≤ e−cL

βn
]
≤ 1

c3,16

e−c3,16L1−ε(L)

.

It is now straightforward to conclude the proof of Proposition 2.3.3 using the estimates

of Lemmas 2.3.7, 2.3.8 and 2.3.9.

2.3.4 The effective criterion implies (T ′)

We will prove that the generalized effective criterion and the ellipticity condition (E)0

imply (T ′). To do this, it is enough to prove the following.

Proposition 2.3.4. Throughout choose 0 < α < min
e
Fe. Let l ∈ Sd−1 and d ≥ 2. If

the effective criterion in direction l holds then there exists a constant c3,28 > 0 and a

neighborhood Vl of direction l such that for all l′ ∈ Vl one has that

lim
L→∞

L−1ec3,28(logL)1/2

logP0

[
T̃ l
′

−b̃L < T l
′

bL

]
< 0, for all b, b̃ > 0. (2.3.59)

In particular, if (2.3.47) is satisfied, condition (T ′)|l is satisfied.
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To prove this proposition, we will follow the same strategy used by Sznitman in [Sz02] to

prove Proposition 2.3 of that paper under the assumption of uniform ellipticity. Firstly

we need to define some constants. Let

c′1(d, α) := 13 +
24d

α
+

24d+ 12 log ηα
2 log ηα

,

c′2(d, α) := c1c
′
1,

and

c4(d, α) :=
48c′2
α

,

where c1 is defined in (2.2.1). Define for k ≥ 0 the sequence {Nk : k ≥ 0} by

Nk :=
c4

u0

8k, (2.3.60)

where u0 ∈ (0, 1). Let L0, L̃0, L1 and L̃1 be constants such that

3
√
d ≤ L̃0 ≤ L3

0, L1 = N0L0 and L̃1 = N3
0 L̃0. (2.3.61)

Now, for k ≥ 0 define recursively the sequences {Lk : k ≥ 0} and {L̃k : k ≥ 0} by

Lk+1 := NkLk, and L̃k+1 := N3
k L̃k. (2.3.62)

It is straightforward to see that for each k ≥ 1

Lk =

(
c4

u0

)k
8
k(k−1)

2 L0, L̃k =

(
Lk
L0

)3

L̃0. (2.3.63)

Furthermore, we also consider for k ≥ 0 the box

Bk := B(R,Lk − 1, Lk + 1, L̃k), (2.3.64)

and the positive part of its boundary ∂+Bk, and will use the notations

ρk = ρBk , pk = pBk , qk = qBk and nk = [Nk].
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Following Sznitman [Sz02], we introduce for each i ∈ Z

Hi := {x ∈ Zd, ∃x′ ∈ Zd, |x− x′| = 1, (x · l − iL0) (x′ · l − iL0) ≤ 0}. (2.3.65)

We also define the function I : Zd → Z by

I(x) := i, for x such that x · l ∈
[
iL0 −

L0

2
, iL0 +

L0

2

)
.

Consider now the successive times of visits of the random walk to the sets {Hi : i ∈ Z},

defined recursively as

V0 := 0, V1 := inf{n ≥ 0 : Xn ∈ HI(X0)+1 ∪HI(X0)−1}

and

Vk+1 := Vk + V1 ◦ θVk , k ≥ 0.

For ω ∈ Ω, x ∈ Zd, i ∈ Z, let

q̂(x, ω) := Px,ω[XV1 ∈ HI(x)−1] (2.3.66)

while p̂(x, ω) := 1− q̂(x, ω), and

ρ̂(i, ω) := sup

{
q̂(x, ω)

p̂(x, ω)
: x ∈ Hi, sup

2≤j≤d
|R(ej) · x| < L̃1

}
. (2.3.67)

We consider also the stopping time

T̃ := inf

{
n ≥ 0 : sup

2≤j≤d
|Xn ·R(ej)| ≥ L̃1

}
,

and the function f : {n0 + 2, n0 + 1, . . .} × Ω→ R defined by

f(n0 + 2, ω) := 0, f(i, ω) :=

n0+1∑
m=i

n0+1∏
j=m+1

ρ̂(j, ω)−1, for i ≤ n0 + 1. (2.3.68)

We will frequently write f(n) instead f(n, ω). Let us now proceed to prove Proposition

2.3.4. The following proposition corresponds to the first step in an induction argument

which will be used to prove Proposition 2.3.4.
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Proposition 2.3.5. Let α > 0. Let L0, L1, L̃0 and L̃1 be constants satisfying (2.3.61),

with N0 ≥ 7. Then, there exist c3,17, c3,18(d), c3,19(d) > 0 such that for L0 ≥ c3,17, a ∈

(0, α], u0 ∈ [ξL0/d, 1], 0 < ξ <
1

η
2/α
α

and

N0 ≤
1

L0

(
e

ξ

)L0

, (2.3.69)

the following is satisfied

E[ρ
a/2
1 ] ≤ c3,18

ξ−c′2L1

(
c3,19L̃

(d−2)
1

L3
1

L2
0

L̃0E[q0]

) L̃1
12N0L̃0

+

N0+1∑
m=0

(
c3,19L̃

(d−1)
1 E[ρa0]

)N0+m−1
2

+ e
−c1L1 log 1

ξαη2
α

}
. (2.3.70)

Proof. The following inequality is stated and proved in [Sz02] by Sznitman without using

any kind of uniform ellipticity assumption (inequality (2.18) in [Sz02]). For every ω ∈ Ω

P0,ω

(
T̃ l1−L1

< T̃ ∧ T lL1+1

)
≤ f(0)

f(1− n0)
. (2.3.71)

Consider now the event

G := {ω : P0,ω

(
T̃ ≤ T̃ l1−L1

∧ T lL1+1

)
≤ ξ(c′1−1)c1L1}, (2.3.72)

and write

E[ρ
a/2
1 ] = E[ρ

a/2
1 , G] + E[ρ

a/2
1 , Gc]. (2.3.73)

The first term E[ρ
a/2
1 , G] of (2.3.73), can in turn be decomposed as

E[ρ
a/2
1 , G] = E[ρ

a/2
1 , G,A1] + E[ρ

a/2
1 , G,Ac1], (2.3.74)

where we have defined

A1 := {ω ∈ Ω : f(2− n0)− f(0) ≥ f(1− n0)ξ(c′1−1)c1L1 , f(0) ≥ f(1− n0)ξ(c′1−1)c1L1}.

Furthermore, note that

74



Ac1 ⊂ A2 ∪ A3,

where

A2 := {ω ∈ Ω : f(2− n0)− f(0) < f(1− n0)ξ(c′1−1)c1L1}, while

A3 := {ω ∈ Ω : f(0) < f(1− n0)ξ(c′1−1)c1L1}.

Therefore,

E[ρ
a/2
1 ] ≤ E[ρ

a/2
1 , G,A1] + E[ρ

a/2
1 , A2] + E[ρ

a/2
1 , G,A3] + E[ρ

a/2
1 , Gc]. (2.3.75)

We now subdivide the rest of the proof in several steps corresponding to an estimation

for each one of the terms in inequality (2.3.75).

Step 1: estimate of E[ρ
a/2
1 , G,A1]. Here we estimate the first term of display (2.3.74). To

do this, we can follow the argument presented by Sznitman in Section 2 of [Sz02], to prove

that inequality (2.3.71) implies that there exist constant c3,20(d) such that

E
[
ρ
a/2
1 , G,A1

]
≤ 2

n0+1∑
m=0

(
c3,20(d)L̃

(d−1)
1 E[ρa0]

)n0+m−1
2

. (2.3.76)

Indeed on G ∩ A1 and with the help of (2.3.71) one gets that

ρ1 =
P0,ω[T̃ l−L1+1 < T̃ ∧ T lL1+1] + P0,ω[T̃ ≤ T̃ l−L1+1 ∧ T lL1+1]

1− P0,ω[T̃ l−L1+1 < T̃ ∧ T lL1+1]− P0,ω[T̃ ≤ T̃ l−L1+1 ∧ T lL1+1]

≤ f(0) + f(1− n0)ξ(c′1−1)c1L1(
f(1− n0)− f(0)− f(1− n0)ξ(c′1−1)c1L1

)
+

≤ 2f(0)(
f(1− n0)− f(0)− f(1− n0)ξ(c′1−1)c1L1

)
+

, (2.3.77)

where in the first inequality we have used the fact that ω ∈ G, while in the second that

ω ∈ A1. Regarding the term in the denominator in the last expression, we can use the

definition of the function f and obtain

f(1− n0)− f(0)− f(1− n0)ξ(c′1−1)c1L1

=

n0+1∏
j=2−n0

ρ̂(j, ω)−1 + f(2− n0)− f(0)− f(1− n0)ξ(c′1−1)c1L1

≥
n0+1∏
j=2−n0

ρ̂(j, ω)−1,
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where we have used that ω ∈ A1 in the last inequality. Substituting this estimate in

(2.3.77), we conclude that for ω ∈ G ∩ A1 one has that

ρ1 ≤ 2

n0+1∏
j=2−n0

ρ̂(j, ω)f(0) = 2

n0+1∑
m=0

m∏
j=2−n0

ρ̂(j, ω). (2.3.78)

At this point, using (2.3.78), the fact that (u+v)a/2 ≤ ua/2+va/2 for u, v ≥ 0, the fact that

{ρ̂(j, ω), j even} and {ρ̂(j, ω), j odd} are two collections of independent random variables

and the Cauchy-Schwartz’s inequality, we can assert that

E[ρ1(ω)a/2, G,A1]

≤ 2
∑

0≤m≤n0+1

E

[ ∏
1−n0<j≤m

ρ̂(j, ω)a/2

]

≤ 2
∑

0≤m≤n0+1

E

 ∏
1−n0<j≤m
j is even

ρ̂(j, ω)a


1/2

E

 ∏
1−n0<j≤m
j is odd

ρ̂(j, ω)a


1/2

= 2
∑

0≤m≤n0+1

∏
1−n0<j≤m

E [ρ̂(j, ω)a]1/2 .

In view of (2.3.66) one gets easily that for i ∈ Z and x ∈ Hi,

p̂(x, ω) ≥ p0 ◦ tx(ω),

where the canonical shift {tx : x ∈ Zd} has been defined in (2.2.4). Hence, for i ∈ Z and

x ∈ Hi,

q̂(x)

p̂(x)
≤ ρ0 ◦ tx.

Following Sznitman [Sz02] with the help of (2.3.65) the estimate (2.3.76) follows.

Step 2: estimate of E[ρ
a/2
1 , A2]. Here we will prove the following estimate for the second

term of inequality (2.3.75),

E[ρa/2, A2] ≤ 4e
−c1L1 log 1

ξαη2
α .

By the definition of c1 (see (2.2.1)), we know that necessarily there exists a path with less

than c1(L1 + 1 +
√
d) steps between the origin and ∂+B1. Therefore, for L0 ≥ 1 +

√
d,
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there is a nearest neighbor self-avoiding path (x1, . . . , xn) with n steps from the origin to

∂+B1, such that 2c1L1 ≤ n ≤ 2c1L1 + 1, x1, . . . , xn ∈ B1 and xn · l ≥ L1 + 1. Thus, for

every r ≥ 0 we have that

ρr1 ≤
1

pr1
≤ e

r
∑n
i=1 log 1

ω(xi,∆xi) , (2.3.79)

where ∆xi := xi+1 − xi for 1 ≤ i ≤ n − 1 as defined in (2.2.3). We then have applying

inequality (2.3.79) with r = a/2 that

E
[
ρ
a/2
1 , A2

]
≤ E

[
e
α/2

∑n
1 log 1

ω(xi,∆xi) , A2,
n∑
1

log
1

ω(xi,∆xi)
≤ n log

(
1

ξ

)]

+E

[
e
α/2

∑n
1 log 1

ω(xi,∆xi) ,
n∑
1

log
1

ω(xi,∆xi)
> n log

(
1

ξ

)]
. (2.3.80)

Regarding the second term of the right side of (2.3.80), we can apply the Cauchy-Schwarz

inequality, the exponential Chebychev inequality and conclude that and use the fact that

the jump probabilities {ω(xi,∆i) : 1 ≤ i ≤ n− 1} are independent to conclude that

E
[
e
α
∑n

1 log 1
ω(xi,∆xi)

]1/2

P

(
n∑
1

log
1

ω(xi,∆xi)
> n log

(
1

ξ

))1/2

≤ e(2 log ηα−α log( 1
ξ ))n/2. (2.3.81)

Meanwhile, note that the first term on the right side of (2.3.80) can be bounded by

e
α log( 1

ξ )n
2 P(A2). (2.3.82)

Hence, we need an adequate estimate for P(A2). Now,

P(A2) = P

(
f(2− n0)− f(0) < e

−(c′1−1)c1L1 log( 1
ξ )

2 , A2

)

+P
(
f(2− n0)− f(0) ≥ e

−(c′1−1)c1L1 log( 1
ξ

)

2 , A2

)
≤ P

(
f(2− n0)− f(0) < e

−(c′1−1)c1L1 log( 1
ξ )

2

)

+P
(
f(1− n0) > e

(c′1−1)c1L1 log( 1
ξ

)

2

)
. (2.3.83)

The two terms in the rightmost side of display (2.3.83) will be estimated by similar

methods: in both cases, we will use the fact that {ρ̂(j, ω), j even} and {ρ̂(j, ω), j odd} are
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two collections of independent random variables, the Cauchy-Schwartz’s inequality and

the Chebyshev inequality. Specifically for the first term of the rightmost side of (2.3.83)

we have that

P

(
f(2− n0)− f(0) < e

−(c′1−1)c1L1 log( 1
ξ )

2

)
≤ P

(
n0+1∏
j=0

ρ̂(j, ω)−1 < e
−(c′1−1)c1L1 log( 1

ξ )
2

)

= P

(
n0+1∏
j=0

ρ̂(j, ω)α/2 > e
(c′1−1)c1L1α log( 1

ξ )
4

)

≤ e
−(c′1−1)c1L1α log( 1

ξ )
4 E

n0+1∏
j=1,
j odd

ρ̂(j, ω)α


1/2

E

n0+1∏
j=0,
j even

ρ̂(j, ω)α


1/2

= e
−(c′1−1)c1L1α log( 1

ξ )
4

n0+1∏
j=0

E [ρ̂(j, ω)α]1/2 . (2.3.84)

By an estimate analogous to (2.3.79), we know that for L0 ≥ 1 +
√
d, for each j ∈

{0, . . . , n0 + 1} and each x ∈ Hj, there exists a nearest neighbor self-avoiding path

(y1, . . . , ym) with m steps, such that 2c1L0 ≤ m ≤ 2c1L0 + 1, between x and Hj+1.

Also, y1 · l, . . . , ym−1 · l ∈ (1− L0, L0 + 1) and ym · l ≥ L0 + 1. Then, in view of (2.3.62),

(2.3.63), (2.3.66) and (2.3.67), we have that for each j ∈ {0, . . . , n0 + 1}

E [ρ̂(j, ω)α]1/2 ≤
∑

E
[
p̂(x, ω)−α

]1/2
≤ 2L

3(d−1)
1 E

[
e
α
∑m

1 log 1
ω(yi,∆yi)

]1/2

≤ 2L
3(d−1)
1 e

m log ηα
2 , (2.3.85)

where the summation goes over all x ∈ Hj such that sup
2≤i≤d

|R(ei) · x| < L̃1. Substituting

the estimate (2.3.85) back into (2.3.84) we see that

P

(
f(2− n0)− f(0) < e

−(c′1−1)c1L1 log( 1
ξ )

2

)
≤ e

−(c′1−1)c1L1α log( 1
ξ )

4 2(n0+2)L
3(d−1)(n0+2)
1 e

(log ηα)m(n0+2)
2

≤ e
−(c′1−1)c1L1α log( 1

ξ )
4

+log 2(n0+2)+3(d−1)
logL0N0

L0
L0(n0+2)+(log ηα)

(2c1L0+1)(n0+2)
2

≤ e
−L1

(
(c′1−1)α log( 1

ξ )c1
4

−1−6(d−1)(1+log( 1
ξ ))−log ηα(3c1+1)

)
, (2.3.86)

where we have used the fact that for L0 ≥ 2 log c4 it is true that
logN0L0

L0

≤ 1 + log

(
1

ξ

)
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for all u0 ∈ [ξL0/d, 1]. Meanwhile, for the second term of the rightmost side of (2.3.83),

we have that

P

(
f(1− n0) > e

(c′1−1)c1L1 log( 1
ξ )

2

)
= P

(
1+n0∑

k=1−n0

n0+1∏
j=k+1

ρ̂(j, ω)−1 > e
(c′1−1)c1L1 log( 1

ξ )
2

)

≤
1+n0∑

k=1−n0

P

(
n0+1∏
j=k+1

ρ̂(j, ω)−α/2 >
e(c′1−1)c1L1α log( 1

ξ )/4

(2n0 + 1)α/2

)

= e
−(c′1−1)c1L1α log( 1

ξ )
4 (2n0 + 1)α/2

1+n0∑
k=1−n0

n0+1∏
j=k+1

E
[
ρ̂(j, ω)−α

]1/2
In analogy to (2.3.85), we can conclude that E

[
ρ̂(j, ω)−α

]1/2 ≤ 2L
3(d−1)
1 e

(log ηα)m
2 . There-

fore, for L0 ≥ 2 log c4 we see that

P

(
f(1− n0) > e

(c′1−1)c1L1 log( 1
ξ )

2

)

≤ e
−(c′1−1)c1L1α log( 1

ξ )
4 (2n0 + 1)α/2

1+n0∑
k=1−n0

2n0+1−kL
3(d−1)(n0+1−k)
1 e(log ηα)(2c1L0+1)(n0+1−k)

≤ e
−(c′1−1)α log( 1

ξ )c1L1

4
+(α+2

2 ) log(2n0+1)+2n0 log 2+6(d−1)n0

(
logL0N0

L0

)
L0+(4c1L0n0+2n0) log ηα

≤ e
−L1

(
(c′1−1)α log( 1

ξ )c1
4

−1−6(d−1)(1+log( 1
ξ ))−(4c1+1)(log ηα)

)
. (2.3.87)

Now, in view of (2.3.82), (2.3.83), (2.3.86) and (2.3.87) the first term on the right side of

(2.3.80) is bounded by

2e
−L1

(
(c′1−1)α log( 1

ξ )c1
4

−2αc1 log( 1
ξ )−1−6(d−1)(1+log( 1

ξ ))−(4c1+1)(log ηα)

)
. (2.3.88)

Now, since c′1 ≥ 13 +
24d

α
+

24d+ 12 log ηα
α log 1

ξ

, we conclude that

(c′1 − 1)α log
(

1
ξ

)
c1

4
− 2αc1 log

(
1

ξ

)
− 1− 6(d− 1)

(
1 + log

(
1

ξ

))
− (4c1 + 1)(log ηα)

≥ αc1 log

(
1

ξ

)
− 2c1 log ηα,

and therefore, by (2.3.81) and (2.3.88) we have that

E
[
ρ
a/2
1 , A2

]
≤ 4e

−c1L1 log 1

ξαη2
α . (2.3.89)
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Step 3: estimate of E[ρ
a/2
1 , G,A3]. Here we will estimate the third term of the inequality

(2.3.75). Specifically we will show that

E[ρ
a/2
1 , G,A3] ≤ 2e

−c1L1 log 1

ξαη2
α . (2.3.90)

This upper bound will be almost obtained as the previous case, where we achieved (2.3.89).

Indeed, in analogy to the development of (2.3.77) in Step 3, one has that for ω ∈ G,

ρ1 ≤
f(0) + f(1− n0)ξ(c′1−1)c1L1

(f(1− n0)− f(0)− ξ(c′1−1)c1L1f(1− n0))+

.

But, if ω ∈ A3 also, one easily gets that 0 < ρ1 ≤ 1 if L0 ≥
α log 4

2 log ηα
. Thus,

E
[
ρ
a/2
1 , G,A3

]
≤ P (A3) . (2.3.91)

Therefore, since c′1 ≥ 13 +
24d

α
+

24d+ 12 log ηα
α log 1

ξ

, it is enough to prove that

P(A3) ≤ 2e
−L1

(
(c′1−1)α log( 1

ξ )c1
4

−1−6(d−1)(1+log( 1
ξ ))−(4c1+1)(log ηα)

)
. (2.3.92)

To justify this inequality, note that

P(A3) ≤ P
(
f(0) < e

−(c′1−1)c1L1 log 1
ξ

2

)
+ P

(
f(1− n0) > e

(c′1−1)c1L1 log 1
ξ

2

)
≤ P

(
n0+1∏
j=1

ρ̂(j, ω)−1 < e
−(c′1−1)c1L1 log( 1

ξ )
2

)
+ P

(
f(1− n0) > e

(c′1−1)c1L1 log 1
ξ

2

)
,

and hence we are in a very similar situation as in (2.3.83) and development in (2.3.84)

and (2.3.87), from where we derive (2.3.92).

Step 4: estimate of E[ρ
a/2
1 , Gc]. Here we will prove that there exist constants c3,21(d) and

c3,22(d) such that

E[ρ
a/2
1 , Gc] ≤ c3,21ξ

−c′1c1L1

(
c3,22L̃

(d−2)
1

L3
1

L2
0

L̃0E[q(0)]

) L̃1
12N0L̃0

+ e
−c1L1 log 1

ξαη2
α . (2.3.93)

Firstly, we need to consider the event

A4 :=
{
ω ∈ Ω : P0,ω

(
T lL1+1 ≤ T̃ ∧ T̃ l1−L1

)
≥ ξ2c1L1

}
.

In the case that ω ∈ Gc ∩ A4, the walk behaves as if effectively it satisfies a uniformly

ellipticity condition with constant κ = ξ, so that we can follow exactly the same reasoning

80



presented by Sznitman in [Sz02] leading to inequality (2.32) of that paper, showing that

there exist constants c3,21(d), c3,22(d) such that whenever L̃1 ≥ 48N0L̃0 one has that

E
[
ρ
a/2
1 , Gc, A4

]
≤ ξ−c1L1P(Gc) ≤ c3,21ξ

−c′1c1L1

(
c3,22L̃

(d−2)
1

L3
1

L2
0

L̃0E[q(0)]

) L̃1
12N0L̃0

. (2.3.94)

The second inequality of (2.3.94) does not use any uniformly ellipticity assumption. It

would be enough now to prove that

E(ρ
a/2
1 , Ac4) ≤ e

−c1L1 log 1

ξαη2
α . (2.3.95)

To do this we will follow the reasoning presented in Step 2. Namely, for L0 ≥ 1 +
√
d,

there is a nearest neighbor self-avoiding path (x1, . . . , xn) with n steps from 0 to ∂+B1

such that 2c1L1 ≤ n ≤ 2c1L1 + 1, x1, . . . , xn ∈ B1 and xn · l ≥ L1 + 1. Therefore

Ac4 ⊂

{
ω ∈ Ω :

n∏
1

ω(xi,∆xi) < ξn

}
=

{
ω ∈ Ω :

n∑
1

log
1

ω(xi,∆xi)
> n log

1

ξ

}
,

so that

E
[
ρ
a/2
1 , Ac4

]
≤ E

[
e
α/2

∑n
1 log 1

ω(xi,∆xi) ,
n∑
1

log
1

ω(xi,∆xi)
> n log

1

ξ

]

≤ E
[
e
α
∑n

1 log 1
ω(xi,∆xi)

]1/2

P

(
n∑
1

log
1

ω(xi,∆xi)
> n log

1

ξ

)1/2

≤ e(2 log ηα−α log 1
ξ

)c1L1 , (2.3.96)

which proves (2.3.95) and finishes Step 4.

Step 5: conclusion. Combining the estimates (2.3.76) of step 1, (2.3.89) of step 2, (2.3.90)

of step 3 and (2.3.93) of step 4, we have (2.3.70).

We will now prove a corollary of Proposition 2.3.5, which will imply Proposition 2.3.4.

For this, it will be important to note that the statement of Proposition 2.3.5 is still valid

if given k ≥ 1 we change L0 by Lk, L1 by Lk+1, L̃0 by L̃k and L̃1 by L̃k+1. In effect, to

see this, it is enough to note that inequality (2.3.69) is satisfied with these replacements.

Define

c3,23 := e
− 4c1 log ηα

(c1−1)α .
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Corollary 2.3.1. Let 0 < ξ < min{c3,23, e
−1/24} and α > 0. Let {Lk : k ≥ 0} and

{L̃k : k ≥ 0} be sequences satisfying (2.3.60), (2.3.61) and (2.3.62). Then there exists

c3,25(d, α) > 0, such that when for some L0 ≥ c3,25, a0 ∈ (0, α], u0 ∈ [ξL0/d, 1], it is true

that

φ0 := c3,19L̃
d−1
1 L0E[ρa0

0 ] ≤ ξαu0L0 , (2.3.97)

then for all k ≥ 0,

φk := c3,19L̃
d−1
k+1LkE[ρakk ] ≤ (k + 1)ξαukLk , (2.3.98)

with ak := a02−k, uk := u08−k.

Proof. We will use induction in k to prove (2.3.98). By hypothesis we only need to show

(2.3.98) for n = k + 1 assuming that (2.3.98) holds for n = k. To do this, with the help

of Proposition 2.3.5 we have that for any k ≥ 0

E[ρ
ak+1

k+1 ] ≤ c3,18

ξ−c′2Lk+1

(
c3,19L̃

(d−2)
k+1

L3
k+1

L2
k

L̃kE[qk]

) L̃k+1

12NkL̃k

+
∑

0≤m≤Nk+1

(
c3,19L̃

(d−1)
k+1 E[ρakk ]

) [Nk]+m−1

2
+ e

−c1Lk+1 log 1

ξαη2
α

}
,

so that, for k ≥ 0 and with the help of (2.3.62)

φk+1 ≤ c3,18c3,19L̃
(d−1)
k+2 Lk+1

{
ξ−c

′
2Lk+1φ

N2
k/12

k +
∑

0≤m≤Nk+1

φ
Nk+m−1

2
k

}
+c3,18c3,19L̃

(d−1)
k+2 Lk+1e

−c1Lk+1 log 1

ξαη2
α . (2.3.99)

Since ξ < c3,23, we can assert that c3,18c3,19L̃
(d−1)
k+2 Lk+1e

−c1Lk+1 log 1

ξαη2
α ≤ ξαuk+1Lk+1 . Hence,

we only need to prove that

c3,18c3,19L̃
(d−1)
k+2 Lk+1

{
ξ−c

′
2Lk+1φ

N2
k/12

k +
∑

0≤m≤Nk+1

φ
Nk+m−1

2
k

}
≤ (k + 1)ξαuk+1Lk+1 (2.3.100)

Firstly, note that for L0 large enough by the induction hypothesis, (2.3.62) and the fact

that ξ < e−
1
24
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ξ−c
′
2Lk+1φ

N2
k/24

k ≤ ξ−c
′
2Lk+1(k + 1)

N2
k

24 ξ
αukN

2
kLk

24

≤ e
c′2

(
log 1

ξ
+ 1

24
−
c4 log 1

ξ
24

)
Lk+1

≤ 1.

Substituting this estimate back into (2.3.100) and using the hypothesis induction again,

we obtain that

c3,18c3,19L̃
(d−1)
k+2 Lk+1

{
ξ−c

′
2Lk+1φ

N2
k/12

k +
∑

0≤m≤Nk+1

φ
Nk+m−1

2
k

}
≤ c3,18c3,19L̃

(d−1)
k+2 Lk+1

{
φ
N2
k/24

k + (Nk + 2)φ
Nk/4
k

}
≤ c3,24L̃

(d−1)
k+2 Lk+1Nk+1φ

Nk/4
k

≤ c3,24L̃
(d−1)
k+2 Lk+2φ

Nk/8
k (k + 1)Nk/8ξαukLkNk/8

= c3,24L̃
(d−1)
k+2 Lk+2φ

Nk/8
k (k + 1)Nk/8−1(k + 1)ξαuk+1Lk+1 ,

where c3,24 := 2c3,18c3,19. Thus, in order to show that φk+1 ≤ (k+2)ξαuk+1Lk+1 it is enough

to prove that

c3,24L̃
(d−1)
k+2 Lk+2(k + 1)Nk/8−1φ

Nk/8
k ≤ 1. (2.3.101)

First, note that by the induction hypothesis,

c3,24L̃
(d−1)
k+2 Lk+2(k + 1)Nk/8−1φ

Nk/8
k ≤ c3,24L̃

(d−1)
k+2 Lk+2(k + 1)Nk/4−1ξ6c′2Lk . (2.3.102)

From (2.3.61), (2.3.62) and (2.3.63), we can say that

c3,24L̃
(d−1)
k+2 Lk+2(k + 1)Nk/4−1ξ6c′2Lk

= c3,24

(
Lk+2

L0

)3(d−1)

L̃
(d−1)
0 Lk+2(k + 1)Nk/4−1ξ6c′2Lk

≤ c3,24L
3(d−1)+1
k+2 (k + 1)Nk/4−1ξ6c′2Lk

= c3,24(Nk+1Nk)
3d−2L3d−2

k (k + 1)Nk/4−1ξ6c′2Lk

≤ c3,2483d−2L3d−2
k (k + 1)Nk/4−1ξc1LkN6d

k ξ
(6c′1−1)c1Lk . (2.3.103)
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But, note that

c3,2483d−2L3d−2
k (k + 1)Nk/4−1ξc1Lk ≤ 1.

for L0 large enough. Hence, substituting this estimate back into (2.3.103) and (2.3.102)

we deduce that

c3,24L̃
(d−1)
k+2 Lk+2(k + 1)Nk/8−1φ

Nk/8
k ≤ N6d

k ξ
(6c′1−1)c1Lk ≤ N6d

k ξ
77c1Lk , (2.3.104)

by our choice of c′1. Finally, choosing L0 large enough, the expression N6d
k ξ

77c1Lk ≤ 1 for

all k ≥ 1. In the case of k = 0, we have that

(
c4

u0

)6d

ξ77c1L0 ≤ u−6d
0 ξ6L0 ≤ 1

by our assumption on u0. Then (2.3.101) follows and thus we get (2.3.98) by induction

and choosing L0 ≥ c3,25 for some constant c3,25 > 0.

The following corollary implies Proposition 2.3.4. Since such a derivation follows

exactly the argument presented by Sznitman in [Sz02], we omit it.

Corollary 2.3.2. Let l ∈ Sd−1, d ≥ 2 and Υ = max

{
α

24
,

(
2c1

c1 − 1

)
log η2

α

}
. Then, there

exist constants c3,26 = c3,26(d) > 0 and c3,27 = c3,27(d) > 0 such that if the following

inequality is satisfied

c3,26(d) inf
L0≥c3,27,3

√
d≤L̃0<L3

0

inf
0<a≤α

{
Υ3(d−1)L̃d−1

0 L
3(d−1)+1
0 E[ρaB]

}
< 1, (2.3.105)

where B = B(R,L0 − 1, L0 + 1, L̃0), then there exists a constant c3,28 > 0 such that

lim
L→∞

L−1ec28(logL)1/2

logP0

[
T̃ l−b̃L < T lbL

]
< 0, for all b, b̃ > 0. (2.3.106)

Proof. If (2.3.105) holds then there is a ξ > 0 such that

c3,26(d) inf
L0≥c3,27,3

√
d≤L̃0<L3

0

inf
0<a≤α

{(
α log

1

ξ

)3(d−1)

L̃d−1
0 L

3(d−1)+1
0 E[ρaB]

}
< 1, (2.3.107)
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with ξ < {c3,23, e
−1/24}. Then, by (2.3.60) and (2.3.61),

L̃d−1
1 L0 =

(
c4

u0

)3(d−1)

L̃d−1
0 L0.

Now, the maximum of u
3(d−1)
0 ξαu0L0 , as a function of u0 for u0 ∈ [ξ

L0
d , 1], is given by

c3,29(d)

(
αL0 log

1

ξ

)−3(d−1)

for u0 =
3(d− 1)

αL0 log 1
ξ

, when L0 is large enough, where c3,29(d) :=(
3(d− 1)

e

)3(d−1)

. Thus if (2.3.107) holds, (2.3.97) holds as well. Hence, applying Corolla-

ry 2.3.1 we can say that (2.3.98) is true for all k ≥ 0.

Then, for each b, b̃ > 0 we consider the discrete truncated cylinder,

C =

{
x ∈ Zd : |x|⊥ ≤

bL

Lk
L̃k, x · l ∈ (−b̃L, bL)

}
and the event H associated to C and defined by

H =
{

for somex ∈ C, qk ◦ tx ≥ ξ
α
2
ukLk

}
,

where for large L, we chose an unique k such that

Lk ≤ b̃L < Lk+1. (2.3.108)

It is easy to see that

P(H) ≤ |C|(k + 1)ξ
α
2
ukLk

c3,19L̃
d−1
k+1Lk

≤ |C|ξ
α
2
ukLk (2.3.109)

with the help of (2.3.98) and the fact that E[qk] ≤ E[ρakk ].

Meanwhile on Hc we can apply the strong Markov property

[
bL

Lk

]
times and obtain that

P0,ω

(
T lbL < T̃ l−b̃L

)
≥
(
1− ξ

α
2
ukLk

)([ bL
Lk

+1]
)
.

At this point, with the help of (2.3.60), (2.3.61), (2.3.62), (2.3.63) and (2.3.108) we deduce

that

P0,
(
T̃ l−b̃L < T lbL

)
≤
(
|C|+ bL

Lk
+ 1

)
ξ
α
2
ukLk

≤ e−b̃Le
−c3,28(log b̃L)

1
2

, (2.3.110)
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for some constant c3,28 > 0 and L large enough, and where we have chosen u0 =
3(d− 1)

αL0 log 1
ξ

.

2.4 An atypical quenched exit estimate

Here we will prove a crucial atypical quenched exit estimate for tilted boxes, which will

subsequently enable us in section 2.5 to show that the regeneration times of the random

walk are integrable. Let us first introduce some basic notation.

Without loss of generality, we will assume that e1 is contained in the open half-space

defined by the asymptotic direction so that

v̂ · e1 > 0.

Recall the definition of the hyperplane perpendicular to direction e1 in (2.3.31) so that

H := {x ∈ Rd : x · e1 = 0}.

Let P := Pv̂ (see (2.3.32)) be the projection on the asymptotic direction along the hyper-

plane H defined for z ∈ Zd

Pz :=

(
z · e1

v̂ · e1

)
v̂,

and Q := Ql (see (2.3.33)) be the projection of z on H along v̂ so that

Qz := z − Pz.

Now, for x ∈ Zd, β > 0, % > 0 and L > 0, define the tilted boxes with respect to the

asymptotic direction v̂ as

Bβ,L(x) :=
{
y ∈ Zd : −Lβ < (y − x) · e1 < L; ‖Q(y − x)‖∞ < %Lβ

}
. (2.4.1)

and their front boundary by

∂+Bβ,L(x) := {y ∈ ∂Bβ,L(x) : y · e1 − x · e1 = L}.
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Figure 2.4: The box Bβ,L(x).

See Figure 2.4 for a picture of the box Bβ,L and its front boundary.

Proposition 2.4.1. Let α > 0 and assume that ηα < ∞ as defined in (2.3.3). Let

M ≥ 15d+ 5 and assume that (P )M |l is satisfied. Let β0 ∈ (1/2, 1), β ∈
(
β0 + 1

2
, 1

)
and

ζ ∈ (0, β0). Then, for each κ > 0 we have that

lim sup
L→∞

L−g(β0,β,ζ) logP
(
P0,ω

(
XTBβ,L(0)

∈ ∂+Bβ,L(0)
)
≤ e−κL

β
)
< 0,

where

g(β0, β, ζ) := min{β + ζ, 3β − 2 + (d− 1)(β − β0)}. (2.4.2)

We will now prove Proposition 2.4.1 following similar ideas to those presented by Sznitman

in [Sz02].
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2.4.1 Preliminaries

Firstly we need to define an appropriate mesoscopic scale to perform a renormalization

analysis. Let β0 ∈ (0.5, 1), β ∈ (β0, 1) and χ := β0 + 1− β ∈ (β0, 1]. Define

L0 :=
L− %Lβ0

[L1−χ]
.

Now, for each x ∈ Rd we consider the mesoscopic box

B̃(x) :=
{
y ∈ Zd : −Lβ0 < (y − x) · e1 < %L0; ‖y − x− P (y − x)‖∞ < (1 + %)Lβ0

}
,

and its central part

C̃(x) :=
{
y ∈ Zd : 0 ≤ (y − x) · e1 < %L0; ‖y − x− P (y − x)‖∞ < Lβ0

}
.

Define also

∂+B̃(x) := {y ∈ ∂B̃(x) : y · e1 − x · e1 = %L0}

and

∂+C̃(x) := {y ∈ ∂C̃(x) : y · e1 − x · e1 = %L0}.

We now say that a box B̃(x) is good if

sup
x∈C̃(x)

Px,ω

(
XTB̃(x)

6∈ ∂+B̃(x)
)
<

1

2
,

Otherwise the box is called bad. At this point, by Theorem 2.1.1 proved in section 2.3,

we have the following version of Theorem 2.2.3 (Theorem A.2 of Sznitman [Sz02]).

Theorem 2.4.1. Let l ∈ Sd−1 and M ≥ 15d + 5. Consider an elliptic RWRE satisfying

condition (P )M |l. Then, for any c > 0 and ρ ∈ (0.5, 1),

lim sup
u→∞

u−(2ρ−1) logP0

(
sup

0≤n≤T e1u
|Xn − P (Xn)| ≥ cuρ

)
< 0,

where T e1u is defined in (2.2.2).
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The following lemma is an important corollary of Theorem 2.4.1.

Lemma 2.4.1. Let l ∈ Sd−1 and M ≥ 15d + 5. Consider an elliptic RWRE satisfying

condition (P )M |l. Then

lim sup
L→∞

L−(β+β0−1) logP(B̃(0) is bad) < 0. (2.4.3)

Proof. By Chebyschev’s inequality we have that

P(B̃(0) is bad)

≤ 2d−1L0L
β0(d−1)

P0

 sup
0≤n≤T v̂%L0

|Xn − PXn| ≥ (1 + %)Lβ0

+ P0

(
T̃ v̂−Lβ0 <∞

) .

By Theorem 2.4.1, the first summand can be estimated as

lim sup
L→∞

L−(β+β0−1) logP0

 sup
0≤n≤T v̂%L0

|Xn − PXn| ≥ (1 + %)Lβ0

 < 0.

To estimate the second summand, since (P )M |l is satisfied, by Theorem 2.1.1 and the

equivalence given by Theorem 2.2.4, we can chose γ close enough to 1 so that γβ0 ≥

β0 + β − 1 and such that

lim sup
L→∞

L−γβ0 logP0

(
T̃ v̂−(1+%)Lβ0 <∞

)
< 0.

Let k1, . . . , kd ∈ Z. From now on, we will use the notation x = (k1, . . . , kd) ∈ Rd to denote

the point

x = k1
%

v̂ · e1

L0v̂ +
d∑
j=2

2kj(1 + %)Lβ0ej.

Define the following set of points which will correspond to the centers of mesoscopic boxes.

L :=
{
x ∈ Rd : x = (k1, . . . , kd) for some k1, . . . , kd ∈ Z

}
.
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We will use subsequently the following property of the lattice L: there exist 2d disjoint

sub-lattices L1, . . . ,L2d such that L = ∪2d

i=1Li and for each 1 ≤ i ≤ 2d, the sub-lattice Li

corresponds to the centers of mesoscopic boxes which are pairwise disjoint. Let L0 be the

set defined by

L0 := {x = (k1, . . . , kd) ∈ L : k1 = 0}.

For each x ∈ L0 we define the column of mesoscopic boxes as

Cx :=

[L1−χ]⋃
k1=−1

B̃

(
x+ k1

%

v̂ · e1

L0v̂

)
See Figure 2.5 for a picture of the column Cx, for some x ∈ L0.

Figure 2.5: A box B̃ with its corresponding middle part C̃, which belongs to the column
Cx.

The collection of these columns will be denoted by C. Define now for each Cx ∈ C and

−1 ≤ k ≤ [L1−χ] define

∂k,1Cx := ∂+C̃

(
x+ k

%

v̂ · e1

L0v̂

)
and ∂k,2Cx := ∂+B̃

(
x+ k

%

v̂ · e1

L0v̂

)
\∂k,1Cx.
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For each point y ∈ ∂k,1Cx we assign a path π(k) = {π(k)
1 , . . . , π(k)

n1
} with n1 :=

[
2c1

%

v̂ · e1

L0

]
steps from y to ∂k+1,1Cx, so that π

(k)
1 = y and π(k)

n1
∈ ∂k+1,1Cx. For each point z ∈ ∂k,2Cx

we assign a path π̄(k) = {π̄(k)
1 , . . . , π̄(k)

n2
} with n2 :=

[
2c1%L

β0
]

steps from z to ∂k,1Cx, so

that π̄
(k)
1 = z and π̄(k)

n2
∈ ∂k,1Cx. We will also use the notation {m1, . . . ,mN} to denote

some subset of {−1, . . . , [L1−χ]} with N elements.

Let x ∈ L0 and ξ > 0. A column of boxes Cx ∈ C will be called elliptically good if it

satisfies the following two conditions

sup
N≤

[
Lβ

L0

] sup
{m1,...,mN}

N∑
j=1

sup
ymj∈∂mj,1Cx

n1∑
i=1

log
1

ω(π
(mj)
i ,∆π

(mj)
i )

≤ 2c1
%

v̂ · e1

log

(
1

ξ

)
Lβ (2.4.4)

and

[L1−χ]∑
k=−1

sup
zk∈∂k,2Cx

n2∑
i=1

log
1

ω(π̄
(k)
i ∆π̄

(k)
i )
≤ 2c1% log

(
1

ξ

)
Lβ. (2.4.5)

If neither (2.4.4) nor (2.4.5) is satisfied, we will say that the column Cx is elliptically bad.

Lemma 2.4.2. For any x ∈ L0, β ≥ β0 + 1

2
and ξ > 0 such that log

1

ξ2αη3
α

> 0 we have

that

lim sup
L→∞

L−β logP (Cx is elliptically bad) < 0 (2.4.6)

Proof. Let us first note that
Lβ

L0

≥ 1 by our condition on β. Now, it is clear that

P (Cx is elliptically bad) ≤ P ((2.4.4) is not satisfied) + P ((2.4.5) is not satisfied) (2.4.7)

Regarding the first term on the right of (2.4.7) and since 2β − β0 − 1 < β − β0 < β we

have that
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P ((2.4.4) is not satisfied) ≤
[L
β

L0
]∑

N=1

P
(
∃ {m1, . . . ,mN} and ymj ∈ ∂mj ,1Cx such that

N∑
j=1

n1∑
i=1

log
1

ω
(
π

(mj)
i ,∆π

(mj)
i

) > 2c1
%

v̂ · e1

log

(
1

ξ

)
Lβ


≤ Lβ

L0

L
(β−β0)L

β

L0 e(logL)β0(d−1)Lβ−β0e
2(log ηα)c1

%
v̂·e1

Lβ
e
−2c1

%
v̂·e1 (α log 1

ξ )Lβ ≤ e−c4,1L
β

(2.4.8)

for some constant c4,1 > 0 if L is large enough and log
1

ξ2αη3
α

> 0.

Similarly for the rightmost term of (2.4.7) we have that,

P ((2.4.5) is not satisfied)

≤ P

∃ zk ∈ ∂k,2Cx such that

[L1−χ]∑
k=−1

n2∑
i=1

log
1

ω(π̄
(k)
i ∆π̄

(k)
i )

> 2c1% log

(
1

ξ

)
Lβ


≤ elogL(%β0(d−1)L1−χ)e2(log ηα)c1%Lβe−2c1%(α log 1

ξ )Lβ ≤ e−c4,2L
β

(2.4.9)

for some constant c4,2 > 0 if L is large enough and log
1

ξ2αη3
α

> 0. Substituting (2.4.8)

and (2.4.9) back into (2.4.7), (2.4.6) follows.

The proof Proposition 2.4.1 will reduced to the control of the probability of the three

events: the first one, corresponding to subsection 2.4.2, gives a control on the number

of bad boxes; the second one, corresponding to subsection 2.4.3, gives a control on the

number of elliptically good columns; the third one, corresponding to subsection 2.4.4,

gives a control on the probability that the random walk can find an appropriate path

which leads to an elliptically good column.

2.4.2 Control on the number of bad boxes

We will need to consider only the mesoscopic boxes which intersect the box Bβ,L(0) and

whose k1 index is larger than or equal to −1. We hence define the collection of mesoscopic

boxes

B :=
{
B̃(x) : B̃(x) ∩Bβ,L(0) 6= ∅, x = (k1, . . . , kd), k1, . . . , kd ∈ Z, k1 ≥ −1

}
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In addition, we call the number of bad mesoscopic boxes in B,

N(L) :=
∣∣∣{B̃ ∈ B : B̃ is bad

}∣∣∣ ,
and for each 1 ≤ i ≤ 2d, call the number of bad mesoscopic boxes in B with centers in

the sub-lattice Li as

Ni(L) :=
∣∣∣{B̃(x) ∈ B : B̃(x) is bad and x ∈ Li

}∣∣∣ ,
Define

G1 :=

{
ω ∈ Ω : N(L) ≤ %d−1L(d−1)(β−β0)Lβ

2(1 + %)d−1L0

}
. (2.4.10)

Lemma 2.4.3. Assume that β >
β0 + 1

2
. Then, there is a constant c4,3 > 0 such that for

every L > 1 we have that

P(Gc
1) ≤ e−c4,3L

3β−2+(d−1)(β−β0)

.

Proof. Note that the number of columns intersecting the box Bβ,L(0) is equal to

[
%d−1L(d−1)(β−β0)

(1 + %)d−1

]
.

Hence, whenever ω ∈ G1, necessarily there exist at least

⌈
%d−1L(d−1)(β−β0)

2(1 + %)d−1

⌉
columns

each one with at most

⌈
Lβ

L0

⌉
bad boxes. Let us take m1 :=

[
%d−1L(d−1)(β−β0)Lβ

2(1 + %)d−1L0

]
and

m2 := |B| =
[
%d−2Ld(β−β0)

(1 + %)d−1
+
%d−1L(d−1)(β−β0)

(1 + %)d−1

]
. Now, using the fact that the mesoscopic

boxes in each sub-lattice Li, 1 ≤ i ≤ 2d, are disjoint, and the estimate (2.4.3) of Lemma

2.4.1, we have by independence that there exists a constant c4,3 > 0 such that for every

L ≥ 1,
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P(Gc
1) = P (N(L) ≥ m1) ≤

2d∑
i=1

P
(
Ni(L) ≥ m1

2d

)
≤

2d∑
i=1

m2∑
n=m1/2d

(
m2

n

)
P
(
B̃(0) is bad

)n
≤ 2d

m2∑
n=m1/2d

mn
2e
−nLβ+β0−1

≤ e−c4,3L
β+β0−1+(d−1)(β−β0)+2β−β0−1 ≤ e−c4,3L

3β−2+(d−1)(β−β0)

. (2.4.11)

Note that in the second to last inequality we have used the fact that 2β + β0 − 2 > 0

which is equivalent to the condition β >
2− β0

2
. Now, this last condition is implied by

the requirement β >
β0 + 1

2
.

2.4.3 Control on the number of elliptically bad columns

Let m3 :=

[
%d−1L(d−1)(β−β0)

2(1 + %)d−1

]
and define the event that any sub-collection of the set of

columns of cardinality less than or equal to m3 has at least one elliptically good column

G2 := {ω ∈ Ω : ∀D ⊂ C, |D| ≥ m3, ∃Cx ∈ D such that Cx is elliptically good} .

(2.4.12)

Here we will prove the following lemma.

Lemma 2.4.4. There is a constant c4,4 > 0 such that for every L ≥ 1,

P(Gc
2) ≤ e−c4,4L

β+(d−1)(β−β0)

. (2.4.13)

Proof. Note that the total number of columns intersecting the box Bβ,L is equal to

m4 :=

[
%d−1L(d−1)(β−β0)

(1 + %)d−1

]
.

Using the fact that the events {Cx is elliptically bad}, {Cy is elliptically bad} are inde-

pendent if x 6= y, since these columns are disjoint, we conclude that there is a constant

c4,4 > 0 such that for all L ≥ 1,
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P(Gc
2) = P (∃D ⊂ C, |D| ≥ m3 such that ∀Cx ∈ D, Cx is elliptically bad)

≤
m4∑

n=m3

mn
4P (Cx is elliptically bad)n ≤ e−c4,4L

β+(d−1)(β−β0)

,

where in the last inequality we have used the estimate (2.4.6) of Lemma 2.4.2 which

provides a bound for the probability of a column to be elliptically bad.

2.4.4 The confinement event

Here we will obtain an adequate estimate for the probability that the random walk hits

an elliptically good column. We will need to introduce some notation, corresponding to

the the box where the random walk will move before hitting the elliptically good column

and a certain class of hyperplanes of this region. Let first ζ ∈ (0, β0), a parameter which

gives the order of width of the box B̄ζ,β,L where the random walk will be able to find a

reasonable path to the elliptically good column, so that

B̄ζ,β,L := {x ∈ Zd : −Lζ ≤ x · e1 ≤ Lζ , ‖x− Px‖∞ < Lβ}.

Note that this box is contained in Bβ,L(0) and that it also contains the starting point 0

of the random walk. Define now for each 0 ≤ z ≤ Lζ , the hyperplane

Hz :=
{
x ∈ B̄ζ,β,L : x · e1 = z

}
,

and consider the two collection of hyperplanes defined as

H+ =
{
Hz : z ∈ Z, 0 ≤ z ≤ Lζ

}
and H− =

{
Hz : z ∈ Z,−Lζ ≤ z < 0

}
.

Whenever there is no risk of confusion, we will drop the subscript from Hz writing H

instead. Let r := [2%Lβ]. Now, for each H ∈ H+ ∪ H− and each j such that ej 6= ±e1,

we will consider the set of paths Πj with r steps defined by π = {π1, . . . , πr} ∈ Πj if and

only if

95



π ⊂ H and πi+1 − πi = ej.

In other words, π is contained in the hyperplane H and it has steps which move only in

the direction ej. We now say that an hyperplane H ∈ H+ ∩ H− is elliptically good if for

all paths π ∈ ∪j 6=1,d+1Πj one has that

r∑
i=1

log
1

ω (πi,∆πi)
≤ 2% log

(
1

ξ

)
Lβ. (2.4.14)

Otherwise H will be called elliptically bad (See Figure 2.6).

Figure 2.6: The box B̄ζ,β,L. The arrows indicate the uniform ellipticity condition given
by (2.4.14), which implies that each hyperplane is elliptically good.

From a routine counting argument and applying Chebyshev inequality, note that for each

H ∈ H+ ∪H− and ξ > 0 such that log
1

ξαη2
α

> 0 there is a constant c4,5 > 0 such that

P (H is elliptically bad) ≤ e−c4,5L
β

. (2.4.15)

Now choose a rotation R̂ such that R̂(e1) = v̂. Let v̂j := R̂(ej) for j ≥ 2. We now

want to make a construction analogous to the one which led to the concept of elliptically
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good hyperplane. But now, we would need to define hyperplanes perpendicular to the

directions {v̂j} which are not necessarily equal to a canonical vector. Therefore, we will

work here with strips, instead of hyperplanes. For each z ∈ Z even and k ∈ {2, . . . , d}

consider the strip Ik,z := {x ∈ B̄ζ,β,L(0) : z − 1 < x · v̂j < z + 1}. Consider also the two

sets of strips, I+
k and I−k defined by

I+
k :=

{
Ik,z : z even, 0 ≤ z ≤ %Lβ

}
and I−k :=

{
Ik,z : z even,−%Lβ ≤ z < 0

}
.

Whenever there is no risk of confusion, we will drop the subscripts from a strip Ik,z writing

I instead. We will need to work with the set of canonical directions which are contained

in the closed positive half-space defined by the asymptotic direction, so that

U+ := {e ∈ U : e · v̂ ≥ 0}.

Let s :=

[
2c1

Lζ

v̂ · e1

]
. For each I ∈ I+

k ∪ I
−
k and each y ∈ I we associate a path π̂ =

{π̂1, . . . , π̂n}, with s ≤ n ≤ s+ 1, which satisfies

π̂ ⊂ Ij,z

and

π̂i+1 − π̂i ∈ U+ for 1 ≤ i ≤ n− 1, π̂n ∈ H[Lζ ].

Note that by the fact that the strip I has a Euclidean width 1, it is indeed possible to

find a path satisfying these conditions and also that such a path is not necessarily unique.

We will call Π̂k such a set of paths associated to all the points of the strip I. Now, a strip

I ∈ I+
k ∪ I

−
k will be called elliptically good if for all paths π̂ ∈ Π̂k one has that

n∑
i=1

log
1

ω (π̂i,∆π̂i)
≤ log

(
1

ξ

)
n (2.4.16)

Otherwise I will be called elliptically bad (See Figure 2.7).
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Figure 2.7: In each strip I, every path π chosen previously satisfies the uniform ellipticity
condition given by (2.4.16). Then I is elliptically good.

As before, from a routine counting argument and by Chebyshev inequality, note that for

each k ∈ {2, . . . , d}, I ∈ I+
k ∪ I

−
k and ξ > 0 which satisfies log

1

ξαη2
α

> 0, there exists a

constant c4,6 > 0 such that

P (I is elliptically bad) ≤ e−c4,6L
ζ

. (2.4.17)

We now define the confinement event as

G3 := {ω ∈ Ω : ∃H+ ∈ H+, H− ∈ H−, I+,2 ∈ I+
2 , . . . , I+,d ∈ I+

d , I−,2 ∈ I
−
2 , . . . , I−,d ∈ I−d

such that H+, H−, I+,2, . . . , I+,d, I−,2, . . . , I−,d are elliptically good}. (2.4.18)

We can now state the following lemma which will eventually give a control on the proba-

bility that the random walk hits an elliptically good column.

Lemma 2.4.5. There is a constant c4,7 > 0 such that for every L ≥ 1,

P (Gc
3) ≤ e−c4,7L

β+ζ

. (2.4.19)
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Proof. Note that

P (Gc
3) ≤ P

( ⋂
H∈H+

{H is elliptically bad}

)
+ P

( ⋂
H∈H−

{H is elliptically bad}

)

+
d∑

k=2

P

 ⋂
I∈I+

k

{I is elliptically bad}

+
d∑

k=2

P

 ⋂
I∈I−k

{I is elliptically bad}

 ,

Now, inequality (2.4.19) follows using the estimate (2.4.15) for the probability that a

hyperplane is elliptically bad, the estimate (2.4.17) for the probability that a strip is

elliptically bad, applying independence and translation invariance.

2.4.5 Proof of Proposition 2.4.1

Firstly, note that for any κ > 0,

P
(
P0,ω

(
XTBβ,L(0)

∈ ∂+Bβ,L(0)
)
≤ e−κL

β
)
≤ P(Gc

1) + P(Gc
2) + P(Gc

3)

+P
(
P0,ω

(
XTBβ,L(0)

∈ ∂+Bβ,L(0)
)
≤ e−κL

β

, G1, G2, G3

)
. (2.4.20)

Let us begin bounding the first three terms of the right-hand side of (2.4.20). Let ζ ∈

(0, β0) and β >
β0 + 1

2
. By Lemma 2.4.3 of subsection 2.4.2, Lemma 2.4.4 of subsection

2.4.3 and Lemma 2.4.5 of subsection 2.4.4 we have that there is a constant c4,8 > 0 such

that

P(Gc
1) + P(Gc

2) + P(Gc
3) ≤ 1

c4,8

e−c4,8L
3β−2+(d−1)(β−β0)

+
1

c4,8

e−c4,8L
β+(d−1)(β−β0)

+
1

c4,8

e−c4,8L
β+ζ

.

(2.4.21)

Since β < 1 is equivalent to β + (d − 1)(β − β0) > 3β − 2 + (d − 1)(β − β0), the sum in

(2.4.21) can be bounded as

P(Gc
1) + P(Gc

2) + P(Gc
3) ≤ 1

c4,9

e−c4,9L
g(β,β0,ζ) , (2.4.22)

for some constant c4,9 > 0 and where g(β, β0, ζ) := min{β + ζ, 3β − 2 + (d− 1)(β − β0)}.

We will now prove that the fourth term of the right-hand side of inequality (2.4.20)

satisfies for L large enough
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P
(
P0,ω

(
XTBβ,L(0)

∈ ∂+Bβ,L(0)
)
≤ e−κL

β

, G1, G2, G3

)
= 0. (2.4.23)

In fact, we will show that for L large enough on the event G1 ∩G2 ∩G3 one has that

P0,ω

(
XTBβ,L(0)

∈ ∂+Bβ,L(0)
)
> e−κL

β

. (2.4.24)

We will prove (2.4.24) showing that the walk can exit Bβ,L(0) through ∂+Bβ,L(0) choosing

a strategy which corresponds to paths which go through an elliptically good column. This

implies, in particular, that the walk exit successively of boxes B̃(x) through ∂+B̃(x). The

event G1 implies that there exist at least m3 =

[
%d−1L(d−1)(β−β0)

2(1 + %)d−1

]
columns each one

with at most

[
Lβ

L0

]
of bad boxes. Meanwhile, the event G2 asserts that in any collection

of columns with cardinality m3 or more, there is at least one elliptically good column.

Therefore, on the event G1 ∩G2 there exists at least one elliptically good column D with

at most Lβ/L0 bad boxes. Thus, on G1∩G2 we have that for any point y ∈ D and ξ > 0,

Py,ω

(
XTBβ,L(0)

∈ ∂+Bβ,L(0)
)
≥
(

1

2

)Lβ−β0+1

ξ
2c1

%
v̂·e1

Lβ
ξ2c1%Lβ , (2.4.25)

where the first factor is a bound for the probability that the random walk exits all the

good boxes of the column through their front side, while the second factor is a bound for

the probability that the walk traverses each bad box (whose number is at most Lβ/L0)

exiting through its front side and following a path with at most
2c1ρL0

v̂ · e1

steps and is given

by the condition (2.4.4) for elliptically good columns, while the third factor is a bound

for the probability that once the walk exits a box (whose number is at most Lβ−β0 + 1)

it moves through its front boundary to the central point of this front boundary following

a path with at most [2c1ρL
β
0 ] steps and is given by the condition (2.4.5) for elliptically

good columns.

Now, the confinement eventG3 ensures that with a high enough probability the random

walk will reach the elliptically good column D which has at most Lβ/L0 bad boxes. More

precisely, a.s. on G3, the random walk reaches either an elliptically good hyperplane

H ∈ H+ ∪ H−, an elliptically good strip I ∈ I+
2 ∪ · · · ∪ I+

d or an elliptically good strip

I ∈ I−2 ∪· · ·∪I−d (recall the definitions of elliptically good hyperplanes and strips given in
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(2.4.14) and (2.4.16) of subsection 2.4.3). Now, once the walk reaches either an elliptically

good hyperplane or strip, we know by (2.4.14) or (2.4.16), choosing an appropriate path

that the probability that it hits the column D is at least ξc4,10%Lβ for some constant

c4,10 > 0. Thus, we know that there is a constant c4,10 > 0 such that

P0,ω

(
the walk reachesD ∩ B̄ζ,β,L(0)

)
≥ ξc4,10%Lβ . (2.4.26)

Therefore, combining (2.4.25) and (2.4.26), we conclude that there is a constant c4,11 > 0

such that for all % ∈ (0, 1) on the event G1 ∩G2 ∩G3 the following estimate is satisfied,

P0,ω

(
XTBβ,L(0)

∈ ∂+Bβ,L(0)
)
> e−c4,11ρLβ .

Hence, choosing % sufficiently small, we have that on G1 ∩G2 ∩G3,

P0,ω

(
XTBβ,L(0)

∈ ∂+Bβ,L(0)
)
> e−κL

β

(2.4.27)

for L larger than a deterministic constant depending only on %. This proves (2.4.23).

Finally, with the help of (2.4.20), (2.4.22) and (2.4.27) the Proposition 2.4.1 is proved.

2.5 Moments of the regeneration time

Here we will prove Theorem 2.1.2. Our method is inspired on some ideas used by Sznitman

to prove Proposition 3.1 of [Sz01], which give tail estimates on the distribution of the

regeneration times. Parts (a) and (b) of Theorem 2.1.2 will follow from Theorem 2.2.1,

while part (c) from Theorem 2.2.2.

Proposition 2.5.1. Let l ∈ Sd−1 and M ≥ 15d + 5. Assume that (P )M |l holds. Then,

the following are satisfied.

a) For every 0 < α < min
e
Fe one has that

lim sup
u→∞

(log u)−1 logP0[τ v̂1 > u] ≤ −2α. (2.5.1)
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b) Let α > 0. Assume (E ′)α. Then, for every α′ < α one has that

lim sup
u→∞

(log u)−1 logP0[τ v̂1 > u] ≤ −α′. (2.5.2)

The proof of the above proposition is based on the atypical quenched exit estimate corres-

ponding to Proposition 2.4.1 of section 2.4. Some slight modifications in the proof of

Proposition 2.4.1, would lead to a version of it, which could be used to show that Propo-

sition 2.5.1 remains valid if the regeneration time τ v̂1 is replaced by τ l1 for any direction l

such that l · v̂ > 0. Note also that Proposition 2.5.1 implies that whenever (E)1/2 or (E ′)1

are satisfied, then the first regeneration time is integrable. Through Theorem 2.2.1, this

implies part (a) of Theorem 2.1.2. Similarly we can conclude part (b) of Theorem 2.1.2.

Part (c) of Theorem 2.1.2 can be derived analogously through Theorem 2.2.2.

Let us now proceed with the proof of Proposition 2.5.1. Let us take a rotation R̂ in

Rd such that R̂(e1) = v̂ and fix β ∈
(

5

6
, 1

)
and M > 0. For each u > 0 define the scale

L = L(u) :=

(
1

4M
√
d

) 1
β

(log u)
1
β ,

and the box

CL :=

{
x ∈ Zd :

−L
2(v̂ · e1)

≤ x · R̂(ei) ≤
L

2(v̂ · e1)
, for 0 ≤ i ≤ 2d

}
.

Throughout the rest of this proof we will continue writing τ1 instead of τ v̂1 . Now note that

P0(τ1 > u) ≤ P0

(
τ1 > u, TCL(u)

≤ τ1

)
+ P0

(
TCL(u)

> u
)
, (2.5.3)

where TCL(u)
is the first exit time from the set CL(u) defined in (2.1.1). For the second

term of the right-hand side of inequality (2.5.3), we can use Corollary 2.2.1, to conclude

that for every γ ∈ (β, 1) there exists a constant c5,1 such that

P0

(
τ1 > u, TCL(u)

≤ τ1

)
≤ 1

c5,1

e−c5,1L
γ(u). (2.5.4)

For the first term of the right-hand side of inequality (2.5.3), following Sznitman [Sz01]

we introduce the event
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F1 :=

{
ω ∈ Ω : tω

(
CL(u)

)
>

u

(log u)
1
β

}
,

where for each A ⊂ Zd we define

tω(A) := inf

{
n ≥ 0 : sup

x
Px,ω (TA > n) ≤ 1

2

}
.

Trivially,

P0

(
TCL(u)

> u
)
≤ E

[
F c

1 , P0,ω

(
TCL(u)

> u
)]

+ P(F1). (2.5.5)

To bound the first term of the right-hand side of (2.5.5), on the event F c
1 we apply the

strong Markov property [(log u)
1
β ] times to conclude that

E
[
F c

1 , P0,ω

(
TCL(u)

> u
)]
≤
(

1

2

)[(log u)
1
β ]

. (2.5.6)

To bound the second term of the right-hand side of (2.5.5), we will use the fact that for

each ω ∈ Ω there exists x0 ∈ CL(u) such that

Px0,ω(H̃x0 > TCL(u)
) ≤

2|CL(u)|
tω(CL(u))

(2.5.7)

where for y ∈ Zd,

H̃y = inf{n ≥ 1 : Xn = y}.

(2.5.7) can be derived using the fact that for every subset A ⊂ Zd and x ∈ A,

Ex,ω(TA) =
∑
y∈A

Px,ω(Hy < TA)

Py,ω(H̃y > TA)

(see for example Lemma 1.3 of Sznitman [Sz01]). Now note that (2.5.7) implies

P(F1) ≤ P

(
ω ∈ Ω : ∃ x0 ∈ CL(u) such that Px0,ω(H̃x0 > TCL(u)

) ≤ 2(log u)
1
β

u
|CL(u)|

)
.

(2.5.8)
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Choose for each x ∈ CL(u) a point yx as any point in Zd which is closest to the point

x+

(
log u

2M
√
d(v̂ · e1)

)
v̂ = x+ 2

(
Lβ

v̂ · e1

)
v̂. It is straightforward to see that

N − 1 ≤ |yx − x|1 ≤ N + 1, (2.5.9)

where

N :=
|v̂|1 log u

2M
√
d(v̂ · e1)

.

We can now find 2d different paths {π(i) : 1 ≤ i ≤ 2d}, each one with ni steps, with

π(i) := {π(i)
1 , . . . , π(i)

ni
} for each 1 ≤ i ≤ 2d such that the following conditions are satisfied:

(a) Each path π(i) goes from x to yx, so that π
(i)
1 = x and π(i)

ni
= yx.

(b) Except for the initial and last points, the paths are pairwise disjoint so that

π(i) ∩ π(j) = {x, yx} for all 1 ≤ i < j ≤ 2d.

(c) The number of steps ni of each path is bounded by N + 4.

Figure 2.8: The 2d paths from x to yx are represented by dashed lines.
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In Figure 2.8 it is seen how can one construct such a set of paths for dimensions d = 2 (a

similar construction works for dimensions d ≥ 3). From Figure 2.8, note that the maximal

number of steps of each path is given by |yx − x|1 + 4, where the 4 corresponds to the

extra steps which have to be performed when a path exits the point x or enters the point

yx using a direction e ∈ U such that e · v̂ < 0. Let us now introduce the event

F2 :=
{
ω ∈ Ω : for each x ∈ CL(u), ∃ i ∈ {1, . . . , 2d} such that
ni∑
j=1

log
1

ω(π
(i)
j ,∆π

(i)
j )
≤ 2(M − 1)(v̂ · e1)

√
d

|v̂|1
ni

}
.

Then, with the help of (2.5.8) we have that

P(F1) ≤ P

(
∃ x0 ∈ CL(u) such that Px0,ω(H̃x0 > TCL(u)

) ≤ 2(log u)
1
β

u
|CL(u)|, F2

)
+ P(F c

2 ).

(2.5.10)

Let us define

F3 :=

{
ω ∈ Ω : ∃ x0 ∈ CL(u) such that Px0,ω(H̃x0 > TCL(u)

) ≤ 2(log u)
1
β

u
|CL(u)|, F2

}
.

Note that on the event F3, which appear in the probability of the right-hand side of

(2.5.10), we can use the definition of the event F2 to join x0 and yx0 using one of the

paths π(i) to conclude that

e
− 8(M−1)(v̂·e1)

√
d

|v̂|1 u−(1− 1
M )Pyx0 ,ω

(
TCL(u)

< Hx0

)
≤ Px0,ω

(
TCL(u)

< H̃x0

)
≤ 2(log u)

1
β

u
|CL(u)|.

In particular, on F3 we can see that for u large enough yx0 ∈ CL(u). As a result, on F3 we

have that for u large enough

Pyx0 ,ω

(
XTyx0+Uβ,L

· e1 > yx0 · e1

)
≤ Pyx0 ,ω

(
TCL(u)

< Hx0

)
≤ 1

u
1

2M

= e−2
√
dL(u)β ,

where
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Uβ,L := {x ∈ Zd : −Lβ < x · e1 < L}.

From this and using the translation invariance of the measure P, we conclude that

P

(
∃ x0 ∈ CL(u) such that Px0,ω[H̃x0 > TU ] ≤ 2(log u)

1
β

u
|CL(u)|, F2

)
≤ |CL(u)|P

(
P0,ω

(
XTUβ,L(u)

· e1 > 0
)
≤ e−2

√
dL(u)β

)
≤ |CL(u)|P

(
P0,ω

(
XTBβ,L(u)

· e1 > 0
)
≤ e−2

√
dL(u)β

)
,

where the titled box Bβ,L was defined in (2.4.1) of section 2.4. Therefore, we can estimate

the first term of the right-hand side of (2.5.10) using Proposition 2.4.1 to conclude that

there is a constant c5,2 > 0 such that for each β0 ∈
(

1

2
, 1

)
one has that

P

(
∃ x0 ∈ CL(u) such that Px0,ω[H̃x0 > TU ] ≤ 2(log u)

1
β

u
|CL(u)|, F2

)
≤ 1

c5,2

e−c5,2L(u)g(β0,β,ζ) ,

(2.5.11)

where g(β0, β, ζ) is defined in (2.4.2) of Proposition 2.4.1. On the event F c
2 , for each

x ∈ CL we define ω∗ := max{ω(x, ei) : i = 2, . . . , 2d}. Let i∗ be the direction where

this maximum is achieved. To be more precise, we write π∗ := π(i∗). Thus, for instance,

ω(π∗1,∆π
∗
1) = ω∗(π1,∆π1). We will also define n∗ := ni∗ . Now, applying Chebyshev

inequality, we can say that for any α > 0 one has that

P(F c
2 ) ≤ P

(
∃x ∈ CL(u) such that log

1

ω(π1
1,∆π

1
1)

+ log
1

ω(π∗1,∆π
∗
1)

+

n1∑
j=2

log
1

ω(π1
j ,∆π

1
j )

+
n∗∑
j=2

log
1

ω(π∗j ,∆π
∗
j )
> 2(M − 1)

(v̂ · e1)
√
d

|v̂|1
(n1 + n∗)

)

≤ |CL(u)|E
[
e
α log 1

ω(π1
1 ,∆π

1
1)

+α log 1
ω(π∗1 ,∆π

∗
1) e

α
∑n1
j=2 log 1

ω(π1
j
,∆π1

j
) e
α
∑n∗
j=2 log 1

ω(π∗
j
,∆π∗

j
)

]
e
−4n1α(M−1)

(v̂·e1)
√
d

|v̂|1 ,

where we have used the inequality nj ≥ n1 valid for every 1 ≤ j ≤ 2d, which is a

consequence of the fact that e1 · v̂ > 0. Now, by the construction of these paths, the

exponentials that appear under the expectation are independent. Hence, with the help of

the inequality |CL(u)| ≤ e(N+4) log ηα , valid for u large enough, we have that
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P (F c
2 ) ≤ E

[
e
α log 1

ω(π1
1 ,∆π

1
1)

+α log 1
ω(π∗1 ,∆π

∗
1)

]
e3(N+4) log ηαe

−4n1α(M−1)
(v̂·e1)

√
d

|v̂|1 .

Meanwhile, the expectation in the above inequality can be estimated as follows

E
[
e
α log 1

ω(π1
1 ,∆π

1
1)

+α log 1
ω(π∗1 ,∆π

∗
1)

]
= E

[
e
α log 1

ω(π1
1 ,∆π

1
1)

+α log 1
ω(π∗1 ,∆π

∗
1) , ω(π1

1,∆π
1
1) > ω(π∗1,∆π

∗
1)

]
+E

[
e
α log 1

ω(π1
1 ,∆π

1
1)

+α log 1
ω(π∗1 ,∆π

∗
1) , ω(π1

1,∆π
1
1) ≤ ω(π∗1,∆π

∗
1)

]
≤ E

[
e
α log 1

ω(π1
1 ,∆π

1
1)

+α log 1
ω(π∗1 ,∆π

∗
1) ,

1

2d
≤ ω(π1

1,∆π
1
1)

]
+E

[
e
α log 1

ω(π1
1 ,∆π

1
1)

+α log 1
ω(π∗1 ,∆π

∗
1) ,

1

2d
≤ ω(π∗1,∆π

∗
1)

]
≤ (2d)αE

[
e
α log 1

ω(π2
1 ,∆π

2
1)

]
+ (2d)αE

[
e
α log 1

ω(π1
1 ,∆π

1
1)

]
≤ 2α+1dαηα <∞,

where we have used in the last line the fact that ω(π∗1,∆π
∗
1) ≥ ω(π2

1,∆π
2
1) by the definition

of ω∗. As a result, using the inequality N − 1 ≤ n1, we have that

P (F c
2 ) ≤ 2α+1dαηαe

4(M−1)
(v̂·e1)

√
d

|v̂|1 e3(N+4) log ηαe−2α(1− 1
M ) log u.

Using the definition of N , we see from here that for every α′ < α, if we choose M such

that

α′ < α

(
1− 1

M

)
− 3|v̂|1 log ηα

4M
√
d(v̂ · e1)

,

one has that for u large enough

P(F c
2 ) ≤ c5,3u

−2α′ . (2.5.12)

for some constant c5,3 > 0. Now note that for each β ∈
(

5

6
, 1

)
there exists a β0 ∈

(
1

2
, β

)
such that for every ζ ∈

(
0,

1

2

)
one has that

g(β, β0, ζ) > β. (2.5.13)

Therefore, substituting (2.5.11) and (2.5.12) back into (2.5.10) and using (2.5.13) we can

see that there is a constant c5,4 > 0 such that for u large enough
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P(F1) ≤ c5,4u
−2α′ . (2.5.14)

Now with the help of (2.5.5), (2.5.6) and (2.5.14) there exists a constant c5,5 > 0 such

that for u large

P0

(
TCL(u)

> u
)
≤ c5,5u

−2α′ . (2.5.15)

Finally, since γ ∈ (β, 1) in (2.5.4), using (2.5.3) we conclude the proof, since we see that

for u large enough

P0(τ1 > u) ≤ c5,6u
−2α′ ,

for a certain constant c5,6 > 0. This proves part (a) of Proposition 2.5.1 under the

assumption that (E)α is satisfied. Let us now take a ᾱ = {αe : e ∈ U}. Note that

P(F c
2 ) =

P

(
∃x ∈ CL(u) such that ∀ i log

1

ω(π
(i)
1 ,∆π

(i)
1 )

+

nj∑
j=2

log
1

ω(π
(i)
j ,∆π

(i)
j )

> 2(M − 1)
(v̂ · e1)

√
d

|v̂|1
nj

)

≤ |CL(u)|E
[
e
∑
i α(ei) log 1

ω(0,ei)

]
e
−2(

∑
i niα(ei))(M−1)

(v̂·e1)
√
d

|v̂|1 ΠiE

[
e
α(ei)

∑ni
j=2 log 1

ω(π(i)
j
,∆π

(i)
j )

]
≤ |CL(u)|ηᾱe

∑
i ni log ηα(ei)e−

∑
i α(ei)(1− 1

M ) log u,

where ηᾱ := E
[
e
∑
i α(ei) log 1

ω(0,ei)

]
. Choosing M large enough and following the argument

leading to (2.5.14), we conclude that for every α′ <
∑
i

α(ei) one has that

P(F c
2 ) ≤ c5,7e

−α′ log u

for some constant c5,7 > 0 and hence that

P(F1) ≤ c5,8e
−α′ log u,

for some constant c5,8 > 0. This proves part (b) of Proposition 2.5.1.
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CHAPTER 3

LEVEL 1 QUENCHED LARGE DEVIATION PRINCIPLE

FOR A RANDOM WALK IN MARKOVIAN

TIME-DEPENDENT RANDOM ENVIRONMENT

3.1 Introduction

We consider uniformly elliptic random walks in time-space random environment both

in continuous and discrete time. We present two alternative short proofs of the level 1

quenched large deviation principle under mild conditions on the environment, based on the

use of the sub-additive ergodic theorem as presented by Varadhan in [Var03]. Previously,

in the discrete time case, Rassoul-Agha, Seppäläinen and Yilmaz [RSY11], proved a level

2 and 3 large deviation principle, from which the level 1 principle can be derived via

contraction.

Let κ2 > κ1 > 0. Denote by G := {e1, e−1, . . . , ed, e−d} the set of unit vectors in

Zd. Define Q := {v = {v(e) : e ∈ G} : κ1 ≤ inf
e∈G

v(e) ≤ sup
e∈G

v(e) ≤ κ2}. Consider a

continuous time Markov process ω := {ωt : t ≥ 0} with state space Ωc := QZd , so that

ωt := {ωt(x) : x ∈ Zd} with ωt(x) := {ωt(x, e) : e ∈ G} ∈ Q. We call ω the continuous

time environmental process. We assume that for each initial condition ω0, the process ω

defines a probability measure Qc
ω0

on the Skorokhod space D([0,∞); Ωc). Let µ be an

invariant measure for the environmental process ω so that for every bounded continuous

function f : Ωc → R and t ≥ 0 we have that

∫
f(ωt)dµ =

∫
f(ω0)dµ.

Assume that µ is also invariant under the action of space-translations. Furthermore, we
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define Qc
µ :=

∫
Qc
ωdµ, where with a slight abuse of notation here ω ∈ Ωc. For a given

trajectory ω ∈ D([0,∞); Ωc) consider the process {Xt : t ≥ 0} defined by the generator

Lsf(x) :=
∑
e∈G

ωs(x, e)(f(x+ e)− f(x)),

where s ≥ 0. We call this process a continuous time random walk in a uniformly elliptic

time-dependent random environment and denote for each x ∈ Zd by P c
x,ω the law on

D([0,∞);Zd) of this random walk with initial condition X0 = x. We call P c
x,ω the quenched

law starting from x of the random walk.

For x ∈ Rd, |x|2, |x|1 and |x|∞ denote respectively, their Euclidean, l1 and l∞-norm.

Also, for r > 0, we define Br(x) := {y ∈ Zd : |y − x|2 ≤ r}. Furthermore, given any

topological space T , we will denote by B(T ) the corresponding Borel sets.

We will also consider a discrete version of this model which we define as follows. Let

κ > 0 and R ⊂ Zd finite. Define P := {v = {v(e) : e ∈ R} : inf
e∈R

v(e) ≥ κ,
∑
e∈R

v(e) = 1}.

Consider a discrete time Markov process ω := {ωn : n ≥ 0} with state space Ωd := PZd ,

so that ωn := {ωn(x) : x ∈ Zd} with ωn(x) := {ωn(x, e) : e ∈ R} ∈ P . We call ω the

discrete time environmental process. Let us denote by Qd
ω the corresponding law of the

process defined on the space ΩN
d . Let µ be an invariant measure for the environmental

process ω so that for every bounded continuous function f : Ωd → R and n ≥ 0 we have

that

∫
f(ωn)dµ =

∫
f(ω0)dµ.

Assume that µ is also invariant under the action of space-translations. Furthermore, we

define Qd
µ :=

∫
Qd
ωdµ. Given ω ∈ Ωd and x ∈ Zd, consider now the discrete time random

walk {Xn : n ≥ 0} with a law P d
x,ω on (Zd)N defined through P d

x,ω(X0 = x) = 1 and the

transition probabilities

P d
x,ω(Xn+1 = x+ e|Xn = x) = ωn(x, e),

for n ≥ 0 and e ∈ R. We call this process a discrete time random walk in a uniformly

elliptic time-space random environment with jump range R and call P d
x,ω the quenched law
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of the discrete time random walk starting from x. We will say that R corresponds to the

nearest neighbor case if R = {e ∈ Zd : |e|1 = 1}. We say that a subset A ⊂ Zd is convex

if there exists a convex subset V ⊂ Rd such that A = V ∩ Zd, while we say that A is

symmetric if A = −A. Throughout, we will assume that the jump range is R is finite,

convex and symmetric or that it corresponds to the nearest neighbor case.

Throughout we will make the following ergodicity assumption. Note that we do not

demand the environment to be necessarily ergodic under time shifts.

Assumption (EC). Consider the continuous time environmental process ω. For each

s > 0 and x ∈ Zd define the transformation Ts,x : D([0,∞); Ωc)→ D([0,∞); Ωc) by

(Ts,xω)t(y) := ωt+s(y + x).

We say that the environmental process ω satisfies assumption (EC) if {Ts,x : s > 0, x ∈ Zd}

is an ergodic family of transformations acting on the space (D([0,∞); Ωc),B(D([0,∞); Ωc)), Q
c
µ).

In other words, the latter means that whenever A ∈ B(D([0,∞); Ωc)) is such that

T−1
s,xA = A for every s > 0 and x ∈ Zd, then Qc

µ(A) is 0 or 1.

Assumption (ED). Consider the discrete time environmental process ω. For x ∈ Zd

define the transformation T1,x : D([0,∞); Ωd)→ D([0,∞); Ωd) by

(T1,xω)n(y) := ωn+1(y + x).

We say that the environmental process ω satisfies assumption (ED) if {T1,x : x ∈ R} is an

ergodic family of transformations acting on the space (ΩN
d ,B(ΩN

d ), Qd
µ). In other words,

whenever A ∈ B(ΩN
d ) is such that T−1

1,xA = A for every x ∈ R, then Qd
µ(A) is 0 or 1.

It is straightforward to check that assumption (ED) is equivalent to asking that whenever

A ∈ B(ΩN
d ) is such that A = T−1

n,xA for every x ∈ R and n ∈ N then Qd
µ(A) is 0 or 1.

In this chapter we present a level 1 quenched large deviation principle for both the

continuous and the discrete time random walk in time-space random environment. It

should be noted that the discrete time version of our result can be derived via a con-

traction principle from results that have been obtained in Rassoul-Agha, Seppäläinen

and Yilmaz [RSY11] establishing level 2 and 3 large deviations, for discrete time random
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walks on time-space random environments and potentials. There, the authors also derive

variational expressions for the rate functions. Nevertheless, the proofs we present here of

both Theorem 3.1.1 and 3.1.2, are short and direct.

Theorem 3.1.1. Consider a continuous time random walk {Xt : t ≥ 0} in a uniformly

elliptic time-dependent environment ω satisfying assumption (EC). Then, there exists a

convex continuous rate function Ic(x) : Rd → [0,∞) such that the following are satisfied.

(i) For every open set G ⊂ Rd we have that Qc
µ-a.s.

lim
t→∞

1

t
logP c

0,ω

(
Xt

t
∈ G

)
≥ − inf

x∈G
Ic(x).

(ii) For every closed set C ⊂ Rd we have that Qc
µ-a.s.

lim
t→∞

1

t
logP c

0,ω

(
Xt

t
∈ C

)
≤ − inf

x∈C
Ic(x).

To state the discrete time version of Theorem 3.1.1, we need to introduce some notation.

Let R0 := {0} ⊂ Zd, R1 := R and for n ≥ 1 define

Rn+1 := {y ∈ Zd : y = x+ e for some x ∈ Rn and e ∈ R},

and Un := Rn/n. Note that Rn is the set of sites that a random walk with jump range R

visits with positive probability at time n. We then define U as the set of limit points of

the sequence of sets {Un : n ≥ 1}, so that

U := {x ∈ Rd : x = lim
n→∞

xn for some sequence xn ∈ Un}. (3.1.1)

Theorem 3.1.2. Consider a discrete time random walk {Xn : n ≥ 0} in a uniformly

elliptic time-dependent environment ω satisfying assumption (ED) with jump range R.

Assume that either (i) R is finite, convex, symmetric and there is a neighborhood of 0

which belongs to the convex hull of R; (ii) or that R corresponds to the nearest neighbor

case. Consider U defined in (3.1.1). Then U equals the convex hull of R and there exists

a convex rate function Id(x) : Rd → [0,∞] such that Id(x) ≤ | log κ| for x ∈ U , Id(x) =∞

for x /∈ U , I is continuous for every x ∈ U o and the following are satisfied.
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(i) For every open set G ⊂ Rd we have that Qd
µ-a.s.

lim
n→∞

1

n
logP d

0,ω

(
Xn

n
∈ G

)
≥ − inf

x∈G
Id(x).

(ii) For every closed set C ⊂ Rd we have that Qd
µ-a.s.

lim
n→∞

1

n
logP d

0,ω

(
Xn

n
∈ C

)
≤ − inf

x∈C
Id(x).

Both quenched and annealed large deviations for discrete time random walks on random

environments which do not depend on time, have been thoroughly studied in the case in

which d = 1 (see the reviews of Sznitman [Sz04] and Zeitouni [Zei04] for both the one-

dimensional and multi-dimensional cases). The first quenched multidimensional result

was obtained by Zerner in [Z98] under the so called plain nestling condition, concerning

the law of the support of the quenched drift (see also [Zei04] and [Sz04]). In [Var03],

Varadhan established both a general quenched and annealed large deviation principle for

discrete time random walks in static random environments via the use of the subadditive

ergodic theorem. In the quenched case, he assumed uniform ellipticity and the ergodi-

city assumption (ED). Subsequently, in his Ph.D. thesis [Ros06], Rosenbluth extended the

quenched result of Varadhan under a condition weaker than uniform ellipticity, along with

a variational formula for the rate function (see also Yilmaz [Y08, Yil09a, Yil09b]). The

method of Varadhan based on the subadditive ergodic theorem and of Rosenbluth [Ros06],

Yilmaz [Yil09b] and Rassoul-Agha, Sepäläinen, Yilmaz [RSY11], are closely related to the

use of the subadditive ergodic theorem in the context of non-linear stochastic homoge-

nization (see for example the paper of dal Maso, Modica [DMM86]). Closer and more

recent examples of stochastic homogenization for the Hamilton-Jacobi-Bellman equation

with static Hamiltonians via the subadditive ergodic theorem are the work of Rezakhanlou

and Tarver [RT00] and of Souganidis [So99] and in the context of the totally asymme-

tric simple K-exclusion processes and growth processes the works of Seppäläinen in [S99]

and Rezakhanlou in [R02]. Stochastic homogenization for the Hamilton-Jacobi-Bellman

equation with respect to time-space shifts was treated by Kosygina and Varadhan in

[KV08] using change of measure techniques giving variational expressions for the effective

Hamiltonian.
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A particular case of Theorem 3.1.1 is the case of a random walk which has a drift in

a given direction on occupied sites and in another given direction on unoccupied sites,

where the environment is generated by an attractive spin-flip particle system or a simple

exclusion process (see Avena, den Hollander and Redig [ADHR10] for the case of a one-

dimensional attractive spin-flip dynamics, and also [ADHR11, ADSV11, DHDSS11]). This

case is also included in the results presented in [RSY11]. Another particular case of

Theorem 3.1.1 is a continuous time random walk in a static random environment with a

law which is ergodic under spatial translations: two of these cases are the Bouchaud trap

random walk with bounded jump rates (see for example [BC06]) and the continuous time

random conductances model (see for example [DFGW89]). Our proof would also apply

to the polymer measure defined by a continuous time random walk in time-dependent

random environment and bounded random potential (see [RSY11]). Note that Theorem

3.1.2 does include the classical nearest neighbor case (a nearest neighbor case example is

the random walk on a time-space i.i.d. environment studied by Yilmaz [Yil09a]).

Our proofs are obtained by directly establishing the level 1 large deviation principle

and is based on the sub-additive ergodic theorem as used by Varadhan in [Var03]. Let

us note, that in [Var03], Varadhan applies sub-additivity directly to the logarithm of a

smoothed up version of the inverse of the transition probabilities of the random walk,

as opposed to the earlier approach of Zerner [Z98] (see also Sznitman [S98]), where sub-

additivity is applied to a generalized Laplace transform of the hitting times of sites of

the random walk forcing to assume the so called nestling property on the random walk.

While our methods do not give any explicit information about the rate function, besides

its convexity and continuity, the proofs are short and simple.

We do not know how to define a smoothed up version of the transition probabilities

as is done by Varadhan in [Var03]. We therefore have to prove directly an equicontinuity

estimate for the transition probabilities of the random walk, which is the main difficulty in

the proofs of Theorems 3.1.1 and 3.1.2. In the case of Theorem 3.1.1 we follow the method

presented in [DGRS12]: we first express the transition probabilities of the walk in terms

of those of a simple symmetric random walk through a Radon-Nykodym derivative, then
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through the use of Chapman-Kolmogorov equation we rely on standard large deviation

estimates for the continuous time simple symmetric random walk.

In section 3.2 we present the proof of Theorem 3.1.1 using the methods developed in

[DGRS12]. In section 3.3 we continue with the proof of Theorem 3.1.2 in the case in which

the jump range of the walk R is convex, symmetric and a neighborhood of 0 is contained

in its convex hull. In section 3.4 we prove Theorem 3.1.2 for the discrete time nearest

neighbor case. Throughout the rest of the chapter we will use the notations c, C, C ′, C ′′

to refer to different positive constants.

3.2 Proof of Theorem 3.1.1

For each s ≥ 0, let θs : D([0,∞); Ωc)→ D([0,∞); Ωc) denote the canonical time shift. As

in [DGRS12], we first define for each 0 ≤ s < t and x, y ∈ Zd the quantities

e(s, t, x, y) := P c
x,θsω (Xt−s = y) ,

and

ac(s, t, x, y) := − log e(s, t, x, y),

where the subscript c in ac is introduced to distinguish this quantity from the correspon-

ding discrete time one. Note that these functions still depend on the realization of ω.

We call ac(s, t, x, y) the point to point passage function from x to y between times s and

t. Due to the fact that we are considering a continuous time random walk, here we do

not need to smooth out the point to point passage functions (see [Var03]). Nevertheless,

there is an equicontinuity issue that should be resolved. Theorem 3.1.1 will follow directly

from the following shape theorem. A version of this shape theorem for a random walk in

random potential has been established as Theorem 4.1 in [DGRS12] (see also Theorem

2.5 of Chapter 5 of Sznitman [S98]).

Theorem 3.2.1. [Shape theorem] There exists a deterministic convex function Ic :

Rd → [0,∞) such that Qc
µ − a.s., for any compact set K ⊂ Rd
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lim
t→∞

sup
y∈tK∩Zd

∣∣∣t−1ac(0, t, 0, y)− Ic
(y
t

)∣∣∣ = 0. (3.2.1)

Furthermore, for any M > 0, we can find a compact K ⊂ Rd such that Qc
µ − a.s.

lim
t→∞

1

t
logP c

0,ω

(
Xt

t
/∈ K

)
≤ −M. (3.2.2)

Let us first see how to derive Theorem 3.1.1 from Theorem 3.2.1. We will first prove the

upper bound of part (ii) of Theorem 3.1.1. By (3.2.2) of Theorem 3.2.1, we know that

we can choose a compact set K ⊂ Rd such that

lim
t→∞

1

t
logP c

0,ω

(
Xt

t
/∈ K

)
< − inf

x∈C
Ic(x),

where C is a closed set. It is therefore enough to prove that

lim
t→∞

1

t
logP c

0,ω

(
Xt

t
∈ C ∩K

)
≤ − inf

x∈C
Ic(x).

Now,

lim
t→∞

1

t
logP c

0,ω

(
Xt

t
∈ C ∩K

)
≤ lim

t→∞

1

t
sup

y∈(tC∩tK)∩Zd
logP c

0,ω (Xt = y)

= lim
t→∞

1

t
logP c

0,ω (Xt = yt) ,

where yt ∈ (tC ∩ tK)∩Zd, is a point that maximizes P c
0,ω(Xt = ·). Now, by compactness,

there is a subsequence tn →∞ such that

lim
n→∞

ytn
tn

=: x∗ ∈ C ∩K,

and lim
t→∞

1

t
logP c

0,ω (Xt = yt) = lim
n→∞

1

tn
logP c

0,ω (Xtn = ytn). Thus, by the continuity of Ic

and by (3.2.1) we see that

lim
t→∞

1

t
logP c

0,ω

(
Xt

t
∈ C ∩K

)
≤ −Ic(x∗) ≤ − inf

x∈C
Ic(x).

To prove the lower bound, part (i) of Theorem 3.1.1, note that by (3.2.1) we have that
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lim
t→∞

1

t
logP c

0,ω

(
Xt

t
∈ G

)
≥ lim

t→∞

1

t
sup

y∈(tG)∩Zd
logP c

0,ω (Xt = y) ≥ − inf
x∈G

Ic(x).

Let us now continue with the proof of Theorem 3.2.1. Display (3.2.2) of Theorem 3.2.1

follows from standard large deviation estimates for the process {Nt : t ≥ 0}, where Nt is

the total number of jumps up to time t of the random walk {Xt : t ≥ 0}, which can be

coupled with a Poisson process of parameter 2dκ2. To prove the first statement (3.2.1) of

Theorem 3.2.1 we first observe that for every 0 ≤ t1 < t2 < t3 and x1, x2, x3 ∈ Zd one has

that Qc
µ-a.s.

ac(t1, t3, x1, x3) ≤ ac(t1, t2, x1, x2) + ac(t2, t3, x2, x3). (3.2.3)

We will also need to obtain bounds on the point to point passage functions which will be

eventually used to prove some crucial equicontinuity estimates. To prove these bounds,

we first state Lemma 4.2 of [DGRS12] with its respective proof, which is a large deviation

estimate for the simple symmetric random walk.

Lemma 3.2.1. Let X be a simple symmetric random walk on Zd with jump rate κ and

starting point X(0) = 0. For each x ∈ Zd and t > 0 let p(t, 0, x) be the probability that

this random walk is at position x at time t starting from 0. Then for every t > 0 and

x ∈ Zd, we have

p(t, 0, x) =
e−J(x

t
) t

(2πt)
d
2 Πd

i=1

(x2
i

t2
+ κ2

d2

)1/4
(1 + o(1)) , (3.2.4)

where

J(x) :=
d∑
i=1

κ

d
j
(dxi
κ

)
with j(y) := y sinh−1 y −

√
y2 + 1 + 1,

and the error term o(1) tends to zero as t→∞ uniformly in x ∈ tK∩Zd, for any compact

K ⊂ Rd. Furthermore the function j is increasing with |y| and j ≥ 0.

Proof. Since the coordinates of X are independent, it suffices to consider the case X is a

rate
κ

d
simple symmetric random walk on Z. Let σ :=

t

dte
. Let Zλ

1 , . . . , Z
λ
dte be i.i.d. with

common law

P (Zλ
1 = y) = p(σ, 0, y)eλy−Φ(λ), y ∈ Z
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where

Φ(λ) := logE(eλX(σ)) =
σκ

d
(coshλ− 1).

Here E is the expectation with respect to P . Note that

E(Zλ
1 ) =

dΦ

dλ
(λ) =

σκ

d
sinhλ and Var(Zλ

1 ) =
d2Φ

d2λ
(λ) =

σκ

d
coshλ.

We will set λ := sinh−1

(
dx

κt

)
so that E(Zλ

1 ) =
x

dte
. If we let Sdte :=

dte∑
i=1

Zλ
1 , then observe

that

p(t, 0, x) = P
(
Sdte = x

)
e−λx+dteΦ(λ) = P

(
Sdte = x

)
e−

κ
d
j( dxκt )t.

Note that Sdte − x has mean 0, variance t

√
x2

t2
+
κ2

d2
, and characteristic function

edte(Φ(ik+λ)−Φ(λ))−ikx = eix(sin k−k)−t
√
x2

t2
+κ2

d2
(1−cos k).

Finally (3.2.4) is deduced applying Fourier inversion.

We will need the following estimates for the transition probabilities.

Lemma 3.2.2. Consider the transition probabilities of a random walk on a uniformly

elliptic time-dependent environment. The following hold Qc
µ-a.s.

(i) Let C3 > 0. There exists a t0 > 0 and constants C1, C
′
1 and C2 such that for ε > 0

small enough and every t ≥ t0, y, z ∈ Zd such that |y − z|2 ≤ εt +
tC3

| log ε|
we have

that

C1e
−C′1t

1

| log ε|1/2 p(εt, z, y) ≤ e(t(1− ε), t, z, y) ≤ C2e
C2t

1

| log ε|1/2 p(εt, z, y).

(ii) Let r > 0. There exists a t0 > 0 and a constant C > 0 such that for each t ≥ t0 and

x ∈ Btr(0) one has that

e(0, t, 0, x) ≥ e−Ctp(t, 0, x).
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(iii) There is a function α : (0,∞) × [0,∞) → (0,∞) such that for each x, y ∈ Zd and

t > s ≥ 0 one has that

e(s, t, x, y) ≥ α(t− s, |x− y|1) > 0. (3.2.5)

Proof. Part (i). Note that

e(t(1− ε), t, z, y) = Ez,t(1−ε)

[
e
∫ t
t(1−ε) log(2dωs(Ys− ,Ys−Ys− ))dNs−

∫ t
t(1−ε)(ωs(Ys,G)−1)ds1Yt(y)

]
,

(3.2.6)

where Ez,s is the expectation with respect to the law of a continuous time simple symmetric

random walk {Yt : t ≥ 0} of jump rate 1 starting from z at time s, Nt is the number of

jumps up to time t of the walk, while for each x ∈ Zd and s > 0, ωs(x,G) :=
∑
e

ωs(x, e)

is the total jump rate at site x and time s (see for example Proposition 2.6 in Appendix

1 of Kipnis-Landim [KL99]). Using the fact that the jump rates are bounded from above

and from below, it is clear that there is a constant C > 0 such that

e
∫ t
t(1−ε) log(2dωs(Ys− ,Ys−Ys− ))dNs−

∫ t
t(1−ε)(ωs(Ys,G)−1)ds ≤ eC(Nt−Nt(1−ε))+Cεt.

Substituting this bound in (3.2.6), we see that

e(t(1− ε), t, z, y) ≤ eCεtE
[
eCNεtpNεt(z, y)

]
, (3.2.7)

where now E is the expectation with respect to a Poisson process {Nt : t ≥ 0} of rate 1

and pn is the n-step transition probability of a discrete time simple symmetric random

walk. Let now Rε :=
1

ε| log ε|1/2
. Note that

E
[
eCNεtpNεt(z, y)

]
≤ eCRεtεp(εt, z, y) + E[eNεtC , Nεt > Rεtε]

≤ eCRεtεp(εt, z, y) + E[e2NεtC ]1/2P (Nεt > Rεtε)
1/2.

Now, using the exponential Chebychev inequality with parameter logRε, we get

P (Nεt > Rεεt) ≤ e−εt(Rε logRε−(Rε−1)) (3.2.8)
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and we compute E[e2NεtC ] = eεt(e
2C−1). Hence,

E
[
eCNεtpNεt(z, y)

]
≤ eCRεtεp(εt, z, y) + eε

t
2

(e2C−1)e−ε
t
2

(Rε logRε−(Rε−1)). (3.2.9)

Now, by Lemma 3.2.1 we know that j(y) is increasing with |y|, so that

sup
y,z:|y−z|2≤εt+ C3t

| log ε|

εtj

(
|z − y|
εt

)
≤ εtj

(
C3

ε| log ε|
+ 1

)
≤ t

(
C3

| log ε|
+ ε

)
log

(
3 +

2C3

ε| log ε|

)
for t ≥ 1. Hence, again by Lemma 3.2.1 with κ = 1, we see that for any constant c > 0

we can choose ε small enough such that

lim
t→∞

eε
t
2

(e2C−1)e−εtc(Rε logRε−(Rε−1))

infy,z p(εt, z, y)
= 0, (3.2.10)

where the infimum is taken over y, z as in the previous display. Applying (3.2.10) with

c = 1/2, we see that the second term of the right-hand side of inequality (3.2.9), after

taking the supremum over y, z such that |y − z|2 ≤ εt+
C3t

| log ε|
, is negligible with respect

to the first one. Hence, for ε small enough, there is a constant C and a t0 > 0 such that

for y, z such that |y − z|2 ≤ εt+
C3t

| log ε|
and t ≥ t0 one has

e(t(1− ε), t, z, y) ≤ Ce(Rε+1)Ctεp(εt, z, y).

Similarly, using the fact that the jump rates are bounded from above and from below it

can be shown that for y, z such that |y − z|2 ≤ εt+
C3t

| log ε|
and t large enough

e(t(1− ε), t, z, y) ≥ e−C
′εtE[e−C

′NεtpNεt(z, y)1Nεt≤Rεεt]

≥ e−(Rε+1)εtC′E[pNεt(z, y)1Nεt≤Rεεt] ≥ e−(Rε+1)εtC′ (p(εt, z, y)− P (Nεt > Rεεt))

≥ C ′′e−(Rε+1)εtC′p(εt, z, y),

where we have used (3.2.8) and (3.2.10) with c = 1.

Part (ii). The proof of part (ii) is analogous to the proof of the lower bound of part (i).

Part (iii). By the same argument as the last part of the proof of part (i), there is a

constant C ′ > 0 such that

e(s, t, x, y) ≥ e−C
′(t−s)E[e−C

′Nt−spNt−s(x, y), Nt−s = |x− y|1]
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But P (Nt−s = |x − y|1) > 0 (there is, with positive probability, a trajectory from 0 to x

such that Nt−s = |x− y|1). Thus,

e(s, t, x, y) ≥ e−C
′(t−s)−C′|x−y|1p|x−y|1(x, y)P (Nt−s = |x− y|1)

≥ e−C
′(t−s)−C′|x−y|1 1

(2d)|x−y|1
P (Nt−s = |x− y|1) > 0.

We can now apply Kingman’s sub-additive ergodic theorem (see for example Liggett

[L85]), to prove the following lemma.

Lemma 3.2.3. There exists a deterministic function Ic : Qd → [0,∞) such that for every

y ∈ Qd, Qc
µ-a.s. we have that

lim
t→∞
ty∈Zd

ac(0, t, 0, ty)

t
= Ic(y). (3.2.11)

Proof. Assume first that y ∈ Zd. Let q ∈ N. We will consider for m > n ≥ 1 the random

variables

Xn,m(y) := ac(nq,mq, ny,my).

By (3.2.3), we have

X0,m(y) ≤ X0,n(y) +Xn,m(y).

By part (iii) of Lemma 3.2.2, we see that the random variables {Xn,m(y)} are integrable.

Hence, by Kingman’s sub-additive ergodic theorem (see Liggett [L85]) we can then con-

clude that the limit

Î(q, y, ω) := lim
m→∞

ac(0,mq, 0,my)

m
(3.2.12)

exists for y ∈ Zd and q ∈ N. We have to show that it is deterministic. For this reason,

let r > 0, z ∈ Zd be arbitrary. It suffices to prove that

Î(q, y, ω) ≤ Î(q, y, Tr,zω) = lim
m→∞

ac(r,mq + r, z,my + z)

m
.

First, we have that
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ac(0,mq, 0,my)

m
≤ ac(0, r, 0, z)

m
+
ac(r,mq, z,my)

m
.

By part (iii) of Lemma 3.2.2, the first term of the right-hand side of the last equation

tends to 0 as m→∞. Therefore,

Î(q, y, ω) = lim
m→∞

ac(0,mq, 0,my)

m
≤ lim

m→∞

ac(r,mq, z,my)

m
. (3.2.13)

On the other hand, for u ∈ N such that m > u > r we have that

ac(r,mq, z,my)

m
≤ ac(r, (m− u)q + r, z, (m− u)y + z)

m

+
ac((m− u)q + r,mq, (m− u)y + z,my)

m
.

Again, by part (iii) of Lemma 3.2.2, the last term tends to 0 as m→∞. Therefore

lim
m→∞

ac(r,mq, z,my)

m
≤ lim

m→∞

ac(r, (m− u)q + r, z, (m− u)y + z)

m
= Î(q, y, Tr,zω).

(3.2.14)

Hence Î(q, y, ω) ≤ Î(q, y, Tr,zω). Since r > 0 and z ∈ Zd are arbitrary, Î(q, y) is shift-

invariant under each transformation Tr,z. By assumption (EC), Î(q, y) is Qc
µ-a.s equal to

a constant for each y. Now, if y ∈ Qd, choose the smallest q ∈ N such that qy ∈ Zd. Then

by (3.2.12), we conclude that

lim
m→∞

ac(0,mq, 0,mqy)

mq
=

1

q
Î(q, qy, ω) =: Ic(y), (3.2.15)

exists (and is well-defined) and is Qc
µ-a.s. equal to a constant.

We now need to extend the definition of the function Ic(x) for all x ∈ Rd and prove the

uniform convergence in (3.2.1). To do this, we will prove that for each compact K there

is a t0 > 0 such that the family of functions {t−1ac(0, t, 0, ty) : t ≥ t0} defined on K is

equicontinuous. We can now proceed to the main step of the proof of Theorem 3.2.1.
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Lemma 3.2.4. Let K be any compact subset of Rd. There exist deterministic φK :

(0,∞) → (0,∞) with lim
r↓0

φK(r) = 0, and t0 > 0 such that for any ε > 0 and t ≥ t0,

Qc
µ-a.s., we have

sup
x,y∈tK∩Zd
|x−y|2≤εt

t−1|ac(0, t, 0, x)− ac(0, t, 0, y)| ≤ φK(ε). (3.2.16)

Proof. Let us note that for every ε > 0, t and x ∈ Zd one has that

e(0, t, 0, x) =
∑
z∈Zd

e(0, t(1− ε), 0, z)e(t(1− ε), t, z, x).

Let RK := sup{|x|2 : x ∈ K} be the maximal distance to 0 for any point in K and

rK =
CK
| log ε|

, where CK is a constant that will be chosen large enough. From part (i)

of Lemma 3.2.2 and Lemma 3.2.1, note that for t ≥ t0 (where t0 is given by part (i) of

Lemma 3.2.2)

e(0, t, 0, x) ≤
∑

z∈BrKt(x)

e(0, t(1−ε), 0, z)e(t(1−ε), t, z, x)+Ce
1

| log ε|1/2
tC−εt 1

d
j(d rKε )

. (3.2.17)

On the other hand by part (ii) of Lemma 3.2.2 we have that for t ≥ t0

e(0, t, 0, x) ≥ e−C
′t−tJ(xt ).

Using the upper bound J
(x
t

)
≤ dRK log(1 + 2dRK) we see that if

ε
1

d
j
(
d
rK
ε

)
> C + C ′ + dRK log (1 + 2dRK) , (3.2.18)

the second term of (3.2.17) is negligible. But (3.2.18) is satisfied for CK > 2(C + C ′ +

dRK log(1 + 2dRK)) and ε > 0 small enough. Hence, it is enough to prove that, Qc
µ-a.s.

we have that

sup
x,y∈tK∩Zd
|x−y|2≤εt

sup
z∈BrKt(x)

e(t(1− ε), t, z, x)

e(t(1− ε), t, z, y)
≤ CetφK(ε). (3.2.19)

To this end, by Lemmas 3.2.1 and 3.2.2

e(t(1− ε), t, z, x)

e(t(1− ε), t, z, y)
≤ Ce

2tC 1

| log ε|1/2 e−εt(J(
x−z
εt )−J( y−zεt )). (3.2.20)
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But,

J

(
z − x
tε

)
− J

(
z − y
tε

)
=

d∑
i=1

1

d

[
j

(
d
zi − xi
tε

)
− j

(
d
zi − yi
tε

)]

≤
d∑
i=1

∣∣∣∣∣1d
∫ d

zi−yi
tε

d
zi−xi
tε

log (1 + 2|u|) du

∣∣∣∣∣ ≤ d log

(
1 +

2dCK
ε| log ε|

)
.

Substituting this estimate back into (3.2.20) we obtain (3.2.19) with φK(ε) = C
1

| log ε|1/2
.

Using this lemma, we can extend Ic to a continuous function on Rd. It remains to show

the convexity of Ic. For this purpose, let λ ∈ (0, 1), x, y ∈ Rd and let (λn) ⊂ (0, 1) ∩ Q,

(xn), (yn) ⊂ Qd such that λn → λ, xn → x, and yn → y. In addition let rn ∈ N be such

that rn(λnxn+(1−λn)yn), λnmrn, and λnmrnxn, are contained in Zd. Then for any n ∈ N

one has

Ic(λnxn + (1− λn)yn) = lim
m→∞

ac(0,mrn, 0,mrn(λnxn + (1− λn)yn))

mrn

≤ lim
m→∞

ac(0, λnmrn, 0, λnmrnxn)

mrn

+ lim
m→∞

ac(λnmrn,mrn, λnmrnxn,mrn(λnxn + (1− λn)yn))

mrn
.

Now taking n → ∞, the continuity of Ic yields that the left-hand side converges to

Ic(λx+(1−λ)y). Taking advantage of the continuity of Ic and (3.2.15), the first summand

on the right-hand side converges to λIc(x) a.s., while in combination with the fact that the

transformations Tλnmrn,λnmrnxn are measure preserving, the second summand converges

in probability to (1 − λ)Ic(y); from the last fact we deduce a.s. convergence along an

appropriate subsequence and hence the convexity of Ic.

3.3 Proof of Theorem 3.1.2 for the convex case

Here we consider the case in which the jump range R of the walk is convex, symmetric

and a neighborhood of 0 is contained in the convex hull of R. Let us call πn,m(x, y), the
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probability that the discrete time random walk in time-space random environment jumps

from time n to time m from site x to site y. Define

ad(n,m, x, y) := − log πn,m(x, y).

As in the continuous time case, we have the following sub-additivity property for n ≤ p ≤

m and x, y, z ∈ Zd,

ad(n,m, x, y) ≤ ad(n, p, x, z) + ad(p,m, z, y). (3.3.1)

We first need to define some concepts that will be used throughout this section. An

element (n, z) of the set N× Zd will be called a time-space point. The time-space points

of the form (1, z), with z ∈ R, will be called steps. Furthermore, given two time-space

points (n1, x
(1)) and (n2, x

(2)) a sequence of steps (1, z(1)), . . . , (1, z(k)), with k = n2 − n1

will be called an admissible path from (n1, x
(1)) to (n2, x

(2)), if x(2) = x(1) + z(1) + . . .+ z(k)

and

πn1,n1+1(x(1), x(1) + z(1))πn1+1,n1+2(x(1) + z(1), x(1) + z(1) + z(2))× · · ·

· · · × πn2−1,n2(x(1) + z(1) + · · ·+ z(k−1), x(1) + z(1) + · · ·+ z(k)) > 0. (3.3.2)

In other words, there is a positive probability for the time-space random walk (n,Xn) to

jump through the sequence of time-space points (n1, x
(1)), (n1+1, x(1)+z(1)), . . . , (n2, x

(2)) =

(n2, x
(1) + z(1) + · · · + z(k)). Note that the sequence of steps (1, z(1)), . . . , (1, z(k)), is an

admissible path if and only if z(j) ∈ R for all 1 ≤ j ≤ k. Let us note that by uniform

ellipticity asking that the left-hand side of (3.3.2) be positive is equivalent to asking that

it be larger than or equal to κn2−n1 . With a slight abuse of notation, we will adopt the

convention that for u ∈ R, [u] is the integer closest to u that is between u and 0. Fur-

thermore, we introduce for x ∈ Rd, the notation [x] := ([x1], . . . , [xd]) ∈ Zd. Throughout,

given A ⊂ Rd we will call Ao its interior.

Lemma 3.3.1. Consider a discrete time random walk in a uniformly elliptic time-dependent

environment ω with finite, convex and symmetric jump range R such that a neighborhood
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of 0 belongs to its convex hull. Then, U equals the convex hull of R and for every n ≥ 1

we have that

Rn = (nU) ∩ Zd. (3.3.3)

Proof. It is straightforward to check that U equals the convex hull of R in Rd. On the

other hand, note that if x ∈ Rn, we have that for every m ∈ N, mx ∈ Rnm, which implies

that
x

n
∈ Unm. This proves that Rn ⊂ (nU)∩Zd. Finally, using the fact that R is convex,

we can prove that (nU) ∩ Zd ⊂ Rn.

For each x ∈ Zd define s(x) as the minimum number n of steps such that there is an

admissible path between (0, 0) and (n, x). Alternatively,

s(x) = min{n ≥ 0 : x ∈ Rn}.

Let us now define a norm in Rd which will be a good approximation for the previous

quantity. For each y ∈ ∂U define ||y|| = 1. Then, for each x ∈ Rd which is of the form

x = ay for some real a ≥ 0, we define ||x|| = a. Note that since U is convex, symmetric

and there is a neighborhood of 0 which belongs to its interior, this defines a norm in

Rd (see for example Theorem 15.2 of Rockafellar [R97]) and that x ∈ U o if and only if

||x|| < 1. Furthermore, note that for every x ∈ Rd we have that

||x|| ≤ s(x) ≤ ||x||+ 1. (3.3.4)

Lemma 3.3.2. Let z ∈ U and x ∈ U o. Then, for each natural n there exists an n2 such

that

n ≤ n2 ≤ n+ 1 +
4d+ 1

1− ||x||
+ n
||x− z||
1− ||x||

. (3.3.5)

and there is an admissible path between (n, z) and (n2, x) so that

ad(0, n2, 0, [n2x]) ≤ ad(0, n, 0, [nz])− log κn2−n. (3.3.6)

Similarly, for each natural n there exists an n1 such that

n− 1− 4d+ 1

1− ||x||
− n ||x− z||

1− ||x||
≤ n1 ≤ n (3.3.7)

126



and there is an admissible path between (n1, x) and (n, z) so that

ad(0, n, 0, [nz]) ≤ ad(0, n1, 0, [n1x])− log κn−n1 (3.3.8)

Proof. Assume that n2 ≥ n. It is enough to prove that for n and n2 satisfying (3.3.5) and

(3.3.6) it is true that

s ([n2x]− [nz]) ≤ n2 − n. (3.3.9)

Now, by (3.3.4) and the fact that ||x− [x]|| ≤ d we have that

s ([n2x]− [nz]) ≤ ||[n2x]− [nz]||+ 1 ≤ ||[n2x]− [nx]||+ ||[nx]− [nz]||+ 1

≤ ||(n2 − n)x||+ ||n(x− z)||+ 4d+ 1 = (n2 − n)||x||+ n||x− z||+ 4d+ 1.

It follows that to prove (3.3.9) it is enough to show that

(n2 − n)||x||+ n||x− z||+ 4d+ 1 ≤ n2 − n, (3.3.10)

which is equivalent to

n2 ≥ n+
4d+ 1

1− ||x||
+ n
||x− z||
1− ||x||

.

This proves (3.3.5). Now assume that n1 ≤ n. We have to show that

s ([nz]− [n1x]) ≤ n− n1.

Now,

s ([nz]− [n1x]) ≤ ||[nz]− [n1x]||+ 1 ≤ n||z − x||+ (n− n1)||x||+ 4d+ 1.

Hence, it is enough to show that

n||z − x||+ (n− n1)||x||+ 4d+ 1 ≤ n− n1,

which is equivalent to
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n1 ≤ n− 4d+ 1

1− ||x||
− n ||z − x||

1− ||x||
.

We are now ready to prove the following proposition.

Proposition 3.3.1. For each x ∈ Rd we have that Qd
µ-a.s. the limit

I(x) := − lim
n→∞

1

n
log π0,n(0, [nx]),

exists, is convex and deterministic. Furthermore, I(x) <∞ if and only if x ∈ U .

Proof. From Lemma 3.3.1, it follows that for x /∈ U it is true for n ≥ 1, that nx /∈ nU

and hence from Lemma 3.3.1 that nx /∈ Rn so that πn(0, [nx]) = 0. Thus, I(x) = ∞.

We divide the rest of the proof in four steps. In step 1 for each x ∈ Qd ∩ U o we define a

function Ĩ(x). In step 2 we will show that Ĩ is deterministic for x ∈ Qd ∩ U o. In step 3

we will show that I(x) is well-defined for x ∈ Qd ∩ U o and that I(x) = Ĩ(x) and in step

4, we extend the definition of I(x) to x ∈ U .

Step 1. Here we will define for each x ∈ Qd ∩ U o a function Ĩ(x). Given x ∈ Qd ∩ U o,

there exist a k ∈ N and a y ∈ Zd ∩ kU o such that x = k−1y. Now, by display (3.3.3) of

Lemma 3.3.1 we know that y ∈ Rk. Then, by the convexity of R and the sub-additive

ergodic theorem and (3.3.1) we can define Qd
µ-a.s.

Ĩ(k−1y) := − lim
m→∞

1

mk
log π0,mk(0,my).

This definition is independent of the representation of x. Indeed, assume that x = k−1y1 =

l−1y2 for some k, l ∈ N, y1 ∈ Zd ∩ kU o and y2 ∈ Zd ∩ lU o. Then, passing to subsequences,

Ĩ(k−1y1) = − lim
n→∞

1

nlk
log π0,nlk(0, nly1)

= − lim
n→∞

1

nlk
log π0,nlk(0, nky2) = Ĩ(l−1y2).
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Step 2. Here we will show that Ĩ is deterministic in Qd ∩ U o. Let x ∈ Qd ∩ U o. We know

that there exists a k ∈ N and a y ∈ Zd ∩ kU o such that x = k−1y. Let us now fix z ∈ R.

It suffices to prove that

Ĩ(x, ω) ≤ Ĩ(x, T1,zω) = lim
m→∞

ad(1,mk + 1, z,my + z)

mk
.

First, for each n ∈ N, we have that

ad(0,mnk, 0,mny)

mnk
≤ ad(0, 1, 0, z)

mnk
+
ad(1,mnk, z,mny)

mnk
.

By uniform ellipticity, the first term of the right-hand side of the last inequality tends to

0 as m→∞. Therefore,

Ĩ(x, ω) = lim
m→∞

ad(0,mnk, 0,mny)

mnk
≤ lim

m→∞

ad(1,mnk, z,mny)

mnk
. (3.3.11)

On the other hand,

ad(1,mnk, z,mny)

mnk
≤ ad(1, (m− 1)nk + 1, z, (m− 1)ny + z)

mnk

+
ad((m− 1)nk + 1,mnk, (m− 1)ny + z,mny)

mnk
. (3.3.12)

Let us now assume that there is an admissible path from (0, z+(m−1)ny) to (nk−1,mny).

This is equivalent to asking that z satisfies the following condition:

π0,nk−1(z + (m− 1)ny,mny) > 0 for some n ∈ N. (3.3.13)

Then, by uniform ellipticity, the last term of (3.3.12) tends to 0 as m→∞. Therefore, if

z ∈ R satisfies condition (3.3.13), by (3.3.11) and (3.3.12) we have that

Ĩ(x, ω) ≤ Ĩ(x, T1,zω). (3.3.14)

Hence, to finish the proof it is enough to show that every z ∈ R satisfies (3.3.13). Now,

z satisfies (3.3.13) if and only if there exists an n ∈ N such that

z − ny ∈ Rnk−1. (3.3.15)
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We will show by contradiction that every z ∈ R satisfies (3.3.15). Indeed, assume that

for each n it is true that

z − ny /∈ Rnk−1.

Then,

z

nk − 1
− y n

nk − 1
/∈ Unk−1.

Therefore, taking the limit n → ∞, we conclude that
y

k
/∈ U o, which is a contradiction.

This proves that for every z ∈ R condition (3.3.13) is satisfied and hence (3.3.14) is also

valid. It follows now by the ergodicity assumption (ED), that for each x ∈ Qd ∩ U o, Ĩ(x)

is Qd
µ-a.s equal to a constant.

Step 3. Here we will show that I is well-defined in Qd ∩U o and hence equals Ĩ there. Let

x ∈ Qd∩U o. Let k be such that kx ∈ Zd. Given n, choose m so that mk ≤ n < (m+ 1)k.

Note that there exists a sequence of increments z(j) ∈ R, 1 ≤ j ≤ n−mk, such that

[nx] = mkx+ z(1) + · · ·+ z(n−mk).

Hence, by sub-additivity and considering that by uniform ellipticity the path (1, z(1)), . . . ,

(1, z(n−mk)) from [nx] to mkx is admissible, we conclude that

ad(0, n, 0, [nx])

n
≤ ad(0,mk, 0,mkx)

n
− log κn−mk

n
.

It follows that

lim
n→∞

ad(0, n, 0, [nx])

n
≤ Ĩ(x).

For the upper bound, first note that similarly there exists an admissible path of (m+1)k−n

steps from [nx] to (m+ 1)kx. Hence,

ad(0, (m+ 1)k, 0, (m+ 1)kx)

n
≤ ad(0, n, 0, [nx])

n
− log κ(m+1)k−n

n
.

Taking the limit when n→∞ we obtain
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lim
n→∞

ad(0, n, 0, [nx])

n
≥ Ĩ(x).

Step 4. Here we will show that I is well-defined in the set (Rd\Qd) ∩ U o. Let z ∈

(Rd\Qd) ∩ U o. Pick a rational point x such that

1

1− ||x||
≤ 2

1

1− ||z||
. (3.3.16)

For each n, from Lemma 3.3.2, we can find n1, n2 such that n1 ≤ n ≤ n2,

n2

n
· 1

n2

ad(0, n2, 0, [n2x]) ≤ 1

n
ad(0, n, 0, [nz]) + b

(n2

n
− 1
)

and

1

n
ad(0, n, 0, [nz]) ≤ n1

n
· 1

n1

ad(0, n1, 0, [n1x]) + b
(

1− n1

n

)
,

where b = − log κ ∈ (0,∞). Take n → ∞. From (3.3.5) and (3.3.7) and taking C(z) =

2
1

1− ||z||
, the limit points of

n2

n
−1 and 1− n1

n
lie in the interval [0, C(z)||x−z||] because

x satisfies (3.3.16). Consequently from the last two inequalities we see that

I(x) ≤ lim
n→∞

1

n
ad(0, n, 0, [nz]) + C(z)b||x− z|| (3.3.17)

and

lim
n→∞

1

n
ad(0, n, 0, [nz]) ≤ I(x) + C(z)b||x− z||. (3.3.18)

Letting x→ z, we conclude that I is well-defined in the set (Rd\Qd) ∩ U o.

We are now in a position to introduce the rate function of Theorem 3.1.2. We define, for

each x ∈ U ,

Id(x) :=


I(x) for x ∈ U o

lim
Uo3y→x

I(y) for x ∈ ∂U

∞ for x /∈ U.

(3.3.19)
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We will now prove that Id satisfies the requirements of Theorem 3.1.2. By uniform ellip-

ticity, it is clear that I(x) ≤ | log κ| when x ∈ U . From (3.3.17) and (3.3.18), we see that I

is continuous in the interior of R (in fact, Lipschitz continuous in any compact contained

in U o). These observations imply that Id defined in (3.3.19) is bounded by | log κ| in U , is

continuous in U o, and is lower semi-continuous in U . The convexity of Id is derived in a

manner similar to the continuous time case. We now prove parts (i) and (ii) of Theorem

3.1.2.

Part (i) of Theorem 3.1.2 follows immediately from the definition of Id and the fact

that for open sets G, inf
x∈G

I(x) = inf
x∈G

Id(x). To prove part (ii) we first consider a compact

set C contained in U o. In this case, we have

lim
n→∞

1

n
logP d

0,ω

(
Xn

n
∈ C

)
≤ lim

n→∞
sup
x∈C

1

n
log π0,n(0, [nx])

= inf
n

sup
m≥n

sup
x∈C

1

m
log π0,m(0, [mx]) = inf

n
sup
x∈C

sup
m≥n

1

m
log π0,m(0, [mx])

= inf
n

sup
x∈C

an(x),

where we have defined for x ∈ U o,

an(x) := sup
m≥n

1

m
log π0,m(0, [mx]).

Hence, the upper bound follows if we can show that, for any given ε > 0,

sup
x∈C

an(x) ≤ − inf
x∈C

I(x) + ε

for large enough n. If we assume the opposite, we can find points zm ∈ C which have a

subsequence converging to z ∈ C and such that along this subsequence one also has that

1

m
log π0,m(0, [mzm]) > −I(z) + ε.

Applying the first part of Lemma 3.3.2 gives an index m2 > m such that

1

m2

log π0,m2(0, [m2z]) ≥ m

m2

(−I(z) + ε)− b
(

1− m

m2

)
.

Now, since lim
m→∞

m

m2

= 1 and since by Proposition 3.3.1 lim
m2→∞

1

m2

log π0,m2(0, [m2z]) =

−I(z), we obtain that −I(z) ≥ −I(z) + ε, which is a contradiction.
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In the general case, let C ⊂ U be a compact set. Fix δ > 0 and let C1 =
1

1 + δ
C. Now C1

is a compact set contained in U o. Pick ε > 0 small enough so that the closed ε−fattening

C2 = C
(ε)
1 is still a compact set contained in U o. Let n2 = b(1 + δ)nc. Then for large

enough n,
x

n
∈ C implies

x

n2

∈ C2. By uniform ellipticity, we have that

P d
0,ω

(
Xn

n
∈ C

)
κn2−n =

∑
x∈nC∩Zd

P d
0,ω(Xn = x)κn2−n

≤
∑

x∈nC∩Zd
P d

0,ω(Xn = x)πn,n2(x, x) =
∑

x∈nC∩Zd
P d

0,ω(Xn = x,Xn2 = x)

≤
∑

x∈nC∩Zd
P d

0,ω(Xn2 = x) ≤ P d
0,ω

(
Xn2

n2

∈ C2

)
,

where the last inequality is satisfied for n large enough. Then, from the first step of the

proof of part (ii) of Theorem 3.1.2

lim
n→∞

1

n
logP d

0,ω

(
Xn

n
∈ C

)
≤ − inf

x∈C2

I(x) + δb.

By taking ε↘ 0 and using compactness and the continuity of I

lim
n→∞

1

n
logP d

0,ω

(
Xn

n
∈ C

)
≤ − inf

x∈C1

I(x) + δb.

Take δ ↘ 0 along a subsequence δj. This takes C1 to C. For each δj, let zj ∈ C1 = C1(δj)

satisfy I(zj) = inf
C1(δj)

I. Pass to a further subsequence such that lim
j→∞

zj = z ∈ C. Then

regardless of whether z lies in the interior of U or not, by (3.3.19)

lim
j→∞

I(zj) ≥ Id(z) ≥ inf
C
Id,

and we get the final upper bound

lim
n→∞

1

n
logP d

0,ω

(
Xn

n
∈ C

)
≤ − inf

x∈C
Id(x).

3.4 Proof of Theorem 3.1.2 for the nearest neighbor case

Here we consider the case in which the jump range R of the random walk {Xn : n ≥ 0}

is nearest neighbor. Define the even lattice as Zdeven := {x ∈ Zd : x1 + . . . + xd is even}.
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Note that Zdeven is a free Abelian group which is isomorphic to Zd. It therefore has a basis

f1, . . . fd ∈ Zdeven and there is an isomorphism h : Zdeven → Zd such that h(fi) = ei for

1 ≤ i ≤ d. It is obvious that h can be extended as an automorphism defined in Rd. Now,

note that the random walk {Yn : n ≥ 0} defined as

Yn := h(X2n),

is a random walk in Zd with finite, convex and symmetric jump range Q = h(R) and such

that a neighborhood of the origin is contained in its convex hull. From Theorem 3.1.2 for

this class of random walks proved in section 3, it follows that {Yn : n ≥ 0} satisfies a large

deviation principle with a rate function I. From this and the linearity of h we conclude

that the limit

Ieven(x) := I(h(x)) = − lim
n→∞

1

2n
log π0,2n(0, h−1([2nh(x)])), (3.4.1)

exists Qd
µ-a.s, where πn,m(x, y) is the probability that the random walk {Xn : n ≥ 0} jumps

from time n to time m from site x to site y. Furthermore, if U := {x ∈ Rd : |x| ≤ 1}, as

in (3.3.19), one can define

Id,even(x) :=


Ieven(x) for x ∈ U o

lim
Uo3y→x

Ieven(y) for x ∈ ∂U

∞ for x /∈ U,

(3.4.2)

and {X2n : n ≥ 0} satisfies a large deviation principle with rate function Ieven.

At this point, we need to extend the above large deviation principle for the walk at

even times, to all times taking into account the odd number of steps of the random walk.

The next lemma will be very useful for this objective. To do this, we first prove that for

each x ∈ Rd and each g ∈ H :=

{
d∑
i=1

cix : ci ∈ {−1, 0, 1}, x ∈ R

}
we have that,

Ieven(x) := − lim
n→∞

1

2n
log π0,2n(0, h−1([2nh(x)]) + g) Qd

µ−a.s. (3.4.3)

Note that to prove (3.4.3), it is enough to show that for every g ∈ H we have that,

lim
n→∞

1

n
log π̃0,n(0, [nh(x)] + h(g)) = lim

n→∞

1

n
log π̃0,n(0, [nh(x)]), (3.4.4)
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where π̃n,m(x, y) is the probability that the random walk {Yn : n ≥ 1} jumps from time

n to time m from site x to site y. The proof that the limit in the right-hand side of

(3.4.4) exists, is a repetition of the proofs of Lemma 3.3.2 and Proposition 3.3.1, so we

omit it. We just point out here that in the proof of Lemma 3.3.2 we need to replace the

points [nz], [n1x] and [n2x] by [nz] +h, [n1x] +h and [n2x] +h respectively. On the other

hand, the equality in (3.4.4) is established using the uniform ellipticity of the walk and

the Markov property.

Let us now see how to derive from (3.4.3) the large deviation principle for a random

walk with a nearest neighbor jump range R. Note that for any subset A ⊆ Rd one has

that

P0,ω

(
X2n+1

2n+ 1
∈ A

)
=

2d∑
i=1

π0,1(0, ei)Pei,ω

(
X2n

2n
∈ A

)
=

2d∑
i=1

π0,1(0, ei)P0,ω̄

(
X2n

2n
∈ A− ei

2n

)

where ω̄ = {ωn : n ≥ 1} and ei+d = −ei for i = 1, . . . , d. We will show that Pei,ω

(
X2n

2n
∈ A

)
does not depend on ei, regardless of whether A is an open subset or a closed subset of

Rd and we will use the result obtained in the even case. It is important to note that this

argument can be used, even with ω̄, because the limit depends only on the distribution

of ω.

Now, when A = G, where G is an open subset of Rd, we can follow the arguments used

in the convex case, observing that for any x ∈ G and any i ∈ {1, . . . , d}, [nx] + ei ∈ nG,

for n large enough. On the other hand, if A = C, where C is a compact subset of U◦2 ,

note that

lim
n→∞

1

2n
logP0,ω̄

(
X2n

2n
∈ C − ei

2n

)
≤ lim

n→∞
sup

x∈C− ei
2n

1

2n
log π0,2n(0, h−1([2nh(x)]))

= lim
n→∞

sup
x∈C

1

2n
log π0,2n(0, h−1([2nh(x)− h(ei)]))

≤ lim
n→∞

sup
x∈C

max
g∈H

1

2n
log π0,2n(0, h−1([2nh(x)]) + g)

However, by (3.4.3) the last expression is independent of g.
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