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Chapter 1

Introduction

The night sky seems immutable to the human eye, except for some astronomical objects. In

fact, the brightness of stars seems to be unchanged from our childhood until now. However,

the interest to understand the mysterious luminous objects in the sky is not new. Many

ancient civilizations, such as Egyptian and Greek, carried out quantitative measurements

and suggested that a few stars brightness changed over time. Many years later, as the

telescopic studies increased more variable stars were found with a wide range of features.

Nowadays, our ability to see deeper into the universe has improved and more samples of

cosmic populations are available to be studied. Celestial objects exhibit a wide range of

variability in brightness at different wavebands. The study of the brightness of a celestial

object belongs to a discipline called “time domain astronomy”. Time domain astronomy

is the study of how the brightness of astronomical objects changes with time, including

the time-dependent behaviour. Examples of studies in the time domain are the pulsar

variability, and the variability of accreting black holes, variable stars, and the Sun. To

carry out these studies enormous investments in telescopes for repeated measurements

over time are made, as for example, the Vera C. Rubin Observatory constructed in the high

Atacama Desert of Chile (Feigelson et al., 2018, 2021).

Gaining knowledge from astronomical datasets requires a wide range of sophisticated

statistical methods. In this thesis we provide two novel approaches to analyze light curves

1
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of variable astronomical objects. First, we introduce a model to describe periodic variable

stars. Second, we propose a model to describe the variability of X-ray binary systems.

Our model for periodic variable stars allows to describe their behavior from a more

flexible point of view compared to existing approaches. More specifically, we introduce

a model for the description of the so-called modulated light curves that accounts for a

smoothly time-varying trend and amplitudes without assuming a closed-form. We estimate

the curves of this model in both cases of uncorrelated and autocorrelated errors. Moreover,

in the case of unequally spaced time series, we introduce a procedure to detect serial

correlation in the residuals of our fitted model.

In the case of X-ray binary systems, the objective is to propose a model to describe

the nonstationarity observed in the frequency domain using the spectral density. For this

reason, we adopt locally stationary autoregressive moving-average (ARMA) processes.

Under some assumptions, we show that the spectral density of an autoregressive moving-

average process is suitable to describe the spectral density of X-ray binary systems. Then,

assuming a nonparametric form for the time-varying coefficients of locally stationary pro-

cesses, we propose a method to estimate these coefficients and calculate their confidence

intervals.

This introductory chapter is organized as follows. In Section 1.1 we summarize the keys

ingredients of the most popular time series models used in astronomy. In Section 1.2 we

review the main concepts in time series such as mean function, covariance function, sta-

tionarity, autocovariance function, spectral density, among others. We also review the def-

initions of some processes as autoregressive moving-average processes, continuous-time

autoregressive moving-average processes, and the models with trend and seasonality, and

the spectral density for continuous unequally spaced time series. All these models involve

time-invariant parameters. In Section 1.3 we review examples of nonstationary astronom-

ical objects and, in more detail, two classes of models used in astronomy to describe their

nonstationary. The first class is the modulation models used to fit periodic variable stars

(the nonstationary is observed in the mean), and the second one is represented by the X-ray

binary systems where the periodogram is used to estimate their spectral density (the non-
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stationary is observed in the errors). For both models we also illustrate their limitations,

and clarify why making the use of time-varying parameters is more appropriate. In Section

1.4 we introduce the definition and the spectral density of locally stationary processes, and

in Section 1.5 we review the literature on some methods to estimate their time-varying

coefficients. Finally in Section 1.6 we present the outline of the thesis, and in Section 1.7

the current status of our published work. In this thesis we denote vectors with bold letters,

and matrices with bold capital letters.

1.1 Time series in astronomy

As we mentioned in the introduction, time domain astronomy is the study of how as-

tronomical objects change with time. Models to study these changes involve ARMA,

ARIMA, ARFIMA, ARCH, GARCH processes for equally spaced data, CARMA and

IAR processes for unequally spaced data, and models that include the seasonality. ARMA,

ARIMA, and ARFIMA models are attractive for astronomical time series analysis for var-

ious reasons. Some of them are 1) models are flexible and can fit several of irregular,

quasi-period, or smooth light curves, 2) the number of parameters to be estimated is low,

and therefore the computational time is moderate, and 3) they can be extended to the mul-

tivariate case, combinations of stochastic and deterministic parts, and moderate irregular

observation spacing. A mathematical limitation of ARMA, ARIMA, and ARFIMA mod-

els is the restriction to evenly spaced datasets. In astronomy, observations are limited by

daily and annual celestial cycles, as well as telescope allocation constraints. As a conse-

quence, the observations are unequally spaced. To deal with this, astronomers proposed

to use CARMA models. The main reasons to use CARMA models in astronomy are 1)

models give a treatment of irregular time sampling and 2) models have favorable mathe-

matical properties for astronomical use (Feigelson et al., 2018). The favorable property

of CARMA processes is that the spectral density can be expressed as a sum of Lorentzian

functions (Kelly et al., 2014). Many spectral densities of accretion disk systems with

quasi-periodic oscillations and red noise can be described by Lorentzian functions.
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Examples of fitting ARMA processes to astronomical data are variate. For example,

Feigelson et al. (2018) fitted ARMA, ARIMA, and ARFIMA processes to the light curve

of variable stars KIC 005880320, KIC 004276716, HATS-2b, and RR Hyi. Related to

CARMA processes, Graham et al. (2015) used these processes to describe the light curve

of the quasar PG 1302-102, Guo et al. (2017) applied the models to observations of SDSS

Stripe 82 quasars, and Kelly et al. (2014) fitted these models to the light curve of the X-ray

binary XTE 1550-564, two Active Galactic Nuclei, and two variable stars.

1.2 Time series models with time-invariant parameters

In this section, we review the concepts of stationarity, nonstationarity, covariance and

autocovariance functions, and spectral density defined for time series. We also intro-

duce important parametric families of stationary and nonstationary time series with time-

invariant parameters, as the autoregressive moving-average, or ARMA, processes (see Sec-

tion 1.2.1), the continuous-time autoregressive moving-average, or CARMA, processes

(see Section 1.2.2), and time series with harmonic components (see Section 1.2.3). Fi-

nally, we introduce the concept of unequally spaced data and its spectral density (see

Section 1.2.4).

Let {xt , t = 1, . . . , T} be a time series with E
[
x2
t

]
. The mean function of {xt} is

µx(t) = E [xt ] ,

and covariance function of {xt} is

γx(r, s) = Cov [xr , xs ] = E [{xr − µ(r)}{xs − µ(s)}] .

{xt} is a strictly stationary time series if, for all n > 0 and h ∈ N

P(x1 < x1 , . . . , xn < xn) = P(x
1+h

< x1 , . . . , xn+h
< xn).

{xt} is a weakly stationary time series if
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i) µx(t) is independent of t,

ii) γx(t+ h, t) is independent of t for each h.

Whereas the concept of strict stationarity is difficult to satisfy for any time series, the

concept of weakly stationary is a relaxer requirement because we focus only on the first

and second moments. We use the term stationary to refer to weakly stationary. When {xt}
is neither strictly nor weakly stationary, {xt} is nonstationary. It means that the statistical

properties are changing over time.

The autocovariance function of {xt} at lag h is

rx(h) = Cov
[
x
t+h
, xt
]
, h ∈ Z,

and the autocorrelation function at lag h (ACF), is defined as

ρx(h) =
rx(h)

rx(0)
.

{xt} is a linear process if for all t it has the representation

xt = ψ(B)zt =
∞∑

j=−∞

ψ
j
z
t−j
,

where B is the backward shift operator, Bkzt = z
t−k

, zt is a white noise process with

zero-mean and variance σ2
z , and the coefficients {ψj} are absolutely summable:

∞∑
j=−∞

|ψj| <∞.

{zt} is a white noise, or WN, process with mean zero and variance σ2
z if it satisfies

E [zt ] = 0 and E
[
z
i
z
j

]
= δ{i=j}σ

2
z , for all i, j = 1, . . . , T ,

where δ{i=j} = 1 if i = j and zero otherwise.

A linear process {xt} can be also written in terms of the spectral representation, that is,

xt =
π∑
−π

exp(iωt)A(ω)dξ(ω),
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where A(ω) is a transfer function and ξ(ω) is a orthogonal increments process on [−π, π]
such that

Cov [ξ(ω), ξ(λ)] =
σ2
z

2π
δ(ω − λ)dλdω.

The spectral density (PSD) of a linear process {xt} in function of the coefficient {ψj} is

given by

Px(ω) =
σ2
z

2π
|ψ( exp(iω) )|2.

The PSD in terms of the autocovariance function is

Px(ω) =
1

2π

∞∑
−∞

rx(h) exp(iωh),

and in terms of the transfer function is

Px(ω) =
σ2
z

2π
|A(ω)|2.

1.2.1 Autoregressive moving-average processes

Let {xt , t = 1, . . . , T} be a set observations occurring at certain discrete time 1, . . . , T .

An ARMA(p, q) process {xt , t = 1, . . . , T} with autoregressive coefficients ϕ1 , . . . , ϕp ,

and moving-average coefficients θ1 , . . . , θq , is defined to be a solution of the equation

xt − ϕ1xt−1 − · · · − ϕpxt−p = zt + θ1zt−1 + · · ·+ θqzt−q , {zt} ∼ WN(0, σ2
z ), (1.1)

where ϕ1 , . . . , ϕp and θ1 , . . . , θq are constants, the polynomials 1 − ϕ1v − · · · − ϕpv
p and

1 + θ1v + · · · + θqv
q have no common factors, and {zt} is a WN process with zero-mean

and variance σ2
z . An autoregressive AR(p) process corresponds to an ARMA(p, 0) process

given by

xt =

p∑
j=1

ϕ
j
x
t−j

+ zt , {zt} ∼ WN(0, σ2
z ).

An ARMA(p, q) process is invertible if all the roots v of the polynomial θ(v) = 1+θ1v+

· · ·+ θqv
q satisfy |v| > 1. This means that the noise zt can be expresses as

zt =
∞∑
j=0

π
j
x
t−j
,
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with constants π
j

such that
∑∞

j=0 |πj | <∞.

An ARMA(p, q) process is causal if all the roots v of the polynomial ϕ(v) = 1− ϕ1v −
· · · − ϕpv

p satisfy |v| > 1. This means that xt can be expresses as

xt =
∞∑
j=0

ψ
j
z
t−j
,

with constants ψ
j

such that
∑∞

j=0 |ψj
| <∞.

The ARMA(p, q) process in equation (1.1) has the PSD

Px(ω) =
σ2
z

2π

∣∣∣ 1 +∑q
j=1 θj exp(−iωj)

∣∣∣2∣∣∣ 1−∑p
j=1 ϕj exp(−iωj)

∣∣∣2 , ω = 2πf, −∞ < f <∞,

and the autocovariance function at lag h in terms of the PSD is given by

rx(h) =

∫ π

−π

exp(iωh)Px(ω) dω, h ∈ Z.

1.2.2 Continuous-time autoregressive moving-average processes

A Gaussian CARMA(p, q) process {x(t), t ≥ 0} with 0 ≤ q < p, autoregressive coeffi-

cients a1 , . . . , ap , and moving-average coefficients b1 , . . . , bq , is defined as a strictly station-

ary solution of the pth-order linear differential equation,

Dpx(t) + a1D
p−1x(t) + · · ·+ apx(t) = b0Dw(t) + b1D

2w(t) + · · ·+ bqD
q+1w(t), (1.2)

where Dj denotes j-fold differentiation with respect to t, {w(t)} is standard Brownian

motion, a1 , . . . , ap , and b1 , . . . , bq , are constants, the polynomials vp+a1v
p−1+ · · ·+ap and

b0 + b1v+ · · ·+ bqv
q have no common zeroes, and the coefficients satisfy bq ̸= 0, b

j
= 0 for

q < j ≤ p.

A CARMA(p, q) process is causal if the roots v of the polynomial vp+a1v
p−1+ · · ·+ap

have negative real parts.
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The PSD of the CARMA(p, q) process defined in equation (1.2) is

Px(ω) =
1

2π

∣∣∑q
k=0 bk(iω)

k
∣∣2∣∣∣∑p

j=0 ap−j
(iω)j

∣∣∣2 , ω = 2πf, −∞ < f <∞,

with a0 = 1, and the autocovariance function at lag h in terms of the PSD is given by

rx(h) = Cov [x(t+ h), x(t)] =

∫ ∞

−∞
exp(−iωh)Px(ω)dω, h ∈ R.

1.2.3 Time series models with trend and seasonality

Many time series are influenced by a trend and seasonally varying factors such as the

weather. The effect of which can be modeled by a periodic component with a fixed known

period. In order to represent the trend and seasonal effect, we can define the model as a

sum of a deterministic signal and a random noise. The deterministic part consists of the

trend component m(t) and the periodic function s(t). Thus, the model is represented by

xt = m(t) + s(t) + zt , (1.3)

where the trend m(t) is a slowly changing aperiodic function, s(t) is function of t with

period d (s(t− d) = s(t)), and zt has zero mean. A form for s(t) is a sum of K harmonic

components (or sine waves) given by

s(t) = a0 +
K∑
k=1

{a
k
cos(2πf

k
t) + b

k
sin(2πf

k
t)} ,

where a0 , a1 , . . . , aK , and b1 , . . . , bK , are unknown parameters and f1 , . . . , fK , are fixed fre-

quencies. The period associated with the frequency f
k

is 1/f
k
.

1.2.4 Spectral density of unequally spaced data

In time series, data can be equally or unequally spaced. We defined an equally spaced
time series if time is evenly sampled, that is, time satisfies the condition t

i
= t0 + i∆
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with i ∈ N and ∆ > 0 the constant data spacing. If time does not satisfy the condition
t
i
= t0 + i∆, then the time series is called unequally spaced. Notice that, in some cases,

unequally spaced time series can be seen as an equally spaced time series with gaps. Let
x
i

the observation at time t
i
. An example of an equally spaced time series (first example)

is

{(x1 , t1 = 3), (x2 , t2 = 5), (x3 , t3 = 7), (x4 , t4 = 9), (x5 , t5 = 11), (x6 , t6 = 13), (x7 , t7 = 15)}

where t
i
= t0 + i∆ with t0 = 1 and ∆ = 2, whereas an example of an unequally spaced

time series (second example) is

{(x1 , t1 = 1), (x2 , t2 = 3), (x3 , t3 = 4), (x4 , t4 = 10), (x5 , t5 = 11), (x6 , t6 = 13), (x7 , t7 = 14)}.

Notice that, it is not possible to identify t0 and ∆ in the second example. A third example

of an unequally spaced time series is

{(x1 , t1 = 3), (x2 , t2 = 5), (x3 , t3 = 11), (x4 , t4 = 13), (x5 , t5 = 15)}

which corresponds to the time series in the first example removing the observations at time

t = 3 and 4. Therefore, for unequally spaced time series we distinguish two cases. In the

first case, we can identify t0 and ∆, but we do not observe x
i

for all i (third example), and

a the second case, we do not identify neither t0 nor ∆ for all i (second example).

Consider the case where the observed process {xt} has a purely continuous spectrum

so that its PSD function exists for all f . The most standard models including the ARMA

process in equation (1.1) and the CARMA process in equation (1.2) which have purely

continuous spectral. The harmonic process in equation (1.3) has a purely discrete spec-

trum. Given a sample of T equally spaced observations x1 , x2 , . . . , xt , occurring at certain

discrete time 1, 2, . . . , T . We can estimate the PSD of an ARMA or CARMA processes

using the periodogram through the relationship (see Priestley, 1981, page 418)

E

[
Ix(ω)

T

]
→ 2πPx(ω), (1.4)

where Ix(ω) is the periodogram defined by

Ix(ω) =

∣∣∣∣∣
T∑
t=1

xt exp(−iωt)

∣∣∣∣∣
2

.
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The result in equation (1.4) shows that, for equally spaced time series, Ix(ω) is an asymp-

totically unbiased estimate of Px(ω). However, when the time series are unequally spaced,

the relationship in equation (1.4) does not hold, and the periodogram is not an asymptoti-

cally unbiased estimator of the PSD.

Let {x(t)} be a continuous zero-mean stationary times series with spectral density

Px(ω) =

∫ ∞

−∞
rx(h) exp(iωh)dh, −∞ < ω <∞,

and autocovariance function given by

rx(h) =

∫ ∞

−∞
Px(ω) exp(−iωh)dω, h ∈ R,

and consider the observations of x(t) at unequally spaced times t1 , t2 , . . . , tN , given by

x(t1), x(t2), . . . , x(tN ). Deeming (1975) proved that the expectation of the periodogram

of the observations x(t1), x(t2), . . . , x(tN ) is equal to the continuous convolution of the

spectral density of x(t) with a spectral window (see equation (36) in Deeming, 1975), that

is,

E [Ix(ω)] = E

[
N∑
k=1

N∑
j=1

x(t
j
)x(t

k
) exp(iλ[tk − tj])

]
= Px(ω) ⋆ Wx(ω),

where Wx(λ) is the power spectral window given by

Wx(ω) =
N∑
j=1

N∑
k=1

exp(iω[tk − tj]),

and Px(ω) ⋆ Wx(ω) is the continuous convolution of Px(ω) with Wx(ω) defined as

Px(ω) ⋆ Wx(ω) =

∫ ∞

−∞
Px(λ)Wx(ω − λ)dλ.

1.3 Why time-varying parameters?

In this section, we review examples of nonstationary astronomical time series and the

models used by astronomers to describe them. In Section 1.3.1 the nonstationarity is given
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by the time-varying mean, whereas in Section 1.3.2 the nonstationarity is observed in the

time-varying PSD. In Section 1.3.1 we describe modulation models and the relationship

with Blazhko stars, and in Section 1.3.2 we review the PSD of X-ray binaries and the

models based on Lorentzian and power law functions used to fit their PSDs.

1.3.1 Modulation models

The Blazhko effect is a periodic amplitude and phase variation in the light curves of RR

Lyrae variable stars. In astronomy, the Blazhko effect is usually interpreted as a modula-

tion phenomenon. Modulation is the process of transmitting a low-frequency signal into

a high-frequency wave, called the carrier wave, by changing its amplitude, frequency,

and/or phase angle through the modulating signal. The function of the carrier wave is to

carry the message or modulating signal from the transmitter to the receiver. The superpo-

sition of the signal and the carrier wave results in the so-called modulated signal.

In the following sections, we review three types of modulation given in Benkő et al.

(2011): amplitude modulation, frequency modulation, and amplitude-frequency modula-

tion. Finally, we review how the amplitude and frequency modulations are combined to

represent the Blazhko effect.

Amplitude modulation

Amplitude modulation (AM) changes the amplitude of the carrier signal. Let the carrier

wave c(t) be a sinusoidal signal of the form

c(t) = Uc sin(2πfct+ ϕc),

where the constant parameters Uc , fc , and ϕc are the amplitude, frequency, and phase of the

carrier wave, respectively.

Let Um(t) represent a waveform that is the message to be transmitted, or modulating

signal. The transmitter uses the information signal Um(t) to vary the amplitude of the
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carrier Uc to produce the amplitude modulated signal UAM:

UAM(t) = [Uc + Um(t)] sin(2πfct+ ϕc) = [Uc + Um(t)]
c(t)
Uc

=
[
1 + Um

Uc

]
c(t). (1.5)

In the simplest case, when the modulating signal is sinusoidal, that is,

Um(t) = UA
m
sin(2πfmt+ ϕA

m
), (1.6)

the amplitude-modulated signal in equation (1.5) is

UAM(t) =
[
Uc + UA

m
sin(2πfm + ϕA

m
)
]
sin(2πfct+ ϕc). (1.7)

Clearly, a more complex example of amplitude modulation arises when K ≥ 1, where

K denotes the number of harmonic components. Suppose the carrier wave c(t) is a linear

combination of sine harmonics:

c(t) = a0 +
K∑
k=1

a
k
sin(2πkf0t+ ϕ

k
),

and the modulating signal is sinusoidal and given again by equation (1.6). Following the

same idea as in equation (1.5), the amplitude-modulated signal in equation (1.7) is

UAM(t) =

[
1 +

Um(t)

Uc

]
c(t)

=

[
1 +

UA
m
sin(2πfmt+ ϕA

m
)

Uc

][
a0 +

K∑
k=1

a
k
sin(2πkf0t+ ϕ

k
)

]
.

(1.8)

If we call h = UA
m
/Uc , and use the basic trigonometrical identities sin(a) sin(b) = 1

2
[cos(a−

b)− cos(a+ b)] and sin(a) = cos(a− π
2
), equation (1.8) can be written as

UAM(t) = a0 +
K∑
k=1

a
k
sin(2πkf0t+ ϕ

k
) + a0h sin(2πfmt+ ϕA

m
)

+
K∑
k=1

a
k
h

2
sin(2π(kf0 − fm)t+ (ϕ

k
− ϕm) + π/2)

−
K∑
k=1

a
k
h

2
sin(2π(kf0 + fm)t+ (ϕ

k
+ ϕm) + π/2).

(1.9)
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This example shows that when the time-varying amplitudeUm(t) in equation (1.5) takes a

sinusoidal form, the amplitude modulated model with time-varying amplitude in equation

(1.8) can be written as a model with time-invariant parameters as in equation (1.9). This

implies that, when frequencies and phases are known, the parameters {ak, 0 ≤ k ≤ K} in

equation (1.9) can be estimated by ordinary least squares.

Frequency modulation

Frequency modulation (FM) changes the frequency of the carrier signal. We assume the

sinusoidal carrier wave to be

c(t) = Uc sin(Θ(t)),

where Θ(t) = 2πfct + ϕc is the angular part of the function. Suppose that the modulating

signal is Um(t), then the modulated signal is given by

UFM(t) = Uc sin

(
2πfct+ 2πkFM

∫ t

0

Um(τ)dτ + ϕc

)
. (1.10)

where kFM is the frequency deviation.

In the simplest case, when the modulating signal is represented by a sinusoidal wave

with amplitude UF
m

and frequency fm , the integral of such a signal is∫ t

0

Um(τ)dτ =
UF

m

2πfm
sin(2πfmt+ ϕm),

and the frequency-modulated signal in equation (1.10) is

UFM(t) = Uc sin

[
2πfct+

kFMU
F
m

fm
sin(2πfmt+ ϕm) + ϕc

]
. (1.11)

Amplitude-Frequency modulation

In practice, modulated signals can be a mixture of amplitude and frequency modulations,

which can be used to described Blazhko RR Lyrae stars (Benkő et al., 2011). We review
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the simplest case when both AM and FM are sinusoidal. Combining the amplitude mod-

ulated signal in equation (1.7) and the frequency modulated signal in equation (1.11), the

amplitude and frequency modulated signal is thus

UComb(t) = [Uc + UA
m
sin(2πfmt+ ϕm)] sin

[
2πfct+

kFMU
F
m

fm
sin(2πfmt+ ϕm) + ϕc

]
.

Blazhko modulation

Benkő et al. (2011) and Benkő (2018) proposed models to describe Blazhko effect. Benkő

et al. (2011) proposed to following model:

µ∗(t) = aA
0
a0 + a0g

A(t) +
K∑
k=1

[
aA
0
a
k
+ a

k
gA(t)

]
sin[2πkf0t+ φ

k
+ kgF (t)], (1.12)

where ak and f0 denote amplitude and frequency, respectively, and

gM(t) =
ℓM∑
j=1

aM
j

sin(2πjfmt+ φM
j
), M = A or F. (1.13)

More recently, Benkő (2018) introduced a similar model:

µ∗(t) = m0+
ℓ∑

r=1

br sin(2πrfmt+φ
b
r
)+

K∑
k=1

[
a
k
+ gA

k
(t)
]
sin[2πkf0t+φk

+gF
k
(t)], (1.14)

where
∑ℓ

r=1 br sin(2πrfmt+ φb
r
) corresponds to the mean light-curve variation during the

Blazhko cycle, and

gM
k
(t) =

ℓM
k∑
j=1

aM
kj

sin(2πjfmt+ φM
kj
), M = A or F. (1.15)

The functions gM(t) and gM
k
(t) in equations (1.13) and (1.15) are the modulating functions

with subscripts M = A and M = F denoting amplitude and frequency modulation,

respectively. The main pulsation frequency is denoted by f0 , whereas fm is the modulating

frequency. The models in equations (1.12)-(1.13) and (1.14)-(1.15) have two limitations.
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Firstly, a parametric model is assumed for the amplitude and frequency modulations in

equations (1.13) and (1.15), not allowing to capture more complex shapes, and secondly, a

nonlinear least squares algorithms, such as the Levenberg-Marquardt algorithm, is used to

fit the parametric nonlinear models in equations (1.12) and (1.14). These methods require

initial values close to the solution, which in some applications are difficult to find.

Examples of Blazhko stars

Examples of Blazhko RR Lyrae stars studied by Benkő et al. (2014) are shown in Figure

1.1. The first plot corresponds to the light curve called V808 Cyg. The envelope shape

suggests a highly nonsinusoidal amplitude modulation and the Blazhko cycle is close to

the length of the observing quarters. The second plot corresponds to the V445 Lyr. The

light curve of this star shows strong and complicated amplitudes changes. Finally, the

third plot corresponds to the V783 Cyg. The Blazhko effect of V873 Cyg is described

by sinusoidal amplitude and frequency modulations. For more details about the stars see

Benkő et al. (2014).

1.3.2 Astronomical objects with time-varying PSD

X-ray binaries are the brightest X-ray sources in our galaxy and contain two stars that

rotate around each other. One is a normal star and the other is a collapsed star, such as a

white dwarf, a neutron star, or a black hole. These two stars produce X-rays if the stars

are close enough together that material is drawn from the normal star and spirals in via an

accretion disk onto the compact star. X-rays come from the inner region of the accretion

disk.

Many X-ray binary systems exhibit distinct spectral states in the frequency domain. The

classification of these states is not rigorously defined and is an active topic of debate. Five

states have been frequently quoted: the off state, the low-hard state (LS), the intermediate

state (IS), the high-soft state (HS), and the very high state (VHS). The HS is dominated

by a soft spectrum with little or no timing nose. On the other hand, the LS is dominated
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Figure 1.1 This figure has been extracted from Benkő et al. (2014) and it presents three examples

of Blazhko stars mentioned in Section 1.3.1.

by a power-law component in the X-ray spectrum, which is often interpreted as being

associated with a hot electro corona, and shows quasid-periodic oscillations (QPO). The

IS/VHS show both an ultrasoft spectral component and a power-law tail (for more details

about these states see Esin et al., 1997). In the next sections, we review the methods used

by astronomers to study the PSD of X-ray light curves. For more details see Uttley et al.

(2014).
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Computation of the PSD

X-ray time series analysis is focused on Fourier analysis techniques in the frequency do-

main. Uttley et al. (2014) mentioned two reasons for this. Firstly, the PSD is an easy way

to describe the underlying structure of a stochastic variable process, and secondly, Fourier

techniques give good results when they are used to analysis of the very large, high-time-

resolution light curves.

The PSD can be estimated from the periodogram, which is the modulus-squared of

the discrete Fourier transform of the light curve. The discrete Fourier transform (DFT)

X1 , . . . , XN/2
of a light curve x1 , . . . , xN−1

consisting of fluxes measured in N contiguous

time bins of width ∆ is given by:

Xn =
N−1∑
k=0

x
k
exp(i2πnk/N),

where x
k

is the kth value of the light curve and Xn is the discrete Fourier transform at each

Fourier frequency fn = n/(N∆), where n = 1, 2, . . . , N/2. Thus the minimum frequency

is the inverse of the duration of the observation, T
obs

= N∆, and the maximum is the

Nyquist frequency, f
N
= 1/(2∆).

The periodogram is simply given by

|Xn|2 =

∣∣∣∣∣
N−1∑
k=0

x
k
exp(i2πnk/N)

∣∣∣∣∣
2

.

In practice the periodogram is further normalised to give the same units as the PSD:

Pn =
2∆

x2N
|Xn|2,

where x is the mean flux of the light curve and the normalized periodogram Pn is thus

expressed in units of fractional variance per Hz, so that this normalization is often called

the “rms-squared” normalization.

For a process with noise, the periodogram is a random realization of the underlying PSD.

Since the underlying PSD of the process is the physically interesting quantity, one bins up
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the periodogram to obtain an estimate of the PSD, so that the PSD in a frequency bin ν
j

averaged over M segments and K frequencies per segment is given by:

P (ν
j
) =

1

KM

∑
n=i,i+K−1

∑
m=1,M

Pn,m , (1.16)

where P (ν
j
) is the estimate of the PSD obtained from the average of the periodogram in

the bin ν
j

and Pn,m is the value of a single sample of the peridogram measured from themth

segment with a frequency fn that is contained within the frequency bin ν
j

(which contains

frequencies in the range f
i

to f
i+K−1

).

Modeling the PSD

The PSD of several black holes and neutron stars during the low state can be modeled

by a broken power law function, whereas during the hard state can be modeled using

Lorentzian functions (see Pottschmidt et al., 2003; Kalemci et al., 2003). The fit is done

in the frequency domain using the periodogram in equation (1.16) and power law and

Lorentzian functions. Lorentzian functions have the form

L
i
(f) =

1

π

2R2
i
Q

i
f
i

f 2
i
+ 4Q2

i
(f − f

i
)2
,

where the subscript i denotes each Lorentzian component, f
i

is the resonance frequency,

Q
i

is a quality factor, R
i

is a normalization constant. A useful quantity of the Lorentzian is

the frequency at which its contribution to the total rms variability is maximum (hereafter

peak frequency)

ν
i
= f

i

(
1

4Q2
i

+ 1

)1/2

.

The power law function has the form

Pl(f) = Af−α exp(−f/fc),

where A is the normalization constant, α is the power-law index, and fc is the turnover

frequency.
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Examples of X-ray binary systems with time-varying PSD

In this section, we review two examples of time-varying PSD. The first example corre-

sponds to the black hole XTE J1650-500, studied by Kalemci et al. (2003). Kalemci et al.

(2003) studied the XTE J1650-500 through the PSD for 7 observations (7 segments of

time). For each observation, the PSD was modeled using Lorentzian functions. Figure 1.2

shows the PSD for the 7 observations (see the number in the top-right position on each

plot), the fitted curves (solid lines), and the Lorentzian functions used in the fit (dashed

lines). As we can see, the PSD is changing over time. In fact, for observation 2, a weak

narrow peak at 8.71 Hz begins to be observed.

In addition to being interested in studying the evolution of PSD, astronomers study the

evolution of some peaks observed in the PSD, called quasi-periodic oscillations (QPO). In

Figure 1.2, Kalemci et al. (2003) found that most of the observations need three Lorentzian

functions to describe the PSD. Narrow Lorentzian functions are associated with QPOs,

and in this case, the resonance frequency f
i

is very close to the peak frequency ν
i
. Figure

1.3 shows the evolution of the peak frequencies ν1 and ν2 associated with the two wide

Lorentzians functions and the resonance frequency of the QPO. There is an overall shift to

lower frequencies with time for both the wide Lorentzian functions and the QPO.

The second example of time-varying PSD is the black hole Cygnus X-1 studied by Ax-

elsson, M. et al. (2005). Axelsson, M. et al. (2005) described the variability properties of

Cyg X-1 in terms of the PSD. The light curve is studied from 1996 to 2003 and the PSD

during this period is fitted using one or two Lorentzian functions and/or an exponential

power law. Figure 1.4 shows the gradual change from normal hard state to canonical soft

state PDS of Cyg X-1.
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Figure 1.2 This figure has been extracted from Kalemci et al. (2003) and it presents the evolution

of the PSD and fitted curves using Lorentzian functions for the XTE J1650-500 mentioned in

Section 1.3.2. The panel numbered by “0” is the PSD from the combined light curves in the HS.

The rest of the panels numbered by 1,. . . ,7, represent the 7 observations. Except for the HS PSD,

the solid line represents the overall fit, and the dashed lines represent each component.

Figure 1.3 This figure has been extracted from Kalemci et al. (2003) and it presents the evolution

of the peaks of the Lorentzian functions used to fit the PSD of the XTE J1650-500 mentioned

in Section 1.3.2. Filled circles represent the peak frequency ν2 associated to the Lorentzian L2 ,

squares represent QPO frequency, and diamonds represent the peak frequency ν1 associated to the

Lorentzian L1 .
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Figure 1.4 This figure has been extracted from Axelsson, M. et al. (2005) and it presents the

evolution of the PSD and fitted curves using Lorentzian and power law functions for the Cyg X-1

mentioned in Section 1.3.2. Evolution from the hard state (panel a)) to soft state (panel f)). The

solid line represents the fitted curves, the dashed and dotted lines represent the Lorentzian functions

and the dash-dotted line represents the power law function used to fit the PSD.

The are mainly two limitations in studying the time-variation of the spectral density in

the way astronomers has been doing so far. First, dividing the time-span into segments

(and then computing the Fourier transform on each segment) requires the selection of the

break points, which is often arbitrary. Second, for each segment it is necessary to fit a

model based on Lorentzian and power law functions. As a consequence of these two
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limitations, it is not possible to observe smooth changes over time of the PSD and the

Lorentzian functions.

The are mainly two approaches to model time-varying parameters: structural breaks

and local stationarity. The structural breaks models assume that the coefficients change

abruptly right after the so-called change points. Aue and Horváth (2013) give an account

of some of the recent work on structural breaks in time series models. The estimation is

usually based on the popular cumulative sum, CUSUM. Both structural breaks in the mean

as well as in the variance and covariance/correlation structure belong to this approach.

CUSUM procedures are nonparametric by design.

To overcome the limitations discussed above, we work within the framework of local

stationarity, which assumes instead that the parameters (mean, variance and autocovari-

ance) change slowly over time. This type of nonstationarity is the one we adopt in this

thesis.

1.4 Locally stationary processes and time-varying spec-

tral density

In this section, we introduce the definition of locally stationary processes proposed by

Dahlhaus (1996), which is based on the concept of evolutionary spectrum. A sequence of

stochastic processes {x
t,T
, t = 1, . . . , T} is called locally stationary with transfer function

A0 and trend µ if there exists a representation

x
t,T

= µ

(
t

T

)
+

∫ π

−π

exp(iωt)A0
t,T
(ω)dξ(ω),

where the following holds.

i) ξ(ω) is a stochastic process on [−π, π] with ξ(ω) = ξ(−ω) and

cum {dξ(ω1), . . . , dξ(ωk
)} = η

(
k∑

j=1

ωj

)
g
k

(
ω1 , . . . , ωk−1

)
dω1 . . . dωk

,
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where cum {· · · } denotes the cumulant of the kth order,

g1 = 0, g2(ω) = 1, |g
k
(ω1 , . . . , ωk−1

)| ≤ const
k
, for all k,

and η(ω) =
∑∞

j=−∞ δ(ω + 2πj) is the period 2π extension of the Dirac delta func-

tion.

ii) There exists a constant K and a 2π−periodic function A : [0, 1] × R → C with

A(u,−ω) = A(u, ω) and

sup
t,ω

∣∣∣∣A0
t,T
(ω)− A

(
t

T
, ω

)∣∣∣∣ ≤ K

T
, for all T,

and A(u, ω) and µ(u) are assumed to be continuous in u, where t and u = t/T

denotes time points in the interval [1, T ] and the rescaled interval [0, 1], respectively.

The smoothness of A in u guarantees that the process has locally a stationary behavior.

If µ and A0 do not depend on t and T then X does not depend on T as well and we obtain

the spectral representation of a stationary process. Thus, the classical asymptotic theory

for stationary processes is a special case of Dahlhaus’s approach.

The function P (u, ω) = |A(u, ω)|2 is called the time-varying spectral density at time

u ∈ [0, 1] and frequency ω ∈ [−π, π] of a locally stationary process.

Let {x
t,T
} be an autoregressive moving-average process with time-varying coefficients,

i.e. the solution of

x
t,T

=

p∑
j=1

ϕ
j

(
t

T

)
x
t−j,T

+ zt +

q∑
j=1

θ
j

(
t

T

)
z
t−j
, t = 1, . . . , T, {zt} ∼ WN(0, σ2

z ),

(1.17)

where {zt} is a WN process with mean zero and variance σ2
z . If 1 −

∑p
j=1 ϕj(u)x

j ̸= 0

for all |x| ≤ 1 + c with c > 0 uniformly in u and the coefficients functions ϕ
j
(u) are

continuous in u, then the process in equation (1.17) is a locally stationary process in the

sense that equation (1.17) has a solution of the form

x
t,T

=

∫ π

−π

exp(iωt)A0
t,T
(ω)dξ(ω)
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with

A(u, ω) =
σz√
2π

1 +
∑q

j=1 θj(u) exp(−iωj)
1−

∑p
j=1 ϕj(u) exp(−iωj)

,

and time-varying PSD

P (u, ω) =
σ2
z

2π

∣∣∣ 1 +∑q
j=1 θj(u) exp(−iωj)

∣∣∣2∣∣∣ 1−∑p
j=1 ϕj(u) exp(−iωj)

∣∣∣2 .
The locally stationary process in equation (1.17) is called locally stationary autoregressive

moving-average process and it is denoted by LSARMA(p, q). A locally stationary autore-

gressive process, denoted by LSAR(p), corresponds to a LSARMA(p, 0) process given

by

x
t,T

=

p∑
j=1

ϕ
j

(
t

T

)
x
t−j,T

+ zt , t = 1, . . . , T, {zt} ∼ WN(0, σ2
z ),

with time-varying PSD

P (u, ω) =
σ2
z

2π

1∣∣∣ 1−∑p
j=1 ϕj(u) exp(−iωj)

∣∣∣2 .

1.5 Estimation of time-varying parameters

The variation over time can be observed in the time-varying mean µ(u) or in the time-

varying coefficients ϕ1(u), . . . , ϕp(u), and θ1(u), . . . , θq(u), with u ∈ [0, 1] of a LSARMA(p, q)

process. The model choice for µ(t), ϕ
j
(u) and θ

k
(u) depends on the prior knowledge of

their functional form. Thus, depending on the form, we distinguish three models, paramet-

ric, semiparametric, and nonparametric model. When the statistical model is a parameter-

ized family of distributions with finite-dimensional parameters, such a model is referred

to as a parametric model. When the parameters lie in a subset of an infinite dimensional

space or the form of distribution is not completely specified, such a model is often called a

nonparametric model (Fan and Yao, 2003). Parametric models differ from nonparametric

models in that the shape of the coefficients is not predetermined but can be adjusted to
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capture unusual or unexpected features of the coefficients. A combination of parametric

and nonparametric models is known as semiparametric models. Therefore, if the forms of

µ(u), ϕ
j
(u) and θ

k
(u) are know and they are correct, a parametric model can be used to

describe µ(u), ϕ
j
(u) and θ

k
(u) well. However, if a wrong functional form is chosen, this

can lead to misunderstanding of the process, wrong conclusions, and erroneous forecasting

(Fan and Yao, 2003).

A usual assumption about the form of the time-varying coefficients is that they may be

approximated by a linear combination of a small number of known functions (parametric

model). For instance, Rao (1970) proposed a procedure to fit time-varying AR(p) pro-

cess based on the weighted least squares method assuming that the first three terms of

the Taylor series expansion give a good approximation for the time-varying parameters

ϕ
j
(u) = ϕ

j,0
+ ϕ

j,1
u + ϕ

j,2
u2/2. Similar ideas with various approximations in a finite

dimensional linear space of approximation may be found, for example, Dahlhaus (1997)

assumed polynomial form for the time-varying coefficients of a LSAR(p) process to study

the relationship between the estimation given by minimizing the local version of the Whit-

tle function and the least squares estimation, Grenier (1983) assumed a polynomial form of

orderm for the coefficients of a time-varying ARMA process, this allowed the extension of

several well-known techniques of stationary spectral estimation to the nonstationary case,

and Dahlhaus (2000) gave a new approximation to the Gaussian likelihood of a multivari-

ate locally stationary process assuming that the time-varying coefficients are described by

a finite-dimensional set, that is, the parameter curves themselves are parameterized.

A more flexible assumption about the form of the time-varying coefficient can be made

using basis functions. For example, Dahlhaus et al. (1999) used an orthonormal wavelet

basis representation for the coefficients. The nonparametric estimation of the coefficients

is made in two steps. In the first step, the empirical wavelet coefficients are obtained

from the solution of a least-squares minimization problem, and in the second step, a soft

or hard thresholding is applied. A similar idea was adopted by Dahlhaus and Neumann

(2001), who proposed a semiparametric version of LSARMA processes, where the time-

varying mean is estimated using kernel estimator and coefficients is approximated by an



Chapter 1 26

orthonormal wavelet basis. The estimation of the empirical wavelet coefficients is obtained

by minimizing an empirical version of the Kullback-Leibler distance.

1.6 Outline of the dissertation

The organization of the dissertation is presented in Figure 1.5.

Figure 1.5 Conceptual map about light curves from the point of view of time series analysis.

In Chapter 2, we introduce a new mathematical model for the description of the so-

called modulated light curves, as found in periodic variable stars that exhibit smoothly

time-varying parameters such as amplitude, frequency, and/or phase, with uncorrelated

errors. The model is given by

y
i
= µ(ti) + z

i
, i = 1, . . . , N, {z

i
} ∼ WN(0, σ2

z ),

µ(ti) = m(ti) +
K∑
k=1

{g
1,k
(ti) cos(wk

ti) + g
2,k
(ti) sin(wk

ti)}.
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In Chapter 3, we extend the model proposed in Chapter 2 considering autocorrelated

errors in two ways. First, we assume that the errors follow an autoregressive (AR) process:

y
i
= µ(ti) + ε

i
, i = 1, . . . , N,

µ(ti) = m(ti) +
K∑
k=1

{g
1,k
(ti) cos(wk

ti) + g
2,k
(ti) sin(wk

ti)},

ε
i
=

p∑
j=1

ϕ
j
ε
i−j

+ z
i
, {z

i
} ∼ WN(0, σ2

z ).

Second, we allow for non-stationarity and model the errors as being locally stationary AR

processes, that is,

y
i,N

= µ
(

i
N

)
+ ε

i,N
, i = 1, . . . , N,

µ
(

i
N

)
= m

(
i
N

)
+

K∑
k=1

{
g
1,k

(
i
N

)
cos(Nw

k

i
N
) + g

2,k

(
i
N

)
sin(Nw

k

i
N
)
}
,

ε
i,N

=

p∑
j=1

ϕ
j

(
i
N

)
ε
i−j,N

+ z
i
, {z

i
} ∼ WN(0, σ2

z ),

(1.18)

where the time-varying AR coefficients {ϕj(u), j ≤ p} are smooth functions of rescaled

time u ∈ [0, 1].

In Chapter 4, we adopt locally stationary ARMA processes (LSARMA) to describe the

time variability observed in X-ray binaries. An LSARMA(p, q) process is defined as solu-

tion of

x
i,N

=

p∑
j=1

ϕ
j

(
i

N

)
x
i−j,N

+ z
i
+

q∑
j=1

θ
j

(
i

N

)
z
i−j
, {z

i
} ∼ WN(0, σ2

z ), i = 1, . . . , N,

with corresponding spectral density

Px(u, f) =
σ2
z

2π

∣∣∣ 1 +∑q
j=1 θj(u) exp(−i2πf∆)j

∣∣∣2∣∣∣ 1−∑p
j=1 ϕj(u) exp(−i2πf∆)j

∣∣∣2 , − 1

2∆
< f <

1

2∆
, u ∈ [0, 1].
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We prove that the spectral density of an LSARMA(p, q) processes can be expresses as the

sum of p components

Px(u, f) =

p∑
j=1

P
x,j
(u, f),

where the components Px,j(u, f), j = 1, . . . , p, have local extremums at the frequencies 0

and 1/(2∆), and/or at the frequency

f
max,ℓ

(u) =
1

2π∆
arccos

−K
2,ℓ
(u)±

√
K2

2,ℓ
(u)− 4K

1,ℓ
(u)K

3,ℓ
(u)

2K
1,ℓ
(u)

, ℓ = j, k,

where the coefficients K
2,ℓ
(u) depend on the LSARMA parameters {ϕj(u), j ≤ p} and

{θk(u), ≤ q}, u ∈ [0, 1]. The mathematical expression of the argmax f
max,ℓ

(u) allows

to estimate the peak-frequency (in frequency domain) by replacing the coefficients K
j,ℓ

,

j = 1, 2, 3, with the corresponding estimates (obtained in time domain).

1.7 Our contribution and Published work

In this Ph.D. thesis we deliver several important results for the analysis of astronomical

time series. Our contribution can be summarized as follows.

For periodic variable stars observed unequally over time, in Chapter 2 we introduce

a novel semi-parametric model with smoothly time-varying trend and amplitudes. The

time-varying parameters are modeled with B-splines and estimated with penalized least

squares. The estimation of our time-varying curves translates into the estimation of time-

invariant parameters that can be performed by ordinary least squares, with the following

two advantages: modeling and forecasting can be implemented in a parametric fashion,

and we are able to cope with missing observations. We then derive the mathematical

definition of the spectral density for unequally spaced time series. We also present a new

method to estimate the spectral density of unequally spaced times series, which is needed

for the analysis of the residuals.
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In Chapter 3 we extend the results of Chapter 2 to the case where the errors are autocor-

related, stationary and nonstationary. First, we introduce a novel version of the Cochrane-

Orcutt algorithm (Cochrane and Orcutt, 1949) that is suitable for penalized least square

(PLS) regression. Then, we adapt the Cochrane-Orcutt algorithm procedure for PLS to the

case where the errors follow a locally stationary autoregressive process.

For nonperiodic variable stars we introduce in Chapter 4, for both stationary and locally

stationary ARMA models, an important tool for the study of time series observations com-

ing from X-ray binaries. First, we prove that the PSD of a stationary ARMA(p, q) process

can be expressed as a sum of p functions. We provide a mathematical description of these

p functions and find a closed form for the frequency at which these functions have a lo-

cal maximum or minimum. This result makes ARMA models suitable for fitting X-rays

binary systems and, in some cases, it avoids having to calculate the frequency at which

the PSD has a peak. Then we extend this result to LSARMA processes and, assuming

that the time-varying coefficients are smooth, we establish an estimation method (for the

time-varying coefficients) that combines B-splines with the Hannan-Rissanen algorithm

(Hannan and Rissanen, 1982).

The dissertation is a collection of three papers. The first paper has been recently pub-

lished, whereas the other two manuscripts are drafts of work in progress to be submitted.

Chapter 2 is fully based on our paper Motta et al. (2022), joint with Dr. Márcio Cate-

lan. Chapter 3 corresponds to a work in progress co-authored with my Ph.D. advisor Dr.

Giovanni Motta, and Chapter 4 is also a work in progress co-authored with Dr. Giovanni

Motta and my collaborator Dr. Malgorzata Sobolewska.



Chapter 2

A nonparametric approach for periodic
time series with uncorrelated errors

2.1 Introduction

RR Lyrae stars are important astrophysical tools for the measurement of distances and

studies of the astrophysical properties of old stellar populations. They are moderately

bright, evolved low-mass stars, currently in the core helium-burning phase, also known as

the horizontal branch. Their periods are typically in the range of between about 0.2 and

1.0 d, which together with their characteristic light-curve shapes, allow them to be rela-

tively easily identified in time series photometric surveys. An overview of their properties

can be found in the monographs by Smith (2004) and Catelan and Smith (2015).

In spite of their astrophysical importance, RR Lyrae stars are still not fully understood.

Indeed, one of the longest-standing problems in stellar astrophysics is also one that specif-

ically affects RR Lyrae stars: the so-called Blazhko effect (Blažko, 1907). It is a long-term

modulation of an RR Lyrae’s light curve, over timescales ranging from a few to hundreds

of days (for recent reviews, see Catelan and Smith, 2015; Gillet et al., 2019). The Blazhko

effect is particularly common amongst fundamental-mode (ab-type) pulsators (e.g., Plachy

30
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et al., 2019), but is also present, to a lesser extent, in first-overtone (c-type) RR Lyrae stars

(e.g., Netzel et al., 2018).

Over the decades since it was first described, the Blazhko effect has persistently defied

theoretical explanations as to its cause (e.g., Gillet et al., 2019). Gradual strengthening and

weakening of turbulent convection in the stellar envelope (Stothers, 2006), a 9:2 resonance

between the fundamental and ninth-overtone radial modes (Buchler and Kolláth, 2011),

and interaction between fundamental and first-overtone modes in the “either-or” region of

the instability strip (Gillet, 2013) are the most recent candidates, but no consensus has yet

been reached as to the root cause of the Blazhko effect, due in large part to the difficulties

involved in the nonlinear hydrodynamical modeling of the phenomenon.

In this chapter, we introduce a model for time series observations of variable stars hav-

ing a smoothly time-varying trend and amplitudes. More precisely, we develop a semi-

parametric method for unequally spaced time series measuring the brightness of a mod-

ulated variable star. Our approach is flexible because it avoids assumptions about the

functional form of the trend and amplitudes. The estimation of our time-varying curves

translates into the estimation of time-invariant parameters that can be performed by ordi-

nary least squares, with the following two advantages: modeling and forecasting can be

implemented in a parametric fashion, and we are able to cope with missing observations.

We also study the spectral density of the residuals obtained from the fit of our novel model.

In order to detect serial correlation in the residuals, in this chapter we derive the definition

of the spectral density for unequally spaced time series. There are many reasons why

astronomical time series are not sampled equidistantly, and the gaps can be either regular or

random. From the Earth, stars cannot be observed during the day, which introduces regular

gaps in the time series. Also, for about half a year, most objects become unobservable, as

they are up on the sky at the same time as the Sun, which introduces yearly gaps. There

could be clouds or high winds, forcing the closure of telescopes, producing random gaps.

There could be high-priority alerts overriding the observations, or the telescope could be

available only on certain nights.

In some cases, observations are unevenly spaced due to missing values. Astronomical
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data sets often contain missing values, and this limitation is sometimes due to incomplete

observations or varying survey depths. Even if telescopes are recording and storing infor-

mation systematically, that is, at a regular cadence, there are a few things that can alter the

regular sampling. For example, an astronomer might decide to increase the exposure time

if there are clouds obscuring the target, to try to increase the signal-to-noise ratio. Con-

versely, if the observing conditions are excellent, the astronomer might decide to decrease

the exposure times (and hence the cadence) to avoid saturating the detector, for example.

Missing values are usually handled via imputation, that is, the gap generated by the miss-

ing value is “filled in” by an estimated value. If observations are missing because of the

survey, imputation can be performed using statistical models.

However, in astrostatistics, missing value problems are sometimes inherently brought

about by the manner in which physical processes are recorded. In particular, telescopes

are not located in the center of the solar system. Since the speed of light is finite, this

results in a time delay between the arrival times of signals at our position and at the center

of the solar system. This is typically corrected for by referring the times of observations

to either Heliocentric Julian Dates (HJD) or Barycentric Julian Dates (BJD), which refer

to the center of the Sun or the entire solar system, respectively. Thus, even if telescopes

record data strictly evenly according to the local time at the observatory (e.g., one observa-

tion performed every night at local midnight), this correction will slowly change between

observations, modifying what was initially a regular grid to an irregular one. Also, this

correction is different for every source on the sky, even though sources close to each other

may have very similar corrections. Therefore, for some astronomical data sets where

missing values may arise from the manner in which observations of a physical process are

collected, or even the nature of the physical process itself (e.g., sudden, extreme dimming

events that may occasionally render an object impossible to detect for a certain amount of

time), the imputation method may not be applicable (see Chattopadhyay, 2017). Our novel

approach, which involves the classical periodogram, has the advantage of not relying on

any imputation method.

We divide the chapter into seven main sections. In Section 2.2 we introduce our novel
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model and clarify analogies and differences as compared with previous approaches. In

Section 2.3, the present status of important ingredients of amplitude and frequency modu-

lations is critically discussed. In Section 2.4 we present the method we adopt to estimate

the time-varying parameters. In Section 2.5 we present a new method to estimate the

spectral density of unequally spaced times series, which is needed for the analysis of the

residuals. Section 2.6 provides simulation results, whereas Section 2.7 illustrates the ad-

vantages of using our novel method by means of an application to an RR Lyrae variable

star. Finally, our main conclusions are summarized in Section 2.8.

2.2 Model definition

Light curves of variable stars are typically fitted using harmonic models with a linear (or

constant) trend and time-invariant amplitudes (see equations (1) and (5) in Richards et al.,

2011). This type of model would be inappropriate when the underlying trend and ampli-

tudes change over time in a more complex way. Eilers et al. (2008) proposed a model

with one harmonic component (K = 1) where the trend and amplitudes vary smoothly

over time. In this chapter, we extend the model by Eilers et al. (2008) to the case of

K ≥ 1 harmonic components, where the amplitudes associated with each harmonic com-

ponent vary smoothly over time. We estimate our model by means of P -splines (Eilers

and Marx, 1996), which are a combination of B-splines and penalties. The estimation

of the time-varying curves translates into the estimation of time-invariant parameters that

can be performed by the least squares method, with the following three advantages: it is

computationally fast, forecasting can be implemented in a parametric fashion, and we can

cope with missing observations.

Compared to local smoothers (such as kernel smoothers), the main advantage of regres-

sion spline in the context of time series is that the unknown parameters are time-invariant

and thus they can be estimated globally rather than locally. As a consequence, forecast-

ing only requires good estimates of the global unknown parameters. Finally, the use of

B-splines in regression allows us to rewrite the estimation problem as a least squares fit,
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avoiding the use of numerical methods – such as Newton Raphson – which can be time

consuming.

Let {y
i
≡ yti , i = 1, . . . , N} be a set of observations occurring at certain discrete times

t1, . . . , tN . In the case of equally spaced observations, ti = t0 + i∆ where i is an integer,

and ∆ > 0 is the constant data spacing. Then |ti − tk| = ∆|i − k|, and typically ∆ = 1.

Astronomical light curves are often observed unequally in time, that is, the data spacing

of observation times is not constant.

We decompose the observed light curve into the sum of a deterministic signal µ and a

random noise z. The deterministic part µ(t) consists of a trend m(t) and a modulated

periodic signal. The modulated periodic signal is a linear combination of K cosines and

sines, with weights given by the modulating functions g(t):

y
i
= µ(ti) + z

i
, i = 1, . . . , N, {z

i
} ∼ WN(0, σ2

z ),

µ(ti) = m(ti) +
K∑
k=1

{g
1,k
(ti) cos(wk

ti) + g
2,k
(ti) sin(wk

ti)},
(2.1)

or in matrix notation y = µ + z, where y = (y1 , . . . , yN )
⊤ is the vector of observations

at time t = (t1 , . . . , tN )
⊤, µ = [µ(t1), . . . , µ(tN)]

⊤ is the expectation of y, m(ti) is the

smooth time-varying trend at time ti, the g
ℓ,k
(ti)’s are smooth time-varying amplitudes of

the cosine and sine waves at time ti, respectively, w
k
= 2πf

k
is the angular frequency,

and f
k

is the ordinary frequency. Since the errors are zero-mean, the expectation of the

observed brightness at time ti is equal to the deterministic part of the signal at time ti, that

is, E [y
i
] = µ(ti).

We refer to m(·) as the “trend”, that is, the (typically) aperiodic change in the mean

of the light curve. By contrast, we call “amplitudes” the functions g(·)’s that weigh the

periodic variation (of this average brightness) of cosine and sine waves. Both trend and

amplitudes are typically restricted to be sinusoidal, whereas in this chapter our trend m(t)

and our amplitude functions g
ℓ,k
(t)’s are general smooth functions and not necessarily

sinusoidal. In Section 2.3 we clarify the mathematical connection between the standard

modulation models and our novel modulation model in equation (2.1). The error vector
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z = (z1 , . . . , zN )
⊤ is a WN process with mean zero and variance σ2

z .

The approaches based on time-varying parameters are receiving growing interest in var-

ious areas of astrophysics. For instance, Kelly et al. (2014) simulated a light curve that

switches from one CARMA process to another. More precisely, they constructed a nonsta-

tionary light curve by generating two CARMA processes of the same order (p = 5, q = 3),

but with different parameters (see Kelly et al., 2014, Section 4.3):

θ(t) =

θ1 t1 ≤ t < t0

θ2 t0 ≤ t ≤ tN ,

where θ(t) = [α1(t), . . . , αp(t), β1(t), . . . , βq(t), σ
2(t)]⊤. The vector θ(t) is a step-wise

function that is constant before and after t0. Wong et al. (2016) adopt a Poisson model

for the photon counts. They define λ(tj, wi) as the expected count per unit time and per

unit wavelength averaged over the bin centered at (tj, wi), and detect change points π such

that {λ(tj, wi)|tj ≤ π} ≠ {λ(tj, wi)|tj > π}. Wong et al. (2016) estimate the number

of change points and their values. Xu et al. (2021) develop a method for modeling a time

series of images, and assume that the arrival times of the photons follow a Poisson process.

They assume that all image stacks between any two adjacent change points (in the time

domain) share the same unknown piecewise constant function. Xu et al. (2021) estimate

the number and the locations of all of the change points (in the time domain), as well as

all of the unknown piecewise constant functions between any pairs of the change points.

In the next section, we review the models proposed by Benkő et al. (2011) and Benkő

(2018) for Blazhko light curves. Interestingly, our model in equation (2.1) generalizes the

models by Benkő et al. (2011) and Benkő (2018) in the sense that the modulating functions

g
ℓ,k
(·) are not confined to the class of parametric (sinusoidal or nonsinusoidal) functions.

2.3 Modeling Blazhko light curves

In this section, we review briefly the models proposed by Benkő et al. (2011) and Benkő

(2018), and we compare them with our novel model in equation (2.1). To describe Blazhko
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light curves, Benkő et al. (2011) proposed to fit the following model:

µ∗(t) = aA
0
a0 + a0g

A(t) +
K∑
k=1

[
aA
0
a
k
+ a

k
gA(t)

]
sin[2πkf0t+ φ

k
+ kgF (t)], (2.2)

where ak and f0 denote amplitude and frequency, respectively, and

gM(t) =
ℓM∑
j=1

aM
j

sin(2πjfmt+ φM
j
), M = A or F. (2.3)

More recently, Benkő (2018) introduced a similar model:

µ∗(t) = m0 +
ℓ∑

r=1

br sin(2πrfmt+φ
b
r
)+

K∑
k=1

[
a
k
+ gA

k
(t)
]
sin[2πkf0t+φk

+ gF
k
(t)], (2.4)

where
∑ℓ

r=1 br sin(2πrfmt+ φb
r
) corresponds to the mean light-curve variation during the

Blazhko cycle, and

gM
k
(t) =

ℓM
k∑
j=1

aM
kj

sin(2πjfmt+ φM
kj
), M = A or F. (2.5)

The functions gM(t) and gM
k
(t) in equations (2.3) and (2.5) are the modulating functions

with subscripts M = A and M = F denoting amplitude and frequency modulation, re-

spectively. The main pulsation frequency is denoted by f0 , whereas fm is the modulating

frequency. In this chapter we improve the models in equations (2.2)-(2.3) and (2.4)-(2.5)

from two different viewpoints. From the modeling viewpoint, we relax the assumption of

parametric amplitude and frequency modulations. From the estimation viewpoint, we do

not rely on the nonlinear least squares algorithms, such as the Levenberg-Marquardt algo-

rithm, that are typically used to fit parametric nonlinear models. These methods require

initial values close to the solution, which in some applications are difficult to find.

Both models proposed by Benkő et al. (2011) and Benkő (2018) and given by equations

(2.2) and (2.4), respectively, are a special case of our model defined by equation (2.1). To
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see this, let us define

v(t) = aA
0
a0 + a0g

A(t),

w
1,k
(t) =

[
aA
0
a
k
+ a

k
gA(t)

]
sin[φ

k
+ kgF (t)], k = 1, . . . , K,

w
2,k
(t) =

[
aA
0
a
k
+ a

k
gA(t)

]
cos[φ

k
+ kgF (t)], k = 1, . . . , K,

(2.6)

and

u(t) = m0 +
ℓ∑

r=1

br sin(2πrfmt+ φb
r
),

h
1,k
(t) =

[
a
k
+ gA

k
(t)
]
sin[φ

k
+ gF

k
(t)], k = 1, . . . , K,

h
2,k
(t) =

[
a
k
+ gA

k
(t)
]
cos[φ

k
+ gF

k
(t)], k = 1, . . . , K.

(2.7)

We now show how equations (2.6) and (2.7) allow to us compare our model in equation

(2.1) with the models proposed by Benkő et al. (2011) and Benkő (2018), respectively.

Comparing the models in equations (2.1) and (2.2), time-varying trend and amplitudes of

the model in equation (2.1) are expressed as

m(t) = v(t),

g
ℓ,k
(t) = w

ℓ,k
(t), ℓ = 1, 2, k = 1, . . . , K.

(2.8)

At the same time, comparing the model in equation (2.1) with the model in equation (2.4),

the time-varying trend and amplitudes of the model in equation (2.1) are

m(t) = u(t),

g
ℓ,k
(t) = h

ℓ,k
(t), ℓ = 1, 2, k = 1, . . . , K,

(2.9)

the ordinary frequency being f
k
= kf0 .

As we can see in equations (2.8) and (2.9), the functions m(t) and g
ℓ,k
(t) incorporate

the amplitude and frequency modulation functions gM(t) and gM
k
(t) in equations (2.3) and

(2.5). In this sense, the limitation of our approach is that it does not aim at identifying

the amplitude and frequency modulating functions gM(t) and gM
k
(t) in equations (2.3) and

(2.5). That said, the benefit of our approach from the estimation viewpoint is twofold. An
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important advantage of our model in equation (2.1) over the models in equations (2.2) and

(2.4) is that the modulating frequency fm does not need to be estimated. In other words, in

order to describe statistically a Blazhko light curve using our model in equation (2.1), we

only need to estimate f0 . If the observed time series is indeed a Blazhko light curve, the

modulating frequency fm is included in the nonparametric trend m(t) and amplitude g
ℓ,k

of

our model in equation (2.1). Moreover, assuming that the frequencies are known, for our

model in equation (2.1) we only need to estimate the functions m(·) and g
ℓ,k
(·), whereas

for the model in equations (2.2) and (2.4) the estimated parameters are the amplitudes aA
0

,

a0 , m0 , a
k
’s, br’s, and aM

kj
’s, and the phases φb

r
’s, φ

k
’s, φM

j
’s, and φM

kj
’s.

2.4 Estimation

In Section 2.4.1 we define estimators of the unknown trend m(·), amplitudes {g
ℓ,k
(·), ℓ =

1, 2, k = 1, . . . , K}, and variance σ2
z of the model in equation (2.1), and in Section 2.4.2

we explain how to select the tuning parameters associated with the B-splines and the

penalization used in the estimation method. We denote by N the sample size, T = tN − t1

the time span, J the number ofB-splines that form the basis, d the degree of theB-splines,

K the number of harmonics components, r the order of the penalty, and M the number of

replications in Monte Carlo simulations.

We performed our calculations using the R Language for Statistical Computing (R Core

Team, 2021). Our codes combine existing functions (available as part of R packages) with

our own development. The computations implemented in this chapter are available as a

GitHub public code repository1.

2.4.1 Penalized Least squares

As mentioned in Section 2.2, we use B-splines to estimate the trend and amplitudes of the

model given by equation (2.1). The smooth trend function m(ti) is modeled as a linear

1https://github.com/DarlinSoto/Modulation-models.

https://github.com/DarlinSoto/Modulation-models
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combination of B-splines basis

m(ti) =
J∑

j=1

αjBj(ti), i = 1, . . . , N,

which can be written in matrix notation as

m = Bα,

where m = [m(t1), . . . ,m(tN)]
⊤, B = [Bij] = [Bj(ti)] is the N × J basis matrix (i =

1, . . . , N , j = 1, . . . , J) and α = (α1 , . . . , αJ
)⊤. The exact definition of B-splines is given

in Appendix A.

The smooth amplitude functions, g
ℓ,k
(ti), ℓ = 1, 2, are modeled in the same way:

g
1,k
(ti) =

J∑
j=1

β
k,j
B

j
(ti), g

2,k
(ti) =

J∑
j=1

γ
k,j
B

j
(ti), k = 1, . . . , K.

In matrix notation

g
1,k

= Bβ
k

and g
2,k

= Bγ
k
, k = 1, . . . , K,

where β
k
= (β

k,1
, . . . , β

k,J
)⊤, γ

k
= (γ

k,1
, . . . , γ

k,J
)⊤, and g

ℓ,k
= [g

ℓ,k
(t1), . . . , gℓ,k(tN)]

⊤,

ℓ = 1, 2, k = 1, . . . , K. Thus, α, β
k
, and γ

k
, k = 1, . . . , K, are vectors associated

with the trend and amplitudes, respectively. We define the N × N matrices C
k

and S
k
,

k = 1, . . . , K, as

C
k
= diag{cos(w

k
t1), . . . , cos(wk

tN)} and S
k
= diag{sin(w

k
t1), . . . , sin(wk

tN)}.

Thus, the model can be expressed as

µ = Bθ,

where B is the N × c design matrix given by

B = [B|C1B| . . . |C
K
B|S1B| . . . |S

K
B],
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with c = J(2K + 1), and

θ = (α⊤,β⊤
1
, . . . ,β⊤

K
,γ⊤

1
, . . . ,γ⊤

K
)⊤

is the vector of regression coefficients of length c.

The ordinary least squares (OLS) estimator of θ is the vector θ̂OLS which minimizes the

sum of squares

Mθ = ||y − Bθ||2.

Equating to zero the partial derivatives with respect to each component of θ and assuming

(as we shall) that B⊤B is nonsingular, the estimator of θ is

θ̂OLS = (B⊤B)−1B⊤y.

The OLS estimate also maximizes the likelihood of the observations when the errors

z1 , . . . , zN are independent and identically distributed (iid) and Gaussian.

The size of the basis determines the amount of smoothing of the fitted curves. The larger

the value of J , the bumpier the fitting will be. To avoid overfitting, Eilers and Marx (1996)

proposed a penalty on the (high-order) finite differences of the coefficients

M∗
θ = ||y − Bθ||2 + τ1||Drα||2 +

K∑
k=1

{
τ
2k
||Drβk

||2 + τ
2k+1

||Drγk
||2
}
,

where {τ
k
, k = 1, . . . , 2K + 1} are positive regularization parameters that control the

smoothness of the curve, penalizing the coefficients that are far apart from one another. If

τ
k
= 0, k = 1, . . . , 2K + 1, we have the standard normal equations of linear regression

with a B-splines basis. The larger the value of τ
k
, the closer the coefficient θ is to zero.

When τ
k
→ ∞ we obtain a polynomial fit of degree r − 1 with rth order differences. The

matrix Dr constructs rth-order differences of a vector η as

Drη = ∆rη.

The first difference of η, ∆1η, is the vector with elements η
l+1

−η
l
. Repeated differencing

applied to ∆η results in higher differences, such as ∆2η and ∆3η. For r = 1 and r = 2,
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the matrices D1 and D2 are given by

D1 =


−1 1 0 0 . . .

0 −1 1 0 . . .

0 0 −1 1 . . .
...

...
...

... . . .

 , D2 =


1 −2 1 0 . . .

0 1 −2 1 . . .

0 0 1 −2 . . .
...

...
...

... . . .

 .

The penalties can be represented as θ⊤Pθ with the block-diagonal matrix P = T ⊗
D⊤

r Dr and T = diag{τ1 , τ2 , τ3 , . . . , τ2K+1
}. Then, minimizing

M∗
θ = ||y − Bθ||2 + θ⊤Pθ

with respect to θ, the penalized ordinary least squares estimator (POLS) of θ is

θ̂POLS = (B⊤B +P)−1B⊤y. (2.10)

The prediction of y at time ti is given by

ŷ
i
= µ̂(ti) = B(ti)

⊤θ̂POLS , (2.11)

where B(ti) is the ith row of B, the residuals are ẑ = y − ŷ, with ŷ = (ŷ1 , . . . , ŷN )
⊤, and

the mean square error (MSE) is MSE = N−1
∑N

i=1(yi − ŷ
i
)2.

The estimators of the trend m and amplitudes {g
ℓ,k
, ℓ = 1, 2, k = 1, . . . , K}, are

m̂ = Bα̂, ĝ
1,k

= Bβ̂
k
, ĝ

2,k
= Bγ̂

k
. (2.12)

Another parameter of interest is the variance of the errors, σ2
z , which can be estimated

by

σ̂2
z = [N − tr(Ŝ)]−1

N∑
i=1

{
y
i
−B(ti)

⊤θ̂POLS

}2

where Ŝ = B(B⊤B +P)−1B⊤.

In addition to the point estimate, interval estimation for ŷ
i

is often of interest and is

easy to construct. Assuming that the error terms {z
i
, i = 1, . . . , N} follow a Gaussian
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distribution with zero mean and variance σ2
z , the (1 − α) × 100% prediction interval for

µ(ti), with i = 1, . . . , N , is

B⊤(ti)θ̂POLS ± z(1− α/2)

√
B⊤(ti)Var

[
θ̂POLS

]
B(ti), (2.13)

where z(1 − α/2) denotes the (1 − α/2) quantile of the standard Gaussian distribution,

and

Var
[
θ̂POLS

]
= σ2

z (B⊤B +P)−1B⊤B(B⊤B +P)−1.

The (1− α)× 100% confidence interval for the trend m(ti) is

B(ti)
⊤Q̂mθ̂POLS ± z(1− α/2)

√
B(ti)⊤Q̂mVar

[
θ̂POLS

]
Q̂⊤

mB(ti), (2.14)

and the (1 − α) × 100% confidence intervals for the amplitudes g
ℓ,k
(ti), ℓ = 1, 2, k =

1, . . . , K, are

B(ti)
⊤Q̂g(ℓ, k)θ̂POLS ± z(1− α/2)

√
B(ti)⊤Q̂g(ℓ, k)Var

[
θ̂POLS

]
Q̂g(ℓ, k)⊤B(ti), (2.15)

where B(ti) is the ith row of the matrix B, and B = [B|B| . . . |B] is a matrix of di-

mension N × c. The c × c matrices Q̂m, {Q̂g(ℓ, k), ℓ = 1, 2, k = 1, . . . , K} satisfy

Q̂mθ̂POLS = (α̂⊤,0⊤
J
, . . . ,0⊤

J
)⊤ and

Q̂g(1, 1)θ̂POLS = (0⊤
J
, β̂

⊤
1
,0⊤

J
, . . . ,0⊤

J
)⊤, Q̂g(2, 1)θ̂POLS = (0⊤

J
, . . . ,0⊤

J
, γ̂⊤

1
,0⊤

J
, . . . ,0⊤

J
)⊤,

Q̂g(1, 2)θ̂POLS = (0⊤
J
,0⊤

J
, β̂

⊤
2
,0⊤

J
, . . . ,0⊤

J
)⊤, Q̂g(2, 2)θ̂POLS = (0⊤

J
, . . . ,0⊤

J
,0⊤

J
, γ̂⊤

2
,0⊤

J
, . . . ,0⊤

J
)⊤,

...
...

Q̂g(1, K)θ̂POLS = (0⊤
J
, . . . ,0⊤

J
, β̂

⊤
K
,0⊤

J
, . . . ,0⊤

J
)⊤, Q̂g(2, K)θ̂POLS = (0⊤

J
, . . . ,0⊤

J
, γ̂⊤

K
)⊤.

2.4.2 Automatic selection of the tunable parameters

Before calculating the estimator in equation (2.10), it is necessary to select the tuning

parameters τ = (τ1 , τ2 , . . . , τ2K+1
)⊤. To choose the tuning parameters, we propose to use

the Akaike information criterion (AIC).
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The AIC penalizes the log-likelihood of a fitted model by considering the effective num-

ber of parameters. The definition of AIC given by Hastie et al. (2004) is

AIC(τ ) = err(τ ) + 2
df
N
σ̂2
0 ,

where err(τ ) corresponds to the mean square error in the case of Gaussian errors, df is the

effective number of parameters, N is the number of observations used to fit the model, and

σ̂2
0 is given by the variance of the residuals from the ŷ

i
that are computed when τ = 0

2K+1
.

The value for τ is chosen by minimizing the AIC, which is computed as

AIC(τ ) =
1

N

N∑
i=1

{
y
i
−B(ti)

⊤θ̂POLS

}2

+ 2
tr(Ŝ)
N

σ̂2
0 , (2.16)

The AIC given by equation (2.16) can also be used to select the number of B-splines J ,

the degree d of the B-spline, the order of penalty r, and the number of harmonic compo-

nents K.

In Figure 2.1, we have generated N = 500 observations from the model described in

equation (2.1), with the Gaussian errors {zi, 1 ≤ i ≤ 500} being simulated using the R

function rnorm. We consider the following artificial signal:

µ(ti) = −0.05ti − (−0.0002ti + 0.0003t2i ) cos(0.2πti) + (1− 0.0005ti) sin(0.2πti),

with the errors following a Gaussian distribution with zero mean and variance σ2
z = 1.

Time t is unequally spaced and was obtained from a uniform distribution U(θ1, θ2) with

θ1 = 0 and θ2 = 55 using the R function runif. In the first plot of Figure 2.1 the

observations y are represented by the gray points, and the mean µ by the black curve.

The orange, blue, and green curves illustrate three possible estimates for y obtained using

the method described in Section 2.4.1 with increasing smoothing parameters. The orange

line is the fit obtained with τ
j
= 0, j = 1, 2, 3: the corresponding ŷ matches the data

well, but fits the true µ poorly because it is wiggly. The blue curve is obtained using

the smoothing parameters τj = 30, j = 1, 2, 3, and the green curve is obtained using

τj = 200, j = 1, 2, 3. In the second plot of Figure 2.1, we observe that the optimal tuning

parameters are τj = 30, j = 1, 2, 3, and as the values of τ increase the obtained curve fits

the observed data less closely.
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Figure 2.1 Automatic selection of the tunable parameters presented in Section 2.4.2. Left: data

(gray dots) simulated according to the model defined by equation (2.1), with N = 500, µ(ti) =

−0.05ti−(−0.0002ti+0.0003t2i ) cos(0.2πti)+(1−0.0005ti) sin(0.2πti) (black curve), and where

the errors follow a Gaussian distribution with zero mean and variance σ2
z = 1. Time is unequally

spaced, obtained from a uniform distribution U(0, 55) (gray ticks on the horizontal axis). We

illustrate three estimates of y corresponding to three different specifications of τj , with j = 1, 2, 3:

τj = 0 (orange curve), τj = 30 (blue curve), and τj = 200 (green curve). Right: values of the

AIC in equation (2.16), obtained from the simulated and estimated light curve, corresponding to

forty-one equally spaced values of τ ranging from 0 to 200. The three points (orange, blue, and

green) on the AIC curve correspond to the three fits presented in the left-hand plot of the figure.

2.5 Detecting serial correlation

A statistical model is an approximation to the true process that generates the observed

data. After fitting the model given by equation (2.1), it is necessary to check whether the

residuals obtained from the fit behave like a white noise process. A significant departure

from this assumption suggests the inadequacy of the assumed form of the model. Thus, it

is important to assess whether the residuals follow a white noise process.

Detecting serial correlation becomes more challenging when the available observations

are unequally spaced in time. If the observations are unequally spaced, so are the errors.

In order to study the spectral density of the residuals obtained from the fitted model, in this

section we derive the mathematical definition of the spectrum for unequally spaced time

series.
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Before presenting our approach, we briefly review the results given by Deeming (1975)

about the relationships between the periodogram, the spectral density (PSD), and the au-

tocorrelation function for continuous time series. Then, we extend the results given by

Deeming (1975) to the case of discrete time series.

Let {ε
i
} be a continuous, zero-mean stationary times series with spectral density

Pε(λ) =

∫ ∞

−∞
rε(h) exp(iλh)dh, −∞ < λ <∞,

and autocovariance function

rε(h) =

∫ ∞

−∞
Pε(λ) exp(−iλh)dλ, h ∈ R.

Consider a time series ε1 , . . . , εN with spectrum Pε(·) and autocovariance function rε(·),
and assume that the observations ε1 , . . . , εN are obtained at unequally spaced times t1 , . . . , tN ,

respectively. The periodogram of ε = (ε1 , . . . , εN )
⊤ at frequency λ is defined as

Iε(λ) =
N∑
k=1

N∑
j=1

ε
k
ε
j
exp(iλ[tk − tj]), λ = 2πf. (2.17)

Deeming (1975) proved that the expectation of the periodogram of {ε
i
} in equation (2.17)

is

E [Iε(λ)] = Pε(λ) ⋆ Wε(λ), (2.18)

where Wε(λ) is the power spectral window given by

Wε(λ) =
N∑
j=1

N∑
k=1

exp(iλ[tk − tj]),

and Pε(λ) ⋆ Wε(λ) is the continuous convolution of Pε(λ) with Wε(λ) defined as

Pε(λ) ⋆ Wε(λ) =

∫ ∞

−∞
Pε(ω)Wε(λ− ω)dω.

The following lemma states that it is possible to extend the result in equation (2.18) to the

case of a discrete zero-mean stationary times series that is generated according to equally
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spaced times but observed at unequally spaced times. The lemma applies to unequally

spaced time points ti with index i belonging to a subset I of the set N = {1, 2, . . . } of

positive integers.

Lemma 1 Let {ε
i
, ti = t0+ i∆, ∆ > 0, i ∈ I ⊆ N} be a zero-mean, stationary, discrete

time series with spectral density

Pε(λ) =
1

2π

∞∑
h=−∞

exp(iλh∆)rε(h), −∞ < λ <∞, (2.19)

with autocovariance function defined as rε(h) = E
[
ε
k
ε
j

]
, with k = j + |h|, h ∈ Z, that

can be expressed in term of the spectral density in equation (2.19) as

rε(h) =
2π

NI

NI∑
j=1

exp(−iλjh∆)Pε(λj), h ∈ Z, (2.20)

where λj = 2πf
j
, with f

j
= j/(NI∆) and NI = max {I}. Then, the expectation of the

periodogram in equation (2.17) obtained from {ε
i
, i ∈ I} is

E [Iε(λ)] =
2π

NI
Pε(λ) ∗Wε(λ), (2.21)

with power spectral window given by

Wε(λ) =
∑
k∈I

∑
j∈I

exp(iλ[tk − tj]) (2.22)

and Pε(λ) ∗Wε(λ) is the discrete convolution of Pε(λ) with Wε(λ) defined as

Pε(λ) ∗Wε(λ) =

NI∑
j=1

Pε(ωj) ∗Wε(λ− ωj), ωj = 2πf
j
, f

j
=

j

NI∆
.

The PSD defined in equation (2.19) have period 2π and is even. Therefore it suffices to

confine attention to the value of f on the interval (−π, π].

Our result in equation (2.21) differs from the result by Deeming (1975) in equation (2.18).

Deeming (1975) proved that the expectation of both discrete and continuous Fourier trans-

forms of a continuous stochastic process f(t); (in the sense of equations (31) and (32) in
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Deeming, 1975) is equal to the continuous convolution of the spectral density of f(t) with

a spectral window (see equations (33) and (36) in Deeming, 1975). In Lemma 1, instead,

we prove that the expectation of the discrete Fourier transform of the discrete stochastic

process ε
i

is equal to the discrete convolution of the spectral density of ε
i

with a spectral

window (up to the constant 2π/NI).

When the time series is generated according to an equally spaced stochastic process

and the observations are equally spaced, the periodogram is an (asymptotically) unbiased

estimator of the spectral density (see Priestley, 1981, page 418). However, when the ob-

servations are unequally spaced it does not make sense to estimate the spectral density in

the same way. This is due to the power spectral window Wε(λ) in equations (2.21)-(2.22).

Nevertheless, as we show in the following proposition, it is possible to disentangle the

spectral density Pε(λ) from the spectral window Wε(λ).

Proposition 1 Let F{g
j
}[k] denote the Discrete Fourier Transform of the sequence of m

numbers g1 , . . . , gm into another sequence h1 , . . . , hm , that is,

h
k
= F{g

j
}[k] =

m∑
j=1

g
j
exp(−ikj2π/m), k = 1, . . . ,m. (2.23)

Accordingly, define F−1{h
k
}[j] as the Inverse Discrete Fourier Transform of the sequence

h1 , . . . , hm into another sequence g1 , . . . , gm , that is,

g
j
= F−1{h

k
}[j] = 1

m

m∑
k=1

h
k
exp(ikj2π/m), j = 1, . . . ,m. (2.24)

Assume that {ε
i
, i ∈ I} satisfy the same conditions as in Lemma 1. Then we can write the

spectral density Pε(λj) in equation (2.19) at frequency λj = 2πf
j
, with f

j
= j/(NI∆), as

Pε(λj) =
NI

2π
F−1

{
F{E [Iε(λj)]}[k]
F{Wε(λj)}[k]

}
[j], j = 1, . . . , NI . (2.25)

The proofs of Lemma 1 and Proposition 1 are given in Appendix C. Equation (2.25) sug-

gests that in order to estimate Pε(λ), we need the value of ∆ and Wε(λ), as well as the

estimate of E [Iε(λ)]. Notice that, the errors z = (z1 , . . . , zN )
⊤ of our model in equation
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(2.1) are assumed to be serially uncorrelated. The following algorithm is proposed to es-

tablish whether the unequally spaced residuals obtained when fitting our model in equation

(2.1) are uncorrelated.

(i) Obtain the residuals ẑ = y − ŷ.

(ii) For each j = 1, . . . , NI , define Iẑ(λj) as the periodogram in equation (2.17) com-

puted upon the residuals ẑ obtained in step i), with λj = 2πj
NI∆

.

(iii) For each j = 1, . . . , NI , define Wẑ(λj) as the power spectral window in equation

(2.22) computed upon the residuals ẑ obtained in step i), with λj = 2πj
NI∆

.

(iv) Smooth the periodogram obtained in step ii) over frequencies, and denote the smoothed

periodogram by Ĩẑ(λj).

(v) Calculate the Discrete Fourier Transform in equation (2.23) of the power spectral

window and the periodogram obtained in steps (iii) and (iv), respectively.

(vi) For each frequency λj = 2πj
NI∆

, define the estimated spectral density of the errors z

as

P̂z(λj) =
NI

2π
F−1

{
F{Ĩẑ(λj)}[k]
F{Wẑ(λj)}[k]

}
[j], j = 1, . . . , NI , (2.26)

where the inverse Fourier transform F−1 is given by equation (2.24).

(vii) If the estimated spectral density obtained in step (vi) does not vary significantly over

frequencies, conclude that the errors are uncorrelated over time.

2.6 Simulation results

In this section we provide Monte Carlo simulations to illustrate the performance of the

estimators µ̂(t), m̂(t), ĝ
ℓ,k
(t), ℓ = 1, 2, k = 1, . . . , K, defined by equations (2.11) and

(2.12), and the estimator of the spectral density in equation (2.25).



Chapter 2 49

In Section 2.6.1 we simulate unequally spaced observations from the model in equa-

tion (2.1), under two scenarios. In the first scenario both the trend and amplitudes are

sinusoidal, whereas in the second scenario the trend and amplitudes are polynomial. In

Section 2.6.2 we simulate a Blazhko light curve and fit the model in equation (2.1). Fi-

nally in Section 2.6.3 we evaluate the performance of the estimator of the spectral density

defined in equation (2.25) of a discrete unequally spaced time series.

2.6.1 Simulating the time-varying model

In this section we generate the data according to the model described by equation (2.1) with

K = 2, N = 500, and time t is unequally spaced, obtained form a uniform distribution

U(θ1, θ2) with θ1 = 0 and θ2 = 1. In order to illustrate the flexibility of our novel method,

we consider two different scenarios for the trend and amplitudes. In the first scenario,

we simulate a sinusoidal trend and amplitudes as m(t) = sin(2πt), g1,1(t) = cos(9πt),

g2,1(t) = sin(6πt), g1,2(t) = cos(4πt), g2,2(t) = sin(7πt), with frequencies w1 = 40π, and

w2 = 100π. In the second scenario, we simulate (global) polynomial trend and amplitudes

as m(t) = 0.2t − 5t2 + 5.5t3, g1,1(t) = 4t3 − 5t2, g2,1(t) = −0.5 − 0.5t + 2.5t2 − 0.5t3,

g1,2(t) = −t + t2 + 1.3t3, g2,2(t) = 0.5 + 2t2 − 3t3, with frequencies w1 = 30π, and

w2 = 40π. In both scenarios, we assume that the error terms {z
i
, i = 1, . . . , N} is a

Gaussian white noise sequence with zero mean and variance σ2
z = 2.

In both scenarios, we simulate M = 200 realizations of the model in equation (2.1).

For each j = 1, . . . ,M , we compute the estimate θ̂
(j)

defined by equation (2.10). In the

first scenario, we select the smoothing parameter τ = (50, 1, 2, 10, 1)⊤, a total number of

B-splines J = 33 of order d = 3, and an order penalty r = 2. In the second scenario,

we choose the smoothing parameter τ = (3, 3, 3, 3, 3)⊤, a total number of B-splines J =

6 of order d = 3, and an order penalty r = 4. Figure 2.2 shows our estimates of µ,

m, {g
ℓ,k
, ℓ = 1, 2, k = 1, 2}, and their 95% confidence intervals. Figure 2.2 shows

that our model in equation (2.1) fits well the simulated data in both the sinusoidal and

polynomial scenarios. That is, the trend and amplitudes are well fitted in both scenarios.
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The 95% confidence intervals are constructed in a nonparametric fashion using quantiles;

see Appendix B for more details.
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Figure 2.2 Simulation scenarios of Section 2.6.1: data generated from the model in equation (2.1)

with sinusoidal and polynomial time-varying trends and amplitudes. Time t is unequally spaced.

The first column shows the fit of the model with a sinusoidal trend and amplitudes, whereas the

second column shows the fit of the model with a polynomial trend and amplitudes. The first row

shows the true µ(t) (red solid line), together with the average µ(t) = 1
M

∑M
j=1 µ̂

(j)(t) of the

estimates µ̂(j)(t) (black solid line). The second row shows the true trend m(t) (red solid line)

together with the average m(t) = 1
M

∑M
j=1 m̂

(j)(t) of the estimates m̂(j)(t) (black solid line).

The third and fourth rows show the true amplitudes g
ℓ,k
(t) (red solid line), ℓ = 1, 2, k = 1, 2,

together with the average g
ℓ,k
(t) = 1

M

∑M
j=1 ĝ

(j)
ℓ,k

(t) of the estimates ĝ(j)
ℓ,k

(t) (black solid line),

with M = 200. The nonparametric quantiles (black dashed lines) are the confidence intervals

corresponding to the 2.5th and 97.5th order statistics, respectively, see Appendix B.
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2.6.2 Simulating a Blazhko RR Lyrae light curve characterized by
amplitude modulation

We simulate a Blazhko RR Lyrae light curve with amplitude modulation according to

Benkő et al. (2011) as

y
i
= µ(ti) + z

i
, i = 1, . . . , N = 1000,

µ(ti) =

[
1 +

Um(ti)

Uc

]
c(t),

c(t) = a0 +
4∑

k=1

a
k
sin(2πkf0ti + φ

k
),

Um(t) = am sin(2πfmt+ φm),

(2.27)

where c(t) is the carrier wave with four harmonic components, Um(t) is the modulating

signal, Uc = am/h is the amplitude of the unmodulated light curve, and {z
i
, i = 1, . . . , N}

are the error terms. The values of the parameters used in equation (2.27) and the time-

design are obtained from Benkő et al. (2011). In particular, am = 0.1 mag, h = 1.2,

a0 = 0.01 mag, fm = 0.05 days−1, φm = 270◦, and the values {a
k
, φ

k
, 1 ≤ k ≤ 4} are

presented in Table 2.1.

Parameters of Simulated RR Lyrae Star

k kf0 a
k

φ
k

(days−1) (mag) (◦)

1 2 0.401 5.490

2 4 0.171 144.040

3 6 0.133 285.25

4 8 0.097 81.290

Table 2.1 Parameters (frequencies, amplitudes, and phases) obtained from Benkő et al. (2011),

as explained in Section 2.6.2.

We convert the Blazhko phase φm and the main phases {φ
k
, 1 ≤ k ≤ 4} in equa-

tion (2.27) from degrees to radians using the R function NISTdegTOradian (avail-
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able in the R package NISTunits2016 by Gama, 2016). The original time design

{tj, j = 1, . . . , 28799} in Benkő et al. (2011) is equally spaced. However, variable stars

are often observed at irregular intervals. For this reason, in our simulation exercise we

sample a subset of the original time points and use this subset to evaluate the perfor-

mance of our method. We obtain the time design {ti, i = 1, . . . , 1000} in equation (2.27)

by sampling the original, equally spaced time design {tj, j = 1, . . . , 28799}. We end

up with N = 1000 unequally spaced observations ranging from t = 0.03819 days to

t = 69.37847 days. The error terms {z
i
, i = 1, . . . , N} is a Gaussian white noise se-

quence with zero mean and variance σ2
z = 0.005.

If we consider our novel model in equation (2.1) with time-varying trend and amplitudes

specified as

m(ti) = a0 [1 + Um(ti)/Uc ] ,

g
1,k
(ti) = a

k
cos(φ

k
)[1 + Um(ti)/Uc ], k = 1, . . . , 4,

g
2,k
(ti) = a

k
sin(φ

k
)[1 + Um(ti)/Uc ], k = 1, . . . , 4,

(2.28)

we can rewrite the model in equation (2.27) as a special case of our model given by equa-

tion (2.1). The main advantage of fitting the model in equation (2.1) instead of the model

in equation (2.27), is that one does not need to estimate the parameters am , h, a0 , φm , a
k
,

φ
k
, k = 1, . . . , 4, fm . Moreover, we do not need to adopt any specific functional form for

m(·) and g(·), such as those given by equation (2.28), because they are well approximated

by B-splines.

We fit the model in equation (2.1) with K = 4 to the data generated according to

the model in equation (2.27). We assume that the frequencies f
k
, k = 1, . . . , 4, of

each harmonic component are known; see Table 1. Also, we use a total of J = 18

B-splines of degree d = 3, an order penalty r = 1, and the smoothing parameters

τ = (5, 1, 0.1, 0.1, 0.1, 0.1, 1, 0.1, 4)⊤.

We fit the model in equation (2.1) to the simulated data obtained from the model in

equation (2.27), and present the results in Figure 2.3. The first row shows the simulation

of the amplitude modulated RR Lyrae light curve given by equation (2.27) (gray points),
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together with the true and fitted curve (solid red and solid black lines, respectively). The

second row shows the residuals, and the third and last fourth rows show the true trend and

amplitudes (red lines) given by equation (2.28) and their fits (black lines). We observe

from Figure 2.3 that the model in equation (2.1) fits well the simulated data. That is,

the trend and amplitudes are well fitted, and the residuals satisfy the assumption of zero

mean and constant variance. The 95% confidence intervals are constructed in a parametric

fashion; see equations (2.13) - (2.15).

2.6.3 Estimating the spectral density of unequally spaced time series

In this section we estimate the spectral density of unequally spaced time series by means

of our novel estimator in equation (2.25). To this end, we simulate unequally spaced

observations generated from the following AR(2) process:

ε
i
= ϕ1εi−1

+ ϕ2εi−2
+ z

i

{z
i
} ∼ N (0, σ2

z )

ti = t0 + i∆,

(2.29)

where i = 1, . . . , N , with N = 500 equally spaced observations, starting time t0 = 0.67,

and ∆ = 0.33, and {z
i
, i = 1, . . . , N} a Gaussian white noise sequence with zero mean

and variance σ2
z . In order to simulate a realistic AR(2) process, we use the coefficients of

the sunspot numbers in Example 3.2.9 of Brockwell and Davis (2016), where ϕ1 = 1.318,

ϕ2 = −0.634, and σ2
z = 289.2. These ϕ coefficients ensure the existence of a causal

solution

ε
i
=

∞∑
j=0

ψ
j
z
i−j

(2.30)

of equation (2.29). The time series in equation (2.30) is causal in the sense that ε de-

pends upon current and past (rather than future) values of the error term z. We simulate

M = 500 times the AR(2) model given by equation (2.29) obtaining the observations

ε(m)
1

, . . . , ε(m)
N

, m = 1, . . . ,M . Then, in order to obtain unequally spaced observations we

use the following three steps.
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Figure 2.3 Simulation scenario of Section 2.6.2: simulated Blazhko RR Lyrae light curve char-

acterized by amplitude modulation. The first row shows the light curve data of an RR Lyrae star

simulated according to the model given by equation (2.27) (gray points), the curve µ(t) (solid red

line), and the prediction ŷi (solid black line). The second row shows the residuals. The third and

last four rows show the time-varying trend and amplitudes (red solid lines) together with the es-

timated trend and amplitudes (solid black lines). Trend and amplitudes are simulated according

to equation (2.28). The parametric 95% confidence intervals (dashed black lines) are obtained ac-

cording to equations (2.13) - (2.15).
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1. We divide time into 50 blocks, where each block has 10 observations, in a way to

preserve the original time series structure.

2. In order to preserve the autocorrelation between the observations, we select ran-

domly 30 blocks and collect the time points corresponding to these blocks, obtain-

ing a new set of time points {t∗i , i = 1, . . . , n}, with n = 300 observations. In

contrast to the simulation schemes of Sections 2.6.1 and 2.6.2 where time was sam-

pled randomly, here data sets with uniformly sampled subsets are produced. While

the former sampling is close to the data distribution of large ground-based surveys,

the latter is the typical sampling of photometric space telescopes that are dedicated

to high-cadence time-series observations, such as Kepler (Koch et al., 2010).

3. Finally, we collect the observations ε(m)
i

corresponding to the new set of time points

{t∗i , i = 1, . . . , n} and rename them as e(m)
i

= ε(m)
i

, with e(m)
i

being observed at time

t∗i , i = 1, . . . , n.

Thus, we obtain the unequally spaced observations e(m)
1

, . . . , e(m)
n

, which represent a subset

of the equally spaced time series ε(m)
1

, . . . , ε(m)
N

. For each m = 1, . . . ,M , and each fixed

frequency λj = 2πf
j
, f = j/(N∆), j = 1, . . . , N , we compute the periodogram of

e(m)
1

, . . . , e(m)
n

as

I(m)
e (λj) =

n∑
k=1

n∑
d=1

e(m)
k

e(m)
d

exp(iλj[t
∗
k − t∗d]),

the average of the periodograms I(m)
e (λj) as

Ie(λj) =
1

M

M∑
m=1

I(m)
e (λj),

and the power spectral window of e(m)
1

, . . . , e(m)
n

as

We(λj) =
n∑

d=1

n∑
k=1

exp(iλj[t
∗
k − t∗d]).
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For each frequency λj , j = 1, . . . , N , replacing E [Ie(λj)] with Ie(λj) and substituting

We(λj) in equation (2.25), the estimated spectral density of the unequally spaced time

series e(m)
1

, . . . , e(m)
n

is given by

P̂e(λj) =
N

2π
F−1

{
F{Ie(λj)}[k]
F{We(λj)}[k]

}
[j], (2.31)

A smooth version of the estimated spectral density in equation (2.31) is

P̃e(λj) =
1
N
λ

N
λ∑

i=1

Kh(λj − λi)P̂e(λj). (2.32)

The rescaled kernel function is defined as Kh(x) = 1
h
K(x/h), where K is a second-

order kernel and h is the bandwidth. For this application, we used the Gaussian kernel

K(y) = 1√
2π

exp(−y2/2) and a bandwidth h = 0.3.

Figure 2.4 compares the underlying spectral density Pε(λj) of the equally spaced time

series {ε
i
}, with the estimated spectral densities P̂e(λj) and P̃e(λj) of the unequally spaced

time series {e
i
}. The underlying spectral density of the equally spaced time series {ε

i
},

generated by the AR(2) process in equation (2.29), is given by

Pε(λj) =
σ2
z

2π

[
1 + ϕ2

1
+ ϕ2

2
+ 2ϕ2 + 2(ϕ1ϕ2 − ϕ1) cos(λj∆)− 4ϕ2 cos

2(λj∆)
]−1

. (2.33)

The estimated spectral density P̂e(λj) of the unequally time series {e
i
} is given in equa-

tion (2.31), and its smooth version P̃e(λj) in equation (2.32). Figure 2.4 shows that the

estimated spectral density of the unequally time series, P̃e(λj), fits very well the true spec-

tral density Pε(λj).
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Figure 2.4 Simulation scenario of Section 2.6.3: estimated spectral density of the unequally

spaced time series sampled by blocks. Left: comparison between the true spectral density in equa-

tion (2.33) (red line) and the estimated spectral density P̂e(λj) in equation (2.31) (black line) for

j = 1 . . . , N/2. Right: comparison between the true spectral density in equation (2.33) (red line)

and the smooth estimated spectral density P̃e(λj) in equation (2.32) (black line) for j = 1 . . . , N/2.

The true spectral density corresponds to the equally spaced time series εi which follows the AR(2)

process given by equation (2.29), whereas the estimated spectral density is computed from the

unequally spaced observations e(m)
1

, . . . , e(m)
n

, m = 1, . . . ,M . The unequally spaced time series

e(m)
1

, . . . , e(m)
n

is obtained as a subset of the time series ε(m)
1

, . . . , ε(m)
N

. In this example N = 500,

n = 300, and M = 500.

2.7 Application to real data

In this section, we fit our model in equation (2.1) and the model proposed by Benkő (2018)

in equation (2.4) to the same light curve: the V783 Cyg, KIC 5559631. This time series

has 61,351 unequally spaced observations and is available online from the Konkoly Obser-

vatory of the Hungarian Academy of Sciences webpage.2 We choose this particular light

curve for two reasons. Firstly, the Blazhko effect of the V783 Cyg time series is known to

be characterized by a sinusoidal amplitude and frequency modulation (Benkő et al., 2014).

The light curve of V783 Cyg can be described by K = 15 significant harmonics with a

sinusoidal amplitude and frequency modulations (Benkő et al., 2014), which makes V783

2https://konkoly.hu/KIK/data_en.html

https://konkoly.hu/KIK/data_en.html
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Cyg an ideal target for comparing the fits obtained with the models in equations (2.1) and

(2.4). Secondly, these two modulations are well captured and fitted by our novel model in

equation (2.1).

In order to reduce the computational time and to satisfy the condition ti = t0 + i∆

with ∆ > 0 and i ∈ I ⊆ N (which is required by Proposition 1), we analyze a ≈ 78

days segment of this light curve from t = 827.44 days to t = 904.9 days. For this

segment, the time-origin and the time-spacing take the values t0 = 827.42 days and ∆ =

0.0204345 days, respectively, with a total of N = 2101 unequally spaced observations.

When fitting the models in equations (2.1) and (2.4), the main pulsation and modula-

tion frequencies are not estimated: they take the values f0 = 1.611084 days−1 and fm =

0.036058 days−1 (see Benkő et al., 2014), respectively. In addition, to the K = 15 sig-

nificant harmonics fitted by Benkő et al. (2014), we found, after pre-whitening and fitting

our model in equation (2.1), four significant frequencies taking the values f ′
11

= 18.3254

days−1, f ′
12

= 19.9365 days−1, f ′
13

= 21.5476 days−1, and f ′
14

= 23.1587 days−1. The

values we obtain for {f ′
j, 11 ≤ j ≤ 14} demonstrate that these frequencies are not har-

monics of the form kf0, which might suggest that these four are independent frequencies.

Interestingly, however, we find that the latter belong to a set of fourteen “reflection fre-

quencies” of the form {f ′
j = 2f

N
− (30− j)f0, 1 ≤ j ≤ 14}, where f

N
= 24.46 days−1 is

the Nyquist frequency.

Among these fourteen frequencies, only the last six {f ′
j, 9 ≤ j ≤ 14} exhibit significant

peaks in the Lomb-Scargle periodogram (computed according to Lomb, 1976). However,

to avoid overfitting, we only consider the four frequencies {f ′
j, 11 ≤ j ≤ 14} correspond-

ing to last four peaks of the estimated power spectrum (see the last row of Figure 2.5, bot-

tom right panel). In summary, the only truly independent frequencies are f0, fm, and f
N

,

the other frequencies {fk = kf0, k = 1, . . . , 15} and {f ′
j = 2f

N
−(30−j)f0, 1 ≤ j ≤ 14}

being linear combinations (or harmonics) of those.

The frequencies f ′
j do not depend on the Blazkho frequency fm, as the information about

the Blazhko effect is captured by the time-varying trend m(·) and amplitudes {g
ℓ,k
(·), ℓ =

1, 2, k = 1, . . . , K}, see equations (2.8)-(2.9) and Figure 2.6. We use a different notation
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(f ′ rather than f ) to avoid confusion, since in this case f
N
< 16f0 = 25.77 days−1, and

the four frequencies we are considering take value < 24 days−1.

After fitting the models in equations (2.1) and (2.4), we compute their residuals and

estimate their spectral densities using equation (2.26). To estimate the spectral densi-

ties according to the procedure in Section 2.5, we adopt the Gaussian kernel K(y) =
1√
2π

exp(−y2/2) with a bandwidth h = 7.2. We fitted both models with a PC having a

2.7 GHz 12-core Intel Xeon E5 processor and 64 GB of 1866 MHz DDR3 memory. Fit-

ting our novel model in equation (2.1) required seventeen minutes and thirteen seconds,

whereas fitting the model by Benkő (2018) in equation (2.4) required twelve minutes and

twenty-eight seconds.

The description provided so far applies to both fits of models in equations (2.1) and

(2.4). We now provide, separately, computational details about the estimation of these two

models. Then in Sections 2.7.1 and 2.7.2 we compare and interpret the fits.

To fit our novel model in equation (2.1), we apply the methodology described in Section

2.4. When fitting our model in equation (2.1) we consider two sets of harmonic compo-

nents. The first set is given by the harmonic components with frequencies {f
k
= kf0 , k =

1, . . . , 15} provided by Benkő et al. (2014), weighted by our amplitudes {g
ℓ,k
(ti), ℓ =

1, 2, k = 1, . . . , 15}. For the second set, the harmonic components are characterized by

the four amplitudes {g′
ℓ,j
(ti), ℓ = 1, 2, j = 11, . . . , 14} weighting the corresponding four

frequencies {f ′
j
, j = 11, . . . , 14}. That is, we fit the following extended version

µ(ti) = m(ti) +
15∑
k=1

{g
1,k
(ti) cos(wk

ti) + g
2,k
(ti) sin(wk

ti)}

+
14∑

j=11

{g′
1,j
(ti) cos(w

′
j
ti) + g′

2,j
(ti) sin(w

′
j
ti)}

of the model in equation (2.1), with ωk = 2πfk and ω′
j = 2πf ′

j . The resulting fitted model

involves a total of 39J parameters. Before fitting our model, we select the smoothing

parameters τ and the number of B-splines J . These parameters are selected by the AIC

criterion described in Section 2.4.2. To simplify the selection of the smoothing parameters
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τ , we consider the case τ2 = · · · = τ11 , τ12 = · · · = τ21 , τ22 = · · · = τ31 , and τ32 = · · · = τ39 .

We pick the smoothing parameter τ1 over the grid {0, 0.1, 10}, the parameters {τ
k
, k =

2, . . . , 39} over the grid {0, 0.1, 10, 100}, and the total number J of B-splines (of degree

d = 3) over the grid {8, 13, 23, 33}. We apply the AIC formula in equation (2.16). The

lowest AIC value occurs for J = 33 B-splines, τ1 = 0, τ
k
= 0.1, k = 2, . . . , 21, τ

k
= 0,

k = 22, . . . , 31, and τ
k
= 10, k = 32, . . . , 39.

To fit the model in equation (2.4), we implement the Levenberg–Marquardt algorithm

using the R function nls.lm (available in the R package minpack.lm by Elzhov et al.,

2016), with K = 15 and ℓ = ℓA
k
= ℓF

k
= 1, k = 1, . . . , K, for a total of 93 parameters.

2.7.1 Comparing the accuracy of the fits

The MSE corresponding to the fit of our model in equation (2.1) is 0.000001, whereas

the MSE of the model in equation (2.4) is 0.000008. That is, the MSE of the model in

equation (2.1) is about 12.5% of the MSE of the model in equation (2.4). Fitting the model

in equation (2.1) involves 1287 parameters, whereas the number of parameters estimated

with the model in equation (2.4) is 93. The larger number of parameters needed to fit the

model in equation (2.1) is due to the semi-parametric form of the trend and amplitudes,

which does not impose any particular shape to the underlying functions we estimate.

Figure 2.5 compares the fits of the models in equations (2.1) and (2.4). The first row

shows the fitted curves, the second row shows the residuals, and the third and fourth rows

show the estimated spectral density of the residuals. Although the fitted curves (first row)

look very similar, the residuals are significantly different. Indeed, the residuals obtained

with the model in equation (2.1) are compatible with the assumption of stationary and

uncorrelated errors. By contrast, the residuals obtained with the model in equation (2.4)

exhibit a time-dependent trend. Moreover, the estimated spectral densities in the last two

rows of Figure 2.5 show that the model in equation (2.1) delivers residuals with a flat

estimated spectral density, mimicking the behavior of the spectral density of white noise

errors, whereas for the model in equation (2.4) shows that some harmonic components
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should be added to the model (see the peaks between the frequencies 17 days−1 and 24

days−1 in the last row).
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Figure 2.5 Comparison of fitted models to the light curve of V783 Cyg in Section 2.7.1. The

first column corresponds to the fit of the model in equation (2.1), whereas the second column

corresponds to the fit of the model in equation (2.4). From top to bottom: the first row shows the

Brightness mag (red solid lines) together with the fits (black solid lines). The second row shows

the residuals resulting from the fits. The last two rows show the spectral density of the residual

obtained with equation (2.26) under different transformations (log-10 scale and square root).
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2.7.2 Comparing the estimated time-varying parameters

In Section 2.3 we have shown that the model in equation (2.4) is a special case of our novel

model in equation (2.1). To establish whether the fitted model in equation (2.1) matches

(or differs from) the fitted model in equation (2.4), we now compare the estimates of m(t)

and g
ℓ,k
(t) obtained by fitting the model in equation (2.1) with the estimates of u(t) and

h
ℓ,k
(t) defined in equation (2.7) obtained by fitting the model in equation (2.4).

Figure 2.6 shows the estimates m̂(t), {ĝ
ℓ,k
(t), ℓ = 1, 2, k = 1, . . . , 15}, and {ĝ′

ℓ,j
(t), ℓ =

1, 2, j = 11, . . . , 14} (black lines), together with the estimates û(t) and {ĥ
ℓ,k
(t), ℓ =

1, 2, k = 1, . . . , 15} (red lines). The estimated trend m̂(t) is similar to the sinusoidal û(t).

Similarly, the first eight estimated harmonic components {ĝ
ℓ,k
(t), ℓ = 1, 2, k = 1, . . . , 8}

and {ĥ
ℓ,k
(t), ℓ = 1, 2, k = 1, . . . , 8} are very close to each other. The next seven esti-

mated harmonic components {ĝ
ℓ,k
(t), ℓ = 1, 2, k = 9, . . . , 15} and {ĥ

ℓ,k
(t), ℓ = 1, 2, k =

9, . . . , 15} are still similar but in some cases are slightly different. Nevertheless, these

small differences do not have a significant impact on the fitted curves, because the last

harmonic components have less of a contribution to the fit than the first ones. For the four

estimated harmonic components associated with the frequencies {f ′
j
, j = 11, . . . , 14},

which were fitted only for the model in equation (2.1) – and were not fitted for the

model in equation (2.4) – we observe that the four corresponding time-varying ampli-

tudes {ĝ′
ℓ,j
(t), ℓ = 1, 2, j = 11, . . . , 14} are allowed to have either a sinusoidal or a

nonsinusoidal form. This finding is in accordance with the form of Amplitude Modulation

and Frequency Modulation of Blazhko stars described by Benkő (2018). Finally, in Fig-

ure 2.6, we see that most of the confidence intervals of ĝ
ℓ,k
(t) contain ĥ

ℓ,k
(t). Therefore we

conclude the following. Although the modulation frequency fm is not a parameter of our

model in equation (2.1), we are able to describe, through the estimated time-varying trend

m̂(t) and amplitudes ĝ
ℓ,k
(t), the Blazhko effect resulting from the amplitude and frequency

modulation considered by the model in equation (2.4).
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 ĥ
2,

 2

BJD−2450000 [d]
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 ĥ
1,

 5

BJD−2450000 [d]
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ĝ 2
, 1

1 
an

d 
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Figure 2.6 Comparing the estimated time-varying trend and amplitudes fitted to the light curve

of V783 Cyg studied in Section 2.7.2. Red solid lines: estimates of u(t) and {h
ℓ,k
(t), ℓ = 1, 2, k =

1, . . . , 15} defined in equation (2.7) obtained with the model in equation (2.4). Black solid lines:

estimates of m(t), {g
ℓ,k
(t), ℓ = 1, 2, k = 1, . . . , 15}, and {g′

ℓ,j
(t), ℓ = 1, 2, j = 11, . . . , 14}

obtained with our novel model in equation (2.1). Black dashed lines: 95% confidence intervals for

m(t), g
ℓ,k
(t) and g′

ℓ,j
(t) obtained according to equations (2.14) and (2.15).

2.8 Conclusions

In this chapter, we introduced a model for time series observations of variable stars that are

modulated by smoothly time-varying mean magnitudes, amplitudes, and phases. Previous

approaches assume that the underlying parameters are either time-invariant or piecewise-

constant functions. From the modeling viewpoint, our approach is more flexible because it

avoids assumptions about the functional form of the mentioned time-dependent quantities.
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From the computational viewpoint, estimating our time-varying curves translates into the

estimation of time-invariant parameters that can be performed by ordinary least squares.

An important challenge when dealing with astronomical time series is that observations

are unequally spaced in time. In some cases, observations are unevenly spaced due to

missing values. Missing values are sometimes handled via imputation, that is, the gap

generated by the missing value is “filled in” by an estimated value. Our novel approach,

which involves the classical periodogram, has the advantage of not relying on any imputa-

tion method.

We study the performance of our approach under several simulation scenarios. Finally,

we apply our method to V783 Cyg (KIC 5559631), a well-known RR Lyrae star pre-

senting the Blazhko effect. In this case, the effect is characterized by a sinusoidal am-

plitude and frequency modulation. When comparing the time-varying fit obtained with

our novel model with the time-invariant fit obtained with the model proposed by Benkő

(2018), we found that both amplitude and frequency modulations are well captured and

fitted by our novel model, and also that our time-varying method outperforms the time-

invariant fit. Indeed the estimation error obtained with our fit is significantly smaller than

the error obtained with the time-invariant fit. In addition, the residuals obtained with our

novel method are compatible with the assumption of stationary and uncorrelated errors,

whereas the residuals obtained with the time-invariant model by Benkő (2018) exhibit a

time-dependent trend and some significant spectral peaks.
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Autocorrelated and nonstationary
errors: a nonparametric approach

3.1 Introduction

In the previous chapter, we review the models proposed by Benkő et al. (2011) and Benkő

(2018) to describe the brightness of Blazhko stars and we proposed a novel model based

on time-varying parameters to describe these stars from a point of view more flexible.

The models proposed by Benkő et al. (2011) and Benkő (2018) are based on modulations

models (see Section 1.3.1 for more details). However, assuming that Blazhko stars can be

described only through modulations models may not be valid. For instance, Guggenberger

et al. (2012) described the light curve of the Blazhko star V445 Lyr by means of the

combination of a sinusoidal amplitude modulated cascade and a nonsinusoidal frequency

modulated model. V445 Lyr is described by Guggenberger et al. (2012) as a complex star

in the sense that rapid and strong changes in the Blazhko modulation have been observed.

After fitting the model proposed by Guggenberger et al. (2012) to the light curve V445

Lyr, one can see that the residuals show a pattern (see Figure 16 in Guggenberger et al.

(2012)) and do not behave like a stationary process, that is, their mean and variance are

not constant over time.

65
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One way to enrich the model proposed in the previous chapter is by allowing the ob-

servations to be serially correlated. Serial correlation has been indeed observed in light

curves of variable stars in previous studies. For example, Feigelson et al. (2018) fitted

ARMA models to interpret astronomical light curves of variable stars KIC 005880320,

KIC 004276716, HATS-2b, and RR Hyi, concluding that the variability seen in these stars

can be effectively modeled by means of ARMA models. Kelly et al. (2014) obtaining

good fits using CARMA models for the light curves of a long period variable star and a

RR Lyrae star. Although ARMA and CARMA models help describing, respectively, dis-

crete and continuous stationary time series, they fail at capturing the nonstationarity of the

light curves.

Starting from the model proposed in Chapter 2, in this chapter we extend the previ-

ous results by taking into account two important facts that characterize the error term of

astronomical time series: autocorrelation and nonstationarity. In this chapter we allow

the errors to follow an autoregressive (AR) process, and extend the model introduced in

Chapter 2 into two directions: we first deal with stationary AR errors, and then with lo-

cally stationary AR errors. A possible future research line is represented by a model with

locally stationary ARMA (autoregressive and moving average) errors.

We divide the chapter into four main sections. Section 3.2 defines the model and illus-

trates how the serial correlation is introduced. Section 3.3 presents the method we adopt

to estimate the time-varying parameters, and Section 3.4 provides simulation results under

different scenarios. Finally, Section 3.5 summarizes the main results of this chapter.

3.2 Model definition

Let {y
i
≡ yti , i = 1, . . . , N} be a set of observations occurring at certain discrete times

t1, . . . , tN , with ti = t0+ i∆ where i is an integer, ∆ > 0 is the constant data spacing, and

t0 = 0. We decompose the observation y
i

into the sum of a deterministic part µ(t
i
) and a

random part ε
i
. The deterministic part µ(t

i
) consists of a trend m(t

i
) and a seasonal part.

The seasonal part is a linear combination of K cosines and sines weighted by amplitudes
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g
ℓ,k
(t

i
) as

y
i
= µ(t

i
) + ε

i
, i = 1, . . . , N,

µ(t
i
) = m(t

i
) +

K∑
k=1

{g
1,k
(t

i
) cos(w

k
t
i
) + g

2,k
(t

i
) sin(w

k
t
i
)},

(3.1)

or in matrix notation

y = µ+ ε,

where y = (y1 , . . . , yN )
⊤ is the vector of observations at time t = (t1 , . . . , tN )

⊤, µ =

[µ(t1), . . . , µ(tN )]
⊤ is the expectation of y, m(t

i
) is the smooth trend at time t

i
, g

1,k
(t

i
)

and g
2,k
(t

i
) are smooth time-varying amplitudes of the cosine and sine waves at time t

i
,

respectively, w
k
= 2πf

k
is the angular frequency, and f

k
is the ordinary frequency.

In this chapter, an important role is played by the inverse Γ−1
ε of the matrix Γε = E

[
εε⊤

]
,

the covariance matrix of the errors ε = (ε1 , . . . , εN )
⊤. Both Γε and Γ−1

ε depend on the

underlying model we assume for the vector ε. These two matrices depend on the order p

of the underlying process (see Appendices D and E).

The error vector ε can follow two processes, an autoregressive process or a locally sta-

tionary autoregressive process. An autoregressive process of order p (or AR(p), see Box

and Jenkins, 1970) is defined by

ε
i
=

p∑
j=1

ϕ
j
ε
i−j

+ z
i
, {z

i
} ∼ WN(0, σ2

z ), (3.2)

and a locally stationary autoregressive process of order p (or LSAR(p), see Dahlhaus,

1996) is defined by

ε
i,N

=

p∑
j=1

ϕ
j

(
i
N

)
ε
i−j,N

+ z
i
, {z

i
} ∼ WN(0, σ2

z
), (3.3)

where z
i

is a white noise process with zero mean and variance σ2
z , and the coefficients

ϕ
j

(
i
N

)
, j = 1, . . . , p, depend on the location t

i
. In the case of LSAR errors, time t

i
in the

model in equation (3.1) is rescaled to i/N and the frequency w
k

is replaced by Nw
k

(see



Chapter 3 68

equation (1.18)). Notice that when p = 0 both AR(p) and LSAR(p) reduce to the same

model, and the estimation of time-varying trend and amplitudes in equation (3.1) can be

performed by (penalized) least squares according to the estimator given in Section 2.4 by

equation (2.10).

In the next section, we propose a novel penalized version of the method presented in

Brockwell and Davis (2016) to estimate the trend, m(·), and amplitudes, g
ℓ,k
(·), in the

model in equation (3.1), the autoregressive coefficients, ϕ
j

or ϕ
j
(·), and variance, σ2

z , of

the errors defined in equations (3.2) or (3.3).

3.3 Estimation

In Section 3.3.1 we define estimators of the unknown trendm(·) and amplitudes {g
ℓ,k
(·), ℓ =

1, 2, k = 1, . . . , K}, of the model in equation (3.1) in presence of autocorrelation assum-

ing that the inverse of the covariance matrix of the error term Γ−1
ε is known. In Sec-

tion 3.3.2 we address the estimation of trend and amplitudes when Γ−1
ε is unknown. Fi-

nally, in Section 3.3.3 we explain how to select the tuning parameters associated with the

B-splines, the penalization used in the estimation method, and the order p of the autore-

gressive process associated with the errors. We denote by N the sample size, T = tN − t1

the time span, J the number of B-splines that form the basis associated with the time-

varying trend and amplitudes, H the number of B-splines that form the basis associated

with the time-varying autoregressive coefficients (in the case of LSAR(p) errors), d the de-

gree of the B-splines, K the number of harmonics components, r the order of the penalty,

and M the number of replications in Monte Carlo simulations.

We performed our calculations using the R Language for Statistical Computing (R Core

Team, 2021). Our codes combine existing functions (available as part of R packages) with

our own development.
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3.3.1 Penalized weighted least squares

As in the previous Section 2.4, we use B-splines to estimate the trend and amplitudes of

the model given by equation (3.1) (see Appendix A for the definition of B-splines). The

smooth trend and amplitude functions, m(t
i
) and g

ℓ,k
(t

i
), ℓ = 1, 2, are modeled as a linear

combination of B-splines basis as

m(t
i
) =

J∑
j=1

αjBj(ti),

g
1,k
(t

i
) =

J∑
j=1

β
k,j
B

j
(t

i
), k = 1, . . . , K,

g
2,k
(t

i
) =

J∑
j=1

γ
k,j
B

j
(t

i
), k = 1, . . . , K.

We define the N ×N matrices C
k

and S
k
, k = 1, . . . , K, as

C
k
= diag{cos(w

k
t1), cos(wk

t2), . . . , cos(wk
tN )} and S

k
= diag{sin(w

k
t1), sin(wk

t2), . . . , sin(wk
tN )}.

The model for the expected value of y is

µ = Bθ,

where B is the N × c design matrix given by

B = [B|C1B| . . . |C
K
B|S1B| . . . |S

K
B],

with c = J(2K + 1), and

θ = (α⊤,β⊤
1
, . . . ,β⊤

K
,γ⊤

1
, . . . ,γ⊤

K
)⊤, (3.4)

with α = (α1 , . . . , αJ
)⊤, β

k
= (β

k,1
, . . . , β

k,J
)⊤, γ

k
= (γ

k,1
, . . . , γ

k,J
)⊤, k = 1, . . . , K, is

the vector of regression coefficients of length c.

The generalized least squares (GLS) estimator of θ is the value θ̂GLS which minimizes

the sum of squares

Mθ = ||Vy −VBθ||2, (3.5)
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where the N × N matrix V satisfies VV = σ2
z Γ

−1
ε , σ2

z = Var [z
i
], and Γε = E

[
εε⊤

]
are the variance and the covariance matrix of z

i
and ε, respectively. The matrix V is not

uniquely determined. Using the spectral decomposition

VV = Rdiag{λ1 , . . . , λN}R⊤

of VV, where R is the orthogonal matrix whose columns are the orthonormal eigenvectors

corresponding to the nonnegative eigenvalues λ1, . . . , λN of VV, the matrix V can be

obtained as

V = Rdiag{λ1/21 , . . . , λ1/2
N

}R⊤. (3.6)

Equating to zero the partial derivatives with respect to each component of θ in equation

(3.5), the estimator of θ is

θ̂GLS = (B⊤Γ−1
ε B)−1B⊤Γ−1

ε y. (3.7)

Using the penalty on the finite differences of the coefficients proposed by Eilers and

Marx (1996) and described in Section 2.4, the estimator of θ is calculated by minimizing

the following expression

M∗
θ = ||Vy −VBθ||2 + τ1||Drα||2 +

K∑
k=1

{
τ
2k
||Drβk

||2 + τ
2k+1

||Drγk
||2
}
,

where {τ
k
, k = 1, . . . , 2K + 1} are positive regularization parameters that control the

smoothness of the curve, penalizing the coefficients that are far apart from one another,

and the matrix Dr constructs rth order differences of a vector η as

Drη = ∆rη. (3.8)

The penalties can be represented as θ⊤Pθ with the block-diagonal matrix P = T ⊗
D⊤

r
Dr and T = diag{τ1 , τ2 , τ3 , . . . , τ2K+1

}. Then, minimizing

M∗
θ = ||Vy −VBθ||2 + θ⊤Pθ,
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with respect to θ, the penalized generalized least squares estimator (PGLS) of θ is

θ̂PGLS = σ2
z (σ

2
z B⊤Γ−1

ε B +P)−1B⊤Γ−1
ε y. (3.9)

Regarding the prediction, in the case of AR errors, the prediction of y at time ti is given

by

ŷ
i
= µ̂(ti) = B(ti)

⊤θ̂PGLS , (3.10)

and in the case of LSAR errors is

ŷ
i
= µ̂

(
i
N

)
= B

(
i
N

)⊤
θ̂PGLS , (3.11)

where B(ti) and B
(

i
N

)
are the ith row of B, the residuals are ε̂ = y − ŷ, with ŷ =

(ŷ1 , . . . , ŷN )
⊤, and the mean square error (MSE) is MSE = N−1

∑N
i=1(yi − ŷ

i
)2. The

estimators of the trend m and amplitudes {g
ℓ,k
, ℓ = 1, 2, k = 1, . . . , K}, are

m̂ = Bα̂, ĝ
1,k

= Bβ̂
k
, ĝ

2,k
= Bγ̂

k
. (3.12)

Another parameter of interest is the variance σ2
z . In the case of AR(p) errors, the estima-

tor is given by

σ̂2
z = (N − p)−1

N∑
i=p+1

{
y
i
−B(t

i
)⊤θ̂PGLS −

p∑
j=1

ϕ
j

[
y
i−j

−B(t
i−j

)⊤θ̂PGLS

]}2

,

and in the case of LSAR(p) errors is

σ̂2
z = (N − p)−1

N∑
i=p+1

yi −B( i
N )⊤θ̂PGLS −

p∑
j=1

ϕj
(

i
N

) [
yi−j −B( i−j

N )⊤θ̂PGLS

]
2

. (3.13)

In addition to the point estimate, interval estimation for ŷ
i

is often of interest and is easy

to construct. Assuming that the error terms {ε
i
, i = 1, . . . , N} follow an AR or LSAR

process and the errors associated with {ε
i
, i = 1, . . . , N}, {z

i
, i = 1, . . . , N}, follow a

Gaussian distribution with zero mean and variance σ2
z , the (1 − α) × 100% prediction

interval for µ(ti), with i = 1, . . . , N , is

B⊤(ti)θ̂PGLS ± z(1− α/2)

√
B⊤(ti)Var

[
θ̂PGLS

]
B(ti), (3.14)
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where z(1 − α/2) denotes the (1 − α/2) quantile of the standard Gaussian distribution,

and

Var
[
θ̂PGLS

]
= σ4

z (σ
2
z B⊤Γ−1

ε B +P)−1B⊤Γ−1
ε B(σ2

z B⊤Γ−1
ε B +P)−1.

The (1− α)× 100% confidence interval for the trend m(ti) is

B(ti)
⊤Q̂mθ̂PGLS ± z(1− α/2)

√
B(ti)⊤Q̂mVar

[
θ̂PGLS

]
Q̂⊤

mB(ti), (3.15)

and the (1 − α) × 100% confidence intervals for the amplitudes g
ℓ,k
(ti), ℓ = 1, 2, k =

1, . . . , K, are

B(ti)
⊤Q̂g(ℓ, k)θ̂PGLS ± z(1− α/2)

√
B(ti)⊤Q̂g(ℓ, k)Var

[
θ̂PGLS

]
Q̂g(ℓ, k)⊤B(ti), (3.16)

where B(ti) is the ith row of the matrix B, and B = [B|B| . . . |B] is a matrix of di-

mension N × c. The c × c matrices Q̂m, {Q̂g(ℓ, k), ℓ = 1, 2, k = 1, . . . , K} satisfy

Q̂mθ̂PGLS = (α̂⊤,0⊤
J
, . . . ,0⊤

J
)⊤ and

Q̂g(1, 1)θ̂PGLS = (0⊤
J
, β̂

⊤
1
,0⊤

J
, . . . ,0⊤

J
)⊤, Q̂g(2, 1)θ̂PGLS = (0⊤

J
, . . . ,0⊤

J
, γ̂⊤

1
,0⊤

J
, . . . ,0⊤

J
)⊤,

Q̂g(1, 2)θ̂PGLS = (0⊤
J
,0⊤

J
, β̂

⊤
2
,0⊤

J
, . . . ,0⊤

J
)⊤, Q̂g(2, 2)θ̂PGLS = (0⊤

J
, . . . ,0⊤

J
,0⊤

J
, γ̂⊤

2
,0⊤

J
, . . . ,0⊤

J
)⊤,

...
...

Q̂g(1, K)θ̂PGLS = (0⊤
J
, . . . ,0⊤

J
, β̂

⊤
K
,0⊤

J
, . . . ,0⊤

J
)⊤, Q̂g(2, K)θ̂PGLS = (0⊤

J
, . . . ,0⊤

J
, γ̂⊤

K
)⊤.

Equations (4.14), (4.15), and (4.16) are useful to obtain the confidence intervals when

only one time series is available. The execution time needed to compute these confidence

intervals depends on the number of observations – for example, with N = 2000 the algo-

rithm runs in about 3 minutes.

3.3.2 Penalized GLS estimation with autocorrelated errors

The GLS and PGLS estimators in equations (3.7) and (3.9) depend on the unknown matrix

Γ−1
ε which in turn depends on the parameters {ϕ

j
, j = 1, . . . , p} or {ϕ

j
(·), j = 1, . . . , p},
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and σ2
z . In Appendices D and E, we provide the definition of Γ−1

ε for AR(p) and LSAR(p)

processes, respectively.

To deal with the case where the errors follow an AR(p) process, Cochrane and Or-

cutt (1949) proposed an iterative technique to estimate the parameter θ in equation (3.4)

transforming the model in equation (3.1) into a model with uncorrelated, zero mean, and

constant-variance errors, so that the OLS can be used to compute estimates of θ in terms of

y∗
i
= ϕ(B)y

i
, i = p+1, . . . , N . The main advantage of this approach is that eliminates the

need to compute V in equation (3.6). However, one limitation is that y∗ = (y∗
p+1
, . . . , y∗

N
)⊤

does not contain all the information in y. Brockwell and Davis (2016, page 184) give an

extension of this iterative scheme, proposed by Cochrane and Orcutt (1949). It is based

on the observation that for a fixed ϕ, the value of θ that minimizes the sum of squares

in equation (3.5) is θ̂GLS in equation (3.7). The regression model considered in Brockwell

and Davis (2016, page 184) does not include a penalization of the parameters θ. In this

section, we extend the approach in Brockwell and Davis (2016, page 184) for estimating

θ in equation (3.4) in two different directions. Firstly, we extend the iterative scheme

in Brockwell and Davis (2016, page 184) for AR(p) errors, considering θ̂PGLS in equation

(3.9) instead of θ̂GLS in equation (3.7), and secondly, we adapted the iterative scheme in

Brockwell and Davis (2016, page 184) to the case of LSAR(p) errors.

Penalized estimator when the errors follow an AR(p) process

The Cochrane-Orcutt algorithm is commonly used to estimate regression models with

AR(p) autocorrelated errors (Cochrane and Orcutt, 1949). In order to deal with AR(p)

errors and a penalization of the parameter θ in equation (3.4), in this section we intro-

duce a modified version of the iterative scheme in Brockwell and Davis (2016, page 184),

replacing θ̂GLS in equation (3.7) with θ̂PGLS in equation (3.9). The scheme is as follows.

(i) Compute the ordinary least square estimator θ̂OLS = (B⊤B)−1B⊤y and the corre-

sponding residuals ε̂(0) = y − Bθ̂OLS .

(ii) Fit an AR(p) model by maximum Gaussian likelihood to the estimated residuals ε̂(0),
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and obtain ϕ̂
(0)

and σ̂z
(0).

(iii) For the fitted AR model compute the corresponding estimator θ̂
(0)

PGLS
in equation (3.9).

(iv) Compute the residuals ε̂(1) = y − Bθ̂
(0)

PGLS

(v) Iterate (ii)-(iv) until the estimators have stabilized. Our estimator will be θ̂
(r)

PGLS
if

∥ϕ̂
(r+1)

− ϕ̂
(r)
∥ < ϵ, for a given small positive ϵ.

Penalized estimator when the errors follow a LSAR(p) process

We now adapt the previous estimation procedure of θ̂PGLS to the case where the errors follow

a LSAR(p) process. The algorithm is as follows.

(i) Compute the ordinary least square estimator θ̂OLS = (B⊤B)−1B⊤y and the corre-

sponding residuals ε̂(0)
N

= y − Bθ̂OLS .

(ii) Fit a LSAR(p) model to the estimated residuals ε̂(0)
N

as

ε̂(0)
i,N

=

p∑
j=1

ϕ
j

(
i
N

)
ε̂(0)
i−j,N

+ z
i
, {z

i
} ∼ WN(0, σ2

z ),

through the following procedure. Assume that the LSAR(p) coefficients, ϕ(u) =[
ϕ1(u), . . . , ϕp(u)

]⊤, vary smoothly over time and they can be modeled as a linear

combination of B-splines basis:

ϕ
k
(u) =

H∑
j=1

ℓ
k,j
B

j
(u), k = 1, . . . , p. (3.17)

We are looking for the estimator ℓ̂
⊤
=
(
ℓ̂
⊤
1
, . . . , ℓ̂

⊤
p

)
, with ℓ̂

⊤
k
=
(
ℓ̂
k,1
, . . . , ℓ̂

k,H

)
, k =

1, . . . , p, of ℓ⊤ =
(
ℓ⊤
1
, . . . , ℓ⊤

p

)
, with ℓ⊤

k
=
(
ℓ
k,1
, . . . , ℓ

k,H

)
, k = 1, . . . , p, which

minimizes the sum of squares

||ε̂(0)
N

− Eℓ||2 +
p∑

j=1

τϕ
j
||Drℓj ||2,
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where ε̂(0)
N

=
(
ε̂(0)
p+1,N

, . . . , ε̂(0)
N,N

)⊤
,
{
τϕ
k
, k = 1, . . . , p

}
are the smoothing parameter

associated to the time-varying coefficients ϕ
j
(u), j = 1, . . . , p, Dr is defined in

equation (3.8), r is the order of the penalty, and E is the design matrix of dimension

(N − p)×Hp given by

E =

B1

(
p+1
T

)
ε̂(0)
p,N

B
1

(
p+2
N

)
ε̂(0)
p+1,N

.

.

.

B
1

(
N
N

)
ε̂(0)
N−1,N

· · ·
· · ·

.

.

.

· · ·

B
H

(
p+1
N

)
ε̂(0)
p,N

B
H

(
p+2
N

)
ε̂(0)
p+1,N

.

.

.

B
H

(
N
N

)
ε̂(0)
N−1,N

· · ·
· · ·

.

.

.

· · ·

B1

(
p+1
N

)
ε̂(0)
1,N

B
1

(
p+2
T

)
ε̂(0)
2,N

.

.

.

B
1

(
N
N

)
ε̂(0)
N−p,N

· · ·
· · ·

.

.

.

· · ·

B
H

(
p+1
N

)
ε̂(0)
1,N

B
H

(
p+2
N

)
ε̂(0)
2,N

.

.

.

B
H

(
N
N

)
ε̂(0)
N−p,N


.

(3.18)

Equating to zero the partial derivatives with respect to each component of ℓ, we

obtain the penalized estimator of ℓ

ℓ̂
(0)

= (E⊤E+P
ϕ
)−1E⊤ ε̂(0)

N
, (3.19)

where

P
ϕ
= T⊗D⊤

r
Dr (3.20)

and T = diag{τϕ
1
, . . . , τϕ

p
} is a p× p diagonal matrix.

We plug the estimator ℓ̂
(0)

in equation (3.19) into ℓ of equation (3.17) and obtain the

initial estimated LSAR(p) coefficients, ϕ̂
(0)

j
(u), j = 1, . . . , p, that is,

ϕ̂(0)
k

(u) =
H∑
j=1

ℓ̂(0)
k,j
B

j
(u), k = 1, . . . , p. (3.21)

Using the estimated coefficients ϕ̂
(0)

j
(u), j = 1, . . . , p, calculate the estimator of the

variance given in equation (3.13) and denote it by σ̂2(0)
z .

(iii) Using the estimated LSAR(p) coefficients
{
ϕ̂

(0)

j
(u), j = 1, . . . , p

}
and the esti-

mated variance σ̂2(0)
z obtained in the previous step, we construct the inverse co-

variance matrix of the errors Γ−1
ε according with Appendix E. If we denote by

Î
(0)
ε = Γ̂−1

ε this estimated inverse covariance matrix, the updated value of θ in equa-

tion (3.9) is

θ̂
(0)

PGLS
= σ̂2(0)

z (σ̂2(0)
z B⊤Î(0)ε B +P)−1B⊤Î(0)ε y. (3.22)
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(iv) Compute the residuals ε̂(1)
N

= y − Bθ̂
(0)

PGLS
.

(v) Iterate (ii)-(iv) until the estimators have stabilized. Our estimator will be θ̂
(r)

PGLS
if

sup
u∈[0,1]

∥ϕ̂
(r+1)

(u)− ϕ̂
(r)
(u)∥ < ϵ, for a given small positive ϵ.

3.3.3 Automatic selection of the tunable parameters

Before calculating the estimator in equation (3.9), it is necessary to select the tuning pa-

rameters τ = (τ1 , τ2 , . . . , τ2K+1
)⊤ associated to the trend and amplitudes in the model

in equation (3.1) and τ ϕ = (τϕ
1
, . . . , τϕ

p
)⊤ associated to the coefficients in the case of

LSAR(p) errors in equation (3.3). To choose the tuning parameters, we propose to use

the Akaike information criterion (AIC). The AIC penalizes the log-likelihood of a fitted

model by considering the effective number of parameters (see Hastie et al., 2004).

For the model in equation (3.1) with AR(p) or LSAR(p) errors, we adapt the AIC tuning
parameters selector of Hastie et al. (2004). In the case of fitting the model in equation
(3.1) with AR(p) errors, we propose to use the AIC given by

AIC(τ ) =
1

N − p

N∑
i=p+1

yi −B(ti)
⊤θ̂PGLS −

p∑
j=1

ϕ̂j

[
yi−j −B(ti−j )

⊤θ̂PGLS

]
2

+ 2
(df

1
+ p)

N − p
σ̂2
0 , (3.23)

where σ̂2
0 is given by the variance of the residuals from the ŷ

i
that are computed when

τ = 0
2K+1

, df1 is the effective number of parameters obtained fitting the model in equation

(3.1), and is calculated as

df1 =tr
[
B(B⊤V̂V̂B +P)−1B⊤V̂V̂

]
,

V̂ = R̂

[
diag

{√
λ̂1, . . . ,

√
λ̂N

}]
R̂⊤,

(3.24)

and R̂ and {λ̂1, . . . , λ̂N} are, respectively, the eigenvectors and eigenvalues of σ̂2
z Γ̂

−1
ε , that

is,

R̂ [diag{λ̂1, . . . , λ̂N}] R̂⊤ = σ̂2
z Γ̂

−1
ε .

In the case of fitting the model in equation (3.1) with LSAR(p) errors, we propose to use



Chapter 3 77

the following AIC function

AIC(τ , τϕ) =
1

N − p

N∑
i=p+1

yi −B( i
N )⊤θ̂PGLS −

p∑
j=1

ϕ̂j

(
i
N

) [
yi−j −B( i−j

N )⊤θ̂PGLS

]
2

+2
(df

1
+ df

2
)

N − p
σ̂2
0 ,

(3.25)

where σ̂2
0 is given by the variance of the residuals from the ŷ

i
that are computed when

τ = 0
2K+1

and τ ϕ = 0p , df1 is given in equation (3.24), df2 is the effective number of

parameters obtained fitting the LSAR(p) process in equation (3.3), and is calculated as

df2 = tr
[
E(E⊤E+P

ϕ
)−1E⊤] ,

where E is defined in equation (3.18) and P
ϕ

in equation (3.20).

The AIC given by equations (3.23) and (3.25) can also be used for selecting the number

ofB-splines J , the degree d of theB-splines, the number of harmonic componentsK, and

the order p of the model associated to errors.

In the first column of Figure 3.1, we have generated N = 500 equally spaced observa-

tions from the model described in equation (3.1) with µ(t
i
) as

µ(t
i
) = 0.00001t2

i
+ (−2 + 0.00002t2

i
) cos(0.03πt

i
) + (−0.00001t2

i
) sin(0.03πt

i
).

Time is given by t
i
= t0 + i∆ with t0 = 0 and ∆ = 1. From the first to the fourth row,

the error term ε
i

follows an AR(1) process with coefficient ϕ = 0.1, an AR(2) process

with coefficients ϕ1 = 0.1 and ϕ2 = 0.2, a LSAR(1) process with coefficient ϕ(u) =

0.1 sin(πu), u ∈ [0, 1], and a LSAR(2) process with coefficients ϕ1(u) = 0.1 sin(πu) and

ϕ2(u) = 0.2 cos(2πu), u ∈ [0, 1], respectively. The term z
i

follows a Gaussian distribution

with zero mean and variance σ2
z = 1. In the first column of Figure 3.1, we show the

observations and predictions of them for different values of the tuning parameters. The

observations y
i
, i = 1, . . . , N , are represented by the gray points, and µ(t

i
) (in the case

of AR errors) and µ
(

i
N

)
(in the case of LSAR errors), i = 1, . . . , N , by the black curve.

The orange, blue and green curves illustrate three possible estimates for y obtained using

the method described in Section 3.3.1 with increasing smoothing parameters. The orange

curve is the fit obtained with τ
j
= 0, j = 1, 2, 3, the blue curve is obtained using the
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smoothing parameters τ
j
= 6, j = 1, 2, 3, in the case of AR(1) and LSAR(1), and τ

j
=

5, j = 1, 2, 3, in the case of AR(2) and LSAR(2) errors, and the green curve is obtained

using τ
j
= 40, j = 1, 2, 3. In the second column of Figure 3.1, we observe that the optimal

tuning parameters are τj = 6, j = 1, 2, 3, in the case of AR(1) and LSAR(1) errors, and

τ
j
= 5, j = 1, 2, 3, in the case of AR(2) and LSAR(2) errors, and as the values of τ

increase the obtained curve fits the observed data less closely.
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Figure 3.1 Automatic selection of the tunable parameters presented in Section 3.3.3. First col-

umn: Data y (gray dots) simulated according to the model in equation (3.1), and µ (black line).

From the first to the fourth row: the errors follow an AR(p) a LSAR(p) process with p = 1, 2. The

first column illustrates three estimates of y, corresponding to three different specifications of τk,

with k = 1, 2, 3,: τk = 0 (orange curves), τk = 6 and 5 (blue curves), τk = 40 (green curves).

Second column: Values of the AIC in equations (3.23) and (3.25). The three points on the AIC

curve correspond to the three fits presented in the left plot of the figure.
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3.4 Simulation results

In this section, we provide Monte Carlo simulations to illustrate the performance of the

estimators µ̂(t
i
), m̂(t

i
), ĝ

ℓ,k
(t

i
), ℓ = 1, 2, k = 1, . . . , K, defined in equations (3.10), (3.11)

and (3.12), and the estimators ϕ̂
j
(u), j = 1, . . . , p, u ∈ [0, 1], defined in Section 3.3.2.

We also provide simulations to exemplify the method described in Section 3.3.3 to select

the order p of the autoregressive process associated with errors. In order to evaluate the

estimators µ̂(t
i
), m̂(t

i
), ĝ

ℓ,k
(t

i
), ℓ = 1, 2, k = 1, . . . , K, in Sections 3.4.1 we simulate the

model in equation (3.1) with AR(p), p = 1, 2, errors, whereas in Section 3.4.2, we simulate

the model in equation (3.1) with LSAR(p), p = 1, 2, errors. Finally, in Section 3.4.3 we

simulate the model in equation (3.1) with AR(p) and LSAR(p) errors, p = 3, 4, to select

the optimal order p.

3.4.1 Simulating the time-varying model with stationary errors

We generate the data according to the model described by equation (3.1) with K = 2 and

N = 500. We simulate the trend and amplitudes as m(t
i
) = 0.2t

i
− 0.005t2

i
, g1,1(ti) =

0.5 cos(0.2πt
i
+ π/2), g2,1(ti) = 0.7 sin(0.3πt

i
), g1,2(ti) = 0.5− 0.01t2

i
, g2,2(ti) = −0.1t

i
+

0.02t2
i

, with frequencies w1 = 20π, and w2 = 30π. Time is equally spaced and is defined

as t
i
= t0 + i∆, with t0 = 0 and ∆ = 0.02. For the error term ε

i
in the model given

by equation (3.1), we assume it follows an AR(p) with {z
i
, i = 1, . . . , N} a Gaussian

white noise sequence with zero mean and variance σ2
z
= 2. For the order p, we consider

two cases: p = 1 and 2. Firstly, the error term follows the AR(1) process with coefficient

ϕ1 = 0.1, and secondly, the error term follows the AR(2) process with coefficients ϕ1 = 0.1

and ϕ2 = 0.3.

We simulate M = 200 times each case, that is, the model in equation (3.1) with the

true values previously mentioned. For each m = 1, . . . ,M , we compute the estimate

θ̂
(m)

defined according to the procedure presented in Section 3.3.2. In the first and second

case, the smoothing parameter is τ = (1000, 0.06, 0.01, 1000, 1000)⊤, the total number

of B-splines is J = 7 of order d = 3, and the order penalty is r = 3. The selected
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values of τ , J, d, and r perform well in our simulation scenario. For this example, we

choose these parameters ad-hoc because we are interested in evaluating the performance

of our estimators m̂(t
i
) and ĝ

ℓ,k
(t

i
), ℓ = 1, 2, k = 1, . . . , K, rather than selecting the

smoothing parameters. In Section 3.3.3 we propose a method to select the smoothing

parameters. In Figure 3.2, we show our estimates of µ, m, g
ℓ,k

, ℓ = 1, 2, k = 1, 2, and

their 95% confidence intervals calculated according with Appendix B. Figure 3.2 shows

that the iterative method proposed in Section 3.3.2 estimates well the simulated data in

both scenarios, that is, with sinusoidal and polynomial trends and amplitudes.
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Figure 3.2 Simulation scenarios of Section 3.4.1: estimation of trend and amplitudes, µ, m,

g
ℓ,k

, ℓ = 1, 2, k = 1, 2, of the model in equation (3.1) with AR(p) errors. The first column shows

the fit of the model in equation (3.1) with AR(1) errors, whereas the second column shows the fit

with AR(2) errors. The first row shows the true µ(ti) (red solid line), together with the average

µ(t) = 1
M

∑M
j=1 µ̂

(j)(ti) of the estimates µ̂(j)(ti) (black solid line). The second row shows the true

trend m(ti) (red solid line) together with the average m(ti) = 1
M

∑M
j=1 m̂

(j)(ti) of the estimates

m̂(j)(ti) (black solid line). The third and fourth rows show the true amplitudes g
ℓ,k
(ti) (red solid

line), ℓ = 1, 2, k = 1, 2, together with the average g
ℓ,k
(ti) = 1

M

∑M
j=1 ĝ

(j)
ℓ,k

(ti) of the estimates

ĝ(j)
ℓ,k

(ti) (black solid line). The nonparametric quantiles (black dashed lines) are the confidence

intervals corresponding to the 2.5th and 97.5th order statistics, see Appendix B.
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3.4.2 Simulating the time-varying model with locally stationary er-
rors

The data is generated according to the model described by equation (3.1) withK = 2,N =

500 and time is equally spaced defined as t
i
= t0+i∆, with t0 = 0 and ∆ = 0.02. The trend

and amplitudes are considered as in the previous Section (3.4.1), that is, m(u) = 0.2Nu−
0.005(Nu)2, g1,1(u) = 0.5 cos(0.2πNu + π/2), g2,1(u) = 0.7 sin(0.3πNu), g1,2(u) =

0.5− 0.01(Nu)2, g2,2(u) = −0.1Nu+ 0.02(Nu)2, u ∈ [0, 1], with frequencies w1 = 20π,

and w2 = 30π. The errors {ε
i,N
, i = 1, . . . , N} follow a LSAR(p) process with {z

i
, i =

1, . . . , N} a Gaussian white noise sequence with zero mean and variance σ2
z
= 2. For the

order p, we consider two cases: p = 1 and 2. Firstly, the error term follows a LSAR(1)

process with time-varying coefficient ϕ1(u) = 0.5 sin(2.5πu), u ∈ [0, 1], and secondly,

the error term follows a LSAR(2) with time-varying coefficients ϕ1(u) = −0.4 cos(2.5πu)

and ϕ2(u) = −0.5 sin(πu), u ∈ [0, 1].

We simulate M = 200 times each scenario and for each m = 1, . . . ,M , we com-

pute the estimators θ̂
(m)

and ϕ̂
(m)

j
, j = 1, 2, according to the procedure presented in

Section 3.3.2. To estimate the parameters θ̂
(m)

and ϕ̂
(m)

1
in the model given by equa-

tion (3.1) with LSAR(1) errors, we select a total number of B-splines J = 7 (for the

trend and amplitude functions) and H = 13 (for the time-varying autoregressive coef-

ficient) of degree d = 3, a second-order penalty r = 3, and the smoothing parameters

τ = (1000, 0.06, 0.01, 1000, 1000)⊤ and τϕ
1

= 1, whereas to estimate θ̂
(m)

, ϕ̂
(m)

1
and

ϕ̂
(m)

2
in the model given by equation (3.1) with LSAR(2) errors, we choose a total number

of B-splines J = 7 (for the trend and amplitude functions) and H = 13 (for the time-

varying autoregressive coefficients) of degree d = 3, a second-order penalty r = 3, and

the smoothing parameters τ = (1000, 0.06, 0.01, 1000, 1000)⊤ and τ ϕ = (1, 1)⊤. For this

example, we choose these parameters ad-hoc because we are interested in evaluating the

performance of our estimators m̂(t
i
), ĝ

ℓ,k
(t

i
), ℓ = 1, 2, and ϕ̂

j
(u), j = 1, . . . , p, rather

than selecting the smoothing parameters. In Section 3.3.3 we propose a method to se-

lect the smoothing parameters. Figure 3.3 reports the estimation of µ, m, g
ℓ,k

, ℓ = 1, 2,
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k = 1, 2, ϕ
j
, j = 1, 2, and their 95% confidence intervals calculated according with Ap-

pendix B. Figure 3.3 shows that the iterative method proposed in Section 3.3.2 estimates

well the simulated data in both cases, that is, when the trend and amplitudes have a sinu-

soidal and polynomial form, and also when the time-varying autoregressive coefficients

are sinusoidal.
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Figure 3.3 Simulation scenarios of Section 3.4.2: estimation of trend and amplitudes, µ, m, g
ℓ,k

,

ℓ = 1, 2, k = 1, 2, and the autoregressive coefficients ϕ(u) of the model in equation (3.1) with

LSAR(p) errors. The first column corresponds to our model in equation (3.1) with LSAR(1) errors,

whereas the second column corresponds to our model in equation (3.1) with LSAR(2) errors. For

the description from the first to the fourth row see Figure 3.2. The fifth row shows the true LSAR(1)

and LSAR(2) coefficients ϕj (u) (red solid line), j = 1, 2, the estimated coefficients ϕ
j
(u) =

1
M

∑M
m=1 ϕ̂

(m)
j

(u) (black solid line), j = 1, 2, and the nonparametric quantiles confidence intervals

(black dashed lines). The nonparametric quantiles are the confidence intervals corresponding to the

2.5th and 97.5th order statistics, see Appendix B.
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3.4.3 Estimating the order p of the autoregressive errors

In this section, we evaluate the performance of the AIC function in equations (3.23) and

(3.25), through simulations and majority vote, to select the optimal order p of an AR and a

LSAR process. We give four examples, two for AR(p) errors, and two for LSAR(p) errors.

We generate the data according to the model in equation (3.1) with K = 1, N = 500,

and time is equally spaced defined as t
i
= t0 + i∆ with t0 = 0 and ∆ = 0.002. We

simulate the trend and amplitudes as m(t
i
) = 0.2t

i
− 5t2

i
+ 5.5t3

i
, g1,1(ti) = −5t2

i
+ 4t3

i
,

g2,1(t) = −0.5− 0.5t
i
+ 2.5t2

i
− 0.5t3

i
and the frequency w1 = 30π.

In the first two examples, the error term ε
i

in the model in equation (3.1) follows an

AR(p) process given in equation (3.2), whereas in the second two examples, the error

term follows a LSAR(p) process given in equation (3.3). For both process, we consider

p = 3, 4. The coefficients of the AR(3) process are ϕ1 = −0.2, ϕ2 = 0.1, and ϕ3 = −0.3,

and the coefficients of the AR(4) process are ϕ1 = −0.2, ϕ2 = 0.1, ϕ3 = 0.06, ϕ4 = 0.3.

The time-varying coefficients of the LSAR(3) process are ϕ1(u) = −0.2u+0.001, ϕ2(u) =

0.5u+0.001 and ϕ3(u) = −0.3u+0.001, and the time-varying coefficients of the LSAR(4)

process are ϕ1(u) = −0.2u + 0.001, ϕ2(u) = 0.1u + 0.001 and ϕ3(u) = −0.3u + 0.001,

ϕ4(u) = 0.35u + 0.01. The error term {z
i
, i = 1, . . . , N} is a Gaussian white noise

sequence with zero mean and variance σ2
z
= 2.

We simulate M = 200 times the model in equation (3.1) with AR(3), AR(4), LSAR(3)

and LSAR(4) errors, and for each m = 1, . . . ,M , we calculate the AIC criterion in equa-

tion (3.23), in the case of AR(p) errors, and the AIC function in equation (3.25), in the

case of LSAR(p) errors. Both AICs are evaluated over the grid of values p = 1, . . . , 6,

fixing d = 3, J = 7, H = 8, r = 2, in all examples, and τϕ
j

= τϕ
k

= 1, for all j, k, in

the second two examples (LSAR(3) and LSAR(4) errors). Table 3.1 shows, for the model

in equation (3.1) with AR(3), AR(4), LSAR(3) and LSAR(4) errors and for the M = 200

replicates, how many times (and in percentages) the orders p = 1, . . . , 6 were selected

minimizing the AIC functions. In all the cases, and observing the majority vote, the true

order p coincides with the order p most commonly majority selected by the AIC.
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AIC criterion for simulated data with AR and LSAR errors

Model in equation (3.1) with errors:

AR(3) AR(4) LSAR(3) LSAR(4)

Order p # % # % # % # %

1 0 0 0 0 0 0 0 0

2 0 0 0 0 7 3.5 0 0

3 121 60.5 0 0 145 72.5 19 9.5

4 26 13 148 74 22 11 138 69

5 29 14.5 29 14 15 7.5 24 12

6 24 12 23 12 11 5.5 19 9.5

Table 3.1 Simulation scenarios of Section 3.4.3: automatic selection of the order p of autoregres-

sive errors. The numbers represent how many times (column #), and in percentages (column %),

of the total of 200 simulations, the orders p = 1, . . . , 6 were selected by minimizing the AIC func-

tions in equations (3.23) and (3.25). The columns called AR(p) with p = 3, 4, show to the results

for data simulated according to the model in equation (3.1) with AR(3) and AR(4) errors, whereas

the columns called LSAR(p) with p = 3, 4, show to the results for data simulated according to the

model in equation (3.1) with LSAR(3) and LSAR(4) errors.

Figure 3.4 shows the AIC values for one simulation of the AR(p) process, with p = 3

(a)) and p = 4 (b)), and for one simulation of the LSAR(p) process, with p = 3 (c)) and

p = 4 (d)). In Figure 3.4 the order p selected by the AIC functions matches the true order.
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Figure 3.4 Simulation scenarios of Section 3.4.3: Selection of the order p for simulated data

according to the model in equation (3.1) with AR errors, a) and b), and with LSAR errors, c) and

d). The black points on these lines indicate the smallest value for the AIC functions.
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3.5 Conclusions

In this chapter, we extended the model for time series observations of variable stars that

are modulated by time-varying magnitudes. In the previous chapter, the errors associated

with the model follow a white noise process, whereas in this chapter the autocorrelation

is considered by fitting autoregressive processes. Among the autoregressive processes, we

considered stationary and locally stationary autoregressive processes. The time-varying

coefficients of locally stationary processes are assumed to be smooth. Thus, from the mod-

eling viewpoint, our approach is flexible in the sense that we do not assume any form for

the time-dependent quantities (trend, amplitudes, and autoregressive coefficients). From

the computational viewpoint, the estimation of the time-varying quantities is translated

to time-invariant parameters. We proposed an iterative method performed by general-

ized least squares to estimate these time-varying parameters and recover the time-varying

quantities. Finally, our simulation studies show that the proposed methods deliver good

estimates of the time-varying curves.

As we mentioned in Chapter 2, an important challenge in astronomical time series is that

observations are unequally spaced in time. Therefore, one limitation of our model is that

it can only be applied to equally spaced time series.
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A nonparametric approach for the
time-varying spectral density

4.1 Introduction

X-ray binaries are important objects for understanding the physical mechanisms of ac-

cretion and jet formation. An X-ray binary system contains either a compact object as a

neutron star or a black hole accreting material from a companion star. The matter accreted

from the companion star flows on the compact star under the influence of its gravitational

potential and it spirals forming an accretion disk. A detailed description of X-ray binaries

can be found in Lewin et al. (1997).

Astronomers are interested in modeling the PSD of X-ray binary systems. It is carried out

in the frequency domain using Fourier analysis, Lorentzian functions and power-law func-

tions. In general, the procedure is as follows. Firstly, the periodogram is calculated over

different segments of the light curve, getting an estimator of the PSD. Then, Lorentzian

and power-law functions are fitted to the curve obtained with the periodogram. The peri-

odogram computed over different segments of the light curve allows to track the evolution

of of the PSD through time (see Section 1.3.2 for more details). The PSD of black hole

86
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X-ray binaries exhibits five states: quiescence, low/hard, intermediate, high/soft, and very

high (see Esin et al., 1997, for more details about these states). These states were also

observed in GX 339-4 by Homan and Belloni (2005), in the black hole XTE J1650-500

by Kalemci et al. (2003), and in the black hole Cygnus X-1 by Axelsson, M. et al. (2005).

However, the evolution mechanism governing the transitions of the light curve among dif-

ferent states remain not fully understood. Indeed, the approach based on Fourier analysis

and Lorentzian functions requires to (i) divide the time into segments and calculate the

Fourier transform on each segment, and (ii) fit a model (based on Lorentzian and power-

law functions) on each segment. Performing (i) and (ii) separately on each segment, for-

bids to observe smooth changes (of PSD, Lorentzian and power-law functions) over time.

To overcome this problem we propose to use locally stationary ARMA processes, having

in mind two goals. First, we need to prove that the PSD of stationary ARMA processes

is suitable to describe the PSD of X-ray binary systems (as suitable as, e.g., the PSD of

CARMA processes Kelly et al., 2014). Secondly, we have to extend this result to locally

stationary processes and propose a method to estimate its time-varying coefficients. A

successful estimation method should be able to handle the huge number of observations

of astronomical time series.

In this chapter we introduce, for both stationary and locally stationary ARMA models, an

important tool for the study of time series observations coming from X-ray binaries. More

precisely, we prove that the PSD of a stationary ARMA(p, q) process can be expressed as

a sum of p functions. We provide a mathematical description of these p functions and find

a closed form for the frequency at which these functions have a local maximum or min-

imum. This result makes ARMA models suitable for fitting X-rays binary systems and,

in some cases, it avoids having to calculate the frequency at which the PSD has a peak.

This is because instead of focusing on the global PSD, it is possible to focus on some of

the p functions that describe it. We extend this result to LSARMA processes and, assum-

ing that the time-varying coefficients are smooth, we establish an estimation method (for

the time-varying coefficients) that combines B-splines with the Hannan-Rissanen algo-

rithm. Our approach is flexible because it avoids assumptions about the functional form of
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the time-varying coefficients, and translates the estimation of the time-varying coefficient

into estimating time-invariant parameters. The estimation is performed by ordinary least

squares, with the important advantage of avoiding initial values that are needed for other

estimation methods – such as for the maximization of the log-likelihood.

We shall divide the present study into five main sections. In Section 4.2 we introduce the

class of ARMA(p, q) processes and deliver a novel decomposition of the PSD as the sum of

p functions. In Section 4.3 we extended the result in Section 4.2 to the class of LSARMA

processes, and we also present a new method to estimate the time-varying coefficients and

compute confidence intervals. In Section 4.4 we provide simulation results. Finally, in

Section 4.5 we illustrate the decomposition of the PSD presented in Section 4.5 through

an application to an X-ray binary system, whereas in Section 4.6 the main conclusions are

summarized.

We performed our calculations using the R Language for Statistical Computing (R Core

Team, 2021). Our codes combine existing functions (available as part of R packages) with

our own development.

4.2 Decomposition of the spectral density of an ARMA

process

Let {x
i
, i = 1, . . . , N} be a set observations occurring at certain discrete time t1 , . . . , tN ,

with t
i
= t0 + i∆, i an integer, ∆ > 0 is the constant data spacing and t0 = 0. An

ARMA(p, q) process {x
i
, i = 1, . . . , N} with autoregressive coefficients ϕ = (ϕ1 , . . . , ϕp)

⊤,

and moving-average coefficients θ = (θ1 , . . . , θp)
⊤, is defined to be a solution of the equa-

tion

x
i
=

p∑
j=1

ϕ
j
x
i−j

+ z
i
+

q∑
j=1

θ
j
z
i−j
, {z

i
} ∼ WN(0, σ2

z ), i = 1, . . . , N. (4.1)

In order to have a causal solution, we assume that the polynomial ϕ(v) = 1−ϕ1v−· · ·−
ϕpv

p is non-zero for all complex v such that |v| ≤ 1.
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The ARMA(p, q) process in equation (4.1) has the PSD

Px(f) =
σ2
z

2π

∣∣∣∑q
j=0 θj exp(−i2πf∆)j

∣∣∣2∣∣∣−∑p
j=0 ϕj exp(−i2πf∆)j

∣∣∣2 , − 1

2∆
< f <

1

2∆
, (4.2)

were ϕ0 = −1 and θ0 = 1. Since the PSD is even, it suffices to confine attention to the

values of the PSD over the interval [0, 1/(2∆)].

For some values of ϕ and θ, the PSD of an ARMA process has well-defined peaks. We

denote by fmax the frequency at which these peaks occur, that is,

fmax = argmax
f∈[0,1/(2∆)]

Px(f).

These frequencies can be found by differentiating the PSD with respect to cos(2πf∆) and

setting the derivative equal to zero.

As we mentioned in Section 1.1, the PSD of a CARMA process can be expressed as the

sum of Lorentzian functions. This property makes CARMA modeling applicable to many

classes of astronomical variables (Kelly et al., 2014). Similarly, the following proposition

states that it is possible to express the PSD of an ARMA(p, q) process as the sum of p

functions.

Proposition 2 Let {x
i
} be a causal ARMA(p, q) process satisfying equation (4.1) with

q < p and the polynomials 1− ϕ1v − . . . ϕpv
p and 1 + θ1v + · · ·+ θqv

q have no common

factors, then the PSD in equation (4.2) can be expressed as a sum of p functions, P
x,j
(f),

j = 1, . . . , p, as

Px(f) =

p∑
j=1

P
x,j
(f), (4.3)

with P
x,j
(f) given by

P
x,j
(f) = −σ2

z

2π
Re

[
Q

j

1 + s2
j
− 2s

j
cos(2πf∆)

]
, (4.4)
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where

Q
j
=

s
j
(1− s2

j
)
∑q

k=0 θks
k
j

∑q
k=0 θks

−k
j(

−
∑p

k=0 ϕks
k
j

)(
−
∑p

k=0 kϕks
−k+1
j

) , (4.5)

and s
j

is a root of equation

1− ϕ1v
−1 − · · · − ϕpv

−p = 0. (4.6)

The proof of Proposition 2 is given in Appendix C. The roots of equation (4.6), s
j
,

j = 1, . . . , p, can be reals or complex. Thus, the function P
x,j
(f) in equation (4.4) can

take different form depending on these roots. We describe the component P
x,j
(f) when

the root s
j

is real (case 1) and complex (case 2).

Case 1: The root s
j

is real

When s
j

is real, the function P
x,j
(f) in equation (4.4) is called Wrapped Lorentzian

function. This function is defined by parameters that control the location, the concentration

of the function, and a parameter for the normalization (see Appendix F for more details).

In the case of P
x,j
(f), |s

j
| controls the concentration and the normalization parameter is

Q
j
/(1 − s2

j
). When s

j
> 0, the centroid of P

x,j
(f) is equal to 0, whereas when s

j
< 0

the centroid is equal to 1/(2∆). The function P
x,j
(f) has the frequencies 0 and 1/(2∆) as

local extremums and depending on the values of Q
j

in equation (4.5), they will be local

minima or maxima.

Case 2: The roots s
j
, s

k
are complex, s

j
= a

j
+ ib

j
, s

k
= a

j
− ib

j

When the roots are complex and take the values s
j
= a

j
+ ib

j
and s

k
= a

j
− ib

j
, the

functions P
x,j
(f) and P

x,k
(f) in equation (4.4) are the same and take the form

P
x,ℓ
(f) =

− σ2
z

2π

Re(Q
ℓ
)[1 + a2

ℓ
− b2

ℓ
− 2a

ℓ
cos(2πf∆)] + 2b

ℓ
Im(Q

ℓ
)[a

ℓ
− cos(2πf∆)]

(1 + a2
ℓ
− b2

ℓ
)2 + 4a2

ℓ
b2
ℓ
− 4a

ℓ
(1 + a2

ℓ
+ b2

ℓ
) cos(2πf∆) + 4(a2

ℓ
+ b2

ℓ
) cos2(2πf∆)

(4.7)

where ℓ = j, k. The function P
x,ℓ
(f) in equation (4.7) has local extremums at the frequen-
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cies 0 and 1/(2∆), and at the frequency

f
max,ℓ

=
1

2π∆
arccos

−K
2,ℓ

±
√
K2

2,ℓ
− 4K

1,ℓ
K

3,ℓ

2K
1,ℓ

, ℓ = j, k, (4.8)

where

K
1,ℓ

=− 4(a2
ℓ
+ b2

ℓ
)[2a

ℓ
Re(Q

ℓ
) + 2b

ℓ
Im(Q

ℓ
)],

K
2,ℓ

=8(a2
ℓ
+ b2

ℓ
)[Re(Q

ℓ
)(1 + a2

ℓ
− b2

ℓ
) + 2a

ℓ
b
ℓ

Im(Q
ℓ
)],

K
3,ℓ

=[2a
ℓ

Re(Q
ℓ
) + 2b

ℓ
Im(Q

ℓ
)][(1 + a2

ℓ
− b2

ℓ
)2 + 4a2

ℓ
b2
ℓ
]

− 4a
ℓ
(1 + a2

ℓ
+ b2

ℓ
)[Re(Q

ℓ
)(1 + a2

ℓ
− b2

ℓ
) + 2a

ℓ
b
ℓ

Im(Q
ℓ
)],

(4.9)

with K2
2,ℓ

− 4K
1,ℓ
K

3,ℓ
≥ 0, and

∣∣∣(−K2,ℓ
±
√
K2

2,ℓ
− 4K

1,ℓ
K

3,ℓ

)
/(2K

1,ℓ
)
∣∣∣ < 1, ℓ = j, k.

Proofs of equations (4.8) and (4.7) are given in Appendix C.

In Figures 4.1-4.3, we exemplify the cases 1 and 2 studying an AR(p) process with

p = 1, 2, and an ARMA(3, 2) process, all process with data spacing ∆ = 1. In Figure 4.1,

we give two examples of Case 1 using an AR(1) process with two different values for

the coefficient ϕ1 , 0.5 and −0.5. In the left panel of Figure 4.1, the AR(1) process is

given by the coefficient ϕ1 = 0.5, and the root of equation (4.6) is s1 = 0.5. Thus, its

PSD is centered and has local maximum at frequency 0 and local minimum at 0.5. In

the right panel of Figure 4.1, the coefficient is ϕ1 = −0.5, and the root of equation (4.6)

is s1 = −0.5. Therefore, its PSD is centered and has local maximum at 0.5 and a local

minimum at 0.

In Figure 4.2, we give three examples, two for Case 1 and one for Case 2 using an

AR(2) process. The PSD of the AR(2) process is given by the solid black line, and the

functions P
x,j
(f), j = 1, 2, associated to the roots s1, s2, are the dashed red and blue

lines, respectively. In the left panel of Figure 4.2, the AR(2) coefficients are ϕ1 = 1.1,

ϕ2 = −0.27, and the roots of equation (4.6) are s1 = 0.3697, s2 = 0.7303. Therefore, the

functions P
x,j
(f), j = 1, 2, are centered around 0, Px,1(f) has a local maximum at 0.5 and

local minimum at 0 (Case 1), and Px,2(f) has a local maximum at 0, and local minimum

at 0.5 (Case 1). In the middle panel of Figure 4.2, the coefficients are ϕ1 = 0.1, ϕ2 = 0.2,
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and the roots of equation (4.6) are s1 = 0.5, s2 = −0.4. Thus, Px,1(f) is centered and

has a local maximum at 0 and local minimum at 0.5 (Case 1), and the Px,2(f) is centered

and has a local maximum at 0.5 and a local minimum 0 (Case 1). In the left panel of

Figure 4.2, the AR(2) coefficients are ϕ1 = 0.5, ϕ2 = −0.45, and the roots of equation

(4.6) are s1 = 0.25+ 0.6225i, s2 = 0.25− 0.6225i. Hence, Px,1(f) = Px,2(f), and P
x,ℓ
(f),

ℓ = 1, 2, have a peak at the frequency 0.184 given by equation (4.8), and local minima at

0 and 0.5 (Case 2).

In Figure 4.3, we give three examples, one for Case 1 and two for Case 2 using an

ARMA(3, 2) process. The PSD of the ARMA(2, 3) process is represented by the solid

black line, and the functions P
x,j
(f), j = 1, 2, 3, associated to the roots sj , j = 1, 2, 3,

respectively, are represented by the dashed red, blue, and green lines, respectively. In the

left panel of Figure 4.3, the coefficients of the ARMA(3, 2) process are ϕ1 = −0.0015,

ϕ2 = 0.5, ϕ3 = −0.1, θ1 = 0.5 and θ2 = 0.3, and the roots of equation (4.6) are

s1 = 0.2220, s2 = −0.7921, and s3 = 0.5686. Thus, Px,1(f) is centered and has a lo-

cal minimum at 0 and local maximum at 0.5 (Case 1), Px,2(f) is centered and has a local

maximum at 0.5 and has a local minimum at 0 (Case 1), and Px,3(f) is centered and has a

local maximum at 0 and local minimum at 0.5 (Case 1). In the middle panel of Figure 4.3,

the coefficients are ϕ1 = 0.04, ϕ2 = −0.1, ϕ3 = 0.3, θ1 = 0.5 and θ2 = 0.3, and the roots

of equation (4.6) are s1 = 0.6323, s2 = −0.2961 + 0.6219i, and s3 = −0.2961− 0.6219i.

Therefore, Px,1(f) is centered and has a local maximum at 0 and local minimum at 0.5

(Case 1), Px,2(f) = Px,3(f) with a peak at the frequency 0.312 given by equation (4.8)

and local minima at frequencies 0 and 0.5 (Case 2). In the right panel of Figure 4.3, the

coefficients are ϕ1 = 0.04, ϕ2 = −0.1, ϕ3 = −0.3, θ1 = 0.5 and θ2 = 0.3, and the roots

of equation (4.6) are s1 = −0.6077, s2 = 0.3239 + 0.6235i, and s3 = 0.3239 − 0.6235.

Hence, Px,1(f) is centered and has local maximum at 0.5 and a local minimum at 0 (Case

1), and Px,2(f) = Px,3(f) has a peak at the frequency 0.16 given by equation (4.8) and

local minima at 0 and 0.5 (Case 2).
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Figure 4.1 PSD of an AR(1) process for different values of the root s1 of equation 1−ϕ1v
−1 = 0

studied in Section 4.2. The left panel shows the PSD in equation (4.2) when s1 > 0, and the right

panel shows the PSD when s1 < 0.
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Figure 4.2 Decomposition of the PSD of an AR(2) process for different values of the roots s1 , s2
of equation 1− ϕ1v

−1 − ϕ2v
−2 = 0 studied in Section 4.2. The PSD in equation (4.2) is the solid

black line, whereas the functions Px,1(f) and Px,2(f) in equation (4.4) associated to the roots s1 , s2
are the dashed red and blue lines, respectively. The left panel shows the case when the roots s1 , s2
are real and positive, the middle panel shows the case when the roots s1 , s2 are real, positive and

negative, and the right panel shows the case when s1 , s2 are complex.
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Figure 4.3 Decomposition of the PSD of an ARMA(3, 2) process for different values of the roots

sj , j = 1, 2, 3, of equation 1 − ϕ1v
−1 − ϕ2v

−2 − ϕ3v
−3 = 0 studied in Section 4.2. The PSD in

equation (4.2) is the solid black line, whereas the functions Px,j (f), j = 1, 2, 3, in equation (4.4)

associated to the roots sj , j = 1, 2, 3, are the dashed red, blue and green lines, respectively. The

left panel shows the case when the roots sj , j = 1, 2, 3, are real, positive and negative, the middle

panel shows the case when the roots sj , j = 1, 2, 3, are real, positive and complex, and the right

panel shows the case when sj , j = 1, 2, 3, are real, negative and complex.

4.3 Locally stationary autoregressive moving-average pro-

cess

In Section 4.3.1 we define LSARMA processes, and extend to their PSD the same decom-

position as in Section 4.2. In Section 4.3.2 we provide a method to estimate the time-

varying coefficients {ϕ1(u), . . . , ϕp(u), θ1(u), . . . , θp(u), u ∈ [0, 1]}, as well as the error

variance σ2
z , whereas in Section 4.3.3 we present a method to construct the confidence

intervals.

We denote by N the sample size, J the number of B-splines that form the basis asso-

ciated with the time-varying coefficients, d the degree of the B-splines, r the order of the

penalty, and M the number of replications in Monte Carlo simulations.
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4.3.1 Definition and decomposition of the spectral density

Let {x
i,N
, i = 1, . . . , N} be a set observations occurring at certain discrete time t1 , . . . , tN ,

with t
i
= t0 + i∆, i an integer, ∆ > 0 is the constant data spacing, and t0 = 0. An

LSARMA(p, q) process {x
i,N
, i = 1, . . . , N} with time-varying autoregressive coeffi-

cients ϕ(u) = [ϕ1(u), . . . , ϕp(u)]
⊤, time-varying moving-average coefficients θ(u) =

[θ1(u), . . . , θp(u)]
⊤, u ∈ [0, 1], and WN errors, is defined to be a solution of the equa-

tion

x
i,N

=

p∑
j=1

ϕ
j

(
i

N

)
x
i−j,N

+ z
i
+

q∑
j=1

θ
j

(
i

N

)
z
i−j
, {z

i
} ∼ WN(0, σ2

z ), i = 1, . . . , N.

(4.10)

We assume that 1−
∑p

j=1 ϕj(u)v
j ̸= 0 for all |v| ≤ 1 + c with c > 0 uniformly in u and

the coefficients functions ϕ
j
(u) are continuous in u.

The LSARMA(p, q) process in equation (4.10) has the PSD

Px(u, f) =
σ2
z

2π

∣∣∣ 1 +∑q
j=1 θj(u) exp(−i2πf∆)j

∣∣∣2∣∣∣ 1−∑p
j=1 ϕj(u) exp(−i2πf∆)j

∣∣∣2 , − 1

2∆
≤ f ≤ 1

2∆
, u ∈ [0, 1],

(4.11)

Thus, for a fixed time u, we observe the form of the PSD at time u over the frequency

interval [−1/(2∆), 1/(2∆)], and for a fixed frequency f , we observe the time evolution of

the PSD at frequency f over time interval [0, 1]. As in the case of ARMA processes, for

some values of ϕ(u) and θ(u), the PSD of a LSARMA process has well-defined peaks.

For a fixed u, we denote by fmax(u), u ∈ [0, 1], the frequency at which these peaks occur

at time u, that is,

fmax(u) = argmax
f∈[0,1/(2∆)]

Px(u, f).

These frequencies can be found by differentiating the PSD with respect to cos(2πf∆) and

setting the derivative equal to zero.

Extending the result in Proposition 2 to LSARMA processes, we can see that the PSD of

a causal LSARMA(p, q) process with q < p can be expressed as a sum of p time-varying
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function given by

Px(u, f) =

p∑
j=1

P
x,j
(u, f),

with P
x,j
(u, f) given by

P
x,j
(u, f) = −σ2

z

2π
Re

[
Q

j
(u)

1 + s2
j
(u)− 2s

j
(u) cos(2πf∆)

]
, (4.12)

where

Q
j
(u) =

s
j
(u)[1− s2

j
(u)]

∑q
k=0 θk(u)s

k
j
(u)
∑q

k=0 θk(u)s
−k
j

(u)[
−
∑p

k=0 ϕk(u)s
k
j
(u)
] [

−
∑p

k=0 kϕk(u)s
−k+1
j

(u)
] ,

and, for a fixed u ∈ [0, 1], s
j
(u) is a root of equation

1− ϕ1(u)v
−1 − · · · − ϕp(u)v

−p = 0. (4.13)

When the roots s
j
(u) and s

k
(u) of equation (4.13) are complex, that is, s

j
(u) = a

j
(u) +

ib
j
(u), s

k
(u) = a

j
(u)− ib

j
(u), the components P

x,j
(u, f) and P

x,k
(u, f) in equation (4.12)

are the same with the form

Px,ℓ (u, f) =

−
σ2
z

2π

Re[Qℓ (u)][1 + a2
ℓ
(u)− b2

ℓ
(u)− 2aℓ (u) cos(2πf∆)] + 2bℓ (u) Im[Qℓ (u)][aℓ (u)− cos(2πf∆)]

[1 + a2
ℓ
(u)− b2

ℓ
(u)]2 + 4a2

ℓ
(u)b2

ℓ
(u)− 4aℓ (u)[1 + a2

ℓ
(u) + b2

ℓ
(u)] cos(2πf∆) + 4[a2

ℓ
(u) + b2

ℓ
(u)] cos2(2πf∆)

,

(4.14)

where ℓ = j, k. The function P
x,ℓ
(u, f) in equation (4.14) has local extremums at the

frequencies 0 and 1/(2∆), and at the frequency

f
max,ℓ

(u) =
1

2π∆
arccos

−K
2,ℓ
(u)±

√
K2

2,ℓ
(u)− 4K

1,ℓ
(u)K

3,ℓ
(u)

2K
1,ℓ
(u)

, ℓ = j, k,

where

K
1,ℓ
(u) =− 4[a2

ℓ
(u) + b2

ℓ
(u)]{2a

ℓ
(u)Re[Q

ℓ
(u)] + 2b

ℓ
(u) Im[Q

ℓ
(u)]},

K
2,ℓ
(u) =8[a2

ℓ
(u) + b2

ℓ
(u)]{Re[Q

ℓ
(u)][1 + a2

ℓ
(u)− b2

ℓ
(u)] + 2a

ℓ
(u)b

ℓ
(u) Im[Q

ℓ
(u)]},

K
3,ℓ
(u) ={2a

ℓ
Re[Q

ℓ
(u)] + 2b

ℓ
(u) Im[Q

ℓ
(u)]}{[1 + a2

ℓ
(u)− b2

ℓ
(u)]2 + 4a2

ℓ
(u)b2

ℓ
(u)}

− 4a
ℓ
(u)[1 + a2

ℓ
(u) + b2

ℓ
(u)]{Re[Q

ℓ
(u)][1 + a2

ℓ
(u)− b2

ℓ
(u)] + 2a

ℓ
(u)b

ℓ
(u) Im[Q

ℓ
(u)]},



Chapter 4 97

with

K2
2,ℓ
(u)− 4K

1,ℓ
(u)K

3,ℓ
(u) ≥ 0, ℓ = j, k,∣∣∣[−K2,ℓ

(u)±
√
K2

2,ℓ
(u)− 4K

1,ℓ
(u)K

3,ℓ
(u)
]
/[2K

1,ℓ
(u)]

∣∣∣ < 1, ℓ = j, k,

for all u ∈ [0, 1].

4.3.2 Estimation of a LSARMA process

The Hannan-Rissanen method (Hannan and Rissanen, 1982) is an algorithm to estimate the

parameters of an ARMA process. In this section we extend the Hannan-Rissanen method

to estimate jointly the time-varying autoregressive coefficients ϕ(u) and the time-varying

moving-average coefficients θ(u) of a LSARMA process. We assume that the smooth

time-varying coefficients can be approximated usingB-splines, and then we estimate them

using ordinary least squares. Below we detail the proposed estimation method, first for

LSAR processes and then for LSARMA processes.

Estimation of LSAR(p) processes

Assuming that the autoregressive coefficients, ϕ
j
(u), j = 1, . . . , p, u ∈ [0, 1], are smooth

and can be modeled as a linear combination of B-splines basis, that is,

ϕ
k
(u) =

J∑
j=1

α
ϕ,k,j

B
j
(u), k = 1, . . . , p, (4.15)

the POLS (penalized ordinary least squares) estimator of α
ϕ
= (α⊤

ϕ,1
, . . . ,α⊤

ϕ,p
)⊤, with

α
ϕ,k

= (α
ϕ,k,1

, . . . , α
ϕ,k,J

)⊤, k = 1, . . . , p, is α̂ = (α̂⊤
ϕ,1
, . . . , α̂⊤

ϕ,p
)⊤, with α̂

ϕ,k
= (α̂

ϕ,k,1
, . . . , α̂

ϕ,k,J
)⊤,

k = 1, . . . , p, given by minimizing the sum of squares

||x
N
− Z

N
α

ϕ
||2 +

p∑
j=1

τϕ
j
||Drαϕ,j

||2, (4.16)

where x
N
= (x

p+1,N
, . . . , x

N,N
)⊤, τϕ

j
is positive regularization parameters that control the

smoothness of the time-varying coefficient ϕ
j
(u), Dr is the matrix that constructs rth order
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differences of a vector η as Drη = ∆rη, and Z
N

is the design matrix of dimension (N −
p)× Jp given by

Z
N
=

B
1

(
p+1
N

)
x
p,N

B
1

(
p+2
N

)
x
p+1,N

.

.

.

B
1

(
N
N

)
x
N−1,N

· · ·
· · ·

.

.

.

· · ·

B
J

(
p+1
N

)
x
p,N

B
J

(
p+2
N

)
x
p+1,N

.

.

.

B
J

(
N
N

)
x
N−1,N

· · ·
· · ·

.

.

.

· · ·

B
1

(
p+1
N

)
x
1,N

B
1

(
p+2
N

)
x
2,N

.

.

.

B
1

(
N
N

)
x
N−p,N

· · ·
· · ·

.

.

.

· · ·

B
J

(
p+1
N

)
x
1,N

B
J

(
p+2
N

)
x
2,N

.

.

.

B
J

(
N
N

)
x
N−p,N


.

Equating to zero the partial derivatives with respect to each component of α
ϕ

in equation

(4.16), the POLS estimator of α
ϕ

is

α̂
ϕ
= (Z⊤

N
Z

N
+P)−1Z⊤

N
x

N
, (4.17)

where P = T⊗D⊤
r Dr and T = diag{τϕ

1
, . . . , τϕ

p
}.

Substituting α
ϕ

in equation (4.15) with its estimator in equation (4.17), α̂
ϕ
, we get the

estimated LSAR(p) coefficients, ϕ̂
j
(u), j = 1, . . . , p, that is,

ϕ̂
k
(u) =

J∑
j=1

α̂
ϕ,k,j

B
j
(u), k = 1, . . . , p.

The Hannan-Rissanen estimate of the white noise variance is

σ̂2
z = (N − p)−1

N∑
i=p+1

{
x
i,N

−
p∑

j=1

ϕ̂
j

(
i
N

)
x
i−j,N

}2

.

Estimation of LSARMA(p, q) processes

Assuming that the autoregressive coefficients, ϕ
k
(u), k = 1, . . . , p, and the moving-

average coefficients θ
k
(u), k = 1, . . . , q, u ∈ [0, 1], are smooth and can be approximated

using B-splines as

ϕ
k
(u) =

J∑
j=1

α
ϕ,k,j

B
j
(u), k = 1, . . . , p,

θ
k
(u) =

J∑
j=1

α
θ,k,j

B
j
(u), k = 1, . . . , q.

(4.18)
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the estimators of ϕ
k
(u), k = 1, . . . , p, and θ

k
(u), k = 1, . . . , q, are calculated in three steps:

Step 1: A high-order LSAR(m) model (m > max(p, q)) is fitted using the methodology

previously mentioned for LSAR(p). If [ϕ̂m1(u), . . . , ϕ̂mm(u)]
⊤ if the vector of estimated

time-varying coefficients, then the estimated residuals are computed from the equation

ẑ(0)
i

= x
i,N

− ϕ̂m1

(
i
N

)
x
i−1,N

− · · · − ϕ̂mm

(
i
N

)
x
i−m,N

, i = m+ 1, . . . , N.

Step 2: Once the estimated residuals ẑ(0)
i

, i = m+ 1, . . . , N , have been computed as in

Step 1, the vector of parameters, α
ϕ,θ

= (α⊤
ϕ
,α⊤

θ
)⊤, with α

ϕ
= (α⊤

ϕ,1
, . . . ,α⊤

ϕ,p
)⊤, α

ϕ,k
=

(α
ϕ,k,1

, . . . , α
ϕ,k,J

)⊤, k = 1, . . . , p, and α
θ
= (α⊤

θ,1
, . . . ,α⊤

θ,q
)⊤, α

θ,k
= (α

θ,k,1
, . . . , α

θ,k,J
)⊤,

k = 1, . . . , q, are estimated by minimizing the following expression

||x
N
− Z

N
α

ϕ,θ
||2 +

p∑
j=1

τϕ
j
||Drαϕ,j

||2 +
q∑

j=1

τ θ
j
||Drαθ,j

||2,

with respect to α
ϕ,θ

, where x
N
= (x

m+1+q,N
, . . . , x

N,N
)⊤ and Z

N
is the (N−m−q)×J(p+q)

matrix

Z
N
=



B
1

(
m+1+q

N

)
x
m+q,N

B1

(
m+2+q

N

)
x
m+q+1,N

.

.

.

B1

(
N
N

)
x
N−1,N

· · ·
· · ·

.

.

.

· · ·

B
J

(
m+1+q

N

)
x
m+q,N

B
J

(
m+2+q

N

)
x
m+q+1,N

.

.

.

B
J

(
N
N

)
x
N−1,N

· · ·
· · ·

.

.

.

· · ·

B
1

(
m+1+q

N

)
x
m+q+1−p,N

B1

(
m+2+q

N

)
x
m+q+2−p,N

.

.

.

B1

(
N
N

)
x
N−p,N

· · ·
· · ·

.

.

.

· · ·

B
J

(
m+1+q

N

)
x
m+q+1−p,N

B
J

(
m+2+q

N

)
x
m+q+2−p,N

.

.

.

B
J

(
N
N

)
x
N−p,N

B
1

(
m+1+q

N

)
ẑ(0)
m+q

B1

(
m+2+q

N

)
ẑ(0)
m+q+1

.

.

.

B
1

(
N
N

)
ẑ(0)
N−1

· · ·
· · ·

.

.

.

· · ·

B
J

(
m+1+q

N

)
ẑ(0)
m+q

B
J

(
m+2+q

N

)
ẑ(0)
m+q+1

.

.

.

B
J

(
N
N

)
ẑ(0)
N−1

· · ·
· · ·

.

.

.

· · ·

B
1

(
m+1+q

N

)
ẑ(0)
m+1

B
1

(
m+2+q

N

)
ẑ(0)
m+2

.

.

.

B1

(
N
N

)
ẑ(0)
N−q

· · ·
· · ·

.

.

.

· · ·

B
J

(
m+1+q

N

)
ẑ(0)
m+1

B
J

(
m+2+q

N

)
ẑ(0)
m+2

.

.

.

B
J

(
N
N

)
ẑ(0)
N−q


,

τϕ
k

, k = 1, . . . , p, and τ θ
j

, j = 1, . . . , q, are positive regularization parameters that control

the smoothness of ϕ
j
(u), j = 1, . . . , p, and θ

j
(u), j = 1, . . . , q, respectively. Writing the

penalties as α⊤
ϕ,θ
Pα

ϕ,θ
with P = T ⊗ D′

r
Dr and T = diag{τϕ

1
, . . . , τϕ

p
, τ θ

1
, . . . , τ θ

q
}, the

POLS estimator of α
ϕ,θ

is

α̂
ϕ,θ

= (Z⊤
N
Z

N
+P)−1Z⊤

N
x

N
. (4.19)
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Substituting α
ϕ,θ

in equation (4.18) with its estimator in equation (4.19), α̂
ϕ,θ

, we get the

estimated time-varying coefficients, ϕ̂
j
(u), j = 1, . . . , p, and θ̂

j
(u), j = 1, . . . , q, as

ϕ̂(0)
k

(u) =
J∑

j=1

α̂
ϕ,k,j

B
j
(u), k = 1, . . . , p,

θ̂(0)
k

(u) =
J∑

j=1

α̂
θ,k,j

B
j
(u), k = 1, . . . , q.

(4.20)

Step 3: Compute the residuals

ẑ(1)
i

= x
i,N

−
p∑

j=1

ϕ̂(0)
j

(
i
N

)
x
i−j,N

+

q∑
j=1

θ̂(0)
j

(
i
N

)
ẑ(0)
i−j
,

with ϕ̂(0)
j

(u), j = 1, . . . , p, and θ̂(0)
j

(u), j = 1, . . . , q, in equation (4.20).

Step 4: Iterate Step 2. - Step 3. until the estimators have stabilized. Our estimators will

be ϕ̂
(r)

and θ̂
(r)

if sup
u∈[0,1]

∥ϕ̂
(r+1)

(u)− ϕ̂
(r)
(u)∥ < ϵ and sup

u∈[0,1]
∥θ̂

(r+1)
(u)− θ̂

(r)
(u)∥ < ϵ,

for a given small positive ϵ.

The Hannan-Rissanen estimate of the white noise variance is

σ̂2
z = (N −m− q)−1

N∑
i=m+q+1

{
x
i,N

−
p∑

j=1

ϕ̂
j

(
i
N

)
x
i−j,N

−
q∑

j=1

θ̂
j

(
i
N

)
ẑi−j

}2

.

4.3.3 Confidence intervals

Dahlhaus (1997) studied the asymptotic distribution of the estimators ϕ̂(u) and θ̂(u) given

by minimizing the Whittle log-likelihood. This asymptotic distribution can be used for

constructing confidence intervals. However, this result is asymptotic, and is not hold when

the sample size is small, because the normal approximation is not valid. Even if we want

to use the asymptotic distribution to construct the confidence intervals, we need to ob-

tain expressions for the variance and bias. For the estimator in equation (4.20), finding

the asymptotic distribution could imply a lot of effort. In order to face this problem, we

propose to use bootstrap, which is a tool that approximates certain characteristics like the
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variance, mean, among others. For ARMA processes, Kreiss and Franke (1992) proposed

a bootstrap method based on the bootstrap principle and the M-estimator. This method

allows obtaining bootstrap samples from an ARMA process that can be used to approxi-

mate confidence intervals and variance for the parameter estimate. In the same way, we

extend the procedure to LSARMA processes and calculate the confidence intervals using

the asymptotic normality and the quantile of the bootstrap histogram of the parameter es-

timate (for more details about these confidence intervals see Efron and Tibshirani (1994,

page 168)).

Let {x
i,N

} be a LSARMA process satisfying equation (4.10), and suppose that the time-

varying coefficients ϕ
j
(u), j = 1, . . . , p, and θ

j
(u), j = 1, . . . , q, satisfy the conditions

ϕ(u, v) = 1−
p∑

j=1

ϕ
j
(u)vj ̸= 0 for all |v| ≤ 1 + c with c > 0 uniformly in u

θ(u, v) = 1 +

q∑
j=1

θ
j
(u)vj ̸= 0 for all |v| ≤ 1 + c with c > 0 uniformly in u,

and ϕ(u, v) and θ(u, v) have no common zero for all u. Also, we suppose that ϕp(u) ̸= 0

and θq(u) ̸= 0 for all u ∈ [0, 1]. The steps to calculate the intervals are:

(i) Set x
i,N

= 0, for i = p − 1, . . . , 0, and fit a LSARMA(p, q) model to {x
i,N

}, i =

1, . . . , N . Obtain ϕ̂(u) = [ϕ̂1(u), . . . , ϕ̂p(u)]
⊤ and θ̂(u) = [θ̂1(u), . . . , θ̂q(u)]

⊤.

(ii) Define the residuals ẑ
i
, i = 1, . . . , N , as

ẑ
i
=

i∑
j=1

ρ̂
j−1

(i, N)

[
−

p∑
k=0

ϕ̂
k

(
i
N

)
x
i+1−j−k,N

]
,

where ϕ̂0(u) = −1 for all u ∈ [0, 1], and ρ̂
j
(i, N), j = 0, . . . , N − 1, satisfies

[
θ̂
(

i
N
, r
)] [ ∞∑

j=0

ρ̂
j
(i, N)xj

]
= 1, i = 1, . . . , N,

with θ̂(u, v) = 1 + θ̂1(u)v + · · ·+ θ̂q(u)v
q.
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(iii) Center the residuals ẑ
i

as z̃
i
= ẑ

i
− z̄, where z̄ = N−1

∑N
i=1 ẑi .

(iv) Generate independent and identically distributed bootstrap error variables z∗
i

, N ≥
i ≥ 1−max{p, q}, by sampling randomly with replacement from {z̃

i
, 1 ≤ i ≤ N}.

(v) Define the bootstrap observations by using the recursion relation

x∗
i,N

=

p∑
j=1

ϕ̂
j

(
i
N

)
x∗
i−j,N

+

q∑
j=1

θ̂
j

(
i
N

)
z∗
i−j
, i ≥ 1−max{p, q},

where, for i ≤ −max{p, q}, define x∗
i,N

= 0 and z∗
i
= 0.

(vi) Use the constructed {x∗
i,N
, i = 1, . . . , N} to estimate ϕ̂

(1)
(u) and θ̂

(1)
(u).

(vii) Repeat the steps (iv)-(vi) B times to generate ϕ̂
(i)
(u) and θ̂

(i)
(u), i = 1, 2, . . . , B,

sets of parameter estimates.

(viii) For a fixed u ∈ [0, 1], the 100 ·(1−α)% confidence intervals for ϕ
j
(u), j = 1, . . . , p,

and θ
j
(u), j = 1, . . . , q, based on the asymptotic normality are[

ϕ̂
j
(u)− z(1− α/2)σ̂ϕj (u), ϕ̂j(u) + z(1− α/2)σ̂ϕj (u)

]
, j = 1, . . . , p,[

θ̂
j
(u)− z(1− α/2)σ̂θj (u), θ̂j(u) + z(1− α/2)σ̂θj (u)

]
, j = 1, . . . , q,

(4.21)

respectively, where z(1−α/2) denotes the (1−α/2) quantile of the standard Gaus-

sian distribution, and

σ̂ϕj (u) =

√√√√ 1

B

B∑
i=1

[
ϕ̂
(i)
j (u)− ϕ̄

j
(u)
]2
, j = 1, . . . , p,

σ̂θj (u) =

√√√√ 1

B

B∑
i=1

[
θ̂
(i)
j (u)− θ̄

j
(u)
]2
, j = 1, . . . , q,

ϕ̄
j
(u) =

1

B

B∑
i=1

ϕ̂(i)
j
(u), j = 1, . . . , p,

θ̄
j
(u) =

1

B

B∑
i=1

θ̂(i)
j
(u), j = 1, . . . , q,
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and the 100 · (1 − α)% confidence intervals for ϕ
j
(u), j = 1, . . . , p, and θ

j
(u),

j = 1, . . . , q, using the quantiles are[
ϕ̂lo,j(u), ϕ̂up,j(u)

]
=
[
Ĝ−1

ϕj (u)
(α/2), Ĝ−1

ϕj (u)
(1− α/2)

]
, j = 1, . . . , p,[

θ̂lo,j(u), θ̂up,j(u)
]
=
[
Ĥ−1

θj (u)
(α/2), Ĥ−1

θj (u)
(1− α/2)

]
, j = 1, . . . , q,

(4.22)

respectively, where Ĝ
ϕj (u)

is the empirical cumulative distribution of
{
ϕ̂(1)
j

(u), . . . , ϕ̂(B)
j

(u)
}

,

j = 1, . . . , p, at time u, Ĥ
θj (u)

is the empirical cumulative distribution of
{
θ̂(1)
j

(u), . . . , θ̂(B)
j

(u)
}

,

j = 1, . . . , q, at time u, Ĝ−1
ϕj (u)

(α) is the 100 · αth quantile of Ĝ
ϕj (u)

at time u, and

Ĥ−1
θj (u)

(α) is the 100 · αth quantile of Ĥ
θj (u)

at time u.

For more details about the residuals ẑ
i

and the form of coefficients ρ̂
j
(i, N) in step ii) see

Appendix G.

4.4 Simulation results

In this section, we provide Monte Carlo simulations to illustrate the performance of the

estimators ϕ̂(u) and θ̂(u) given in Section 4.3.2, and the method presented in Section 4.3.3

to construct their confidence intervals. In Section 4.4.1, we simulate observations from a

LSAR(2) and a LSARMA(2, 2) process. The forms for the time-varying coefficients are

sinusoidal, polynomial and exponential. In Section 4.4.2, we simulate observations from

a AR(2) and a LSAR(2) process, and compare the spectral density for both processes.

Finally, in Section 4.4.3 we evaluate the performance of coefficients intervals simulating a

LSAR(2) process.
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4.4.1 Simulating LSARMA processes

To evaluate the estimators of ϕ(u) and θ(u), we consider two simulation examples. In the

first example, we generate data from a LSAR(2) process with time-varying coefficients

ϕ1(u) = 0.3 cos(3πu), and ϕ2(u) = −0.4u + 0.8u2, u ∈ [0, 1]. In the second example,

we generate data according to a LSARMA(2, 2) process with time-varying coefficients

ϕ1(u) = 0.3 cos(3πu), ϕ2(u) = 0.6 sin(πu), θ1(u) = −0.4u + 0.8u2, and θ2(u) = 1 −
0.5 exp(u), u ∈ [0, 1]. For both examples, the errors {z

i
, i = 1, . . . , N} are a Gaussian

white noise sequence with zero mean and variance σ2
z = 1. We generate N = 500, 1000

and 5000 observations for each process, and time is given by t
i
= t0 + i∆ with t0 = 0 and

data spacing ∆ = 1.

For each N = 500, 1000 and 5000, we simulate M = 200 each process, and for each

m = 1, . . . ,M , we compute the estimates ϕ̂
(m)

(u) and θ̂
(m)

(u) using the methods de-

scribed in Section 4.3.2. To fit the LSARMA process in the first and second example,

we consider the parameters of the B-splines as J = 6, d = 3, for the penalty parame-

ters as r = 3 in both examples, τϕ = (0, 100)⊤ in the first example, and τ ϕ = (0, 0)⊤,

τ θ = (100, 100)⊤ in the second example. For these examples, we choose these parameters

ad-hoc because we are interested in evaluating the performance of our estimators of ϕ̂(u)

and θ̂(u), rather than selecting the smoothing parameters. Figure 4.4 shows the estimates

of ϕ(u) for the first scenario, LSAR(2) process, whereas Figure 4.5 shows the estimates of

ϕ(u) and θ(u) for the second scenario, LSARMA(2,2) process, and their 95 % confidence

intervals calculated according with Appendix B. Figures 4.4 and 4.5 show that the method

proposed in Section 4.3.2 based on the Hannan-Rissanen method estimates well the sim-

ulated data in both examples. We also observe that when the number of observations, N ,

increases, the estimates are closer to the true value.



Chapter 4 105

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
2

0.
2

0.
6

Time u

φ 1
(u

) a
nd

 φ
1(

u)

N=500

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
2

0.
2

0.
6

Time u

φ 2
(u

) a
nd

 φ
2(

u)

N=500

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
2

0.
2

0.
6

Time u

φ 1
(u

) a
nd

 φ
1(

u)

N=1000

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
2

0.
2

0.
6

Time u

φ 2
(u

) a
nd

 φ
2(

u)

N=1000

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
2

0.
2

0.
6

Time u

φ 1
(u

) a
nd

 φ
1(

u)

N=5000

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
2

0.
2

0.
6

Time u

φ 2
(u

) a
nd

 φ
2(

u)

N=5000

 Simulated LSAR(2) process

Figure 4.4 Simulation scenarios of Section 4.4.1: estimation of time-varying coefficients of the

LSAR(2) process. From the M = 200 realizations of our estimators and for each fixed u, we com-

pute two averages and confidence intervals. The left and right panels show the true time-varying

coefficients ϕ1(u) and ϕ2(u) (red solid line), together with the averages ϕ
1
(u) = 1

M

∑M
m=1 ϕ̂

(m)
1

(u)

and ϕ
2
(u) = 1

M

∑M
m=1 ϕ̂

(m)
2

(u) of the estimates ϕ̂(m)
1

(u) and ϕ̂(m)
2

(u) (black solid line), and their

confidence intervals (dashed black line) based on the 0.025 and 0.975 quantiles, see Appendix B.

The first, second and third rows show the result for N = 500, 1000 and 5000, respectively.
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Figure 4.5 Simulation scenarios of Section 4.4.1: estimation of time-varying coefficients of the

LSARMA(2,2) process. From the M = 200 realizations of our estimators and for each fixed u, we

compute four averages and confidence intervals. The first two columns show the true autoregressive

time-varying coefficients ϕ
k
(u), k = 1, 2 (red solid line), together with the averages ϕ

k
(u) =

1
M

∑M
m=1 ϕ̂

(m)
k

(u), k = 1, 2, of the estimates ϕ̂(m)
k

(u), k = 1, 2, (black solid line). The second two

columns show the true moving-average time-varying coefficients θ
k
(u), k = 1, 2 (red solid line),

together with the averages θ
k
(u) = 1

M

∑M
m=1 θ̂

(m)
k

(u), k = 1, 2, of the estimates θ̂(m)
k

(u), k = 1, 2,

(black solid line). Their confidence intervals (dashed black line) are based on the 0.025 and 0.975

quantiles, see Appendix B. The first, second and third rows show the result for N = 500, 1000 and

5000, respectively.
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4.4.2 Simulating and comparing ARMA and LSARMA processes

In this section, we provide Monte Carlo simulations to illustrate the difference between

ARMA and LSARMA processes through the estimation of the coefficients and the PSD.

We also show that it is possible to recover the time-invariant coefficients of an ARMA pro-

cess assuming a LSARMA process as in equation (4.10) and using the estimation method

proposed in Section 4.3.2 to estimate them. To do this, we give two scenarios. In the first

scenario, we simulate observations from an AR(2) process and we fit AR(2) and LSAR(2)

processes, and in the second scenario, we simulate observations from a LSAR(2) process

and we fit AR(2) and LSAR(2) processes.

We generate data according to the AR(2) process with time-invariant coefficients ϕ1 =

1.318, ϕ2 = −0.634, and in the second scenario, we generate data according to the

LSAR(2) process with time-varying coefficients ϕ1(u) = 0.7 cos(3πu), ϕ2(u) = −0.81u2,

u ∈ [0, 1]. For both simulated processes, AR(2) and LSAR(2), the errors {z
i
, i = 1, . . . , N}

are a Gaussian white noise sequence with zero mean and variance σ2
z = 289.2 and σ2

z = 1,

respectively, and time is generated as t
i
= t0 + i∆, with t0 = 0 and ∆ = 1, and N = 1000.

We simulate M = 200 times each process, and for each m = 1, . . . ,M , we estimate the

time-invariant coefficients ϕ1 and ϕ2 , and the time-varying coefficients ϕ1(u) and ϕ2(u).

The estimation of ϕ1 and ϕ2 is made using the R function arima, whereas the estima-

tion of ϕ1(u) and ϕ2(u) is made using the method proposed in Section 4.3.2. For the

observations generated from the AR(2) process, we fit an AR(2) process and a LSAR(2)

process. To estimate the time-varying coefficients ϕ1(u) and ϕ2(u) of the LSAR(2) process

we consider the following parameters associated with theB-splines, J = 4, d = 2, and the

following parameters associated with the penalization, r = 1, τϕ = (100000, 100000)⊤.

For the observations generated from the LSAR(2) process, we also fit an AR(2) process

and a LSAR(2) process. To estimate the time-varying coefficients ϕ1(u) and ϕ2(u) of the

LSAR(2) process we consider the following parameters J = 6, d = 3 related to the B-

splines, and r = 3, τϕ = (0, 100)⊤, related to the penalization. For these examples, we

choose these parameters ad-hoc because we are interested in evaluating the performance

of our estimator of ϕ̂(u), rather than selecting the smoothing parameters. Figures 4.6 and
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4.7 show the estimates of coefficients ϕ1 and ϕ2 (fitting an AR(2) and a LSAR(2) pro-

cess), ϕ1(u) and ϕ2(u) (fitting an AR(2) and a LSAR(2) process), and the estimate of the

PSDs. Figure 4.6 shows that even if the true coefficients are time-invariant (red lines),

we can recover the constant behavior of them fitting locally stationary processes and us-

ing B-splines. On the other hand, Figure 4.7 shows the consequences of fitting stationary

processes when the true process is locally stationary. The coefficients and the PSD are

estimated inappropriately, been not able to capture the variability over time.
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Figure 4.6 Simulation scenarios of Section 4.4.2: data generated from an AR(2) process. The

first row shows the true coefficient ϕj , j = 1, 2, (red lines), together with the averages ϕ
j
=

1
M

∑M
m=1 ϕ̂

(m)
j

, j = 1, 2, (blue solid lines), and ϕ
j
(u) = 1

M

∑M
m=1 ϕ̂

(m)
j

(u), j = 1, 2, (black

solid lines). The last four rows show the true PSD (red lines), the averages of the estimates of the

time-invariant PSD given by P (ω) = 1
M

∑M
m=1 P̂

(m)(ω) (solid blue lines), and the average of the

estimates of the time-varying PSD given by P (u, ω) = 1
M

∑M
m=1 P̂

(m)(u, ω) (solid black lines),

for different instants of time u and in log10 scale. The confidence intervals (dashed black and blue

lines) are based on the 0.025 and 0.975 quantiles, see Appendix B.
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Figure 4.7 Simulation scenarios of Section 4.4.2: data generated from an LSAR(2) process.

The first row shows the true coefficient ϕj (u), j = 1, 2, (red lines), together with the averages

ϕ
j
= 1

M

∑M
m=1 ϕ̂

(m)
j

, j = 1, 2, (blue solid lines), and ϕ
j
(u) = 1

M

∑M
m=1 ϕ̂

(m)
j

(u), j = 1, 2,

(black solid lines), of the estimates ϕ̂(m)
j

and ϕ̂(m)
j

(u), respectively. The last four rows show the

true PSD (red lines), the averages of the estimates of the time-invariant PSD given by P (ω) =
1
M

∑M
m=1 P̂

(m)(ω) (solid blue lines), and the average of the estimates of the time-varying PSD

given by P (u, ω) = 1
M

∑M
m=1 P̂

(m)(u, ω) (solid black lines), for different instants of time u and

in log10 scale. The confidence intervals (dashed black and blue lines) are based on the 0.025 and

0.975 quantiles, see Appendix B.
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4.4.3 Estimating the confidence intervals

In this section, we evaluate the method proposed in Section 4.3.3 to construct the 95%

confidence intervals for the time-varying coefficients ϕ(u) through the coverage probabil-

ity.

The simulation method for estimating the coverage probability of the confidence inter-

vals, based on (i) the asymptotic normality and (ii) the empirical quantiles, is implemented

in three steps:

• First, we simulate M = 200 samples of size N = 2000 from the LSAR(2) process

mentioned in Section 4.3.3.

• Then, for each sample, we compute the 95% confidence interval based on the asymp-

totic normality and the empirical quantiles defined in equations (4.21) and (4.22),

respectively, using B = 500 bootstrap replicates.

• Finally, for each fixed u, we compute the proportion of samples for which the true

parameters ϕ
j
(u), j = 1, 2, are contained in the confidence intervals (based on the

asymptotic normality and the empirical quantiles).

Figure 4.8 shows the empirical coverage of the confidence intervals (i.e., the proportion

of confidence intervals containing the true values of the parameters) based on the asymp-

totic normality and the empirical quantiles, for the coefficients ϕ1(u) (left panel) and ϕ2(u)

(right panel). In Figure 4.8, left and right panels, we observe that the empirical coverage

of both confidence intervals (based on M = 200 samples) is approximately 0.95 for each

u, which is very close to the theoretical value 0.95. The first column of Figure 4.9 shows

the confidence intervals for ϕ
j
(u), j = 1, 2, based on the 0.025 and 0.975 quantiles of the

empirical distribution of the estimates of the coefficients
{
ϕ̂(1)
j

(u), . . . , ϕ̂(M)
j

(u)
}

obtained

from the M = 200 samples. The second column of Figure 4.9 shows the 95% confi-

dence intervals obtained using the asymptotic normality, whereas the third column shows

the 95% confidence intervals obtained using the empirical quantiles for one sample. In

Figure 4.9, we observe that the confidence intervals based on bootstrap (second and third
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columns) are similar to the confidence intervals construct using the M = 200 replications

(first column).
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Figure 4.8 Simulation scenario of Section 4.4.3: coverage probability of confidence intervals

using bootstrap for ϕ1(u) (left panel) and ϕ2(u) (right panel), from a LSAR(2) process. The gray

and black lines represent the proportion of the M = 200 samples for which the true parameter ϕj (u)

is contained in the 95% confidence intervals using the asymptotic normality defined in equation

(4.21) and the quantiles in equation (4.22), respectively. The red line represents the proportion

equal to 0.95 which corresponds to the theoretical value.

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
2

0.
2

0.
4

0.
6

Time u

φ 1
(u

)

CI using simulations

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
2

0.
2

0.
4

0.
6

Time u

φ 1
(u

)

CI using Gaussian dist.

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
2

0.
2

0.
4

0.
6

Time u

φ 1
(u

)

CI using quantiles

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

Time u

φ 1
(u

)

CI using simulations

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

Time u

φ 1
(u

)

CI using Gaussian dist.

 Simulated LSAR(2) process

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

Time u

φ 1
(u

)

CI using quantiles

Figure 4.9 Simulation scenario of Section 4.4.3: 95% confidence intervals for ϕj (u), j = 1, 2,

using data generated from a LSAR(2) process. The true values of ϕj (u), j = 1, 2, are the red lines.

In the first column, the black dashed lines are the confidence intervals based on the 0.025 and 0.975

quantiles of the empirical distribution of the estimates of the coefficients
{
ϕ̂(1)
j

(u), . . . , ϕ̂(M)
j

(u)
}

,

with M = 200 replicates. In the second and third columns, and for the B = 500 bootstrap repli-

cations, the black dashed lines are the 95% confidence intervals based on the asymptotic normality

defined in equation (4.21) and on the quantiles defined in equation (4.22), respectively.
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4.5 Application to real data

In this section we apply the decomposition of the PSD of ARMA models introduced in

Section 4.2 by fitting these models to astronomical time series. We study the PSD of

a Rossi X-ray Timing Explorer (RXTE) light curve of the X-ray binary XTE 1550-564.

This light curve was studied by Kelly et al. (2014) and was chosen because it is regularly

sampled every ∆ = 1/128 s, and also because it has a complex and well-measured PSD.

We analyze a ≈ 39.06 s segment of this light curve, with N = 5000 observations, from

t = 3372.742 s to t = 3411.797 s. Due to X-ray binary light curves having a lognormal

distribution (Uttley et al., 2005), we transform the data using the logarithm function so

to obtain Gaussian data. The transformed light curve is shown in Figure 4.10 and its

periodogram in Figure 4.12 (gray line).
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Figure 4.10 RXTE light curve of the X-ray binary XTE 1550-564 studied in Section 4.5. The

time series has N = 5000 observations.

We fit ARMA models of orders p = 1, . . . , 6, and q = 1, . . . , 5, with q < p, to the

light curve and select the orders p and q observing the fitted curve in the frequency do-

main. Comparing the periodogram of the light curve and its estimate of the PSD, we
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select the ARMA(5, 3) model. Table 4.1 reports the parameter estimated using the R func-

tion arima. The standard deviation (SD) is obtained with the arima function in R, the

95% confidence intervals using the confint function in R, and the p-values using the

coeftest function in the R package lmtest. In this table, we observe that the param-

eters ϕ
j
, j = 1, . . . , 5, and θ

j
, j = 1, 2, 3, are statistically significant at the 5% level.

Parameters estimated fitting an ARMA(5, 3) model to the light curve

Parameter Estimate SD CI p-value

ϕ1 2.3323 0.0175 (2.2981,2.3665) < 2.2e-16

ϕ2 -1.3956 0.0376 (-1.4693,-1.3219) < 2.2e-16

ϕ3 -0.1337 0.0367 (-0.2056,-0.0619) 0.0002661

ϕ4 0.0764 0.0366 (0.0047,0.1481) 0.0367284

ϕ5 0.1164 0.0151 (0.0869,0.1459) 1.138e-14

θ1 -1.8190 0.0215 (-1.8612,-1.7768) < 2.2e-16

θ2 0.7234 0.0400 (0.6449,0.8018) < 2.2e-16

θ3 0.1159 0.0200 (0.0767,0.1551) 6.777e-09

Table 4.1 Parameters estimated obtained fitting an ARMA(5, 3) model to the light curve studied

in Section 4.5. The first column shows the parameters, the second column the estimates, the third

column the standard deviations, the fourth column the 95% confidence intervals, and the fifth

column the p-values for the estimated parameters.

The standardized residuals of the model are shown in Figure 4.11 (first panel) along

with the sample ACF (second and third panels), the partial ACF (PACF) (fourth panel),

and the Ljung-Box tests up to lag 30 (fifth panel). From the sample ACF and PACF, it

seems that there are no significant autocorrelations in the residuals. This suggests that the

ARMA(5, 3) model has captured the correlation structure in the light curve. In addition,

from the Ljung-Box tests, we observe that the null hypothesis of white noise is not rejected

at the 5% level for all the lags considered, supporting the hypothesis of no significant

autocorrelations in the residuals.
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Figure 4.11 Residual diagnostic of the ARMA(5, 3) model fitted to the light curve of the X-ray

binary XTE 1550-564 in Section 4.5. The first panel shows standardized residuals, the second panel

shows the sample ACF of the standardized residuals, the third panel shows the sample ACF of the

squared standardized residuals, the fourth panel shows the PACF of the standardized residuals, and

the fifth panel shows the p-values of the Ljung-Box tests.
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Finally, we analyzed the fit obtained with the ARMA(5, 3) model in the frequency do-

main. In order to have a better estimation of the PSD of the light curve based on the peri-

odogram, we average five periodograms calculated over five segments of the light curve.

The segments are given by observations from t = 3372.742 s to t = 3380.547 s (seg-

ment S1), observations from t = 3380.555 s to t = 3388.359 s (segment S2), observations

from t = 3388.367 s to t = 3396.172 s (segment S3), observations from t = 3396.18 s

to t = 3403.984 s (segment S4), and observations from t = 3403.992 s to t = 3411.797

s (segment S5), and each of them has 1000 observations. Thus, the average of the peri-

odograms is given by

Ix
N

=

5∑
i=1

∑
k if x

k
∈Si

∑
j if xj∈Si

x
k
x
j
exp(iλ[tk − tj])

N
, λ = 2πf. (4.23)

Figure 4.12 shows the average of the five periodograms (gray solid line), Ix/N , the es-

timate of the PSD (black solid line), P̂x(f), obtained replacing the coefficients ϕ
j
, j =

1, . . . , 5, and θ
j
, j = 1, 2, 3, with the estimates of the coefficients given in Table 4.1, and

its 95% confidence intervals based on the delta method (black dashed line). This figure

shows that the estimated PSD fits well the data and recovers the mean peak observed in

the periodogram. Analyzing the estimated PSD according to the decomposition of Sec-

tion 4.2, we conclude that the PSD of the ARMA(5,3) model fitted to the light curve is

described by p = 5 components: P̂
x,j

, j = 1, . . . , 5. These components are obtained re-

placing the true roots s
j
, j = 1, . . . , 5, with the estimates of the roots ŝ

j
, j = 1, . . . , 5, in

equation (4.4). The roots of equation

1− ϕ̂1v
−1 − ϕ̂2v

−2 − ϕ̂3v
−3 − ϕ̂4v

−4 − ϕ̂5v
−5 − ϕ̂6v

−6 = 0

are

ŝ1 = −0.2549 + 0.2638i, ŝ2 = −0.2549− 0.2638i

ŝ3 = 0.8787, ŝ4 = 0.9817− 0.1446i, ŝ5 = 0.9817 + 0.1446i.
(4.24)

The components associated with these roots are shown in Figure 4.12 (dashed lines). The

components P̂x,1 (red dashed line) and P̂x,2 (blue dashed line), given by the complex roots
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ŝ1 and ŝ2 , are the same and are centered at a frequency other than 0 s−1 and 1/(2∆) s−1.

The same happens with the components P̂x,4 (green dashed line) and P̂x,5 (purple dashed

line), given by the complex roots ŝ4 and ŝ5 , whereas the component P̂x,3 , given by the real

root ŝ3 , is centered at the frequency 0 s−1.

Astronomers are interested in finding a closed form for the frequency at which the peri-

odogram of the light curve exhibits the main peak. If the fitted model is correct (that is, the

assumptions are valid) and the estimated PSD describes well the periodogram, finding this

frequency is equivalent to finding the frequency at which the estimated PSD is maximized.

For ARMA models, this frequency is obtained by differentiating the PSD given in equa-

tion (4.2) with respect to f . If we differentiate the PSD corresponding to the ARMA(5, 3)

model with respect to f and set to zero, we obtain

A7 cos
7(2πf∆) + A6 cos

6(2πf∆) + A5 cos
5(2πf∆) + A4 cos

4(2πf∆)+

A3 cos
3(2πf∆) + A2 cos

2(2πf∆) + A1 cos(2πf∆) + A0 = 0,
(4.25)

where {Aj , j = 1, . . . , 7}, are given in Appendix H. Replacing the coefficients ϕ
j
, j =

1, . . . , 5, and θ
j
, j = 1, 2, 3, with the estimates given in Table 4.1 in equations (4.25) and

(H.1), and solving the equation (4.25), the frequency at which the estimate of the PSD of

the ARMA(5, 3) model has a peak is fmax = 0.02321474 s−1. As we can see in Figure 4.12,

the main peak of the estimated PSD is given by the components P̂x,4 or P̂x,5 . Thus, using

the expression in equation (4.8), the components P̂x,4 and P̂x,5 have a peak at the frequency

fmax,4 = fmax,5 = 0.02345531 s−1. The mean peak in the PSD is very clear and sharp. As

a result, the frequencies fmax and fmax,5 are very close to each other. In the vertical axis of

the graph in Figure 4.12 we observe the position of fmax and fmax,5 .
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Figure 4.12 PSD for the light curve of the X-ray binary XTE 1550-564 studied in Section 4.5.

The gray solid line corresponds to the average of the five periodograms defined in equation (4.23),

the black solid line corresponds to the estimate of the PSD given in equation (4.2), the black dashed

lines correspond to its 95% confidence intervals, the red, blue, yellow, green and purple dashed

lines corresponds to the components of the PSD given in equation (4.4) associated with the roots

ŝj , j = 1, . . . , 5, defined in equation (4.24).

4.6 Conclusions

In this chapter we proved that the PSD of an ARMA process can be decomposed into a sum

of some components, and we found a closed form for the frequency at which these com-

ponents exhibit peaks. We also extended this result to LSARMA process and introduced a

nonparametric estimation of its time-varying coefficients. Writing the overall PSD as the

sum of individual components allows LSARMA processes to be useful for describing the

time-varying PSD of X-ray binary systems with equally spaced time. Previous approaches

studied the variability of the PSD of X-ray binary system in discrete time, that it, the pe-

riodogram is calculated over different segments of the light curve and the curves obtained

are fitted using Lorentzian and power law functions to get an estimation of the PSD. The
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frequencies at which the estimated PSD have peaks are then observed in discrete time.

Fitting LSARMA process to light curves of X-ray binaries has the advantage of observing

the estimated PSD and these frequencies smoothly over time. Concerning the nonpara-

metric LSARMA process proposed, we emphasize that 1) our approach is flexible for four

reasons. First, it includes any functional form (such a polynomial) for the time-varying co-

efficients. Second, in the case that the coefficients are polynomials or time-invariant (such

as ARMA process), they can be recovered usingB-splines and penalization. Third, the es-

timation method based on the Hannan-Rissanen algorithm translates the estimation of the

time-varying parameters into the estimation of time-invariant parameters that is performed

by ordinary least squares. Finally, we propose a bootstrap method for ARMA process to

calculate the confidence intervals for the estimated time-varying coefficients.

LSARMA processes are defined for equally spaced time series. As we mentioned in

Chapters 2 and 3, in some cases astronomical observations are unequally spaced in time,

in which case other methods are implemented. The implications of fitting LSARMA pro-

cesses to equally spaced time series with missing values goes beyond the scopes of this

chapter.

We study the performance of our nonparametric estimation and confidence intervals pro-

posed for LSARMA process under several simulation scenarios. Finally, we apply the de-

composition of the PSD of ARMA processes to a Rossi X-ray Timing Explorer (RXTE)

light curve of the X-ray binary XTE 1550-564. We fit an ARMA(5, 3) process to the light

curve, and thus the estimate of the PSD is represented by the sum of five components,

capturing well the curve obtained with the periodogram. The residuals obtained by fitting

the ARMA(5, 3) model are compatible with the assumption of stationary and uncorrelated

errors. The periodogram of the light curve is characterized by a well defined peak. There-

fore, we calculate the frequency at which the estimated PSD and the component of the

estimated PSD have this peak, finding values very close. We have not fitted any locally

stationary model to these light curves. Nevertheless, fitting LSARMA processes is promis-

ing because it allows monitoring the evolution over time of the peak and the corresponding

argmax frequency.
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Conclusions and Future Research

In this thesis we introduce three novel models with time-varying parameters to describe

light curves of periodic variable stars and X-ray binaries. The time-varying parameters are

assumed to be smooth, which allows B-splines to be used for their modeling. From the

modeling viewpoint, our approaches presented are flexible because they avoid assumptions

about the form of the time-varying parameters.

The first model introduced in Chapter 2 is used for the description of modulated light

curves. Our model accounts for a sum of harmonic components with smoothly time-

varying trend and amplitudes. The estimation of these time-varying curves is performed

by ordinary least squares, translating the estimation of time-varying functions into time-

invariant parameters. Astronomical time series are often unequally spaced. Thus, to detect

serial correlation in the residuals of our fitted model, we derive the mathematical defini-

tion of the spectral density for unequally spaced time series. We studied the performance

of our approach under several simulation scenarios and obtained good results. We also

applied our model to the light curve of the RR Lyrae star V783 Cyg (KIC 5559631), and

compared our results with those obtained fitting the model proposed by Benkő (2018). The

estimation error obtained with our fit is significantly smaller than the error obtained with

the time-invariant fit. Also, the residuals obtained by fitting the model proposed by Benkő

(2018) exhibit a trend and significant spectral peaks, whereas our residuals are compatible

119
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with the assumption of stationary and uncorrelated errors.

In the future, and with respect to the first model introduced, we plan to extend our

methodology in four important directions. First, we plan to apply our novel method to

the study of a larger sample of Blazhko RR Lyrae stars. Second, our approach can be

extended to the analysis of other classes of variable stars presenting long-term changes

in their light curve shapes. Third, our fitting method does not require the period(s), am-

plitude(s), and phase(s) of the Blazhko effect to be determined, as we obtain instead the

empirical functions m(·) and gi,k(·). We are currently investigating what kind of (or how

much more) information can be obtained from these empirical functions, as compared to

conventional approaches. Finally, we aim to study Blazhko light curves characterized by

more than one Blazhko frequency – V783 Cyg, which was addressed in some detail in this

thesis, is a special case, because this star does not show any additional Blazhko frequencies

(Benkő et al., 2014).

The second model introduced in Chapter 3 is an extension of the first model. This second

model is proposed for the description of more complex periodic variable stars that, addi-

tionally to the modulation, exhibit serial dependence. More precisely, the additional level

of complexity is given by the presence of autocorrelation in the errors. Two models are

considered: stationary autoregressive (AR) and locally stationary autoregressive (LSAR)

models. The main limitation of autoregressive models in astronomy is that it can only be

used for equally spaced time series. Finally, we study the performance of the models under

several simulation scenarios obtaining good results. In the future, we plan to extend our

model to the case of locally stationary autoregressive moving average (LSARMA) errors,

that is, by incorporating the moving average component, and apply our model to a light

curve.

The last model presented in Chapter 4 corresponds to a nonparametric LSARMA pro-

cess. Under the assumption of smooth time-varying coefficients, we introduce (i) a non-

parametric version of the parametric Hannan-Rissanen algorithm – which was established

for stationary ARMA processes, and (ii) a bootstrap method to calculate their confidence

intervals. In addition, we showed that the spectral density of ARMA(p, q) processes can be
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expressed as the sum of p components, and we extended this result to LSARMA processes.

Elaborating on the decomposition, we found a closed form expression for the argmax of

the spectrum – the frequency at which the spectral density has a peak. Through an ap-

plication where we fit an ARMA process to the observed light curve, we showed that the

decomposition and the argmax help understanding the spectral density of X-ray binaries.

This fit shows that locally stationary processes are good candidates to describe nonstation-

ary astronomical time series. However, as we mentioned before, these processes are only

defined for equally spaced data. To address this problem, in the future, we plan to propose

an estimation method based on the Kalman filter and fit these models to unequally spaced

data sets.
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A B-splines

In this Appendix we define B-splines and give some details about the estimation method

that we used in this manuscript. For more details we refer the reader to the book by de

Boor (1978).

A B-spline curve f(t) of degree d is defined as

f(t) =
J∑

j=1

P
j
B

j,d
(t), (A.1)

where P
j

are the control points and B
j,d
(t) are the B-spline basis functions. Let t

min
and

tmax be, respectively, the lower and upper bounds of the domain of interest. In order to build

the B-spline basis of degree d, we firstly divide the domain into n intervals, with n being a

positive integer, obtaining the n+ 1 knots ξ
d
, ξ

d+1
, . . . , ξ

d+n
. Each knot satisfies ξ

j
< ξ

j+1
,

for all j. Secondly, we define 2d additional knots ξ0 , ξ1 , . . . , ξd−1
, ξ

n+d+1
, . . . , ξ

n+2d−1
, ξ

n+2d
.

Then, the jth B-spline basis, B
j,d
(t), can be defined recursively as

B
j,d
(t) =

t− ξ
j−1

ξ
j+d−1

− ξ
j−1

B
j,d−1

(t) +
ξ
j+d

− t

ξ
j+d

− ξ
j

B
j+1,d−1

(t), j = 1, . . . , J, (A.2)

with

B
j,0
(t) =

1 t ∈ [ξ
j−1
, ξ

j
),

0 otherwise
(A.3)

being used to initialize the recursion. Thus, to build the B-spline curve given by equation

(A.1), we need n + 2d + 1 knots, and the total number of B-splines basis functions is

J = n+ d.

To illustrate how to construct a B-spline basis, consider the case of degree d = 2 and

assume that the domain [t
min
, tmax ] has been divided into n = 3 intervals, obtaining the

knots ξ2 , . . . , ξ5 . In this instance, the 2d = 4 additional knots are defined as ξ0 , ξ1 , ξ6 , ξ7 .
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Using equation (A.2), we obtain

B1,2(t) =
t− ξ0
ξ2 − ξ0

B1,1(t) +
ξ3 − t

ξ3 − ξ1
B2,1(t),

B2,2(t) =
t− ξ1
ξ3 − ξ1

B2,1(t) +
ξ4 − t

ξ4 − ξ2
B3,1(t),

B3,2(t) =
t− ξ2
ξ4 − ξ2

B3,1(t) +
ξ5 − t

ξ5 − ξ3
B4,1(t),

B4,2(t) =
t− ξ3
ξ5 − ξ3

B4,1(t) +
ξ6 − t

ξ6 − ξ4
B5,1(t),

B5,2(t) =
t− ξ4
ξ6 − ξ4

B5,1(t) +
ξ7 − t

ξ7 − ξ5
B6,1(t),

where

B1,1(t) =
t− ξ0
ξ1 − ξ0

B1,0(t) +
ξ2 − t

ξ2 − ξ1
B2,0(t),

B2,1(t) =
t− ξ1
ξ2 − ξ1

B2,0(t) +
ξ3 − t

ξ3 − ξ2
B3,0(t),

B3,1(t) =
t− ξ2
ξ3 − ξ2

B3,0(t) +
ξ4 − t

ξ4 − ξ3
B4,0(t),

B4,1(t) =
t− ξ3
ξ4 − ξ3

B4,0(t) +
ξ5 − t

ξ5 − ξ4
B5,0(t),

B5,1(t) =
t− ξ4
ξ5 − ξ4

B5,0(t) +
ξ6 − t

ξ6 − ξ5
B6,0(t),

B6,1(t) =
t− ξ5
ξ6 − ξ5

B6,0(t) +
ξ7 − t

ξ7 − ξ6
B7,0(t),

and the coefficients {B
j,0
(t), j = 1, . . . , 7} are defined in equation (A.3).

Suppose we have N observations {t1, . . . , tN}, that might be either equally or unequally

spaced, with ti ∈ [t
min
, tmax ] for all i = 1, . . . , N . The B-splines basis matrix evalu-

ated at time {t1, . . . , tN}, denoted by B, is the N × J matrix with entries {B
j,d
(ti), i =

1, . . . , N, j = 1, . . . , J}, in a way that each row contains a B-spline basis. The jth B-
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spline basis function satisfies the following properties:

B
j,d
(t) > 0 ξ

j−1
< t < ξ

j+d
,

B
j,d
(t) = 0 ξ0 ≤ t ≤ ξ

j−1
and ξ

j+d
≤ t ≤ ξ

n+2d
,∑J

j=1Bj,d
(t) = 1 ξ

d
< t < ξ

n+d
,

∂kB
j,d

(t)

∂tk
|t=ξ

ℓ
0 ≤ k ≤ d− 1 are continuous.

For ease of notation, we use, throughout our manuscript, B
j
(t) instead of B

j,d
(t). Let us

now consider the example of estimating the mean function µ(t) of model y
i
= µ(ti) +

ε
i

using B-splines. Let y = (y1 , . . . , y6)
′ be the available N = 6 responses observed,

respectively, at time {t1, . . . , t6}, with t
min

= t1 and tmax = t6. Then assume that µ(t) =∑J
j=1 Pj

B
j
(t), for all t ∈ [t1, t6]. We use here B-splines basis functions of degree d = 2;

in order to construct them, we divide the domain [t1, t6] into n = 3 intervals. Hence, the

total number of knots ξ0 , . . . , ξ7 is n + 2d + 1 = 8, and the total number of B-splines

basis functions is J = n + d = 5. The 6 × 5 design matrix B has entries Bij = Bj(ti),

with i = 1, . . . , 6 and j = 1, . . . , 5, which permits estimating the coefficients {P
j
, j =

1, . . . , 5} by ordinary least squares. Indeed, if y = (y1 , . . . , y6)
⊤ denotes the response-

vector and θ = (P1 , . . . , P5)
⊤ the parameter-vector, we can rewrite the model as y =

Bθ+ z, where z = (z1 , . . . , z6)
⊤ is the error vector. The estimated parameters are defined

as θ̂ = (P̂1 , . . . , P̂5)
⊤ = (B⊤B)−1B⊤y, and the estimated mean as µ̂(t) =

∑5
j=1 P̂j

B
j
(t),

for all t ∈ [t1, t6].
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B Nonparametric confidence intervals

In this Appendix, we described the confidence intervals constructed in Sections 2.6.1,

3.4.1, 3.4.2 and 4.4 using the quantiles 0.025 and 0.975.

Nonparametric confidence intervals in simulations of Section 2.6.1

We use the quantiles 0.025 and 0.975 to construct the confidence intervals in our simula-

tions of Section 2.6.1. For t fixed, confidence intervals for µ(t), m(t), and g
ℓ,k
(t), ℓ = 1, 2,

k = 1, . . . , K, are calculated according to the following 3 steps:

1. We estimate the coefficients of interest α, β
k

and γ
k
, k = 1, . . . , K, following the

procedure described in Section 2.4.1, and we define the J × M matrices A
M

=[
α̂(1), . . . , α̂(M)

]
, B

kM
=
[
β̂

(1)

k
, . . . , β̂

(M)

k

]
, and G

kM
=
[
γ̂(1)

k
, . . . , γ̂(M)

k

]
, where

α̂(j), β̂
(j)

k
, and γ̂(j)

k
, correspond to the estimators of α, β

k
, and γ

k
, given by equation

(2.10) in the jth Monte Carlo simulation, j = 1, . . . ,M .

2. We define the M×1 vectors m̂(M)(t), ĝ(M)

ℓ,k
(t), ℓ = 1, 2, k = 1, . . . , K, and µ̂(M)(t)

as

m̂(M)(t) = B(t)⊤A
M
=
[
m̂(1)(t), . . . , m̂(M)(t)

]⊤
,

ĝ(M)

1,k
(t) = B(t)⊤B

kM
=
[
ĝ(1)
1,k

(t), . . . , ĝ(M)
1,k

(t)
]⊤
, k = 1, . . . , K

ĝ(M)

2,k
(t) = B(t)⊤G

kM
=
[
ĝ(1)
2,k

(t), . . . , ĝ(M)
2,k

(t)
]⊤
, k = 1, . . . , K

µ̂(M)(t) = m̂(t) +
K∑
k=1

{
ĝ
1,k
(t) cos(w

k
t) + ĝ

2,k
(t) sin(w

k
t)
}
=
[
µ̂(1)(t), . . . , µ̂(M)(t)

]⊤
,

where µ̂(j)(t), m̂(j)(t), and ĝ(j)
ℓ,k

(t), ℓ = 1, 2, k = 1, . . . , K correspond to the esti-

mators of µ(t), m(t), g
ℓ,k
(t), given by equations (2.11) and (2.12) in the jth Monte

Carlo simulation, and B(t) corresponds to the vector formed by the B-splines eval-

uated at time t.
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3. We calculate the empirical quantiles of order 0.025 and 0.975 of the M × 1 vectors

m̂
(M)(t), ĝ(M)

ℓ,k
(t), ℓ = 1, 2, k = 1, . . . , K, and µ̂(M)(t).

Nonparametric confidence intervals in simulations of Sections 3.4.1 and 3.4.2

For t and u fixed, confidence intervals for µ(t), m(t), g
ℓ,k
(t), ℓ = 1, 2, k = 1, . . . , K, and

ϕ
j
(u), j = 1, . . . , p, are calculated according to the following 3 steps:

1. We estimate the coefficients of interest α, β
k
, γ

k
, k = 1, . . . , K, and ℓ

j
, j = 1, . . . , p,

following the procedure described in Section 3.3.2, and we define the J×M matrices

A
M

=
[
α̂(1), . . . , α̂(M)

]
, B

kM
=
[
β̂

(1)

k
, . . . , β̂

(M)

k

]
, G

kM
=
[
γ̂(1)

k
, . . . , γ̂(M)

k

]
, and

P
jM

=
[
ℓ̂
(1)

j
, . . . , ℓ̂

(M)

j

]
, where α̂(j), β̂

(j)

k
, and γ̂(j)

k
, correspond to the estimators of

α, β
k
, and γ

k
, given by equation (3.22), and ℓ̂

(j)

k
corresponds to the estimator of ℓ

k

given in equation (3.19), in the jth Monte Carlo simulation, j = 1, . . . ,M .

2. We define the M × 1 vectors m̂(M)(t), ĝ(M)

ℓ,k
(t), ℓ = 1, 2, k = 1, . . . , K, ϕ̂

(M)

k
(u),

k = 1, . . . , p, and µ̂(M)(t) as

m̂
(M)(t) = B(t)⊤A

M
=
[
m̂(1)(t), . . . , m̂(M)(t)

]⊤
,

ĝ(M)

1,k
(t) = B(t)⊤B

kM
=
[
ĝ(1)
1,k

(t), . . . , ĝ(M)
1,k

(t)
]⊤
, k = 1, . . . , K,

ĝ(M)

2,k
(t) = B(t)⊤G

kM
=
[
ĝ(1)
2,k

(t), . . . , ĝ(M)
2,k

(t)
]⊤
, k = 1, . . . , K,

ϕ̂
(M)

k
(u) = B(u)⊤P

kM
=
[
ϕ̂(1)
k

(u), . . . , ϕ̂(M)
k

(u)
]⊤
, k = 1, . . . , p,

µ̂(M)(t) = m̂(t) +
K∑
k=1

{
ĝ
1,k
(t) cos(w

k
t) + ĝ

2,k
(t) sin(w

k
t)
}
=
[
µ̂(1)(t), . . . , µ̂(M)(t)

]⊤
,

where µ̂(j)(t), m̂(j)(t), and ĝ(j)
ℓ,k

(t), ℓ = 1, 2, k = 1, . . . , K correspond to the es-

timators of µ(t), m(t), g
ℓ,k
(t), given by equations (3.10), (3.11) and (3.12), and

ϕ̂(j)
k

(u) corresponds to the estimator of ϕ
k
(u) given in equation (3.21), in the jth
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Monte Carlo simulation, and B(t) and B(u) correspond to the vector formed by the

B-splines evaluated at time t and u, respectively.

3. We calculate the empirical quantiles of order 0.025 and 0.975 of the M × 1 vectors

m̂
(M)(t), ĝ(M)

ℓ,k
(t), ℓ = 1, 2, k = 1, . . . , K, ϕ̂

(M)

k
(u), k = 1, . . . , p, and µ̂(M)(t).

Nonparametric confidence intervals in simulations of Section 4.4

For u and f fixed, confidence intervals for ϕ
j
(u), j = 1, . . . , p, θ

j
(u), j = 1, . . . , q, and

P
X
(u, f), are calculated according to the following 3 steps:

1. We estimate the coefficients of interest α
ϕ,k

, k = 1, . . . , p, and α
θ,k

, k = 1, . . . , q,

following the procedure described in Section 4.3.2, and we define the J×M matrices

A
kM,ϕ

=
[
α̂(1)

ϕ,k
, . . . , α̂(M)

ϕ,k

]
and A

kM,θ
=
[
α̂(1)

θ,k
, . . . , α̂(M)

θ,k

]
, where α̂(j)

ϕ,k
and α̂(j)

θ,k
,

correspond to the estimators of α(j)
ϕ,k

and α(j)
θ,k

given by equation (4.17) in the case of

LSAR processes, and in equation (4.19) in the case of LSARMA processes, in the

jth Monte Carlo simulation, j = 1, . . . ,M .

2. We define the M × 1 vectors ϕ̂
(M)

k
(u), k = 1, . . . , p, θ̂

(M)

k
(u), k = 1, . . . , q, as

ϕ̂
(M)

k
(u) = B(u)⊤A

kM,ϕ
=
[
ϕ̂(1)
k

(u), . . . , ϕ̂(M)
k

(u)
]⊤
, k = 1, . . . , p,

θ̂
(M)

k
(u) = B(u)⊤A

kM,θ
=
[
θ̂(1)
k

(u), . . . , θ̂(M)
k

(u)
]⊤
, k = 1, . . . , q,

and the vector P̂
(M)

(u, f) =
[
P̂ (1)(u, f), . . . , P̂ (M)(u, f)

]⊤
, where P̂ (j)(u, f) is

given by replacing ϕ(j)
k

(u), k = 1, . . . , p, θ(j)
k

(u), k = 1, . . . , q, and σ2
z in equa-

tion (4.11) with the estimates ϕ̂(j)
k

(u), k = 1, . . . , p, θ̂(j)
k

(u), k = 1, . . . , q, and σ̂2
z ,

obtained in the jth Monte Carlo simulation, and B(u) corresponds to the vector

formed by the B-splines evaluated at time u.

3. We calculate the empirical quantiles of order 0.025 and 0.975 of the M × 1 vectors

ϕ̂
(M)

k
(u), k = 1, . . . , p, θ̂

(M)

k
(u), k = 1, . . . , q, and P̂

(M)
(u, f).
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C Proofs

In this Appendix we prove the results in Lemma 1 and Proposition 1 (see Section 2.5), and

Proposition 2 and proofs of equations (4.7) and (4.8) (see Section 4.2).

C.1 Proof of Lemma 1

Firstly, we prove equation (2.20) and then we prove equation (2.21). Multiplying (2.19)

by exp(−iλk∆) on both sides we get

exp(−iλk∆)Pε(λ) =
1

2π

∞∑
h=−∞

rε(h) exp(iλ[h− k]∆),

and by summing both sides with respect to j, with j = 1, . . . , NI

NI∑
j=1

exp(−iλk∆)Pε(λ) =
1

2π

NI∑
j=1

∞∑
h=−∞

rε(h) exp(iλ[h− k]∆).

Recalling that the sequence {rε(h)} is absolutely summable, we obtain

NI∑
j=1

exp(−iλk∆)Pε(λ) =
1

2π

∞∑
h=−∞

rε(h)

NI∑
j=1

exp(iλ[h− k]∆).

But, since
NI∑
j=1

exp(i2πj[h− k]∆/NI) = NIδ{h,k},

we have
NI∑
j=1

exp(−iλk∆)Pε(λ) =
NI

2π

∞∑
h=−∞

rε(h)δ{h,k},

=
NI

2π
rε(k),

and therefore we get the expression in equation (2.20)

rε(k) =
2π

NI

NI∑
j=1

exp(−iλk∆)Pε(λ).
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We now prove equation (2.21). Notice that the expectation of the periodogram in equa-

tion (2.17) of the observations {ε
i
, i ∈ I} is

E [Iε(λ)] =
∑
k∈I

∑
j∈I

E
[
ε
k
ε
j

]
exp(iλ[tk − tj]).

If we replace the expectation E
[
ε
k
ε
j

]
with the right-hand-side of equation (2.20), we obtain

E [Iε(λ)] =
2π

NI

NI∑
j=1

Pε(ωj)
∑
k∈I

∑
j∈I

exp(i[λ− ωj][tk − tj]),

=
2π

NI

NI∑
j=1

Pε(ωj)Wε(λ− ωj),

=
2π

NI
Pε(λ) ∗Wε(λ).

C.2 Proof of Proposition 1

Let F{g
j
}[k] denote the Discrete Fourier Transform (DFT) of the sequence of m numbers

g1 , . . . , gm into another sequence h1 , . . . , hm , that is,

h
k
= F{g

j
}[k] =

m∑
j=1

g
j
exp(−ikj2π/m), k = 1, . . . ,m,

and F−1{h
k
}[j] denote the Inverse DFT of the sequence h1 , . . . , hm into another sequence

g1 , . . . , gm , that is,

g
j
= F−1{h

k
}[j] = 1

m

m∑
k=1

h
k
exp(ikj2π/m), j = 1, . . . ,m.

Let F{g
j
}[k] and F{ℓ

j
}[k] be, respectively, the DFTs of the sequences {g

j
} and {ℓ

j
} into

the sequences {h
k
} and {m

k
}. Then, the Convolution Theorem states that
F{g

j
∗ ℓ

j
}[k] = F{g

j
}[k]F{ℓ

j
}[k]. (C.1)

Applying the Convolution Theorem in equation (C.1) to equation (2.21), we obtain

F{Pε(λj)}[k] =
NI

2π

F{E [Iε(λj)]}[k]
F{Wε(λj)}[k]

.

The Inverse DFT of the last equation gives the result in equation (2.25).
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C.3 Proof of Proposition 2

Let {x
i
} be an ARMA process satisfying the causality condition

1−
p∑

j−1

ϕ
j
rj = 0 for all |r| > 1,

with autocovariance function rx(·). The PSD of {x
i
} is defined by

Px(f) =
1

2π

∞∑
h=−∞

exp(−i2πf∆h)rx(h), − 1

2∆
< f <

1

2∆
, (C.2)

For causal ARMA(p, q) processes, Brockwell (2001) proved that when q < p and the

roots s
j

of equation (4.6) are distinct, the autocovariance function can be express as

rx(h) = −σ2
z

p∑
j=1

s|h|+1
j

(∑q
k=0 θks

k
j

)(∑q
k=0 θks

−k
j

)
(
−
∑p

k=0 ϕks
k
j

)(
−
∑p

k=0 kϕks
−k+1
j

) , (C.3)

with ϕ0 = −1 and θ0 = 1. Substituting equation (C.3) into equation (C.2), the PSD is

given by

Px(f) = −σ2
z

2π

p∑
j=1

s
j

(∑q
k=0 θks

k
j

)(∑q
k=0 θks

−k
j

)
(
−
∑p

k=0 ϕks
k
j

)(
−
∑p

k=0 kϕks
−k+1
j

) ∞∑
h=−∞

exp(−i2πfh∆)s|h|
j
.

(C.4)

Developing the term
∑∞

h=−∞ exp(−i2πfh∆)s|h|
j

in equation (C.4), we have

∞∑
h=−∞

exp(−i2πfh∆)s|h|
j

=
0∑

h=−∞

exp(−i2πfh∆)s−h
j

+
∞∑
h=0

exp(−i2πfh∆)sh
j
− 1

=
∞∑
h=0

[
exp(i2πf∆)s

j

]h
+

∞∑
h=0

[
exp(−i2πf∆)s

j

]h − 1,

given that the root s
j

satisfies |s
j
| < 1, we use the geometric series formula obtaining

∞∑
h=−∞

exp(−i2πfh∆)s|h|
j

=
1

1− exp(i2πf∆)s
j

+
1

1− exp(−i2πf∆)s
j

− 1

=
1− s2

j

1− 2s
j
cos(2πf∆) + s2

j

. (C.5)
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Replacing the expression
∑∞

h=−∞ exp(−i2πfh∆)s|h|
j

in equation (C.4) with the expres-

sion found in equation (C.5), we get the expression in equation (4.3), which is

Px(f) = −σ2
z

2π

p∑
j=1

 s
j

(∑q
k=0 θks

k
j

)(∑q
k=0 θks

−k
j

)
(
−
∑p

k=0 ϕks
k
j

)(
−
∑p

k=0 kϕks
−k+1
j

) 1− s2
j

1− 2s
j
cos(2πf∆) + s2

j

 .

C.4 Proof of Equation (4.7)

Replacing s
j

with a
j
+ ib

j
in equation (4.4) we get

P
x,j
(f) = −σ2

z

2π
Re

[
Re(Q

ℓ
) + iIm(Q

ℓ
)

1 + a2
j
− b2

j
− 2a

j
cos(2πf∆) + i2b

j
[a

j
− cos(2πf∆)]

]
.

Multiplying the numerator and denominator by the conjugate of 1+a2
j
−b2

j
−2a

j
cos(2πf∆)+

i2b
j
[a

j
− cos(2πf∆)], and taking the real part of the complex number gotten, we have the

result in equation (4.7).

C.5 Proof of Equation (4.8)

Differentiating the component P
x,j
(f) in equation (4.7) with respect to f , setting the

derivative equal zero, and replacing f with f
max,ℓ

, we get the equation

K
3,ℓ

+K
2,ℓ

cos(2πf
max,ℓ

∆) +K
1,ℓ

cos2(2πf
max,ℓ

∆) = 0, (C.6)

with K
j,ℓ

, j = 1, 2, 3, defined in equation (4.9). The expression above corresponds to a

quadratic equation in cos(2πf
max,ℓ

∆). Thus, the solution of equation (C.6) is

cos(2πf
max,ℓ

∆) =

−K
2,ℓ

±
√
K2

2,ℓ
− 4K

1,ℓ
K

3,ℓ

2K
1,ℓ

 .

Assuming that K2
2,ℓ

− 4K
1,ℓ
K

3,ℓ
≥ 0, and

∣∣∣(−K2,ℓ
±
√
K2

2,ℓ
− 4K

1,ℓ
K

3,ℓ

)
/(2K

1,ℓ
)
∣∣∣ < 1,

ℓ = j, k, the frequency f
max,ℓ

is given by

f
max,ℓ

=
1

2π∆
arccos

−K
2,ℓ

±
√
K2

2,ℓ
− 4K

1,ℓ
K

3,ℓ

2K
1,ℓ

,
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which agrees with the result in equation (4.8).

D Covariance matrix of stationary autoregressive processes

Let {ε
i
} be a causal AR(p) process occurring at certain discrete time t

i
= t0 + i∆, with i

an integer, ∆ > 0 and t0 = 0, given by

ε
i
=

p∑
j=1

ϕ
j
ε
i−j

+ z
i
, {z

i
} ∼ WN(0, σ2

z ).

Then the spectral density is

Pε(f) =
σ2
z

2π

1∣∣∣ 1−∑p
j=1 ϕj exp(−i2πf∆j)

∣∣∣2 , − 1

2∆
< f <

1

2∆
,

the elements of covariance matrix Γε = E
[
εε⊤

]
are

γ
ε,j,k

= 2π∆

∫ 1
2∆

− 1
2∆

exp(i2πf [j − k]∆)Pε(f)df,

and the element of the inverse covariance matrix Γ−1
ε

are

η
ε,j,k

=
∆

2π

∫ 1
2∆

− 1
2∆

exp(i2πf [j − k]∆)P−1
ε

(f)df.

The following examples show the elements of the inverse covariance matrix of AR(p)

processes with p = 1, . . . , 4. For an AR(1) process the elements are

η
ε,i,k

= σ−2
z

×


1 + ϕ2

1
, if i = k,

−ϕ1 , if i = k ± 1,

0, otherwise,
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for an AR(2) process

η
ε,i,k

= σ−2
z

×



1 + ϕ2
1
+ ϕ2

2
, if i = k,

ϕ1ϕ2 − ϕ1 , if i = k ± 1,

−ϕ2 , if i = k ± 2,

0, otherwise,

for an AR(3) process

η
ε,i,k

= σ−2
z

×



1 + ϕ2
1
+ ϕ2

2
+ ϕ2

3
, if i = k,

ϕ1ϕ2 + ϕ2ϕ3 − ϕ1 , if i = k ± 1,

ϕ1ϕ3 − ϕ2 , if i = k ± 2,

−ϕ3 , if i = k ± 3,

0, otherwise,

and for an AR(4) process

η
ε,i,k

= σ−2
z

×



1 + ϕ2
1
+ ϕ2

2
+ ϕ2

3
+ ϕ2

4
, if i = k,

ϕ1ϕ2 + ϕ2ϕ3 + ϕ3ϕ4 − ϕ1 , if i = k ± 1,

ϕ1ϕ3 + ϕ2ϕ4 − ϕ2 , if i = k ± 2,

ϕ1ϕ4 − ϕ3 , if i = k ± 3,

−ϕ4 , if i = k ± 4,

0, otherwise.

E Covariance matrix of locally stationary autoregressive

processes

Let {ε
i,N

} be a LSAR(p) process, satisfying the definition given in Section 1.4, and oc-

curring at certain discrete time t
i
= t0 + i∆, with i an integer, ∆ > 0 and t0 = 0, given
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by

ε
i,N

=

p∑
j=1

ϕ
j

(
i
N

)
ε
i−j,N

+ z
i
, {z

i
} ∼ WN(0, σ2

z ).

Then the spectral density is

Pε(u, f) =
σ2
z

2π

1∣∣∣ 1−∑p
j=1 ϕj(u) exp(−i2πf∆j)

∣∣∣2 , − 1

2∆
< f <

1

2∆
.

For a LSAR(p) processes, Dahlhaus (1996) defined the elements of the covariance matrix

Γε = E
[
εε⊤

]
as

γ
ε,j,k

= 2π∆

∫ 1
2∆

− 1
2∆

exp(i2πf [j − k]∆)A0
j,N

(f)A0
k,N

(f)df,

whereA0
j,N

(f) = A
(

j
N
, f
)

is the transfer function defined in the interval [−1/(2∆), 1/(2∆)]

and given by

A
(

j
N
, f
)
=

σz√
2π

1

1−
∑p

k=1 ϕk
(

j
N

)
exp(−i2πf∆k)

.

Satisfying the assumptions about A and P−1
ε

in Proposition 2.4 in Dahlhaus (2000), the

element of the inverse covariance matrix Γ−1
ε

are approximated by

η
ε,j,k

=
∆

2π

∫ 1
2∆

− 1
2∆

exp(i2πf [j − k]∆)P−1
ε

(
1
N

⌊
j+k
2

⌋
, f
)
df

The following examples show the elements of the inverse covariance matrix of LSAR(p)

processes with p = 1, . . . , 4. For a LSAR(1) process the elements are

η
ε,i,k

= σ−2
z

×


1 + ϕ2

1

(
i
N

)
, if i = k,

−ϕ1
(

1
N

⌊
i+k
2

⌋)
, if i = k ± 1,

0, otherwise,
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for a LSAR(2) process

η
ε,i,k

= σ−2
z

×



1 + ϕ2
1

(
i
N

)
+ ϕ2

2

(
i
N

)
, if i = k,

ϕ1
(

1
N

⌊
i+k
2

⌋)
ϕ2
(

1
N

⌊
i+k
2

⌋)
− ϕ1

(
1
N

⌊
i+k
2

⌋)
, if i = k ± 1,

−ϕ2
(

1
N

⌊
i+k
2

⌋)
, if i = k ± 2,

0, otherwise,

for a LSAR(3) process

η
ε,i,k

= σ−2
z

×



1 + ϕ2
1

(
i
N

)
+ ϕ2

2

(
i
N

)
+ ϕ2

3

(
i
N

)
, if i = k,

ϕ
1

(
1
N

⌊
i+k
2

⌋)
ϕ
2

(
1
N

⌊
i+k
2

⌋)
+ ϕ

2

(
1
N

⌊
i+k
2

⌋)
ϕ
3

(
1
N

⌊
i+k
2

⌋)
− ϕ

1

(
1
N

⌊
i+k
2

⌋)
, if i = k ± 1,

ϕ
1

(
1
N

⌊
i+k
2

⌋)
ϕ
3

(
1
N

⌊
i+k
2

⌋)
− ϕ

2

(
1
N

⌊
i+k
2

⌋)
, if i = k ± 2,

−ϕ
3

(
1
N

⌊
i+k
2

⌋)
, if i = k ± 3,

0, otherwise,

and for a LSAR(4) process

η
ε,i,k

= σ−2
z

×



1 + ϕ2
1

(
i
N

)
+ ϕ2

2

(
i
N

)
+ ϕ2

3

(
i
N

)
+ ϕ2

4

(
i
N

)
, if i = k,∑4

j=1

{
ϕj

(
1
N

⌊
i+k
2

⌋)
ϕj+1

(
1
N

⌊
i+k
2

⌋)}
− ϕ1

(
1
N

⌊
i+k
2

⌋)
, if i = k ± 1,

ϕ
1

(
1
N

⌊
i+k
2

⌋)
ϕ3

(
1
N

⌊
i+k
2

⌋)
+ ϕ2

(
1
N

⌊
i+k
2

⌋)
ϕ4

(
1
N

⌊
i+k
2

⌋)
− ϕ2

(
1
N

⌊
i+k
2

⌋)
, if i = k ± 2,

ϕ
1

(
1
N

⌊
i+k
2

⌋)
ϕ
4

(
1
N

⌊
i+k
2

⌋)
− ϕ

3

(
1
N

⌊
i+k
2

⌋)
, if i = k ± 3,

−ϕ
4

(
1
N

⌊
i+k
2

⌋)
, if i = k ± 4,

0, otherwise.

F Wrapped Lorentzian function

The Wrapped Lorentzian function is defined by

W (ω) =
N

2π

1− ρ2

1 + ρ2 − 2ρ cos(ω − ωc)
, −π ≤ ω < π,

where ωc ∈ [−π, π] is the centroid, ρ ∈ [0, 1) controls the concentration of the function,

and N is the normalization factor. See Kato and Jones (2013) for more details.
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G Infinite-order locally stationary moving average pro-

cess

In this appendix, we clarify some aspects of step ii) of the method to construct the confi-

dence intervals for LSARMA process proposed in Section 4.3.3.

Let {x
i,N

} be the LSARMA process defined in equation (4.10) satisfying

x
i,N

=

p∑
j=1

ϕ
j

(
i

N

)
x
i−j,N

+ z
i
+

q∑
j=1

θ
j

(
i

N

)
z
i−j
, {z

i
} ∼ WN(0, σ2

z ), i = 1, . . . , N,

and suppose that the following power series expansion exists[
θ
(

i
N
, v
)]−1

=
∞∑
j=0

ρj(i, N)vj. (G.1)

Then, by equations (4.10) and (G.1) we may express the x
i,N

’s as a infinite order LSAR

process as

z
i
=

∞∑
j=0

ρj(i, N)

[
−

p∑
k=0

ϕ̂
k

(
i
N

)
x
i−j−k,N

]

=
i∑

j=1

ρj−1(i, N)

[
−

p∑
k=0

ϕ̂
k

(
i
N

)
x
i+1−j−k,N

]
+

∞∑
j=i+1

ρj(i− 1, N)

[
−

p∑
k=0

ϕ̂
k

(
i
N

)
x
i+1−j−k,N

]

=
i∑

j=1

ρj−1(i, N)

[
−

p∑
k=0

ϕ̂
k

(
i
N

)
x
i+1−j−k,N

]
+

∞∑
j=i+1

ρj−1(i, N)

[
q∑

k=0

θ̂
k

(
i
N

)
z
i+1−j−k

]

=
i∑

j=1

ρj−1(i, N)

[
−

p∑
k=0

ϕ̂
k

(
i
N

)
x
i+1−j−k,N

]
+

q∑
k=0

∞∑
s=k

θ̂
k

(
i
N

)
ρi+s−k(i, N)z−s .

Note that, for a fixed i, ρj(i, N) → 0 as j → ∞. Therefore, we can concentrate on the

first term only and define an approximation to z
i

by

z
i
=

i∑
j=1

ρj−1(i, N)

[
−

p∑
k=0

ϕ̂
k

(
i
N

)
x
i+1−j−k,N

]
.

For a fixed i, the coefficients ρj(i, N), j = 0, 1, . . . , i− 1, in equation (G.1), satisfy the

recursion ρ
j
(i, N) = −

∑j
k=1 θk

(
i
N

)
ρ
j−k

(i, N), with ρ0(i, N) = 1.
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H Values of A
j
, j = 1, . . . , 7

The values of A
j
, j = 1, . . . , 7, in equation (4.25) are

A0 = b7b6 − b9b5

A1 = b7b5 + b8b6 − 2b9b4 − b10b5

A2 = b7b4 + b8b5 − 3b9b3 − 2b10b4 − b11b5 + 24θ3h

A3 = b7b3 + b8b4 − 4b9b2 − 3b10b3 − 2b11b4 + 16θ3b5

A4 = b7b2 + b8b3 − 5b9b1 − 4b10b2 − 3b11b3 + 8θ3b4

A5 = b7b1 + b8b2 − 5b10b1 − 4b11b2

A6 = b8b1 − 5b11b1 − 8θ3b2

A7 = 16θ3b1

(H.1)

where b
j
, = 1, . . . , 11, are

b1 =− 32ϕ5

b2 =16(−ϕ4 + ϕ1ϕ5)

b3 =8(−ϕ3 + ϕ1ϕ4 + ϕ2ϕ5) + 40ϕ5

b4 =4(−ϕ2 + ϕ1ϕ3 + ϕ2ϕ4 + ϕ3ϕ5)− 16(−ϕ4 + ϕ1ϕ5)

b5 =2(−ϕ1 + ϕ1ϕ2 + ϕ2ϕ3 + ϕ3ϕ4 + ϕ4ϕ5)− 6(−ϕ3 + ϕ1ϕ4 + ϕ2ϕ5)− 10ϕ5

b6 =1 + ϕ2
1
+ ϕ2

2
+ ϕ2

3
+ ϕ2

4
+ ϕ2

5
− 2(−ϕ2 + ϕ1ϕ3 + ϕ2ϕ4 + ϕ3ϕ5) + 2(−ϕ4 + ϕ1ϕ5)

b7 =2(θ1 − 3θ3 + θ1θ2 + θ2θ3)

b8 =8(θ2 + θ1θ3)

b9 =1 + θ2
1
+ θ2

2
+ θ3

3
− 2θ2 − 2θ1θ3

b10 =2(θ1 − 3θ3 + θ1θ2 + θ2θ3)

b11 =4(θ2 + θ1θ3).
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