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Introduction

The understanding of units is a central problem in Algebraic Number Theory. It is
remarkable, for example, that the main difficulty in calculating the class number of an
algebraic number field is usually the calculation of the regulator. In fact the regulator
and all the numerical invariants of number fields are intimately related, some beautiful
illustrations of this matter are the Brauer-Siegel theorem and the class number formula.

The main object of study in this thesis are lower bounds for regulators. In chapter 1 we
give a geometric bound inspired in the work of Remak [Re] and Pohst [Po]. In chapter 2 we
apply analytic methods developed by Zimmert [Zi] and Friedman [Fr] to obtain new lower
bounds for certain totally real fields.

The regulator was defined for the first time by Dedekind in the extended eleventh supple-
ment for the fourth edition (1894) of Dirichlet’s lectures in number theory Vorlesungen über
Zahlentheorie. The first bound for the regulator of a field of arbitrary degree was obtained in
1918 by Landau [Lan], who found an inequality relating the regulator and the discriminant
of the form Rk < C1

√
Dk(log |Dk|)n−1. In 1952 Remak [Re] obtained |Dk| < C2 exp(C3Rk)

(See Lemma 7 ) for any non CM field k, the Ci are explicit constants depending only on n.
This last inequality, together with the Hermite-Minkowski theorem, implies that there is a
minimal regulator for each signature (r1, r2). In 1977 Pohst [Po] found the minimal regula-
tor among all totally real cubic fields. In 1981 Zimmert [Zi], relying on work of Pohst [Po]
and a new analytic method, showed that log((1 +

√
5)/2) is the minimal regulator among

all totally real fields. Finally, in 1989, Friedman [Fr] found the minimal regulator for totally
complex sextic fields and showed that it was the smallest regulator among all number fields.
Recently, in 2016, Astudillo, Diaz y Diaz and Friedman published sharp lower bounds for
regulators of number fields of all signatures up to degree seven [ADF], except for fields of
degree seven having five real places.

In the first chapter we extend Pohst’s geometric method from the totally real case to
fields having one complex place. This refinement allows us to obtain the minimal regulator
among number fields with signature (5,1). A shorter version of chapter 1 was published in
the Journal of Number Theory [FRR].

In chapter 2 we obtain new lower bounds for regulators of totally real fields in degree 10 to
18. We apply these bounds to prove a conjecture published by Katok, Katok and Rodriguez-
Hetz in 2014 [KKR] concerning the minimal entropy of certain dynamical systems.
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Preliminary definitions and
results

Preliminary definitions

We will follow the usual notation, k will be a number field of degree n, Ok the respective
ring of integers, r1 the number of real embeddings and r2 the number of pairs of complex
embeddings, Dk the discriminant, Rk the regulator, ω the number of roots of the unit in
k and hk the class number of k. We recall here the definition of the discriminant and the
regulator and give some examples to motivate our work. The proofs can be found in classical
books like [Sa] or [Neu].

Definition 1. Let b1, . . . , bn be an integral basis of Ok and σ1, . . . , σn the set of embeddings
of k in C. The discriminant is the square of the determinant of the n by n matrix whose
(i, j)-entry is σi(bj).

Dk := det


σ1(b1) σ1(b2) · · · σ1(bn)

σ2(b1)
. . .

...
...

. . .
...

σn(b1) · · · · · · σn(bn)


2

Definition 2. If r = r1 + r2 − 1, let u1, . . . , ur be a set of fundamental units of Ok and
σ1, . . . , σr+1 a subset of the set of embeddings representing the archimedean places of k. Let
Nj be 1 or 2 if the corresponding σj embedding is real or complex. Let M be the r× (r+ 1)
matrix

M :=


N1 log |σ1(u1)| N2 log |σ2(u1)| · · · Nr+1 log |σr+1(u1)|

N1 log |σ1(u2)|
. . .

...
...

. . .
...

N1 log |σ1(ur)| · · · · · · Nr+1 log |σr+1(ur)|

 .

The regulator is the absolute value of the determinant of any submatrix formed by deleting
one column of M .

Example Consider the field k = Q(
√

5). We have that Ok = Z[(1 +
√

5)/2], r1 = 2, r2 = 0,
Dk = 5, Rk = ln |(1 +

√
5)/2| = 0.481211 . . . , ω = 2 and hk = 1. Many examples can be

found in the LMFDB (The L-functions and Modular Forms Database) at www.lmfdb.org.
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Remark 3. If the number field has a power integral basis, i.e. there exists an algebraic
integer α such that b1 = 1, b2 = α, . . . , bn = αn−1, then the discriminant satisfies Dk =∏

1≤i≤j≤n(αi − αj)2 where αi = σi(α) (determinant of a Vandermonde matrix).

We state here the definition of Cartan action needed for chapter 2. Further properties
and notions can be found at [KN, 2.2.5].

Definition 4. An action of Zn−1 on the tori Tn for n ≥ 3 by ergodic automorphisms is
called a Cartan action.

Results in Chapter 1

Some thirty years ago, the number fields with smallest discriminant for signatures up to
degree seven were all known [Od]. Recently [ADF] the same was established for regulators,
except that no sharp lower bounds were proved for one signature in degree seven. In chapter
1 we close that gap.

Theorem 5. Let k be a number field of degree seven having five real embeddings. Then its
regulator Rk satisfies Rk ≥ Rk1 = 2.8846 . . ., where k1 is the unique field of discriminant
−2 306 599 in this signature.

More precisely, except for the three unique fields with discriminants −2 306 599,
−2 369 207 and −2 616 839, in this signature all fields satisfy Rk > 3.2.

The idea in [ADF] is to first use analytic lower bounds for regulators. These are very
good up to a certain value Danal(r1, r2) of the discriminant Dk, where (r1, r2) is the number
of (real, complex) places of k. Then coarse geometric bounds due to Remak [Re] are used
for |Dk| ≥ Dgeom(r1, r2). This method works if Dgeom(r1, r2) ≤ Danal(r1, r2), which holds
for small degrees, but fails when the unit-rank reaches 5.

In fact, unit-rank 5, 6 and 7 are handled in [ADF], but only for totally real fields, where
an improved inequality due to Pohst [Po] is available. To deal with signature (5, 1), we
extend Pohst’s method, allowing one of the variables to be complex.

Results in Chapter 2

In 2014 Katok, Katok and Rodriguez Hetz [KKR, p. 1216] published the following

Conjecture. (A. Katok, S. Katok and F. Rodriguez Hetz) “The Cartan action α corre-
sponding to the quartic totally real number field of discriminant 725 and the defining poly-
nomial x4 − x3 − 3x2 + x+ 1 minimizes the Fried average entropy h∗(α) among all Cartan
actions α. For that action h∗(α) = 0.330027 . . . = hmin.”

Here we prove this and give the first six minima of h∗(α).

Theorem 6. The above conjecture holds. Moreover, except for the six Cartan actions given
in Table 1 below, all other Cartan actions α satisfy h∗(α) > 0.49.

The KKR conjecture applies to actions of Zn−1 by hyperbolic automorphisms on n-tori
for n ≥ 3 (Cartan actions). We refer the reader to their paper for motivation and for the
definitions involved in the above conjecture, only noting that they were able to reduce the
proof of their conjecture to a purely number-theoretic problem. Namely, to finding good
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Table 1: The first six minima of the Fried average entropy (to six decimals).
h∗(α) Degree Polynomial Discriminant Regulator

0.330027 4 x4 − x3 − 3x2 + x+ 1 725 0.825068

0.350303 3 x3 − x2 − 2x+ 1 49 0.525454

0.373872 5 x5 − x4 − 4x3 + 3x2 + 3x− 1 14641 1.635694

0.416198 6 x6 − x5 − 7x4 + 2x3 + 7x2 − 2x− 1 300125 3.277562

0.466182 4 x4 − x3 − 4x2 + 4x+ 1 1125 1.165455

0.479301 6 x6 − x5 − 5x4 + 4x3 + 6x2 − 3x− 1 371293 3.774500

lower bounds for regulators of totally real number fields, in this case h∗(α) = mRK2n−1
(
(n−

1)!
)2
/(2n − 2)!, where m ≥ 1 is an integer [KKR, (3.8)]. They proved the lower bound

hmin ≥ 0.089, and showed that their conjecture held for Cartan actions for 3 ≤ n ≤ 7 and
for n ≥ 17, leaving 8 ≤ n ≤ 16 open. This range was later narrowed to 10 ≤ n ≤ 16 [ADF,
p. 234].

As we claim a slightly stronger result than the KKR conjecture, in the proof we cannot
restrict to dimensions 10 to 16. However, using results from [KKR] and [ADF] we will
quickly reduce to 10 ≤ n ≤ 18. We will deal with these nine cases by applying a variant of
Zimmert’s techniques [Zi] [Fr, §4]. Our innovation here is to use residues instead of integrals
to handle otherwise heavy numerical calculations (Lemmas 17 and 18 below).
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Chapter 1

Filling the gap in the table of
smallest regulators up to degree
7

1.1 Proof of Theorem 5

If ε is a unit in k, let

mk(ε) :=
∑
ω

(log ‖ε‖ω)2, (1.1)

where ω runs over the set of archimedean places of k and ‖·‖ω denotes the corresponding
absolute value, normalized so that |Normk/Q(a)| =

∏
ω∈∞k

‖a‖ω. A proof of the following
inequality can be found in [Re, §6] or [Fr, Lemma 3.4].

Lemma 7. (Remak) Suppose k = Q(ε), where ε ∈ k is a unit. Then the discriminant Dk

satisfies
log |Dk| ≤ mk(ε)A(k) + logPn,

where

A(k) :=
√

(n3 − n− 4r32 − 2r2)/3, Pn = Pn(ε1, ..., εn) :=
∏

1≤i<j≤n

∣∣∣1− εi
εj

∣∣∣2,
n := [k : Q], r2 is the number of complex places of k, and the εi are the conjugates of ε
arranged so that |ε1| ≤ |ε2| ≤ · · · ≤ |εn|.

Lemma 8.
(
Remak,Pohst [Re, (18)][Po, Satz IV]

)
If z1, ..., zn are non-zero complex num-

bers arranged so that |z1| ≤ · · · ≤ |zn|, then

Pn(z1, ..., zn) :=
∏

1≤i<j≤n

∣∣∣1− zi
zj

∣∣∣2 ≤ nn. (1.2)

If, in addition, n ≤ 11 and zi ∈ R (1 ≤ i ≤ n), then

Pn(z1, ..., zn) ≤ 4bn/2c, (1.3)

where bn/2c := (n− 1)/2 if n is odd, bn/2c := n/2 if n is even.
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Our main task will be to improve on Remak’s bound P7 ≤ 77 when 5 of the zi’s are
real and the remaining two are complex conjugates. We begin more generally, assuming
henceforth that n−2 of the zi’s are real and the remaining two are complex conjugates. We
shall denote the real elements by ri (1 ≤ i ≤ n− 2) and the complex conjugate pair by xeiθ

and xe−iθ (θ ∈ (0, π), x > 0), arranging them so that

0 < |r1| ≤ |r2| ≤ · · · ≤ |rn−2|, |rt| ≤ x ≤ |rt+1|, (1.4)

where if x ≥ |rn−2| we mean t = n− 2, and if x ≤ |r1| we mean t = 0.
Grouping the factors |1− zi

zj
|2 in (1.2) according to whether both, none or one of zi, zj ∈ R,

Pn factors as

Pn = Pn−2(r1, ..., rn−2) · |1− e−2iθ|2 ·
n−2∏
m=1

|1− cmeiθ|4, cm :=

{
rm/x if m ≤ t,
x/rm if m > t.

(1.5)

Note that cm ∈ [−1, 1], cm 6= 0 (1 ≤ m ≤ n− 2).

Lemma 9. If 0 ≤ c ≤ 1, then

∣∣1− c eiθ
∣∣2 ≤ {1 if 0 ≤ θ ≤ π/3,

2
(
1− cos(θ)

)
if π/3 ≤ θ ≤ π.

If −1 ≤ c ≤ 0, then

∣∣1− c eiθ
∣∣2 ≤ {1 if 2π/3 ≤ θ ≤ π,

2
(
1 + cos(θ)

)
if 0 ≤ θ ≤ 2π/3.

Proof. Let g(c) := |1− c eiθ|2 = 1 + c2 − 2c cos(θ). The critical point of g is a minimum, so
we just compare the values of g at the endpoints of the intervals involved.

Lemma 10. For a, b > 0 and θ ∈ R, we have

(
1− cos2(θ)

)a(
1− cos(θ)

)b ≤ 22a+baa(a+ b)a+b

(2a+ b)2a+b
. (1.6)

Proof. For −1 ≤ x ≤ 1, let g(x) := (1 − x2)a(1 − x)b. Elementary calculus shows that g
assumes its maximum value M at x = −b/(2a+ b), and that M is given by the right-hand
side of (1.6).

Lemma 11. Assume θ ∈ R and −1 ≤ cm ≤ 1 for 1 ≤ m ≤ r. Let d+ be the number of cm
with cm > 0, let d− be the number of cm with cm < 0, and define

Br = Br(θ, c1, ..., cr) := |1− e−2iθ|2
r∏

m=1

|1− cm eiθ|4. (1.7)

Then

Br ≤ max
(42a+baa(a+ b)a+b

(2a+ b)2a+b
,

42+f (1 + f)1+f

(2 + f)2+f

)
, (1.8)

where a := 1 + 2 min(d+, d−), b := 2|d+ − d−| and f := 2 max(d+, d−).
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Proof. Replacing θ by −θ if necessary, we can assume 0 ≤ θ ≤ π. We shall first show
that if π/3 ≤ θ ≤ 2π/3, then Br is bounded by the first element inside the max in (1.8).
Say d+ > d−, so that a = 1 + 2d− and b = 2(d+ − d−). Then, using Lemma 9 and
π/3 ≤ θ ≤ 2π/3,

Br = 4
(
1− cos2(θ)

)( r∏
m=1

|(1− cmeiθ)|2
)2

≤ 4
(
1− cos2(θ)

)( ∏
m

cm>0

2
(
1− cos(θ)

))2( ∏
m

cm<0

2
(
1 + cos(θ)

))2
= 22+2(d+ + d−)

(
1− cos2(θ)

)(
1− cos(θ)

)2d+(
1 + cos(θ)

)2d−
= 22a+b

(
1− cos2(θ)

)1+2d−(
1− cos(θ)

)2(d+−d−)
= 22a+b

(
1− cos2(θ)

)a(
1− cos(θ)

)b
≤ 22(2a+b)aa(a+ b)a+b

(2a+ b)2a+b
(see Lemma 10),

proving (1.8) in this case. If d+ < d−, a similar argument gives

Br ≤ 22a+b
(
1− cos2(θ)

)1+2d+(
1 + cos(θ)

)2(d−−d+)
,

and (1.8) follows as above from Lemma 10 (with θ replaced by θ + π). The case d+ = d−

is clear, since then b = 0 and we get Br ≤ 22a
(
1− cos2(θ)

)1+2d+ ≤ 22a, proving (1.8) when
π/3 ≤ θ ≤ 2π/3.

If 0 ≤ θ < π/3, we again use Lemmas 9 and 10 to get

Br ≤ 4
(
1− cos2(θ)

)( ∏
m

cm<0

2
(
1 + cos(θ)

))2
= 22+2d−

(
1− cos2(θ)

)(
1 + cos(θ)

)2d−
≤ 22+f

(
1− cos2(θ)

)(
1 + cos(θ)

)f ≤ 22+f
22+f (1 + f)1+f

(2 + f)2+f
.

A similar argument proves (1.8) in the remaining case, i. e. when 2π/3 < θ ≤ π.

Lemma 12. (Pohst) For α, β ∈ [−1, 1], the following hold.

(i) If α ≥ 0, then (1− α)(1− αβ) ≤ 1.

(ii) (1− α)(1− β)(1− αβ) ≤ 2.

(iii) If |α| ≤ |β| and β 6= 0, then
(
1− α

)(
1− β

)(
1− (α/β)

)
≤ 2.

Proof. Inequalities (i) and (ii) [Po, p. 468] can be proved by checking for critical points and
the boundary. The last one follows from (ii), on replacing α by α/β.

We now specialize to n = 7.

Lemma 13. Suppose n = 7 and c1 > 0 in (1.5), then P7 < e12 < 162755.

We note that 77 = 823543 ≈ e13.62, so we have gained a factor of a little over 5 compared
with Remak’s bound (1.2).
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Proof. We begin with (1.5),

P7 = B5P5 = B5(θ, c1, ..., c5)P5(r1, ..., r5)
(
see (1.2) and (1.7)

)
. (1.9)

Depending on the signs of the cm, we will show that B5 or P5 is small. There are 16
possibilities for the signs of c2, ..., c5, which we divide into three cases:

(1) Three of the cm are of one sign and two have the opposite sign (1 ≤ m ≤ 5). Hence, in
the notation of Lemma 11, a = 5, b = 2 and f = 6.

(2) One of the cm is of one sign and four have the opposite sign. Hence a = 3, b = 6 and
f = 8.

(3) All of the cm are positive.

In case (1), Lemma 11 gives B5 < 4842.63 and Pohst’s inequality (1.3) gives P5 ≤ 16. Now
(1.9) yields P7 < 77483, proving the Lemma in case (1).

In case (2), Lemma 11 only gives

B5 < 40624, (1.10)

but we will improve Pohst’s bound to P5 ≤ 4. This just suffices to prove the Lemma in this
case. Following Pohst [Po, p. 467], for 1 ≤ i, `, `′ ≤ 4 let

xi :=
ri
ri+1

, y`,`′ := 1−
`′∏
i=`

xi = 1− r`
r`′
,

and
A = A(x1, x2, x3, x4) :=

∏
1≤`≤`′≤4

y`,`′ =
√
P5(r1, ..., r5).

Note that −1 ≤ xi ≤ 1, 0 ≤ y`,`′ ≤ 2 and that the signs of the xi’s are determined from
those of the cm’s and vice-versa, as we are assuming c1 > 0 in (1.5). All 5 possible signs of
c1, ..., c5 in case (2) are shown in Table 1.1.

Table 1.1: All sign patterns in case (2)
c1 c2 c3 c4 c5 x1 x2 x3 x4
+ + + + − + + + −
+ − − − − − + + +
+ + + − + + + − −
+ − + + + − − + +
+ + − + + + − − +

Since A(x1, x2, x3, x4) = A(x4, x3, x2, x1), it suffices to deal with the first, middle and last
lines in Table 1.1.

We factor

A = y1,1y2,2y3,3y4,4y1,2y2,3y3,4y1,3y2,4y1,4 (1.11)

= (y1,1y2,2y1,2)(y3,3y3,4)(y2,3y2,4)(y1,3y1,4)(y4,4)
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For the first line in Table 1.1, x1, x2, x1x2 ≥ 0, so we have trivially that y1,1y2,2y1,2 ≤ 1. By
Lemma 12 (i), using x3, x2x3, x1x2x3 ≥ 0, we have y3,3y3,4 ≤ 1, y2,3y2,4 ≤ 1 and y1,3y1,4 ≤ 1.
Finally y4,4 ≤ 2, and so A ≤ 2 for the signs on the first line of Table 1.1.

We consider now the third line in Table 1.1. Then, grouping (1.11) differently,

A = (y1,1y1,4y2,4)(y2,2y2,3)(y1,2y1,3)(y3,3y4,4y3,4).

Trivially, y1,1y1,4y2,4 ≤ 1. By Lemma 12 (i), since x2, x1x2 ≥ 0, we have y2,2y2,3 ≤ 1 and
y1,2y1,3 ≤ 1. By Lemma 12 (ii), y3,3y4,4y3,4 ≤ 2, and so again A ≤ 2.

For the last line in Table 1.1 we write

A = (y1,3y1,4y2,4)(y1,1y1,2)(y4,4y3,4)(y2,2y3,3y2,3).

Again trivially, y1,3y1,4y2,4 ≤ 1. By Lemma 12 (i), since x1, x4 ≥ 0, y1,1y1,2 ≤ 1 and
y4,4y3,4 ≤ 1. Finally, by Lemma 12 (ii), we have y2,2y3,3y2,3 ≤ 2. Thus, in case (2) we are
done proving A ≤ 2, , i. e. P5 ≤ 4. As indicated after (1.10), this implies the Lemma in case
(2).

In case (3) we have cm > 0, and so rm > 0 for m = 1, . . . , 5. Thus

0 ≤ 1− r`
r`′
≤ 1

(
` < `′

)
. (1.12)

We shall need

R`,`′ := (1 + c`)(1 + c`′)
(
1− (r`/r`′)

)
≤ 2

(
` < `′

)
. (1.13)

To prove (1.13), we consider three possibilities according to the position of t in (1.4). If
`′ ≤ t, then by (1.5), c` = r`/x, c`′ = r`′/x. Hence |c`| ≤ |c`′ | and so Lemma 12 (iii) yields
(1.13) (on setting α := −c`, β := −c`′). Similarly, if ` > t, c` = x/r`, c`′ = x/r`′ , so
|c`′ | ≤ |c`| and Lemma 12 (iii) yields (1.13) (with α := −c`′ , β := −c`). Lastly, if ` ≤ t < `′,
then c` = r`/x, c`′ = x/r`′ . Now (1.13) follows from Lemma 12 (ii).

Using (1.12) and (1.13), we estimate

√
P7 = |1− e−2iθ| ·

∏
1≤`<`′≤5

(
1− r`

r`′

)
·

5∏
m=1

|1− cmeiθ|2

≤ 2
∏

1≤`<`′≤5

(
1− r`

r`′

)
·

5∏
m=1

(1 + cm)2

= 2R1,2R2,3R3,4R4,5R1,5

(
1− r1

r3

)(
1− r1

r4

)(
1− r2

r4

)(
1− r2

r5

)(
1− r3

r5

)
≤ 2R1,2R2,3R3,4R4,5R1,5 ≤ 26.

Hence P7 ≤ 212.

We can now prove our final geometric bound.

Lemma 14. Suppose k is a number field of degree 7 having five real places and regulator
Rk ≤ 3.2. Then the discriminant Dk of k satisfies log |Dk| < 31.492.
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Proof. Let ε yield the positive minimum value of mk in (1.1) on the units of k. As [k : Q] = 7,
we have k = Q(ε). Using the value γ5 = 5

√
8 for Hermite’s constant in dimension 5, we find

mk ≤
(
3.2
√

6
)1/5√

γ5 < 1.85847 [ADF, (5)]. Let r1, ...r5 be the five real conjugates of ε,

ordered so that |r1| ≤ · · · ≤ |r5|, and let xe±iθ be the two complex conjugates
(
x > 0, θ ∈

(0, π)
)
. Replacing ε by −ε if necessary, we may assume that r1 > 0, so c1 > 0 with notation

as in (1.5). Lemmas 7 and 13 yield log |Dk| < 31.4918.

We shall need the following analytic tool [ADF, Lemmas 4 and 5].

Lemma 15. Let k be a number field having r1 real and r2 complex places, and define

g(x) :=
1

2r14πi

∫ 2+i∞

2−i∞
(πn4r2x)−s/2(2s− 1)Γ(s/2)r1Γ(s)r2 ds (x > 0, n := r1 + 2r2).

Suppose 0 < d1 ≤ |Dk| ≤ d2 ≤ d3, and assume g(4/d3) ≥ 0. Then for any N ∈ N we have
Rk ≥ 2G(d1, d2, N), where

G(d1, d2, N) :=

N∑
j=1

min
(
g(j2n/d1), g(j2n/d2)

)
.

If the ideal class of the different of k is trivial, then Rk ≥ 4G(d1, d2, N).

We now prove Theorem 5. So assume (r1, r2) = (5, 1) and Rk ≤ 3.2. We shall first
show that |Dk| < 3 030 000. Since Rk ≤ 3.2, Lemma 14 shows that |Dk| ≤ e31.492. We
deal separately with various subintervals of [3 030 000, e31.492], always taking d3 = e31.492 in
Lemma 15, noting that g(4/e31.492) = 8.5631... > 0. If |Dk| ≤ e20, then the ideal class of the
different of k is trivial [ADF, Table 2]. A calculation shows that Rk ≥ 4G(3 030 000, e20, 1) =
3.23... > 3.2. Hence this range of discriminant is ruled out by Lemma 15. We subdivide the
remaining interval [e20, e31.492] into four subintervals and calculate 2G for them.

2G(e31.4, e31.492, 3) = 3.511..., 2G(e31, e31.4, 3) = 4.195...,

2G(e28, e31, 3) = 3.257..., 2G(e20, e28, 3) = 13.295... .

Thus, Lemma 15 rules out discriminants in the interval [e20, e31.492], and so |Dk| < 3 030 000.
We conclude with Table 1.2, listing Rk for all fields k with |Dk| < 3 030 000 [DyD].

Table 1.2: All fields of degree 7 having 5 real places and |discriminant| < 3 030 000.
Discriminant Polynomial Regulator

−2 306 599 x7 − 3x5 − x4 + x3 + 3x2 + x− 1 2.88465

−2 369 207 x7 − x5 − 5x4 − x3 + 5x2 + x− 1 2.93325

−2 616 839 x7 − x6 − 5x5 − x4 + 4x3 + 3x2 − x− 1 3.13684

−2 790 047 x7 + x6 − 2x5 − 3x4 − 2x3 + 3x2 + 4x− 1 3.26802

−2 790 551 x7 − 5x5 − x4 + 7x3 + 3x2 − 3x− 1 3.27113

−2 894 039 x7 − 4x5 − 2x4 + 4x3 + 4x2 − x− 1 3.34402

−2 932 823 x7 − x6 − 4x3 + 2x2 + 2x− 1 3.36846
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Chapter 2

Lower bounds for regulators
and the Fried average entropy

2.1 Proof of Theorem 6

We assume throughout h∗(α) ≤ 0.49 and show in the end that this restricts the Cartan
action α to one of the six in Table 2.1. From [KKR, Prop. 3.2 and (3.8)], we know that
associated to the action α on an n-torus there is a totally real field K of degree n := [K : Q]
for which the Fried average entropy h∗(α) satisfies

h∗(α) ≥ RK2n−1
(
(n− 1)!

)2
/(2n− 2)!, (2.1)

where RK is the regulator of K. Using Zimmert’s lower bound [KKR, (3.13)]

RK ≥ 0.000376 exp(0.9371n) (2.2)

and an estimate of the factorials, the inequality h∗(α) ≥ 0.000752 exp(0.244n) was proved
in [KKR, (3.15)]. Hence we find that h∗(α) ≤ 0.49 implies n ≤ 26. Using (2.1) and (2.2),
this range narrows further to n ≤ 18.

Inequality (2.1) and h∗(α) ≤ 0.49 imply RK ≤ 0.49(2n−2)!/(2n−1(n−1)!2). This bound
is shown in Table 2.1 for 3 ≤ n ≤ 18.

Table 2.1: Upper bounds for RK implied by h∗(α) ≤ 0.49

n 3 4 5 6 7 8 9 10
RK ≤ 0.735 1.225 2.144 3.86 7.075 13.139 24.634 46.531

n 11 12 13 14 15 16 17 18
RK ≤ 88.42 168.79 323.5 622.11 1199.8 2319.6 4494.2 8724

Table 2.1 and the lower bounds for RK given in [ADF, p. 234] are in contradiction for
n = 7, 8 and 9. Hence we may discard these values of n. Moreover, all fields in degrees 3
to 6 with regulators in the range of Table 2.1 are listed in [ADF, Theorems 7, 10, 8, 11].
These are exactly the fields in Table 1. For example, according to [ADF, Theorem 11], all
but three totally real fields of degree 6 satisfy RK > 4.39. The exceptions have regulators
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3.277. . . , 3.774. . . and 4.187. . . . The first two appear in Table 1, as they are associated to
actions with h∗(α) ≤ 0.49. Thus, to prove Theorem 6 it remains to show that the upper
bounds in Table 2.1 are impossible for 10 ≤ n ≤ 18.

We now summarize the regulator lower bounds in [Fr, p. 619].

Lemma 16. Let K be a totally real field of degree n, let 0 < β < γ < κ and define

T (s) :=
( Γ

(
1−s
2

)
Γ
(
1+s+2γ

2

))n, R(s) :=
s

(s+ β)(s+ κ)2
. (2.3)

Assume that for some y, δ ∈ R with 0 < δ < β and some M ∈ N we have

1

2πi

∫ −δ+i∞
−δ−i∞

(my)s−1T (s)R(s) ds ≤ 0 (m = 1, 2, . . . ,M − 1), (2.4)

and
βT (−β)

(κ− β)2
≥ (My)β−γ

2π

∫ −γ+i∞
−γ−i∞

|R(s)| ds. (2.5)

Then

RK ≥
−
(
Γ(1 + γ)

)n
R(1)2nπi

∫ −δ+i∞
−δ−i∞

ys−1T (s)R(s) ds. (2.6)

We note that the integral in (2.4) is independent of δ, as long as 0 < δ < β. Computing
numerically around 107 integrals of this type, as we will need to do below, seems difficult
as the integrand oscillates like eitn log(t)+it log(y), where t = |Im(s)| � 0. Instead, in Lemma
18 we will approximate the integrals by a short sum of residues.

Lemma 17. Let f(t) := |Γ(a + it)/Γ(b + it)|, and assume b > a > 0. Then f assumes its
maximum value for t ∈ R at t = 0.

Proof. Writing
(
f(t)

)2
= Γ(a+it)Γ(a−it)/

(
Γ(b+it)Γ(b−it)

)
we find f ′(t)/f(t) = Im

(
ψ(b+

it)− ψ(a+ it)
)
, where [AAR, (1.2.13)]

ψ(z) := Γ′(z)/Γ(z) = −γ −
∞∑
n=0

( 1

z + n
− 1

n+ 1

)
(γ = 0.5772 . . .).

We now calculate

ψ(b+ it)− ψ(a+ it) =

∞∑
n=0

( 1

n+ a+ it
− 1

n+ b+ it

)
=

∞∑
n=0

b− a
(n+ a+ it)(n+ b+ it)

= (b− a)

∞∑
n=0

(n+ a− it)(n+ b− it)(
(n+ a)2 + t2

)(
(n+ b)2 + t2

)
= (b− a)

∞∑
n=0

(n+ a)(n+ b)− t2 − it(2n+ a+ b)(
(n+ a)2 + t2

)(
(n+ b)2 + t2

) .

We therefore have f ′(t) < 0 for t > 0 and f ′(t) > 0 for t < 0.
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Lemma 18. Assume 0 < δ < β < γ < κ, and let T and R be as in Lemma 16 for some
n ∈ N. Then, for any q = 2k ∈ 2N and any x > 0 we have

∣∣∣ 1

2πi

∫ −δ+i∞
−δ−i∞

xs−1T (s)R(s) ds+

k∑
r=1

Ress=2r−1
(
xs−1T (s)R(s)

)∣∣∣
≤ xq−1

2(q + κ)

( Γ( 1+q
2 )2q

Γ( 1+q+2γ
2 )

∏q−1
j=0 |q − 1− 2j|

)n
. (2.7)

Proof. The Stirling estimate as |T | → ∞ [AAR, Cor. 1.4.4], uniform in a vertical strip,
|Γ(σ + iT )| =

√
2π|T |σ−1/2e−π|T |/2(1 + O(1/|T |), allows us tor replace the line Re(s) = −δ

in (2.7) by Re(s) = q, subtracting the residues. Using Γ(z) = Γ(z + 1)/z successively, we
find for t ∈ R,

|T (q + it)| =
∣∣∣∣ Γ( 1+q−it

2 )

Γ( 1+q+2γ+it
2 )

∏q−1
j=0( 1−q

2 + j − i t2 )

∣∣∣∣n ≤ ∣∣∣∣ Γ( 1+q
2 )

Γ( 1+q+2γ
2 )

∏q−1
j=0( 1−q

2 + j)

∣∣∣∣n,
where in the last inequality we used Lemma 17. Lastly,

1

2π

∫ ∞
−∞
|R(q + it)| dt ≤ 1

2π

∫ ∞
−∞

1

(q + κ)2 + t2
dt =

1

2(q + κ)
. (2.8)

The sum over residues in Lemma 18 is a polynomial in x and log(x), which can be
readily calculated, and then quickly evaluated for millions of values of x. As a result, we
can implement the numerical verification of the assumptions in Lemma 16. The resulting
lower bounds are shown in Table 2.2. Using q = 12 and δ := β/2 in Lemma 18 to approx-
imate the integrals in (2.4) and (2.6). In verifying (2.5), to keep M < 107, we calculate∫
Re(s)=−γ |R(s)| ds numerically.

Table 2.2: Lower bound for the regulator using Lemma 16

[K : Q] RK ≥ γ y β κ M
10 47.2298 0.46 0.00021 0.37 3.8 9 938 152
11 111.142237 0.42 0.00005 0.33 3.46 9 039 502
12 266.819052 0.375 0.00001 0.285 3.1 9 281 932
13 611.881830 0.545 0.00001 0.465 3.5 9 304 919
14 1291.090237 0.72 0.00001 0.64 4.1 9 704 058
15 2686.034353 0.885 0.00001 0.805 4.4 9 304 299
16 5600.694261 1.055 0.00001 0.965 5.3 9 908 560
17 11769.783217 1.205 0.00001 1.115 5.2 9 492 575
18 24936.817837 1.355 0.00001 1.255 5.7 9 872 459

Comparing the upper bounds for regulators in Table 2.1 with the lower bounds in Table 2.2,
we see that h∗(α) > .49 if 10 ≤ n ≤ 18, proving Theorem 6.
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