

Pontificia Universidad Católica de Chile

Multifractal analysis of Birkhoff averages over the symbolic space

Author:
Sebastián Burgos Endara Professor Godofredo Iommi
A thesis submitted in fulfillment of the requirements for the degree of Master in Mathematics in the Faculty of Mathematics of the Pontifical Catholic University of Chile.
Jury:
Professor Mario Ponce (Pontifical Catholic University of Chile) Professor Carlos Vásquez (Pontifical Catholic University of Valparaíso)

Acknowledgements

First I would like to thank my advisor Godofredo Iommi, for his patience, dedication, motivation and encouragements during these almost three and a half years I have been his student. It has been a privilege counting with his guidance and help throughout my time at the PUC.

I would like to thank professors Jairo Bochi, Jan Kiwi and Duvan Henao, who along with professor Iommi, were of immense help supporting and advising me during my application process to the PhD. Thanks also to my friend Renato Velozo and his brother Anibal, for their very helpful comments regarding the choice of university in the process after. I would like to thank my current Dynamical Systems family at the PUC, professors Godofredo Iommi, Jan Kiwi, Jairo Bochi and Mario Ponce, and the students Ariel Reyes, Nicolás Alvarado, Sebastián Pavez, Ángela Flores and Erik Contreras, for all those talks and learnings we had together.

Thanks to my friends of the Faculty of Mathematics at the PUC, to M23 office: Renato Velozo, Nicolás Alvarado, Pedro Mendoza and Eduardo Oregón; and thanks to two of my closest friends Camilo González and Ariel Reyes. I would like to thank those friends I have since my first years, Bastian Gutiérrez, Daniela Placencia, Scarlett Cepeda, Manuel Ríos and Alejo Ibacache, who I do not see very often but the thanks are there. I want to thank Nicolás Vilches and Nicole Ayala for all the breakfasts we had together. I would like to thank those people at the PUC, who even though I did not spend very much time with them, with a friendly greeting, small talk or just a laughter we had always good moments: Vanesa Reinoso, Nico Labra, César González, Cami Fernández, Andy Muñoz, Nicole Ayala and Tía Tina.

I want to thank to the most important people in my life, my family. Thanks to my grandparents Hernán Burgos, Marcela Videla, Iván Endara and Hilda Garrido, to my uncles, aunts and cousins. But specially thanks to my dad Marcelo Burgos, my mom Katherine Endara, her husband Pablo Cood and my brothers and sisters Matías, Pablo, Valentina and María José, for their love and support throughout all these years.

All these people were a very important part in my formation as a mathematician and as a person.

I would like to thank as well to the Faculty of Mathematics of the Pontifical Catholic University of Chile, for the funding I received during this program. This thesis work was partially supported by CONICYT PIA ACT172001.

Contents

Acknowledgements i
1 Introduction 1
1.1 Multifractal Analysis 1
1.2 Main Theorem 2
1.3 Working with symbolic space 4
1.3.1 Symbolic coding 4
1.3.2 Continued Fractions 6
1.3.3 Horseshoes 7
2 Dimension Theory and Entropy 9
2.1 Dimension Theory 9
2.1.1 Hausdorff Dimension 9
2.2 Entropy 13
2.2.1 Metric Entropy 14
2.2.2 Topological Entropy 16
2.2.2.1 Definition by open covers 16
2.2.2.2 Bowen's definition 17
2.2.2.3 Entropy restricted to subsets 20
3 Symbolic Dynamics 23
3.1 Countable full-shift 23
3.2 Thermodynamic formalism 25
3.3 Relation between Hausdorff dimension and entropy 29
4 Multifractal Analysis: Compact case 32
4.1 Introduction and notation 32
4.2 Theorem: compact setting 32
5 Multifractal Analysis: Non-compact case 38
5.1 Introduction and notation 38
5.2 Theorem: non-compact setting 39

Chapter 1

Introduction

1.1 Multifractal Analysis

Let X be a metric space and $T: X \rightarrow X$ a continuous function. The pair (X, T) is called a dynamical system. We review some definitions from ergodic theory that we will use throughout this work.

Definition 1.1.1. A Borel probability measure μ is called T-invariant if for every Borel set $A \subset X$ it satisfies $\mu\left(T^{-1} A\right)=\mu(A)$. The set of all T-invariant probability measures is denoted by \mathcal{M}_{T}.

Definition 1.1.2. A T-invariant probability measure μ is called ergodic for the system (X, T) if for every Borel set $A \subset X$ such that $T^{-1} A=A$, it satisfies $\mu(A) \in\{0,1\}$.

Associated to the dynamical system (X, T) several local invariant quantities can be obtained, we will focus on one in particular, the Birkhoff averages:

Definition 1.1.3. Given a continuous function $\phi: X \rightarrow \mathbb{R}$ and a point $x \in X$. The Birkhoff average of ϕ at x is defined by

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \phi\left(T^{k} x\right),
$$

whenever the limit exists.

For $\alpha \in \mathbb{R}$, consider the following level sets,

$$
\begin{equation*}
J_{\alpha}:=\left\{x \in X: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \phi\left(T^{k} x\right)=\alpha\right\} . \tag{1.1}
\end{equation*}
$$

These level sets are pairwise disjoint and induce what is called a multifractal decomposition

$$
\begin{equation*}
X=\left(\bigcup_{\alpha \in \mathbb{R}} J_{\alpha}\right) \cup J^{\prime} \tag{1.2}
\end{equation*}
$$

where $J^{\prime}:=\{x \in X$: the Birkhoff average of x is not defined $\}$.
Briefly speaking, multifractal analysis studies the complexity of the level sets J_{α} by measuring the size of these sets, and establishing how it changes as α varies. We will compute the size of these sets in two different ways, one of them is obtained by means of the Hausdorff dimension (see Definition 2.1.2), and the other is dynamical in nature, it is obtained using the entropy restricted to subsets (see Definition 2.2.12). We define the functions that encodes the decomposition in (1.2):

Definition 1.1.4. The Hausdorff dimension multifractal spectrum and the entropy multifractal spectrum are defined respectively by

$$
\begin{aligned}
D(\alpha) & :=\operatorname{dim}_{H} J_{\alpha} \\
E(\alpha) & :=h\left(T \mid J_{\alpha}\right)
\end{aligned}
$$

The domain of these functions is the set $\left\{\alpha \in \mathbb{R}: J_{\alpha} \neq \varnothing\right\}$.

1.2 Main Theorem

In this section we state the main results of this thesis. We completely describe the multifractal analysis of Birkhoff averages in both a compact and a non-compact full shift (X, T). In the compact case, Theorem 1.2.1, we provide a new proof of a result first obtained by Pesin and Weiss ([PW, Theorem 1]). In this setting the spectrum has bounded domain, it is real analytic and strictly concave.

Whereas in the non-compact case our complete characterization of the multifractal spectra is new (Theorem 1.2.2). The methods and techniques are based in work by Iommi and Jordan ([IJ]). Although the result in this setting is similar to the one in the compact case, in terms of the relation between the two spectra we analyze, it has remarkable differences. Interestingly, in the non-compact case new phenomena occurs. Indeed, as opposite to the compact setting the domain of the spectra is unbounded, the spectrum may or may not have phase transitions, and it is strictly decreasing.

First assume that X is a compact full-shift with the metric d defined in (3.1) for some $\lambda>1$. The main theorem we are going to prove shows a relation between the Hausdorff dimension spectrum and the entropy spectrum, as well as their regularity.

Theorem 1.2.1. Let $\phi: X \rightarrow(-\infty, 0)$ be a Hölder continuous function defined on a compact full-shift (X, T), and not cohomologous to a constant function. Let $\alpha \in \mathbb{R}, J_{\alpha}$ as in (1.1) and the functions D, E from Definition 1.1.4. Then, the following hold:

- The domain of D and E is a compact interval $[\underline{\alpha}, \bar{\alpha}]$;
- For every $\alpha \in(\underline{\alpha}, \bar{\alpha})$, there exists a measure $\mu_{\alpha} \in \mathcal{M}_{T}$ such that $E(\alpha)=h\left(\mu_{\alpha}\right)$ and $D(\alpha)=\operatorname{dim}_{H} \mu_{\alpha}$ (see Definition 2.2.3 and Definition 2.1.3) ;
- For every $\alpha \in(\underline{\alpha}, \bar{\alpha})$, the set J_{α} is dense in X;
- The functions D and E are real analytic and strictly concave;
- For every $\alpha \in(\underline{\alpha}, \bar{\alpha})$,

$$
D(\alpha)=\frac{E(\alpha)}{\log \lambda} .
$$

In the proof we use a tool called the topological pressure $P(\phi) \in \mathbb{R}$ (see Definition 3.2.1), and the good properties that the function $q \mapsto P(q \phi)$ has whenever ϕ is regular enough. As a corollary of the formula for $E(\alpha)$, we get the following result:

Proposition 1.2.1. For every $\alpha \in(\underline{\alpha}, \bar{\alpha})$,

$$
E(\alpha)=\sup \left\{h(\mu): \mu \in \mathcal{M}_{T}, \mu\left(J_{\alpha}\right)=1\right\} .
$$

Now assume that (X, T) is a non-compact full-shift. We will have several difficulties because of the non-compactness of the space X. If we ask for some regularity for the potential $\phi: X \rightarrow \mathbb{R}$, such as locally Hölder (see Definition 3.1.3) and zero pressure, the function $q \mapsto P(q \phi)$ has the good properties it had in the compact setting, however this holds in an interval $\left(q_{*}, \infty\right)$, whereas in $\left(-\infty, q_{*}\right)$ we get $P(q \phi)=\infty$.

Another difficulty we have in this setting is that we are no longer able to compute the same formula for $E(\alpha)$ as in Theorem 1.2.1, since we used strongly the compactness of the space X and of the space \mathcal{M}_{T} (with the weak* topology). However, Proposition 1.2.1 suggests a way to define in this setting the following spectrum:

Definition 1.2.1. The variational entropy spectrum is defined by

$$
\tilde{E}(\alpha):=\sup \left\{h(\mu): \mu \in \mathcal{M}_{T}, \mu\left(J_{\alpha}\right)=1\right\} .
$$

Theorem 1.2.2. Let $\phi: X \rightarrow(-\infty, 0)$ be a locally Hölder potential with $P(\phi)=0$. For $\alpha \in \mathbb{R}, J_{\alpha}$ as in (1.1) and the functions D, \tilde{E} from Definition 1.1.4 and Definition 1.2.1 respectively. Then, the following hold:

- The domain of D and \tilde{E} is an unbounded interval $(-\infty, \bar{\alpha}] ;$
- For every $\alpha \in(-\infty, \bar{\alpha})$,

$$
D(\alpha)=\frac{\tilde{E}(\alpha)}{\log \lambda}
$$

- We have one of the following:

1. D (and hence \tilde{E}) is real analytic, strictly concave and strictly decreasing on $(-\infty, \bar{\alpha})$; or
2. there exists $\alpha_{*} \in(-\infty, \bar{\alpha})$ such that D (and hence \tilde{E}) is real analytic on ($\alpha_{*}, \bar{\alpha}$) and it is affine for $\alpha \in\left(-\infty, \alpha_{*}\right)$.

1.3 Working with symbolic space

In this section, as an illustration of the wide range of examples in which the results obtained in this thesis can be applied, we discuss several dynamical systems that admit symbolic codings. We present cases on compact and non-compact one-sided shifts, and one case of a compact two-sided shift. We will change the notation for the symbolic space to that we use in Chapter 3.

1.3.1 Symbolic coding

Let $f: M \rightarrow M$ be a differentiable map on a smooth Riemannian manifold M. We will see that sometimes we can study the dynamics of f by looking at the the trajectory of the points given a certain partition. This relation will be called coding, and the trajectory of a point is given by an element of the symbolic space.

Definition 1.3.1. We say that f is expanding on a compact f-invariant set $\Lambda \subset M$ if there exist constants $C>0, \beta>1$ such that

$$
\left\|d_{p} f^{n} v\right\| \geq C \beta^{n}\|v\|
$$

for every $n \in \mathbb{N}, x \in \Lambda$ and $v \in T_{p} M$.
Definition 1.3.2. A finite cover of Λ by nonempty closed sets $\left\{R_{1}, \ldots, R_{N}\right\}$ is called a Markov Partition of Λ if

- $\overline{\operatorname{int} R_{i}}=R_{i}$ for every i;
- int $R_{i} \cap \operatorname{int} R_{j}=\varnothing$ if $i \neq j$;
- $R_{j} \subset f\left(R_{i}\right)$ if $f\left(\operatorname{int} R_{i}\right) \cap \operatorname{int} R_{j} \neq \varnothing$.

Let us assume also that for every $i, j, f\left(\right.$ int $\left.R_{i}\right) \cap \operatorname{int} R_{j} \neq \varnothing$. Then, it is possible to define a map $\chi: \Sigma_{N}:=\{1, \ldots, N\}^{\mathbb{N}} \rightarrow \Lambda$ by

$$
\chi\left(i_{1} i_{2} \ldots\right):=\bigcap_{k=0}^{\infty} f^{-k} R_{i_{k+1}} .
$$

If we consider the shift map $\sigma: \Sigma_{N} \rightarrow \Sigma_{N}$ defined by $\sigma\left(i_{1} i_{2} i_{3} \ldots\right):=\left(i_{2} i_{3} \ldots\right)$, then the coding map χ is such that $\chi \circ \sigma=f \circ \chi$.

Thus, in order to perform multifractal analysis over complicated spaces, sometimes it is very useful to work at symbolic level, apply the results obtained for symbolic space and then transfer them to the original setting. As an example, we have the following result from [Ba], which we state for the entropy spectrum.

Theorem 1.3.1. ([Ba, Theorem 9.4.1]) Let $f: \Lambda \rightarrow \Lambda$ be a $C^{1+\varepsilon}$ expanding transformation for some $\varepsilon>0$. Assume that f is conformal ${ }^{1}$ and topologically mixing ${ }^{2}$ on Λ. Let $\phi: \Lambda \rightarrow \mathbb{R}$ be a Hölder function, $\alpha \in \mathbb{R}, J_{\alpha}$ as in (1.1) ${ }^{3}$ and the function E from Definition 1.1.4. If ϕ is not cohomologous to a constant function, then

1. the function E is defined on an interval $[\underline{\alpha}, \bar{\alpha}]$ and it is analytic in $(\underline{\alpha}, \bar{\alpha})$;
2. if $\alpha \in(\underline{\alpha}, \bar{\alpha})$,

$$
E(\alpha)=\max \left\{h(\mu): \mu \in \mathcal{M}_{f}, \int \phi d \mu=\alpha\right\} .
$$

Remark 1.3.1. There is an analogous way to define the coding of a partition $\left\{R_{1}, \ldots, R_{N}\right\}$ whenever f is invertible. In this case the coding is over the space $\Sigma_{N}^{ \pm}:=\{1, \ldots, N\}^{\mathbb{Z}}$ and with the same shift map $\sigma: \Sigma_{N}^{ \pm} \rightarrow \Sigma_{N}^{ \pm}$, which is invertible as well.

Also, there exists countable Markov partitions, which coding is over the full-shift on countable many symbols $\mathbb{N}^{\mathbb{N}}$ or $\mathbb{N}^{\mathbb{Z}}$, as we see in the following subsection.

[^0]
1.3.2 Continued Fractions

This subsection is based on the work of Godofredo Iommi and Thomas Jordan in [IJ].
Definition 1.3.3. A map $T:[0,1] \rightarrow[0,1]$ is called an EMR map (expanding-MarkovRenyi) if there exists a countable family of closed intervals $I_{i} \subset[0,1]$ with pairwise disjoint interiors such that

- T is of class C^{2} on $\bigcup_{i} \operatorname{int} I_{i}$;
- there exists $\xi>1$ and $N \in \mathbb{N}$ such that for every $x \in \bigcup_{i} I_{i}$ and $n \geq N$,

$$
\left|\left(T^{n}\right)^{\prime}(x)\right|>\xi^{n}
$$

- T is Markov and it can be coded by a full-shift on a countable alphabet;
- (Renyi condition) there exists $K>0$ such that

$$
\sup _{n \in \mathbb{N} x, y, z \in I_{n}} \sup _{n} \frac{\left|T^{\prime \prime}(x)\right|}{\left|T^{\prime}(y)\right|\left|T^{\prime}(z)\right|} \leq K .
$$

The repeller of T is defined by

$$
\Lambda:=\left\{x \in \bigcup_{i} I_{i}: T^{n} x \text { is well defined for every } n \in \mathbb{N}\right\}
$$

Example 1.3.1. The Gauss map $G:(0,1] \rightarrow(0,1]$ defined by $G(x):=1 / x-[1 / x]$ ([•] is the integer part) is an EMR map.

For EMR maps, we can use the strategy we described in the previous subsection. This is, we can solve the problem at symbolic level, and then transfer the result to the original system. For example, consider the continued fraction expansion of a number

$$
x=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ldots .}}}}=:\left[a_{1} a_{2} a_{3} \ldots\right] \in(0,1) \backslash \mathbb{Q},
$$

where $a_{i} \in \mathbb{N}$ for every $i \in \mathbb{N}$. Then the Gauss map acts as the shift map in this expansion, i.e. if $x=\left[a_{1} a_{2} a_{3} \ldots\right]$ then $G(x)=\left[a_{2} a_{3} \ldots\right]$.

Iommi and Jordan study the behavior of the limits

$$
\lim _{n \rightarrow \infty} \log \sqrt[n]{a_{1} a_{2} \cdots a_{n}} \text { and } \lim _{n \rightarrow \infty} \frac{1}{n}\left(a_{1}+a_{2}+\cdots+a_{n}\right)
$$

where $x=\left[a_{1} a_{2} \ldots\right]$, getting the following results:
Proposition 1.3.1. ([IJ, Proposition 6.5]) The function

$$
D(\alpha):=\operatorname{dim}_{H}\left\{x \in(0,1): \lim _{n \rightarrow \infty} \log \sqrt[n]{a_{1} \cdot a_{2} \cdots a_{n}}=\alpha\right\}
$$

is real analytic, it is strictly increasing and strictly concave in an interval [α_{m}, α_{*}), and it is decreasing and has an inflection point in $\left(\alpha_{*}, \infty\right)$.

Proposition 1.3.2. ([IJ, Proposition 6.7]) The function

$$
D(\alpha):=\operatorname{dim}_{H}\left\{x \in(0,1): \lim _{n \rightarrow \infty} \frac{1}{n}\left(a_{1}+a_{2}+\cdots+a_{n}\right)=\alpha\right\}
$$

is real analytic and strictly increasing.

In Remark 1.3.1 we discussed that when the system $f: \Lambda \rightarrow \Lambda$ is invertible, it can be coded on a two-sided full shift, as we see in the following subsection.

1.3.3 Horseshoes

This subsection is based on the work of Luis Barreira and Claudia Valls in [BV1].
Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the Smale horseshoe map. It acts on the unit square $S:=[0,1]^{2}$ as a strong contraction in the horizontal direction, followed by a strong expansion in the vertical direction, folding and placing back over S (see [BV2, Section 5.2.2]):

The repeller of f

$$
\Lambda:=\left\{x \in S: f^{k}(x) \in S \text { for every } k \in \mathbb{Z}\right\}
$$

is the product of two middle third Cantor sets C.

Given continuous functions $\phi, \psi: \Lambda=C \times C \rightarrow \mathbb{R}$, consider the 'two sided' level sets of Birkhoff averages: for $\alpha, \beta \in \mathbb{R}$ set

$$
J_{\alpha \beta}:=\left\{x \in \Lambda: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \phi\left(f^{k} x\right)=\alpha \text { and } \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \psi\left(f^{-k} x\right)=\beta\right\},
$$

and the following spectrum

$$
D(\alpha, \beta):=\operatorname{dim}_{H} J_{\alpha \beta} .
$$

From the behavior of f along the vertical and horizontal directions, if we denote by p_{1} and p_{2} the orthogonal projections onto the horizontal and vertical axes respectively, then

$$
\begin{gathered}
p_{1}\left(J_{\alpha \beta}\right) \times C=\left\{x \in \Lambda: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \psi\left(f^{-k} x\right)=\beta\right\} \\
C \times p_{2}\left(J_{\alpha \beta}\right)=\left\{x \in \Lambda: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \phi\left(f^{k} x\right)=\alpha\right\}
\end{gathered}
$$

Thus, notice that

$$
J_{\alpha \beta}=\left(p_{1}\left(J_{\alpha \beta}\right) \times C\right) \cap\left(C \times p_{2}\left(J_{\alpha \beta}\right)\right)=p_{1}\left(J_{\alpha \beta}\right) \times p_{2}\left(J_{\alpha \beta}\right) .
$$

The main result in [BV1] is that a multifractal analysis on two variables becomes two independent multifractal analysis on one variable, since $p_{1}\left(J_{\alpha \beta}\right)$ does not depend on α (neither on ϕ) and $p_{2}\left(J_{\alpha \beta}\right)$ does not depend on β (neither on ψ).

Theorem 1.3.2. The spectrum $D(\alpha, \beta)$ is real analytic, and for every (α, β) in the domain of D

$$
D(\alpha, \beta)=\operatorname{dim}_{H} p_{1}\left(J_{\alpha \beta}\right)+\operatorname{dim}_{H} p_{2}\left(J_{\alpha \beta}\right) .
$$

The system (Λ, f) can be coded in the two-sided full shift on two symbols $\Sigma_{2}^{ \pm}:=\{1,2\}^{\mathbb{Z}}$. The main idea is, through the coding map, to present the problem with functions $\tilde{\phi}, \tilde{\psi}$: $\Sigma_{2}^{ \pm} \rightarrow \mathbb{R}$, use arguments on this space to prove that these functions are cohomologous (see Definition 3.1.5) respectively to functions $\phi^{u}: \Sigma_{2}^{ \pm} \rightarrow \mathbb{R}$ and $\psi^{s}: \Sigma_{2}^{ \pm} \rightarrow \mathbb{R}$, where ϕ^{u} depends only on the future of the points and ψ^{s} depends only on the past of the points ([BV1, Lemma 1]). This allows to obtain an explicit formula for the multifractal spectrum as the sum of two multifractal spectra, and then transfer the result to the repeller Λ ([BV1, Theorem 3]).

Chapter 2

Dimension Theory and Entropy

In multifractal analysis there are many ways of measuring the size of the level sets we are studying, in this chapter we will review some of them. Throughout the Dimension Theory section we define a notion of dimension, called the Hausdorff Dimension, and we present a technique to compute it using finite Borel measures. Then, in the Entropy section we review the classical definitions of topological entropy on compact topological spaces, Bowen's definition for uniformly continuous functions on metric spaces (not necessarily compact), and we finish with two equivalent dimensional-like definitions of entropy restricted to subsets given by Bowen in [Bo1] and by Pesin and Pitskel in [PP], which is the one we will use in multifractal analysis.

2.1 Dimension Theory

2.1.1 Hausdorff Dimension

Let (X, d) be a separable metric space.
Definition 2.1.1. A collection of subsets $\left\{E_{j}\right\}_{j \in I}$ is called an open cover of $F \subset X$ if each E_{i} is open and $F \subset \bigcup_{j \in I} E_{i}$.

For $F \subset X, \delta>0$ and $s \geq 0$, define

$$
\mathcal{H}_{\delta}^{s}(F):=\inf \left\{\sum_{i=1}^{\infty}\left(\operatorname{diam} E_{i}\right)^{s}:\left\{E_{i}\right\}_{i} \text { is open cover of } F \text { and } \operatorname{diam} E_{i}<\delta\right\}
$$

and $\mathcal{H}^{s}(F):=\lim _{\delta \rightarrow 0} \mathcal{H}_{\delta}^{s}(F)$.

For any $s \geq 0$, the function \mathcal{H}^{s} is an outer measure on X and induces a σ-additive measure on X called the s-dimensional Hausdorff measure.

Given a set $F \subset X$ and $0<\delta<1$, observe that $\mathcal{H}_{\delta}^{s}(F)$ is a non-increasing function of s, and so is $\mathcal{H}^{s}(F)$. Moreover, if $t>s$ and $\left\{U_{i}\right\}$ is an open cover of F with $\operatorname{diam} U_{i}<\delta$,

$$
\sum_{i}\left(\operatorname{diam} U_{i}\right)^{t} \leq \sum_{i}\left(\operatorname{diam} U_{i}\right)^{t-s}\left(\operatorname{diam} U_{i}\right)^{s} \leq \delta^{t-s} \sum_{i}\left(\operatorname{diam} U_{i}\right)^{s} .
$$

So, $\mathcal{H}_{\delta}^{t}(F) \leq \delta^{t-s} \mathcal{H}_{\delta}^{s}(F)$. Letting $\delta \rightarrow 0$ notice that if $\mathcal{H}^{s}(F)<\infty$, then $\mathcal{H}^{t}(F)=0$. Thus, there exists a critical value $s_{\star} \geq 0$ such that $\mathcal{H}^{s}(F)=\infty$ for $s<s_{\star}, \mathcal{H}^{s}(F)=0$ for $s>s_{\star}$ and $\mathcal{H}^{s_{\star}}(F) \in[0, \infty]$. This behavior is shown in Figure 2.1.

Definition 2.1.2. For $F \subset X$, the number s_{\star} is called the Hausdorff dimension of F, and it is denoted by $\operatorname{dim}_{H} F$.

Figure 2.1: Graphic of $s \mapsto \mathcal{H}^{s}(F)$.

The Hausdorff dimension satisfy the following properties:
Proposition 2.1.1. (see [P, Theorem 6.1] and [P, Theorem 6.2])

1. $\operatorname{dim}_{H} \varnothing=0 ; \quad \operatorname{dim}_{H} F \geq 0$ for any $F \subset X$.
2. If $F_{1} \subset F_{2}$, then $\operatorname{dim}_{H} F_{1} \leq \operatorname{dim}_{H} F_{2}$.
3. $\operatorname{dim}_{H} \bigcup_{i=1}^{\infty} F_{i}=\sup _{i \in \mathbb{N}} \operatorname{dim}_{H} F_{i}$.
4. If F is finite or countable, then $\operatorname{dim}_{H} F=0$.

Remark 2.1.1. In [F] this theory is developed in \mathbb{R}^{n}. For $m \in \mathbb{N}$, there is a relation between the m-dimensional Hausdorff measures and the classic m-Lebesgue measure. Hausdorff measures generalize the notions of length, area, volume, etc. in the following way: for $F \subset \mathbb{R}^{n}$

$$
\mathcal{H}^{m}(F)=c_{m}^{-1} \operatorname{Leb}^{m}(F),
$$

where Leb ${ }^{m}$ is the m-dimensional Lebesgue measure, and c_{m} is the Leb ${ }^{m}$-measure of the m-dimensional ball of diameter 1 . So, for lower-dimensional subsets of $\mathbb{R}^{n}, \mathcal{H}^{0}$ counts the number of points in the set, \mathcal{H}^{1} gives the length (of a line or a curve for example), \mathcal{H}^{2} gives the area of a smooth surface (or a 2-dimensional object), \mathcal{H}^{3} is the volume, etc.

The scaling properties of length, area and volume are known. If we scale by a factor $k>0$, the length of a curve is multiplied by k, the area of a plane section is multiplied by k^{2}, and the volume is multiplied by k^{3}. Hence, we can think the Hausdorff dimension s of a set F as the exponent in the scaling factor such that the s-dimensional Hausdorff measure is multiplied by k^{s} when the set F is scaled by a factor k. In other words, we have the following proposition.

Proposition 2.1.2. ([F, Scaling property 2.1]) Let $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a similarity transformation of scale factor $k>0$, this is, image of sets can be obtained by uniformly scaling by k, possibly with additional translation, rotation and reflection. Then for $F \subset \mathbb{R}^{n}$ and $s \geq 0$,

$$
\mathcal{H}^{s}(S(F))=k^{s} \mathcal{H}^{s}(F) .
$$

Example 2.1.1. Let C be the middle third Cantor set (see Figure 2.2), and decompose it into its left part $C_{L}:=C \cap[0,1 / 3]$ and its right part $C_{R}:=C \cap[2 / 3,1]$. Observe that both parts are geometrically the same as the original set C, but scaled by a factor $k=1 / 3$. We also have that C is the disjoint union of C_{L} and C_{R}, then

$$
\mathcal{H}^{s}(C)=\mathcal{H}^{s}\left(C_{R}\right)+\mathcal{H}^{s}\left(C_{L}\right)=\frac{1}{3^{s}} \mathcal{H}^{s}(C)+\frac{1}{3^{s}} \mathcal{H}^{s}(C)=\frac{2}{3^{s}} \mathcal{H}^{s}(C) .
$$

If we assume that $0<\mathcal{H}^{\operatorname{dim}_{H} C}(C)<\infty$, then letting $s=\operatorname{dim}_{H} C$ and dividing by $\mathcal{H}^{s}(C)$, we have $\operatorname{dim}_{H} C=\frac{\log 2}{\log 3}=0.6309 \ldots$.

Figure 2.2: Construction of the middle third Cantor set C.

In [OV, Example 12.4.1] is proven that actually $\mathcal{H}^{\log 2 / \log 3}(C)=1$, which implies that $\operatorname{dim}_{H} C=\log 2 / \log 3$. However, to compute the Hausdorff dimension of the Cantor set we use the assumption $0<\mathcal{H}^{\operatorname{dim}_{H} C}(C)<\infty$, but this is not always true. There exist sets F for which $\mathcal{H}^{\operatorname{dim}_{H} F}(F)$ equals zero or infinity.

Example 2.1.2. An example is any Euclidian space \mathbb{R}^{n}. It has Hausdorff dimension n and $\mathcal{H}^{n}\left(\mathbb{R}^{n}\right)=\infty$. Other example is any countable set: it has zero Hausdorff dimension, but when we count its points the result is infinity.

On the other hand, if we consider the family of entire functions $\left\{f(z)=\lambda e^{z}: \lambda \neq 0\right\}$ (the "exponential family"), we have that the Julia set (this is, the boundary of the set of points which converge to infinity under iteration) of any member of this family has Hausdorff dimension 2. However, for some values of λ (for example $0<\lambda<1 / e$), the area of the Julia set of λe^{z} is zero (see [Mc, Theorem 1.2] and [Mc, Theorem 1.3]).

Now, to compute the Hausdorff dimension of certain sets, we will need some tools related to the use of measures on the space X.

Definition 2.1.3. Let μ be a finite Borel measure on X. The Hausdorff dimension of μ is defined by

$$
\operatorname{dim}_{H} \mu:=\inf \left\{\operatorname{dim}_{H} F: \mu(F)=1\right\} .
$$

Definition 2.1.4. Let μ be a finite Borel measure on X. For $x \in X$, define the lower and upper pointwise dimension of x with respect to μ respectively by

$$
\underline{d_{\mu}}(x):=\liminf _{r \rightarrow 0} \frac{\log \mu(B(x, r))}{\log r}, \quad \overline{d_{\mu}}(x):=\limsup _{r \rightarrow 0} \frac{\log \mu(B(x, r))}{\log r} ;
$$

where $B(x, r):=\{y \in X: d(x, y)<r\}$. When this limits coincide, we will denote it by $d_{\mu}(x)$.

Remark 2.1.2. Notice that the pointwise dimension of a point x with respect to μ describes the behavior

$$
\mu(B(x, r)) \sim r^{d_{\mu}(x)}
$$

as $r \rightarrow 0$. It also quantifies how concentrated is a measure around a point.
Example 2.1.3. Let $x \in X$, and let μ be the atomic measure concentrated on x, i.e. $\mu(A)=0$ if $x \notin A$ and $\mu(A)=1$ if $x \in A$. Then $d_{\mu}(x)=0$ and $d_{\mu}\left(x^{\prime}\right)=\infty$ whenever $x^{\prime} \neq x$.

Definition 2.1.5. We say that X is a metric space of finite multiplicity if the following condition holds: there exists $K>0$ and ε_{0} such that for any $0<\varepsilon<\varepsilon_{0}$ one can find a cover of X by balls of radius ε such that every point in X belongs to at most K balls of the cover.

Definition 2.1.6. We say that a complete separable metric space X is a Besicovitch metric space if the following condition holds: there exist $K>0$ and $\varepsilon_{0}>0$ such that for any subset $Z \subset X$ and any cover $\left\{B(x, \varepsilon(x)): x \in Z, 0<\varepsilon(x) \leq \varepsilon_{0}\right\}$ one can find a subcover of Z such that every point of Z belongs to at most K elements of the subcover.

The following theorems were proven in [P, Theorem 7.1] and [P, Theorem 7.2] in the case $X=\mathbb{R}^{m}$. However, in $[\mathrm{P}$, Appendix I$]$ there is a discussion about them with the hypotheses we will present.

Theorem 2.1.1. Let X be a complete separable metric space of finite multiplicity and let μ be any Borel finite measure on X. Then the following statements hold:

1. if $\underline{d_{\mu}}(x) \geq d$ for μ-almost every x then $\operatorname{dim}_{H} \mu \geq d$;
2. if $\overline{d_{\mu}}(x) \leq d$ for μ-almost every x then $\operatorname{dim}_{H} \mu \leq d$.

Thus, if $\underline{d_{\mu}}(x)=\overline{d_{\mu}}(x)=d$ for μ-almost every x, then $\operatorname{dim}_{H} \mu=d$.
Theorem 2.1.2. Let X be a Besicovitch metric space and let μ be any Borel finite measure on X. Assume that there exists $d>0$ such that $\underline{d_{\mu}}(x) \leq d$ for every $x \in Z \subset X$. Then $\operatorname{dim}_{H} Z \leq d$.

Remark 2.1.3. Theorem 2.1.1 and Theorem 2.1.2 give a technique to compute the Hausdorff dimension of a set $F \subset X$. If one can find a number d and a finite measure μ such that $\mu(F)=1, \underline{d_{\mu}}(x) \geq d$ for μ-almost every x and $\underline{d_{\mu}}(x) \leq d$ for every $x \in F$, then $\operatorname{dim}_{H} F=d$.

Remark 2.1.4. There is an alternative definition of dimension, called the upper and lower Box-counting dimension and denoted respectively by $\overline{\operatorname{dim}}_{B}$ and $\underline{\operatorname{dim}}_{B}$. Its relation with the Hausdorff dimension is that for every $F \subset \mathbb{R}^{n}$, $\operatorname{dim}_{H} F \leq \underline{\operatorname{dim}_{B} F \leq \overline{\operatorname{dim}}_{B} F \text {. An- }}$ other property of the Box-counting dimension is that the dimension of a set equals the dimension of the closure of the set. This property shows the main disadvantage of the box-counting dimension to be used as multifractal spectrum, since the level sets considered in our computations of dimension are dense. Thus, when we compute the box dimension of one of these sets, we obtain the box dimension of the entire space.

2.2 Entropy

Throughout this section we will review the notion of entropy of a dynamical system with respect to an invariant probability measure and the notion of topological entropy. Finally, we will introduce a dimensional definition of entropy of a system restricted to arbitrary subsets, which is more useful in multifractal analysis.

2.2.1 Metric Entropy

Let $T: X \rightarrow X$ be a measurable transformation preserving a probability measure μ, i.e. $\mu\left(T^{-1} A\right)=\mu(A)$ for every measurable set $A \subset X$. Recall that a partition \mathcal{P} of a the probability space (X, \mathcal{B}, μ) is a finite or countable collection of pairwise disjoint subsets of X such that their union has full measure.

Definition 2.2.1. The entropy of the partition \mathcal{P} with respect to the measure μ is defined by

$$
H_{\mu}(\mathcal{P}):=-\sum_{P \in \mathcal{P}} \mu(P) \log \mu(P),
$$

where $0 \log 0:=0$.

Given a partition \mathcal{P} and $n \in \mathbb{N}$, set

$$
\mathcal{P}^{n}:=\left\{P_{0} \cap T^{-1} P_{1} \cap \cdots \cap T^{-n+1} P_{n-1}: P_{j} \in \mathcal{P}\right\} .
$$

Since T preserves μ, the sequence $H_{\mu}\left(\mathcal{P}^{n}\right)$ is subadditive, so we have the following definition.

Definition 2.2.2. The entropy of the measure μ with respect to the partition \mathcal{P} is defined by

$$
h(\mu, \mathcal{P}):=\lim _{n \rightarrow \infty} \frac{1}{n} H_{\mu}\left(\mathcal{P}^{n}\right) .
$$

Definition 2.2.3. The entropy of μ is defined by

$$
h(\mu)=h(\mu, T):=\sup \left\{h(\mu, \mathcal{P}): \mathcal{P} \text { partition of } X, H_{\mu}(\mathcal{P})<\infty\right\} .
$$

We also have results to compute the entropy of a measure. Given a partition \mathcal{P}, denote by $\mathcal{P}(x)$ the element of the partition which contains the point x. For $n \geq 1$, let

$$
\mathcal{P}^{n}(x):=\mathcal{P}(x) \cap T^{-1} \mathcal{P}(T x) \cap \cdots \cap T^{-n+1} \mathcal{P}\left(T^{n-1} x\right)
$$

be the points with trajectory close to that of x until time $n-1$.
Theorem 2.2.1. (Shannon-McMillan-Breiman) Given a partition with finite entropy \mathcal{P}, for μ-almost every $x \in X$ there exists the limit

$$
h(\mu, \mathcal{P}, x):=\lim _{n \rightarrow \infty}-\frac{1}{n} \log \mu\left(\mathcal{P}^{n}(x)\right) .
$$

The function $x \mapsto h(\mu, \mathcal{P}, x)$ is μ-integrable and the convergence holds also in $L^{1}(\mu)$. Moreover,

$$
h(\mu, \mathcal{P})=\int h(\mu, \mathcal{P}, x) d \mu(x)
$$

and if μ is an ergodic measure with respect to T, then $h(\mu, \mathcal{P}, x)=h(\mu, \mathcal{P})$ for μ-almost every $x \in X$.

We also have another way to compute the metric entropy of a dynamical system T with respect to a T-invariant probability measure μ :

Proposition 2.2.1. ([OV, Corolary 9.2.5]) Let \mathcal{P} be a partition of finite entropy of X such that the union of the iterates \mathcal{P}^{n} generates the σ-algebra of measurable sets, up to measure zero. Then $h(\mu)=h(\mu, \mathcal{P})$.

Example 2.2.1. Let $X:=\{1,2, \ldots, N\}^{\mathbb{N}}$ with the dynamical system $T: X \rightarrow X$ defined by $T\left(\left(x_{n}\right)_{n \in \mathbb{N}}\right):=\left(x_{n+1}\right)_{n \in \mathbb{N}}$. Consider a product measure $\mu:=\nu^{\mathbb{N}}$ and set $p_{i}:=\nu(\{i\})$ for $1 \leq i \leq N$. Such a measure μ is called a Bernoulli measure, and it is ergodic with respect to T [OV, Proposition 4.2.7]. For $n \in \mathbb{N}, i_{1}, \ldots, i_{n} \in\{1, \ldots, N\}$, define the cylinder

$$
\left[i_{1} \ldots i_{n}\right]:=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in X: x_{j}=i_{j}, 1 \leq j \leq n\right\} .
$$

Then, we have

$$
\mu\left(\left[i_{1} \ldots i_{n}\right]\right)=\prod_{j=1}^{n} p_{i_{j}} .
$$

We will use the Shannon-McMillan-Breiman Theorem to compute the entropy of T with respect to this measure μ and the partition $\mathcal{P}:=\{[i]: 1 \leq i \leq N\}$ of cylinders of length one. Notice that for every $n \geq 1$ and $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in X$,

$$
\mathcal{P}^{n}(x)=\left[x_{1} \ldots x_{n}\right] .
$$

Now, for $1 \leq i \leq N, x \in X$ and $n \geq 1$ define

$$
f_{i}(x, n):=\#\left\{1 \leq j \leq N: x_{j}=i\right\}=\sum_{j=0}^{n-1} \chi_{[i]}\left(T^{j} x\right),
$$

and observe that

$$
\mu\left(\mathcal{P}^{n}(x)\right)=\prod_{i=1}^{N} p_{i}^{f_{i}(x, n)} .
$$

Since μ is an ergodic measure with respect to T, by Birkhoff's Ergodic Theorem we obtain $\lim _{n} \frac{f_{i}(x, n)}{n}=\mu([i])=p_{i}$ for μ-almost every $x \in X$.

Then, for μ-almost every $x \in X$

$$
\begin{aligned}
h(\mu, \mathcal{P}, x) & =\lim _{n \rightarrow \infty}-\frac{1}{n} \log \mu\left(\mathcal{P}^{n}(x)\right)=\lim _{n \rightarrow \infty}-\frac{1}{n} \log \prod_{i=1}^{N} p_{i}^{f_{i}(x, n)} \\
& =\lim _{n \rightarrow \infty}-\frac{1}{n} \sum_{i=1}^{N} f_{i}(x, n) \log p_{i}=-\sum_{i=1}^{N} p_{i} \log p_{i} .
\end{aligned}
$$

By Shannon-McMillan-Breiman Theorem, for μ-almost every $x \in X$

$$
h(\mu, \mathcal{P})=h(\mu, \mathcal{P}, x)=-\sum_{i=1}^{N} p_{i} \log p_{i} .
$$

Since cylinders generate the topology on X, and hence the measurable Borel sets, by Proposition 2.2.1 we have $h(\mu)=-\sum_{i=1}^{N} p_{i} \log p_{i}$.

2.2.2 Topological Entropy

The topological entropy of a topological dynamical system T is a number $h(T) \in[0, \infty]$ which measures the complexity of the system. First, we will present the definition introduced by Adler, Konheim and McAndrew on a compact topological space; then we will present a definition of topological entropy by Bowen on a metric space, not necessarily compact. Finally, we conclude this chapter presenting a dimensional-like definition of entropy of a dynamical system restricted to arbitrary subsets of the space.

2.2.2.1 Definition by open covers

Let X be a compact topological space and $T: X \rightarrow X$ a continuous function. Given an open cover α, for $n \geq 1$ let

$$
\begin{equation*}
\alpha^{n}:=\left\{A_{i_{0}} \cap T^{-1} A_{i_{1}} \cap \cdots \cap T^{-n+1} A_{i_{n-1}}: A_{i_{j}} \in \alpha\right\}, \tag{2.1}
\end{equation*}
$$

which is also an open cover of X.
Denote by $N\left(\alpha^{n}\right)$ the number of sets in a finite subcover of α^{n} with smallest cardinality, and define the entropy of T with respect to the cover α by

$$
h(T, \alpha):=\lim _{n \rightarrow \infty} \frac{1}{n} \log N\left(\alpha^{n}\right) .
$$

Definition 2.2.4. The topological entropy of T is defined by

$$
h(T):=\sup \{h(T, \alpha): \alpha \text { is open cover of } X\} .
$$

Example 2.2.2. Let (X, T) be the dynamical system as in the Example 2.2.1 and consider $\alpha:=\{[i]: 1 \leq i \leq N\}$ the open cover by cylinders of length one. In order to compute $h(T, \alpha)$, notice that

$$
\alpha^{n}=\left\{\left[i_{1} \ldots i_{n}\right]: 1 \leq i_{j} \leq N\right\}
$$

and that if we remove an element of α^{n}, it will no longer be a cover of X. Therefore, $N\left(\alpha^{n}\right)=\# \alpha^{n}=N^{n}$.

Finally,

$$
h(T, \alpha)=\lim _{n \rightarrow \infty} \frac{1}{n} \log N^{n}=\log N .
$$

Moreover, it can be proven that actually $h(T)=\log N$ (see [OV, Example 10.1.2] and [OV, Corollary 10.1.13]).

Now we present an important relationship between the two notions of entropy that we have discussed, the metric entropy and the topological entropy (see for example [W, Theorem 8.6]).

Theorem 2.2.2. (Variational Principle) Let $T: X \rightarrow X$ be a continuous map of a compact metric space X. Then

$$
\begin{equation*}
h(T)=\sup \left\{h(\mu): \mu \in \mathcal{M}_{T}\right\}, \tag{2.2}
\end{equation*}
$$

where \mathcal{M}_{T} is the set of all Borel T-invariant probability measures on X.

2.2.2.2 Bowen's definition

Let (X, d) be a metric space (not necessarily compact) and $T: X \rightarrow X$ a uniformly continuous map. For $n \geq 1, x \in X$ and $\varepsilon>0$ define the dynamic ball of center x, length n and radius ε by

$$
B_{n}(x, \varepsilon):=\left\{y \in X: d\left(T^{j} x, T^{j} y\right)<\varepsilon \text { for every } 0 \leq j \leq n-1\right\} .
$$

Definition 2.2.5. Let $n \in \mathbb{N}, \varepsilon>0$ and let K be a compact subset of X. We say that a subset $F \subset X$ is a (n, ε)-spanning set for K if for every $x \in K$, there exists $y \in F$ such
that $d\left(T^{j} x, T^{j} y\right)<\varepsilon$ for every $0 \leq j \leq n-1$. This is, if

$$
K \subset \bigcup_{y \in F} B_{n}(y, \varepsilon) .
$$

Definition 2.2.6. Denote by $r_{n}(\varepsilon, K)$ the smallest cardinality of any (n, ε)-spanning set for K. Notice that this number is finite because of the compactness of K, and that is decreasing as a function of ε.

Definition 2.2.7. Define

$$
r(T):=\sup _{K} \lim _{\varepsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \log r_{n}(\varepsilon, K),
$$

where the supremum is taken over the collection of all compact subsets of X.
Definition 2.2.8. Let $n \in \mathbb{N}, \varepsilon>0$ and let K be a compact subset of X. We say that a subset $E \subset K$ is (n, ε)-separated if for every $x, y \in E$, there exists $0 \leq j \leq n-1$ such that $d\left(T^{j} x, T^{j} y\right) \geq \varepsilon$. That is, if for every $x \in E$ the dynamic ball $B_{n}(x, \varepsilon)$ contains no other point of E.

Definition 2.2.9. Denote by $s_{n}(\varepsilon, K)$ the largest cardinality of any (n, ε)-separated subset of K.

It can be proven that this number $s_{n}(\varepsilon, K)$ is finite, and that it is decreasing as a function of ε.

Definition 2.2.10. Define

$$
s(T):=\sup _{K} \lim _{\varepsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \log s_{n}(\varepsilon, K),
$$

where the supremum is taken over the collection of all compact subsets of X.

The following propositions are proven in [OV, Chapter 10].
Proposition 2.2.2. $r(T)=s(T)$.
Proposition 2.2.3. If X is a compact metric space, then $h(T)=r(T)=s(T)$.

Thus, we can define the topological entropy of a uniformly continuous map $T: X \rightarrow X$ of a metric space by $h(T):=r(T)=s(T)$. Proposition 2.2.3 shows that this definition is compatible with the definition by open covers when X is compact.

Remark 2.2.1. A relevant difference between the definition of topological entropy from subsection 2.2.2.1 and the one given in this subsection is that in the compact case it
depends only on the topology $(h(T)$ is defined using open covers), but in the noncompact case the definition depends upon the metric d. Sometimes we write $h_{d}(T)$ to show this dependence.

Example 2.2.3. Let $T: X \rightarrow X$ be an isometry of the metric space (X, d). Notice that for every $n \geq 1$ and $x \in X, B_{n}(x, \varepsilon)=B_{1}(x, \varepsilon)$ is the usual ball of center x and radius ε. Then for every compact $K \subset X, s_{n}(\varepsilon, K)=s_{1}(\varepsilon, K)$ and therefore $h_{d}(T)=0$.

Example 2.2.4. (Dependence on the metric) Consider $T:(0, \infty) \rightarrow(0, \infty)$ defined by $T(x):=2 x$. Define the metric d^{\prime} on $(0, \infty)$ by

$$
d^{\prime}(x, y):=|\log x-\log y| .
$$

Notice that T is an isometry of the metric space $\left((0, \infty), d^{\prime}\right)$ and by the Example 2.2.3 $h_{d^{\prime}}(T)=0$.

Now let d be the Euclidian metric. Notice that

$$
\begin{aligned}
B_{n}(x, \varepsilon) & =\left\{y \in(0, \infty): d\left(T^{j} x, T^{j} y\right)<\varepsilon \text { for } 0 \leq j \leq n-1\right\} \\
& =\left\{y \in(0, \infty):|x-y|<\varepsilon / 2^{n-1}\right\} \\
& =\left(x-\frac{\varepsilon}{2^{n-1}}, x+\frac{\varepsilon}{2^{n-1}}\right) .
\end{aligned}
$$

The length of each one of these intervals is $\varepsilon / 2^{n-2}$. If we sum k of these lengths the result is $k \varepsilon / 2^{n-2}$, so to cover for example the interval [1, 2] we need $k \varepsilon / 2^{n-2}>1$ and thus, $k \geq 2^{n-2} / \varepsilon$. Therefore,

$$
\begin{aligned}
h_{d}(T) & =\sup _{K} \lim _{\varepsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \log r_{n}(\varepsilon, K) \\
& \geq \lim _{\varepsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \log r_{n}(\varepsilon,[1,2]) \\
& \geq \lim _{\varepsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \log \left(\frac{2^{n-2}}{\varepsilon}\right) \\
& =\lim _{\varepsilon \rightarrow 0} \limsup _{n \rightarrow \infty}\left(\frac{1}{n} \log 2^{n-2}-\frac{1}{n} \log \varepsilon\right) \\
& =\log 2 .
\end{aligned}
$$

So, even though the metrics d^{\prime} and d induce the same topology, $h_{d^{\prime}}(T) \neq h_{d}(T)$. This is because these two metrics are not uniformly equivalent: being uniformly equivalent is a sufficient condition for to metrics to have the same topological entropy on a noncompact space (see [W, Theorem 7.4]).

2.2.2.3 Entropy restricted to subsets

Let X be a separable metric space (not necessarily compact) and $T: X \rightarrow X$ a continuous function. In order to study the level sets in multifractal analysis (see (1.1)), we will need a dimensional definition of entropy restricted to subsets of the space. The usual definition is not useful because these level sets are dense and non-compact.

Let $A \subset X$ be a non-compact dense set and assume for a moment that X is compact. We will try to define the topological entropy of T restricted to $A, h(T \mid A)$, in a similar way it was done in subsection 2.2.2.1. In order to do this, we have to consider an open cover α of A, and the cover α^{n} as in (2.1).

The first problem is that the number $N\left(\alpha^{n}\right)$ is not necessarily well defined for each n, since A is non-compact. We can try to avoid this problem considering open covers of X, which always have finite sub-covers since X is compact. So if α is an open cover of X, then $\alpha_{A}:=\{U \in \alpha: U \cap A \neq \varnothing\}$ is open cover of A. Now for $n \in \mathbb{N}$ we can define $N\left(\alpha_{A}^{n}\right)$ as its usual definition if α_{A}^{n} has a finite sub-cover of A, and as $N\left(\alpha^{n}\right)$ otherwise. However, since A is dense, we have that $\alpha_{A}=\alpha$ and we conclude $h(T \mid A)=h(T)$. Then, since the level sets J_{α} are dense and non-compact, this is not a good definition because our spectrum $E(\alpha):=h\left(T \mid J_{\alpha}\right)$ would be the constant $h(T)$.

Now, if X is non-compact we may use a definition of entropy restricted analogous to Bowen's definition, but in this case as we saw in Example 2.2.4, it depends on the metric, and we do not want this either.

We will give two definitions, the first one was presented by Pesin and Pitskel in [PP] and it coincides with the second one presented by Bowen in [Bo1] (see [PP, Proposition 4]).

Definition 2.2.11. ([PP]) Let \mathcal{U} be a finite open cover of X, and set

$$
\mathcal{W}_{m}(\mathcal{U}):=\left\{\left(U_{i_{0}}, \ldots, U_{i_{m-1}}\right): U_{i_{j}} \in \mathcal{U}\right\}, \quad \mathcal{W}(\mathcal{U}):=\bigcup_{m \geq 0} \mathcal{W}_{m}(\mathcal{U})
$$

For $J \subset X$ and $\underline{U} \in \mathcal{W}_{m}(\mathcal{U})$, set

$$
J(\underline{U}):=\left\{x \in J: T^{k} x \in U_{i_{k}}, 0 \leq k \leq m-1\right\} .
$$

We say that $\Gamma \subset \mathcal{W}(\mathcal{U})$ covers J if $J \subset \bigcup_{\underline{U} \in \Gamma} J(\underline{U})$, and denote by $m(\underline{U})$ the length of the vector \underline{U}, this is, the unique integer $m \geq 0$ such that $\underline{U} \in \mathcal{W}_{m}(\mathcal{U})$.

Let us define

$$
M(\mathcal{U}, \lambda, J, N):=\inf \left\{\sum_{\underline{U} \in \Gamma} \exp (-\lambda m(\underline{U}))\right\},
$$

where the infimum is taken over all $\Gamma \subset \mathcal{W}(\mathcal{U})$ covering J such that $m(\underline{U}) \geq N$ for all $\underline{U} \in \Gamma$. Notice that M increases monotonically when N increases. Thus, the following limit exists

$$
m_{\mathcal{U}}(\lambda, J):=\lim _{N \rightarrow \infty} M(\mathcal{U}, \lambda, J, N) .
$$

For J fixed, the function $m_{\mathcal{U}}$ has the following property: there exists λ_{0} such that $m_{\mathcal{U}}(\lambda, J)=0$ for $\lambda>\lambda_{0}$ and $m_{\mathcal{U}}(\lambda, J)=\infty$ for $\lambda<\lambda_{0}$. Now define

$$
h_{\mathcal{U}}(J):=\inf \left\{\lambda: m_{\mathcal{U}}(\lambda, J)=0\right\} .
$$

The following properties hold:

1. $h_{\mathcal{U}}(\varnothing)=0$;
2. if $J_{1} \subset J_{2} \subset X$, then $h_{\mathcal{U}}\left(J_{1}\right) \leq h_{\mathcal{U}}\left(J_{2}\right)$;
3. if $J=\bigcup_{i \geq 1} J_{i} \subset X$, then $h_{\mathcal{U}}(J)=\sup _{i \geq 1} h_{\mathcal{U}}\left(J_{i}\right)$.

Finally, define the entropy of the map T restricted to the set J by

$$
h(J)=h(T \mid J):=\sup \left\{h_{\mathcal{U}}(J): \mathcal{U} \text { is finite open cover of } X\right\} .
$$

Definition 2.2.12. ([Bo1]) Let \mathcal{U} be a finite open cover of X. We write $E \prec \mathcal{U}$ if E is contained in some member of \mathcal{U} and $\left\{E_{i}\right\}_{i} \prec \mathcal{U}$ if $E_{i} \prec \mathcal{U}$ for every i. Denote by $n_{\mathcal{U}}(E)$ the largest nonnegative integer such that $T^{k} E \prec \mathcal{U}$ for every $0 \leq k<n_{\mathcal{U}}(E) ; n_{\mathcal{U}}(E)=0$ if $E \nprec \mathcal{U}$ and $n_{\mathcal{U}}(E)=\infty$ if $T^{k} E \prec \mathcal{U}$ for every $k \geq 1$. Now set

$$
D_{\mathcal{U}}(E):=\exp \left(-n_{\mathcal{U}}(E)\right) .
$$

For $\lambda \in \mathbb{R}$, define a measure by

$$
m_{\mathcal{U}, \lambda}(J):=\lim _{\varepsilon \rightarrow 0} \inf \left\{\sum_{i=1}^{\infty} D_{\mathcal{U}}\left(E_{i}\right)^{\lambda}: J \subset \bigcup_{i} E_{i} \text { and } D_{\mathcal{U}}\left(E_{i}\right)<\varepsilon\right\} .
$$

Observe that for J fixed, this function of λ satisfy the same property of the function $m_{\mathcal{U}}(\lambda, J)$ from Definition 2.2.11. That is, $0<m_{\mathcal{U}, \lambda}(J)<\infty$ for at most one λ.

Define now $h_{\mathcal{U}}^{*}(J):=\inf \left\{\lambda: m_{\mathcal{U}, \lambda}(J)=0\right\}$ and finally

$$
h^{*}(J)=h^{*}(T \mid J):=\sup \left\{h_{\mathcal{U}}^{*}(J): \mathcal{U} \text { is finite open cover of } X\right\} .
$$

Pesin and Pitskel prove in [PP, Proposition 4] that these definitions coincide, and we denote it by $h(J)$ or $h(T \mid J)$. This definition is compatible with the usual definition of topological entropy discussed in Subsection 2.2.2.1 whenever X is a compact topological space: Bowen prove in [Bo1, Proposition 1] that if X is compact, then $h(T \mid X)=h(T)$.

Now we present two results that show relations between this definition of entropy and the set of Borel T-invariant probability measures.

Theorem 2.2.3. ([Bo1, Theorem 1]) Assume that X is compact and let $J \subset X$. If $\mu \in \mathcal{M}_{T}$ is such that $\mu(J)=1$, then $h(\mu) \leq h(T \mid J)$.

For X compact, the set \mathcal{M}_{T} is a compact topological space with the weak* topology (see for example [OV, Chapter 2]). For $x \in X$, we define $V_{T}(x)$ as the set of all limit points of the sequence

$$
\left(\frac{1}{n} \sum_{j=0}^{n-1} \delta_{T^{j} x}\right)_{n \in \mathbb{N},}
$$

where δ_{a} is the atomic measure concentrated at the point a. Then, $V_{T}(x)$ is non-empty and by [OV, Lemma 2.2.4] we have $V_{T}(x) \subset \mathcal{M}_{T}$.

Theorem 2.2.4. ([Bo1, Theorem 2]) Assume X is compact, and set

$$
Q R(t):=\left\{x \in X: \exists \mu \in V_{T}(x) \text { with } h(\mu) \leq t\right\} .
$$

Then $h(T \mid Q R(t)) \leq t$.

Chapter 3

Symbolic Dynamics

In this chapter we will introduce the symbolic space over a countable alphabet, where later we will do the multifractal analysis. Also we are going to define notions of topological entropy of the shift map, and thermodynamic formalism tools which will be used in our arguments. We will use definitions and notation mainly from [MaU].

3.1 Countable full-shift

Definition 3.1.1. Consider the countable alphabet of natural numbers \mathbb{N}. Denote by

$$
\Sigma:=\left\{x=\left(x_{n}\right)_{n \geq 1}: x_{n} \in \mathbb{N} \text { for every } n\right\}
$$

the space of sequences with terms in \mathbb{N}.

The set Σ is a topological space with the product topology, generated by the cylinders

$$
\left[i_{1} \cdots i_{n}\right]:=\left\{x \in \Sigma: x_{j}=i_{j} \text { for } 1 \leq j \leq n\right\}, \quad n \in \mathbb{N} .
$$

The finite sequence $w=i_{1} i_{2} \cdots i_{n} \in \mathbb{N}^{n}$ is called a word of length n. Sometimes, we will use the notation $[w]$ for the cylinders, where w is a word. Also for general elements $x, y \in \Sigma$, we will asume they have the form $x=\left(x_{n}\right)_{n \in \mathbb{N}}$ and $y=\left(y_{n}\right)_{n \in \mathbb{N}}$.

Over this space, consider the following metrics: for $\beta>0$ and $x, y \in \Sigma$, define

$$
d_{\beta}(x, y):=\exp \left(-\beta \max \left\{n \geq 1: x_{i}=y_{j} \text { for } 1 \leq j \leq n\right\}\right) .
$$

These metrics are all equivalent and they induce the product topology. A function is uniformly continuous with respect to one of these metrics if and only if it is uniformly continuous with respect to all of them. The same property holds for Hölder continuity, so we can define a notion of locally Hölder continuity in general, but with dependence in the metric.

When we work with Hausdorff dimension we will use the following metric, which is essentially one of the metrics presented: fix $\lambda>1$ and for $x, y \in \Sigma$ define

$$
\begin{equation*}
d(x, y):=\lambda^{-\min \left\{k \geq 1: x_{k} \neq y_{k}\right\}} \tag{3.1}
\end{equation*}
$$

This metric satisfies

$$
\begin{equation*}
\left[i_{1} \cdots i_{n}\right]=B\left(x, \lambda^{-n}\right) \quad \forall x \in\left[i_{1} \cdots i_{n}\right] \tag{3.2}
\end{equation*}
$$

where $B\left(x, \lambda^{-n}\right)$ is the usual open ball of center x and radius λ^{-n}.
Definition 3.1.2. Consider the dynamical system $\sigma: \Sigma \rightarrow \Sigma$ defined by

$$
\sigma\left(\left(x_{n}\right)_{n \in \mathbb{N}}\right):=\left(x_{n+1}\right)_{n \in \mathbb{N}}
$$

This is a continuous function, and it is called the shift map.
Definition 3.1.3. A function $\phi: \Sigma \rightarrow \mathbb{R}$ is said to be locally Hölder if there exist constants $C, \beta>0$ such that for every $x, y \in \Sigma$ with $x_{1}=y_{1}$ we have

$$
|\phi(x)-\phi(y)| \leq C d_{\beta}(x, y)
$$

Remark 3.1.1. This definition of locally Hölder continuity is called "Hölder continuity" in [MaU], but it is weaker than the usual definition of Hölder continuity, since we do not ask anything for sequences x, y with $x_{1} \neq y_{1}$. Thus, locally Hölder continuous functions can be unbounded.

Definition 3.1.4. A function $\phi: \Sigma \rightarrow \mathbb{R}$ is said to be summable if

$$
\sum_{i \in \mathbb{N}} \exp \left(\sup _{[i]} \phi\right)<\infty
$$

Definition 3.1.5. We say that two functions $\phi, \psi: \Sigma \rightarrow \Sigma$ are cohomologous in a class \mathcal{D} if there exists a function $g \in \mathcal{D}$ such that

$$
\phi-\psi=g-g \circ \sigma
$$

Given a set $F \subset \mathbb{N}$, set

$$
\Sigma_{F}:=\left\{x \in \Sigma: x_{i} \in F \text { para todo } i \in \mathbb{N}\right\} \subset \Sigma,
$$

and observe that $\sigma\left(\Sigma_{F}\right) \subset \Sigma_{F}$. Thus, for every subset $F \subset \mathbb{N}$ it is allowed to consider $\sigma: \Sigma_{F} \rightarrow \Sigma_{F}$. Also notice that the space Σ_{F} is compact if and only if the set F is finite.

Definition 3.1.6. We will use the following notation: given a natural number $N \in \mathbb{N}$, $\operatorname{set} \Sigma_{N}:=\Sigma_{\{1,2 \ldots, N\}}$.

Recall that we already have seen the shift map acting on this space in Example 2.2.1 and Example 2.2.2.

3.2 Thermodynamic formalism

In this section we present some aspects and results of the thermodynamic formalism of continuous functions (also called potentials) on the symbolic space over a countable alphabet. We will define an important generalization of the concept of topological entropy. The topological pressure is a weighted version of the topological entropy, where the 'weights' are given by a potential $\phi: \Sigma_{F} \rightarrow \mathbb{R}, F \subset \mathbb{N}$. Using a subadditivity argument (see [MaU, Lemma 2.1.2]) we have the following definition.

Definition 3.2.1. Given a continuous function $\phi: \Sigma_{F} \rightarrow \mathbb{R}$, the topological pressure of ϕ with respect to the shift map $\sigma: \Sigma_{F} \rightarrow \Sigma_{F}$ is defined by

$$
P_{F}(\phi):=\lim _{n \rightarrow \infty} \frac{1}{n} \log \sum_{w \in F^{n}} \exp \left(\sup _{x \in[w] \cap \Sigma_{F}} \sum_{j=0}^{n-1} \phi\left(\sigma^{j} x\right)\right) .
$$

If $F=\mathbb{N}$, denote $P(\phi):=P_{\mathbb{N}}(\phi)$.
Remark 3.2.1. Notice that it can happen that $P_{F}(\phi)=-\infty$ or ∞. Also observe that if $E \subset F \subset \mathbb{N}$ then $P_{E}(\phi) \leq P_{F}(\phi)$, and that if $\phi \leq \psi$ then $P_{F}(\phi) \leq P_{F}(\psi)$.

Example 3.2.1. Let us compute the topological pressure of the locally constant potential $\phi: \Sigma \rightarrow \mathbb{R}$ defined by $\left.\phi\right|_{[i]} \equiv \log a_{i}:$

$$
\begin{aligned}
P(\phi) & =\lim _{n \rightarrow \infty} \frac{1}{n} \log \sum_{w \in \mathbb{N}^{n}} \exp \left(\sup _{x \in[w]} \sum_{i=0}^{n-1} \phi\left(\sigma^{i} x\right)\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \log \sum_{w \in \mathbb{N}^{n}} \exp \left(\sum_{i=0}^{n-1} \log a_{w_{i}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \log \sum_{w \in \mathbb{N}^{n}} a_{w_{1}} \cdots a_{w_{n}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(\sum_{i \in \mathbb{N}} a_{i}\right)^{n} \\
& =\log \sum_{i=1}^{\infty} a_{i} .
\end{aligned}
$$

Remark 3.2.2. Let $F \subset \mathbb{N}$. Then for every continuous function $\phi: \Sigma_{F} \rightarrow \mathbb{R}$ and $C \in \mathbb{R}$, we have $P_{F}(\phi+C)=P_{F}(\phi)+C$. In fact,

$$
\begin{aligned}
\frac{1}{n} \log \sum_{w \in F^{n}} \exp \left(\sup _{[w] \cap \Sigma_{F}} S_{n} \phi+n C\right) & =\frac{1}{n} \log \sum_{w \in F^{n}} e^{n C} \exp \left(\sup _{[w] \cap \Sigma_{F}} S_{n} \phi\right) \\
& =\frac{1}{n} \log e^{n C}+\frac{1}{n} \log \sum_{w \in F^{n}} \exp \left(\sup _{[w] \cap \Sigma_{F}} S_{n} \phi\right),
\end{aligned}
$$

so letting $n \rightarrow \infty$ we get the desired result.
Proposition 3.2.1. ([MaU, Proposition 2.1.9]) Let $\phi: \Sigma \rightarrow \mathbb{R}$ be a locally Hölder potential. Then ϕ is summable if and only if $P(\phi)<\infty$.

Definition 3.2.2. We define the topological entropy of $\sigma: \Sigma_{F} \rightarrow \Sigma_{F}$ as the topological pressure of the constant potential $\phi \equiv 0$. That is,

$$
h_{F}(\sigma):=P_{F}(0) .
$$

Example 3.2.2. Let us compute the topological entropy of $\sigma: \Sigma_{F} \rightarrow \Sigma_{F}$ when F is a finite subset of \mathbb{N}. Notice that

$$
h_{F}(\sigma)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \sum_{w \in F^{n}} 1=\log \# F .
$$

Observe that this number coincides with our previous computation of the topological entropy on Example 2.2.2, with $F=\{1,2, \ldots, N\}$. Also, by Remark 3.2.1, we have $h(\sigma) \geq h_{F}(\sigma)$ for every finite set $F \subset \mathbb{N}$, in particular $h(\sigma) \geq \log N$ for every $N \in \mathbb{N}$. Thus, we conclude that the countable full shift has infinite entropy.

Definition 3.2.3. A function $\phi: \Sigma \rightarrow \mathbb{R}$ is said to be acceptable if it is uniformly continuous and

$$
\operatorname{osc}(f):=\sup _{i \in \mathbb{N}}\left\{\sup _{[i]} \phi-\inf _{[i]} \phi\right\}<\infty
$$

Remark 3.2.3. Notice that each locally Hölder function is acceptable.

Now, we have an approximation of the topological pressure of an acceptable function by its pressure on compacts full-shifts contained in Σ (see Theorem 2.1.5 in [MaU])

Theorem 3.2.1. If $\phi: \Sigma \rightarrow \mathbb{R}$ is acceptable, then

$$
P(\phi)=\sup \left\{P_{F}(\phi): F \subset \mathbb{N} \text { finite }\right\}
$$

Recall that we denote by \mathcal{M}_{σ} the set of all σ-invariant Borel probability measures on Σ.
Definition 3.2.4. A measure $\mu \in \mathcal{M}_{\sigma}$ is said to be compactly supported if there exists a finite set $F \subset \mathbb{N}$ such that $\mu\left(\Sigma_{F}\right)=1$.

We have a variational principle for pressure and compactly supported measures (see [Bo2], [R], [W]), which says that if $F \subset \mathbb{N}$ is finite,

$$
P_{F}(\phi)=\sup \left\{h(\mu)+\int \phi d \mu: \mu \in \mathcal{M}_{\sigma}, \mu\left(\Sigma_{F}\right)=1\right\}
$$

We need a variational principle for functions defined on the whole space Σ, and also we are interested in Borel probability measures which attain that supremum. With some hypotheses on ϕ, there is a special kind of measures which have this property.

Definition 3.2.5. Let $\phi: \Sigma \rightarrow \mathbb{R}$ be a potential. We say that $\mu \in \mathcal{M}_{\sigma}$ is a Gibbs state of ϕ if there exist constants $C \geq 1$ and $P \in \mathbb{R}$ such that for every $n \in \mathbb{N}$, every word w of length n and every $x \in[w]$,

$$
\begin{equation*}
C^{-1} \leq \frac{\mu([w])}{\exp \left(-n P+\sum_{j=0}^{n-1} \phi\left(\sigma^{j} x\right)\right)} \leq C . \tag{3.3}
\end{equation*}
$$

Remark 3.2.4. Notice that the Birkhoff $\operatorname{sum} S_{n} \phi:=\sum_{j=0}^{n-1} \phi \circ \sigma^{j}$ in (3.3) can be replaced by $\sup _{[w]} S_{n} \phi$. In fact, it is clear that for $x \in[w]$

$$
\frac{\mu([w])}{\exp \left(-n P+\sup _{[w]} S_{n} \phi\right)} \leq \frac{\mu([w])}{\exp \left(-n P+S_{n} \phi(x)\right)} \leq C
$$

On the other hand, notice that for every $x \in[w]$ we have $S_{n} \phi(x) \leq \log (C \mu([w]))+n P$, so we can take supremum over $x \in[w]$ and get

$$
\begin{equation*}
C^{-1} \leq \frac{\mu([w])}{\exp \left(-n P+\sup _{[w]} S_{n} \phi\right)} \leq C . \tag{3.4}
\end{equation*}
$$

Proposition 3.2.2. If a potential $\phi: \Sigma \rightarrow \mathbb{R}$ admits a Gibbs state μ with constants C and P, then it has finite pressure and $P(\phi)=P$.

Proof. Fix $n \geq 1$. Sum in (3.4) over all words $w \in \mathbb{N}^{n}$. Since $\sum_{w \in \mathbb{N}^{n}} \mu([w])=1$ we have

$$
C^{-1} e^{-n P} \sum_{w \in \mathbb{N}^{n}} \exp \left(\sup _{[w]} S_{n} \phi\right) \leq 1 \leq C e^{-n P} \sum_{w \in \mathbb{N}^{n}} \exp \left(\sup _{[w]} S_{n} \phi\right) .
$$

Taking logarithm, dividing by n and taking limit as $n \rightarrow \infty$ we get

$$
-P+P(\phi) \leq 0 \leq-P+P(\phi) .
$$

See [MaU] for the proofs of the following results:
Theorem 3.2.2. Let $\phi: \Sigma \rightarrow \mathbb{R}$ be a locally Hölder summable potential. Then there exists a unique Gibbs state of ϕ, and this measure is ergodic.

Theorem 3.2.3. (Variational Principle) Let $\phi: \Sigma \rightarrow \mathbb{R}$ be a locally Hölder summable potential. Then

$$
P(\phi)=\sup \left\{h(\nu)+\int \phi d \mu: \nu \in \mathcal{M}_{\sigma}, \int \phi d \nu>-\infty\right\}=h(\mu)+\int \phi d \mu
$$

where μ is the unique Gibbs state for ϕ.
Definition 3.2.6. A measure which attains the supremum is called an equilibrium state for ϕ.

Theorem 3.2.4. Let $\phi: \Sigma \rightarrow \mathbb{R}$ be a locally Hölder summable potential. Then the Gibbs state of ϕ is its unique equilibrium state.

Remark 3.2.5. The three previous results also hold in a compact full-shift Σ_{N} and for a Hölder function $\phi: \Sigma_{N} \rightarrow \Sigma_{N}$ (see [Bo2, Chapter 1]).

Later, we will use the function $q \mapsto P(q \phi)$. In [MiU, Theorem 2.10] it is explained how to use transfer operator theory to prove the following theorem.

Theorem 3.2.5. Let $\phi: \Sigma \rightarrow \mathbb{R}$ be a locally Hölder function and consider the set of real numbers q such that $P(q \phi)<\infty, D(\phi):=\{q \in \mathbb{R}: q \phi$ is summable $\}$. Then the function $D(\phi) \ni q \mapsto P(q \phi) \in \mathbb{R}$ is real analytic, and for $q_{0} \in D(\phi)$

$$
\left.\frac{d}{d q} P(q \phi)\right|_{q=q_{0}}=\int \phi d \mu_{q_{0}}
$$

where $\mu_{q_{0}}$ is the equilibrium state of $q_{0} \phi$.
Remark 3.2.6. If in addition $\phi \leq 0$, the function $q \mapsto P(q \phi)$ when finite, it is real analytic and decreasing. It is also a convex function. It is strictly convex unless ϕ is cohomologous to a constant function. This also holds in compact full-shifts for a Hölder potential $\phi: \Sigma_{N} \rightarrow \Sigma_{N}$.

Also, we have a good approximation of the function $q \mapsto P(q \phi)$ by the topological pressure of $q \phi: \Sigma_{N} \rightarrow \Sigma_{N}$, that is, the pressure restricted to the compact full-shifts. Denote by $P_{N}(q \phi):=P_{\{1,2, \ldots, N\}}(q \phi)$ the topological pressure of $q \phi$ restricted to Σ_{N}.

Proposition 3.2.3. Let $\phi: \Sigma \rightarrow \mathbb{R}$ be an acceptable potential. Then for every $q \in \mathbb{R}$,

$$
\lim _{N \rightarrow \infty} P_{N}(q \phi)=P(q \phi) .
$$

Proof. Let $\varepsilon>0$ and fix $q \in \mathbb{R}$. Observe that the function $q \phi$ is also acceptable, so $P(q \phi)=\sup \left\{P_{F}(q \phi): F \subset \mathbb{N}\right.$ finite $\}$. Therefore, there exists a finite set $F \subset \mathbb{N}$ such that $P(q \phi)-\varepsilon<P_{F}(q \phi)$. Now set $n_{*}:=\max F$ and observe that $F \subset\left\{1,2, \ldots, n_{*}\right\}$. Thus, by Remark 3.2.1 for every $N \geq n_{*}$

$$
P_{F}(q \phi) \leq P_{n_{*}}(q \phi) \leq P_{N}(q \phi) \leq P(q \phi) .
$$

Hence, for every $N \geq n_{*}$

$$
P(q \phi)-\varepsilon<P_{N}(q \phi)<P(q \phi)+\varepsilon
$$

3.3 Relation between Hausdorff dimension and entropy

In the full-shift there is a relationship between Hausdorff dimension and entropy. For example, when it is computed with respect to an ergodic probability measure, or computed over the compact full-shifts contained in the whole space Σ. We will review them
before performing multifractal analysis, which may give us this same relation on the level sets we will be studying.

Remark 3.3.1. Observe that Σ with the metric

$$
d(x, y):=\lambda^{-\min \left\{k \geq 1: x_{k} \neq y_{k}\right\}}, \quad \lambda>1
$$

is a Besicovitch metric space with finite multiplicity (see Definition 2.1.5 and Definition 2.1.6), considering that balls in this space correspond to cylinders (see (3.2)). This allows us to use Theorem 2.1.1 and Theorem 2.1.2 on our arguments when we are computing Hausdorff dimension.

Proposition 3.3.1. Let μ be an ergodic Borel σ-invariant probability measure on Σ_{N}. Then,

$$
\operatorname{dim}_{H} \mu=\frac{h(\mu)}{\log \lambda}
$$

Proof. Denote by $C_{n}(x):=\left\{y \in \Sigma_{N}: x_{i}=y_{i}\right.$ for $\left.1 \leq i \leq n\right\}$ the cylinder of length n which contains x. Since μ is ergodic, by Shannon-McMillan-Breiman Theorem (Theorem 2.2.1), for μ-almost every $x \in \Sigma_{N}$

$$
d_{\mu}(x)=\lim _{r \rightarrow 0} \frac{\log \mu(B(x, r))}{\log r}=\lim _{n \rightarrow \infty} \frac{\log \mu\left(C_{n}(x)\right)}{\log \lambda^{-n}}=\frac{1}{\log \lambda} \lim _{n \rightarrow \infty}-\frac{1}{n} \log \mu\left(C_{n}(x)\right)=\frac{h(\mu)}{\log \lambda} .
$$

Thus, by Theorem 2.1.1 we conclude that $\operatorname{dim}_{H} \mu=\frac{h(\mu)}{\log \lambda}$.
Now, the same holds for Hausdorff dimension and entropy on the entire space. Recall the notation introduced on Definition 3.1.6 for the full-shift on finite symbols, and denote by $h_{N}(\sigma)$ the topological entropy of $\sigma: \Sigma_{N} \rightarrow \Sigma_{N}$.
Proposition 3.3.2. $\operatorname{dim}_{H} \Sigma_{N}=\frac{h_{N}(\sigma)}{\log \lambda}$.
Proof. Let μ be the Bernoulli measure (recall the definition in Example 2.2.1) on Σ_{N} such that $\mu([i])=1 / N$ for $1 \leq i \leq N$. By Example 2.2.1, we know that

$$
h(\mu)=-\sum_{i=1}^{N} \frac{1}{N} \log \frac{1}{N}=\log N .
$$

Since μ is ergodic, by Proposition 3.3.1 and using that $\mu\left(\Sigma_{N}\right)=1$ we have

$$
\frac{\log N}{\log \lambda}=\operatorname{dim}_{H} \mu=\inf \left\{\operatorname{dim}_{H} Z: \mu(Z)=1\right\} \leq \operatorname{dim}_{H} \Sigma_{N} .
$$

For the other inequality, set $s:=\frac{\log N}{\log \lambda}$ and notice that $\operatorname{diam}\left[i_{1} \ldots i_{n}\right]=\frac{1}{\lambda^{n+1}}$ for every cylinder of length n. Fix $\delta>0$ and choose $n \geq 1$ such that $1 / \lambda^{n+1}<\delta$. Then

$$
\begin{aligned}
\mathcal{H}_{\delta}^{s}\left(\Sigma_{N}\right) & =\inf \left\{\sum_{i=1}^{\infty}\left(\operatorname{diam} U_{i}\right)^{s}:\left\{U_{i}\right\} \text { is open cover of } \Sigma_{N}, \operatorname{diam} U_{i}<\delta\right\} \\
& \leq \sum_{\text {cylinders of length } n}\left(\operatorname{diam}\left[i_{1} \ldots i_{n}\right]\right)^{s} \\
& =\frac{N^{n}}{\lambda^{n+1) s}}=\frac{1}{\lambda^{s}} .
\end{aligned}
$$

Letting $\delta \rightarrow 0$ we get $\mathcal{H}^{s}\left(\Sigma_{N}\right)<\infty$. Thus, $\operatorname{dim}_{H} \Sigma_{N} \leq s$ and we conclude

$$
\operatorname{dim}_{H} \Sigma_{N}=\frac{\log N}{\log \lambda} .
$$

Recall that we already computed the topological entropy of a full-shift over a finite alphabet $h_{N}(\sigma)=\log N$ (see Example 2.2.2 or Example 3.2.2).

Chapter 4

Multifractal Analysis: Compact case

4.1 Introduction and notation

Let us fix some notation. Throughout this chapter, fix $N \in \mathbb{N}$ and let Σ be the full-shift on N symbols $\{1,2, \ldots, N\}$. Denote by $P(\phi)$ the topological pressure of a potential $\phi: \Sigma \rightarrow \mathbb{R}$ (in order to lighten the notation, we will not use the index N) and by \mathcal{M}_{σ} the space of Borel σ-invariant probability measures on Σ. For $\lambda>1$, we use the metric d as in (3.1).

Let $\phi: \Sigma \rightarrow \mathbb{R}$ be a Hölder potential such that $\phi<0, P(\phi) \leq 0$ and not cohomologous to a constant function. For $\alpha \in \mathbb{R}$, define

$$
\begin{equation*}
J_{\alpha}=\left\{x \in \Sigma: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \phi\left(\sigma^{j} x\right)=\alpha\right\} . \tag{4.1}
\end{equation*}
$$

Definition 4.1.1. The Hausdorff dimension spectrum and the entropy spectrum are defined respectively by

$$
\begin{aligned}
& D(\alpha):=\operatorname{dim}_{H} J_{\alpha} \\
& E(\alpha):=h\left(\sigma \mid J_{\alpha}\right),
\end{aligned}
$$

and the domain of each one of them is the set $\left\{\alpha \in \mathbb{R}: J_{\alpha} \neq \varnothing\right\}$.

4.2 Theorem: compact setting

In this section we will prove the main theorem in the compact case. Yakov Pesin and Howard Weiss proved this result ([PW, Theorem 1]) for the Hausdorff dimension spectrum. Their proof is a little different than ours, since they use the level sets
$K_{\alpha}:=\left\{x \in \Sigma: d_{\mu_{\phi}}(x)=\alpha\right\}$, where μ_{ϕ} is the equilibrium measure of the potential ϕ. In [PW, Proposition 1] they showed a relation between the Birkhoff average and the pointwise dimension for a special equilibrium measure. It follows from this proposition that results on the spectrum $f(\alpha):=\operatorname{dim}_{H} K_{\alpha}$ can be translated into results on the spectrum $D(\alpha)$.

Theorem 4.2.1.

Let $\phi: \Sigma \rightarrow(-\infty, 0)$ be a Hölder potential with $P(\phi) \leq 0$ and not cohomologous to a constant function. For $\alpha \in \mathbb{R}$, let J_{α} as in (4.1) and the functions D, E from Definition 4.1.1. Then, the following hold:

1. The domain of D and E is a compact interval $[\underline{\alpha}, \bar{\alpha}]$.
2. For every $\alpha \in(\underline{\alpha}, \bar{\alpha})$, there exists a measure μ_{α} such that $E(\alpha)=h\left(\mu_{\alpha}\right)$ and $D(\alpha)=\operatorname{dim}_{H} \mu_{\alpha}$.
3. For every $\alpha \in(\underline{\alpha}, \bar{\alpha})$, the set J_{α} is dense in Σ.
4. The functions D and E are real analytic and strictly convex.
5. For every $\alpha \in(\underline{\alpha}, \bar{\alpha})$,

$$
D(\alpha)=\frac{E(\alpha)}{\log \lambda} .
$$

Proof. By [J, Proposition 2.1], we have that

$$
\bar{\alpha}:=\sup _{\mu \in \mathcal{M}_{\sigma}} \int \phi d \mu \quad \text { and } \quad \underline{\alpha}:=\inf _{\mu \in \mathcal{M}_{\sigma}} \int \phi d \mu
$$

are respectively the supremum and infimum of possible Birkhoff averages reached by points in Σ. So, if $\alpha \notin[\underline{\alpha}, \bar{\alpha}]$ we have $J_{\alpha}=\varnothing$ and if $\alpha \in[\underline{\alpha}, \bar{\alpha}], J_{\alpha} \neq \varnothing$.

We introduce the following function, which will be useful with both spectra. Define $T: \mathbb{R} \rightarrow \mathbb{R}$ by $T(q):=P(q \phi)$. We already know some properties of the function T (see Theorem 3.2.5 and Remark 3.2.6): it is real analytic, strictly convex and for every $q \in \mathbb{R}$

$$
T^{\prime}(q)=\int \phi d \mu_{q},
$$

where μ_{q} is the equilibrium state of the function $q \phi$.

Figure 4.1: Graphic of $q \mapsto T(q)$.

Now define $\alpha(q):=T^{\prime}(q)=\int \phi d \mu_{q}$.
Lemma 4.2.1. For each $\alpha \in(\underline{\alpha}, \bar{\alpha})$, there exists $q \in \mathbb{R}$ such that $\alpha(q)=\alpha$.

Proof. Define the function

$$
S(q)=\int \phi d \mu_{q}-\alpha .
$$

For $q>0$, by the Variational Principle we have

$$
\begin{aligned}
S(q) & =\frac{1}{q}\left(P(q \phi)-h\left(\mu_{q}\right)\right)-\alpha \\
& =\sup _{\nu \in \mathcal{M}_{\sigma}}\left(\int \phi d \nu-\bar{\alpha}+\frac{h(\nu)-h\left(\mu_{q}\right)}{q}\right)+\overbrace{\alpha-\alpha}^{>0} \\
& >0
\end{aligned}
$$

for $q>0$ large enough, since the entropies are bounded. A similar argument follows when $q<0$:

$$
\begin{aligned}
S(q) & =\frac{1}{q}\left(P(q \phi)-h\left(\mu_{q}\right)\right)-\alpha \\
& =\inf _{\nu \in \mathcal{M}_{\sigma}}\left(\int \phi d \nu-\underline{\alpha}+\frac{h(\nu)-h\left(\mu_{q}\right)}{q}\right)+\overbrace{\alpha-\alpha}^{<0} \\
& <0,
\end{aligned}
$$

thus we conclude that for $q<0$ negative enough ($|q|$ large), we have $S(q)<0$.
Then, since $S(q)=T^{\prime}(q)-\alpha$, in particular is a continuous function. By the Intermediate Value Theorem, there exists some $q_{\star} \in \mathbb{R}$ such that $S\left(q_{\star}\right)=0$.

Lemma 4.2.2. For every $q \in \mathbb{R}$,

$$
D(\alpha(q))=\frac{T(q)-q \alpha(q)}{\log \lambda}=\frac{h\left(\mu_{q}\right)}{\log \lambda} .
$$

Proof. Fix $q \in \mathbb{R}$. Recall that μ_{q} is an ergodic measure and a Gibbs state for $q \phi$. By Birkhoff's ergodic theorem, for μ_{q}-almost every $x \in \Sigma$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \phi\left(\sigma^{k} x\right)=\int \phi d \mu_{q}=\alpha(q),
$$

and thus $\mu_{q}\left(J_{\alpha(q)}\right)=1$. This implies that $J_{\alpha(q)}$ is dense in Σ, since μ_{q} gives positive measure to open sets.

Now denote by $S_{n} \phi$ the nth Birkhoff sum of ϕ. By the Gibbs property, there exists $C \geq 1$ such that for every $x \in \Sigma$ and $n \geq 1$

$$
C^{-1} \leq \frac{\mu_{q}\left(C_{n}(x)\right)}{\exp \left(-n T(q)+q S_{n} \phi(x)\right)} \leq C .
$$

Taking logarithm and then multiplying by $\frac{-1}{n \log \lambda}$ we get

$$
\frac{\log C}{n \log \lambda}+\frac{T(q)}{\log \lambda}-\frac{q S_{n} \phi(x)}{n \log \lambda} \geq \frac{\log \mu_{q}\left(C_{n}(x)\right)}{\log \lambda^{-n}} \geq \frac{\log C^{-1}}{n \log \lambda}+\frac{T(q)}{\log \lambda}-\frac{q S_{n} \phi(x)}{n \log \lambda} .
$$

Letting $n \rightarrow \infty$, by Birkhoff's ergodic theorem, and by the Variational Principle applied to $q \phi$, we have that for μ_{q}-almost every $x \in \Sigma$

$$
d_{\mu_{q}}(x)=\frac{T(q)-q \alpha(q)}{\log \lambda}=\frac{h\left(\mu_{q}\right)}{\log \lambda}=\operatorname{dim}_{H} \mu_{q} .
$$

This equality also holds for every $x \in J_{\alpha(q)}$, so by Remark 2.1.3 we conclude the result.

Lemma 4.2.3. For every $q \in \mathbb{R}$,

$$
E(\alpha(q))=h\left(\mu_{q}\right)=T(q)-q \alpha(q) .
$$

Proof. Fix $q \in \mathbb{R}$. Since μ_{q} is ergodic, by Birkhoff's Ergodic Theorem $\mu_{q}\left(J_{\alpha(q)}\right)=1$. By Theorem 2.2.3, and using the variational principle applied to the function $q \phi$ we have $T(q)-q \alpha(q)=h\left(\mu_{q}\right) \leq E(\alpha(q))$.

Now we claim that $J_{\alpha(q)} \subset Q R\left(h\left(\mu_{q}\right)\right)$ (recall the definition of $Q R(t)$ from Theorem 2.2.4). In fact, let $x \in J_{\alpha(q)}$ and $\nu \in V_{\sigma}(x)$. Notice that there exists a subsequence $\left(n_{k}\right)_{k}$
such that $\frac{1}{n_{k}} \sum_{j=0}^{n_{k}-1} \delta_{\sigma^{j} x}$ converges to ν in the weak* topology. Then,

$$
\int \phi d \nu=\lim _{k \rightarrow \infty} \int \phi d\left(\frac{1}{n_{k}} \sum_{j=0}^{n_{k}-1} \delta_{\sigma^{j} x}\right)=\lim _{k \rightarrow \infty} \frac{1}{n_{k}} \sum_{j=0}^{n_{k}-1} \phi\left(\sigma^{j} x\right)=\alpha(q) .
$$

By the variational principle applied to the function $q \phi$,

$$
T(q)=P(q \phi) \geq h(\nu)+q \int \phi d \nu=h(\nu)+q \alpha(q),
$$

which implies $h(\nu) \leq T(q)-q \alpha(q)=h\left(\mu_{q}\right)$. Thus, $x \in Q R\left(h\left(\mu_{q}\right)\right)$. Therefore, by the monotonicity of the entropy restricted to subsets and Theorem 2.2.4,

$$
E(\alpha(q)) \leq h\left(\sigma \mid Q R\left(h\left(\mu_{q}\right)\right)\right) \leq h\left(\mu_{q}\right)=T(q)-q \alpha(q),
$$

which completes the proof of the Lemma 4.2.3.

Now we have another proof of the following conditional variational principle, which avoids the use of the topological pressure restricted to subsets in the most general case (see [Ba, Theorem 9.2.1]):

Corollary 4.2.1. For every $\alpha \in(\underline{\alpha}, \bar{\alpha})$,

$$
\begin{equation*}
E(\alpha)=h\left(\sigma \mid J_{\alpha}\right)=\sup \left\{h(\mu): \mu \in \mathcal{M}_{\sigma}, \mu\left(J_{\alpha}\right)=1\right\} . \tag{4.2}
\end{equation*}
$$

Proof. By Theorem 2.2.3 for every σ-invariant measure μ such that $\mu\left(J_{\alpha}\right)=1$ we have $h(\mu) \leq E(\alpha)$. However, by Lemma 4.2.1, there exists $q \in \mathbb{R}$ such that $\alpha(q)=\alpha$ and $\mu_{q}\left(J_{\alpha}\right)=1$. By Lemma 4.2.3 $E(\alpha)=E(\alpha(q))=h\left(\mu_{q}\right)$ and we conclude the result.

Lemma 4.2.2 and Lemma 4.2.3 imply that for every $q \in \mathbb{R}$ we have

$$
D(\alpha(q))=\frac{E(\alpha(q))}{\log \lambda} .
$$

We know by Lemma 4.2.1 that every $\alpha \in(\underline{\alpha}, \bar{\alpha})$ can be expressed as $\alpha(q)$ for some $q \in \mathbb{R}$.
We want to write D and E as functions of α. In order to do this, notice that the function $\alpha(q)$ satisfies $\alpha^{\prime}(q)=T^{\prime \prime}(q)>0$ since T is strictly convex. Then, by the Inverse Function Theorem, we can write $q=q(\alpha)$ as the inverse function of $\alpha(q)$:

$$
E(\alpha)=T(q(\alpha))-\alpha q(\alpha), \quad D(\alpha)=\frac{T(q(\alpha))-\alpha q(\alpha)}{\log \lambda}=\frac{E(\alpha)}{\log \lambda} .
$$

Since E and D only differ by a factor $\log \lambda$, we analyze only one of them, $E(\alpha)$. Observe that

$$
E^{\prime}(\alpha)=T^{\prime}(q(\alpha)) q^{\prime}(\alpha)-\alpha q(\alpha)-q(\alpha)=-q(\alpha) .
$$

So $E^{\prime}(\alpha(q))=0$ if and only if $q=0$, this is on the value

$$
E(\alpha(0))=h\left(\mu_{0}\right)=\log N,
$$

because μ_{0} is the equilibrium state of the function 0 , i.e. the measure of maximal entropy. Also, α is an increasing function of q (recall $\alpha^{\prime}=T^{\prime \prime}>0$) and so is q as a function of α. Thus, if $\alpha<\alpha(0)$ then $E^{\prime}(\alpha)>0$ and if $\alpha>\alpha(0), E^{\prime}(\alpha)<0$. Finally, we have $E^{\prime \prime}(\alpha)=-q^{\prime}(\alpha)<0$, so E is concave. The real analyticity comes inherited from that of T.

Notice that $E(\alpha)$ is tangent to the line $y=-\alpha+P(\phi)$, since $E^{\prime}(\alpha(1))=-1$ at the point $(\alpha(1), E(\alpha(1)))=(\alpha(1),-\alpha(1)+P(\phi))$.

The same properties hold for the function D, and we sketch their behaviors on the following graphics.

Figure 4.2: Graphic of $\alpha \mapsto E(\alpha)$.

Figure 4.3: Graphic of $\alpha \mapsto D(\alpha)$.

Chapter 5

Multifractal Analysis: Non-compact case

5.1 Introduction and notation

In this chapter we go back to the non-compact space (Σ, d) with the notation used on Chapter 2: $P(\cdot)=P_{\mathbb{N}}(\cdot)$ and for every $N \in \mathbb{N}, P_{N}(\cdot)$ is the topological pressure of a potential defined on Σ_{N}. If a potential ϕ is defined over the whole space Σ, then $P_{N}(\phi)$ will denote the topological pressure of $\left.\phi\right|_{\Sigma_{N}}$. Also recall that now $h(\sigma)=\operatorname{dim}_{H} \Sigma=\infty$. This will have consequences for the function T and for the function D as well.

Let $\phi: \Sigma \rightarrow \mathbb{R}$ be a locally Hölder potential with $\phi<0$ and $P(\phi)=0$. For $\alpha \in \mathbb{R}$, we consider the level sets of the Birkhoff averages of the potential ϕ again

$$
\begin{equation*}
J_{\alpha}=\left\{x \in \Sigma: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \phi\left(\sigma^{j} x\right)=\alpha\right\} \tag{5.1}
\end{equation*}
$$

In the non-compact setting, we cannot compute the formula for $E(\alpha)$ as we did in the previous chapter, since it was strongly used the compactness of the space and of \mathcal{M}_{σ}. For example, we cannot ensure that the set $V_{\sigma}(x)$ is non-empty for every x. However, Corollary 4.2.1 suggests a way to define a new entropy spectrum, which may satisfy the relation between Hausdorff dimension and entropy, and in fact it does.

Definition 5.1.1. The variational entropy spectrum is defined by

$$
\tilde{E}(\alpha):=\sup \left\{h(\mu): \mu \in \mathcal{M}_{\sigma}, \mu\left(J_{\alpha}\right)=1\right\}
$$

5.2 Theorem: non-compact setting

In this section we will prove the theorem on the non-compact space. We will prove analogous results for the functions D and \tilde{E}, with certain differences depending on the function ϕ.

We use again the function $T(q)=P(q \phi)$, but notice that now it has a different behavior.
Remark 5.2.1. Observe that $T(0)=h(\sigma)=\infty$ and that $T(1)=P(\phi)=0$, so we can define

$$
q_{*}:=\inf \{q \in \mathbb{R}: P(q \phi)<\infty\} \in[0,1] .
$$

Then for every $q>q_{*}$ we have $T(q)<\infty$, so by Theorem 3.2.2 and Theorem 3.2.4 there exists a unique Gibbs state $\mu_{q} \in \mathcal{M}_{\sigma}$ of $q \phi$, which is also its equilibrium state. Also, we have the same properties of T on $\left(q_{*}, \infty\right)$ (see Remark 3.2.6 and Theorem 3.2.5) that we had in the previous case: it is real analytic, strictly convex and

$$
T^{\prime}(q)=\int \phi d \mu_{q} .
$$

The behavior of the function D and \tilde{E} depends on the behavior of the function T : there are several cases, $\lim _{q \rightarrow q_{*}^{+}} T^{\prime}(q)=-\infty$ or $>-\infty$, and $\lim _{q \rightarrow q_{*}^{+}} T(q)=\infty$ or $<\infty$.

Figure 5.1: Some behaviors of the function $T(q)$.
Remark 5.2.2. Despite it is not in the pictures, it is also possible that $\lim _{q \rightarrow q_{*}^{+}} T(q)=\infty$, and this implies $\lim _{q \rightarrow q_{*}^{+}} T^{\prime}(q)=-\infty$.

See [CI, Section 2] for analytic tools to construct examples of these different behaviors of the function $q \mapsto P(q \phi)$ depending on the potential.

For $q>q_{*}$, define

$$
\begin{equation*}
\alpha(q):=T^{\prime}(q)=\int \phi d \mu_{q}, \quad \alpha_{*}:=\lim _{q \rightarrow q_{*}^{+}} \alpha(q), \tag{5.2}
\end{equation*}
$$

Theorem 5.2.1.

Let $\phi: \Sigma \rightarrow(-\infty, 0)$ be a locally Hölder potential with $P(\phi)=0$. For $\alpha \in \mathbb{R}$, let J_{α} as in (5.1) and the functions D, \tilde{E} from Definition 4.1.1 and Definition 5.1.1 respectively. Let α_{*} as in (5.2). Then, the following hold:

1. If $\alpha_{*}=-\infty$, then the functions D and \tilde{E} are real analytic, strictly decreasing and concave. Moreover, for every $\alpha \in(-\infty, \bar{\alpha})$

$$
D(\alpha)=\frac{\tilde{E}(\alpha)}{\log \lambda}
$$

2. If $\alpha_{*}>-\infty$, then the functions \tilde{E} and D are real analytic and strictly concave for $\alpha>\alpha_{*}$. For $\alpha<\alpha_{*} \tilde{E}$ is affine with slope $-q_{*}$, and D is affine with slope $-q_{*} / \log \lambda$. Moreover, for every $\alpha \in(-\infty, \bar{\alpha})$

$$
D(\alpha)=\frac{\tilde{E}(\alpha)}{\log \lambda}
$$

In order to prove this theorem, we will need some previous lemmas.
Lemma 5.2.1. The domain of D and \tilde{E} is unbounded.

Proof. Jenkinson, Mauldin and Urbanski proved in [JMU, Theorem 1] that

$$
\begin{equation*}
\bar{\alpha}:=\sup _{\mu \in \mathcal{M}_{\sigma}} \int \phi d \mu=\lim _{q \rightarrow \infty} \alpha(q) \tag{5.3}
\end{equation*}
$$

Analogously, let

$$
\underline{\alpha}:=\inf _{\mu \in \mathcal{M}_{\sigma}} \int \phi d \mu
$$

we claim that $\underline{\alpha}=-\infty$. Assume by contradiction that $\underline{\alpha}>-\infty$. Since $P(\phi)=0$, by the Variational Principle for every $\nu \in \mathcal{M}_{\sigma}$

$$
h(\nu)=h(\nu)+\int \phi d \nu-\int \phi d \nu \leq P(\phi)-\int \phi d \nu \leq-\underline{\alpha}
$$

which is a contradiction since $\sup \left\{h(\mu): \mu \in \mathcal{M}_{\sigma}\right\}=\infty$. So our domain in this case is the interval $(\underline{\alpha}, \bar{\alpha})=(-\infty, \bar{\alpha}) \subseteq(-\infty, 0]$.

Lemma 5.2.2. For every $q>q_{*}$,

$$
\tilde{E}(\alpha(q))=T(q)-q \alpha(q)
$$

Proof. Fix $q>q_{*}$. Recall that μ_{q} is ergodic, so by Birkhoff's Ergodic Theorem we have $\mu_{q}\left(J_{\alpha(q)}\right)=1$, and that implies $h\left(\mu_{q}\right) \leq \tilde{E}(\alpha(q))$. We claim $\tilde{E}(\alpha(q))=h\left(\mu_{q}\right)$.

Let $\nu \in \mathcal{M}_{\sigma}$ such that $\nu\left(J_{\alpha(q)}\right)=1$. If we denote by $\bar{\phi}$ the Birkhoff average of ϕ (defined ν-almost everywhere), then

$$
\begin{equation*}
\int \phi d \nu=\int \bar{\phi} d \nu=\int_{J_{\alpha(q)}} \bar{\phi} d \nu=\alpha(q) . \tag{5.4}
\end{equation*}
$$

Therefore, by the Variational Principle with the potential $q \phi$,

$$
h(\nu)=h(\nu)+q \int \phi d \nu-q \int \phi d \mu_{q} \leq P(q \phi)-q \int \phi d \mu_{q}=h\left(\mu_{q}\right) .
$$

Taking supremum over all $\nu \in \mathcal{M}_{\sigma}$ such that $\nu\left(J_{\alpha(q)}\right)=1$, we get $\tilde{E}(\alpha(q)) \leq h\left(\mu_{q}\right)$ and therefore

$$
\tilde{E}(\alpha(q))=h\left(\mu_{q}\right)=T(q)-q \alpha(q) .
$$

Lemma 5.2.3. For every $q>q_{*}$,

$$
D(\alpha(q))=\frac{T(q)-q \alpha(q)}{\log \lambda} .
$$

Proof. Fix $q \in \mathbb{R}$. Recall that μ_{q} is an ergodic measure and a Gibbs state for $q \phi$. By Birkhoff's ergodic theorem, for μ_{q}-almost every $x \in \Sigma$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \phi\left(\sigma^{k} x\right)=\int \phi d \mu_{q}=\alpha(q),
$$

and thus $\mu_{q}\left(J_{\alpha(q)}\right)=1$.
Now denote by $S_{n} \phi$ the nth Birkhoff sum of ϕ. By the Gibbs property, there exists $C \geq 1$ such that for every $x \in \Sigma$ and $n \geq 1$

$$
C^{-1} \leq \frac{\mu_{q}\left(C_{n}(x)\right)}{\exp \left(-n T(q)+q S_{n} \phi(x)\right)} \leq C .
$$

Taking logarithm and then multiplying by $\frac{-1}{n \log \lambda}$ we get

$$
\frac{\log C}{n \log \lambda}+\frac{T(q)}{\log \lambda}-\frac{q S_{n} \phi(x)}{n \log \lambda} \geq \frac{\log \mu_{q}\left(C_{n}(x)\right)}{\log \lambda^{-n}} \geq \frac{\log C^{-1}}{n \log \lambda}+\frac{T(q)}{\log \lambda}-\frac{q S_{n} \phi(x)}{n \log \lambda} .
$$

Letting $n \rightarrow \infty$, by Birkhoff's ergodic theorem we have that for μ_{q}-almost every $x \in \Sigma$

$$
d_{\mu_{q}}(x)=\frac{T(q)-q \alpha(q)}{\log \lambda} .
$$

This equality also holds for every $x \in J_{\alpha(q)}$, so by Remark 2.1.3 we conclude the result.

Corollary 5.2.1. For every $q>q_{*}$,

$$
D(\alpha(q))=\frac{\tilde{E}(\alpha(q))}{\log \lambda} .
$$

Proof. The result follows from Lemma 5.2.2 and Lemma 5.2.3.

Proof of Theorem 5.2.1. For the part 1, assume that $\alpha_{*}=-\infty$ and observe that since $\alpha(q)=T^{\prime}(q)$ is a continuous function on $\left(q_{*}, \infty\right)$, by (5.3) for every $\alpha \in(-\infty, \bar{\alpha})$ there exists $q>q_{*}$ such that $\alpha(q)=\alpha$. It follows from Corollary 5.2.1 that

$$
D(\alpha)=\frac{\tilde{E}(\alpha)}{\log \lambda}
$$

for every $\alpha \in(-\infty, \bar{\alpha})$.
Since $\alpha^{\prime}(q)=T^{\prime \prime}(q)>0$ on $\left(q_{*}, \infty\right)$, by the Inverse Function Theorem we can write $q=q(\alpha)$, and thus

$$
D(\alpha)=\frac{T(q(\alpha))-q(\alpha) \alpha}{\log \lambda}, \quad \tilde{E}(\alpha)=T(q(\alpha))-q(\alpha) \alpha .
$$

The real analyticity of both functions D and \tilde{E} are inherited of that of T. Since D and \tilde{E} only differ by a factor $\log \lambda$, we analyze only one of them, $\tilde{E}(\alpha)$. Notice that for $\alpha \in(-\infty, \bar{\alpha})$

$$
E^{\prime}(\alpha)=-q(\alpha)<-q_{*} \leq 0,
$$

so \tilde{E} is strictly decreasing. Moreover, since $\alpha(q)$ is strictly increasing, so its inverse $q(\alpha)$ is. Thus, $\tilde{E}^{\prime \prime}(\alpha)=-q^{\prime}(\alpha)<0$ and we conclude that \tilde{E} is concave. Also, it is clear from the formula that

$$
\lim _{\alpha \rightarrow-\infty} D(\alpha)=\lim _{\alpha \rightarrow-\infty} \tilde{E}(\alpha)=\infty
$$

Notice that the tangent line at $\alpha_{1}:=\alpha(1)$ is given by the slope

$$
\tilde{E}^{\prime}\left(\alpha_{1}\right)=-q(\alpha(1))=-1
$$

and the point $\left(\alpha_{1}, \tilde{E}\left(\alpha_{1}\right)\right)=\left(\alpha_{1}, h\left(\mu_{1}\right)\right)$. But since $P(\phi)=0$, by the Variational Principle we have that

$$
h\left(\mu_{1}\right)=-\int \phi d \mu_{1}=-\alpha_{1},
$$

and we conclude that \tilde{E} is tangent to the line $y=-\alpha$, similarly to the compact case.

Figure 5.2: Graphic of $\alpha \mapsto D(\alpha)$ and $\alpha \mapsto \tilde{E}(\alpha)$.

For the part 2, assume that $\alpha_{*}>-\infty$ and observe that for $\alpha \in\left(\alpha_{*}, \bar{\alpha}\right)$, there exists $q>q_{*}$ such that $\alpha(q)=\alpha$. It follows from Corollary 5.2.1 that

$$
D(\alpha)=\frac{\tilde{E}(\alpha)}{\log \lambda}
$$

for every $\alpha \in\left(\alpha_{*}, \bar{\alpha}\right)$. The fact that the functions D and \tilde{E} are real analytic, strictly concave and strictly decreasing on ($\alpha_{*}, \bar{\alpha}$) are concluded with exactly the same arguments as in part 1 .

Before we go to the case $\alpha<\alpha_{*}$, we prove the following lemma:
Lemma 5.2.4. The function $q_{*} \phi$ is such that $T\left(q_{*}\right)=P\left(q_{*} \phi\right)<\infty$.

Proof. First notice that since $0 \geq \lim _{q \rightarrow q_{*}^{+}} T^{\prime}(q)>-\infty$ and since the function T^{\prime} is increasing, then

$$
L:=\lim _{q \rightarrow q_{*}^{+}} T(q)<\infty
$$

because if not, T would be an unbounded uniformly continuous (since T^{\prime} is bounded) function on a bounded interval, say $\left(q_{*}, q_{*}+1\right)$, and such function cannot exist. Moreover, since T is strictly decreasing, $T(q)<L$ for every $q>q_{*}$.

Assume by contradiction that $T\left(q_{*}\right)=\infty$ and set $T_{N}(q):=P_{N}(q \phi)$. By Proposition 3.2.3, there exists $N \in \mathbb{N}$ such that $T_{N}\left(q_{*}\right)>L+1$. Since T_{N} is continuous on q_{*} there exists $\delta>0$ such that if $\left|q-q_{*}\right|<\delta$, then $\left|T_{N}\left(q_{*}\right)-T_{N}(q)\right|<1$. In particular, if $q_{*}<q<q_{*}+\delta$, then $T_{N}\left(q_{*}\right)-T_{N}(q)<1$ (T_{N} is strictly decreasing as well). Thus,

$$
L+1<T_{N}\left(q_{*}\right)<T_{N}(q)+1
$$

This implies

$$
L<T_{N}(q) \leq T(q)<L
$$

which is a contradiction. Therefore $T\left(q_{*}\right)<\infty$.

In order to verify that \tilde{E} is affine on $\left(-\infty, \alpha_{*}\right)$, fix $\alpha \in\left(-\infty, \alpha_{*}\right)$. Let $\nu \in \mathcal{M}_{\sigma}$ such that $\nu\left(J_{\alpha}\right)=1$. Then, by the same argument as in (5.4) we get $\int \phi d \nu=\alpha$. Hence, by the Variational Principle with the potential $q_{*} \phi$

$$
h(\nu) \leq P\left(q_{*} \phi\right)-q_{*} \int \phi d \nu=T\left(q_{*}\right)-q_{*} \alpha .
$$

Taking supremum over $\nu \in \mathcal{M}_{\sigma}$ such that $\nu\left(J_{\alpha}\right)=1$ we get $\tilde{E}(\alpha) \leq T\left(q_{*}\right)-q_{*} \alpha$.
For the inverse inequality, recall that by Proposition 3.2.3 for every $q \in \mathbb{R}$

$$
\lim _{N \rightarrow \infty} T_{N}(q)=T(q) .
$$

Also, we can use the result on the compact case defining

$$
\tilde{E}_{N}(\alpha)=E_{N}(\alpha):=h\left(\sigma \mid J_{\alpha} \cap \Sigma_{N}\right) \leq \tilde{E}(\alpha) \quad \forall N \in \mathbb{N} .
$$

Remark 5.2.3. Here \tilde{E}_{N} is the variational entropy spectrum on the compact space Σ_{N}.

Notice that $T\left(q_{*}\right)<\infty$ implies that $q_{*}>0$ because $T(0)=h(\sigma)=\infty$. Now choose a sequence $q_{k} \in\left(0, q_{*}\right)$ such that $q_{k} \rightarrow q_{*}$. Since for every $k, \lim _{N} T_{N}\left(q_{k}\right)=\infty$, we choose N_{k} such that $T_{N_{k}}\left(q_{k}\right)>k$ and hence $T_{N_{k}}\left(q_{k}\right) \rightarrow \infty$ as $k \rightarrow \infty$. Therefore,

$$
\lim _{k \rightarrow \infty} \frac{T_{N_{k}}\left(q_{k}\right)-T_{N_{k}}\left(q_{*}\right)}{q_{k}-q_{*}}=-\infty .
$$

Since $T_{N_{k}}$ is analytic, combining the Mean Value Theorem and the Intermediate Value Theorem, there exists $q_{k}^{\prime} \in\left(q_{k}, q_{*}\right)$ such that $T_{N_{k}}^{\prime}\left(q_{k}^{\prime}\right)=\alpha$. Then,

$$
\begin{aligned}
\tilde{E}(\alpha) \geq \tilde{E}_{N_{k}}(\alpha) & =\tilde{E}_{N_{k}}\left(T_{N_{k}}^{\prime}\left(q_{k}^{\prime}\right)\right) \\
& =T_{N_{k}}\left(q_{k}^{\prime}\right)-q_{k}^{\prime} \alpha \\
& \geq T_{N_{k}}\left(q_{*}\right)-q_{k}^{\prime} \alpha .
\end{aligned}
$$

Taking limit as $k \rightarrow \infty$ we get $\tilde{E}(\alpha) \geq T\left(q_{*}\right)-q_{*} \alpha$. Thus we conclude that for $\alpha<\alpha_{*}$, $\tilde{E}(\alpha)=T\left(q_{*}\right)-q_{*} \alpha$. Observe that $T\left(q_{*}\right)=P\left(q_{*} \phi\right)<\infty$ implies that there exists an equilibrium measure and Gibbs state μ_{*}, so by the same arguments as in the proof of Lemma 5.2.2 we conclude $\tilde{E}\left(\alpha_{*}\right)=T\left(q_{*}\right)-q_{*} \alpha_{*}$.

By the same arguments as in the proof of part 1 , and noticing that $\alpha(1) \geq \alpha_{*}$, we deduce again that the line $y=-\alpha$ is tangent to the function \tilde{E}.

Figure 5.3: Graphic of $\alpha \mapsto \tilde{E}(\alpha)$.

Now we study the Hausdorff dimension spectrum on $\left(-\infty, \alpha_{*}\right)$. Let $\alpha<\alpha_{*}$ and set $D_{N}(\alpha):=\operatorname{dim}_{H}\left(J_{\alpha} \cap \Sigma_{N}\right)$ the dimension spectrum on the compact space Σ_{N}. Using the results on the compact case and the sequences $\left\{N_{k}\right\}$ and $\left\{q_{k}^{\prime}\right\}$ we get

$$
D(\alpha) \geq D_{N_{k}}(\alpha)=\frac{\tilde{E}_{N_{k}}(\alpha)}{\log \lambda} \geq \frac{T_{N_{k}}\left(q_{*}\right)-q_{k}^{\prime} \alpha}{\log \lambda}
$$

Letting $k \rightarrow \infty$,

$$
D(\alpha) \geq \frac{T\left(q_{*}\right)-q_{*} \alpha}{\log \lambda}
$$

for $\alpha<\alpha_{*}$.
For the inverse inequality we use an auxiliar function similar to the one used in (4.2). For $\alpha \in\left(-\infty, \alpha_{*}\right)$, define

$$
F(\alpha):=\frac{1}{\log \lambda} \sup \left\{h(\mu): \mu \in \mathcal{M}_{\sigma}, \int \phi d \mu=\alpha\right\} .
$$

An important property of the function F is that it is continuous. This fact was proven in [IJ, Lemma 3.3], and we do the same argument.

Lemma 5.2.5. The function F is continuous in $\left(-\infty, \alpha_{*}\right)$.

Proof. Let $\left\{\mu_{n}\right\}_{n}$ be a sequence of measures in \mathcal{M}_{σ} such that $\int \phi d \mu_{n}=: \alpha_{n}$ converges to $\alpha \in\left(-\infty, \alpha_{*}\right)$. Let $\bar{\mu}, \underline{\mu} \in \mathcal{M}_{\sigma}$ such that

$$
-\infty<\int \phi d \underline{\mu}<\alpha<\int \phi d \bar{\mu} .
$$

Then for every $n \in \mathbb{N}$, there exists $p_{n} \in[0,1]$ such that the following convex combination $\nu_{n}:=p_{n} \mu_{n}+\left(1-p_{n}\right) \mu^{n}$, where $\mu^{n} \in\{\underline{\mu}, \bar{\mu}\}$, satisfies $\int \phi d \nu_{n}=\alpha$.

Since $P(\phi)=0$ and the sequence $\left\{\alpha_{n}\right\}_{n}$ is bounded, the sequence of entropies $\left\{h\left(\mu_{n}\right)\right\}_{n}$ is bounded as well. In fact, if $\left|\alpha_{n}\right| \leq M$, then by the Variational Principle we have

$$
0 \leq h\left(\mu_{n}\right) \leq-\int \phi d \mu_{n}=-\alpha_{n} \leq M
$$

It follows from the definition of the measures ν_{n} that $\alpha=p_{n} \alpha_{n}+\left(1-p_{n}\right) \alpha^{n}$, where $\alpha^{n}:=\int \phi d \mu^{n} \in\left\{\int \phi d \underline{\mu}, \int \phi d \bar{\mu}\right\}$. Thus, we get

$$
\left(1-p_{n}\right)\left(\alpha-\alpha^{n}\right)=p_{n}\left(\alpha_{n}-\alpha\right),
$$

which implies that $p_{n} \rightarrow 1$ as $n \rightarrow \infty$. Therefore

$$
\lim _{n \rightarrow \infty}\left|h\left(\nu_{n}\right)-h\left(\mu_{n}\right)\right|=\lim _{n \rightarrow \infty}\left|1-p_{n}\right| \cdot \underbrace{\left|h\left(\mu^{n}\right)-h\left(\mu_{n}\right)\right|}_{\text {bounded }}=0,
$$

and hence we conclude that

$$
F(\alpha) \geq \limsup _{n \rightarrow \infty} F\left(\alpha_{n}\right) .
$$

For the other direction let $\mu, \nu \in \mathcal{M}_{\sigma}$ such that $\int \phi d \nu=\beta<\alpha=\int \phi d \mu$. Letting $\nu_{p}:=p \nu+(1-p) \mu$ we observe that

$$
\liminf _{x \rightarrow \alpha^{-}} F(x) \geq \lim _{p \rightarrow 0} \frac{h\left(\nu_{p}\right)}{\log \lambda}=\frac{h(\mu)}{\log \lambda}
$$

and

$$
\liminf _{x \rightarrow \beta^{+}} F(x) \geq \lim _{p \rightarrow 1} \frac{h\left(\nu_{p}\right)}{\log \lambda}=\frac{h(\nu)}{\log \lambda},
$$

since $\int \phi d \nu_{p}=p \beta+(1-p) \alpha$ takes values on every point of the interval (β, α) as p varies. Thus, we deduce

$$
F(\alpha) \leq \liminf _{n \rightarrow \infty} F\left(\alpha_{n}\right) .
$$

Let $\mu \in \mathcal{M}_{\sigma}$ such that $\int \phi d \mu=\alpha$. By the Variational Principle with the summable potential $q_{*} \phi$,

$$
h(\mu)=h(\mu)+q_{*} \int \phi d \mu-q_{*} \int \phi d \mu \leq T\left(q_{*}\right)-q_{*} \alpha .
$$

Taking supremum over $\mu \in \mathcal{M}_{\sigma}$ such that $\int \phi d \mu=\alpha$ we get

$$
F(\alpha) \leq \frac{T\left(q_{*}\right)-q_{*} \alpha}{\log \lambda}
$$

so to conclude the theorem it is enough to prove that for every $\alpha<\alpha_{*}, D(\alpha) \leq F(\alpha)$. This inequality is also proven in [IJ], but we adapted it to our case. For $\alpha<\alpha_{*}, N \in \mathbb{N}$ and $\varepsilon>0$ consider

$$
J_{\alpha}(N, \varepsilon):=\left\{x \in \Sigma:\left|\frac{1}{k} S_{k} \phi(x)-\alpha\right|<\varepsilon \quad \forall k \geq N\right\} .
$$

Observe that $J_{\alpha} \subset \bigcup_{n=1}^{\infty} J_{\alpha}(N, \varepsilon)$, so by Proposition 2.1.1, in order to prove the desired inequality it is enough to get an upper bound on the dimension of the sets $J_{\alpha}(N, \varepsilon)$. Fix $N \in \mathbb{N}$ and $\varepsilon>0$. For $k \in \mathbb{N}$ define

$$
\mathcal{C}_{k}:=\left\{C=\left[i_{1} \cdots i_{k}\right]: C \cap J_{\alpha}(N, \varepsilon) \neq \varnothing\right\},
$$

this is, the cover of $J_{\alpha}(N, \varepsilon)$ by cylinders of length k.
Lemma 5.2.6. The cardinality of \mathcal{C}_{k} is finite for every $k \geq N$.

Proof. Let $k \geq N$. Since $P(\phi)=0, \phi$ is summable by Proposition 3.2.1, so

$$
\lim _{i \rightarrow \infty} \sup _{[i]} \phi=-\infty .
$$

Thus, we choose $i \in \mathbb{N}$ such that if $x \in[j]$ with $j \geq i$ we have $\phi(x)<k(\alpha-\varepsilon)$. Let $\left[i_{1} \cdots i_{k}\right] \in \mathcal{C}_{k}$ and assume by contradiction that there exists $0 \leq j \leq k-1$ such that $i_{j+1} \geq i$. By definition of \mathcal{C}_{k}, there exists $x \in\left[i_{1} \cdots i_{k}\right] \cap J_{\alpha}(N, \varepsilon)$ which satisfies $\phi\left(\sigma^{j} x\right)<k(\alpha-\varepsilon)$ and

$$
\alpha-\varepsilon<\frac{S_{k} \phi(x)}{k}<\alpha+\varepsilon .
$$

Now since $\phi<0$

$$
k(\alpha-\varepsilon)<S_{k} \phi(x) \leq \phi\left(\sigma^{j} x\right)<k(\alpha-\varepsilon),
$$

which is a contradiction. Then, \mathcal{C}_{k} contains cylinders $\left[i_{1} \cdots i_{k}\right]$ such that $i_{j}<i$, and there are finitely many of them.

For $k \geq N$, let $s_{k} \in \mathbb{R}$ be the unique real number such that

$$
\sum_{C \in \mathcal{C}_{k}}(\operatorname{diam} C)^{s_{k}}=1,
$$

and define

$$
s:=\limsup _{k \rightarrow \infty} s_{k} .
$$

Lemma 5.2.7. The following holds:

$$
\operatorname{dim}_{H} J_{\alpha}(N, \varepsilon) \leq s,
$$

and there exists $\left\{\mu_{k}\right\} \subset \mathcal{M}_{\sigma}$ with $\lim _{k \rightarrow \infty}\left(s_{k}-\frac{h\left(\mu_{k}\right)}{\log \lambda}\right)=0$ and $\int \phi d \mu_{k} \in(\alpha-2 \varepsilon, \alpha+2 \varepsilon)$.
Proof. Observe that diam $C=\lambda^{-k-1}<\lambda^{-k}$ for every $C \in \mathcal{C}_{k}$. For $\delta>0$ and k sufficiently large,

$$
\mathcal{H}_{\lambda^{-k}}^{s+\delta}\left(J_{\alpha}(N, \varepsilon)\right) \leq \sum_{C \in \mathcal{C}_{k}}(\operatorname{diam} C)^{s+\delta} \leq 1 .
$$

Letting $k \rightarrow \infty$ we get $\mathcal{H}^{s+\delta}\left(J_{\alpha}(N, \varepsilon)\right) \leq 1$ and thus $\operatorname{dim}_{H} J_{\alpha}(N, \varepsilon) \leq s+\delta$. Since δ was arbitrary we conclude the first part of the Lemma.

For the second part, denote by ν_{k} the σ^{k}-invariant Bernoulli measure which gives to a cylinder $C \in \mathcal{C}_{k}$ the probability $(\operatorname{diam} C)^{s_{k}}$. Then, the entropy of this measure with respect to σ^{k} is

$$
h\left(\nu_{k}, \sigma^{k}\right)=-s_{k} \sum_{C \in \mathcal{C}_{k}}(\operatorname{diam} C)^{s_{k}} \log (\operatorname{diam} C)=s_{k} \log \lambda^{k+1},
$$

thus $\frac{h\left(\nu_{k}, \sigma^{k}\right)}{\log \lambda^{k}}=\frac{s_{k}\left(\log \lambda^{k}+\log \lambda\right)}{\log \lambda^{k}}$ and $\lim _{k \rightarrow \infty}\left(\frac{h\left(\nu_{k}, \sigma^{k}\right)}{\log \lambda^{k}}-s_{k}\right)=0$.
Remark 5.2.4. For every $\epsilon>0$, there exists $k \in \mathbb{N}$ such that for every cylinder of length $k, C=\left[i_{1} \cdots i_{k}\right]$ and every $x, y \in C$

$$
\left|\frac{1}{k} S_{k} \phi(x)-\frac{1}{k} S_{k} \phi(y)\right|<\epsilon .
$$

In fact, given $x, y \in C=\left[i_{1} \cdots i_{k}\right]$ notice that since ϕ is locally Hölder there exist constants $C, \beta>0$ such that

$$
\left|\phi\left(\sigma^{j} x\right)-\phi\left(\sigma^{j} y\right)\right| \leq C \frac{1}{\lambda^{(k+1-j) \beta}}
$$

for $0 \leq j \leq k-1$. Then,

$$
\begin{equation*}
\left|\frac{1}{k} S_{k} \phi(x)-\frac{1}{k} S_{k} \phi(y)\right| \leq \frac{C}{k} \sum_{j=1}^{k}\left(\frac{1}{\lambda^{\beta}}\right)^{j+1} . \tag{5.5}
\end{equation*}
$$

Since $\beta>0$ and $\lambda>1$ the series $\sum_{n}\left(1 / \lambda^{\beta}\right)^{n+1}$ converges, therefore the right side of (5.5) tends to zero.

Let $C=\left[i_{1} \cdots i_{k}\right] \in \mathcal{C}_{k}$ and $x \in C$. By definition of \mathcal{C}_{k}, there exists $y \in C \cap J_{\alpha}(N, \varepsilon)$ and

$$
\left|\frac{1}{k} S_{k} \phi(x)-\alpha\right| \leq\left|\frac{1}{k} S_{k} \phi(x)-\frac{1}{k} S_{k} \phi(y)\right|+\left|\frac{1}{k} S_{k} \phi(y)-\alpha\right| .
$$

Then, by Remark 5.2.4, for k sufficiently large each cylinder in \mathcal{C}_{k} only contains points x such that $S_{k} \phi(x) / k \in(\alpha-2 \varepsilon, \alpha+2 \varepsilon)$, and this implies that

$$
\frac{1}{k} \sum_{j=0}^{k-1} \int \phi \circ \sigma^{j} d \nu_{k}=\int \frac{S_{k} \phi}{k} d \nu_{k} \in(\alpha-2 \varepsilon, \alpha+2 \varepsilon)
$$

To complete the proof set

$$
\mu_{k}:=\frac{1}{k} \sum_{j=0}^{k-1} \nu_{k} \circ \sigma^{-i} .
$$

Clearly μ_{k} is σ-invariant, since ν_{k} is σ^{k}-invariant. Also we have $k h\left(\mu_{k}\right)=h\left(\nu_{k}, \sigma^{k}\right)$, for this see [JJOP, Section 2], they work on the compact full-shift, however the proof of this fact ([JJOP, Lemma 2]) is based on Abramov's Theorem (see [W, Theorem 4.13]), which does not ask for the compactness of the space. Let us verify the rest of the properties.

Observe that

$$
\int \phi d \mu_{k}=\frac{1}{k} \sum_{j=0}^{k-1} \int \phi d\left(\nu_{k} \circ \sigma^{-j}\right)=\frac{1}{k} \sum_{j=0}^{k-1} \int \phi \circ \sigma^{j} d \nu_{k} \in(\alpha-2 \varepsilon, \alpha+2 \varepsilon),
$$

and finally

$$
\lim _{k \rightarrow \infty}\left(s_{k}-\frac{h\left(\mu_{k}\right)}{\log \lambda}\right)=\lim _{k \rightarrow \infty}\left(s_{k}-\frac{k h\left(\mu_{k}\right)}{k \log \lambda}\right)=\lim _{k \rightarrow \infty}\left(s_{k}-\frac{h\left(\nu_{k}, \sigma^{k}\right)}{\log \lambda^{k}}\right)=0
$$

Then, we get

$$
D(\alpha) \leq \lim _{\varepsilon \rightarrow 0} \sup \{F(\xi): \xi \in(\alpha-\varepsilon, \alpha+\varepsilon)\} .
$$

It follows from Lemma 5.2.5 that $D(\alpha) \leq F(\alpha)$, and we conclude the desired inequality.
Observe that $T\left(q_{*}\right)=P\left(q_{*} \phi\right)<\infty$ implies that there exists an equilibrium measure and Gibbs state μ_{*}, so by the same arguments as in the proof of Lemma 5.2 .3 we conclude $D\left(\alpha_{*}\right)=\frac{T\left(q_{*}\right)-q_{*} \alpha_{*}}{\log \lambda}$. Thus, the proof of Theorem 5.2.1 is finished.

Figure 5.4: Graphic of $\alpha \mapsto D(\alpha)$.

Bibliography

[Ba] Luis Barreira. Dimension and recurrence in hyperbolic dynamics. Basel: Birkhäuser, 2008.
[Bo1] Rufus Bowen. Topological entropy for noncompact sets. Transactions of the American Mathematical Society, 1973, vol. 184, p. 125-136.
[Bo2] Rufus Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lect. Notes in Math. 470, 1975. Springer Verlag.
[BV1] Luis Barreira, Claudia Valls. Multifractal structure of two-dimensional horseshoes. Communications in mathematical physics, 2006, vol. 266, no 2, p. 455-470.
[BV2] Luis Barreira, Claudia Valls. Dynamical systems: An introduction. Springer Science \& Business Media, 2012.
[CI] Italo Cipriano, Godofredo Iommi. Time change for flows and thermodynamic formalism. arXiv preprint arXiv:1806.03411, 2018.
[F] Kenneth Falconer. Fractal geometry: mathematical foundations and applications. John Wiley \& Sons, 2004.
[IJ] Godofredo Iommi, Thomas Jordan. Multifractal analysis of Birkhoff averages for countable Markov maps. Ergodic Theory and Dynamical Systems, 2015, vol. 35, no 8, p. 2559-2586.
[J] Oliver Jenkinson. Ergodic Optimization. Discrete and Continuous Dynamical Systems, 2006, vol. 15, no 1, p. 197-224.
[JJOP] Anders Johansson, Thomas Jordan, Anders Öberg, Mark Pollicott. Multifractal analysis of non-uniformly hyperbolic systems. Israel journal of Mathematics, 2010, vol. 177, no 1, p. 125-144.
[JMU] Oliver Jenkinson, R. Daniel Mauldin, Mariusz Urbański. Zero temperature limits of Gibbs equilibrium states for countable alphabet subshifts of finite type. Journal of Statistical Physics, 2005, vol. 119, no 3-4, p. 765-776.
[Mc] Curt McMullen. Area and Hausdorff dimension of Julia sets of entire functions. Transactions of the American Mathematical Society, 1987, vol. 300, no 1, p. 329-342.
[MaU] R. Daniel Mauldin, Mariusz Urbański. Graph directed Markov systems: geometry and dynamics of limit sets. Cambridge University Press, 2003.
[MiU] Eugen Mihailescu, Mariusz Urbański. Skew product Smale endomorphisms over countable shifts of finite type. arXiv preprint arXiv:1705.05880, 2017.
[P] Yakov B. Pesin. Dimension theory in dynamical systems: contemporary views and applications. University of Chicago Press, 2008.
[PP] Yakov B. Pesin, B. S. Pitskel. Topological pressure and the variational principle for noncompact sets. Functional Analysis and its Applications, 1984, vol. 18, no 4, p. 307-318.
[PW] Yakov B. Pesin, Howard Weiss. The multifractal analysis of Birkhoff averages and large deviations. Global analysis of dynamical systems, 2001, p. 419-431.
[R] David Ruelle. Thermodynamic formalism. Encyclopedia of Mathematics and its Applications. vol. 5, Addison-Wesley 1978.
[OV] Krerley Oliveira, Marcelo Viana. Foundations of Ergodic Theory. Cambridge University Press, 2016.
[W] Peter Walters. An Introduction to Ergodic Theory. Springer Science \& Business Media, 2000.

[^0]: ${ }^{1}$ We say that f is conformal in Λ if $d f_{p}$ is a multiple of an isometry for every $p \in \Lambda$.
 ${ }^{2}$ We say that f is topologically mixing if for every U, V open sets of Λ, there exists $N \in \mathbb{N}$ such that $f^{n}(U) \cap V \neq \varnothing$ for every $n \geq N$.
 ${ }^{3}$ Replacing (X, T) by (Λ, f).

