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“A GREAT discovery solves a great problem, but there is a grain of discovery in the solution of
any problem. Your problem may be modest, but if it challenges your curiosity and brings into
play your inventive faculties, and if you solve it by your own means, you may experience the
tension and enjoy the triumph of discovery.”

George Pólya
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On a Helly-type problem concerning maximum-sum matchings, disks and ellipses

by Oscar CHACÓN-RIVERA

Huemer et al. (Discrete Mathematics, 2019) proved that for any two point sets R and
B with |R| = |B|, the perfect matching that matches points of R with points of B,
and maximizes the total squared Euclidean distance of the matched pairs, verifies that
all the disks induced by the matching have a common point. Each pair of matched
points p ∈ R and q ∈ B induces the disk of smallest diameter that covers p and q.
Following this research line, Bereg et al. (coauthored and submitted) considered the
perfect matching that maximizes the total Euclidean distance and prove that this new
matching for R and B does not always ensure the common intersection property of the
disks. Furthermore, the study of this new matching is extended to sets of 2n uncolored
points in the plane, where a matching is just a partition of the points into n pairs. As the
main result, it is proved that in this case all disks of the matching do have a common
point. This implies a big improvement on a conjecture by Andy Fingerhut in 1995,
about a maximum matching of 2n points in the plane. This thesis revises such results
and further extend the study for ellipses, proving that pairwise intersection is always
guaranteed, and laying the framework for an eventual proof of such conjecture.
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Chapter 1

Introduction

The framework of this thesis is the application of tools and techniques from Discrete
and Combinatorial Geometry in order to prove a particular problem that arises in areas
such as network design and the study of intersection of geometric graphs.

This chapter is devoted to briefly introduce the area of Discrete and Combinatorial
Geometry, as well as to motivate the study of a conjecture posed by Andy Fingerhut
in 1995, in conjunction with an exhaustive study of a Helly-type problem on diametric
disks.

1.1 Discrete and Combinatorial Geometry

Discrete and combinatorial geometry is concerned with the study of combinatorial
properties and constructive methods of discrete geometric objects, and focuses on finite
sets of points, lines, triangles and the like, in contrast with the study of objects with
a "continuous" geometry, for instance, smooth surfaces as in multi-variable calculus
and Riemannian geometry. It is a rather recent area of research compared to others,
given that mathematicians disregarded intuitive geometry in order to develop more
abstract areas of geometry such as topology and differential geometry. It was during
last century that classical questions studied by Newton, Gauss, Minkwoski, Hilbert,
and Thue, started to garner a renewed attention, with new combinatorial approaches
initiated by the works of László Tóth, Ambrose Rogers and Paul Erdös. In turn, many
of these problems turned out to be crucially important in areas such as computational
geometry, coding theory, combinatorial optimization, robotics and computer graphics,
to name a few.

In the beginning, most questions in this area were focused on arrangements of
points, lines, circles, spheres, as well as questions on packing, covering, and tiling.
For instance, to study the number of incidences between n points and n lines in the
plane. However, the advent of powerful computers and the explosion of activity in the
field of computational geometry, allowed the term "discrete geometry" to also stand
for convex polytopes and arrangements of other geometric objects in the plane and in
higher dimensions.

1.2 Overview and motivation

Certain situations in the practical life can be nicely modeled by discrete geometric
configurations of points, segments and other familiar geometric objects such as disks,
polygons and angles, to name a few. Such mathematical models give rise to nice
geometric properties and interesting questions concerning both the combinatorial and
computational aspects of these geometric settings, sometimes bearing deep and elegant
results such as Helly’s theorem.
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One such case, concerning the design of communication networks, was informed
by Andy Fingerhut in 1995, as archived by David Eppstein on his Geometry Junkyard
[18]. Fingerhut asked, given a maximum matching of six points in the Euclidean plane,
whether there is a center point close to all matched edges (within distance a constant
times the length of the edge). If this were true, then the previous statement could be
generalized and proved for any even number of points by applying Helly’s theorem.
Thus, it would be possible to place the center of a star-shaped network close enough
to every other node, or equivalently, with cost not too expensive compared to the cost
of the optimal network. More rigorously, we have the following

Conjecture 1. Let P be any point set of 2n uncolored points in the Euclidean plane, and let
{(ai, bi) : i = 1, . . . , n} be the maximum-sum matching of these points. There exists a point o
in the plane, not necessarily a point of P, such that

‖ai − x‖+ ‖x− bi‖ ≤
2√
3
‖ai − bi‖ for all i ∈ {1, . . . , n}. (1.1)

The previous statement will sometimes be referred to as "Fingerhut’s conjecture",
as in [6]. Geometrically speaking, the statement in (1.1) is equivalent to assert that
the intersection E1 ∩ E2 ∩ · · · ∩ En is not empty, where Ei is the region bounded by the
ellipse with foci ai and bi, and semi-major axis of length (1/

√
3)‖ai − bi‖ for all i ∈

{1, . . . , n} [18]. As noted by Fingerhut, the factor 2/
√

3 (otherwise known as Hermite
constant) is the minimum possible. So far, the only progress known to the author is
an observation by Eppstein [18], who proved that the conjecture holds with a factor of
2.5 instead of 2/

√
3 by a simple geometric argument, taking x as the midpoint of the

shortest edge in the matching.
This thesis is a revision of a coauthored article ([6]), filling in aditional details to

several proofs, as well as adding some new results on the pairwise intersection of
ellipses, conveyed via personal conversation by thesis advisor Pablo Pérez-Lantero
and professor Carlos Seara [24]. Thus, the first goal of this thesis is to give a detailed
revision on the progress on the numerical bound in inequality (1.1) in the bi-chromatic
and monochromatic cases as done in [6]. The second goal is to complement said results
with an analysis on the pairwise intersection of ellipses defined by a maximum-sum
matching.

1.3 Related works

The study of monochromatic and bi-chromatic matchings with geometric objects is a
well studied topic in discrete and computational geometry. The author identifies two
branches of research concerning matchings: on one hand, the usual results establish
whether a maximum strong-matching exists or not, while on the other hand, new
results such as this work (as well as the paper it is based on) study whether the objects
matched have a common intersection or not.

It is a classic result in discrete geometry that given n red points and n blue points
there exists a strong perfect bi-chromatic segment-matching, which also happens to
be a minimum-sum matching [22]. There are several variations of this problem using
segments or segment-like shapes: Dumitrescu and Steiger devised algorithms for a
partial strong segment-matching of points of the same color [17], later improved by
Dumitrescu and Kaye [16], while Aloupis et al. considered strong matchings between
point-object pairs joined by a segment [4].

On monochromatic triangle-matchings, Biniaz’s doctoral thesis established bounds
for algorithms concerning upward and downward equilateral triangles [7].
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Study of the existence of a strong square-matching is introduced by Ábrego et
al. ([1], [2]), while Bereg, Mutsanas and Wolff extended those results to axes-aligned
rectangles [5], both articles constrained to a monochromatic setting; Caraballo et al.
devoted their efforts in studying the existence of both a maximum monochromatic
and bi-chromatic rectangle-matching, as well as the computational complexity of these
problems [9]. This last result was further extended by Corujo et al., who studied
same-color rectangle-matchings given a random bi-colored partition [10].

Existence of a strong perfect monochromatic circle-matching follows from a result
on Delauney triangulations by Dillencourt, given an even number of points [15]. This
result is generalized by Ábrego et al., who established bounds for such existence, but
given an arbitrary number of points [1].

Recently, and directly related to this work, Huemer et al. proposed a different
direction of research, studying the intersection of diametrical disks defined from a
maximum bi-chromatic matching [21].

Finally, concerning the conjecture proposed by Fingerhut and in the language of
network design, Fingerhut, Suri and Turner studied the existence of a star network
depending on the network capacity and their transfer rate [19]; however, such analysis
is completely focused on the properties of the networks involved instead of their geometric
configuration.

1.4 Contribution of this Thesis

In the first part of this exposition, we revise the proof in [6] claiming that pairwise
intersection of disks associated with the bi-chromatic matching that maximizes the
total Euclidean distance is always not empty. However, a common intersection among
all disks is not always guaranteed, in contrast to [21] where the matching maximizes
the total squared Euclidean distance. Such pairwise intersection property is then used
to give a subtle improvement to Eppstein’s observation in [18] concerning Conjecture
1.

In the second part, we make a detailed revision of the case-by-case study in [6] of
the configurations of monochromatic maximum-sum matchings of six points together
with a geometric extensibility property. Such analysis, together with an application of
Helly’s theorem, gives in turn a much better improvement to (but still worse than) the
numerical factor in (1.1).

In the last part, we introduce a proper study of the conjecture via analyzing the
pairwise intersection of ellipses associated with the maximum-sum matching of four
points.

The implications of these results are twofold. On one hand, considering the current
pandemic scenario, we dust off an interesting unsolved problem that remained hidden
on the internet, with a straightforward application in network design in these trying
times, where an adequate disposal of distribution centers might help alleviate the
goods’ provisioning in the most affected locations of a state or administrative region.
On the other hand, mathematically speaking, the case-by-case study on disks together
with the difficulty of the study on ellipses may help devise better geometric techniques
for this direction of research (as that of [21]) concerning the existence of a common
intersection of whatever matching geometric objects are at play.

1.5 Outline

In what follows, we outline each chapter of this work for reference.
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In Chapter 2, we state the main graph-theoretical and geometric definitions to be
used throughout the thesis.

In Chapter 3, we first show that pairwise intersection of disks is always guaranteed
in the bi-chromatic case. Then, we construct an example of three disks for which there
is no common intersection, and generalize such construction for 2n points, with n ≥ 4.
We close the chapter by stating a first improvement related to Fingerhut’s conjecture.

In Chapter 4, we prove via a case-by-case analysis that three disks always intersect
in a monochromatic setting, and then extend this result for any number of disks by
Helly’s theorem. Then, we further improve the upper bound constant established in
Chapter 3.

In Chapter 5, we introduce the study of common intersection of ellipses related to
a monochromatic matching, proving that they intersect at least pairwise.

In Chapter 6, we summarize our results, and propose several directions of research
based on our findings.
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Chapter 2

Preliminaries

We assume the reader is familiar with the basics of geometry and graph theory, and
only give an overview of the most relevant terms and concepts. For more detailed
introductions to graph theory, we refer to [8], [14], [26]. For a detailed exposition on
Euclidean geometry, see [11], [12] and [27]. Finally, we refer to [20], [13] and [23] for a
vast exposition on topics in discrete and combinatorial geometry.

2.1 Graph theory

We start with some basic definitions and notations of graph theory.

Definition 1. A graph G is an ordered pair (V(G), E(G)) consisting of a set V(G) of vertices
and a set E(G), disjoint from V, of edges, together with a relation that associates with each edge
of G two vertices of G (not necessarily distinct), called its endpoints.

An edge with identical endpoints is called a loop. Multiple edges are edges having the
same pair of endpoints.

A simple graph is a graph having no loops or multiple edges.
A matching or segment-matching in a graph G is a set of non-loop edges with no shared

endpoints.
A graph is said to be bipartite if its vertex set can be partitioned into two subsets X and Y

so that every edge has one end in X and one end in Y.

Let G be a bipartite graph such that G = R∪ B models a union of disjoint point sets
in the plane R2, where the vertices in R are red points, and those in B are blue points.
Let |R| = |B| = n, n ≥ 2.

Definition 2. A red-blue matching or bi-chromatic matching of G = R∪ B is a matching
such that each edge consists of a red point and a blue point. Thus, a point p ∈ R and a point
q ∈ B are said to be matched if the edge (p, q) belongs to such matching.

If G consists of uncolored points, then the matching is said to be monochromatic.

In what follows, the terms monochromatic matching and bi-chromatic matching will be
used only to emphasize, and the term matching will be favoured instead: the reader
will therefore have to infer the nature of such matching according to the given setting.

2.2 Euclidean and discrete geometry

We now define the main geometric objects we will use throughout this thesis, for
reference.

Definition 3. For every p, q ∈ R2, let pq denote the segment connecting p and q, and let
‖p− q‖ denote its length, which is the Euclidean norm of the vector p− q. Furthermore, x(p)
will denote the x-coordinate of p, and y(p) the y-coordinate of p.
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a

b c

Ca

Cb
Cc

CS′

CS

S′ S

FIGURE 2.1: Soddy circles. CS′ is the outer Soddy circle with outer
Soddy center S′. CS is the inner Soddy circle with inner Soddy center

S

Let Dpq denote the (diametrical) disk with diameter equal to ‖p − q‖, centered at the
midpoint p+q

2 of the segment pq.
Let Epq denote (the region bounded by) the ellipse with foci p and q and semi-major axis

length (1/
√

3)‖p− q‖.

Definition 4. LetM be a matching. The segments ofM is the segment set {pq : (p, q) ∈
M}. The set of diametrical disks associated withM is denoted by DM, that is, DM = {Dpq :
(p, q) ∈ M}.

Let cost(M) denote the sum ∑(p,q)∈M ‖p − q‖. A maximum-sum matching E is the
matching that maximizes the total Euclidean distance of the matched points. That is, E is such
that cost(E) is maximum among all matchings.

In what follows, a matching will be assumed to be a maximum-sum matching
unless stated otherwise. Also, note that DM is just a reformulation of the definition
of circle-matching found in [1], [2].

Definition 5. Let p, q and r be three points in the plane. We denote by ∆pqr the triangle with
vertices p, q and r; by `(p, q) the straight line through p and q oriented from p to q; by τ(p, q)
the ray with apex p that goes through q; by ~pq the segment pq oriented from p to q, and by Cpq
the circle bounding Dpq.

If s is a fourth point, we say that ~pq points to rs if q is in the interior of ∆prs ∩ Drs.

Definition 6. Let α be a planar (open or closed) curve that splits the plane into two open
regions. Given a point p not in α, let H(α, p) denote the region (between the two above ones)
that contains p.

Definition 7. Let a, b and c be the vertices of the triangle ∆abc. Let Ca, Cb and Cc be the three
mutually exterior tangent circles centered at vertices a, b and c, respectively. The inner Soddy
circle of ∆abc is the exterior tangent circle to each Ca, Cb and Cc. The center of the inner Soddy
circle is known as the inner Soddy center. See Figure 2.1.
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Chapter 3

Bi-chromatic circle-matchings

Let R and B be two disjoint point sets defined as in the previous chapter, where |R| =
|B| = n, n ≥ 2. In [21], Huemer et al. proved that if M is any segment-matching
that maximizes the sum of the squared Euclidean distances of the matched points,
i.e. maximizes ∑(p,q)∈M ‖p− q‖2, then all disks of DM have a point in common. They
proceeded as follows: they first study the pairwise intersection of disks, following with
a case analysis on the configuration of four to six points, and finishing with a proof on
the intersection of three disks. Then, an application of Helly’s theorem extends the
result to any pair of sets R and B of n points each.

In this chapter we prove that, while pairwise intersection is always possible, such
intersection property for three or more disks in DM does not necessarily hold for the
perfect bi-chromatic matching M of R and B that maximizes cost(M). Then, we
apply the pairwise intersection property to study the bi-chromatic case of Fingerhut’s
conjecture, improving Eppstein’s observation in [18].

3.1 Common intersection property of disks in DM

As in [21], we first observe that pairwise intersection is always possible.

Proposition 1. Every pair of disks in DM have a non-empty intersection.

Proof. Let (a, a′) and (b, b′) be two different pairs in M, with a, b ∈ R and a′, b′ ∈ B.
Then

‖a− b′‖+ ‖a′ − b‖ ≤ ‖a− a′‖+ ‖b− b′‖
sinceM is a maximum-sum matching: otherwise, we would have that

cost((M\ {(a, a′), (b, b′)}) ∪ {(a, b′), (a′, b)}) > cost(M),

which contradicts the definition ofM. Note that equality may hold: consider a square
with consecutive vertices a, a′, b and b′.

Now, observe that two disks have a common point if and only if the distance
between their corresponding centers is at most the sum of their radii. Since the disks
Daa′ and Dbb′ have centers and radii a+a′

2 and ‖a−a′‖
2 , and b+b′

2 and ‖b−b′‖
2 , respectively,

it is enough to show that ‖ a+a′
2 − b+b′

2 ‖ ≤
‖a+a′‖

2 + ‖b+b′‖
2 . This condition follows from

‖(a + a′)− (b + b′)‖ = ‖(a− b′) + (a′ − b)‖
≤ ‖a− b′‖+ ‖a′ − b‖
≤ ‖a− a′‖+ ‖b− b′‖

Hence, Daa′ ∩ Dbb′ 6= ∅ for every pair of disks Daa′ and Dbb′ of DM.



8 Chapter 3. Bi-chromatic circle-matchings

a(−1, 0) b(1, 0)

c(0,
√
3)

c′(0, 3)

b′ a′

Dcc′

Daa′ Dbb′

FIGURE 3.1: Proof of Theorem 1.

So, pairwise intersection also holds when we consider Euclidean distances, a fact
that will turn useful when making a first improvement on Eppstein’s observation
concerning inequality (1.1). However, such intersection property may not hold when
we consider three disks, as we now show.

Theorem 1. There exist point sets R ∪ B, with R ∩ B = ∅ and |R| = |B| = 3, such that, for
any maximum-sum matchingM of R and B, the intersection of the disks of DM is empty.

Proof. Let R = {a, b, c} and B = {a′, b′, c′}, with a = (−1, 0), b = (1, 0), c = (0,
√

3),
and a′ ∈ bc and b′ ∈ ac such that ‖c− a′‖ = ‖c− b′‖ = ε, where ε > 0 ensures that
M = {(a, a′), (b, b′), (c, c′)} is the only maximum matching of R ∪ B (see Figure 3.1).

We first focus our study on finding values of ε > 0 such that M is in fact the
only maximum matching of R ∪ B, and then we prove that no common intersection is
possible.

Note that
‖a− b′‖ = ‖a− c‖ − ‖b′ − c‖ = 2− ε.

Secondly, observe that, by symmetry of our point configuration, we have

‖a− b′‖+ ‖b− c′‖+ ‖c− a′‖ = ‖a− c′‖+ ‖b− a′‖+ ‖c− b′‖
=
√

10 + (2− ε) + ε

= 2 +
√

10.

SinceM is the only maximum matching, we need to ensure that

2 +
√

10 < ‖a− a′‖+ ‖b− b′‖+ ‖c− c′‖ = cost(M).

In other words, the matching {(a, a′), (b, b′), (c, c′)} must have a larger total Euclidean
distance than the matchings {(a, b′), (b, c′), (c, a′)} and {(a, c′), (b, a′), (c, b′)}. Now, on
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one hand,

‖a− a′‖+ ‖b− b′‖+ ‖c− c′‖ = 2‖a− a′‖+ ‖c− c′‖
= 2‖a− a′‖+ (3−

√
3)

> 2(‖a− c‖ − ε) + (3−
√

3)
= 7−

√
3− 2ε,

so it suffices to ensure

2 +
√

10 < 7−
√

3− 2ε⇐⇒ ε <
5−
√

10−
√

3
2

≈ 0.0528. (3.1)

On the other hand, again by symmetry,

‖a− c′‖+ ‖b− b′‖+ ‖c− a′‖ = ‖a− a′‖+ ‖b− c′‖+ ‖c− b′‖
< (2 + ε) +

√
10 + ε

= 2 +
√

10 + 2ε,

so to guarantee that the matching {(a, a′), (b, b′), (c, c′)} has in fact larger total Euclidean
distance than {(a, c′), (b, b′), (c, a′)} and {(a, a′), (b, c′), (c, b′)}, it suffices to ensure that

2 +
√

10 + 2ε < 7−
√

3− 2ε⇐⇒ ε <
5−
√

10−
√

3
4

≈ 0.0264. (3.2)

Thus, any ε > 0 satisfying (3.2) (and therefore (3.1)) is such that the matching M =
{(a, a′), (b, b′), (c, c′)} is in fact the only maximum matching of R ∪ B.

To show that Daa′ ∩Dbb′ ∩Dcc′ = ∅, note that all points of Daa′ ∩Dcc′ have negative
x-coordinates. Indeed, let p ∈ Daa′ ∩ Dcc′ be such that x(p) ≥ 0. Note that x(a′) > 0
and y(a′) <

√
3, since a′ ∈ bc and R ∩ B 6= ∅. Thus,

‖a− a′‖ =
√
(1 + x(a′))2 + y(a′)2 <

√
(1 + x(a′))2 + 3 < 2.

Now, it must be that y(p) ≥
√

3, since p ∈ Dcc′ ; however, since p ∈ Daa′ , we have that

2 ≤
√
(x(p) + 1)2 + 3 ≤

√
(x(p) + 1)2 + y(p)2 = ‖a− p‖ ≤ ‖a− a′‖ < 2,

a contradiction. Hence, all points of Daa′ ∩ Dcc′ have negative x-coordinates. Similarly,
all points of Dbb′ ∩ Dcc′ have positive x-coordinates. Therefore, Daa′ ∩ Dbb′ ∩ Dcc′ =
∅.

Let |R| = |B| = n. Until now, Proposition 1 guarantees a common intersection
when n = 2, but Theorem 1 shows a counterexample where such intersection is empty
when n = 3. What about the intersection of the disks of DM when n is arbitrarily large?
One could expect that the common intersection property holds for sufficiently large
values of n. However, we now show that we can adapt the construction in Theorem
1 to find a configuration of disks of DM that have no common intersection. The main
difference with Theorem 1 is that we need to further analyze the possible matching
configurations, since now some of the points defined in Theorem 1 might now be
matched to some of the extra n− 3 points to consider.

Theorem 2. For any n ≥ 4, there exist point sets R∪ B, with R∩ B = ∅ and |R| = |B| = n,
such that, for any maximum-sum matchingM of R and B, the intersection of the disks of DM
is the empty set.
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c

b′ a′

Dcc′

Daa′ Dbb′

︸︷︷︸ ︸︷︷︸
a b

︷︸︸︷c′

FIGURE 3.2: Proof of Theorem 2.

Proof. Consider the following construction of a set R of n red points, and a set B of n
blue points. Take six points a, b, c ∈ R and a′, b′, c′ ∈ B as in Theorem 1, and add n− 3
red points and n − 3 blue points in the ε-neighbourhood as explained below, where
ε > 0 is a sufficiently small number that will be specified later.

Refer to Figure 3.2. Add n− 3 blue points, denoted a′1, a′2, . . . , a′n−3, on the segment
b′a′. As in Theorem 1, we have ‖c − b′‖ = ‖c − a′‖ = ε, so ‖c − a′i‖ < ε for i ∈
{1, . . . , n − 3}. Add n − 3 red points, denoted a1, a2, . . . , an−3, on the horizontal line
through c (perpendicular to cc′) and such that ‖c− ai‖ < ε for i ∈ {1, . . . , n− 3}. So, in
particular we have ‖c′ − ai‖ ≥ ‖c′ − c‖ for all i ∈ {1, . . . , n− 3}.

We proceed to study some possible configurations of matchings. LetM1 andM2
be two matchings such that inM1 point c′ is matched to c or to some ai, i ∈ {1, . . . , n−
3}, and in M2 point c′ is matched to a or b. Given p ∈ R ∪ B and a matching M of
R ∪ B, denote byM(p) the point such that p andM(p) are matched inM. Then,

‖c′ −M1(c′)‖ ≥ ‖c′ − c‖ = 3−
√

3 and ‖a−M1(a)‖ ≥ ‖a− c‖ − ε = 2− ε.

Similarly,
‖b−M1(b)‖ ≥ ‖b− c‖ − ε = 2− ε.

Hence, we have

cost(M1) ≥ 3−
√

3 + 2(2− ε) = 7−
√

3− 2ε.

By symmetry, we can assume that (a, c′) ∈ M2. InM2, b is matched to a′, to b′ or
to some a′i, i ∈ {1, . . . , n}. In particular, we have that

‖b−M2(b)‖ ≤ ‖b− b′‖ ≤ ‖b− c‖+ ε = 2 + ε.

Furthermore, the remaining n− 2 pairs ofM2 are in an ε-neighbourhood of c. So in
particular,

cost(M2) ≤
√

10 + (2 + ε) + 2(n− 2)ε.

We choose ε > 0 such that

7−
√

3− 2ε >
√

10 + 2 + ε + 2(n− 2)ε⇐⇒ 5−
√

3−
√

10 > (2n− 1)ε.
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O

FIGURE 3.3: Fingerhut’s observation

Since 5−
√

3−
√

10 ≈ 0.10567 > 1
10 , it suffices to choose ε < 1

10(2n−1) to guarantee
cost(M1) > cost(M2). Therefore,M 6=M2, so we can assume thatM =M1.

Finally, we show that there is no common intersection between the disks of DM.
To this end, it suffices to show that DaM1(a) ∩ DbM1(b) ∩ Dc′M1(c′) = ∅. This follows
from the fact (as in Theorem 1) that all points of DaM1(a) ∩ Dc′M1(c′) have negative
x-coordinates, and all points of DbM1(b) ∩ Dc′M1(c′) have positive x-coordinates. As a
result, the intersection of the disks of DM is the empty set.

3.2 On a bi-chromatic Fingerhut’s conjecture

While Fingerhut did not know whether inequality (1.1) was true for a factor of 2/
√

3,
he did know that it was false by a smaller constant, as we now show. Consider six
points, a1, a2, a3, b1, b2, b3 in the plane such that ai are red and bi are blue for i ∈ {1, 2, 3},
{(a1, b1), (a2, b2), (a3, b3)} is the maximum-sum bi-chromatic matching of these points,
and an equilateral triangle where at each vertex two of these points are located. Refer
to Figure 3.3. Observe that the maximum-sum matching would then be made of
vertex-opposed points, and the regions bounded by the ellipses Eaibi , i ∈ {1, 2, 3}, have
exactly one point in common, say o: clearly, any other point different from o fails to
satisfy at least one of the loci defining the ellipses. Also note that R ∩ B 6= ∅.

Instead of proving the result directly for 2/
√

3, Fingerhut was interested in proving
it with a worse constant as close to 2/

√
3 as possible. Eppstein [18] proved, without

applying Helly’s theorem, that the result holds for a factor of 3 as follows: let M =
{(ai, bi) : i ∈ {1, . . . , n}} be the maximum-sum bi-chromatic matching, with ai ∈ R red
points and bi ∈ B blue points. Let (a1, b1) the shortest edge in M, and let x be any
point on that edge. Suppose by contradiction that

‖ai − x‖+ ‖x− bi‖ > 3‖ai − bi‖ for some i ∈ {1, . . . , n}.

Say, i = 2. Note that, without loss of generality, the matching defined by M0 =
{(a1, b2), (a2, b1), (a3, b3), . . . , (an, bn)} is such that cost(M0) < cost(M). However, by
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using the triangle inequality and our previous assumption, we have that

cost(M0) = ‖a1 − b2‖+ ‖a2 − b1‖+ ‖a3 − b3‖+ · · ·+ ‖an − bn‖
= ‖a1 − b2‖+ ‖a2 − b1‖+ ‖a3 − b3‖+
‖a1 − x‖+ ‖x− b1‖ − ‖a1 − b1‖+ · · ·+ ‖an − bn‖

≥ ‖x− b2‖+ ‖a2 − x‖+ ‖a3 − b3‖ − ‖a1 − b1‖+ · · ·+ ‖an − bn‖
> 3‖a2 − b2‖+ ‖a3 − b3‖ − ‖a1 − b1‖+ · · ·+ ‖an − bn‖
> 2‖a1 − b1‖+ ‖a2 − b2‖+ ‖a3 − b3‖ − ‖a1 − b1‖+ · · ·+ ‖an − bn‖
= cost(M),

which cannot be. So, we have the following

Observation 1. For any n ≥ 2, and any point sets R and B with |R| = |B| = n and such that
R ∩ B = ∅, letM = {(ai, bi) : i ∈ {1, . . . , n}} be any maximum-sum matching of R ∪ B.
There exists a point x in the plane such that

‖ai − x‖+ ‖x− bi‖ ≤ 3‖ai − bi‖ for all i ∈ {1, . . . , n}. (3.3)

However, Proposition 1 allows us to further improve the constant in inequality (3.3)
to
√

5 ≈ 2.236. We start by proving the next technical lemma:

Lemma 1. Let p and q be two points in the plane, and consider the disk Dpq with radius rpq.
Let D be a second disk with center o and radius r ≤ rpq such that D ∩ Dpq 6= ∅. Then,

‖p− o‖+ ‖q− o‖ ≤
√

5‖p− q‖.

Proof. Let opq denote the center of Dpq. Since D ∩ Dpq 6= ∅, we have that ‖o− opq‖ ≤
r + rpq ≤ 2rpq = ‖p− q‖. Then,

(‖p− o‖+ ‖q− o‖)2 ≤ 2(‖p− o‖2 + ‖q− o‖2) (Cauchy-Schwarz)
= 2

( 1
2‖p− q‖2 + 2‖o− opq‖2) (Apollonius)

= ‖p− q‖2 + 4‖o− opq‖2

≤ 5‖p− q‖2,

from where the lemma follows.

Combining Lemma 1 with Proposition 1 we get the following

Theorem 3. For any n ≥ 2, and any point sets R and B in the plane such that R ∩ B = ∅,
letM = {(ai, bi) : i ∈ {1, . . . , n}} be any maximum-sum matching of R ∪ B. Let o be the
midpoint of the shortest segment inM. Then,

‖ai − o‖+ ‖o− bi‖ ≤
√

5‖ai − bi‖ for all i ∈ {1, . . . , n}. (3.4)

Proof. Without loss of generality, we can assume that (a1, b1) is the shortest segment
in the matching M. Denote by Da1b1 the corresponding disk. Proposition 1 implies
that Da1b1 intersects pairwise with every disk Daibi ∈ DM. Lemma 2 then guarantees
inequality (3.4) for each Daibi . The result follows.

Observe that the bound of
√

5 is tight if the point o is always considered as the
midpoint of the shortest segment in the matching. In particular, consider 2 red points
and 2 blue points as vertices of a square, such that diagonal-opposed vertices have the
same color. Without loss of generality, assume that o is the midpoint of the segment
(a1, b1). Then, ‖a2 − o‖ =

√
5‖a1 − o‖ =

√
5‖o − b1‖ = ‖o − b2‖, so equality in (3.4)

holds.
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Chapter 4

Monochromatic circle-matchings

In the previous chapter, we focused our analysis to disks in DM for when M is a
bi-chromatic maximum-sum matching, which led us to establish some results related
to Fingerhut’s conjecture, improving Eppstein’s observation stated in Observation 1.
The following question arises naturally: what happens if we drop the bi-chromatic
condition? That is, instead of two disjoint planar n-point sets R and B, let us consider
any point set P of 2n points.

Thus, this chapter is devoted to prove that there is a common intersection property
of three or more disks in DM when M is a perfect monochromatic matching that
maximizes cost(M). Later, we apply such property to further improve the constant
in Theorem 3, and therefore getting an approximation closer to Fingerhut’s conjecture.

4.1 Common intersection property of disks in DM

We start by noting that P might contain different points with the same coordinates.
Moreover, the common intersection of all disks in DM might be a singleton. For
example, consider six points a, b, c, a′, b′, and c′, where a, b, and c are the vertices of
a non-empty triangle, and a′, b′, and c′ coincide with a point z in the interior of ∆abc.
By the triangle inequality, {(a, a′), (b, b′), (c, c′)} is a maximum-sum matching, and z is
the only point in the common intersection Daa′ ∩ Dbb′ ∩ Dcc′ .

Recall from Chapter 2 that if p, q, r, and s are four points of the plane, we say that ~pq
points to rs if q is in the interior of ∆prs ∩ Drs. Refer to Figure 4.1 (left), where segment
~cd points to ab.

We already know by Proposition 1 that if M is a maximum-sum bi-chromatic
matching, then the disks of DM intersect pairwise, so in a monochromatic setting those
disks still satisfy such property. With that in mind, one might wonder about how the
segments that arise from these four points interact with each other. It is clear that the
four vertices of any two segments cannot be in convex position, otherwise the matching

a b

c

d

d′

m
a b

c

d

FIGURE 4.1: Proof of Lemma 2.
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(A) (B) (C) (D)

(E) (F) (G)

(H) (I) (J)

FIGURE 4.2: The ten different relative positions of three segments.

would not be a maximum-sum one by the triangle inequality. Hence, the segments of
M either cross or one oriented segment points to the other, as we now show.

Lemma 2. Let {a, b, c, d} be a set of four points such that {(a, b), (c, d)} is a maximum-sum
matching of {a, b, c, d} and d belongs to the interior of ∆abc. Then, d belongs to the interior of
disk Dab. In other words, ~cd points to ab.

Proof. Let d′ be the reflection of d about the midpoint m = (a + b)/2 of segment ab,
and assume without loss of generality that d belongs to triangle ∆acd′. Note that m is
also the center of Dab. Refer to Figure 4.1. The perimeter of triangle ∆dcd′ is smaller
than the perimeter of triangle ∆acd′, hence

‖c− d‖+ ‖d− d′‖ < ‖c− a‖+ ‖a− d′‖.

On one hand, since the quadrilateral with vertex set {a, d′, b, d} is a parallelogram,
we have that ‖a − d′‖ = ‖d − b‖. On the other hand, given that {(a, b), (c, d)} is a
maximum-sum matching, we have ‖c− a‖+ ‖d− b‖ ≤ ‖a− b‖+ ‖c− d‖. Thus, the
inequality above can be extended to

‖c− d‖+ ‖d− d′‖ < ‖c− a‖+ ‖a− d′‖
= ‖c− a‖+ ‖d− b‖
≤ ‖a− b‖+ ‖c− d‖,

which in turn implies that ‖d− d′‖ < ‖a− b‖. In other words, ‖d−m‖ = ‖d− d′‖/2
is smaller than the radius ‖a−m‖ = ‖a− b‖/2 of Dab, whose center is m. Therefore,
Ddd′ ( Dab, and the result follows.

To prove that three disks intersect, we must examine the possible configurations
of matchings of three segments. As we proved above, every pair of segments of a
maximum-sum matching either cross or one of them points to the other one; hence, we
can distinguish ten cases of relative position of the three segments, as shown in Figure
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(A) (B) (D)

a a′
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c′
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c′u

u

v
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v

FIGURE 4.3: Proof of Lemma 3.

4.2, enumerated from (A) to (J). In the rest of this chapter, we devote ourselves to prove
that in every case the three disks have a common point.

Proofs for cases (A) to (G) are somewhat similar and most of them rely directly on
Thales’s theorem, so we present them together under the following lemma.

Lemma 3. If the segments of a maximum-sum matching of six points fall in one of the cases
from (A) to (G), then the three disks of said matching have a common intersection.

Proof. Let {a, b, c, a′, b′, c′} be a six point set, and let M = {(a, a′), (b, b′), (c, c′)} be a
maximum-sum matching. In any case, refer to Figure 4.3 for the location of each point.

Case (A): Note that at least one altitude of the triangle T bounded by the three
segments goes through the interior of T. Let u be the vertex of such an altitude in a
side of T. By Thales’s theorem, each of the three disks Daa′ , Dbb′ and Dcc′ must contain
u. Hence, u ∈ Daa′ ∩ Dbb′ ∩ Dcc′ .

Case (B): Let u be the intersection point between bb′ and cc′. If a ∈ Dbb′ , then we are
done since Lemma 2 implies a ∈ Dcc′ because ~a′a points to cc′. Similarly, if a′ ∈ Dcc′ ,
then we are done since a′ ∈ Dbb′ because ~aa′ points to bb′. Suppose then that a /∈ Dbb′

and a′ /∈ Dcc′ : in that case, the triangle ∆aa′u is such that the interior angles at a and
a′, respectively, are both acute. Hence, the altitude h from vertex u goes through the
interior of ∆aa′u; let v ∈ aa′ be the other vertex of h. Since ~a′a points to cc′ and ~aa′ points
to bb′, Thales’s theorem implies that each of the disks Daa′ , Dbb′ and Dcc′ contains v.

Case (C): Let u be the intersection point between bb′ and cc′, and w be the common
point between aa′ and cc′. If a ∈ Dbb′ , then we are done since w would be in Dbb′ too.
If a′ ∈ Dcc′ , then again Lemma 2 implies a′ ∈ Dbb′ because ~aa′ points to bb′. Suppose
then that a /∈ Dbb′ and a′ /∈ Dcc′ : in that case, the triangle ∆wa′u is such that the interior
angles at w and a′, respectively, are both acute. The proof then follows as in case (B).

Case (D): Again, let u be the intersection point between bb′ and cc′. If c′ ∈ Dbb′ ,
then by Lemma 2 c′ ∈ Daa′ because ~cc′ points to aa′. Similarly, if b ∈ Dcc′ , then we
are done since b ∈ Daa′ because ~b′b points to aa′. Suppose then that c′ /∈ Dbb′ and
b /∈ Dcc′ : then the triangle ∆c′bu is such that the interior angles at c′ and b, respectively,
are both acute. Hence, the altitude h from vertex u goes through the interior of ∆c′bu;
let v ∈ c′b be the other vertex of h. By Thales’s theorem, we have that v ∈ Dbb′ ∩ Dcc′ .
Furthermore, since Lemma 2 implies that c′, b ∈ Daa′ , we have in particular that the
segment c′b is entirely contained in Daa′ . Therefore, v ∈ Daa′ ∩ Dbb′ ∩ Dcc′ .

Cases (E), (F), and (G): In each of these cases, one of the oriented segments points
to the other two ones. Namely, segment ~aa′ points to both bb′ and cc′. By Lemma 2,
a′ ∈ Dbb′ ∩ Dcc′ , so in particular a′ ∈ Daa′ ∩ Dbb′ ∩ Dcc′ .

The proof is complete.

Interestingly enough, proofs for cases (H) to (J) are not as direct as the previous
ones. Instead, we will need several technical lemmas regarding each of the remaining



16 Chapter 4. Monochromatic circle-matchings

cases, and then we will prove by contradiction that the disks of DM must intersect. The
first and most crucial observation (one which the proofs by contradiction will depend
on) is that ifM is a maximum-sum matching, then extending one of the segments by
moving one of the points results in a maximum-sum matching of the resulting point
set.

Lemma 4. LetM = {(ai, bi) : i = 1, . . . , n} denote a maximum-sum matching of the set P of
2n uncolored points, and let c /∈ P be a point such that b1 belongs to the interior of the segment
a1c. Then,M∗ = (M\{a1, b1})∪ {a1, c} is a maximum-sum matching of (P \ {b1})∪ {c}.

Proof. LetM′ be any matching of (P \ {b1}) ∪ {c}, and note that the matching (M′ \
{(c,M′(c))}) ∪ {(b1,M′(c)} is also a matching of P. Then,

cost(M′) = cost(M′ \ {(c,M′(c))}) + ‖M′(c)− c‖
≤ cost(M′ \ {(c,M′(c)})) + ‖M′(c)− b1‖+ ‖b1 − c‖
= cost((M′ \ {(c,M′(c))}) ∪ {(b1,M′(c))}) + ‖b1 − c‖
≤ cost(M) + ‖b1 − c‖
= cost(M∗).

Hence, the lemma follows.

Since in cases (H) to (J) there is at least one segment pointing to another, let us
prove some technical facts regarding that situation. Lemma 5 deals with the non
crossing segments case and will be referred often given the cases we will deal with,
while Lemma 6 deals with the crossing segments one.

Lemma 5. Let p, p′, q, and q′ be four points such that ~pp′ points to qq′, and q is to the right of
`(p, p′). Let z be a point to the left of both `(p, p′) and `(q, q′) such that: (i) q is to the left of
`(z, p); (ii) vectors p− z and p′ − z are orthogonal, and (iii) vectors q− z and q′ − z are also
orthogonal. Refer to Figure 4.4(A). Then, we have that

‖p− z‖ − ‖q− z‖ < ‖p− q′‖ − ‖q− q′‖. (4.1)

Proof. Rearranging terms in equation (4.1), we only need to prove that

‖p− z‖+ ‖q− q′‖ < ‖p− q′‖+ ‖q− z‖. (4.2)

Note that conditions (i), (ii) and (iii), the fact that ~pp′ points to qq′, and the location of z,
imply that q is to the right of `(z, p′) if and only if segments pq′ and qz have a common
point.

Suppose that q is to the right of `(z, p′) (see Figure 4.4(B)), that is, the case where
segments pq′ and qz have a common point. Then, points are p, q, q′, and z are the
vertices of a convex quadrilateral with non-empty interior and diagonals pq′ and zq.
Hence, by triangle inequality

‖p− z‖+ ‖q− q′‖ < ‖p− q′‖+ ‖q− z‖.

Suppose now that q is not to the right of `(z, p′) (see Figure 4.4(C)), then segments
pq′ and qz do not intersect. Let z′ be the reflection of z about the center of segment
qq′, also the center of Dqq′ . On one hand, Thales’s theorem and conditions (ii) and (iii)
implies ‖q − z‖ = ‖q′ − z′‖ and ‖q − q′‖ = ‖z − z′‖. On the other hand, since ~pp′
points to qq′ we have p′ ∈ Dqq′ , which in turn implies that z′ must be to the right of
line `(p, z). Then, since pq′ and qz do not intersect, it must be that z belongs to triangle
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FIGURE 4.4: (A) Statement of Lemma 5. (B) - (C) Proof of Lemma 5.

∆pz′q′. Thus

‖p− z‖+ ‖q− q′‖ = ‖p− z‖+ ‖z− z′‖ < ‖p− q′‖+ ‖q′ − z′‖ = ‖p− q′‖+ ‖q− z‖.

The result follows.

Lemma 6. Let p, p′, q, and q′ be four points in convex position such that q and q′ are to the
right and left of line `(p, p′), respectively. Let z be a point to the left of both `(p, p′) and
`(q, q′) such that: vectors p− z and p′ − z are orthogonal, and vectors q− z and q′ − z are
also orthogonal. Then, as in Lemma 5, we again have that ‖p− z‖ − ‖q− z‖ < ‖p− q′‖ −
‖q− q′‖.

Proof. Note that, in this case, segments pq′ and qz have a common point. The proof
then continues as that of the first case of Lemma 5 by triangle inequality.

We now proceed to generalize both previous lemmas to segment configurations
related to cases (H) (Lemma 7) and (I) (Lemma 8), which in turn will be useful in our
proof by contradiction mentioned earlier.

Lemma 7. Let a, b, c, a′, b′, c′, and z be seven points such that: c is to the left of line `(a, b);
segments ~aa′, ~bb′, and ~cc′ point to bb′, cc′ and aa′, respectively; and for each u ∈ {a, b, c},
point z is to the left of line `(u, u′), and vectors u − z and u′ − z are orthogonal. Refer to
Figure 4.5(A). Then, {(a, a′), (b, b′), (c, c′)} is not a maximum-sum matching of point set
{a, b, c, a′, b′, c′}.

Proof. Observe that the conditions of the lemma ensure (three times) the conditions of
Lemma 5. Namely, applying Lemma 5 for a, a′, b, b′, and z (where a and b play the role
of p and q, respectively) we obtain

‖a− z‖ − ‖b− z‖ < ‖a− b′‖ − ‖b− b′‖;
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for b, b′, c, c′, and z (where b and c play the role of p and q, respectively) we obtain

‖b− z‖ − ‖c− z‖ < ‖b− c′‖ − ‖c− c′‖;

and for c, c′, a, a′, and z (where c and a play the role of p and q, respectively) we obtain

‖c− z‖ − ‖a− z‖ < ‖c− a′‖ − ‖a− a′‖.

Adding the above three inequalities, we obtain

‖a− a′‖+ ‖b− b′‖+ ‖c− c′‖ < ‖a− b′‖+ ‖b− c′‖+ ‖c− a′‖,

finishing the proof.

Lemma 8. Let a, b, c, a′, b′, c′, and z be seven points such that: c is to the left of line `(a, b);
segments ~aa′ and ~bb′ points to bb′ and cc′, respectively; segments aa′ and cc′ have a common
point with a and a′ to the right and left of line `(c, c′), respectively; and for each u ∈ {a, b, c},
point z is to the left of line `(u, u′), and vectors u − z and u′ − z are orthogonal. Refer to
Figure 4.5(B). Then, {(a, a′), (b, b′), (c, c′)} is not a maximum-sum matching of point set
{a, b, c, a′, b′, c′}.

Proof. Observe that the conditions of the lemma ensure (two times) the conditions of
Lemma 5. Namely, applying Lemma 5 for a, a′, b, b′, and z (where a and b play the role
of p and q, respectively) we obtain

‖a− z‖ − ‖b− z‖ < ‖a− b′‖ − ‖b− b′‖;

for b, b′, c, c′, and z (where b and c play the role of p and q, respectively) we obtain

‖b− z‖ − ‖c− z‖ < ‖b− c′‖ − ‖c− c′‖.

They also guarantee the conditions of Lemma 6, that is, applying Lemma 6 for c, c′, a, a′,
and z (where c and a play the role of p and q, respectively) we obtain

‖c− z‖ − ‖a− z‖ < ‖c− a′‖ − ‖a− a′‖.
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FIGURE 4.6: Proof of Lemma 9.

Adding the above three inequalities, we obtain

‖a− a′‖+ ‖b− b′‖+ ‖c− c′‖ < ‖a− b′‖+ ‖b− c′‖+ ‖c− a′‖,

finishing the proof.

Before generalizing Lemma 5 for case (J), we establish a couple of technical facts
related to that segment configuration. Recall that H(α, p) denotes the open region,
between the two arisen after splitting the plane by some curve α, that contains p (not
in α).

Proposition 2. Let a, b, a′, and b′ be four points such that {(a, a′), (b, b′)} is a maximum-sum
matching of {a, b, a′, b′}. Let α be the arc of the hyperbola with foci a and b that goes through
b′. Then, we have that a′ ∈ α ∪ H(α, b).

Proof. Note that, by construction of the given hyperbola using circular directrices, the
arc α is the locus of the points x of the plane such that ‖a− x‖+ ‖b− x‖ = ‖a− b′‖ −
‖b− b′‖. Since {(a, a′), (b, b′)} is a maximum-sum matching, we have that ‖a− b′‖+
‖b− a′‖ ≤ ‖a− a′‖+ ‖b− b′‖; that is,

‖a− b′‖ − ‖b− b′‖ ≤ ‖a− a′‖ − ‖b− a′‖,

which in turn implies the proposition.

Lemma 9. Let p, p′, and o be three points such that o is the midpoint of segment pp′. Let z be
a point of the circle Cpp′ to the left of line `(p, p′), q a point of segment zp′ with q 6= p′, and q′

a point of ray τ(o, z) not in segment oz. Then, ‖p− p′‖+ ‖q− q′‖ < ‖p− q‖+ ‖p′ − q′‖.

Proof. We have two cases: ‖p − p′‖ ≥ ‖q′ − p′‖; and ‖p − p′‖ < ‖q′ − p′‖. In both
cases, α will denote the arc of the hyperbola with foci p and q′ and goes through p′.

In the first case (see Figure 4.6(A)), let z′ be the intersection point of Cpp′ and pq′.
Since ‖p− p′‖ ≥ ‖q′ − p′‖, we have that the region H(α, q′) is convex. Furthermore,
line `(p′, z′) is perpendicular to the line `(p, q′) through the foci of α, so z′ ∈ H(α, q′),
which in turn implies that z ∈ H(`(p′, z′), q′) ∩ H(α, q′), a convex region. Now, z
belongs in particular to the interior of α∪H(α, q′), p′ is on the boundary of α∪H(α, q′),
and q ∈ zp′ with q 6= p′; therefore, we also have that q ∈ H(α, q′), which is equivalent
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to saying that q /∈ α ∪ H(α, p). By Proposition 2, this last fact implies ‖q′ − q‖ − ‖p−
q‖ < ‖q′ − p′‖ − ‖p− p′‖ (where q, q′ and p play the role of a′, a and b, respectively).
The result follows.

Consider now the second case, ‖p− p′‖ < ‖q′− p′‖ (see Figure 4.6(B)). Let β be the
bisector of the interior angle at p′ of triangle ∆op′q′. Then, by geometric properties of
hyperbolas, β is the tangent of α at p′. Furthermore, since ‖p− p′‖ < ‖q′− p′‖, it holds
that β separates α from vertex q′. Let z′ be the intersection point between oq′ and β.

Claim. If A, B, and C are the vertices of a triangle, and point E belongs to side AB, such that
the line `(C, E) is the bisector of the interior angle at C, then ‖C− B‖ > ‖B− E‖.

The claim follows from the fact that given any triangle, precisely in ∆BCE, larger
sides correspond to larger opposed interior angles (see Figure 4.6(C)). Applying the
claim to ∆op′q′, we have that ‖o− z′‖ < ‖o− p′‖, which implies that β also separates
point z and arc α. Since q ∈ zp′ \ {p′}, it also holds that β separates point q and arc
α. Thus, q is to the left of α in the direction from q′ to p, that is, q /∈ α ∪ H(α, p).
Proposition 2 then implies that ‖q − q′‖ − ‖p − q‖ < ‖q′ − p′‖ − ‖p − p′‖, which in
turn implies the result.

We are now ready to generalize Lemma 5 for case (J) as proposed above.

Lemma 10. Let a, b, c, a′, b′, c′, and z be seven points such that: none of them is to the right
of line `(a, a′); segments ~b′b, ~bb′, and ~cc′ point to aa′, cc′ and aa′, respectively; and for each
u ∈ {a, b, c}, point z is to the left of line `(u, u′), and vectors u− z and u′ − z are orthogonal.
Refer to Figure 4.7(A). Then, {(a, a′), (b, b′), (c, c′)} is not a maximum-sum matching of
{a, b, c, a′, b′, c′}.
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Proof. Applying Lemma 5 for b, b′, c, c′, and z (where b and c play the role of p and q,
respectively), we obtain

‖b− z‖ − ‖c− z‖ < ‖b− c′‖ − ‖c− c′‖;

and for c, c′, a, a′, and z (where c and a play the role of p and q, respectively), we obtain

‖c− z‖ − ‖a− z‖ < ‖c− a′‖ − ‖a− a′‖.

Now, let o be the midpoint of segment aa′, also the center of Daa′ . Since z− c and z− c
are orthogonal, and cc′ points to aa′, we have that c is to the left of line `(o, z). Similarly,
given that z− b and z− b′ are orthogonal, and ~bb′ points to aa′, it follows that b′ is to
the right of line `(o, z). Since ~bb′ also points to cc′, we then have that rays τ(b, b′) and
τ(o, z) must intersect.

Suppose that b ∈ ∆aa′z (see Figure 4.7(B)). Since z − b and z − b′ are orthogonal,
and τ(b, b′) ∩ τ(o, z) 6= ∅, it holds that segments bz and ab′ have a common point.
Hence, triangle inequality implies ‖a − z‖ + ‖b − b′‖ < ‖b − z‖ + ‖a − b′‖. In other
words,

‖a− z‖ − ‖b− z‖ < ‖a− b′‖ − ‖b− b′‖.
Adding the three inequalities above, we obtain

‖a− a′‖+ ‖b− b′‖+ ‖c− c′‖ < ‖a− b′‖+ ‖b− c′‖+ ‖c− a′‖,

implying the result.
Suppose now that b /∈ ∆aa′z (see Figure 4.7(A)). Let us assume by contradiction

that the matching {(a, a′), (b, b′), (c, c′)} is in fact a maximum-sum matching. Then, the
matching {(a, a′), (b, b′)} is also a maximum-sum matching of {a, a′, b, b′}. Let w and
w′ be the intersection points of `(b, b′) with τ(o, z) and τ(z, a′), respectively. Clearly
bb′ ⊂ ww′, and Lemma 4 implies that {(a, a′), (w, w′)} is a maximum-sum matching of
{a, a′, w, w′}. However, applying Lemma 9 for a, a′, w, w′ (where a and w play the role
of p and q, respectively) implies that {(a, a′), (w, w′)} is not a maximum-sum matching,
a contradiction. Therefore, {(a, a′), (b, b′), (c, c′)} is not a maximum-sum matching, as
we wanted to show.

We can finally prove the common intersection property for cases (H) to (J).

Lemma 11. If the segments of a maximum-sum matching of six points fall in one of the cases
from (H) to (J), then the three disks of the matching have a common intersection.
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Proof. Suppose by contradiction that the three disks, denoted D1, D2, and D3, intersect
pairwise, but without a common intersection (see Figure 4.8). Let u1,2, u2,3, and u3,1 be
the vertices of the pairwise disjoint lenses D1 ∩D2, D2 ∩D3, and D3 ∩D1, respectively,
located inside the triangle with vertices at the centers of D1, D2, and D3, respectively.

The idea is to use Lemma 4, combined with Lemmas 7, 8, and 10, such that the
point z of such lemmas is one of u1,2, u2,3, and u3,1. Therefore, we need to guarantee
that point z is not an extreme point of some segment of the matching at play, as we
show below.

It is clear that two vertices among u1,2, u2,3, and u3,1 cannot be extreme points of
a same segment of the matching or else there would be one of them belonging to
the three disks, which cannot be. Furthermore, if each of the three vertices is an
extreme point of some segment of the matching, then at least one pair of disjoint
segments would violate Lemma 2. That is, the extreme point of one segment, in the
interior of the convex hull of the four involved points, is not in the interior of the disk
corresponding to the other segment. Hence, we can assume that at least one vertex
among u1,2, u2,3, and u3,1 is not an extreme point of a segment of the matching: say
vertex u1,2. This in turn implies that we can extend the segment of disk D3 by moving
one of it extreme points such that the new three corresponding disks have a singleton
common intersection at u1,2. Let z = u1,2, where z is distinct from all the new six points.

Denote the six new points by a, b, c, a′, b′, and c′ in such a way that the new segments
are precisely aa′, bb′, and cc′, and for each u ∈ {a, b, c} point z is to the left of line
`(u, u′). Consequently, Lemma 4 implies that {(a, a′), (b, b′), (c, c′)} is a maximum-sum
matching of {a, b, c, a′, b′, c′}.

Now, it is important to remark the following:

• If the original segments are in case (H), then by extending one segment we can
either stay in case (H), or change into case (I).

• If the original segments are in case (I), then by extending one segment we can
either stay in case (I), or change into case (C) with a non-singleton common
intersection of the three disks by Lemma 3.

• If the original segments are in case (J), then by extending one segment we can
either stay in case (J), or change into case (B) or (D) with a non-singleton common
intersection of the three disks by Lemma 3.

Hence, since we extended the original matching in such a manner that the common
intersection of the new three disks Daa′ , Dbb′ , and Dcc′ is singleton, we can ensure that
the new segments aa′, bb′, and cc′ are again in a case from (H) to (J), and the proof
continues as follows.

If aa′, bb′, and cc′ fall in case (H), then Lemma 7 implies that {(a, a′), (b, b′), (c, c′)} is
not a maximum-sum matching. If the segments fall in case (I), then Lemma 8 implies
that {(a, a′), (b, b′), (c, c′)} is not a maximum-sum matching. Otherwise, if they fall
in case (J), then Lemma 10 implies that {(a, a′), (b, b′), (c, c′)} is not a maximum-sum
matching. In each of the cases there exists a contradiction, so the original three disks
must have a common intersection, proving the result.

We finish this section by generalizing this common intersection property for any
n ≥ 1.

Theorem 4. Let P be a set of 2n (uncolored) points in the plane, n ≥ 1. Any maximum-sum
matchingM of P is such that all disks of DM have a common intersection.

Proof. If n = 1 there is nothing to prove. Lemma 2 proves the case n = 2. Lemmas 3
and 11 prove the result for n = 3. Helly’s theorem then implies the result for n ≥ 3.



4.2. On a monochromatic Fingerhut’s conjecture 23

4.2 On a monochromatic Fingerhut’s conjecture

While not proving it thoroughly, Eppstein [18] did note that the bound in Observation
1 could be improved to a factor of 2.5 as follows: letM = {(ai, bi) : i ∈ {1, . . . , n}} be
the maximum-sum monochromatic matching. Let (a1, b1) the shortest edge inM, and
let x be the midpoint of a1b1. Suppose by contradiction that

‖ai − x‖+ ‖x− bi‖ > 2.5‖ai − bi‖ for some i ∈ {1, . . . , n}.

Say, i = 2. Note that, without loss of generality, the matching defined by M′ =
{(a1, b2), (a2, b1), (a3, b3), . . . , (an, bn)} is such that cost(M′) < cost(M). Furthermore,
one of a1, b1 is always farther from a2 or b2 than x; say ‖b1− a2‖ > ‖a2− x‖. Therefore,
just as in Observation 1, we have that

cost(M′) = ‖a1 − b2‖+ ‖a2 − b1‖+ ‖a3 − b3‖+ · · ·+ ‖an − bn‖
= ‖a1 − b2‖+ ‖a2 − b1‖+ ‖a3 − b3‖+
‖a1 − x‖ − 0.5‖a1 − b1‖+ · · ·+ ‖an − bn‖

> ‖x− b2‖+ ‖a2 − x‖+ ‖a3 − b3‖ − 0.5‖a1 − b1‖+ · · ·+ ‖an − bn‖
> 2.5‖a2 − b2‖+ ‖a3 − b3‖ − 0.5‖a1 − b1‖+ · · ·+ ‖an − bn‖
> 2‖a2 − b2‖+ ‖a3 − b3‖+ · · ·+ ‖an − bn‖
> ‖a1 − b1‖+ ‖a2 − b2‖+ ‖a3 − b3‖+ · · ·+ ‖an − bn‖
= cost(M),

which cannot be. Thus, we have the following

Observation 2. For any n ≥ 1, and a point set P of 2n (uncolored) points, letM = {(ai, bi) :
i ∈ {1, . . . , n}} be any maximum-sum matching of P. There exists a point x in the plane such
that

‖ai − x‖+ ‖x− bi‖ ≤ 2.5‖ai − bi‖ for all i ∈ {1, . . . , n}. (4.3)

However, Theorem 4 allows us to greatly improve the constant in inequality (4.3)
to
√

2 ≈ 1.4142, hence refining the overall results on Fingerhut’s conjecture presented
so far.

Theorem 5. Let P be a set of 2n (uncolored) points in the plane, and let {(ai, bi) : i ∈
{1, . . . , n}} be a maximum-sum matching of P. There exists a point o of the plane such that
for all i ∈ {1, . . . , n} we have

‖ai − o‖+ ‖o− bi‖ ≤
√

2‖ai − bi‖.

Proof. LetM be a maximum-sum matching of P. By Theorem 4, all disks of DM have
a common intersection; hence, there exists a point o in the plane such that o ∈ Daibi for
all i ∈ {1, . . . , n}. Let xi be the midpoint of each circular arc aibi that goes through the
common intersection. Then, it holds

‖ai − o‖+ ‖o− bi‖ ≤ ‖ai − xi‖+ ‖xi − bi‖ ≤
√

2‖ai − bi‖

for all i ∈ {1, . . . , n}. The result follows.
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Chapter 5

Monochromatic ellipse-matchings

As mentioned in the Introduction, Fingerhut noted that inequality (1.1) is the set of all
such points x that lie inside an ellipse with foci ai and bi, for all i ∈ {1, . . . , n}. Thus,
the conjecture says that the three corresponding ellipses have a common intersection;
therefore, applying Helly’s theorem, all the ellipses Eaibi intersect in a common region
of the plane.

In this chapter, we focus on showing that the ellipses do intersect pairwise. The
reader will eventually realize that this is no trivial task; in fact, we will establish a
couple of very technical lemmas to accomplish our goal.

5.1 Common intersection property of disks in EM

We first note that we will be dealing with a maximum-sum matching of four points, say
a, b, c, d. It is straightforward to prove that if those four points are in convex position,
then the ellipses clearly intersect; hence, we direct our efforts towards the case in which
one of the segments points to the other, say ~cd points to ab, as in Figure 5.1 (A). In this
case, finding a common point between the ellipses can then be interpreted as finding
a common detour point x with respect to ab and cd. Now, Veldkamp introduced the
equal detour point for any triangle [25], which is equivalent to the inner Soddy center
s. Therefore, given ∆abc with d an interior point, it is natural to ask how can we relate
the detour from a to b via d in contrast to taking a detour through s. Lemma 12 shows
that the inner Soddy center is an upper bound for detour points in such maximum-sum
matching configurations.

Lemma 12. Let a, b, c, and d be four points such that d ∈ ∆abc and {(a, b), (c, d)} is a
maximum-sum matching of {a, b, c, d}. Then, we have that

‖a− d‖+ ‖b− d‖ ≤ ‖a− s‖+ ‖b− s‖,

where s is the Soddy center of ∆abc.

Proof. Refer to Figure 5.1(A). Note that if d belongs to ∆abs, then the claim follows
from the fact that the perimeter of ∆abd is at most the perimeter of ∆abs. Otherwise,
we can assume without loss of generality that d belongs to ∆asc. Since in this case the
perimeter of ∆adc is at most the perimeter of ∆asc, we have that

‖a− d‖+ ‖c− d‖ ≤ ‖a− s‖+ ‖c− s‖.

Denote by αa the arc of hyperbola with foci b and c that goes through a, and by αb
the arc of hyperbola with foci a and c that goes through b. Since {(a, b), (c, d)} is a
maximum-sum matching, Proposition 2 implies on one hand that d ∈ H(αa, b), while
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FIGURE 5.1: (A) Proof of Lemma 12. (B) Proof of Lemma 13.

on the other d ∈ H(αb, a), therefore d ∈ H(αa, b) ∩ H(αb, a); thus, it holds that

‖b− d‖ − ‖c− d‖ ≤ ‖b− s‖ − ‖c− s‖,

since s is the intersection point between arcs αa and αb [27], so s ∈ αa. Adding the
above inequalities gives us the inequality of the lemma.

We now proceed to show the main result of this chapter, that is, ellipses in EM
always intersect pairwise. To this end, we approach the search for a common point
between the ellipses in terms of the observation made in Lemma 12 with respect to the
inner Soddy center together with Descartes’ theorem applied to the mutually tangent
circles that define the inner Soddy circle.

Lemma 13. Let a, b, c, and d be four points such that d ∈ ∆abc and {(a, b), (c, d)} is a
maximum-sum matching of {a, b, c, d}. Then, the intersection Eab ∩ Ecd is not empty.

Proof. Let Ca, Cb, and Cc be three mutually exterior tangent circles centered at the
vertices a, b, and c, respectively. Let ra, rb, and rc be the radii of circles Ca, Cb, and
Cc, respectively. Let rs denote the radius of the inner Soddy circle, centered at s (the
inner Soddy center of ∆abc), which is tangent to each of Ca, Cb, and Cc. By Descartes’
theorem, rs satisfies

1
rs

=
1
ra

+
1
rb

+
1
rc

+ 2

√
1

rarb
+

1
rbrc

+
1

rarc
. (5.1)

Refer to Figure 5.1(B). Let m be the intersection point between side ab and ray
τ(c, d), and let v be the vertex of Ecd that belongs to ray τ(d, m). If m ∈ dv, then
Eab ∩ Ecd is clearly non-empty. Let us assume then that v belongs to the interior of dm.
To show that v ∈ Eab, we need to prove that

‖a− v‖+ ‖b− v‖ ≤ 2√
3
‖a− b‖ = 2√

3
(ra + rb). (5.2)
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Let δ = 1
2

(
2√
3
− 1
)

, and

λ =
‖d− v‖
‖d−m‖ =

δ‖c− d‖
‖d−m‖ = δ

( ‖c−m‖
‖d−m‖ − 1

)
,

for which v = λm + (1− λ)d. Since the Euclidean distance is a convex function, the
function F : `(c, d) → R defined by F(x) = ‖a− x‖+ ‖b− x‖ for all x ∈ `(c, d) is also
convex, so Jensen’s inequality implies that

F(v) = F(λm + (1− λ)d) ≤ λF(m) + (1− λ)F(d).

Since F(m) = ‖a − b‖ = ra + rb and, by Lemma 12, F(d) = ‖a − d‖ + ‖b − d‖ ≤
‖a− s‖+ ‖b− s‖ = ra + rb + 2rs, previous inequality translates to

‖a− v‖+ ‖b− v‖ ≤ λ(ra + rb) + (1− λ)(ra + rb + 2rs)
≤ ra + rb + 2(1− λ)rs.

Then, to show inequality (5.2), it suffices to prove the inequality

(1− λ)rs =

(
1− δ

( ‖c−m‖
‖d−m‖ − 1

))
rs ≤

1
2

(
2√
3
− 1
)
(ra + rb) = δ(ra + rb). (5.3)

Let hc be the length of the altitude of the triangle ∆abc from vertex c, and let hd
be the length of the altitude of the triangle ∆abd from vertex d. By the SAS similarity
criterion, it holds that ∆mbc ∼ ∆mbd; hence,

‖c−m‖
‖d−m‖ =

hc

hd
.

Then, inequality (5.3) can be rewritten as(
1− δ

(
hc

hd
− 1
))

rs ≤ δ(ra + rb),

which in turn translates to

1 + δ

δ
= 7 + 4

√
3 ≤ ra + rb

rs
+

hc

hd
. (5.4)

By Heron’s formula, we have that the area Ac of triangle ∆abc satisfies

Ac =
√

p(p− ‖a− b‖)(p− ‖b− c‖)(p− ‖c− a‖),

where p = ra + rb + rc is the semiperimeter of ∆abc. Since

‖a− b‖ = ra + rb, ‖b− c‖ = rb + rc, ‖c− a‖ = rc + ra,

we have that Ac =
√

rarbrc(ra + rb + rc), which implies that

hc =
2Ac

‖a− b‖ =
2
√

rarbrc(ra + rb + rc)

ra + rb
.
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Similarly, we have that the area Ad of ∆abd satisfies

Ad =
√

q(q− ‖a− b‖)(q− ‖b− d‖)(q− ‖d− a‖),

where q is the semi-perimeter of ∆abd. Note that Lemma 12 implies that q is at most
the semiperimeter of ∆abs = ra + rb + rs. Then, on one hand we have that

q(q− ‖a− b‖) = q(q− ra − rb) ≤ (ra + rb + rs)rs.

On the other hand, it holds that

(q− ‖b− d‖) + (q− ‖d− a‖) = ‖a− b‖ = ra + rb,

which in turn implies that q − ‖b − d‖ = ra − t and q − ‖d − a‖ = rb + t, for some
t ∈ R. If we consider the polynomial (ra − t)(rb + t) = −t2 + (ra − rb)t + rarb, then it
is straightforward to check that it attains a global maximum at t = (ra − rb)/2, where
it equals to (ra + rb)

2/4. Then, we that

(q− ‖b− d‖)(q− ‖d− a‖) ≤ (ra + rb)
2

4
,

which allows us to obtain an upper bound for hd:

hd =
2Ad

‖a− b‖ ≤
2
√
(ra + rb + rs)rs · (ra+rb)2

4

ra + rb
=
√

rs(ra + rb + rs).

Hence, to prove inequality (5.4), it now suffices to prove that

7 + 4
√

3 ≤ ra + rb

rs
+ 2

√
rarb

(ra + rb)2 ·
rc(ra + rb + rc)

rs(ra + rb + rs)
. (5.5)

Let z = (ra + rb)/rc > 0 and w = ra
rb
+ rb

ra
≥ 2. Let x =

√
z + 1, which satisfies x > 1,

and y =
√

w + 2, which satisfies y ≥ 2. Replacing on equation (5.1), we have that

1
rs

=
1
ra

+
1
rb

+
z

ra + rb
+ 2

√
1

rarb
+

z
ra + rb

(
1
ra

+
1
rb

)
.

Then,

ra + rb

rs
= 2 +

ra

rb
+

rb

ra
+ z + 2

√
(ra + rb)

2

rarb
+ z(ra + rb)

(
1
ra

+
1
rb

)

= 2 +
ra

rb
+

rb

ra
+ z + 2

√
(z + 1)

(
2 +

ra

rb
+

rb

ra

)

= 2 + w + z + 2
√
(z + 1)(w + 2)

= (x + y)2 − 1.
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Furthermore,

√
rarb

(ra + rb)2 ·
rc(ra + rb + rc)

rs(ra + rb + rs)
=

√√√√√√√ 1
w + 2

·
(ra + rb)

2

(
1 +

rc

ra + rb

)
rs

(
1 +

rs

ra + rb

)

=
1
y

√√√√√√√
(ra + rb)

rs

(
1 +

rc

ra + rb

)
z
(

1 +
rs

rA + rb

)

=
1
y

√√√√√√√
((x + y)2 − 1)

(
1 +

1
z

)
z
(

1 +
1

(x + y)2 − 1

)

=
(x + y)2 − 1

y
·
√

z− 1
z(x + y)

=
x
(
(x + y)2 − 1

)
y(x2 − 1)(x + y)

.

Therefore, to prove inequality (5.5) it is enough to prove that

7 + 4
√

3 ≤ (x + y)2 − 1 +
2x
(
(x + y)2 − 1

)
y(x2 − 1)(x + y)

for all x > 1 and y ≥ 2, which we prove in Lemma 14. The result follows.

Lemma 14. Let f : R×R→ R be the function defined as

f (x, y) = (x + y)2 − 1 +
2x
(
(x + y)2 − 1

)
y(x2 − 1)((x + y))

.

Then, f (x, y) > 7 + 4
√

3 for all x > 1 and y ≥ 2.

Proof. We divide the proof into two cases: x ≥ 11/10 and 1 < x < 11/10.
Let us consider first the case x ≥ 11/10. We have that

∂ f
∂y

(x, y) = 2x + 2y +
2x

x2 − 1
· (2x + 2y)y(x + y)− (2y + x)

(
(x + y)2 − 1

)
y2(x + y)2

= 2(x + y) +
2x

x2 − 1
· 2y + x− x(x + y)2

y2(x + y)2 .

We will show that ∂ f
∂y (x, y) > 0 for all x ≥ 11/10 and y ≥ 2. To show this statement, it

suffices to prove that

(x2 − 1)y2(x + y)3 + x
(
2y + x− x(x + y)2) > 0.
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The previous inequality follows from the the equations below:

(x2 − 1)y2(x + y)3 + x
(
2y + x− x(x + y)2)

=(x2 − 1)y2(x + y)3 − x2(x + y)2 + x2 + 2xy

=(x + y)2 ((x− 1)2y2(x + y)− x2)+ x2 + 2xy

>(x + y)2 (4(x− 1)2(x + 2)− x2) (since y ≥ 2)

=(x + y)2(4x3 + 7x2 − 4x− 8)

=(x + y)2(4x(x2 − 1) + 7x2 − 8)
>0 (since x ≥ 11/10)

It is worth noting that the last inequality holds since x2 − 1 > 0, and 7x2 − 8 > 0
because x2 ≥ 121/100 > 8/7.

Now, since ∂ f
∂y (x, y) > 0 for all x ≥ 11/10 and y ≥ 2, we have that f (x, y) attains

its minimum in this domain at y = 2. Then, since 7 + 4
√

3 < 14, to prove the lemma it
suffices to show that the inequality

F(x) = f (x, 2) = (x + 1)(x + 3) +
(x + 3)x

(x− 1)(x + 2)
=

(x + 3)(x3 + 2x2 − 2)
(x− 1)(x + 2)

> 14 (5.6)

holds for all x ≥ 11/10. Note that

F′(x) =
2(x5 + 4x4 + x3 − 11x2 − 6x + 5)

(x− 1)2(x + 2)2 .

We claim that F′(x) has at most one root, denoted x0, in the interval [11/10,+∞).
Indeed, let P(x) = x5 + 4x4 + x3− x2− 6x+ 5, with P′(x) = 5x4 + 16x3 + 3x2− 22x− 6.
For uniqueness, note that P′(x) = (5x4 − 6) + x(16x2 + 3x − 22) and, for x ≥ 11/10,
we have 5x4 − 6 > 0, and also 16x2 + 3x − 22 > 0 since the largest (real) root of this
quadratic equals (−3 +

√
1417)/32 ≈ 1.0826 < 11/10; thus, P′(x) > 0, so the root,

if exists, must be unique. To prove its existence, note that F′(1.43) ≈ −0.407771 < 0
and F′(1.45) ≈ 0.259627 > 0. Then, Bolzano’s theorem guarantees the existence of
x0 ∈ (1.43, 1.45) such that F′(x0) = 0. In particular, x0 is a (local) minimum of F(x)
in [11/10,+∞). Now, observe that the numerator num (F)(x) = (x + 3)(x3 + 2x2 − 2)
and denominator den (F)(x) = (x− 1)(x + 2) of F(x) are both increasing functions in
[1,+∞) ⊂ [11/10, ∞), since (num (F))′(x) = 4x3 + 15x2 + 12x − 2 > 0 for all x ≥ 1,
and (den (F))′(x) = 2x + 1 > 0 for all x ≥ 1. Therefore, we calculate the following
lower bound to F(x0):

F(x0) =
num (F)(x0)

den (F)(x0)
≥ num (F)(x0)

den (F)(1.45)
≥ num (F)(1.43)

den (F)(1.45)
≈ 14.30728 > 14,

which validates inequality (5.6).
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We now consider the case 1 < x < 11/10. Then, we have that

f (x, y) > (1 + y)2 − 1 +
2
(
(1 + y)2 − 1

)
y
( 121

100 − 1
) ( 11

10 + y
)

= (2y + y2)

(
1 +

200
21
· 1

y
( 11

10 + y
))

> (2y + y2)(1 + 200
21 )

> 10(2y + y2)

which is greater than 7 + 4
√

3 for y ≥ 2. The result follows.
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Chapter 6

Conclusions and future research
directions

Throughout this work, we have shown that the study of maximum-sum matchings
together with the Euclidean distance does not generalize the results of Huemer et
al. in [21], and a common intersection property of diametric disks fails to hold in a
bi-chromatic setting. However, considering a monochromatic matching we managed
to prove that such property does hold via an exhaustive case-by-case analysis, with
the extensibility property of the monochromatic matchings being a key observation.
Then, we approach this conjecture properly, by studying the common intersection of
the ellipses defined by the conjecture’s condition, and we prove that such ellipses do
intersect at least pairwise; this is no trivial task, since we had to resort to a special
triangle center as the Soddy inner center is, and change tracks from Euclidean geometry
to multi-variable calculus. This ponders the question of how hard can this conjecture
be: it is easily stated but, as the chapters progress, we can see the increasing difficulty
and technicality of our reasoning. This is summarized in Table 6.1. A direct corollary
of these results on disks is an improvement to the known bounds for Fingerhut’s
conjecture: improving Eppstein’s factor of 2.5 to ours of

√
2, and getting even closer to

the yet elusive factor of 2/
√

3. Figure 6.1 is a graphical, drawn to scale representation
of the improvements obtained, compared to those made by Eppstein.

Directions for future research are many. There is, of course, the task of proving
or disproving Fingerhut’s conjecture, and we hope that our results, submitted in [6],
can turn some heads towards this question, which has remained hidden from the last
two decades in a geometry junkyard of problems (literally speaking) until now. Our
approach regarding the relative positions of segments in the monochromatic matching
suggests that a similar case analysis might be done for ellipses.

Question 1. Study whether a case analysis similar to the one done in Chapter 4 leads to a
common intersection property of ellipses and, thus, proving Fingerhut’s conjecture.

One can also wonder whether our results, together with those in [21], hold in higher
dimensions or in different geometries, and the implications of such results in other

Geometric object Metric n = 2 n ≥ 3 Reference

Disks ‖ · ‖2 3 3 [21]
‖ · ‖ 3 7 Proposition 1, Theorems 2 and 3

Ellipses ‖ · ‖ 3 ? Lemma 13

TABLE 6.1: Summary of results on common intersections for disks and
ellipses.
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2.5 3

√
2

√
5

FIGURE 6.1: Graphical representation on Fingerhut’s conjecture
bound improvements drawn to scale. Top figure represents the
bounds established by Eppstein, while bottom figure represents
bounds established in this work. Blue points represent bounds
for the bi-chromatic version, black points represent bounds for the
monochromatic version, and the red point represents the conjectured

constant 2/
√

3.

discrete and computational geometry problems. For instance, it is remarked in [6] that
the results reviewed in this thesis give rise to an improvement in a result of Adiprasito
et al. ([3]) regarding a no-dimension version of Tverberg’s theorem.

Question 2. Do the common intersection property hold for R3 considering diametric spheres
instead of disks for both the squared Euclidean distance and the Euclidean distance? What
about Rd, for d ≥ 4, again for both metrics? What if we change the geometry of the problem for
more general metrics, for example, where the shortest distance between two points is no longer
the segment joining them but the geodesic between them?

Although the conditions of Fingerhut’s conjecture naturally suggest the use of the
Euclidean distance, it might be of interest to study what happens when the metric used
in the definition of cost(M) changes to another p-norm, thus changing the geometry
of our disks.

Question 3. Study whether the common intersection property holds for the disks in DM when
considering a p-norm, for p 6= 2.

Related to Question 3, there is also the question of the geometric shapes involved.
Namely, Huemer et al. ([21]) observed that replacing circles with similar shapes, such
as hexagons and decagons, does not preserve the common intersection property for
the squared Euclidean distance.

Question 4. Do the common intersection property hold for geometric shapes other than disks,
also defined diametrically, when considering the Euclidean distance, for both monochromatic
and bi-chromatic cases?

Note that we could also generalize the conditions on the number of colours when
considering a natural extension to R3.

Question 5. Let S = R ∪ B ∪ G ⊂ R3 (where G is a set of green points) with |R| = |B| =
|G| = n. Does there exists a partition of S into triplets with a point of each color in each triplet,
such that if for each triplet we draw the minimum ball containing the three points, the resulting
intersection graph of disks is the complete graph Kn.

Finally, it might be of interest the study colourful Carathéodory-type questions
considering disks (or balls) instead of convex hulls, thus generalising Question 4. The
Colourful Carathéodory Theorem states that if P1, P2, . . . , Pd+1 are d + 1 sets in Rd such
that there exists a point q ∈ conv(P1) ∩ conv(P2) ∩ · · · ∩ conv(Pd+1), then there exists
points a1 ∈ P1, a2 ∈ P2, . . . , ad+1 ∈ Pd+1 such that q ∈ conv({a1, a2, . . . , ad+1}). Here,
conv(X) denotes the convex hull of X, and every set Pi is assumed to be coloured with
a different colour, so there is a clear relation with the results shown in this work.
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Question 6. Given d finite point sets P1, P2, . . . , Pd+1 ⊂ Rd, each with at least two points, is
it true that if for all Pi and every two points p, q ∈ Pi the ball Bpq contains the point o ∈ Rd,
then there exist points a1 ∈ P1, a2 ∈ P2, . . . , ad+1 ∈ Pd+1 such that the minimum enclosing
ball of {a1, a2, . . . , ad+1} also contains o?
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Appendix A

Helly’s Theorem

We present the following proof of Helly’s theorem, which is vital in the main theorems
of the thesis.

Theorem. Let F be a finite collection of closed, convex sets in Rd. Every d + 1 of the sets have
a non-empty common intersection if and only if they all have a non-empty common intersection.

Proof. Assume that every d + 1 of the sets have a non-empty common intersection,
and let us prove by induction over the dimension d and the number of sets, n = |F |.
If d = 1 and any n, then the implication is clearly true; it also holds for n = d + 1. So,
let us suppose that we have a minimal counterexample consisting of n > d + 1 closed,
convex sets in Rd, denoted by X1, X2, . . . , Xn. By minimality of the counterexample, the
set Yn =

⋂n−1
i=1 Xi is non-empty and disjoint from Xn. Since both Yn and Xn are closed

and convex, we can find a (d− 1)-dimensional plane h that separates both sets, and is
disjoint from them. Let F ′ be the collection of sets Zi = Xi ∩ h, for i ∈ {1, . . . , n− 1},
each a non-empty, closed, convex set in Rd−1. By assumption, any d of the first n− 1
sets Xi have a common intersection with Xn. It follows that the common intersection
of the d sets contains points located on both sides of h, from where it follows that any d
sets Zi have a non-empty common intersection. By minimality of the counterexample,
we then have

⋂F ′ 6= ∅. Namely,

⋂
F ′ =

n−1⋂
i=1

(Xi ∩ h) = Yn ∩ h.

But this contradicts the choice of h as a (d− 1)-plane disjoint from Yn.
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