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de la Pontificia Universidad Católica de Chile,
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Introduction

Analogously to the Deligne-Mumford compactificaction of the mod-
uli space of curves of genus g ≥ 2 [DM69], Kollár and Shepherd-Barron
defined a compactification of the Gieseker moduli space of surfaces of
general type with fixed K2 and χ [GIE] [KSB88], whose boundary
points correspond to surfaces with semi log canonical singularities and
ample canonical class. The key ingredient to prove compactness of this
moduli space of “stable surfaces” was found few years after by Alexeev
[A94] (see also [AM04]). It implies that there is a bound on the index
of the singularities that appear in these surfaces, i.e., there is a finite
list of singularities after we fix K2 and χ. Obtaining optimal bounds
for these indices is a hard problem (see e.g. [K17] Problem 1.24.3).

Cyclic quotient singularities 1
m

(1, q) are defined as the germ at the
origin of the quotient of C2 by the action (x, y) 7→ (µx, µqy), where
µ is a primitive m-th root of 1 and 0 < q < m is an integer coprime
with m. These singularities form a big family of the set of semi log
canonical singularities. Among them, a special role is played by the
singularities 1

dn2 (1, dna − 1), where n and a are coprime, since these
are the singularities that appear in a normal degeneration of canonical
surfaces in the KSBA compactification. Together with the Du Val
singularities, they are called T-singularities. These singularities have a
rich combinatorial structure, as their minimal resolutions are chains of
P1s which can be described as the result of a very specific algorithm.

The purpose of this thesis is to optimally bound T-singularities in
normal stable surfaces which are not rational. Let

dn2

dna− 1
= [b1, . . . , br] = b1 −

1

b2 − 1

...− 1
br

.

be the Hirzebruch-Jung continued fraction associated to the T-singularity
1
dn2 (1, dna− 1). We define its length as r. The index of a T-singularity
is n. We have n ≤ Fr−d, where Fi is the i-th Fibonacci number, with
F−2 = F−1 = 1. In this way, to bound the indices of these singularities,

v



vi INTRODUCTION

it is enough to bound r − d. Consider the diagram

X
π

��

ϕ

  

S W

where W has l T-singularities and KW is ample, X is the minimal
resolution of W , and π a composition of blow-downs of (−1)-curves so
that there are no (−1)-curves in S.

When we look at the pull-back divisors in X of a point blown-up
through π, many more combinatorial properties arise which are thor-
oughly used in the present work. The techniques are mostly translat-
ing algebro-geometric properties of the exceptional divisors of π and ϕ,
mainly their intersections, into graphs condensing the data. This will
allow us to classify them in a suitable way to end up with bounds for
the r − d.

A first attempt to find reasonable bounds for r − d is due to Lee
[L99, Theorem 23]. For the case l = 1, d = 1, and S of general type,
he was able to show

r ≤ 400(K2
W )4.

In [RU17] it is worked the case of one T-singularity, i.e. l = 1.
They get the optimal bounds r − d ≤ 4K2

W when κ(S) = 0, r − d ≤
4K2

W − 2 when κ(S) = 1 and r − d ≤ max(4(K2
W −K2

S) − 4, 1) when
κ(S) = 2, where κ(S) is the Kodaira dimension of S. They classify the
cases when equality holds. They also obtain bounds in the case where
KS is not nef, which turns out to be the case when S is rational, but
those bounds depend on an extra unbounded degree. In [ES17] they
obtain the bound r − d ≤ 4K2

W + 6, where d = 1 and the geometric
genus is positive, using methods from symplectic topology. The bound
is weaker than [RU17] and for a more restrictive set of surfaces, but it
can be applied to a surface with many T-singularities individually. In
this thesis, we obtain the bound

l∑
i=1

(ri − di) ≤ 4l(K2
W −K2

S) + l − 2lKS · π(C),

when W is not rational, where C is the exceptional divisor of φ. This
is a better bound than adding up the bounds in [ES17], and it may
allow classification of surfaces in particular situations.



Preliminaries

0.1. Algebraic varieties

This section is taken from [Hart77, Chapter 1], except where oth-
erwise stated.

Our base field will be the complex numbers. Things can be done in
more generality, but this will be enough for all the work that will be
done later.

Let us denote by An or An(C) the affine space Cn.
The zeroes of a set of polynomials F ⊂ C[x1 . . . , xn] is defined as

Z(F ) = {x ∈ An | f(x) = 0 ∀f ∈ F}.
A subset of An is called an algebraic set if it consists of the zeroes of
a finite number of polynomials with coefficients in C.

It is easy to see that this meets the properties of the closed sets of
a topology. This topology is called the Zariski topology.

The ideal of a set X ⊂ An is defined as

I(X) = {f ∈ C[x1, . . . , xn] | f(x) = 0 ∀x ∈ X}.
Definition 1. An affine variety is an irreducible algebraic set,

i.e. if X = X1 ∪ X2, with X1, X2 algebraic sets, then X = X1 or
X = X2.

Definition 2. The coordinate ring of an affine variety X is de-
fined as C[X] = C[x1, . . . , xn]/I(X). The field of rational functions
of X is defined as the field of fractions of C[X], which is denoted by
C(X).

A morphism of algebraic sets f : X → Y is the restriction of a
function f̂ : An → Am, where f̂(x) = (f1(x), . . . , fm(x)), with fi ∈
C[x1, . . . , xn]. As usual an isomorphism is a morphism f : X → Y
such that there exists another morphism g : Y → X with f ◦ g = idY
and g ◦ f = idX .

For any morphism f : X → Y , we define the pullback of f , denoted
f ∗ : C[Y ] → C[X], as f ∗(g) = g ◦ f , which is a ring homomorphism
that preserves the base field C. A morphism f is an isomorphism if
and only if f ∗ is a ring isomorphism.

1
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Definition 3. We define the automorphism group of X, de-
noted Aut(X) as the group of isomorphisms f : X → X.

Every coordinate ring is a finitely generated algebra over C with
no nilpotent elements, by Hilbert’s Basis Theorem and Hilbert’s Null-
stellensatz, respectively. The converse is also true [Shaf13, Chapter 1,
theorem 1.3], which gives sense to the following.

Definition 4. Let X be an affine variety, and G a finite subgroup
of Aut(X). Let C[X]G be the sub-algebra consisting of the invariant
elements of C[X], under the isomorphisms g∗ : C[X] → C[X] induced
by the morphism x 7→ g(x) in X, for every g ∈ G. C[X]G is a finitely
generated sub-algebra of C[X] [Shaf13, Appendix 4]. Then we define
the quotient variety X/G, to be the affine variety that has coordinate
ring C[X]G.

Example 1. Consider g the automorphism of C2 given by g(x, y) =
(−x,−y). Then C[X]〈g〉 = C[x2, xy, y2] ∼= C[x1, x2, x3]/(x1x3−x22). So,
C[X]/〈g〉 is a cone in C3.

Definition 5. Let V be a vector space of dimension n+ 1 over the
field C. The set of lines of V is called the n-dimensional projective
space, and denoted by Pn. If we introduce coordinates p0, . . . , pn in V
then a point P ∈ Pn is given by n + 1 elements (p0 : . . . : pn) of the
field C, not all equal to 0; and two points (p0, . . . , pn) and (q0, . . . , qn)
are equal in Pn if and only if there exists a constant λ 6= 0 such that
λpi = qi for i ∈ {0, . . . , n}. Any set (p0 : . . . : pn) defining the point P
is called a set of homogeneous coordinates for P .

Definition 6. We say a polynomial f ∈ C[x0, . . . , xn] vanishes at
P ∈ Pn if f(p0, . . . , pn) = 0 for any choice of homogeneous coordinates
(p0 : . . . : pn) of P .

Definition 7. A subset of Pn is algebraic if it consists of all
points at which a finite number of polynomials with coefficients in C
vanish.

As in the affine case, the algebraic sets of Pn are the closed sets of a
topology, which is again called the Zariski Topology. A projective
variety is defined in the same way as in the affine case.

The Zariski topology is Noetherian, meaning that for every de-
scending chain F0 ⊃ F1 ⊃ . . . of closed subsets of X, there exists N
such that FN = FN+1 = FN+2 = . . .. An important consequence is
that every subset of An or Pn is quasi compact.

Definition 8. A quasi-projective variety is an open set of a
projective variety with the induced topology.
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Any quasi-projective variety can be covered by finitely many affine
open sets. The quasi-projective varieties cover the cases of affine and
projective varieties, this is the most general context in which we will
work.

Definition 9. For a quasi-projective variety X ⊂ Pn, a function
f : X → C is said to be regular at a point p if there exists an open set
U ⊂ X, such that there exist g, h ∈ C[x0, . . . , xn] of the same degree,
with h never vanishing in U , with f = g/h on U .

Definition 10. For a quasi-projective variety X, we define its
function field C(X), as follows: An element of C(X) is an equiv-
alence class of pairs (U, f), where U is a non-empty open subset of X
and f is a regular function at every point of U , and where we identify
two such pairs (U, f) and (U ′, f ′) if f = f ′ on U ∩U ′. The elements of
the function field are called rational functions.

Definition 11. Let X and Y be quasi-projective varieties, a func-
tion f : X → Y is a morphism if we can take open affine covers
{Ui}, {Vi} of X and Y , such that f

∣∣
Ui

: Ui → Vi are morphisms of

affine varieties.

We define finite maps as in [Shaf13, Chapter 1, section 5.3]. Let X
and Y be affine varieties and f : X → Y a regular map such that f(X)
is dense in Y . Then f ∗ defines an inclusion C[Y ] ↪→ C[X]. Therefore
we can view C[Y ] as a subring of C[X]. We say f is a finite map if
C[X] is integral over C[Y ].

A regular map f : X → Y of quasiprojective varieties is finite
if any point y ∈ Y has an affine neighbourhood V such that the set
U = f−1(V ) is affine and the restriction f : U → V is finite map
between affine varieties.

For a finite surjective morphism f : X → Y we define its degree
as [C(X) : C(Y )].

If two morphisms are equal in some non-empty open set, then they
must be equal in the entire variety. So, we can define the following
useful concept.

Definition 12. Let X and Y be quasi-projective varieties, a ra-
tional map φ : X 99K Y is the existence of some non-empty open set
U ⊂ X and a morphism φ

∣∣
U

: U → Y.

If the image of rational map is dense, then it is called dominant.

Definition 13. A rational map φ : X 99K Y is a birational map,
if there exists a dominant rational map ψ : Y 99K X, such that φ ◦ ψ,
ψ ◦ φ are the identity where they are defined.
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Proposition 1. Let X and Y be quasi-projective varieties. It is
equivalent to have:

• there exist a birational map between X and Y .
• there exist non-empty open sets U ⊂ X and V ⊂ Y , such that
U and V are isomorphic.
• C(X) is isomorphic to C(Y ) as C-algebras.

In any of these cases we say that X and Y are birationally equiva-
lent or simply birational.

Definition 14. The dimension of a quasi-projective variety is the
transcendence degree of C(X) over C.

This is a birational invariant. Varieties of dimension one are called
curves, varieties of dimension two are called surfaces and varieties of
dimension three are called threefolds. Our main interest will be in
surfaces and curves inside them.

Definition 15. The local ring of a quasi-projective variety X at
a point p is the subring of C(X) of regular functions at p. It is denoted
by OX,p or Op when the context makes obvious the variety.

We can extend that definition to any set U ⊂ X, getting OX,U ,
which will be especially important for open sets.

Definition 16. Given an affine set U , containing the point p. Let
mp be the ideal defining the point p. Then mp/mp2 is a vector space
over C, if its dimension is the same as the dimension of X, then we
say p is a non-singular point. Otherwise p is a singular point.

Definition 17. A variety is normal if for every point p, Op is
integrally closed.

In normal varieties, the singular set is of co-dimension at least 2.
So in the context of normal surfaces, which is our priority, there will
only be isolated singularities. If X is normal, then so is the quotient
variety X/G [Shaf13, Chapter 2, section 5.1, example].

0.2. Sheaves

This is taken from [Hart77, Chapter II].

Definition 18. Let X be a topological space, a pre-sheaf F of
abelian groups on X, consists of the data:

(a) For every open subset U ⊂ X, an abelian group F(U).
(b) For every inclusion V ⊂ U of open subsets of X, a morphism

of abelian groups ρU,V : F(U)→ F(V ).
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Such that

(0) F(∅) = 0.
(1) ρU,U = idF(U).
(2) If W ⊂ V ⊂ U are three open sets, then ρU,W = ρV,W ◦ ρU,V .

We may replace abelian group by rings, vector spaces or other cat-
egories.

Definition 19. A pre-sheaf F on a topological space X is a sheaf
if it also satisfies:

(3) if U is an open set, {Vi} is an open covering of U and if
s ∈ F(U) is an element such that ρU,Vi(s) = 0 for every i,
then s = 0.

(4) if U is an open set, {Vi} is an open covering of U and if we
have si ∈ F(Vi) for each i, with the property that for each i, j
ρVi,Vi∩Vj(si) = ρVj ,Vi∩Vj(sj), then there is an element s ∈ F(U)
such that ρU,Vi(s) = si for each i.

Example 2. Let X be a variety, for each open set U ⊂ X, let O(U)
be the ring of regular functions from U to C, and for each V ⊂ U , let
ρU,V : O(U)→ O(V ) be the restriction map, then O is a sheaf of rings
on X. We call O the sheaf of regular functions on X.

Definition 20. Let X be a variety. A sheaf F of OX-modules is
quasi-coherent if there exists an open affine covering X = ∪iUi, such

that there are C[Ui]-modules Mi with F|Ui
∼= M̃i, where M̃i is the sheaf

associated to the OX-module Mi. It is coherent if in addition each Mi

can be taken to be finitely generated.

A morphism of sheaves ϕ : F → G is a collection of morphisms
of abelian groups

F(U)
ϕ(U)−−−→ G(U),

such that the following diagram commutes for any V ⊂ U

F(U) G(U)

F(V ) G(V )

ρU,V

ϕ(U)

ϕ(V )

ρ′U,V
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0.3. Sheaf Cohomology

This section follows [Hart77, Chapter 3.2].
First we define cohomology for a A−modules, or groups, rings, etc.

A cochain complex of A−modules Ci is:

C∗ : . . .
di−1−−→ Ci di−→ Ci+1 di+1−−→ . . .

where di+1 ◦ di = 0. We define the i-th cohomology of C∗ as

H i(C∗) = ker(di)/Im(di−1).

To define the cohomology of sheaves we need the following defini-
tion.

Definition 21. A sheaf I is injective if for every morphisms
f :M→ I and g :M→N , exists h : N → I, such that h ◦ g = f .

Given a topological space X and a sheaf F , we define the a cochain
complex in the following way. First, we need a resolution by injective
sheaves:

0→ F → I0 d0−→ I1 d1−→ . . .

which is an exact sequence were each I i is an injective sheaves. We
then take global sections:

0→ F(X)→ I0(X)
d0−→ I1(X)

d1−→ . . .

to obtain

I∗ : 0→ I0(X)
d0−→ I1(X)

d1−→ . . .

we finally define

H i(X,F) = H i(I∗).
The only cohomology that is clear from the definition is H0(X,F) =

F(X).
The category of sheaves with abelian group values has enough in-

jectives, meaning that there always exists the desired resolution by
injectives, furthermore any resolution of injective sheaves yields the
same cohomology groups. So, the sheaf cohomologies is well-defined.

For a projective variety X and F coherent, the H i(X,F) are vecto-
rial spaces over C of finite dimension [Hart77, Theorem II.5.19]. We
define hi(X,F) = dimC(H i(X,F))



0.4. DIVISORS 7

Definition 22. Let X be a projective variety and F a coherent
sheaf on X. We define the Euler characteristic of F as:

χ(F) =
∑

(−1)ihi(F).

The arithmetic genus of a curve C is h1(C,OC) or equivallently
1− χ(C,OC), and is denoted by pa(C).

The arithmetic genus is not a birational invariant. It is a known fact
that an algebraic curve is isomorphic to P1 if and only if its arithmetic
genus is 0. This will gives us a useful criterion, once we establish a
relation between the arithmetic genus and the intersection theory in a
surface containing the curve.

0.4. Divisors

This follows [Shaf13, Chapter 3.1].

Definition 23. Let X be a normal quasi-projective variety of di-
mension n. A Weil divisor is a formal linear combination of codi-
mension one subvarieties. The set of all divisors with integer coeffi-
cients forms a group, which is the free abelian group on the irreducible
and reduced divisors. These divisors are called the prime divisors. A
Q−divisor is a divisor with rational coefficients.

Definition 24. Let X be a normal quasi-projective variety and let
f ∈ C(X) be a rational function. We associate to f the divisor of the
zero set of f minus the divisor of the zero set of 1

f
:

(f) = (f)0 − (f)∞ =
∑
V⊂X

multV f,

where the sum ranges over every irreducible subvariety V ⊂ X of codi-
mension one and multV f is the multiplicity of f in V , which can be
computed following [Shaf13, Chapter 3.1.1].

Definition 25. We say that two divisors D and D′ are linearly
equivalent, denoted D ∼ D′, if D = D′ + (f) where f is a rational
function.

Definition 26. The group of Weil divisors modulo linear equiva-
lence is called the Class group and it is denoted Cl(X).

Proposition 2. Let X be a normal variety and let U be an open
subset whose complement has codimension at least two. Then every
Weil divisor on X is determined by its restriction to U .
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Proposition 3. Let X be a normal variety. We associate a divisor
to X. Note that the singular locus of X has codimension at least two.
Let ω be a rational n-form. Then the zeroes minus the poles of ω
determine a divisor, KX , called the canonical divisor. The canonical
divisor is well-defined up to linear equivalence.

Proof. Suppose that η is any other rational n-form, with zeroes
minus poles K ′X . The key point is that the ratio f = ω

η
is a rational

function. Thus KX = K ′X + (f). �

Definition 27. Let X be a normal variety. We say that a divisor
D is Cartier if D is locally defined by a single equation, i.e. if we have
an open cover X = ∪Ui, a Cartier divisor is a collection of fi rational
invertible functions in Ui, such that for any i 6= j, fi/fj is regular at
Ui ∩ Uj.

The key point of Cartier divisors is that given a morphism π : Y →
X whose image does not lie in D, then we can pullback a Cartier
divisor to Y . Indeed, we just pull back local defining equations. One
can intersect a Cartier divisor with any subvariety and get a Cartier
divisor on the subvariety, provided the subvariety is not contained in
the Cartier divisor.

Definition 28. A Cartier divisor is principal if it is the divisor
of a rational function on X.

Definition 29. Given D1 = {(fi, Ui)} and D2 = {(gi, Vi)} Cartier
divisors, we define D1 +D2 = {(figj, Ui∩Vj)} and −D1 = {(f−1i , Ui)}.
With this operation Cartier divisors form a group, two Cartier divisors
are linearly equivalent if their difference is principal, denoted by D1 ∼
D2.

The group of Cartier divisors modulo linear independence is called
the Picard group and it is denoted Pic(X).

Proposition 4. Let X be a non-singular variety. Then the group
Div(X) of Weil divisors on X is isomorphic to the group of Cartier
Divisors, and furthermore the principal Weil divisors correspond to the
principal Cartier divisors under this isomorphism. So, we have that
Pic(X) ∼= Cl(X).

This is [Hart77, Prop. II.6.11].

Definition 30. Let X be a non-singular variety. A family of di-
visors on X with base T is any map f : T → Div(X). We say that the
family f is an algebraic family of divisors if there exists a divisor
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C ∈ Div(X × T ) such that for any map jt : x 7→ (x, t), with t ∈ T ,
j∗t (C) is defined and j∗t (C) = f(t).

Divisors D1, D2 on X are algebraically equivalent if there exists
an algebraic family of divisors f on X with base T and two points
t1, t2 ∈ T , such that f(t1) = D1 and f(t2) = D2.

It is not hard to see that algebraic equivalence is indeed an equiva-
lence relation compatible with addition, and that the divisors which are
algebraically equivalent to 0 are a group. This group will be denoted
by Diva(X).

The group Div(X)/Diva(X) is called the Néron-Severi group and
it is finitely generated [Hart77, Appendix B.5]

0.5. Intersection Theory

This section is taken from [Bea78, chapter 1].
We are particularly interested in the Picard group of a surface, since

it has some type of intersection theory. In this section all surfaces are
non-singular.

Definition 31. Let C, C ′ be two different curves on a surface S,
x ∈ C ∩ C ′. If f (respectively g) is an equation of C (respectively C ′)
in Ox, the intersection multiplicity of C and C ′ at x is defined as:

mx(C ∩ C ′) = dimCOx/(f, g).

By the Nullstellensatz this is a finite number. This corresponds to
the intuitive notion of the intersection number at a point (see [Ful08,
Chapter 3]).

Definition 32. If C, C ′ are two different curves on S, the inter-
section number (C · C ′) is defined by:

(C · C ′) =
∑

x∈C∩C′
mx(C ∩ C ′).

Since the intersection between two different curves is a finite number
of points, this is a finite sum.

Definition 33. Define OC∩C′ = OS/(OS(−C) +OS(−C ′)). So we
have (C · C ′) = h0(S,OC∩C′).

Proposition 5. For L, L′ in Pic(S), define:

(L · L′) = χ(OS)− χ(L−1)− χ(L′−1) + χ(L−1 ⊗ L′−1).



10 PRELIMINARIES

Then ( . ) is a symmetric bilinear form on Pic(S), such that if C and
C ′ are two different curves, then:

(OS(C) · OS(C ′)) = (C · C ′).

If D and D are divisors on S, we will write D ·D′ instead of OS(D) ·
OS(D′) and D2 instead of D ·D.

By [Mum61, II.b], this definition can be extended with the desired
properties to the case of normal surfaces, this is the only intersection
theory that we need for that case. For the case of non-singular surface
we still need more properties.

Proposition 6. The intersection number has the following prop-
erties:

(1) Let C be a smooth curve, f : S → C a surjective morphism,
F a fibre of f . Then F 2 = 0.

(2) Let S ′ be a surface, g : S → S ′ a generically finite morphism of
degree d, D and D′ divisors on S. Then g∗D ·g∗D′ = d(D ·D′).

Proposition 7 (Riemann-Roch). For all L in Pic(S) we have:

χ(L) = χ(OS) +
1

2
(L2 − L ·KS).

A consequence of the Riemann-Roch formula, which will be quite
useful, is the genus formula:

Proposition 8 (Genus formula). Let C be a curve on a surface
S. Then:

pa(C) = 1 +
1

2
(C2 + C ·KS).

The genus formula will be used with the fact that genus 0 curves
are isomorphic to P1.

Definition 34. We say D in Pic S is nef if for every curve C ⊂ S,
we have D · C ≥ 0.

0.6. Blow-up

This section is taken from [Bea78, Chapter 2].

Proposition 9. Let S be a non-singular surface and p ∈ S. Then
there exists a non-singular surface Ŝ and a morphism σ : Ŝ → S, which
are unique up to isomorphism, such that:

(1) The restriction of σ to σ−1(S \ {p}) is an isomorphism onto
S \ p.

(2) σ−1(p) is isomorphic to P1.
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We call σ the blow-up of S at p, and σ−1(p) = E the exceptional
curve of the blow-up. Notice this is a birational map, which is not an
isomorphism.

Let C be a curve on S that has multiplicity m on p. Then the
closure of σ−1(C \ p) in Ŝ is a curve, called the strict transform of

C, denoted by Ĉ.

Proposition 10. We have that:

σ∗C = Ĉ +mE.

Proposition 11. Let S be a non-singular surface, σ : Ŝ → S the
blow-up of a point p, and E ⊂ Ŝ the exceptional curve. Then:

• There is an isomorphism Pic(S) ⊕ Z ∼−→ Pic(Ŝ), defined by
(D,n) 7→ σ∗D + nE.

• NS(Ŝ) ∼= NS(S)⊕ Z[E].
• Let D, D′ be divisors on S. Then σ∗D·σ∗D′ = D·D′, E·σ∗D =

0 and E2 = −1.
• KŜ = σ∗KS + E.

We have the following corollary which will be useful when we com-
pare intersections with canonical divisors in a blow-up.

Corollary 1. For an irreducible curve C on S that has multiplic-
ity m at p, we have:

C ·KS = Ĉ ·KŜ −m.

0.7. Castelnuovo Theorem

Curves isomorphic to P1 with self-intersection (m), will be called
(m)-curves. We have a special interest in (−1)-curves, because of the
following criterion:

Proposition 12 (Castelnuovo’s contractibility criterion). Let S
be a non-singular surface and E ⊂ S a curve isomorphic to P1 with
E2 = −1. Then E is the exceptional curve of a blow-up σ : S → S ′,
where S ′ is a non-singular surface.

For a proof see [Bea78, II.17].
This process of contracting (−1)-curves is called blow-down. Since

the Néron-Severi rank is finite by the Néron-Severi theorem [Hart77,
Appendix B.5], and after every blow-down this number goes down by
one, we cannot do infinitely many blow-downs to a surface. Therefore
in any surface we can contract all the (−1)-curves and end with a
birationally equivalent surface without (−1)-curves. Such a surface is
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called a minimal model. A surface birational to C×P1, where C is a
curve, is called a ruled surface. For a surface that is not ruled we have
a unique minimal model [Bea78, Theorem V.19], which is relevant for
us.

0.8. Cyclic quotient Singularities

Definition 35. Given p ∈ X a singular point in a variety. A
resolution of p is a non-singular variety X̂, with a morphism φ :
X̂ → X, such that X \ φ−1(p) is isomorphic to X \ p. The divisor
φ−1(p) is called the exceptional divisor of p.

Definition 36. A minimal resolution of p in a surface, is a
resolution, such that the exceptional divisor contains no (−1)-curve.

By Castelnuovo criterion, any resolution of a singular surface gives
rise to a minimal resolution, simply by contracting the (−1)-curves.
Notice that a minimal resolution is not necessarily a minimal surface,
as it can have (−1)-curves outside of the exceptional divisors. This will
happen in most of our cases of interest.

Consider the automorhpism in C2, defined by

φm,q(x, y) = (µx, µqy),

where µ is a primitive m-th root of 1, and q is an integer with
0 < q < m and gcd(q,m) = 1.

Definition 37. A cyclic quotient singularity is the germ of
the singularity at (0, 0) of the quotient C2/〈φm,q〉. This singularity is
denoted by 1

m
(1, q)

The minimal resolution of a singularity 1
m

(1, q) has a chain of P1s
as exceptional divisor. The chain is made of Ei, for i ∈ {1, . . . , r}, with
Ei · Ei+1 = 1, E2

i = −bi and Ei · Ej = 0 for any other case, where
m
q

= [b1, . . . , br] is the Hirzebruch-Jung continued fraction.

[b1, . . . , br] = b1 −
1

b2 − 1

... 1
br

,

where each bi is in integer bigger than 1. Notice this continued fraction
always exists and is unique, so it is well-defined.

We define its length as r. In the rest of this work, the symbol
[b1, . . . , br] will correspond to the continued fraction or the singularity
or the chain of curves E1, . . . , Er depending on the context. Also

[b1, . . . , br]− c− [b′1, . . . , b
′
r′ ]
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will represent a chain of P1’s with self-intersections either −bi or −c or
−b′i respectively. One can write the numerical equivalence

KỸ ≡ σ∗(KY ) +
r∑
i=1

δiEi

where δi ∈] − 1, 0] is (by definition) the discrepancy at Ei. These
numbers can be computed explicitly, as in [S13, section 1.3]

Define the following numbers:

0 = xr+1 ≤ xr = 1 < . . . < x1 = q < x0 = m,

where xi+1 = bixi − xi−1. So,
xi−1
xi

= [bi, . . . , br].

Also,
P0 = 0 < P1 = 1 < . . . < Pr+1 = m

where Pi+1 = biPi − Pi−1 and Q0 = −1, Q1 = 0, Qi+1 = biQi − Qi−1.
So,

Pi
Qi

= [b1, . . . , bi−1].

We obtain:

KỸ ≡ σ∗
(
K 1

m
(1,q)

)
−

r∑
i=1

(
1− xi + Pi

m

)
Ei.

So, δi = −(1− bi+Pi

m
).

Proposition 13. Let Y be a surface with a unique singularity
1
m

(1, q), then the following conditions are equivalent:

• m = dn2 and q = dna − 1, for positive integers a < n with
(n, a) = 1.
• K2

Y is an integer.
• (m, q + 1) is divisible by m

(m,q+1)
.

A T-singularity is defined as a quotient singularity that admits a
Q-Gorenstein one parameter smoothing [KSB88, Definition 3.7]. They
are precisely either ADE singularities or 1

dn2 (1, dna − 1) with d ≥ 1,
0 < a < n and gcd(n, a) = 1 [KSB88, Proposition 3.10]. We call the
exceptional divisor of a non-ADE T-singularity a T-chain.





The Problem

T-singularities have a particular combinatorial structure as it is
shown in the following well-known proposition.

Proposition 14. For non-ADE T-singularities 1
dn2 (1, dna− 1) we

have:

(i) If n = 2 then they are [4] and [3, 2, . . . , 2, 3], where the number
of 2’s is d− 2. In this case all discrepancies are equal to −1

2
.

(ii) If [b1, b2 . . . , br] is a T-singularity, then so are [2, b1, . . . , br−1,
br + 1] and [b1 + 1, b2, . . . , br, 2].

(iii) Every non-ADE T-singularity can be obtained by starting with
one of the singularities in (i) and iterating the steps described
in (ii).

(iv) Consider a T-chain [b1, . . . , br] = dn2

dna−1 with discrepancies −1+
t1
n
, . . . ,−1 + tr

n
. Then [b1 + 1, b2, . . . , br, 2] has discrepancies

−1 + t1
n+t1

, . . . ,−1 + tr
n+t1

,−1 + t1+tr
n+t1

, and [2, b1, . . . , br + 1] has

discrepancies −1+ t1+tr
n+tr

, −1+ t1
n+tr

, . . . ,−1+ tr
n+tr

respectively.

(v) Given the T-chain [b1, . . . , br], the discrepancy of an ending
(−2)-curve is > −1

2
, and δ1 +δr = −1, i.e., t1 + tr = n in (iv).

Proof. The points (i), (ii) and (iii) are [KSB88, Proposition 3.11].
The point (iv) is [St89, Lemma 3.4]. The point (v) is a simple conse-
quence of (iv). �

For a non-ADE T-singularity, we define its center as the collection
of exceptional divisors which have the lowest discrepancies, this is,
equal to −n−1

n
. Hence, these divisors are the ones corresponding to (i)

after we apply several times the algorithm (ii). The importance of the
center is the following.

Proposition 15. Let [b1, . . . , br] − 1 − [b′1, . . . , b
′
r′ ] be a chain of

P1’s where [b1, . . . , br] and [b′1, . . . , b
′
r′ ] are T-chains, and δr + δ′1 < −1.

After contracting the (−1)-curve and all new (−1)-curves after that,
we obtain that there is no curve in the centers of any T-chain which is
contracted.

15
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Proof. We suppose by contradiction that at least one curve in
the centers is contracted. Without loss of generality, let the center of
[b1, . . . , br] be the first to have a contracted curve. Then we have the
following picture:

[b1, . . . , bs, center, bt, . . . , br]− 1− [b′1, . . . , b
′
r′ ].

Using the preceding lemma, in order for bt−1 to be contracted, the
curves [bt, . . . , br] must be blown-down, and bt−1 must eventually be-
come 1. As the blow-down process acts like the inverse of the algorithm
(ii) in the preceding lemma, we must have bi = b′i for 1 ≤ i ≤ s, and
both T-chains are made using the same steps of the algorithm (ii) in
the preceding lemma: the first starting from [x1, . . . , xd], a T-chain
with n = 2 (from (i)), and the other starting from [β1, . . . βk]. Then an
intermediate blow-down is:

[b1, . . . , bt−2, xd + y]− 1− [β1, b
′
s+2 . . . , b

′
r′ ]

where y ≥ 0 and xd = 3 or 4. Then β1 = 2, because we must blow-down
xd + y.

By rewriting the formulas for discrepancies from the previous lemma,
we obtain that in each step the discrepancy of the leftmost divisor goes
from either x to −1 + 1

x+2
or from x to −1 + 1

1−x , which are both in-
creasing functions. Therefore, by looking at [x1, . . . , xd] and [β1, . . . βk],
we have that δ′(β1) > −1

2
= δ(x1), and so, after each step this remains

true, meaning that we finish with δ′1 > δ1. Since by the previous Lemma
part (v) δ1 + δr = −1, we have δ′1 + δr > −1, which contradicts with
our hypothesis.

�

The following diagram represents a chain of P1s:

C0 − [b1,1, . . . , b1,r1 ]− C1 − . . .− Cx−1 − [bx,1, . . . , bx,rx ]− Cx
where [bi,1, . . . , bi,ri ] is a T-chain and Ci is one of the following:

• A (−1)-curve, such that δi,ri + δi+1,1 < −1 if 0 < i < x.
• A chain of P1s whose self-intersections are less than or equal

to −2.

Corollary 2. Let us consider the chain of P1s of the preceding
paragraph:

C0 − [b1,1, . . . , b1,r1 ]− C1 − . . .− Cx−1 − [bx,1, . . . , bx,rx ]− Cx.
After contracting the (−1)-curves and all new (−1)-curves after that,
we obtain that there is no curve in the center of any T-chain which is
contracted.
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Proof. Let us consider

Ci − [bi+1,1, . . . , bi+1,ri+1
]− Ci+1

where Ci, Ci+1 are (−1)-curves. This is the worse case scenario for
a T-chain [bi+1,1, . . . , bi+1,ri+1

]. First assume it has a center with two
or more curves. Then the contraction of the Ci, Ci+1 and all the new
(−1)-curves produced by them will not contract the center of the T-
chain, by Proposition 15 applied to both ends. If the center has only
one curve, then we replace it by a center with two curves. This will
keep the discrepancies untouched by Proposition 14. Therefore, by the
same previous reason, the center cannot be contracted. That means
that the number of blow-downs from both directions are not enough to
make disappear these two curves, and so for the case of a center with
one curve. Hence we cannot contract centers of T-chains.

�

Let W be a normal projective surface with KW ample and only
T-singularities 1

din2
i
(1, diniai − 1) where i ∈ {1, . . . , l}. Let us consider

the diagram

X
π

��

φ

  

S W

where the morphism φ is the minimal resolution of W , and π is a
composition of m blow-ups such that S has no (−1)-curves. We use
the same notation as in [R14, RU17]. Let Ei be the pull-back divisor
in X of the i-th point blown-up through π. Therefore, Ei is a tree of
P1’s, E2

i = −1, and it may not be reduced. Let

C =
l∑

i=1

Ci =
l∑

i=1

ri∑
j=1

Ci,j

be the exceptional (reduced) divisor of φ, where Ci =
∑ri

j=1Ci,j is the

T-chain of the singularity 1
din2

i
(1, diniai − 1). We have

K2
S −m+

l∑
i=1

(ri − di + 1) = K2
W .

Remark 1. Throughout this work, we will assume that m > 0,
since otherwise K2

W −K2
S =

∑l
i=1(ri − di + 1), and this case holds in

our main theorems.

Lemma 1. For any (−1)-curve Γ in X we have Γ ·C ≥ 2. For any
(−2)-curve Γ in X not in C we have Γ · C ≥ 1.
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Proof. It is a simple computation using the pull-back of the canon-
ical class, the discrepancies of the Ci,j, and that KW is ample. �

Lemma 2. We have( m∑
i=1

Ei

)
· C =

l∑
j=1

(rj − dj + 2)−KS · π(C).

Proof. Same as in [RU17, Lemma 2.4]. �

Lemma 3. For any i, we have Ei ·C ≥ −1 +Ei ·
(∑

Ck,j*Ei
Ck,j

)
.

Proof. If Ck,j ⊂ Ei, then Ck,j · Ei = 0 or Ck,j · Ei = −1. The
latter case can happen only for one Ck,j in C. �

Definition 38. Let Sh be the number of Ei such that

Ei ·
( ∑
Ck,j*Ei

Ck,j

)
= h.

Corollary 3. We have
(∑m

i=1Ei

)
· C ≥ −m+

∑
h≥0 hSh.

Proof. This is adding up Lemma 3 for each Ei. �

Since
∑

h≥0 Sh = m, the key for us will be to find an upper bound
on Sh for small h, which in turn will give better and explicit lower

bounds for
(∑m

i=1Ei

)
· C.

For each Ei we define the diagram ΓEi
as in [RU17, Section 2].

First consider the dual graph of the l T-chains in X which consists of
black dots (the Ck,j) together with segments representing intersections
among the Ck,j’s. Now, if Ck,j ⊂ Ei, then we replace the k, j-th vertex
of the dual graph by a box 2, and in this way we obtain the graph ΓEi

.
Let us also denote as GEi

the graph formed by the union of ΓEi
and

the dual graph of Ei, where we also join vertices from Ei and ΓEi
if

the corresponding curves intersect. In GEi
the only intersections that

might not be simple are those between a vertex in Ei not in ΓEi
and a

vertex in ΓEi
not in Ei, but these will not appear in the cases that we

are interested in, as we will see later.

Remark 2. A useful fact is that a (−1)-curve cannot intersect
three different curves which will be blown down, since blowing down
this (−1)-curve would yield a triple point, but each blow up gives only
nodes. In particular a (−1)-curve cannot intersect three boxes in ΓEi

or any succeeding blow down of it.
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Lemma 4. We always have S0 = 0.

Proof. In order to have S0 > 0 we must have some Ei such that
each T-chain either has no curve in Ei and does not intersect it, or it
is contained completely in Ei. We can assume that every T-chain is
contained in Ei. So all the intersections in GEi

are simple.
Hence we consider ΓEi

inside of Ei, and so GEi
= Ei. If no vertex

has more than two neighbours, by Corollary 2 no divisor in a center
can be contracted, a contradiction.

Now if a vertex A1 has more than two neighbours, we can look at
the connected components of GEi

\A1. One of these components must
be fully blown down, before the vertex A1 is. This is because otherwise
A1 would become a (−1)-curve connected to more than two curves,
which would produce a triple point in a blow-down of Ei and all blow-
downs have only nodes. This component behaves independently of the
rest of GEi

, i.e. it can be blown down entirely without contracting
(−1)-curves outside of it.

First suppose this component does not contain any vertex with more
than two neighbours. Since it can be blown down, it must contain a
(−1)-curve, and this curve must intersect two different T-chains, and
so at least one of them must be completely contained in the connected
component.

If A1 is not part of a T-chain, then this component meets the hy-
potheses of Corollary 2, and this produces a contradiction. If A1 is
part of a T-chain but the component does not contain part of it, then
Corollary 2 works as well with this component.

If A1 is part of a T-chain and the component contains part of it,
then we can look at the component joined with the rest of the T-chain
that contains A1, doing the corresponding blow downs here is the same
as doing the corresponding blow downs in the independent component.
Therefore we have the conditions for Corollary 2, so the T-chain which
is completely contained will not be entirely contracted, a contradiction.

Now assume that the component contains a vertex A2 which has
more than two neighbours. We can look at the connected components
of GEi

\A2. As before, one of the components must be fully blown down
before the vertex A2 is. We note that the vertex A1 is not contracted
by the blow-downs we are looking at, so the component which fully
blows-down does not contain A1.

So we end up with an independent component not containing A1

and A2. If this component does not contain any vertex with more
than two neighbours, we proceed as before. If it contains a vertex A3

with more than two neighbours, we do as with A2 and end up with an
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independent component not containing A1, A2 and A3. This process
must end since GEi

is a finite graph, and so we obtain a contradiction.
Therefore S0 = 0.

�

Lemma 5. We always have S1 = 0.

Proof. Let us assume that S1 > 0. Then there is Ei such that

Ei ·
(∑

Ck,j*Ei
Ck,j

)
= 1, and, as in the preceding lemma, we can omit

from this discussion all the T-chains with no curve in Ei and no curve
intersecting Ei. So all the intersections in GEi

are simple.
We consider the graph GEi

. This graph is a tree, since any potential
cycle would contain vertices in Ei and vertices not in Ei, which would
give at least two points of intersection between curves in Ei and curves
in T-chains but not in Ei, but this is not possible by our assumption
on Ei. We now deal with two cases:

Case I): There is no vertex in Ei connected with more than two
vertices in GEi

. First we note that there is more than one T-chain,
because otherwise a (−1)-curve would make a cycle in GEi

. And so
there is at least one T-chain contained in Ei. We apply Corollary 2 to
GEi

, so no center divisor can be contracted, which contradicts the fact
that there is a T-chain contained in Ei.

Case II): There is a vertex A ∈ Ei connected to (at least) three
vertices in GEi

. We can look at the connected components of GEi
\A.

We have two subcases.
If one of these components contracts completely before A does,

then we can apply the same argument as in Lemma 4 to arrive at a
contradiction.

Hence none of these components contracts completely before A
does. The final argument splits in two parts. We first blow down
until A becomes a (−1)-curve. If all neighbours of the (−1)-curve A
are in the image of Ei, then this produces a contradiction since A would
be creating a triple point in a blow-down of Ei. So, one neighbour must
be in the image of ΓEi

\Ei. In this case, since none of the components
blow downs fully before A does, and we have at least two of them inside
of Ei, we have that the (−1)-curve A in the divisor Ei has multiplicity
bigger than or equal to 2. But, by pulling back, this would contradict

our assumption Ei ·
(∑

Ck,j*Ei
Ck,j

)
= 1. Therefore S1 = 0.

So, in each case we get a contradiction. �
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Now let us consider an Ei with

Ei ·
( ∑
Ck,j*Ei

Ck,j

)
= 2.

This is the key case to analyse. As before, we can omit from the next
discussion the T-chains with no curves in Ei and no curves intersecting
Ei. The next goal is to find all the combinatorial possibilities for GEi

.
Also, if there was an intersection that is not simple in GEi

, then the
same GEi

, but with that intersection being simple would have Ei ·(∑
Ck,j*Ei

Ck,j

)
< 2, which contradicts Lemmas 4 and 5. So, all the

intersections are simple in GEi
.

Remark 3. From now on we will omit T-chains in GEi
with no

curve in Ei and no curve intersecting Ei and assume that GEi
is a

tree to facilitate our analysis of the possibilities. At the end, we will
show how to classify all the cases when GEi

is not a tree via a suitable
combinatorial reduction to the case of a tree. The notation © in the
next figures will mean (−1)-curve in Ei.

Proposition 16. If GEi
is a tree and there is no vertex in Ei

having three neighbours in GEi
, then GEi

corresponds to one of the
Figures 0.1 to 0.3.

Proof. Since GEi
is a tree and Ei ·

(∑
Ck,j*Ei

Ck,j

)
= 2, the num-

ber of T-chains is one more than the number of (−1)-curves. We can
apply the Corollary 2 for GEi

after removing each T-chain which does
not have curves in Ei. So, no divisor in a center could be contracted.
Therefore no T-chain can be in Ei, and so there are at most 2 T -
chains, and only one (−1)-curve. According to the number of T-chains
contained in Ei, we get the possibilities in Figures 0.1 to 0.3

�

Proposition 17. If GEi
is a tree, then we have that any vertex in

Ei has at most three neighbours.

21
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. . .

. . .

Figure 0.1. Case C.1

. . .

. . . . . .

Figure 0.2. Case C.2

. . . . . . . . . . . .

Figure 0.3. Case C.3

Proof. Suppose there is a vertex A in Ei with more than three
neighbours. If a connected component of GEi

\ A was blown-down
before A, then we can apply the same argument as in Lemma 4 to
arrive at a contradiction. So, after doing the corresponding blow-downs
A becomes a (−1)-curve with at least four neighbours. It cannot have
three neighbours inside the blow-down of Ei, because there cannot be a
triple point in a blow-down of Ei. It also cannot have three neighbours

outside the blow-down of Ei or we would have Ei ·
(∑

Ck,j*Ei
Ck,j

)
≥ 3.

Therefore the only possibility is to have two neighbours in the blow-
down of Ei, and two neighbours outside of it. Then the (−1)-curve A
would have multiplicity at least 2 in the divisor Ei, and so by pulling-

back we would get Ei ·
(∑

Ck,j*Ei
Ck,j

)
≥ 4, a contradiction. �

Proposition 18. If GEi
is a tree, then there is at most one vertex

in Ei with three neighbours.

Proof. Suppose there is a vertex A1 in Ei with three neighbours.

Since we have that Ei ·
(∑

Ck,j*Ei
Ck,j

)
= 2, at least one of the com-

ponents of GEi
\A1 is contained in Ei. If there are more vertices with

three neighbours inside a component of GEi
\A1 fully contained in Ei,

then we can take one of these vertices, call it A2, and check whether
there are vertices with three neighbours inside a component fully con-
tained in Ei of GEi

\ A2. We iterate this process. In each step Aj+1 is



CLASSIFICATION 23

in a component of GEi
\ Aj not containing any other Ak, with k < j.

So all those vertices are different and, since the graph is finite, the
process ends with a vertex A such that any component of GEi

\A fully
contained in Ei has no vertex with three neighbours. We now divide
the analysis into two cases:

Case A: Two components of GEi
\A have curves outside of Ei. If

there is a vertex B ∈ Ei with three neighbours in a component ofGEi
\A

containing curves which are not in Ei, then, by the same argument
as in Lemma 4, no components of GEi

\ B can be completely blow
down before B becomes a (−1)-curve. We blow-down until B becomes
a (−1)-curve, which is connected to: a component containing A, a
component completely contained in Ei, and a component containing
curves that are not in Ei (this is because our Case A assumption). So
it is a (−1)-curve either connected to three curves in Ei or connected
to two curves in Ei and a curve C not in Ei. In the first case, we get
a triple point in a blow-down of Ei, a contradiction. In the second
case, the (−1)-curve B has multiplicity bigger than or equal to 2 in the
image divisor of Ei, by pulling-back the intersection of C with Ei will

give us at least 2. Thus, Ei ·
(∑

Ck,j*Ei
Ck,j

)
≥ 3, a contradiction.

Case B: Exactly one component of GEi
\ A has curves outside of

Ei. No component of GEi
\A can be fully blow down before A becomes

a (−1)-curve, by the same argument as in Lemma 4. We do blow-
downs until A becomes a (−1)-curve. It cannot be connected to three
curves in Ei, so it must be connected to one curve not in Ei and two
curves in Ei. Hence, we have that the (−1)-curve A in the divisor Ei
has multiplicity at least 2, and so do all curves in Ei in the component
of GEi

\ containing curves outside of Ei. Now, if there is a vertex B
with three neighbours in the component containing curves that are
not in Ei, then, by the same argument as in Lemma 4, no component
of GEi

\ B can be fully blow down before B becomes a (−1)-curve.
We blow-down until B becomes a (−1)-curve, which is connected to: a
component containing A, a component completely contained in Ei, and
a component containing curves that are not in Ei. Since a (−1)-curve
cannot be connected to three curves in Ei, B is either connected to two
curves in Ei and a curve not in Ei, or it is connected to one curve in
Ei and two curves not in Ei. In the first case, the (−1)-curve B in the
blow down of the divisor Ei has multiplicity at least 4 (since each of the
curves in Ei connected to the (−1)-curve B have multiplicity at least

2). Therefore by pulling-back, we obtain Ei ·
(∑

Ck,j*Ei
Ck,j

)
≥ 4,

a contradiction. In the second case, the (−1)-curve B in the blow



24 CLASSIFICATION

down of the divisor Ei has multiplicity at least 2 and is connected to
two curves outside of Ei, hence by pulling-back this data, we obtain

Ei ·
(∑

Ck,j*Ei
Ck,j

)
≥ 4, a contradiction. �

Now let us consider all the possible cases with one vertex in Ei
having three neighbours.

Proposition 19. If GEi
is a tree and there is one vertex in Ei

having three neighbours in GEi
, then GEi

corresponds to one of the
Figures 0.4 to 0.15.

Proof. Let us denote this special vertex by V . We consider the
following cases.

Case A: Only one component of GEi
\ V is fully contained in Ei.

When V becomes a (−1)-curve, no component in GEi
\ V has been

contracted, otherwise we would have a contradiction as in Lemma 4.
This (−1)-curve cannot have three neighbours in the blow-down of Ei,
as this would be a triple point. If this (−1)-curve had two neighbours
in the blow-down of Ei, then it would have multiplicity at least 2 in

the image divisor of Ei, and we would have Ei ·
(∑

Ck,j*Ei
Ck,j

)
≥ 3.

Now if we re-order the blow-downs, so that we do all possible blow-
downs except for blowing down the (−1)-curve that V becomes, then
we end up with only one (−1)-curve, connected to two curves not in
the blow-down of Ei, and a component which is a chain of P1s in Ei.
For this chain to be blown-down, they need to be all (−2)-curves.

If to the original component of GEi
\ V contained in Ei, we add a

(−1)-curve to the vertex connected to just one other vertex (i.e. “the
ending curve”), then by Corollary 2 inside this component no divisor
in a center can be blown-down. After doing the blow-downs in the new
order, we end up with a chain of (−2)-curves connected to a (−1)-curve.
So everything is blow-down, and therefore there were no divisors in a
center in that component. If there was a (−1)-curve in the component,
then there would be some centers. So in this component there is no
(−1)-curve, and so it was a chain of (−2)-curves before doing any blow-
down.

Only one (−2)-curve can be outside of Ei. If this is the only (−2)-
curve, then removing it does no change which curves are contracted.
So, we have a case as in Proposition 16 with an extra (−2)-curve. These
case are shown in Figure 0.4 and 0.5

So we are left to analyse the case when some of these (−2)-curves
are in a T-chain, and therefore V is in that same T-chain.

Case A.I: These curves form a complete T-chain. In any of the
other two connected components of GEi

\ V , there must be curves in
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Figure 0.4. Case A.1

. . . . . . . . . . . .

-2

Figure 0.5. Case A.2

Ei, or V would not intersect it. We showed before that this curves are
contracted before V is. So, by Corollary 2 there cannot be a contracted
center divisor, so there can only be one T-chain in each component.
The vertex V must be connected by a (−1)-curve, or there would be
no contracted curves. These cases are shown in Figure 0.6 and 0.7.
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Figure 0.6. Case A.I.1

Case A.II: These curves do not form a complete T-chain. In one
of the connected components of GEi

\ V , there are no curves of the
T-chain containing V . There must be curves in Ei, or V would not
intersect it. We showed before that these curves are contracted before
V is. So, by Corollary 2 there cannot be a contracted center divisor,
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Figure 0.7. Case A.I.2

so there can only be one T-chain. The vertex V must be connected by
a (−1)-curve, or there would be no contracted curves.

Since there is no center divisor contracted in the other component,
there cannot be more than one T-chain completely contained in this
component. If there were curves contracted, then the T-chain con-
taining V would need to be connected by a (−1)-curve to a T-chain,
or there would be no contracted curve. We end up with the cases in
Figures 0.8 to 0.11.
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Figure 0.8. Case A.II.1

Case B: Exactly two components are fully contained in Ei. When
V becomes a (−1)-curve, no component in GEi

\V can be contracted, or
we would get a contradiction via Lemma 4. The (−1)-curve V cannot
have three neighbours in the blow-down of Ei, as this would create a
triple point.
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Figure 0.9. Case A.II.2
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Figure 0.10. CASE A.II.3
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Figure 0.11. CASE A.II.4

If we re-order the blow-downs, so that we do all possible blown-
downs except for blowing down the (−1)-curve that V becomes, then
we end up with only one (−1)-curve connected to one curve not in the
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blow-down of Ei, and two chains of P1s contained in the blow-down of
Ei.

• We have that one of these chains is exactly a (−2)-curve. For
these chains to be blown down, there needs to be a (−2)-curve
intersecting the blow-down of V , call it V ′. If V ′ intersects
another curve, then after blowing down the (−1)-curve V , the
curve V ′ becomes a (−1)-curve intersecting two curves in the
blow-down of Ei and a curve not in Ei. So the divisor V ′ has
multiplicity at least two in the divisor Ei. Hence, the blow-
down of the divisor V that is a (−1)-curve has multiplicity
at least 3 in the divisor Ei. So, by pulling-back we obtain

Ei ·
(∑

Ck,j*Ei
Ck,j

)
≥ 3, a contradiction.

• We have that the other chain is (−3)−(−2)−. . .−(−2) (which
shows the self-intersections of curves in the chain). Because
after blowing down the (−1)-curve V , the blow-down of Ei is
only one (−1)-curve, connected to a chain of P1s. So all the
remaining curves have to be (−2)-curves.
• We have that the component of GEi

\ V that contracts into
V ′ is exactly a (−2)-curve. Because, if to this component we
add a (−1)-curve to the vertex connected to just one other
vertex, then by Corollary 2 inside the component no divisor in
a center can be blow-down. After doing the blow-downs in the
new order, we end up with a (−2)-curve connected to a (−1)-
curve. So everything is blown-down, and therefore there were
no divisors in a center in the component. If there was a (−1)-
curve in the component, then there would be some centers.
So in this component there is no (−1)-curve, and it remains
unchanged after the blow-downs.
• We have that the curve V is part of a T-chain. Because V ′

must be intersecting a T-chain (or be inside one) and a (−2)-
curve cannot be a T-chain.
• We have that the curve V ′ must be part of a T-chain. Oth-

erwise, we can remove V ′ and add a (−1)-curve to the vertex
in Ei that is connected to one vertex. In this situation we can
apply Corollary 2 to GEi

, so no center gets contracted. But
when V becomes a (−1)-curve, Ei becomes:

(−1)− (−3)− (−2)− . . .− (−2)− (−1).

Since there are at least two T-chains and only one has curves
outside of Ei, we get a contracted T-chain, a contradiction.
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• We have that there is at most one divisor inside a center in the
component of GEi

\V that is not V ′. Because, if we add a (−1)-
curve to the vertex in this component connected to just one
other vertex, then by Corollary 2 in the component no divisor
in a center can be blown-down. After doing the blow-downs
in the new order, we end up with a (−3)-curve connected to a
chain of (−2)-curves connected to a (−1)-curve. So only one
curve is not contracted after doing just the blow-downs inside
this component, and therefore there was at most one curve in
a center in the component.

Now we divide in cases, according to which components have curves
of the T-chain containing V .

Case B.I: The component of GEi
\ V that is contained in Ei, that

is not V ′, does not contain curves from the T-chain that contains V .
If this component does not contain any (−1)-curve, then originally

it must be only the (−3)-curve (as the (−2)-curves must intersect some
T-chain). This curve must be part of a T-chain. Otherwise, we can
remove it and add a (−1)-curve to the vertex in Ei that is connected to
one vertex. In this situation we can apply Corollary 2, so no center gets
contracted. But after doing the blow-downs in the new order, V can be
blow-down and then V ′ can be blow-down. Since there are at least two
T-chains and only one has curves outside of Ei, we get a contracted
T-chain, a contradiction. Since a (−3)-curve is not a T-chain, there
must be a (−1)-curve in the component of GEi

\V that is contained in
Ei, that is not V ′.

The (−1)-curve in this component must be connected to V , so the
component must be of the form:

(−1)− (−2)− . . .− (−2)− (−4)− (−2)− . . .− (−2).

Since the (−1)-curve has to intersect two curves in T-chains, the only
possibilities for it are to be (−1)− [4] or (−1)− [4]− (−2).

Now, suppose there is a (−1)-curve in the component of GEi
\

V containing curves outside of Ei. Then the T-chain containing V
cannot have a center in any component of GEi

\ V . So, V is a center
divisor. But after doing all the blow-downs in the component of GEi

\V
containing curves outside of Ei, the vertex V cannot become a (−2)-
curve. Because we could change the T-chain for the T-chain generated
by the same algorithm, but starting from [3, 3], and if the vertex V
where to become a (−2)-curve, then one of the new center divisors
would get contracted, contradicting Corollary 2. Therefore, after doing
all blow-downs in the new order V cannot become a (−1)-curve, a
contradiction. So the component of GEi

\ V with curves outside of Ei
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contains no (−1)-curve. Therefore V is a (−2)-curve, and we would
get the situation of Figure 0.12 or Figure 0.13.

. . .
-2 -2

-4 -2

Figure 0.12. CASE B.I.1

. . .
-2 -2

-4

Figure 0.13. CASE B.I.2

Case B.II: The component of GEi
\V that is contained in Ei, that

is not the one containing V ′, contains curves from the T-chain that
contains V . If this component does not contain any (−1)-curve, then
originally it must be (−3)−(−2)−. . .−(−2). so the T-chain containing
V is

[2, X, 3, 2, . . . , 2]

So the only possibility for the T-chain containing V is [2, 5, 3] which
gives us the case in Figure 0.14 or Figure 0.15.

Now if the component that becomes [3, 2, . . . , 2] contains a (−1)-
curve, then there is a T-chain contained in it. Since only one center
divisor can be in the component, then there is at most one T-chain
and its center divisor becomes the (−3)-curve, so the chain of (−2)-
curves is unchanged by the blow-downs. Therefore this T-chain has
only (−2)-curves at one side of its center, so it is of one of the following
forms [4 +n, 2, . . . , 2], [2 +n, 5, 2 . . . , 2], [2 +n, 2, . . . , 2, 5 +m, 2, . . . , 2]
or [2, . . . , 2, 4 + n].

Since no center divisor of the T-chain containing V can be in any
component of GEi

\ V , V is its center. In order to have the 3, 2, . . . , 2
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Figure 0.14. CASE B.II.0

. . .
-2 -2 -2

-3-5-2

Figure 0.15. CASE B.II.1

chain after some blow-downs, the curves to the side of V , which is
not V ′, have to be [2, . . . , 2], [3, 2, . . . , 2], [2. . . . , 2,m + 3, 2, . . . , 2] or
[2, . . . , 2, n + 2] corresponding to the possibilities of the T-chain that
becomes [3, 2, . . . , 2]. The only case that yields a T-chain would give us
that the T-chain containing V is [2, 5, 3]. This case gives us [2, 5, 3] −
(−1) − [2, 5], where the discrepancies of the curves intersecting the
(−1)-curve add up to more than −1, a contradiction. �

It is easy to verify that the set of all T-chains which are not con-
tained completely in Ei is one of seven cases in Figures 0.16–0.22.

Assuming Ei ·
(∑

Ck,j*Ei
Ck,j

)
= 1, we get that in cases 2, 3, 4 and 6

the graph GEi
is a tree. In the other cases there could be cycles inside

GEi
. We now explain how the classification for the cases when GEi

is a
tree gives a classification for the cases when GEi

is not a tree. Assume
that GEi

is not a tree. Then we are in case 1, 5 or 7. We analyse each
case separately.

Case 1: We construct in a combinatorial way a new graph G′Ei
in

the following way. In GEi
there are one or two curves in Ei connected

to the T-chain which is not contained in Ei. Disconnect one of these
intersections to this T-chain and reconnect it, instead, to the corre-
sponding vertex in a new equal T-chain. Then G′Ei

is a tree. After
doing the corresponding blow-downs, the same curves as in GEi

are
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Figure 0.16. Case 1
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Figure 0.17. Case 2

. . .
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Figure 0.18. Case 3
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Figure 0.19. Case 4

. . . . . .

Figure 0.20. Case 5

. . . . . . . . .

Figure 0.21. Case 6

. . . . . . . . .

Figure 0.22. Case 7

contracted, and it fulfills the same combinatorial restrains. Hence G′Ei

satisfies the classification in Proposition 17 or Proposition 19. So it
must be as in Figure 0.1, and so the original GEi

has to be as in Figure
0.23.

. . . . . . . . .

Figure 0.23. Case C.1*

Case 5: We again construct in a combinatorial way a new graph
G′Ei

. In GEi
, there is a curve in Ei connected to a vertex not in Ei
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in the T-chain not contained in Ei. Disconnect this curve to this T-
chain and connect it, instead, to the corresponding vertex of a new
equal T-chain. Then G′Ei

is a tree. After doing the corresponding
blow-downs, the same curves as in GEi

are contracted, and it fulfills
the same combinatorial restrains. Then G′Ei

satisfies the classification
in Proposition 17 or 19. So it must be as in Figure 0.2, 0.4, 0.8 or 0.9
so the original GEi

has to be as in Figures 0.24, 0.25, 0.26 or 0.27.

. . . . . .

Figure 0.24. Case C.2*

. . . . . .
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Figure 0.25. Case A.1*
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Figure 0.26. Case A.II.1*
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Figure 0.27. Case A.II.2*

Case 7: Once more, we construct in a combinatorial way a new
graph G′Ei

in the following way. We change the T-chain not contained
in Ei for two equal T-chains, changing from Figure 0.28 to Figure 0.29.
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Figure 0.28

. . . . . . . . .

. . . . . . . . .

P ′

Q′

Figure 0.29

We now connect to a curve in P ′ (respectively Q′) whichever was
connected to the corresponding curve in P (respectively Q). So G′Ei

is
a tree. After doing the corresponding blow-downs, the same curves as
in GEi

are contracted and it fulfills the same combinatorial restrains.
Then G′Ei

satisfies the classification in Proposition 17 or Proposition
19. So it must be as in Figure 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 0.10 or 0.11.
For cases as in Figures 0.3 or 0.5 the discrepancies of the contracted
end-curves add up less than −1, but in the original T-chain this would
yield a contradiction, as the discrepancies of end-curves add up −1 In
each of the other cases both T-chains not contained in Ei have chains
of (−2)-curves which will produces a contradiction to the original GEi

,
since a T-chain does not have (−2)-curves in both ends. So, this case
does not yield any possibilities.

All in all, we now can prove the following.

Proposition 20. If Ei · C = 1, then GEi
is one of the graphs in

Figures 0.30 to 0.38.

Proof. In order to have Ei · C = 1, we need to have either Ei ·(∑
Ck,j*Ei

Ck,j

)
= 1 and Ck,j · Ei = 0 for every Ck,j ⊂ Ei, or Ei ·(∑

Ck,j*Ei
Ck,j

)
= 2 and Ck,j ·Ei = −1 for a Ck,j ⊂ Ei. The first case

is impossible by Proposition 5. The second case case gives figure 0.24
and 0.26 as the only possible graphs with cycles, and the possibilities
from Propositions 17 and 19 in which the last curve of Ei to be blown-
down is inside a T-chain. This gives us the desired figures.

�
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Figure 0.30. Case C.2
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Figure 0.31. Case C.3
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Figure 0.32. Case A.I.1
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Figure 0.33. Case A.II.1
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Figure 0.34. CASE A.II.3
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Figure 0.35. CASE B.I.2
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Figure 0.36. CASE B.II.1
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Figure 0.37. Case C.2*
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Figure 0.38. Case A.II.1*





Bounding

Let us call an Ei maximal if Ei · C = 1 and it is not contained
in any other Ej with Ej · C = 1. We are now going to study the
number of maximal Ei’s in a given situation. Using the fact that two
distinct Ejs are either disjoint or one is contained in the other, and
that by Proposition 20 any maximal Ei has an ending (−2)-curve of
some T-chain, we obtain that there are at most l maximal Eis.

We now define the following directed graph. We have one vertex
corresponding to each T-chain. The idea is to assign as many edges
as end-curves with discrepancies greater than or equal to −1

2
which

are contained in some maximal Ei, and decorate each edge with the
number of Ej ⊂ Ei with Ej · C = 1. For this we do the following
construction.

• For every maximal Ei as in Figure 0.30 or Figure 0.31, we
construct an edge between the vertices corresponding to the
T-chains connected to the (−1)-curve in Ei. Make the edge to
point away from the T-chain with the (−2)-curve connected to
the (−1)-curve. To the edge assign the number m or m1 +m2.
• For every maximal Ei as in Figure 0.32, we construct three

edges. The first edge connecting the T-chain that is com-
pletely contracted in Ei to itself, and assign to it the number
1. The second and third edges connecting the T-chain that
is completely contracted in Ei to each of the other T-chains
with contracted curves in Ei. Make each of this edges pointing
to the T-chain that is completely contracted. Assign to each
of these edges the number of (−2)-curves contracted in the
vertex from which they point away, i.e. m and n.
• For every maximal Ei as in Figure 0.33, if n 6= 0, then we

construct two edges. The first edge connecting the T-chains
connected to the (−1)-curve in Ei, pointing away from the T-
chain with the (−2)-curve connected to the (−1)-curve. Assign
to this edge the number m. The second edge connecting the
T-chain with a triple point in Ei to itself. Assign to this edge
the number 1.

39
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If n = 0, then we only construct an edge connecting the
T-chain which has contracted curves in Ei to itself. Assign the
number 1 to this edge.
• For every maximal Ei as in Figure 0.34, we construct three

edges. The first edge connecting the T-chain that is com-
pletely contracted in Ei to itself and assign to it the number
1. The second and third edges connecting the T-chain that is
completely contracted in Ei to each of the other T-chains with
contracted curves in Ei. Make each of these edges pointing to
the T-chain that is completely contracted. Assign to the edge
corresponding to the T-chain with m (−2)-curves the number
m and to the other edge assign the number a+ b.
• For every maximal Ei as in Figure 0.35, we construct two

edges. The first edge connecting the T-chain with only one
curve to itself and assign to it the number 1. The second
connecting the T-chains that are connected to the (−1)-curve
in Ei, pointing to the T-chain with only one curve. Assign to
it the number 1.
• For every maximal Ei as in Figure 0.36, we construct two

edges. The first edge connecting [2, 5, 3] T-chain to itself and
assign to it the number 2. The second connecting the T-chains
that is connected to the (−1)-curve in Ei, pointing to the
[2, 5, 3] T-chain. Assign to it the number 3.
• For every maximal Ei as in Figure 0.37, we construct an edge

connecting the T-chain with contracted curves in Ei to itself.
Assign to it the number m.
• For every maximal Ei as in Figure 0.38, we construct and edge

connecting the T-chain with contracted curves in Ei to itself.
Assign to it the number 1.

Each of these cases is shown in Figures 0.39 to 0.46

m m1 +m2

Figure 0.39. Case C.2/ Case C.3

m n

1

Figure 0.40. Case A.I.1
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m 6= 0 m=0

m 1 1

Figure 0.41. Case A.II.1

m a+ b

1

Figure 0.42. Case A.II.3

1
1

Figure 0.43. Case B.I.2

3
2

Figure 0.44. Case B.II.1

For every maximal Ei the sum of the numbers assigned to the edges
constructed corresponding to it is equal to the number of Ej ⊂ Ei with
Ej · C = 1. So, if we add the numbers assigned to the edges of this
directed graph, then we obtain the number of Eis with Ei · C = 1.

Now we consider every connected component of the directed graph,
and bound the sum of the numbers assigned to the edges for each of
them.

In a connected component with l′ vertices, there are at least l′ −
1 edges (not including those that connect only one vertex). By our
restrictions, there are at most l′ edges, including those that connect
only one vertex. So, there is at most one edge connecting only one
vertex. Therefore there is at most one case from Figures 0.32 to 0.38.

Proposition 21. Let D =
∑
dj, R =

∑
rj, and λ = KS · π(C).

We have

R−D ≤ 2(K2
W −K2

S) + Z − λ,
where Z is the number of Ei with Ei · C = 1.

Proof. By Lemma 2, Corollary 3 and Lemmas 4 and 5, we have

R−D + 2l =
∑

Ei · C + λ ≥ 2m− Z + λ.
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m

Figure 0.45. Case C.2*

1

Figure 0.46. Case A.II.1*

The result follows since K2
S −m+R−D + l = K2

W . �

Now our plan will be to study the number of Ej with

Ej · C = 1,

and Ej ⊂ Ei, for every possible GEi
as in Proposition 20.

Remark 4. Let Γ be a P1 in X. By the adjunction formula, we have
KX ·Γ = −2−Γ2. Let ∆ be a (−1)-curve, and assume ∆ ·Γ = m. Then
after blowing-down ∆ we obtain that the intersection of the canonical
class with the image of Γ is −2− Γ2−m. Therefore, if KS is nef then
Γ2 ≤ −(

∑
mi)− 2, where the mis are the multiplicities corresponding

to the various blow-downs.

Remark 5. For any T-chain [x1, x2, . . . , xn], we have r − d + 2 =∑
(xi − 2) (see [RU17]). We will use this several times in the next

propositions.

Proposition 22. If we have a maximal Ei as in Figure 0.30, as-
suming KS is nef, we have r1 − d1 ≥ m and r2 − d2 ≥ m, where rx, dx
are the values in the T-chains that intersect curves in Ei.

Proof. The T-chain which has curves in Ei is one of three possi-
bilities:

[2, . . . , 2, 4 +m]

[2, . . . , 2, 3, 2, . . . , 2, 3 +m]

[2, . . . , 2, x1, . . . , xh, 2 +m]

So, by Remark 5, we have r1 − d1 + 2 ≥ m + 2, with equality only in
the first two cases, and the curve in the other T-chain, intersecting the
(−1)-curve must have self-intersection less than or equal to −(m+ 3).
So, by Remark 5, we have r2 − d2 + 2 ≥ m + 1, with equality only
if the T-chain is [2, . . . , 2,m + 3]. If we replace this T-chain by the
T-chain made by the same algorithm, but starting from [3, 3], then a
center-divisor would be contracted, a contradiction by Proposition 15.
So r2 − d2 ≥ m. �
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Proposition 23. If we have a maximal Ei as in Figure 0.31, as-
suming KS is nef, we have r1 − d1 ≥ m1 +m2 and r2 − d2 ≥ m1 +m2,
whererx, dx are the values in the T-chains that intersect curves in Ei.

Proof. By the Proposition 15, no curve in a center is blown-down,
so we can replace the T-chains by those made with the same algorithms,
but starting from [3, 3]. So rx, dx remains the same and we can calculate
more easily some self-intersections. If the parts of the T-chains that
get blow-down are

[w1, . . . , wm1 ]− (−1)− [y1, . . . , ym2 ],

then the T-chains are

[y1, . . . , ym2 , c1 . . . , ch, w1, . . . , wm1 ]

[y1, . . . , ym2 , c
′
1 . . . , c

′
h′ , w1, . . . , wm1 ].

We have that
∑

(yi − 2) + c1 − 2 ≥ m1 and
∑

(wi − 2) + ch − 2 ≥
m2 + 1. So adding everything and using Remark 5, we obtain the
result. With

∑
(yi− 2) + c1− 2 = m1, only if there is no center divisor

in {y1, . . . , ym2 , c1}, and since no center can be in {w1, . . . , wm1}, we
have r1 − d1 > z. We can do the exact same analysis for the other
T-chain and obtain the desired result. �

Proposition 24. If we have a maximal Ei as in Figure 0.32, as-
suming KS is nef, we have r1 − d1 = m + n − 1, r2 − d2 ≥ 2m,
r3 − d3 ≥ 2n, where rx, dx are the values in the T-chains that intersect
curves in Ei, r1, d1 for the T-chain with m (−2)-curves, r2, d2 for the
T-chain with m+ n− 1 (−2)-curves and r3, d3 for the T-chain with n
(−2)-curves.

Proof. By Remark 5, we have r2 − d2 + 2 = m + n + 1. In both
T-chains that are not contained in Ei, the curve next to the chain of
(−2)-curves must have self-intersection less or equal to −(3+m+n), or
they would be blown-down, a contradiction. If one of these T-chains has
only one curve outside of Ei, without loss of generality [4 +n, 2, . . . , 2],
then 4 + n = 3 + m + n, so m = 1, and therefore the T-chain in Ei
is [4 + n, 2, . . . , 2]. So,the discrepancies in the curves intersecting a
(−1)-curve add up to exactly −1, a contradiction. Therefore, the end-
curves have self-intersections at most −(n+2) and −(m+2). Hence, by
Remark 5, r1−d1+2 ≥ (m+n+1)+m and r3−d3+2 ≥ (m+n+1)+n.
Using the fact that m > 0, n > 0 we get the desired results. Since
if m = 0, then the discrepancies in the (−1)-curve connecting the
T-chains with contracted curves, do not add up to less than −1, a
contradiction. �
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Proposition 25. If we have a maximal Ei as in Figure 0.33, as-
suming KS is nef, we have r1 − d1 ≥ m, r2 − d2 ≥ m + 1, where
rx, dx are the values in the T-chains that intersect curves in Ei, r1, d1
for the T-chain with m (−2)-curves and r2, d2 for the T-chain with n
(−2)-curves.

Proof. The curve in the T-chain with no triple point in Ei, inter-
secting the (−2)-curve in Ei, must have self-intersection less than or
equal to −(4 +n). If this is the only curve, then it has self-intersection
−(4+m), otherwise the end-curve must have self-intersection −(m+2).
So, by Remark 5, r1−d1+2 ≥ m+2. In the other T-chain, the curve in-
tersecting the (−1)-curve has self intersection −(m+2), the curve next
to it must have self-intersection less than or equal to −(n+ 3) and the
end-curve−(n+2). So, by Remark 5, r2−d2+2 ≥ m+(n+1)+n ≥ m+3
and we get the desired result. �

Proposition 26. If we have a maximal Ei as in Figure 0.34, as-
suming KS is nef, we have r1 − d1 ≥ m, r2 − d2 ≥ m + n − 1 and
r3 − d3 ≥ m+ 2n− 2, where rx, dx are the values in the T-chains that
intersect curves in Ei, r1, d1 for the T-chain with m (−2)-curves, r2, d2
for the T-chain with n (−2)-curves and r3, d3 for the other T-chain.

Proof. If we re-order the blow-downs, and do not do any blow-
down in the component with m (−2)-curves, then the center curve
of the T-chain in Ei intersects only one blow-down curve. Because
we can remove the T-chain with m (−2)-curves and the (−1)-curve
intersecting it, and change the T-chain with n (−2)-curves, by the T-
chain made by the same algorithm, but starting from [3, 3]. So we
would have [2, . . . , 2, t + 3, 3, 2, . . . , 2, 2 + n] − (−1) − [c1, . . . , cr3 ]. By
Corollary 2, no center curve could be blown-down. So, the −(3)-curve
in the T-chain cannot be blown-down, meaning it intersects only one
blow-down curve. Therefore in the original situation the center curve
of the T-chain in Ei intersects only one blow-down curve. So we can
calculate all self-intersections in Ei, which are showed in Figure 0.47.

The vertex V , has self-intersection less than or equal to −(m+n+
2), or it would be contracted. So, the vertex V ′ has self-intersection
−(n+2), therefore r3−d3+2 ≥ m+2n. The vertex V ′′ could have have
self-intersection −(m + 4), −(m + 3) or −(m + 2), in the second and
third case, the curve in this T-chain intersecting the −(2)-curves would
have self-intersection less than or equal to −(n+ 4). So, by Remark 5,
r1−d1 + 2 ≥ m+ 2. By adding up these inequalities we get the desired
result.

�
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Figure 0.47. CASE A.II.3

Proposition 27. If we have a maximal Ei as in Figure 0.35, as-
suming KS is nef, we have r1 − d1 ≥ 2, where r1, d1 are the values in
the T-chain that intersect curves in Ei, which is not [4].

Proof. The curve intersecting the first (−2)-curve to be contracted,
must have self-intersection less or equal to (−5). If this is the only
curve, then it has self-intersection (−6), otherwise, the end-curve has
self-intersection −4. So, by Remark 5 we have the desired formula. �

Proposition 28. If we have a maximal Ei as in Figure 0.36, as-
suming KS is nef, we have r1−d1 ≥ 3. r2−d2 = 2, where r1, d1 are the
values in the T-chains that intersect curves in Ei which is not [2, 5, 3]
and r2, d2 are the values in [2, 5, 3].

Proof. The curve that is not contracted and intersects a (−2)-
curve in Ei must have self-intersection less or equal to −6. If this is
the only curve, then it has self-intersection (−7), otherwise the end-
curve must have self-intersection (−5). So by Remark 5 we have the
desired formula. �

Proposition 29. If we have a maximal Ei as in Figure 0.37, as-
suming KS is nef, we have r1− d1 ≥ 2m, where r1, d1 are the values in
the T-chains that intersect curves in Ei.

Proof. The (−1)-curve intersects a curve not in Ei. It cannot
be the end curve, as the discrepancies of the curves intersecting the
(−1)-curve would add up to exactly (−1), a contradiction. If it is
the curve intersecting a (−2)-curve contained in Ei, then it must have
self-intersection less than or equal to −(m + 4), and the end-curve
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must have self-intersection −(m+2). Otherwise, the curve intersecting
the (−2)-curve contained in Ei must have self-intersection less than or
equal to −(3) and the curve intersecting the (−1)-curve must have self-
intersection less than or equal to −(m + 3), and the end-curve must
have self-intersection −(m+2). In both cases, by Remark 5, we obtain
the desired result. �

Remark 6. In Figure 0.38 there is no other Ej ⊂ Ei with Ej ·C = 1
and r − d ≥ m + 1 by Remark 5, if m = 0, the discrepancies of the
curves intersecting the (−1)-curve add exactly −1, a contradiction. So
r − d ≥ 2.

We now analyse some special properties of graphs, which will come
in handy to join all the information from the bounds in each possible
maximal Ei.

Lemma 6. Let G be a finite graph which is a tree, with a fixed vertex
V1. Then there is a bijection from the rest of the vertices to the edges,
such that every vertex correspond to an edge that is connected to it.

Proof. We can do this inductively on the number of vertices, for
the case of two vertices is trivial. Now if the lemma holds for p − 1
vertices, then we consider a tree G with p vertices. A leaf is a vertex
with only one edge, in a tree with more than one vertex there are always
two or more leaves. There is a leaf V in G that is not V1, we send V
to the edge connected to it L. Now in G \ {V, L} the lemma holds and
we obtain the bijection for G. �

Lemma 7. Let G be a finite graph with p vertices which is a tree.
Then it is possible to assign to each edge LV V ′ two natural numbers
LV V ′(V ), LV V ′(V

′) such that the following equations hold:

LV V ′(V ) + LV V ′(V
′) = p,∑

V ′

LV V ′(V ) = p− 1.

Proof. For a graph with 2 vertices, we can simply put LV1V2(V1) =
LV1V2(V2) = 1. We will do induction on the number p of vertices of
G. Assume that the Lemma is true for graphs with p-1 vertices. Let
G have p vertices. We take a leaf V1 in G connected to vertex V2.
We put LV1V2(V1) = p − 1 and LV1V2(V2) = 1. We now consider the
graph G \ {V1, LV1V2}. Thanks to Lemma 6 we can associate each
edge to a vertex different than V2. By the induction hypothesis we get
the numbers L′V V ′(V ), L′V V ′(V

′) for each edge. We define LV V ′(V ) =
L′V V ′(V )+i, where i = 1 if LV V ′ is associated to V and i = 0 otherwise.
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This way we have the desired properties for the numbers assigned to
the edges. �

Corollary 4. Let G be a finite graph with p vertices which is a
tree. Assume we have assigned to each vertex V and edge LV V ′ the real
numbers aV and bV V ′ respectively such that aV ≥ bV V ′ and aV ′ ≥ bV V ′.
Then (p− 1)

∑
aV ≥ p

∑
bV V ′.

Proof. We get the numbers associated to the edges in Lemma 7
and add the inequalities LV V ′(V )aV ≥ LV V ′(V )bV V ′ , LV V ′(V

′)aV ′ ≥
LV V ′(V

′)bV V ′ for every edge to get the desired inequality. �

Corollary 5. Let G be a finite graph with p vertices which is a
tree and a fixed vertex V1. Assume we have assigned to each vertex
V and edge LV V ′ the real numbers aV and bV V ′ respectively such that
aV ≥ bV V ′ and aV ′ ≥ bV V ′. Then

(p− 1)aV1 + (2p− 1)
∑
V 6=V1

aV ≥ 2p
∑

bV V ′ .

Proof. By Lemma 6 we obtain the numbers iV V ′(V ), iV V ′(V
′)

where iV V ′(V ) = 1 if the bijection sends V to LV V ′ and iV V ′(V ) = 0
otherwise. Now we add the inequalities iV V ′(V )aV ≥ iV V ′(V )bV V ′ ,
iV V ′(V

′)aV ′ ≥ iV V ′(V
′)bV V ′ for every edge to obtain the inequality:∑

V 6=V1

aV ≥
∑

bV V ′ .

Adding this inequality (p− 1) times to the inequality from Corollary 5
we obtain the desired result. �

V4 V5

V2

V6V3

V1

L3 L4

L2L1

L5

Figure 0.48

Example 3. If we have a graph as in Figure 0.48, then the numbers
in Lemma 7 can be computed following the induction process and they
are L1(V1) = 5, L1(V4) = 1, L2(V2) = 5, L2(V5) = 1, L3(V3) = 5,
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L3(V4) = 1, L4(V4) = 3, L4(V5) = 3, L5(V5) = 1, L5(V6) = 5. If we fix
V6 the bijection in Lemma 6 would send Vi correspond to Li.

Proposition 30. If KS is nef and in a connected component of the
directed graph there is no cycle, where we include a vertex connected to
itself as a cycle, then (l′ − 1)(R′ − D′) ≥ l′Z ′, where l′ is the number
of T-chains associated to the vertices in the component, R′, D′ are the
sums of the ri, di of these T-chains, and Z ′ is the sum of the values in
the edges of the component of the directed graph.

Proof. There can only be maximal Ei as in Figure 0.30 or 0.31.
So, using the Propositions 22 to 23, we have that rV−dV ≥ zLV V ′

, where
rV , dV are the values in the T-chain corresponding to vertex V in the
directed graph, and zLV V ′

is the value in an edge connected to V . So it
is enough to use Corollary 4 with aV = rV − dV and bV V ′ = zLV V ′

. �

Proposition 31. If KS is nef, and in a connected component of
the directed graph there is a maximal Ei as in Figure 0.32 to 0.35 or
Figure 0.38, then (l′ − 1)(R′ −D′) ≥ l′Z ′ − l′, where l′ is the number
of T-chains associated to the vertices in the component, R′, D′ are the
sums of the ri, di of these T-chains, and Z ′ is the sum of the values in
the edges of the component of the directed graph.

Proof. By Propositions 24 to 27 we have rV − dV ≥ zLV V ′
, where

rV , dV are the values in the T-chain corresponding to vertex V in the
directed graph, and zLV V ′

is the value in an edge connected to V .
So we can use Corollary 4 on the graph after removing the cycle, with
aV = rV −dV and bV V ′ = zLV V ′

. So it is enough to notice that
∑
bV V ′ =

Z ′ − 1, because we are missing the cycle.
�

Proposition 32. If KS is nef, and in a connected component of
the directed graph there is a maximal Ei as in Figure 0.36, then (l′ −
1)(R′−D′) ≥ l′Z ′−3l′+1, where l′ is the number of T-chains associated
to the vertices in the component, R′, D′ are the sums of the ri, di of
these T-chains, and Z ′ is the sum of the values in the edges of the
component of the directed graph.

Proof. Let V1 be the vertex corresponding to the vertex with a
cycle. We have rV − dV ≥ zLV V ′

, where rV , dV are the values in the T-
chain corresponding to vertex V 6= V1 in the directed graph, and zLV V ′

is the value in an edge connected to V . For V1 we have rV1 −dV1 = 2 ≥
zLV V1

− 1 So we can use Corollary 4 with aV = rV − dV for V 6= V1 and
aV1 = rV1 − dV1 + 1 and bV V ′ = zLV V ′

. Noticing that
∑
bV V ′ = Z ′ − 2,
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because we are missing the cycle, we obtain

(l′ − 1)(R′ −D′ + 1) ≥ l′Z ′ − 2l′.

�

Proposition 33. If KS is nef and in a connected component of
the directed graph there is a cycle in the directed graph, only having
maximal Eis as in Figures 0.30, 0.31 or 0.37, then there is a special
vertex Vi and an edge Lj that is part of the cycle connected to it, such
that rVi − dVi ≥ 2zLj

− 1, where rVi , dVi are the values in the T-chain
associated to the vertex Vi and zj is the value of the edge Lj. The
inequality is strict if there is a maximal Ei as in Figure 0.37.

Proof. If there is a maximal Ei as in Figure 0.37, then by Propo-
sition 29 the vertex connected to itself has the desired property. So, we
are left only with the case where every maximal Ei is as in Figure 0.30
or 0.31. We look at the cycle in this context, it must be a directed cy-
cle, since no two edges can point away from the same vertex. To every
vertex assign the length of the chain of (−2)-curves that the T-chain
has at one of its ends.

If there are vertices with different numbers in the cycle, then we
name as V a vertex with the smallest number, such that the vertex
(V ′) which is connected to V with an edge pointing at V ′ has a bigger
number. Then the maximal Ei which gives the edge connecting V
and V ′ has to be as in Figure 0.30, since in Figure 0.31 both T-chains
have chains of (−2)-curves of the same length. Also the (−1)-curve
connecting the T-chains corresponding to V and V ′, must intersect the
T-chain corresponding to V ′ at a curve that is not an end-curve. So,
rV ′ − dV ′ + 2 ≥ yV ′ + yV + 1 ≥ 2yV + 2, where yV is the length of the
chain of (−2)-curves in the T-chain corresponding to vertex V . So, it
is enough to notice that yV is also the number assigned to the edge
joining V and V ′.

If each vertex in the cycle has the same number, then call V the
vertex in the cycle such that the discrepancy at the (−2)-end curve is
the biggest possible, such that the vertex (V ′) which is connected to V
with an edge coming out of V , has lower discrepancy at the (−2)-end
curve. Then, in the maximal Ei, which gives the edge connecting V and
V ′, the (−1)-curve connecting the T-chains corresponding to V and V ′,
must intersect the T-chain corresponding to V ′ at a curve that is not
an end-curve. Otherwise the discrepancies in the curves intersecting
the (−1)-curve would not add up to less than (−1). So it must be as
in Figure 0.30. Thus rV ′−dV ′+2 ≥ yV ′+yV +1 = 2yV +1, where yx is
the length of the chain of (−2)-curves in the T-chain corresponding to
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vertex x.It is enough to notice that we have that yV is also the number
assigned to the edge joining V and V ′. �

Theorem 1. If KS is nef, then for any connected component of
the directed graph we have (2l′ − 1)(R′ − D′) ≥ 2l′Z ′ − l′, where l′ is
the number of T-chains associated to the vertices in the component,
R′, D′ are the sums of the ri, di of these T-chains, and Z ′ is the sum
of the values in the edges of the component of the directed graph. The
inequality is strict if in the component there are maximal Eis other than
those from Figures 0.30 and 0.31.

Proof. For the case when there are no cycles we have a better
bound, so we only have to take care of the case when the number of
edges is the same as the number of vertices.

If there is a maximal Ei as in Figure 0.32 to 0.36 or Figure 0.38,
then by Propositions 31 and 32 we have a better bound, so we can
discard these cases.

Let V1 and L1 be the vertex and edge from Proposition 33. Using
the Propositions 22 to 29, we have that rV1 − dV1 ≥ 2zL1 − 1 and
rV − dV ≥ zLV V ′ , for all vertices, where rV , dV are the values in the
T-chain corresponding to vertex V in the directed graph, LV V ′ is an
edge connected to V , and zL is the value in the edge L. So we can
use Corollary 5 removing L1 from the component with fixed vertex V1,
aV = rV − dV and bV V ′ = zLV V ′

. So, it is enough to add l′(rV1 −
dV1) ≥ 2l′z1− l′ to the inequality. If we had a maximal Ei as in Figure
0.37, then we would have to add l′(rV1 − dV1) ≥ 2l′z1 instead, to get
(2l′ − 1)(R−D) ≥ 2l′Z ′.

�

Proposition 34. If α(R−D) ≥ βZ − γ, then

R−D ≤ 2
β

β − α
(K2

W −K2
S) +

1

β − α
γ − β

β − α
λ.

Proof. This is a direct consequence of Proposition 21. �

Theorem 2. If KS is nef, then

R−D ≤ 4L(K2
W −K2

S) + l − 2LKS · π(C),

where L is the maximum number of vertices in a connected component
of the directed graph, in particular L ≤ l.
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Proof. For any connected component of the directed graph with
l′ vertices, by Theorem 1 we have (2l′− 1)(R′−D′) ≥ 2l′Z ′− l′. Since
Z ′ is at least the number of edges we obtain that (2l′ − 1)(R′ −D′) ≥
(2l′ − 1))Z ′, adding this inequality with the right coefficient to the
inequality from Theorem 1, we obtain (2L−1)(R′−D′) ≥ 2LZ ′− l′. If
we do this for every connected component and add all the inequalities,
then we obtain

(2L− 1)(R−D) ≥ 2LZ − l.
Finally we put together this inequality with Proposition 21.

�





Optimality

Example 4. For arbitrary n, l positive numbers let us have l T-
chains, Ci = [2, . . . , 2, 3, n+3, Xi, 2, . . . , 2, 3, n+2], where each 2, . . . , 2
represents a chain of n twos, X1 = 5 and for i > 1 Xi = 3+i, 2, . . . , 2, 3
which has i− 2 twos. Let us also have a (−1)-curve intersecting trans-
versely the (−n−3)-curve and the (−2)-end-curve in C1 and for i < l let
us have a (−1)-curve intersecting transversely the (−n− 2)-end-curve
in Ci and the (−2)-end-curve in Ci+1. With no other curve being in the
pull-back divisor of π. Which is represented in Figure 0.49, by a dual
graph where a white box represents any curve in C that is blow-down
by π, a white circle represents a curve that is blow-down by π and is
not part of C and a black circle represents a curve in C which is not
blow-down by π.
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Figure 0.49. Optimal Example
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For each T-chain, we have di = 1 and ri = 2n+ 4 + i, so R−D =
2ln + l2

2
+ 9l

2
. In the directed graph we have a loop with the number n

and the edge between Ci and Ci+1 has the number 2n + 3 + i on it, so

Z = n + (2n + 3)(l − 1) + (l−1)(l)
2

= n(2l − 1) + l2

2
+ 5l

2
− 3. Therefore

(2l−1)(R−D) = 2lZ+ 7l2

2
+ 3l

2
. So, we have limn→∞

R−D
Z

= 2l
2l−1 , which

implies that Theorem 1 is maximal in the sense of Proposition 35a).
By Lemma 2 we have that KS ·π(C) = R−D+2l−Z−2l = n+2l+3
and K2

W −K2
S = R − D −m + l = R − D − Z = n + 2l + 3. So, we

have limn→∞
R−D

K2
W−K

2
S

= limn→∞
R−D

2(K2
W−K

2
S−KS ·π(C))

= 2l, which implies

that Theorem 2 is maximal in the sense of Proposition 35b).

Proposition 35. For fixed l and any ε ∈ R>0, there exists a com-
binatorial configuration of l T-chains such that

a) (2l − 1)(R−D) < (2l + ε)Z.
b) R−D > 4(L− ε)(K2

W −K2
S)− 2(L− ε)KS · π(C).

c) R−D > 2(L− ε)(K2
W −K2

S).

Remark 7. Proposition 35a) and 35b), with Theorems 1 and 2 give
us optimality in an asymptotic sense, but we do not have a counterpart
for Proposition 35c) that bounds R − D only in terms of K2

W − K2
S

optimally.

What we can do now is to find some properties of the families of
combinatorial T-chains that give the optimums in our bounds.

Proposition 36. If KS is nef and the T-chain corresponding to
vertex V is contained only in maximal Eis as in Figures 0.30, 0.31 or
0.37, then in the directed graph we have that 2(rV − dV ) ≥ zV , where
zV is the sum of the values in all the edges connected to V and rV , dV
are the values in the T-chain corresponding to V .

Proof. This is just combining Propositions 22, 23 and 29, using
the fact that the maximal Eis are pairwise disjoint and for two maximal
Eis as in Figure 0.31 the [w1, . . . , wm1 ] and [y′1, . . . , y

′
m′2

] from Proposi-

tion 23 in the same T-chain from different Eis are also disjoint, because
the center divisors separate them. �

Proposition 37. If KS is nef and in a connected component of the
directed graph there is no cycle, where we include a vertex connected to
itself as a cycle, then (Y + 1)(R′ − D′) ≥ (Y + 2)Z ′, where Y is the
number of vertices which are not leaves in the connected component of
the directed graph, R′, D′ are the sums of the ri, di of the T-chains
in the component, and Z ′ is the sum of the values in the edges of the
component of the directed graph.
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Proof. Let R1, D1 and R2, D2 be the sums of ri, di in the vertices
corresponding to leaves and the rest of them, respectively. Let Z1

and Z2 be the sums of the values in the edges connected to leaves
and the rest of them, respectively. There can only be maximal Eis
as in Figure 0.30 or 0.31. So, using Propositions 22 and 23, we have
that rV − dV ≥ zLV V ′

, where rV , dV are the values in the T-chain
corresponding to vertex V in the directed graph, and zLV V ′

is the value
in an edge connected to V . We use Corollary 4 with aV = rV − dV and
bV V ′ = zLV V ′

on the tree that is obtained by removing all the leaves,
and obtain

(Y − 1)(R2 −D2) ≥ (Y )(Z2).

By adding the inequalities rV − dV ≥ zL for every leaf Y times, we
obtain

Y (R1 −D1) ≥ Y Z1.

By adding the inequality obtained from Proposition 36 at each non-leaf
vertex, we obtain

2(R2 −D2) ≥ Z1 + 2Z2.

By adding this three inequalities, and noticing that R−D = R1−D1+
R2 −D2 and Z = Z1 + Z2, we obtain the desired inequality. �

Remark 8. This is generally better than Proposition 30, since Y ≤
l′ − 2, where Y is the number of non-leaf vertices and l′ is the number
of vertices in the connected component of the directed graph. Using
Proposition 37, we can change l′ to Y + 2 in Propositions 31 and 32,
where Y is the number of non-leaf vertices in the connected component
after removing the loop.

Proposition 38. If KS is nef and in a connected component of
the directed graph there is a cycle in the directed graph, only having
maximal Eis as in Figures 0.30, 0.31 or 0.37, then we have (2Y +
3)(R′ −D′) ≥ (2Y + 4)Z ′ − Y − 2, where Y is the number of non-leaf
vertices in the connected component after removing the edge Lj from
Proposition 33, R′, D′ are the sums of the ri, di of the T-chains in the
connected component, and Z ′ is the sum of the values in the edges of
the component of the directed graph.

Proof. By Proposition 37 on the component without the edge Lj,
we have

(Y + 1)(R′ −D′) ≥ (Y + 2)(Z ′ − ZLj
).

By Proposition 33, we have

(Y + 2)(rVi − dVi) ≥ (Y + 2)(2ZLj
− 1).
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And by the bijection from Lemma 6, removing Lj and fixing Vi, we
obtain

(Y + 2)(R′ −D′ − (rVi − dVi)) ≥ (Y + 2)(Z ′ − ZLj
).

By adding this 3 inequalities, we obtain the result. �

We call cycle a connected graph where every vertex has two edges
and line a tree where no vertex has more than two edges.

Proposition 39. For any connected component of the directed
graph that is not a cycle or a line with a loop at one end, we have

(2l′ − 2)R′ −D′ ≥ (2l′ − 1)Z ′ − l′.

Proof. By Remark 8 and Propositions 37 and 38, we only need
to look at components which are the result of adding an extra edge (or
loop) to a tree with exactly two leaves. So, we only need to look at the
cases of a cycle with two lines connected to neighbouring vertices of
the cycle, and the case of a line with a loop at a vertex in the middle.

For the case of the cycle. Let us call L the edge from Proposition
33. Let us label the vertices V1 to Vl′ , so that after removing the edge L
the neighbouring vertices have consecutive indices and label Li the edge
between Vi and Vi+1. We call VA, VB, A < B the vertices connected to
L. Without loss of generality suppose VA is the vertex in Proposition
33. For each vertex with i < A, add up

(2l′ − 2)(rVi − dVi) ≥ (i− 1)zLi−1
+ (2l′ − i− 1)zLi

.

For each vertex with i > B, add up

(2l′ − 2)(rVi − dVi) ≥ (l′ + i− 2)zLi−1
+ (l′ − i)zLi

.

Also add up

2(A− 1)(rVA − dVA) ≥ (A− 1)(zLA−1
+ zLA

+ zL),

2(l′ −B)(rVB − dVB) ≥ (l′ −B)(zLB−1
+ zLB

+ zL),

(B − A+ 1)(rVA − dVA) ≥ 2(B − A+ 1)zL − (B − A+ 1).

If l′ > B, we add up

(2l′ −B − A− 1)(rVA − dVA) ≥ (l′ −B − 1)zL + (l′ − A)zLA
,

(2B − 2)(rVB − dVB) ≥ (A− 1)zL + (2B − A− 1)zLB1
,

(2l′ − 2)(rVi − dVi) ≥ (l′ + i− A− 1)zLi−1
+ (l′ − i+ A− 1)zLi

,

where i takes all the values bigger than A and less than B.
If l′ = B, we must have A > 1, in which case we add up

(2l′ −B − A− 1)(rVA − dVA) ≥ (l′ −B)zL + (l′ − A− 1)zLA
,
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(2B − 2)(rVB − dVB) ≥ (A− 2)zL + (2B − A)zLB1
,

(2l′ − 2)(rVi − dVi) ≥ (l′ + i− A)zLi−1
+ (l′ − i+ A− 2)zLi

,

where i takes all the values bigger than A and less than B. In any case,
after adding up we obtain the desired inequality.

For the case of the line, let us label the vertices V1 to Vl′ , where
neighbouring vertices have consecutive indices and label Li the edge
between Vi and Vi+1. We call VA the vertex with a loop L. For each
vertex with i < A, add up

(2l′ − 2)(rVi − dVi) ≥ (i− 1)zLi−1
+ (2l′ − i− 1)zLi

For each vertex with i > A, add up

(2l′ − 2)(rVi − dVi) ≥ (l′ + i− 2)zLi−1
+ (l′ − i)zLi

.

Without loss of generality suppose A− 1 ≤ l′ − A, i.e. there are more
vertices to the left of VA than to its right. Add up

(l′ − 2A+ 1)(rVA − dVA) ≥ (l′ − 2A+ 1)zLA
,

(l′ − 1)(rVA − dVA) ≥ (2l′ − 2)zL.

By Proposition 36 we can add

2(A− 1)(rVA − dVA) ≥ (A− 1)(zLA−1
+ zLA

+ zL).

Adding all these inequalities and noting that A− 1 ≥ 1, we obtain the
desired result. �

Remark 9. Proposition 39 says that the optimality in the sense of
Proposition 35a), for fixed l and ε small enough can only be obtained
when the directed graph is a cycle or a line with a loop at one end.





Open questions

In this short chapter we briefly explain some few open questions for
future research.

(1) In this thesis we say nothing about the case when KS is not
nef. In this case S must be a rational surface (see [RU17, Prop. 2.2]).
As the possible “bad graphs” are classified independently of KS nef, it
would only remain to bound r − d with respect to the number of Ei
with Ei · C = 1 for each case separately, as it was done in this thesis
using that KS is nef. This might be possible following what was done
in [RU17], whose main result is: Let C be the exceptional divisor of
φ. If KS is not nef, then S must be rational, and

r − d ≤


2(K2

W −K2
S)−KS · π(C) if no long diagram

2(K2
W −K2

S) + 1−KS · π(C) if long diagram of type I

4(K2
W −K2

S)− 2KS · π(C) if long diagram of type II

where long diagrams are the bad graphs when considering only one
T-singularity. Notice that the integer KS ·π(C) is negative in this case,
and so the bound for r− d depends on that degree as well. In [RU17]
it is shown that for the same fixed surface W , one can make KS · π(C)
arbitrarily negative by changing the morphism π via suitable “Cremona
transformations”. But by Alexeev boundedness the “minimal Cremona
degree” should be bounded. It is an open problem to find such explicit
and optimal bound.

(2) Another problem for future work would be to do some similar
procedure to bound other types of relevant singularities. For example,
the singularities that appear in normal stable surfaces, i.e., log canoni-
cal singularities. There is a well known list of them, but again it is not
clear which of them appear after we fix K2 and χ, and how to bound
them explicitly. We note that a bound of the index in relation to a
function of K2 is not possible, since in general K2 for stable surfaces
is rational and can (and do) accumulate at certain rational points. So
this problem would be more subtle. In the case of T-singularities, the
K2
W is always an integer, and so we can bound.
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(3) In this thesis the main results bound the sum of all ri− di, but
we do not get any bound for each ri− di independently. Under certain
conditions [RU17, Remark 1.2] the bound for one T-chain works for
each T-chain, so it could be expected that in other cases some restric-
tion on algebraic surfaces prohibit having a huge r−d for a singularity
and the rest relatively small. It is possible that using the classification
of “bad graphs” we could get some bounds for each ri − di or at least
that special things happen when some ri− di pass a threshold. For ex-
ample if some singularity has ri−di three times bigger than the rest of
the singularities, then a bound as in Proposition 33 could be improved
to ri−di ≥ 3z for some cases, which could lead to doing a different pro-
cess to the directed graph like in Proposition 1 and obtaining a better
bound.

(4) There could be a similar classification for Eis with fixed C ·Ei =
2 or even bigger. As we increase C ·Ei the possibilities should increase
a lot, since most of the arguments we used to discard possible cases, fail
outright when we increase C ·Ei. Finding this classifications should give
bounds on the quantities of Eis for small C ·Ei (bigger than one), and
this would give better bounds for the sum of all ri−di, at least in some
cases. In the case of one singularity this was unnecessary to get optimal
bounds, as the optimal cases did not have Ei with C · Ei > 2. There
may be room for improvement in the bounds for many singularities,
even finding the best bounds only for small cases can be useful. For
example Q-homology projective planes with quotient singularities and
KS nef have at most 4 singularities except for one case [HK]. So, to
reduce the possibilities for these surfaces, at least when there are only
non ADE T-singularities, it is only necessary to bound the cases of 2,
3 and 4 T-singularites.

(5) In this thesis we only obtain asymptotically optimal cases. Op-
timal remain unknown. A first step would be to construct all the
combinatorial configurations of T-chains which achieve asimptotically
optimal bounds. A second step would be to get combinatorial con-
figurations of T-chains achieving the bounds, this is so far not clearly
possible. It may even be the case that the current bounds cannot be
achieved and the bounds can be improved. A final step would be to
see which of these optimal configurations are actually realizable in a
smooth projective surface, which is an even harder task.
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RU17. Rana J.,Urzúa G., Optimal bounds for T-singularities in stable surfaces,
Adv. Math. 345 (2019), 814–844.

Shaf13. Shafarevich I., Basic Algebraic Geometry 1, Varieties in Projective Space,
Springer-Verlag (2013)

S13. Stern A., Nuevas singularidades en superficies estables simplemente conexas
con pg = 0, Master’s thesis, Pontificia Universidad Católica de Chile, July 2013.
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