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Abstract

In this thesis new, equivalent, definitions of topological pressure of a continuous
map defined on a compact metric space with respect to a continuous potential are
given. Our definitions make use of the notion of pseudo-orbit. Among other things,
we prove that the topological pressure is the exponential growth rate of weighted
periodic pseudo-orbits. This result generalizes previous work of M. Barge and R.
Swanson on topological entropy.
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Introduction

The realization that complicated behavior exhibited by certain dynamical systems
can be studied using methods from measure theory and probability theory was one of
the most important breakthroughs in theory of dynamical systems. It was Poincaré
who realized that the sole existence of a finite invariant measure yield non trivial
information on the orbit structure of the system. Thermodynamic formalism is a
sub-area of ergodic theory which addresses the problem of choosing relevant invariant
measures among the, sometimes very large, set of invariant probabilities. This
theory was brought from statistical mechanics into dynamics in the early seventies by
Bowen, Ruelle, Sinai and Walters among others. The powerful formalism developed
to study equilibrium of systems consisting of a large number of particles (e.g. gases)
has been surprisingly efficient to describe certain dynamical systems that exhibit
complicated behavior. One of the main objects of the theory is a functional defined
on the space of continuous functions called topological pressure. We note that the
topological entropy coincides with the pressure at the constant function equal to
zero. In this thesis we provide a new point of view on this functional. Indeed,
our main result is a new definition of the pressure based on work by M. Barge and
R. Swanson [2] on topological entropy. We stress that the definition we propose
coincides with the classical one. We define the pressure counting the exponential
growth of periodic pseudo-orbits. Classical results allow for a definition of pressure,
in the context of uniformly expanding (or uniformly hyperbolic) systems, counting
the exponential growth of periodic orbits [11]. Interestingly, our definition provides
an analogous view point that works even for minimal systems, where no periodic
orbit exists.

In 1965 R.L. Adler, A.G. Konheim, and M.H. McAndrew [1] first defined the
topological entropy of a a continuous map f : X → X defined on a compact space.
Their definition was purely topological and based on open covers. It somehow
mimics the definition of entropy of a measure (as defined by Kolomogorov and Sinai
in 1959). Later, between 1970 and 1975, E. Dinaburg [7] and R. Bowen [4],[5]
introduced equivalent definitions on compact metric spaces. These definitions made
a strong use of the metric in the space. It turns out that equivalent metrics yield
the same value for the entropy. Therefore, the object it still purely topological, but
this metric approach clarified the meaning of the entropy. It was readily observed
that for some important classes of systems, namely uniformly expanding/hyperbolic
systems, the topological entropy measured the exponential growth of periodic orbits.
It was, therefore, possible to define it and compute just by means of the the periodic
data of the system.

During the 1970s other major breakthroughs in the theory of dynamical systems
occurred. For example, C. Conley [6] introduced several ideas and techniques from
algebraic topology in the study of dynamics. For our purposes, one of the main
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contributions was the definition of pseudo-orbit. While in the classical study of dif-
ferential equations and dynamical systems we were only interested in orbits, Conley
suggested that studying approximate orbits could be of great significance. He was
indeed right. Ever since, pseudo-orbits have played a major role in dynamics. In
the context of thermodynamic formalism, Misiurewicz [9] proved that the topolog-
ical entropy of a continuous transformation defined on a compact metric space can
be computed by means of pseudo-orbits. Years later, M. Barge and R. Swanson [2]
showed that the topological entropy is equal to the exponential growth rate of the
number of periodic pseudo-orbits. Since there exists minimal systems of positive
entropy [12], where there are no periodic orbits and therefore we cannot obtain re-
sults similar to those of hyperbolic systems. However, as we can always construct
periodic pseudo orbits, it is interesting to wonder if analogously we can calculate
the topological entropy not of periodic orbits but with periodic pseudo orbits. The
Barge and Swanson’s result allows for the recovery of the interpretation of topolog-
ical entropy we have in the setting of uniformly expanding systems. Namely, the
topological entropy measures the exponential growth of pseudo-periodic orbits.

The topological pressure is a generalization of the notion of topological entropy
in which points in the space are weighted with a continuous function sometimes
called potential. For a continuous map f : X → X defined on a compact metric
space X and a continuous function φ : X → R, the pressure P (φ, f), was defined in
1973 by Ruelle [14] and studied more generally by Walters [16]. It turns out that
the topological pressure captures a great amount of the dynamical information of
the system. For example, it determines the space of invariant probability measures.
It satisfies the so called, variational principle, which establishes a relation between
the measurable and the topological dynamics of the system. The pressure has been
used to compute the Hausdorff dimension of attractors and to establish some prime
number theorems on the periodic orbits of certain systems. It is the fundamental
object of thermodynamic formalism. Following the line of thought of Misiurewicz
and also that of Barge and Swanson we studied the topological pressure from the
pseudo-orbit point of view. In our first main result we provide a characterization of
the topological pressure in terms of pseudo-orbits. Details can be found in Chapter 5.

Theorem A. Let f be a continuous transformation in a compact metric space
(X, d). Let ϕ ∈ C(X). Then the topological pressure of ϕ with respect to f is equal
to the pseudo-pressure of ϕ with respect to f , i.e.,

P (ϕ, f) = Pψ(ϕ, f).

Our second main results generalizes the fact that for uniformly hyperbolic sys-
tems the topological pressure can he computed using the periodic data.

Theorem B. Let f be a continuous transformation on a compact metric space
(X, d). Let ϕ ∈ C(X). Then the topological pressure of ϕ with respect to f is equal
to Peψ(ϕ, f), i.e.,

P (ϕ, f) = Peψ(ϕ, f),

where Peψ(ϕ, f) is a functional that depends only on periodic pseudo-orbits of pe-
riod n as n tends to infinity.
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As a consequence of this result. Let f be an expansive homeomorphism on a compact
metric space (X, d). Let ϕ ∈ C(X). If f has the shadowing property. Then

P (ϕ, f) = lim sup
n→∞

1

n
log sup

F⊆Fix(fn)

{∑
x∈F

exp

{
n−1∑
i=1

ϕ(xi)

}}
.

This thesis is made up of 5 chapters. In the first we have the preliminaries where
we present the definitions of topological entropy and pressure, via open coverings,
spanning sets, and (n, ε)-separated sets. Some examples, including an overview of
the subshift of finite type case, are considered. The second chapter is dedicated to
some consequences of the variational principle, for this, we introduce basic concepts
of the required ergodic theory. In the third chapter, we present the concept of
pseudo-orbit together with some of its properties. Finally, we define the concepts of
pseudo-entropy, the exponential growth of periodic pseudo-orbits, pseudo pressure,
and the functional Peψ. The fourth chapter is devoted to explaining in detail the
theorems of Misiurewiczs, M. Barge, and R. Swanson. In the last chapter, we will
show Theorem A, Theorem B and some consequences.
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Chapter 1

Preliminaries

This chapter summarizes notions and results that will be used throughout the thesis.
The assumed background consists of a basic course on topology and measure the-
ory. We will also introduce elementary notions of topological dynamics and ergodic
theory. We refer the reader to [17].

1.1 Topological Entropy

The topological entropy of a dynamical system (X, f), where X is compact, quan-
tifies the complexity of the system. Let n ∈ N, in the course of the chapter we will
see that, as a consequence of Bowen’s definition, topological entropy measures the
growth rate of the number of different orbits of length n as n tend to infinity. A
precise meaning to this claim will be provided in this chapter. In particular, the
meaning of different orbits will be explained.

1.1.1 Definition with open covers

Definition 1.1.1. Let X be a topological space. An open cover of X is a collection
A of open subsets of X whose union is X. A subcover of A is a subcollection of
A that is still a cover.

Definition 1.1.2. Let A and B be open covers of a topological space X. We will
say that B is a refinement of A, if each element of B is a subset of some member
of A. In this case, we will denote A ≺ B to express this relation.

Definition 1.1.3. Let f : X → X be a continuous transformation on a topological
space X. Let x ∈ X. For each n ∈ N, we define the n-th iteration of x under
f as the n-th composition of f evaluated at x, i.e., fn(x) = f ◦ fn−1(x). We define
the orbit of x under f as the set which contains all iterations fn(x) and denote it
by Ox, i.e., Ox := {fn(x)|n ∈ N}. If f is a homemorphism we can take n ∈ Z.

Definition 1.1.4. Let f be a continuous transformation on a compact metric space
(X, d). For each n ∈ N, we define the set of fixed points of fn by

Fix(fn) := {x ∈ X | fn(x) = x}.

In the definitions that follows f is a continuous transformation in a compact
space X. The next definition allows us to construct refinements of a given open
cover.
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Definition 1.1.5. Let A and B be open covers of X. We define their join, as the
collection of all sets of the form U ∩ V , where U ∈ A and V ∈ B, and denoted by
A∨B. Note that this join is a refinement of both covers. This allows us to construct
refinements of a single open cover A. For each n ∈ N, we define

An :=
n−1∨
i=0

f−i(A),

where f−i(A) := {f−i(U) : U ∈ A}.

This open cover An, generated by A, allows us to define the first notion of
entropy. In order to do that we need the following result [17, Theorem 7.1].

Proposition 1.1.1. Let A be an open cover of X. We denote by N(A) the number
of elements that have the finite open subcovers of A with the smallest cardinality.

Then, the limit lim
n→∞

1

n
log(N(An)) exists and is equal to

1

n
inf
n

log(N(An)).

Definition 1.1.6. Let A be an open cover of X. We define the entropy of f
relative to the cover A by

h(f,A) := lim
n→∞

1

n
log(N(An)).

Example 1.1.1. Consider the space S1. Recall that we can identify this space as
the unit circle of the complex plane [15, p34]. Let f be the rotation map by π

2
, i.e.,

for every 0 ≤ θ < 2π, it maps exp(iθ) 7→ exp(i(θ + π
2
)). Let γ the finite open cover

described by

γ =

{(
0,
π

2

)
,

(
π

3
,
5π

6

)
,

(
2π

3
,
7π

6

)
,

(
π,

3π

2

)
,

(
4π

3
,
11π

6

)
,

(
5π

3
,
13π

2

)}
.

First, we note that f is a homeomorphism with period 4. Therefore γ = f−4(γ)
and for every integer k ≥ 4 we have γk = γ4 as in Definition 1.1.5. If we denote by
∂γ the set of extreme points of the intervals in γ, we notice that for every integer
n ≥ 4,

#γn = #γ4 ≤ #∂γ4 ≤ 44

Thus, we can estimate the topological entropy of f with respect to the cover γ by

h(f, γ) = lim
n→∞

1

n
log(N(γn))

= lim
n→∞

1

n
log(N(γ4))

≤ lim
n→∞

1

n
log(44)) = 0.

By definition N(γ) ≥ 0, thus we conclude that h(f, γ) = 0.

Definition 1.1.7. Let f be a continuous transformation in a compact space X. We
define the topological entropy of f as the supremum among the values h(f,A)
overall open covers A of X, i.e., is given by

h(f) := sup{h(f,A) : A is a open cover of X}.
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Remark. Due to the compactness of the space, it is enough to take the supremum
over finite open covers.

Proposition 1.1.2. (Properties of topological entropy,[17, p165-167])
Let f be a continuous transformation on a compact space X. Let A and B be open
covers of X.

i If A ≺ B, then N(A) ≤ N(B).

ii If A ≺ B, then h(f,A) ≤ h(f,B).

iii h(f) is non-negative.

iv If Y ⊂ X a closed subset and invariant under f , then h(f |Y ) ≤ h(f).

v Let X1 and X2 be compact spaces with continuous maps fi : Xi → Xi for
i = 1, 2. If φ : X1 → X2 is a continuous function such that φX1 = X2 and
φf1 = f2φ, then h(f1) ≥ h(f2). The equality holds if φ is a homeomorphism.

Remark. This last property says that the topological entropy is an invariant of
topological conjugacy [17, Theorem 7.2].

If the space X is endowed with a metric, we present another way of calculating
the topological entropy without taking into account all the open covers. To achieve
that, we define the diameter of a open cover A by diam(A) = sup

B∈A
diam(B).

Proposition 1.1.3. ([17, Theorem 7.6])
Let {Ak}k be any family of open covers such that diam(Ak) → 0 when k → ∞.
Then the topological entropy of f is equal to lim

k→∞
h(f,Ak).

Example 1.1.2. Consider S1 as in Example 1.1.1. Let f be a rotation by any
angle α > 0. We proceed in the same way for an arbitrary open cover. Let B be a
finite open cover of S1. Without loss of generality, assume that B is formed by open
intervals. We denote by ∂B the set of extreme points of the intervals in B. Since f
is a homeomorphism, then we note that

∂Bn = ∂B ∪ f−1(∂B) ∪ ... ∪ f−(n−1)(∂B).

This allows us to deduce for every n ∈ N,

#Bn ≤ #∂Bn ≤ n#∂B.

Therefore we can estimate the topological entropy of f with respect to the open
cover B by

h(f,B) = lim
n→∞

1

n
log(N(Bn))

≤ lim
n→∞

1

n
log(nN(B))

≤ lim
n→∞

1

n
(log(n) +N(B))

= lim
n→∞

1

n
log(n) = 0.

Since the topological entropy is non-negative and B was taken arbitrarily, we con-
clude that h(f) = sup{h(f,A) : A is a open cover of X} = 0.
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Example 1.1.3. Set Σ = {1, 2, ..., k}N endowed with a metric d defined by

d((xn), (y)n) =
∞∑
n=0

|xn − yn|
2n

,

where (xn), (yn) ∈ Σ. Let A be the open cover defined by the cylinders [0; i] :=
{(xn) ∈ Σ : x0 = i} with 1 ≤ i ≤ k. Consider the shift map σ : Σ → Σ defined by
(xi)i≥0 7→ (xi)i≥1. Note that for each i = 1, 2, ...n, the preimage of the cylinder [0; i]
is

σ−1([0; i]) = {(x)n ∈ Σ : x1 = i} = [1; i].

Therefore the join of A with σ−1(A) is {[0, 1; i, j] : 1 ≤ i, j ≤ k}, i.e., the cylinders
of length two centered on the first term. Let m ∈ N. Generalizing we have that

Am = {[0, 1, ..., n− 1; i1, ...im] : 1 ≤ ij ≤ k for every 1 ≤ j ≤ m}.

This is, the cylinders of length m centered on the first term. Note that the elements
of Am are pairwise disjoint. This allows us to deduce that N(Am) = km, which
implies

h(σ,A) = lim
n→∞

1

n
log(kn) = lim

n→∞
log(k) = log(k).

On the other hand, the diameter of an element B in An satisfies that

diam(B) ≤
∞∑
i=0

k − 1

2n
= (k − 1)

∞∑
i=n

1

2i
=
k − 1

2n
2→ 0 when n→∞.

Then the diameter of An approaches zero as n goes to infinity. Considering the
succession of open coverings {An}n, it satisfies the hypothesis of Proposition 1.1.3.
Then the topological entropy of Σ for σ is equal to lim

n→∞
h(σ,An) = log(k).

Remark. The same result holds for the two-side shift σ on the space Σ = {1, ..., k}Z.

1.1.2 Bowen’s definition

A few years after R.L. Adler, A.G. Konheim and M.H. McAndrew defined topolog-
ical entropy, R. Bowen [4][5] proposed an equivalent definition that holds for metric
spaces (not necessarily compact). His definition is based on the notions of span-
ning and generated sets. In this sub-section we will assume f to be a continuous
transformation defined on the metric space (X, d).

Definition 1.1.8. Let K ⊆ X be a compact subset. Let n ∈ N and ε > 0. A subset
F ⊂ K is said to (n, ε)-span K respect to the transformation f , if for every x ∈ K
there is y ∈ F such that for every 1 ≤ k ≤ n− 1, it holds d(fk(x), fk(y)) ≤ ε.

Definition 1.1.9. Let K ⊆ X be a compact susbset. Let n ∈ N and ε > 0. Denote
by rn(ε,K) the smallest cadinality between (n, ε)-spanning sets of K.

Definition 1.1.10. Let K ⊆ X be a compact subset. Let ε > 0. We define
r(ε, f,K) = lim sup

n→∞
log(rn(ε,K))

10
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Remark. Because of the compactness of K, there is a finite open cover of K with
balls of radius ε, say γ = {B1, B2, ...Bm}. Taking a representative for each element
of γn we obtain a finite (n, ε)-spanning set and therefore rn(ε,K) <∞.

Definition 1.1.11. Let K ⊆ X be a compact subset. Let hd(f,K) = lim
ε→0

r(ε, f,K).

We define the topological entropy of f as the supremum among the values
hd(f,K), where the supremum is taken over the collection of compact subsets of
X, i.e.,

h(f)d := sup{hd(f,K) : K a compact subset of X}.

If the metric d is understood, we will write h(f,K) and h(f) for short.

We will now present the third definition of topological entropy via separated sets.

Definition 1.1.12. Let K ⊆ X be a compact subset. Let n ∈ N and ε > 0. A
subset E ⊆ K is said to be (n, ε)-separated if for every x, y ∈ E with x 6= y, there
is 0 ≤ k < n such that d(fk(x), fk(y)) > ε.

Therefore, a (n, ε)-separated set is a set in which the orbits of length n of each
of its elements can be differentiated by an ε-error.

Definition 1.1.13. Let K ⊆ X be a compact subset. Let n ∈ N and ε > 0. Let us
denote by sn(ε,K) the largest cardinality between (n, ε)-separated subsets of K.

We will see in Proposition 1.1.4 that sn(ε,K) <∞.

Definition 1.1.14. Let K ⊆ X be compact. Let n ∈ N and ε > 0. We define
s(ε, f,K)= lim supn→∞

1
n

log(sn(ε,K)).

The following proposition is presented in [17, p169].

Proposition 1.1.4. Let f be a continuous transformation on a metric space (X, d).
Let K ⊆ X be a compact subset. Let ε > 0. Then

hd(f,K) = lim
ε→0

s(ε,K, f).

And,

hd(f) = sup
K
{lim
ε→0

s(ε,K, f) | K ⊆ X compact}.

Proof. Let ε > 0, n ∈ N and K ⊆ X a compact subset. Let E be an (n, ε)-separated
set of K such that #E = sn(ε,K, f). Let us see that E is a (n, ε)-spanning set.
Suppose by contradiction that there exists x ∈ K such that for every y ∈ E and
every 0 ≤ i ≤ n − 1, it hols that d(f i(x), f i(y)) > ε . Then E ∪ {x} would be
an (n, ε)-separated set, but this cannot be since by definition of sn(ε,K), E has
maximal cardinality among (n, ε)-separated sets. Therefore E is a (n, ε)-spanning
set and thus rn(ε,K) ≤ sn(ε,K).

Let F be a (n, ε
2
)-spanning set of K. We define the map ψ : E → F such that

it sends each element of E to the closest element of F . Suppose x, y ∈ E with x 6= y
such that ψ(x) = ψ(y), then d(x, y) ≤ d(x, ψ(x))+d(x, ψ(y)) = ε, which contradicts

11
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the assumption that E is (n, ε)-separated. Then ψ is injective. So #E ≤ #F , which
implies sn(ε,K) ≤ rn( ε

2
, K). We conclude that rn(ε,K) ≤ sn(ε,K) ≤ rn( ε

2
, K).

Since n was chosen arbitrarily,

r(ε,K) ≤ s(ε,K) ≤ r(
ε

2
, K)

Also ε was arbitrarily chosen, then h(f) = lim
ε→0

r(ε,K) = lim
ε→0

s(ε,K).

As we said before, the definition of topological entropy is equivalent to the one
we gave via open covers, of course, provided that the space is metric and compact.
The reader can find a proof in [17, Theorem 7.8]. Now we present an example of a
non-compact metric space with infinite topological entropy.

Example 1.1.4. Let X = R endowed with the Euclidean metric and the continuous
transformation f defined by f(x) = x2. Let K = [3, 4] ⊂ R. We will calculate the
entropy of f for this compact subset. Let x, y ∈ K. As x, y ≥ 3, then d(f(x), f(y)) =
|x2 − y2| = d(x, y)|x+ y| ≤ 6d(x, y). So if n ∈ N, then

d(fn−1(x), fn−1(y)) = |x2n−2

+ y2n−2|d(fn−2(x), fn−2(y))

≥ 2 ∗ 32n−2

d(fn−2(x), fn−2(y))

...

≥ 2n−1 ∗ 3
∑n−2
i=0 2i |x− y|.

Let ε > 0. Therefore if two points x, y ∈ K satisfy that

|x− y| > ε/(2n−1 ∗ 3
∑n−2
i=0 2i|x− y|),

then they are (n, ε)-separated. So in K every (n, ε)-separated set has at most

b2n−13
∑n−2
i=0 2i |x−y|/εc points. This implies that Sn(ε, f,K) ≥ 2n−1∗3

∑n−2
i=0 2i |x−y|/ε.

We obtain

S(ε, f,K) = lim sup
n→∞

1

n
log(Sn(ε,K))

≥ lim sup
n→∞

1

n

(
(n− 1) log(2) +

n−2∑
i=0

2i log(3)− log(ε)

)

= lim sup
n→∞

(
log(2) +

∑n−2
i=0 2i

n
log(3))

)
=∞.

Since ε was chosen arbitrarily, we have that h(f,K) =∞. Thus, by Definition 1.1.11
the topological entropy of f is infinite.

Now we cite an example in which the topological entropy can be calculated from
periodic points [16, Theorem 7.3 and Theorem 8.17].

Example 1.1.5. Let A be an irreducible k×k matrix whose entries belong to {0, 1}.
Let X =

∏∞
−∞{0, 1, ...k − 1}. Denote

XA := {(yi)i∈Z | yi ∈ {0, 1, ...k − 1} and axi,xi+1
= 1},

12
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where axi,xi+1
is the xi × xi+1 entry of A. Let σA be the shift map on XA. The

dynamical system (XA, σA) is called subshift of finite type. Let λ be the largest
among the eigenvalues of A. It can be shown that

h(σA) = log λ. (1.1)

Let n ∈ N. If (xi) ∈ XA, then (xi) ∈ Fix(σnA) if and only if for all i ∈ Z, xr = xr+n.
That is, the xr×xr entry of the matrix An is positive. If we denote ai,j to the entry
i× j of the matrix A, then

#Fix(σnA) =
k−1∑

i0,...in−1=0

ai0,i1ai1,i2 . . . ain−1,i0

= trace of An

=
k∑
i=1

λni ,

where λ1, λ2, ..., λk are the eigenvalues of A. So if we divide by λ, we get that

lim
n→∞

#Fix(σnA)

λn
= lim

n→∞

∑k
i=1 λ

n
i

λn
= 1.

Which implies that from what was said in Equation (1.1),

lim
n→∞

1

n
log #Fix(σnA) = log λ = h(σA).

1.2 Pressure

Let f be a continuous transformation in a compact metric space (X, d). Let C(X) be
the Banach space of continuous real-valued functions endowed with the supremum
norm. In this subsection, we will define topological pressure (or pressure for short)
as a map P : C(X) → R ∪ {∞}. We will see that pressure will be an extension
of topological entropy. Later in Chapter 2, we will show the close relationship
between pressure and the set of f -invariant probability measures in X. As we did
with topological entropy, we are going to present equivalent definitions, using open
covers, separated sets, and spanning sets.

1.2.1 Definition with open covers

Let (X, d) be a compact metric space. We will call the elements of C(X) by ”poten-
tials”. If ϕ ∈ C(X), then we will talk about the topological pressure of the potential
ϕ with respect to f . Let n ∈ N. We denote ϕn(x) =

∑n−1
i=0 ϕ(f i(x)) to the n-th

Birkoff sum evaluated at a point x ∈ X for the potential ϕ.

Definition 1.2.1. Let f be a continuous transformation on a compact metric space
(X, d). Let ϕ ∈ C(X), n ∈ N and let A be an open cover of X. We denote

Pn(ϕ, f,A) := inf

{∑
U∈γ

sup
x∈U

exp (ϕn(x))

∣∣∣∣ γ a finite subcover of An
}
.

13
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Since ϕ is bounded in X by compactness, Pn(ϕ, f,A) is the infimum over a subset
of bounded real numbers. Thus Pn(ϕ, f,A) <∞. We define the pressure of the
potential ϕ with respect to f and the open cover A by

P (ϕ, f,A) := lim sup
n→∞

1

n
logPn(ϕ, f,A).

Similar to topological entropy, we want to calculate the pressure as we set the
diameter of the cover A to zero. The following lemma ensures that this limit exists
and does not depend on the choice of covers [15, Lemma 10.3.1].

Lemma 1.2.1. Let {Ak}k∈N be any sequence of open covers of X such that

diam(Ak)→ 0, when k →∞.

Then the limit lim
k→∞

P (ϕ, f,Ak) exists in R∪{∞} and does not depend on the choice

of the sequence.

Definition 1.2.2. Let f be a continuous transformation on a compact metric
space (X, d). Let ϕ ∈ C(X) and {Ak}k∈N be a sequence of open covers such that
diam(Ak)→ 0 as k →∞. We define the topological pressure of the potential
ϕ with respect to f as

P (ϕ, f) = lim
k→∞

P (ϕ, f,Ak).

1.2.2 Definition via (n, ε)-separated sets and spanning sets

Definition 1.2.3. Let f be a continuous transformation on a compact metric space
(X, d). Let ϕ ∈ C(X), n ∈ N and ε > 0. Denote

Sn(ϕ, f, ε) := sup

{∑
x∈F

exp (ϕn(x)) : E is a (n, ε)-separated set of X

}
.

Gn(ϕ, f, ε) := inf

{∑
x∈E

exp (ϕn(x)) : F is a (n, ε)-spanning set of X

}
.

It can be seen these values are finite due to the compactness of X(see Section 1.1.2).
Thus, we define

S(ϕ, f, ε) := lim sup
n→∞

1

n
logSn(ϕ, f, ε).

G(ϕ, f, ε) := lim sup
n→∞

1

n
logGn(ϕ, f, ε).

Definition 1.2.4. Let f be a continuous transformation on a compact metric
space (X, d). Let ϕ ∈ C(X). We define S(ϕ, f) = lim

ε→0
S(ϕ, f, ε) and G(ϕ, f) =

lim
ε→0

G(ϕ, f, ε).

Remark. Let ε1, ε2 > 0 and n ∈ N. Following Definition 1.1.8, if ε1 > ε2, then
each (n, ε1)-separated set is a (n, ε2)-separated set. This implies Sn(ϕ, f, ε1) ≤
Sn(ϕ, f, ε2). So the sequence {S(ϕ, f,A)}n is decreasing and monotone. Therefore
the limit lim

ε→0
S(ϕ, f, ε) exists in R ∪ {∞}. Analogously it can be seen lim

ε→0
G(ϕ, f, ε)

exists.

14
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It can be shown that the values G(ϕ, f) and S(ϕ, f) coincide with P (ϕ, f), and
therefore the definitions are equivalent. A proof can be found on [15, Proposition
10.3.4].

Proposition 1.2.1. Let f be a continuous transformation on a compact metric
space (X, d). Let ϕ ∈ C(X). Then P (ϕ, f) = S(ϕ, f) = G(ϕ, f).

Example 1.2.1. Consider the space Σ = {0, 1, ..., k}N with the shift map σ and
endowed with the metric d as in Example 1.1.3. Let 0 be the element in Σ that con-
tains all its terms equal to 0. Let c ∈ R. Consider the open cover A = {[0; i] | 0 ≤
i ≤ k},and the potentials ϕ1(x) = d(0, x) ,and the constant potential ϕ2 = c. As
in Example 1.1.3, the elements of An generates a partition of Σ. Therefore it is the
only open subcover of itself to consider. Notice that the n-th Birkhoff sum ϕn2 is
constant and equal to nc. Hence we obtain that:

Pn(ϕ2, σ,A) =
∑

[0,1,...,n−1:i0,i1,...in−1]

sup
x∈[0,1,...,n−1:i0,i1,...in−1]

enc = knenc,

where 0 ≤ im ≤ k, for every 1 ≤ m ≤ n− 1. Thus

P (ϕ2, σ,A) = lim sup
n→∞

1

n
log(knenc) = log(k) + c.

Since diam(Ak) → 0 when k goes to infinity, we conclude by Lemma 1.2.1 that
P (ϕ2, σ) = log(k) + c. We will see in Proposition 1.2.2 that this result of using
constant potentials or even translate a potential by a constant can be generalized.
For ϕ1, see that we can bound the nth Birkoff sum. Let x ∈ [0, 1, ..., n − 1 :
i0, i1, ...in−1]. Thus

ϕ1(x) =
∞∑
m=1

|xm|
2m
≤

∞∑
m=1

k

2m
= 2k.

This implies ϕn1 ≤ n2k. So

Pn(ϕ1, σ,A) ≤
∑

[0,1,...,n−1:i0,i1,...in−1]

sup
x∈[0,1,...,n−1:i0,i1,...in−1]

e2kn = kne2kn.

We conclude that P (ϕ1, σ,A) ≤ lim supn→∞
1
n

log(kne2kn) = log(k) + 2k < ∞.
Therefore the pressure of σ with respect to the potential ϕ1 is finite.

Before finishing this subsection we present some of the properties that topological
pressure satisfies and that will be necessary for later chapters [17, Theorems 9.7 and
9.8].

Proposition 1.2.2. (Properties of topological pressure)
Let f be a continuous transformation on a compact metric space (X, d). Let ϕ, φ ∈
C(X). Then:

i P (0, f) = h(f).

ii If ϕ ≤ φ, then P (ϕ, f) ≤ P (φ, f). In particular h(f) + inf(f) ≤ P (ϕ, f) ≤
sup(f).

15
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iii P (., f) is Lipschitz with constant 1, i.e., if P (., f) < ∞, then |P (ϕ, f) −
P (φ, f)| ≤ ||ϕ− φ||∞.

iv Let c ∈ R. Then P (T, f + c) = P (T, f) + c.

v Let (X1, d1) and (X2, d2) compact metric spaces with continuous maps fi :
Xi → Xi for i = 1, 2. If φ : X1 → X2 is a surjective continuous map with
φf1 = f2φ. Then for every ϕ ∈ C(X2) we have P (ϕ ◦ φ, f1) ≥ P (ϕ, f2). The
equality holds if φ is a homeomorphism.

Now we cite an example from [11, Proposition 5.1] of how to calculate for subshift
of finite type the topological pressure with respect to Hölder continuous functions
from the periodic points of the shift.

Example 1.2.2. For this, consider the subshift of finite type (XA, σA) as in Ex-
ample 1.1.5. Let (xi) ∈ XA and m ∈ N. We will denote for every r ∈ Z the finite
sequences {(xr, xr+1, ..., xr+m)} by words of length m. If η is a word of length n ∈ N,
we denote by [η] to the cylinder

{(xi) ∈ XA | (x0, x1, ..., xn) = η}

Now we define a particular set of functions, the Hölder continuous functions. Let
θ ∈ (0, 1) define a metric on XA as dθ((xj), (yj)) = θN , where N ∈ N is the maximum
non-negative integer n such that for every i ∈ Z with |i| < n, we have xi = yi. Let
f ∈ XA :→ C be a continuous function. We define the norm

‖f‖θ = |f |∞ + |f |θ.

Where

|f |θ = sup
n≥0

V arnf

θn
,

and V arn(f) = sup{|f((xj))− f((yj))|} over all (xi), (yi) ∈ XA such that for every
|i| < n, it holds xi = yi. We say f ∈ C(X) is Hölder continuous if ‖f‖θ < ∞ with
respect to dθ.

Let f be a real-valued Hölder function. Let ε > 0. Since f is uniformly contin-
uous, there exists δ > 0 such that if (xi), (yi) ∈ XA with dθ((xi), (yi)) < δ, then
|f((xi)) − f((yi))| < ε. Let N ∈ N be such that θN < δ. Since XA is compact,
for every word η of length N there exists (xi)η ∈ [η] that attains its maximum in
[η]. We define the function g by sending each (yi) ∈ XA with η = {y0, y1, ...yN}
to f(xη). Notice this implies ‖f − g‖∞ < ε. Therefore g depends only on the first
N coordinates of each (xi) ∈ XA. If we replace all words of length N − 1 as new
symbols, then g is a function that depends only on the first two coordinates x0, x1

of each (xi) ∈ XA.

Now we define the matrix Ag whose with entries are ai,j exp{g(i, j)}, where ai,j
is the i× j entry of A. This matrix coincides with the transfer operator of the func-
tion g and as a consequence of the Ruelle-Perron-Frobenius theorem it can be shown
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that exp{P (g, σA)} is one of the eigenvalues of the matrix Ag. In fact, exp{P (g, σA)}
is the eigenvalue with highest norm. Therefore∑

(xi)∈Fix(σnA)

exp{gn((xi))} =
∑

x0,x1,...,xn−1,x0

exp{
n−1∑
i=0

g(σiA(xi))}

=
∑

x0,x1,...,xn−1,x0

exp{
n−1∑
i=0

g([x0, x1]) + ...+ g([xn−1, x0])}

= trace of Ang .

As a trace of a matrix is equal to the sum of the eigenvalues of the matrix, if
expP (g, σA)n, λn2 , ..., λ

n
k are the eigenvalues of Ag, then∑

(xi)∈Fix(σnA)

exp{gn((xi))} = exp{P (g, σA)n}+ λn2 + . . .+ λnk .

Since expP (g, σA)n is the eigenvalue with highest norm, then

lim
n→∞

∑
(xi)∈Fix(σnA) exp{gn((xi))}

expP (g, σA)n
= 1. (1.2)

Which implies

lim
n→∞

1

n
log

∑
(xi)∈Fix(σnA)

exp{gn((xi))} = P (g, σA). (1.3)

On the other hand, since |f − g|∞ < ε, then for every n ∈ N we obtain∑
(xi)∈Fix(σnA)

exp{gn((xi))− nε} ≤
∑

(xi)∈Fix(σA)

exp{fn((xi))}

≤
∑

(xi)∈Fix(σA)

exp{gn((xi)) + nε}.

Since n was taken arbitrarily, we get

−ε+
1

n
log

∑
(xi)∈Fix(σnA)

exp{gn((xi))} ≤
1

n
log

∑
(xi)∈Fix(σA)

exp{fn((xi))}

≤ ε+
1

n
log

∑
(xi)∈Fix(σnA)

exp{gn((xi))}.

Thus by Equation (1.3), we get

P (g, σA)− ε ≤ lim inf
n→∞

1

n
log

∑
(xi)∈Fix(σnA)

exp{fn((xi))}

≤ lim sup
n→∞

1

n
log

∑
(xi)∈Fix(σnA)

exp{fn((xi))}

≤ P (g, σA) + ε

and since the pressure function is Lipchitz with constant 1, |P (g, σA)−P (g, σA)| < ε.
This implies

P (f, σA) = lim
n→∞

1

n
log

∑
(xi)∈Fix(σnA)

exp{fn((xi))}.
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Chapter 2

Variational principle

One of the main results in the study of topological pressure (and as a consequence
also of topological entropy) is the Variational Principle. It establishes a relation
between objects of a topological nature with some measure theoretic ones. The
Variational Principle we will present was proved originally by Ruelle [13] for some
transformations and then extended by Walters [16] to the general case we present
here.

2.1 Invariant measures and entropy.

Before presenting the statement of the Variational Principle we will present some
necessary definitions of Ergodic theory. Broadly speaking Ergodic theory studies
the dynamical systems through the probability measures and looks for the invariant
properties through time.

Definition 2.1.1. Let (M,B, µ) be a measurable space and f : M → M a mea-
surable transformation. We will say that a measure µ is invariant under f if for
each measurable set E ∈ B, it holds that µ(E) = µ(f−1(E)). We will say that µ is
f-invariant to mean the same thing.

Definition 2.1.2. Let (M,B, µ) be a measurable space and f : M →M a measur-
able transformation. We will denote byM1(M) the set of probability measures
on M and Mf (M) to the set of f-invariant probability measures.

Endowing M1(M) the so-called weak* topology and defining a metric in this
space of measures, it can be shown that Mf (M) is nonempty. The following exis-
tence theorem can be found in [15, Theorem 2.1].

Theorem 2.1.1. Let f : M → M be a continuous transformation on a compact
metric space (X, d). Then there exists some probability measure on M invariant
under f .

Definition 2.1.3. Let (M,B, µ) be a measurable space and f : M → M a mea-
surable transformation. We will say that a measurable function ϕ : M → R is
invariant under f if ϕ = ϕ ◦ f at µ-almost every point. In this sense, we will say
that a measurable set B is an f-invariant set if the characteristic function χB
is an invariant function.
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Definition 2.1.4. Let (M,B, µ) be a measurable space and f : M → M a mea-
surable transformation. Let µ ∈ M1(M). We will say that µ is ergodic with
respect to f if for every invariant set A, it holds that µ(A) = 0 or µ(A) = 1. We
denote by Me(M, f) the set of all ergodic probability measures with respect to the
transformation f . If the space M is understood we write Me(f) for short.

There are several definitions equivalent to the one given to say that a measure
µ is ergodic. In the following proposition we present some, to see more about it see
[15, Proposition 4.1.3].

Proposition 2.1.1. Let (M,B, µ) be a measurable space and f : M → M a mea-
surable transformation. Let µ ∈M1(M). The following conditions are equivalent:

i For every invariant set A ⊆M we have either µ(A) = 0 or µ(A) = 1.

ii Every f -invariant integrable function ψ : M → R is constant at µ-almost every
point.

Clearly, Me(f) ⊆ M1(M). Moreover, ergodic measures play an important role
among the invariant probability measures since they turn out to be the ”extreme
points” of M1(f). In fact, any invariant probability measure can be decomposed
as a convex combination of ergodic measures. Such combination is not necessarily
provided by finitely many ergodic measures. This result is known as the ergodic
decomposition theorem [15, Theorem 5.1.3]. Before stating it, we clarify the notation
a bit.

Definition 2.1.5. Let (M,B, µ) be a probability space. Let P be a collection of
elements of B. We say that P is a partition of M if is a disjoint collection of elements
of B whose union id is M . As we did with the open covers in Definition 1.1.5, for
every n ∈ N we define

Pn =
n−1∨
i=0

f−i(P).

Definition 2.1.6. Let (M,B, µ) be a probability space and P a partition of M. We
denote by π : M → P the canonical projection that assigns each point of M the
element of P to which it belongs. We will say that a subset Q ⊆ P is measurable if
and only if π−1(Q) is measurable in M . It can be shown that the set B̂ of measurable
sets forms a σ-algebra in P . We define the quotient measure µ̂ such that for every
Q ∈ B̂

µ̂(Q) = µ(π−1(Q)).

Theorem 2.1.2. Let f be a measurable transformation in a complete separable
metric space (X, d) and let µ ∈ M1(f). Then there exists a subset M0 ⊆ M such
that µ(M0) = 1, a partition P of M0 into measurable subsets, and a family of
probability measures {µP : P ∈ P} on M that satisfy:

i µP (P ) = 1 for µ̂-almost every P ∈ P .

ii For every measurable set E ⊂M , the map P → µP (E) is measurable.

iii µP is invariant and ergodic for µ̂-almost every P ∈ P .
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iv For every measurable set E ⊆M , we have µ(E) =
∫
µP (E)dµ̂(P ).

We will now present the entropy of a dynamical system. Entropy quantifies the
degree of ”disorder” of a measurable space and has applications in different fields of
science.

Definition 2.1.7. Let (M,B, µ) be a probability space and P a partition of M . We
define the entropy of the partition P by

Hµ(P) =
∑
P∈P

−µ(P ) log(µ(P )).

It can be shown that given a partition P , the sequence {Hµ(Pn)}n is subadditive
[15, Lemma 9.17], i.e., for every m,n ≥ 1 it holds

Hµ(Pm+n) ≤ Hµ(Pm) +Hµ(Pn).

It is also known [15, p79] that if a sequence of numbers {an}n∈N in [−∞,∞) is sub-

additive, then by Fekete’s lemma lim
n→∞

1

n
an exists and is equal to infn

an
n

. Therefore

the Fekete’s lemma allows us to make the following definition.

Definition 2.1.8. Let (M,B, µ) be a probability space and let P be a partition of

M . We define the entropy of f with respect to P as the limit lim
n→∞

1

n
Hµ(Pn).

It should be mentioned that there are examples in which this limit is infinite,
which motivates the definition of entropy of the system considering only partitions
with finite entropy.

Definition 2.1.9. Let (M,B, µ) be a probability space. We define the entropy of
the system (f, µ) by

hµ(f) = sup
P
hµ(f,P)

where the supremum is taken over all partitions with finite entropy.

Among the properties of the ergodic decomposition of a probability measure µ
is the following theorem given by K. Jacobs [15, Theorem 9.6.2], it states that we
can calculate the entropy of µ from the entropy’s of the ergodic measures that make
up its decomposition.

Theorem 2.1.3. Let f : M → M be a continuous transformation on a compact
metric (X, d). Let µ be an invariant probability measure and {µP : P ∈ P} be its
ergodic decomposition. Then

hµ(f) =

∫
hµP dµ̂(P ).
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2.2 Variational principle

This section is dedicated to presenting the statement of the variational principle and
to studying the consequences that will be significant for the results of this thesis.

Theorem 2.2.1. (Variational Principle) Let f be a continuous transformation
on a compact metric space (X, d). Let ϕ ∈ C(X). Then

P (ϕ, f) = sup

{
hµ(f) +

∫
ϕdµ : µ ∈Mf (X)

}
.

One of the interesting consequences of this theorem and the ergodic decompo-
sition theorem is that for the calculation of pressure it is enough to consider the
ergodic probability measures.

Corollary 2.2.1.1. Let f be a continuous transformation on a compact metric
space (X, d). Let ϕ ∈ C(X). Then

P (ϕ, f) = sup

{
hν(f) +

∫
ϕdν

∣∣∣∣ ν ∈Me(f)

}
. (2.1)

Proof. Let ν ∈ Mf (X) and let {νP : p ∈ P} be its ergodic decomposition by
Theorem 2.1.2. Then by the ergodic decomposition theorem and by Theorem 2.1.3
we have that

hν(f) +

∫
ϕdν =

∫
hvP dν̂(P ) +

∫ (∫
ϕdνP

)
dν̂(P )

=

∫ (
hνP +

∫
ϕdνP

)
dν̂(P ).

Considering the supremum on the left side over all invariant probability measures
and the supremum on the right side over all ergodic measures we obtain that

sup

{
hν +

∫
ϕdν

∣∣∣∣ ν ∈Mf (X)

}
≤ sup

{
hν +

∫
ϕdν

∣∣∣∣ ν ∈Me(f)

}
.

On the other hand, sinceMe(f) ⊆Mf (X), we get the reciprocal inequality. There-
fore sup{hν +

∫
ϕdν | ν ∈ M1(f)} = sup{hν +

∫
ϕdν | ν ∈ Me(f)}. Thus,

by the variational principle we obtain Equation (4.5).

This collorary will be important in the proof of Theorem 5.0.2. Now we present
a concept of topological dynamics that will be relevant in the main results of the
thesis. A good source to learn more about it can be found at [17, 5.3].

Definition 2.2.1. Let f be a continuous transformation on a compact metric space
(X, d). A point x ∈ X is said to be wandering if there exists a neighborhood U
of x such that the elements of the sequence {f−n(U)}n∈N are pairwise disjoint. We
define the non-wandering set for f as the set of points that are not wandering,
and we denote it by Ω(f), i.e.,

Ω(f) :=
{
x ∈ X : ∀ neighborhood U of x ∃n ∈ N such that f−n(U) ∩ U 6= ∅

}
.
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Proposition 2.2.1. Let f be a continuous transformation on a compact metric
space (X, d). Then for every invariant probability measure µ,

µ(Ω(f)) = 1.

Proof. First, we prove that X is separable and second countable. For this it is
enough to take for each n ∈ N balls of radius 1

n
and use the compactness of X

to take a finite subcover {B1,n, B2,n, ...Bkn,n}. Then consider the collection of balls
A = {B1,n, ..., Bkn,n : n ∈ N} and the collection B of centers of balls the in A. It
is not difficult to see that A is a countable basis for X and that B is therefore a
countable dense set on X.

On the other hand, if x ∈ X is wandering and let U be the neighborhood of
x such that all its pre-images are pairwise disjoint. Then every point y ∈ U is
wandering since U meets Definition 2.2.1. Therefore X \Ω(f) is an open set. Let µ
be an invariant probability measure. Now let Bm ⊆ X \Ω(f), for some m ∈ N. Thus
as {f−1(Bm), f−2(Bm), ...} is a collection of pairwise disjoint sets, µ is f -invariant
and

⋃∞
n=0 f

−n(Bm) ⊆ X, then we have

∞∑
n=0

µ(Bm) =
∞∑
n=0

µ(f−n(Bm))

= µ(
∞⋃
n=0

f−n(Bm))

≤ µ(X) = 1.

This implies µ(Bm) = 0. Therefore X \Ω(f) a countable union of sets with measure
zero. Thus, µ(X \ Ω(f)) = 0 and consequently µ(Ω(f)) = 1. Since µ was chosen
arbitrarily, we obtain what we wanted to show.

Corollary 2.2.1.2. Let f : X → X be continuous transformation on a compact
metric space (X, d). Let ϕ ∈ C(X). Then

1. P (ϕ, f) = P (ϕ|Ω(f), f |Ω(f))

2. P (ϕ, f) = P (ϕ|⋂∞
n=0 f

n(X), f |⋂∞n=0 f
n(X)).

Proof. To prove item 1, it is enough to note that every invariant probability measure
on X defines an invariant probability measure in Ω(f) and simultaneously every
invariant probability measure on Ω(f) can be extended to an invariant probability
measure on X by extending X \ Ω(f) as a set of zero measure. Therefore the
calculation of the entropy of f with respect to an invariant probability measure µ
on X coincides with the entropy of an invariant probability measure in Ω(f) since
they differ from sets of measure zero. Thus, we obtain

sup{hµ(f) | µ ∈M1(X)} = sup{hν(f |Ω(f)) | ν ∈M1(Ω(f))}.

Applying the variational principle to f and f |Ω(f) with respect to the potential ϕ
and ϕΩ(f) respectively, we obtain P (ϕ, f) = P (ϕ|Ω(f), f |Ω(f)). For item 2, let µ be an
f -invariant probability measure. Note that µ(fn(X)) = µ(f−nfn(X)) = µ(X) = 1.
Hence µ(

⋂∞
n=0 f

n(X)) = 1. Just as µ was taken arbitrarily, we can identify the
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space Mf (X) with Mf (
⋂∞
n=0 f

n(X)). Thus we conclude as the previous item, by
applying the variational principle to f and f |⋂∞

n=0 f
n(X). Obtaining

P (ϕ, f) = P (ϕ|⋂∞
n=0 f

n(X)), f |⋂∞n=0 f
n(X)).

Remark. Note that by Proposition 1.2.2, if we consider the constant potential 0 we
will obtain analogous results for the topological entropy, i.e.,

i h(f) = sup{hµ(f) : µ ∈Me(f)}.

ii h(f) = h(f |Ω(f)).

iii h(f) = h(f |⋂∞
n=0 f

n(X)).
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Chapter 3

Pseudo-orbits

Recall that the purpose of this thesis is to present alternative definitions of topo-
logical entropy and pressure. Our strategy is to make use of pseudo-orbits. This
approach has the advantage that, broadly speaking, pseudo-orbits are simpler to
handle than orbits. As we already mentioned, in several examples (see for instance
Example 1.2.2) the entropy can be computed using the periodic data of the system.
In order for this characterization to hold, several properties on the system are re-
quired: expansiveness and the shadowing property. While a large class of interesting
systems do satisfy them, there is an even larger class of systems that do not. In
order to handle these less regular systems we introduce the notion of periodic pseudo
orbit and go on to define entropy and pressure using it.

Definition 3.0.1. Let f be a continuous transformation on a compact metric space
(X, d) and let α > 0. An α-pseudo-orbit is an infinite sequence of points x1, x2, ...
in X such that for every i ≥ 0, it holds d(f(xi), xi+1) ≤ α .

• If the sequence is finite then we call it by α-chain.

• We say that an α-pseudo orbit (xi)i∈N is periodic, if there is n ∈ N such that
for each 0 ≤ r ≤ n− 1 and every k ≥ 0, we have xkn+r = xr. We understand
its period like the minor n that holds the above, and denote it by τ((xi)).

Example 3.0.1. As in Example 1.1.3 consider the shift in two symbols ({0, 1}N, σ).

• Consider any two elements (xi) and (yi) whose first seven terms are
(0, 0, 1, 0, 0, 0, 0) and (0, 1, 0, 1, 0, 1, 0) respectively. So d(σ((xi)), (yi)) ≤ 1

4
,

which implies the set {(xi), (yi)} is a 1
4
-chain.

• Let (xi) ∈ {0, 1}N. If we denote (xi) = (x0,i) and construct the sequence
{(xn,i)}n∈N such that for each n ∈ N,

(xn+1,i) = (xn,1, xn,2, xn,3, xn,4 + 1, xn,5, ...)

Therefore d(σ((xn,i), (xn+1,i)) ≤ 1
4
. This implies {(xn,i)}n∈N is a 1

4
-pseudo-

orbit.

We now define a special set in X which, as we shall see, has total measure for
every f -invariant measure and will help us to calculate the topological entropy and
the pressure.
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Definition 3.0.2. Let f be a continuous transformation on a compact metric space
(X, d). We define the chain recurrent set of f as the set containing all points
x ∈ X such that for any α > 0 there is a periodic α-pseudo-orbit containing x, and
we denote it by R(f).

Proposition 3.0.1. Let f be a continuous function on a compact metric space
(X, d). Then:

i The chain recurrent set R(f) is f -invariant in the sense f(R(f)) ⊆ R(f).

ii The chain recurrent set R(f) contains the non-wandering set Ω(f).

iii The chain recurrent set R(f) is a closed subset of X.

Proof. Let α > 0. Since f is uniformly continuous, then there exists δ > 0 such that
for every x, y ∈ X with d(x, y) < δ, we have d(f(x), f(y)) < α. Let x ∈ R(f). Then
there is a periodic δ-pseudo-orbit that contains x. As for all i ∈ N we have that
|f(xi)− xi+1| < δ, then by the uniform continuity |f(f(xi))− f(xi+1)| < α. There-
fore (f(xi)) is a periodic α-pseudo-orbit that contains f(x). As α was arbitrarily
taken, then f(x) ∈ R(f) showing (i).

Now let x ∈ Ω(f) and, δ > 0 and α > 0 as above. Let δ1 = min{δ, α}. By defini-
tion of the non-wandering set, there exists n ∈ N such that f−n(Bδ1(x))∩Bδ1(x) 6= ∅.
Let x0 ∈ f−n(Bδ1(x)) ∩ Bδ1(x). Then {x, f(x0), ..., fn−1(x0)} is an α-chain that de-
fines a periodic α-pseudo-orbit containing x. Again since α was arbitrarily chosen,
then x ∈ R(f), which proves (ii).

To see that the chain recurrent set R(f) is closed, let us see it contains its limit
points. Let α > 0. Let z be a limit point of R(f) and by uniform continuity take
δ > 0 so that for every x, y ∈ X with d(x, y) < δ, it holds d(f(x), f(y)) < α

2
.

Without loss of generality assume δ ≤ α
2
. Let (xn)n∈N be a sequence in R(f) that

converges to z. Take N ∈ N such that d(xN , z) < δ. Since xN ∈ R(f), then there
exists a periodic δ-pseudo-orbit (yi) that contains xN . If {xN , y2, ..., yτ(yi)−1} defines
a period of (yi), then by triangular inequality,

d(f(z), y2) ≤ d(f(z), f(xN)) + d(f(xN), y2) ≤ α, and

d(f(xτ((yi))−1), z) ≤ d(f(xτ((yi))−1), xN) + d(xN , z) ≤ α.

Therefore by our choice of δ, we conclude that {z, y2, ..., yτ(yi)−1} is an α-chain which
defines a periodic α-pseudo orbit that contains z. Since α was arbitrarily chosen,
then z ∈ R(f), which implies R(f) contains all its limit points as we wanted to
show.

Proposition 3.0.2. Let f be a continuous transformation on a compact metric
space (X, d). Let ϕ ∈ C(X). The topological pressure of ϕ with respect to f is
equal to the topological pressure of ϕ with respect to f restricted to the chain-
recurrent set R(f), i.e.,

P (ϕ, f) = P (ϕ, f |R(f)).
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Proof. By the previous proposition, Ω(f) ⊆ R(f), and by Corollary 2.2.1.2, we
obtain:

P (ϕ, f) = P (ϕ|Ω(f), f |Ω(f)) ≤ P (ϕ|R(f), f |R(f)) ≤ P (ϕ, f).

Before presenting the following lemma, which will be used to prove Theorem 4.0.2
and Theorem 5.0.2, we will first need to make use of a special metric that can be
defined on compact metric spaces, the Hausdorff metric.

Definition 3.0.3. Let (X, d) be a metric space. If A ⊆ X and ε > 0. We denote
by Bε(A) := {x ∈ X : d(x,A) ≤ ε} the ε-neighborhood of A. Let H be the set of all
closed (non-empty) and bounded subsets of X. If A,B ∈ H, we define the function
dH : H×H → R by

dH(A,B) := inf{ε > 0 : A ⊂ Bε(B) and B ⊂ Bε(A)}.

It can be seen that dH is a metric. We will call it the Hausdorff metric.

Remark. The Hausdorff metric has interesting properties (see [10, p278]). One of
these is that if (X, d) is a compact space then (H, dH) is also a compact space. This
fact will be crucial for the next result.

Proposition 3.0.3. Let f be a continuous transformation on a compact metric
space (X, d). The chain recurrent set of f |R(f) is the chain recurrent set of f , i.e.,

R(f |R(f)) = R(f).

Proof. Note that R(f |R(f)) is defined by the set of points in x ∈ R(f) such that for
all α > 0 there exists a periodic α-pseudo orbit in R(f) ⊆ X that contains x. Thus
x ∈ R(f). Which implies R(f |R(f)) ⊆ R(f), since x was arbitrarily chosen.

Now we show that R(f) ⊆ R(f |R(f)). Let x ∈ R(f). For each positive integer n
take a periodic 1

n
-pseudo orbit that contains x, we will denote it by cn. If we denote

for each n, cn = (xn,i) and Cn to its first period {xn,1, xn,2, ..., xn,τ(xn,i)−1}. By the
above remark, the collection of closed subsets H is compact with the Hausdorff met-
ric, and therefore the sequence (Cn)n has a convergent sub-sequence to some closed
set C.

Let y ∈ C and α > 0. By the uniform continuity of f there exists δ > 0 such
that for every x, z ∈ X with d(x, z) < δ, we have d(f(x), f(z)) < α

3
. Without loss of

generality, assume that δ < α
3
. Now we take N ∈ N large enough such that 1

N
< α

3

and dH(CN , C) < δ. For each wj ∈ CN choose a zj ∈ C such that d(wj, zj) < δ. In
fact, by our choice of N we can assume for some 0 ≤ j ≤ τ(cN), that zj = y. Thus
for every 0 ≤ j < τ(cN),

d(f(zj), zj+1) ≤ d(f(zj), f(wj)) + d(f(wj), wj+1) + d(wj+1, zj+1) ≤ α.

Therefore {z1, z2, ..., zτ(cN )−1} is an α-chain in C and defines a periodic α-pseudo-
orbit in C containing y with period τ(cN). Since α was taken arbitrarily, then
y ∈ R(f). In fact y ∈ R(f |C). Analogously, since y was taken arbitrarily in C, then
C ⊆ R(f |C) ⊆ R(f |R(C)). Finally x ∈ C, since for every n ∈ N, we have x ∈ cn.
Then x ∈ R(f |R(f)), which implies R ⊆ R(f |R(f)).
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This proposition tells us for all α > 0 every element in the chain recurrent set
R(f) is contained in periodic α-pseudo-orbits of elements in R(f). We now define
subsets in R(f) with interesting properties that will be important in the proof of
Theorem 4.0.2 and Theorem 5.0.2.

Definition 3.0.4. Let f be a continuous transformation on a compact metric space
(X, d). Let α > 0. Two points x, y ∈ R(f) are said to be on the same α-chain-
transitive component of R(f), if there exists an α-chain from y to x and an
α-chain from x to y.

Proposition 3.0.4. Let f be a continuous transformation on a compact metric
space (X, d). Let α > 0. Then

i Every α-chain-transitive component of R(f) is open and closed in R(f).

ii The α-chain-transitive components partition R(f).

iii There are finite α-chain-transitive components of R(f).

iv Every α-chain-transitive component of R(f) is f -invariant.

Proof. Let α > 0. By the uniform continuity of f there exists δ > 0 such that for
every x, y ∈ X with d(x, y) < δ, it holds d(f(x), f(y)) < α

2
. Let x, y ∈ R(f) be such

that d(x, y) < δ. Let (xi) and (yi) be periodic α
2
-pseudo-orbits containing x and y

respectively. Assume that the first period of (xi) is {x, x2, ..xτ(xi)−1}. Then

d(f(y), x2) ≤ d(f(y), f(x)) + d(f(x), x2) ≤ α.

Thus {y, x2, ..xτ(xi)−1, x} is an α-chain from y to x. Analogously replacing a term in
the first period of (yi), we can obtain an α-chain from x to y. We conclude that x
and y are in the same α-chain-transitive component in R(f). This implies that if T
is an α-chain-transitive component and x ∈ T , then Bδ(x)∩R(f) ⊆ T . Therefore T
is an open subset in R(f) from the topology inherited of X. On the other hand, if
z is a limit point of T . Let (zn) be a sequence in T that converges to z. Then there
exists N ∈ N such that for every m ≥ N , we have d(xm, z) < δ. Thus, xm and z are
in the same α-chain-transitive component, i.e., z ∈ T . Therefore T is closed. This
shows (i).

To prove (ii), suppose by contradiction that T1 and T2 are different α-chain-transitive
components of R(f) such that T1∩T2 6= ∅. As we just proved T1 and T2 are open in
R(f), then there exists 0 < δ such that for some x ∈ T1∩T2 we have Bδ(x) ⊆ T1∩T2.
However, this implies that any two elements in this ball are in the same α-chain-
transitive component. Thus T1 = T2, which contradicts our assumption.

Since R(f) is closed and X is compact, we get that R(f) ⊆ X is a compact
subset. So we can cover R(f) by finitely many balls of radius δ, say B1, B2, ...BN

for some N ∈ N. From what we said above we know that for every 1 ≤ i ≤ N ,
each subset Bi ∩ R(f) is contained in an α-chain-transitive component of R(f).
Therefore the cardinality of the α-chain-transitive components of R(f) is bounded
by the cardinality of a finite collection of sets, i.e., there are finite α-chain-transitive
components of R(f), proving (iii).
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Let α > 0. Let T be an α-chain-transitive component of R(f) and let x ∈ T .
Let δ > 0 be as above. Clearly, {x, f(x)} is an α-chain that goes from x to f(x).
Without loss of generality assume that δ ≤ α

2
. Since x ∈ R(f), then there exists

a periodic α
2
-pseudo-orbit (xi) such that {x, x2, ...., xτ(xi)−1} defines its first period.

Then

d(f 2(x), x3) ≤ d(f 2(x), f(x2)) + d(f(x2), x3) ≤ α.

Hence {f(x), x3, ..., xτ(xi)−1, x} is an α-chain from f(x) to x. This implies that
f(T ) ⊆ T . Satisfying Definition 2.1.3.X

3.1 Pseudo-entropy

Inspired by Bowen’s definition of topological entropy via separated sets, we will
define the pseudo entropy using pseudo-orbits. With the final objective of showing
in the next chapter two extra theoretical ways to calculate topological entropy.

Definition 3.1.1. Let f be a continuous transformation on a compact metric space
(X, d). Let α > 0, n ∈ N and ε > 0. A collection E of α-pseudo-orbits is said to
be (n, ε)-separated if for every (xi), (yi) ∈ E, with (xi) 6= (yi), there is 0 ≤ k < n
such that d(xk, yk) > ε. We denote by sα(n, ε) the maximum cardinality among
(n, ε)-separated collections of α-pseudo-orbits in X.

Remark. Note therefore that if two pseudo-orbits are (n, ε)-separated, then we are
differentiating them by an error of ε and the first n terms of each sequence.

Proposition 3.1.1. Let f a continuous transformation on a compact metric space
(X, d). Let α > 0, n ∈ N and ε > 0. Then sα(n, ε) <∞

Proof. Consider the open cover of X given by the collection of balls with radius
ε/2. Since X is compact, there exists a finite sub-cover {B1, B2, ...BM} of X, with
M ∈ N. Therefore {B1, B2, ...BM}n is a finite open cover of Xn. Suppose that E
is a (n, ε)-separated collection of α-pseudo-orbits with cardinality greater than M .
Thus, there are (xi), (yi) ∈ E and B ∈ {B1, B2, ...BM}n such that (xi)

n
i=0, (yi)

n
i=0 ∈

B. This implies for every 1 ≤ i < n that d(xi, yi) < ε which cannot be, since
(xi) and (yi) are in a (n, ε)-separated set. We conclude that every collection of
(n, ε)-separated α-pseudo-orbits has cardinality less than or equal to Mn. Thus
sα(n, ε) ≤Mn <∞.

Definition 3.1.2. Let f be a continuous transformation on a compact metric space
(X, d). Denote

• hαψ(f, ε) = lim sup
n→∞

1

n
log(sα(n, ε)).

• hψ(f, ε) = lim
α→0

hαψ(f, ε).

We call pseudo-entropy of f to the limit

hψ(f) = lim
ε→0

hψ(f, ε).
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Proposition 3.1.2. Let f be a continuous transformation on a compact metric
space (X, d). Let n ∈ N, α > 0 and ε > 0. Then the limits hαψ(f, ε) , hψ(f, ε) and
hψ(f) exist.

Proof. Let A be the open cover of X given by the collection of balls of radius ε/2.
From the proof of Proposition 3.1.1, we know that s(n, ε, α) ≤ N(A)n. Let (xi) and
(yi) be two α-pseudo-orbits that are (n, ε)-separated. Then for all m ≥ n they are
(m, ε)-separated by Definition 3.1.1. Hence for all m ≥ n we get 0 ≤ sα(n, ε) ≤
sα(m, ε). So

sup
k≥n

1

k
log(sα(k, ε)) ≤ sup

k≥m

1

k
log(sα(k, ε)) ≤ N(A).

Thus {supk
1
k

log(sα(k, ε))}k∈N is a monotone bounded sequence in R. Therefore
hαψ(f, ε) exists. Let α′ < α and let (xi) be an α′-pseudo-orbit. Notice (xi) is also
an α-pseudo-orbit by Definition 3.0.1. Therefore for all α′ < α we can conclude

0 ≤ sα(n, ε) ≤ sα
′
(m, ε), which implies hαψ(f, ε) ≤ hα

′

ψ (f, ε). Thus, {h
1
n
ψ (f, ε)}n is a

monotone and bounded sequence. So hψ(f, ε) exists.

Finally, let ε > ε′ > 0. If (xi) and (yi) are (n, ε)-separated α-pseudo-orbits, then
by Definition 3.1.1 they are also (n, ε′)-separated. Thus, for all ε > ε′ we have
0 ≤ sα(n, ε) ≤ sα(n, ε′) which implies hψ(f, ε) ≤ hψ(f, ε′). Then the sequence
{hψ(f, 1

m
)}m∈N is also bounded and increasing and therefore exists.

3.2 Growth rate of separated periodic α-pseudo-

orbits

It is a well known fact that for expansive systems with the shadowing property the
topological entropy can be calculated as the exponential growth rate of the number
of periodic orbits. It is natural to ask for a result in the same spirit for more general
systems. However, note that there exists examples of dynamical systems with no
periodic orbits and positive topological entropy [12]. M. Barge and R. Swanson [2]
proposed to study periodic pseudo-orbits and look for a similar result. This approach
was indeed fruitful. The desired result was obtained in [2] and it is discussed in next
chapter in Theorem 4.0.2.

In this section we provide the definition of entropy in this setting. For this, we
will restrict the definitions that were used to define pseudo-entropy, considering only
periodic pseudo-orbits.

Definition 3.2.1. Let f a continuous transformation on a compact metric space
(X, d). Let α > 0, n ∈ N and ε > 0. We denote pα(n, ε) as the maximum
cardinality among (n, ε)-separated collections of periodic α-pseudo-orbits
of period n.

Remark. Notice that pα(n, ε) ≤ sα(n, ε) <∞ by Proposition 3.1.1.

Definition 3.2.2. Let f a continuous transformation on a compact metric space
(X, d). Let α > 0, n ∈ N and ε > 0. We denote
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• Hα
ψ(f, ε) = lim sup

n→∞

1

n
log pα(n, ε).

• Hψ(f, ε) = lim
α→0

Hα
ψ(f, ε).

We define the growth exponential rate of the number of separated periodic
α-pseudo-orbits of period n as n tends to infinity by

Hψ(f) = lim
ε→0

Hψ(f, ε).

Remark. The limits Hα
ψ(f, ε), Hψ(f, ε), and Hψ(f) exist since they are bounded by

the limits of Definition 3.1.2 and by Proposition 3.1.2.

3.3 Pseudo-Pressure

In the same spirit as in the previous section, we will now emulate the definition
of topological pressure for pseudo-orbits and periodic pseudo-orbits. This in order
to obtain two additional ways of calculating the topological pressure of a compact
metric space. In chapter 5 we will obtain these results.

Definition 3.3.1. Let f be a continuous transformation on a compact metric space
(X, d). Let ϕ ∈ C(X), n ∈ N and ε > 0. We denote

Pα
n (ϕ, f, ε) := sup

E

{∑
x∈E

exp

(
n−1∑
i=0

ϕ(f(xi))

)}
,

where the supremum is taken over the (n, ε)-separated collections of α-pseudo-orbits
in X. We denote the limits

• Pα
ψ (ϕ, f, ε) := lim sup

n→∞

1

n
logPα

n (ϕ, f, ε).

• Pψ(ϕ, f, ε) = lim
α→0

Pα(ϕ, f, ε).

• Pψ(ϕ, f) = lim
ε→0

Pψ(ϕ, f, ε).

We will call the pseudo-pressure of the potential ϕ with respect to f to the last
limit .

Remark. Since X is compact, then ϕ(X) is bounded in R, i.e., there exists M ∈
R>0 such that for all x ∈ X, |ϕ(x)| ≤ M . Thus, since sα(n, ε) is finite, then
|Pα
n (ϕ, f, ε, α)| ≤ sα(n, ε)M . Therefore Pα

n (ϕ, f, ε, α) is finite.

On the other hand, analogously to Proposition 3.1.2, it can be shown that the

sequences {supn
1
n

logPα
n (ϕ, f, ε)}n∈N, {P

1
m
ψ (ϕ, f, ε)}m∈N, and {Pψ(ϕ, f, 1

m
)}m∈N are

bounded and monotone. Then the values Pα
ψ (ϕ, f, ε), Pψ(ϕ, f, ε), and Pψ(ϕ, f) exist.

We now make a definition analogous to section 3.2. We will see in the final the-
orem of the thesis that topological pressure can be calculated from periodic pseudo
orbits. For this, we will restrict the definitions that we just used to define pseudo-
pressure, considering only periodic pseudo-orbits.

30



31

Definition 3.3.2. Let f be a continuous transformation on a compact metric space
(X, d). Let ϕ ∈ C(X), n ∈ N and ε > 0. We denote

Peαn(ϕ, f, ε) := sup
E

{∑
x∈E

exp

(
n−1∑
i=0

ϕ(f(xi))

)}
,

where the supreme is taken over the (n, ε)-separated collections of periodic α-pseudo-
orbits with period n in X. We denote the limits

• Peαψ(ϕ, f, ε) := lim sup
n→∞

1

n
logPeαn(ϕ, f, ε).

• Peψ(ϕ, f, ε) := lim
α→0

Peαψ(ϕ, f, ε).

• Peψ(ϕ, f) := lim
ε→0

Peψ(ϕ, f, ε).

Remark. The limits Peαψ(ϕ, f, ε), P eψ(ϕ, f, ε), and Peψ(ϕ, f) exist since they are
bounded by the limits of Definition 3.3.1 and by the preceding Remark. We will see
in the last theorem of this document that Peψ(ϕ, f) is equal to the pressure of ϕ
with respect to f .

Remark. An interesting point is that the values Pψ(ϕ, f) and Peψ(ϕ, f) coincide
with hψ(f) and Hψ(f) respectively when we consider the constant potential 0.
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Chapter 4

Pseudo-entropy and topological
entropy

In the previous chapters we have introduced several definitions of topological en-
tropy. While we already established that the original definition using open covers
and Bowen’s definition using separated sets coincide, it remains to be proven that
the other two definitions using pseudo-orbits are also equivalent. This will be done
in this chapter. We begin proving a result obtained by Misiurewicz [9] in 1986.

Theorem 4.0.1. Let f be a continuous transformation on a compact metric space
(X, d). The topological entropy h(f) is equal to the pseudo entropy hψ(f).

Proof. We first show that h(f) ≤ hψ(f). Let α > 0, ε > 0, and n ∈ N. Let E be a
(n, ε)-separated collection of α-pseudo-orbits. If x ∈ E and for all i ∈ N we denote
f i(x) = xi, then it is satisfied that

d(f(xi−1), xi) = d(f(f i−1(x)), f i(x)) = 0 < α.

This means the orbit Ox is an α-pseudo-orbit. Which implies that the collection of
orbits {Ox : x ∈ E} is a (n, ε)-separated collection of α-pseudo-orbits. Since E was
arbitrarily taken, we conclude s(n, ε) ≤ sα(n, ε). In the same way, as n, α, and ε were
taken arbitrarily, then for all α > 0 and ε > 0 it is satisfied that s(f, ε) ≤ hαψ(f, ε).
Which implies for all ε > 0 that s(f, ε) ≤ hψ(f, ε). Thus,

h(f) ≤ hψ(f). (4.1)

Now we prove the reciprocal inequality. Consider the space XZ which is compact
by the compactness of X and Tychonoff’s theorem. Let d : XZ × XZ → R be the
metric defined by

d((xi), (yi)) =
∞∑

i=−∞

d(xi, yi)

2|i|
.

It can be seen that due to the compactness of X, this function d defines a metric.
For each α ≥ 0 we define the subset

Yα := {(xi)i∈Z : d(f(xi), xi+1) ≤ α for every i ∈ Z)} ⊆ XZ.

Note that for each (xi) ∈ Yα and for each k ∈ Z the sequence (xi)i≥k is an α-pseudo-
orbi, and that for α = 0 the set Y0 is the so-called natural extension.
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Lemma 4.0.1. Let α ≥ 0. Then Yα ⊆ XZ is a compact subset.

Proof. By compactness of XZ , it suffices to show that Yα is closed. Let ε > 0.
By uniform continuity of f there exists δ > 0 such that for every x, y ∈ X with
d(x, y) < δ, it holds that d(f(x), f(y)) < ε. Without loss of generality suppose
δ < ε. Let (zi) be a limit point of Yα. Let (xn,i)n∈N be a sequence in Yα that
converges to (zi). Let j ∈ Z. Let N ∈ N be such that for all m ≥ N we have
d((zi), (xm,i)) < δ/2|j|. Thus for every m ≥ N and by definition of d we obtain

d(xm,j−1, zj−1)

2|j|−1
<

δ

2|j|
, and

d(xn,j, zj)

2|j|
<

δ

2|j|
.

Therefore by triangular inequality

d(f(zj−1), zj) ≤ d(zj, xm,j) + d(f(xm,j−1), xm,j) + d(f(xm,j−1), f(zj−1))

< 2ε+ α.

Since ε was chosen arbitrarily, we have for all i ∈ Z that d(f(zi−1), zi) ≤ α. Thus
(zi) ∈ Yα. We conclude Yα contains all its limits points, e.i., Yα is a closed subset of
XZ as we wanted to show.

For every α ∈ [0, 1], we denote by σα the shift map on Yα, as in Example 1.1.3.
For every k ∈ Z, we consider the projection map πk : XZ → X given by πk((xi)) =
xk. It can be seen that f ◦ πk = πk ◦ σ0, i.e., f is semi topologically conjugate to σ0.
Thus, by Proposition 1.1.2 we have

h(σ0) ≥ h(f). (4.2)

On the other hand let A be a finite open cover of Y0. Suppose A := {A1, ..., Am}.
By the product topology we know that for each 1 ≤ i ≤ m,

Ai =

(∏
k∈Z

Ci,k

)⋂
Y0,

where Ci,k is an open subset of X and Ci,k 6= X for finitely many k’s. Since there are

finitely many Ai’s, there exists 1 ≤ j ≤ m such that for some k̂ ∈ Z with Cj,k̂ 6= X,
holds that

k̂ = min{k : 1 ≤ i ≤ m and Ci,k 6= X}.

Since A is an open cover of Y0, then πk̂(A) = {C1,k̂, C2,k̂, ..., Cm,k̂} is an open cover
of X. For simplicity, we will denote B = πk̂(A). Note that any open subcover of
B, say {Bp1,k̂

, ..., BpN ,k̂
} generates by defintion of Y0 an open subcover of A, it is

{Bp1 , ..., BpN}, where for every j ∈ {p1, ..., pN}, Bj is an element in A such that
πk̂(Bj) = Bj. Thus, since πk̂|Y0 is surjective, then N(Y0,A) = N(X,B). We deduce
by Definition 1.1.7

h(σ0,A, Y0) = h(f,B, X) ≤ h(f).

Since A was taken arbitrarily, we can take the supremum over the open covers of Y0

and conclude that h(σ0) ≤ h(f). Together with Equation (4.2) we get

h(σ0) = h(f). (4.3)

Without loss of generality by Section 2.2, we can assume f to be surjective.
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Lemma 4.0.2. The sequence {Y 1
m
}m∈N converges to Y0 in the Hausdorff metric dH .

Proof. Since X is a compact, let M ∈ R be large enough such that for all x, y ∈ X
we have that d(x, y) ≤ M . Let θ > 0. Let N ∈ N such that M/2N < θ. Now let
n ∈ N with n ≥ N . Thus by the uniform continuity of f there exist 0 < δ2n ≤
δ2n−1 ≤ ... ≤ δ1 < θ, such that

• If x, y ∈ X with d(x, y) ≤ δ1, then d(f(x), f(y)) ≤ θ.

• If x, y ∈ X with d(x, y) ≤ δ2 then d(f(x), f(y)) ≤ δ1
2

.
...

• If x, y ∈ X with d(x, y) ≤ δ2n then d(f(x), f(y)) ≤ δ2n−1

2
.

Let m ∈ N such that 1
m

< δ2n
2

. Let (zi) ∈ Y 1
m

. Since we assumed that

f is surjective, let (yi) ∈ Y0 such that y−n = zn. Thus by definition of Y 1
m

,

d(f(z−n), z−n+1) < δ2n. Therefore by triangular inequality

d(f 2(z−n), z−n+2) ≤ d(f 2(z−n), f(z−n+1)) + d(f(z−n+1), z−n+2) ≤ δ2n−1.

Which implies

d(f 3(z−n), z−n+3) ≤ d(f 3(z−n), f(z−n+2)) + d(f(z−n+2), z−n+3) ≤ δ2n−2.

So inductively we obtain

d(f 2n(z−n), zn) ≤ d(f 2n(z−n), f(zn−1)) + d(f(zn−1), zn) ≤ δ1.

Since for every 1 ≤ i ≤ 2n we have that δi < θ, then each of the above inequalities
is bounded by θ, which implies

d((zi), (yi)) ≤
−n−1∑
i=−∞

d(zi, yi)

2|i|
+

∞∑
i=n+1

d(zi, yi)

2|i|
+

n∑
i=−n

θ

2|i|

≤
n∑

i=−n

θ

2|i|
+ 2

∞∑
i=1

M

2n+i

= θ

n∑
i=−n

1

2|i|
+
M

2n

∞∑
i=0

1

2i

= θ
n∑

i=−n

1

2|i|
+

M

2n−1
≤ 4θ +

M

2n−1
.

This implies d((zi), Y0) ≤ 4θ + M/2n−1. Since n ≥ N , then for every (zi) ∈ Y 1
m

,

d((zi), Y0) ≤ 5θ. Let Bθ(Y0) denote the θ neighborhood of Y0, i.e., Bθ(Y0) = {(xi) ∈
X : d((xi), Y0) ≤ θ}. Since Y0 ⊆ Y 1

m
and (zi) was taken arbitrarily, then for every

m ∈ N such that 1
m
< δ2n

2
we get Y 1

m
⊆ B5θ(Y0), i.e.,

dH(Y 1
m
, Y0) ≤ 5θ.

Since θ was chosen arbitrarily, we conclude the sequence {Y 1
m
}m∈N converges to Y0

in the Hausdorff metric dH .
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In order to calculate and compare for every α ∈ [0, 1] the topological entropy of
σα, we construct the following covers. Let ε > 0. By compactness of Y1, there is
a finite open cover A1,ε by ε-balls that covers it. For each α ∈ [0, 1], we define the
open cover of Yα by

Aα,ε := {A ∩ Yα | A ∈ A1,ε}.

Suppose {B1, B2, ..., Bm} is a finite subcover of A1,ε such that N = N(A0,ε). Since
Y0 ⊆ XZ is a closed subset, there exists θ > 0 such that

Bθ(Y0) ⊆
m⋃
k=1

Bk.

By the previous lemma, there exists N ∈ N such that for all m ≥ N we have that
Y 1
m
⊆ Bθ(Y0). Then for every m ≥ N we get N(A0,ε) ≥ N(A 1

m
,ε). Since Y0 ⊆ Y 1

m
,

the reciprocal inequality holds. Thus

inf
0<α≤1

N(Aα,ε) = N(A0,ε).

Since the sequence (Y 1
m

)m∈N is decreasing under the inclusion relation and by Propo-
sition 1.1.1, we conclude for all n ∈ N that

inf
0<α≤1

h(σα,Aα,ε) ≤ inf
0<α≤1

inf
n

1

n
log(N(Anα,ε)) = inf

0<α≤1
inf
n

1

n
log(N(An0,ε)).

Thus,

inf
0<α≤1

h(σα,Aα,ε) ≤ h(σ0,A0,ε). (4.4)

Lemma 4.0.3. Let α > 0 and ε > 0. Then hψ(f, 2ε, α) ≤ h(σα,Aα,ε).

Proof. Let n ∈ N. Let (x̂i)i≥0 and (ŷi)i≥0 be two α-pseudo-orbits (n, 2ε)-separated
for f . Then, there is 1 ≤ k < n such that d(xk, yk) > 2ε. Since we assumed f to
be subjective, there are (xi)i∈Z, (yi)i∈Z ∈ Yα such that for every i ∈ N, xi = x̂i and
yi = ŷi. Thus

d(σkα(xi), σ
k
α(yi)) ≥

∞∑
i=−∞

d(xi+k, yi+k)

2|i|
> 2ε.

We obtain that (xi) and (yi) are two (n, 2ε)-separated elements in Yα with respect
to σα. This implies that if E is a (n, 2ε)-separated collection of α-pseudo-orbits,
then we can construct a (n, 2ε)-separated set of Yα with respect to σα with the same
cardinality. Therefore

sα(n, 2ε, f) ≤ s(n, 2ε, σα). (4.5)

On the other hand, let B = {B1, B2, ..., BN} be a finite open subcover of Anα,ε
such that N = N(Anα,ε). Suppose (xi) and (yi) are in the same element of B. So
by Definition 1.1.5, this means for each 0 ≤ k < n that (xi) and (yi) are in the
same element of σ−kα (Aα,ε), i.e., that σk(xi) and σk(yi) are in the same element of
Anα,ε, i.e., d(σkα(xi), σ

k
α(yi)) < 2ε. Therefore any two elements of Yα in the same
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element of B cannot be (n, 2ε)-separated with respect to σα. This implies that
S(n, 2ε, σα) ≤ N(Anα,ε). Thus, from Equation (4.5) we obtain that

sα(n, 2ε, f) ≤ N(Anα,ε).

Since n was taken arbitrarily, then

hαψ(f, 2ε) ≤ h(σα,Aα,ε). (4.6)

Now we conclude the proof. Let α ∈ (0, 1], ε > 0 and n ∈ N. As we saw in the

proof of Proposition 3.1.2, the sequence {h
1
m
ψ (f, 2ε)}m∈N is monotone and decreasing.

Therefore hψ(f, 2ε) ≤ hαψ(f, 2ε). By Equation (4.6), for every α ∈ (0, 1] we obtain

hψ(f, 2ε) ≤ h(σα,Aα,ε).

Since α is arbitrarily and by Equation (4.4), we get

hψ(f, 2ε) ≤ inf
0<α≤1

h(σ, ε) ≤ h(σ0,A0,ε).

As ε was also chosen arbitrarily and by Equation (4.3), we conclude that

hψ(f) = lim
ε→0

hψ(f, 2ε) ≤ lim
ε→0

h(σ0,A0,ε) = h(σ0) = h(f).

Together with Equation (4.1), we conclude that h(f) = hψ(f).

Corollary 4.0.1.1. Let {fn}n be a sequence of continuous transformations on a
compact metric space (X, d) converging uniformly to a continuous transformation
f . Then

lim
ε→0

lim sup
n→∞

h(fn, ε) ≤ h(f). (4.7)

Proof. Let ε > 0, α > 0, and m,n ∈ N. Let E be is a (m, ε)-separated set with
respect to fn. Since for every i ∈ N we have d(f i+1

n (x), fn(f in(x)) = 0, then {Ox,fn :
x ∈ E} is a (m, ε)-separated collection of α-pseudo-orbits with respect to fn, where
Ox,fn = {f in(x) : i ∈ N}. By the uniform convergence hypothesis, there exists N ∈ N
such that for all n ≥ N we have |fn− f |∞ < α. Let i ∈ N, x ∈ X and n ≥ N . Then

|f i+1
n (x)− f(f in(x))| < α.

This implies Ox,fn is an α-pseudo-orbit with respect to f . Therefore if E is a (m, ε)
separated set for fn with n ≥ N , then {Ox,fn : x ∈ E} is also a (m, ε)-separated
collection of α-pseudo-orbits with respect to f . Since E was taken arbitrarily, for
all n ≥ N we have s(m, ε, fn) ≤ sα(m, ε, f). As m was also chosen arbitrarily, then

h(ε, fn) ≤ hαψ(ε, f).
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Since N depends on α, then the above inequality implies that

lim sup
n→∞

h(ε, fn) ≤ hψ(ε, f).

Finally, since ε was also chosen arbitrarily, then

lim
ε→0

lim sup
n→∞

h(ε, fn) ≤ hψ(f).

Applying the previous theorem we obtain Equation (4.7).

Notice that the argument in this proof uses only topological dynamics arguments.
The following theorem gives us a second equivalent definition of topological entropy
with pseudo orbits. But in this case, restricting us only to periodic pseudo-orbits..
The proof that we are going to present is due to M. Barge and R. Swanson in 1990 [2],
using topological arguments, the Misiurewicz theorem together with a consequence
of the variational principle as one of its key points.

Theorem 4.0.2. Let f be a continuous transformation on a compact metric space
(X, d). Then the topological entropy of f is equal to the growth exponential rate of
separated periodic α-pseudo-orbits of period n as n tends to infinity, i.e.,

h(f) = Hψ(f). (4.8)

Proof. First we will prove h(f) ≤ Hψ(f). From Proposition 3.0.3 we have with
respect the chain recurrent set that

h(f) = h(f |R(f)).

Then it suffices to show first h(f |R(f)) ≤ Hψ(f). On one hand, by Section 2.2 we
know that

h(f |R(f)) = sup{hµ(f |R(f)) : µ ∈Me(f |R(f))}.

Let α > 0. By Proposition 3.0.4 we also know that α-chain-transitive components of
the chain recurrent set R(f) partition R(f), they are finite and f -invariant subsets
of R(f). Therefore every ergodic measure in R(f) is supported in some α-chain-
transitive component of R(f). Therefore, if T1, ..., TN denote the α-chain-transitive
components, we get

h(f |R(f)) = sup

{
hµ(f |R(f)) : µ ∈

N⋃
i=1

Me(f |Ti)

}
(4.9)

= max
1≤i≤N

h(f |Ti). (4.10)

In the next two lemmas we will seek to relate these components to the periodic
pseudo-orbits.

Lemma 4.0.4. Let α > 0. Let T be an α-chain-transitive component of R(f).
There is m(T ) ∈ N such that for every x, y ∈ T , there exists a 2α-chain in T from
x to y with length less or equal to m(T ).
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Proof. By the uniform continuity of f , there is δ > 0 such that for all x, y ∈ X with
d(x, y) < δ, we have d(f(w), f(z)) < α. Without loss of generality suppose that
δ < α. Since the space T × T is compact, then we can cover it by finitely many sets
of the form Bδ(xi)×Bδ(yi), where Bδ(x) := {y ∈ X : d(x, y) < α}, the ball of radius
δ centered at x. Suppose Bδ(x1)×Bδ(y1), Bδ(x2)×Bδ(y2), .., Bδ(xN)×Bδ(yN) cover
T × T .

Let 1 ≤ i ≤ N . Since xi, yi ∈ T , let {xi, z2, ...zk−1, yi} be an α-chain from xi to
yi with length k(xi, yi). Let x ∈ Bδ(xi) and y ∈ Bδ(yi). Therefore

d(f(x), z2) ≤ d(f(x), f(xi)) + d(f(xi), z2) ≤ 2α, and

d(f(zk−1), y) ≤ d(f(zk−1), yi) + d(yi, y) ≤ 2α.

This implies {x, z2, ..., zk−1, y} is a 2α-chain from x to y with length k(xi, yi), i.e.,
for every 1 ≤ i ≤ N , every x ∈ Bδ(xi) and y ∈ Bδ(yi), there exists a 2α-chain from
x to y with length k(xi, yi). As there are finitely many k(xi, yi)’s, we define

m(T ) = max
1≤i≤N

{k(xi, yi)}.

For the following lemma, we will need to add a bit of notation. Let α > 0, ε > 0,
and n ∈ N. Let T be an α-chain-transitive component of R(f). We denote pαT (n, ε)
the maximum cardinality between (n, ε)-separated collections of periodic α-pseudo-
orbits with period n in T . Similarly we denote sαT (n, ε) the maximum cardinality
over (n, ε)-separated collections of α-pseudo-orbits in T .

Lemma 4.0.5. Let α > 0, ε > 0, and n ∈ N. Let T be a α-chain-transitive
component of R(f). Let m(T ) be as in Lemma 4.0.4. Then

sαT (n, ε) ≤
m(T )+n−2∑

i=1

pαT (i, ε) (4.11)

Proof. Let E be a (n, ε)-separated collection of α-pseudo-orbits. First we denote
E1 ⊆ E the (1, ε)-separated subset of E, i.e., the collection of α-pseudo-orbits in E
that separate in k = 1. Let (xi) ∈ E1, then by the previous lemma there exists a
2α-chain from x1 to x1 with length less or equal to m(T ). We define the subsets
E1,1, E1,2, ...E1,m(T ) ⊆ E1, where E1,i is the subset of α-pseudo-orbits (xi) of E1 such
that there is a 2α-chain from x1 to x1 with length i ≤ m(T ). Let E2 be the set
of α-pseudo-orbits of E that are separated in k = 2. If (xi) ∈ E2, then by the
previous lemma there exists a 2α-chain from x2 to x1 with length less or equal to
m(T ). We thus define the subsets E2,1, E2,2, ...E2,m(T ) ⊆ E1, where E2,i is the set of
α-pseudo-orbits (xi) that are separated in k = 2 and such that there is a 2α-chain
from x2 to x1, with length i ≤ m(T ).

Successively for every 1 ≤ j ≤ n we define Ej as the set of α-pseudo-orbits
that separate in k = j, and define Ej,i as the set of α-pseudo-orbits (xi) in Ej
such that there exists a 2α-chain from xj to x1 with length 1 ≤ i ≤ m(T ), say
{xj, y2, ...yi−1, x1}. This implies that {x1, x2, ..., xj−1, xj, y2, ..., yi−1} is a 2α-chain
with length i + j ≤ n + m(T ) − 2. Also defines a periodic 2α-pseudo-orbit with
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period i+ j ≤ n+m(T )− 2.

We summarize this construction saying that for every 1 ≤ k ≤ n, and for each
pair of α-pseudo-orbits (xi) and (yi) which are (k, ε)-separated we can construct two
periodic 2α-pseudo-orbits (k + m(T ) − 2, ε)-separated with period less or equal to

k +m(T )− 2. This implies #
⋃
j+i=k Ej,i ≤ p2α

T (k, ε). Since E ⊆
⊔m(T )+n−2
j+i=1 Ej,i, we

get

#E ≤
m(T )+n−2∑
i+j=1

p2α
T (i+ j, ε).

As E was arbitrarily chosen, then we conclude Equation (4.11).

Now we proceed to prove the theorem. Let α > 0. By Equation (4.9) let T be
an α-chain-transitive component of R(f) such that h(f) = h(f |T ). Theorem 4.0.1
implies that

hψ(f) = h(f) = hψ(f |T ). (4.12)

Recall that by Proposition 3.1.2, the sequences {h
1
m
ψ (f, ε)}m∈N and {hψ(f, 1

m
)}m∈N

are decreasing and monotone. Therefore for all ε > 0 and α > 0, we have

hψ(f) ≤ lim sup
n→∞

1

n
log sαT (n, ε).

Along with the Lemma 4.0.5,

hψ(f) ≤ lim sup
n→∞

1

n
log

m(T )+n−2∑
i=1

p2α
T (i, ε).

For each k ≥ 0 we define 1 ≤ ik ≤ k such that p2α
T (ik, ε) = max1≤i≤k{p2α

T (i, ε)}.
Then

hψ(f) ≤ lim sup
n→∞

1

n
log

m(T )+n−2∑
i=1

p2α
T (i, ε)

= lim sup
n→∞

1

im(T )+n−2

log

m(T )+n−2∑
i=1

p2α
T (i, ε)

≤ lim sup
n→∞

1

im(T )+n−2

log((m(T ) + n− 2)p2α
T (im(T )+n−2, ε))

≤ lim sup
n→∞

1

im(T )+n−2

[log(m(T ) + n− 2)

+ log(p2α
T (im(T )+n−2, ε))]

= lim sup
n→∞

1

im(T )+n−2

log(p2α
T (im(T )+n−2, ε))

= H2α
ψ (f |T , ε).

Applying Theorem 4.0.1 this implies that h(f) ≤ H2α
ψ (f |T , ε). Therefore h(f) ≤

H2α
ψ (f, ε). Since α and ε were arbitrarily chosen, then h(f) ≤ Hψ(f). On the other
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hand, by Definition 3.2.2, it can be shown that for all α > 0 and all ε > 0 we have
sα(f, ε) ≥ pα(n, ε). Then hψ(f) ≥ Hψ(f) and by the Theorem 4.0.1 we conclude
h(f) ≥ Hψ(f). This completes the proof.

Before presenting one of the consequences of this theorem, it is necessary to make
the following two definitions.

Definition 4.0.1. Let f : X → X be continuous transformation on a metric space
(X, d). We will say that f is expansive if there exists ε > 0 such that for any
x, y ∈ X there exists n ∈ N such that d(fn(x), fn(y)) ≥ ε.

Definition 4.0.2. Let f : X → X be a continuous transformation on a metric
space (X, d). We will say that f has the shadowing property if for each β > 0
there exists α > 0 such that if (xi) is an α-pseudo-orbit, then there exists y ∈ X
such that for all n ∈ N, it holds that d(xn, f

n(y)) ≤ β. We will also say that the
orbit Oy ”shadows” (xi).

The next known result [3] can be proven with the previous theorem.

Corollary 4.0.2.1. Let f be an expansive homeomorphism on a compact metric
space (X, d). If f has the shadowing property, then

h(f) = lim sup
n→∞

1

n
log #Fix(fn).

Proof. Since f is expansive, let ε > 0 be as in Definition 4.0.2 and let n ∈ N. Let
x, y ∈ Fix(fn) with x 6= y. Thus, there exists N ∈ N such that d(fN(x), fN(y)) > ε.
Since f is a bijection, we can assume for some 1 ≤ k ≤ n that d(fk(x), fk(y)) > ε.
Then x and y are (n, ε)-separated. Let α > 0. Recall by Definition 3.0.1, that
the orbits Ox and Oy are periodic α-pseudo-orbits of period n. Thus Ox and Oy
are also (n, ε)-separated α-pseudo orbits. Which implies {Ox : x ∈ Fix(fn)} is a
(n, ε)-separated collection of periodic α-pseudo-orbits of period n. Then

#Fix(fn) ≤ pα(n, ε). (4.13)

On the other hand, let β ≤ ε/2. Since f has the shadowing property, there exists
α > 0 such that if (xi) is an α-pseudo-orbit then there exists y ∈ X such that
Oy shadows (xi). Now suppose (xi) is a periodic α-pseudo-orbit with period n.
Then there exists y ∈ X such that for all m ∈ N, d(xm, f

m(y)) < β. Thus by the
periodicity, for all 1 ≤ r ≤ n and all k ∈ Z

d(f r(y), f r+kn(y)) ≤ d(f r(y), xr) + d(xr, f
r+kn(y))

≤ ε

2
+ d(xr+kn, f

r+kn(x))

≤ ε.

Now we show y ∈ Fix(fn). Suppose by contradiction and without loss of generality,
there exist k1, k2 ∈ Z such that fnk1(y) 6= fnk2(y). Since f is expansive, there exists
N ∈ N such that d(fN+nk1)(y), fN+nk2(y)) > ε. But this contradicts the inequality
above. Thus we conclude that y ∈ Fix(fn). This implies that for all periodic α-
pseudo-orbit with period n, there exists a periodic orbit with period n that shadows
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the pseudo-orbit.

Let (xi) and (yi) two (n, ε)-separated periodic α-pseudo-orbits with period n.
Let x, y ∈ X be such that Ox and Oy and shadows (xi) and (yi) respectively. Since
f is expansive, it can be shown that x 6= y. We conclude that periodic α-pseudo-
orbits with period n can be identified injectively with elements in Fix(fn). This
implies

pα(n, ε) ≤ #Fix(fn).

Thus with Equation (4.13), we obtain pα(n, ε) = #Fix(fn). Since n was chosen
arbitrarily, then

Hα
ψ(f, ε) = lim sup

n→∞

1

n
log #Fix(fn).

Since this holds for all α, then Hψ(f, ε) = lim sup
n→∞

1

n
log #Fix(fn). Also since ε > 0

was taken arbitrarly, then

Hψ(f, ε) = lim sup
n→∞

1

n
log #Fix(fn)

Finally, Applying Theorem 4.0.2 we obtain

h(f) = Hψ(f) = lim sup
n→∞

1

n
log #Fix(fn).
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Chapter 5

Pseudo-Pressure and Pressure

This last chapter of the thesis contains our original work. We extend both, the
results of Misiurewicz and that of M. Barge and R. Swanson, to the context of
topological pressure. We prove that the pseudo-pressure, the functional Peψ and
the topological pressure coincide. Our techniques of proof are an adaptation of the
methods developed to handle entropy. We would like to point out that, apparently,
similar results were obtained by Lian-Fa He in [8]. Unfortunately, the article is not
available online and moreover it is in chinese.

Theorem 5.0.1. Let f be a continuous transformation in a compact metric space
(X, d). Let ϕ ∈ C(X). Then the topological pressure of ϕ with respect to f is equal
to the pseudo-pressure of ϕ with respect to f , i.e.,

P (ϕ, f) = Pψ(ϕ, f).

Proof. As in Theorem 4.0.1, let us consider the space (XZ, d). For each α ≥ 0
consider the closed subsets described by

Yα := {(..., x−1;x0, x1, ...) : d(f(xi−1), xi) ≤ α for every i ∈ Z)}.

Let ε > 0. For every k ∈ Z, consider the projection map πk : XZ → X. For every
α ∈ [0, 1], let σα be the shift map on Yα.

Lemma 5.0.1. There exists k ∈ Z such that the pressure of ϕ ◦ πk with respect to
σ0 in Y0 is equal to the pressure of ϕ with respect to f in X, i.e.,

P (ϕ ◦ πk, σ0) = P (ϕ, f).

Proof. Let A be a finite open cover of Y0. Suppose A := {A1, ..., Am}. By the
product topology we know that for each 1 ≤ i ≤ m,

Ai =

(∏
k∈Z

Ci,k

)⋂
Y0,

where Ci,k is an open subset of X and Ci,k 6= X for finitely many k’s. Since there are

finitely many Ai’s, there exists 1 ≤ j ≤ m such that for some k̂ ∈ Z with Cj,k̂ 6= X,
holds that

k̂ = min{k : 1 ≤ i ≤ m and Ci,k 6= X}.
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Since A is an open cover of Y0, then πk̂(A) = {C1,k̂, C2,k̂, ..., Cm,k̂} is an open cover
of X. For simplicity, we will denote B = πk̂(A). Note that any open subcover of B,
say γ = {Bp1,k̂

, ..., BpN ,k̂
} generates by defintion of Y0 an open subcover of A, it is

γ̂ = {Bp1 , ..., BpN}, where for every j ∈ {p1, ..., pN}, Bj is an element in A such that
πk̂(Bj) = Bj. Let n ∈ N. Since f ◦ πk̂ = πk̂ ◦ σ0, if Bpj ∈ γ̂ we get

sup
(xj)∈Bpj

exp

{
n−1∑
i=0

ϕ ◦ πk̂(σ
i(xj))

}
= sup

x1∈Bpj,k̂
exp

{
n−1∑
i=0

ϕ(f i(x1))

}
.

This implies,

∑
Bpj∈γ̂n

sup
(xj)∈Bpj

exp

{
n−1∑
i=0

ϕ ◦ πk̂(σ
i(xj))

}
=

∑
B
pj,k̂
∈γn

sup
x∈B

pj,k̂

exp

{
n−1∑
i=0

ϕ(f i(x1))

}
.

As for the projection map πk̂, all open covers of A generates an open cover of B. We
can take the infimum over the finite open sub-covers of either A or B. Since γ was
chosen arbitrarily, then considering the infumum over all finite sub-covers of Bn on
the right side, we obtain

Pn(ϕ ◦ πk̂, σ0,A) ≤ Pn(ϕ, f,B).

As n was arbitrarily taken, we conclude that

P (ϕ ◦ πk, σ0,A) ≤ P (ϕ, f,B) (5.1)

Let m ∈ N. If we intersectA with balls of radius 1
m

in (Y0, d), we get a open cover Am
such that diam(Am) ≤ 2

m
. Thus, we will obtain a sequence (Am)m∈N of open covers

such that diam(Am) → 0 when m → ∞. By what we did above, the open covers
πk̂(Am) := Bm of X such that the Equation (5.1) holds and diam(B)m → 0 when
m→∞. So by Definition 1.2.2, the inequality Equation (5.1) implies P (ϕ◦πk̂, σ0) ≤
P (ϕ, f). On the other hand as f ◦ πk̂ = πk̂ ◦ σ0 and by Proposition 1.2.2, we have
P (ϕ ◦ πk̂, σ0) ≥ P (ϕ, f). which together with the preceding inequality proves the
lemma.

As in Theorem 4.0.1, let A be a finite open cover of Y1 by ε-balls. Thus for every
α ∈ [0, 1], consider the open cover Aα,ε of Yα defined by

Aα,ε := {A ∩ Yα|A ∈ A1,ε}.

Lemma 5.0.2. Let k ∈ Z be as in the Lemma 5.0.1. Then

inf
0<α≤1

P (ϕ ◦ πk, σα,Aα,ε) ≤ P (ϕ ◦ πk, σ0,A0,ε)

Proof. Let β > 0. Notice ϕ◦πk is uniformly continuous since is a continuous function
on a compact metric space. Thus, there exists δ > 0 such that for all (xi), (yi) ∈ XZ

with d((xi), (yi)) < δ, we have d(ϕ◦πk(xi), ϕ◦πk(yi)) < β. Recall from Lemma 4.0.2
that the sequence (Y 1

m
)m∈N converges to Y0 in the Hausdorff metric dH . Let M ∈ N

be such that for every m ≥M we get

dH(Y 1
m
, Y0) < δ.
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Let m ≥ M and let γ be a finite open subcover of A 1
m
,ε. First, since γ also covers

Y0, then

∑
U∈γ

sup
U∩Y0

exp

{
n−1∑
i=0

ϕ ◦ πk(σi0(xj))

}
≤
∑
U∈γ

sup
U

exp

{
n−1∑
i=0

ϕ ◦ πk(σi1
m

(xl))

}
, (5.2)

where (xj) ∈ U ∩ Y0 and (xl) ∈ U . Thus by the uniform continuity

∑
U∈γ

sup
U

exp

{
n−1∑
i=0

ϕ ◦ πk(σi1
m

(xl))

}
≤
∑
U∈γ

sup
U∩Y0

exp

{
n−1∑
i=0

ϕ ◦ πk(σi1
m

(xj)) + β

}

= exp(nβ)
∑
U∈γ

sup
U∩Y0

exp

{
n−1∑
i=0

ϕ ◦ πk(σi1
m

(xj))

}
.

Let B = {B1, B2, ...BN} be the open cover of Y0 such that B ∩ A1,ε = A0,ε. As
Y0 ⊆ Y 1

m
is a closed subset, there exists θ > 0 such that Bθ(A0,ε) ⊆ B, where

Bθ(A0,ε) := {(xi) ∈ XZ : d(xi, Y0) < θ}, the θ-neighborhood of B(A0,ε). Without
loss of generality suppose δ < θ, where δ as above. Then, for every m ≥M ,

A 1
m
,ε ⊆ Bθ(A0,ε) ⊆ B.

This implies B∩Y 1
m

= A 1
m
,ε. Thus, the finite open subcovers of A 1

m
,ε are in bijection

with the finite subcovers of A0,ε. If in Equation (5.2) and in the previous inequality
we consider the infimum over the finite open sub-covers of A 1

m
,ε, it is equivalent to

consider the infimum over the finite open sub-covers of A0,ε. Then

Pn(ϕ ◦ πk, σ0,A0,ε) ≤ Pn(ϕ ◦ πk, σ 1
m
,A 1

m
,ε) ≤ enβPn(ϕ ◦ πk, σ0,A0,ε). (5.3)

On the other hand, let α ≥ α′. Since Yα′ ⊆ Yα, then Aα′,ε ⊆ Aα,ε. Let V ∈ Aα,ε
and n ∈ N, so we have

sup
(xj)∈V ∩Yα′

exp

{
n−1∑
i=0

ϕ ◦ πk(σiα′(xj))

}
≤ sup

(xj)∈V
exp

{
n−1∑
i=0

ϕ ◦ πk(σiα(xj))

}
.

This holds for finite open covers of both Aα′,ε and Aα,ε, and for every n ∈ N.
Therefore

P (ϕ ◦ πk, σα′ ,Aα′,ε) ≤ P (ϕ ◦ πk, σα,Aα,ε).

Hence {P (ϕ ◦ πk, σ 1
m
,A 1

m
,ε)}m∈N is a monotone decreasing sequence. So

lim
m→∞

P (ϕ ◦ πk, σ 1
m
,A 1

m
,ε) = inf

0<α≤1
P (ϕ ◦ πk, σα,Aα,ε). (5.4)

Therefore, as β was taken arbitrarily and M →∞ when β → 0, then Equation (5.3)
and Equation (5.5) implies

Pn(ϕ ◦ πk, σ0,A0,ε) = lim
m→∞

Pn(ϕ ◦ πk, σ 1
m
,A 1

m
,ε)

= inf
0<α≤1

Pn(ϕ ◦ πk, σα,Aα,ε).
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By Definition 1.2.1, we know that P (ϕ◦πk, σα,Aα,ε) = inf
n

1

n
log(Pn(ϕ◦πk, σα,Aα,ε)).

Let n ∈ N. Thus, by the preceding equality

inf
0<α≤1

P (ϕ ◦ πk, σα,Aα,ε) ≤ inf
0<α≤1

1

n
log(Pn(ϕ ◦ πk, σα,Aα,ε))

≤ 1

n
log(Pn(ϕ ◦ πk, σ0,A0,ε)).

Since this holds for every n ∈ N, we obtain

inf
0<α≤1

P (ϕ ◦ πk, σα,Aα,ε) ≤ P (ϕ ◦ πk, σ0,A0,ε)

Lemma 5.0.3. Let α > 0 and ε > 0. Then

Pα
ψ (ϕ, f, 2ε) ≤ P (ϕ ◦ πk, σα,Aα,ε) (5.5)

Proof. Let n ∈ N. Let E be an (n, 2ε)-separated set with respect σα in Yα and let
γ be a finite open subcover of Aα,ε. From the proof of Lemma 4.0.3, we know that
any two (xi), (yi) ∈ Yα in the same element of Anα,ε cannot be (n, 2ε)-separated with
respect to σα. So each element in E is in a single element of γ. We obtain,

∑
(xi)∈E

exp

{
n−1∑
i=0

ϕ(xi)

}
≤
∑
U∈γ

sup
(xj)∈U

exp

{
n−1∑
i=0

ϕ ◦ πk(σiα(xj))

}
.

Since γ was arbitrarily chosen,

∑
x∈E

exp

{
n−1∑
i=0

ϕ(xi)

}
≤ Pn(ϕ ◦ πk, σα,Aα,ε).

In the same way, as E was taken arbitrarily, we obtain for all n ∈ N,

Pα
n (ϕ, f, 2ε) ≤ Pn(ϕ ◦ πk, σα,Aα,ε).

This implies Equation (5.5).

Now we will prove Theorem 5.0.1. As in Lemma 5.0.3, we have Equation (5.5)
holds for all α > 0 and all ε > 0. Then, by Equation (5.4) and by Lemma 5.0.2 we
obtain

Pψ(ϕ, f, 2ε) ≤ lim
α→0

P (ϕ ◦ πk, σα,Aα,ε)

= inf
0<α≤1

P (ϕ ◦ πk, σα,Aα,ε)

≤ P (ϕ ◦ πk, σ0,A0,ε).

Since ε > 0 was arbitrary chosen and applying the Lemma 5.0.1, we obtain

Pψ(ϕ, f) ≤ P (ϕ ◦ πk, σ0) = P (ϕ, f). (5.6)
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We will now show the reciprocal inequality. Let α > 0, ε > 0, and n ∈ N. As we did
at the beginning of the proof of Theorem 4.0.1, it can be shown that if E is a (n, ε)-
separated set with respect to f then {Ox : x ∈ E} is a (n, ε)-separated collection
of α-pseudo-orbits. By Definition 1.2.3 of topological pressure via (n, ε)-separated
sets and since for every k ∈ Z we have f ◦ πk = πk ◦ σα, we obtain

∑
x∈E

exp

{
n−1∑
i=0

ϕ(f i(x))

}
=
∑
x∈E

exp

{
n−1∑
i=0

ϕ ◦ πk(σiαOx)

}
≤ Sαn (ϕ, f, ε).

Since ε, n, α, and E were taken arbitrarily, respectively we obtain that

Sn(ϕ, f, ε) ≤ Sαn (ϕ, f, ε),

S(ϕ, f, ε) ≤ Pα
ψ (ϕ, f, ε),

S(ϕ, f, ε) ≤ Pψ(ϕ, f, ε).

As P (ϕ, f) = S(ϕ, f) by Proposition 1.2.1, we get

P (ϕ, f) ≤ Pψ(ϕ, f).

Together with Equation (5.6) completes the proof.

We now present a corollary as a generalization of Corollary 4.0.1.1.

Corollary 5.0.1.1. Let (fn)n∈N a sequence of continuous transformations in a com-
pact metric space (X, d) that converges uniformly to a continuous transformation
f . Let ϕ ∈ C(X). Then

lim
ε→0

lim sup
n→∞

S(ϕ, fn, ε) ≤ P (ϕ, f) (5.7)

Proof. Let α > 0, ε > 0, and n ∈ N. By the uniform continuity and as in Corol-
lary 4.0.1.1’s proof, there exists N ∈ N large enough such that for all m ≥ N , if E
is a (n, ε)-separated set with respect to f , then {Ox,fm : x ∈ E} is a (n, ε)-separated
collection of α-pseudo-orbits with respect to f . Then, by Definition 3.3.1 of pseudo
pressure, we get

∑
x∈E

exp

{
n−1∑
i=1

ϕ ◦ f im(x)

}
≤ Pα

n (ϕ, f, ε).

As E was taken arbitrarily, then for all n ∈ N, Sn(ϕ, fm, ε) ≤ Pα
n (ϕ, f, ε). This

implies that S(ϕ, fm, ε) ≤ Pα
ψ (ϕ, f, ε). Just as N depends on α, we get

lim sup
m→∞

S(ϕ, fm, ε) ≤ Pψ(ϕ, f, ε).

Finally, since ε > 0 is arbitrary and applying Theorem 5.0.1, we conclude that

lim
ε→0

lim sup
m→∞

S(ϕ, fm, ε) ≤ Pψ(ϕ, f) = P (f).
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The following theorem is a generalization of Theorem 4.0.2 proved by M. Barge
and R. Swanson, for the computation of topological pressure in a compact metric
space with periodic pseudo orbits (recall Definition 3.3.2).

Theorem 5.0.2. Let f be a continuous transformation on a compact metric space
(X, d). Let ϕ ∈ C(X). Then the topological pressure of ϕ with respect to f is equal
to Peψ(ϕ, f), i.e.,

P (ϕ, f) = Peψ(ϕ, f) (5.8)

Proof. Let R(f) be the chain recurrent set of f (Definition 3.0.2). From Proposi-
tion 3.0.3, we know that P (ϕ, f) = P (ϕ|R(f), f |ϕ|R(f)

). Then, by Corollary 2.2.1.1
we obtain

P (ϕ, f) = sup

{
hµ(f |R(f)) +

∫
ϕdµ

∣∣∣∣ µ ∈Me(f |R(f))

}
.

Let α > 0. Since the α-chain-transitive components of R(f) are f -invariant (Propo-
sition 3.0.4), then every ergodic measure µ of R(f) is supported in some of the finite
α-chain-transitive components of R(f), say T1, T2, ...TN , where N ∈ N. Therefore,
as T1, ..., TN partition R(f), we get that

P (ϕ, f) = sup

{
hµ(f |R(f)) +

∫
ϕdµ

∣∣∣∣ µ ∈
N⋃
i=1

Me(f |Ti)

}
(5.9)

= max
1≤i≤N

{P (ϕ|Ti , ϕ|Ti)} . (5.10)

Before presenting the following lemma we introduce new notation. Let β > 0 and
let T be an α-chain-transitive component of R(f). Then, for every n ∈ N we define

P β
T,n(ϕ, f, ε) := sup

 ∑
(xi)∈E

exp
n−1∑
i=0

ϕ(xi)

 ,

where the supremum is taken over the collections (n, ε)-separated of β-pseudo-orbits
in T . Similarly, for every n ∈ N we define

PeβT,n(ϕ, f, ε) = sup

 ∑
(xi)∈F

exp
n−1∑
i=0

ϕ(xi)

 ,

where the supremum is considered over the (n, ε)-separated collections of peri-
odic β-pseudo-orbits of period n in T . The following lemma is a generalization
of Lemma 4.0.5.

Lemma 5.0.4. Let α > 0, ε > 0, and n ∈ N. Let T be an α-chain-transitive
component of R(f) and let m(T ) as in Lemma 4.0.4. Then

Pα
T,n(ϕ, f, ε) ≤

m(T )+n−2∑
i=1

Pe2α
T,i(ϕ, f, ε). (5.11)
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Proof. Let E be a (n, ε)-separated collection of α-pseudo-orbits. As in Lemma 4.0.5,
for every 1 ≤ j ≤ n we define Ej as the set of α-pseudo-orbits that separate in k = j,
and Ej,i as the set of α-pseudo-orbits (xi) in Ej such that there exists a 2α-chain
{xi, y2, ..yi−1, x1} with length 1 ≤ i ≤ m(T )− 2. Notice this implies that

{x1, x1, ..., xj−1, xj, y2, ..., yi−1, x1},
is a 2α-chain with length i+ j ≤ n+m(T )−2. Also it defines a periodic 2α-pseudo-
orbit with period i+ j ≤ n+m(T )− 2. Thus,

⋃
j+i=k Ej,i is an (j + i, ε)-separated

collection with periodic 2α-pseudo-orbits with period i+j. Then, by Definition 3.3.2,∑
xi∈

⋃
j+i=k Ej,i

exp

{
n−1∑
i=0

ϕ(xi)

}
≤ Pe2α

T,k(ϕ, f, ε).

Hence, as E ⊆
⊔m(T )+n−2
k=1

⋃
i+j=k Ej,i, we get

∑
(xi)∈E

exp

{
n−1∑
i=0

ϕ(xi)

}
≤

m(T )+n−2∑
k=1

 ∑
(ym)∈

⋃
i+j=k Ej,i

exp

{
n−1∑
i=0

ϕ(yi)

}
≤

m(T )+n−2∑
k=1

Pe2α
T,k(ϕ, f, ε).

Since E is an arbitrary (n, ε)-separated collection of α-pseudo-orbits, we get by
Definition 3.3.1 that

Pα
T,n(ϕ, f, ε) ≤

m(T )+n−2∑
i=1

Pe2α
T,i(ϕ, f, ε).

Now we will prove the theorem. Let T be an α-chain-transitive component of
R(f). Thus by Theorem 5.0.1 and by remark of Definition 3.3.1,

P (ϕ|T , f |T ) = Pψ(ϕ|T , f |T )

≤ lim sup
n→∞

1

n
logSαT (ϕ, n, ε)

For each k ∈ N let 1 ≤ ik ≤ k such that Pe2α
T,ik

(ϕ, f, ε) = max1≤i≤k Pe
2α
T,i(ϕ, f, ε).

Then, by Lemma 5.0.4 we get

P (ϕ|T , f |T ) ≤ lim sup
n→∞

1

n
log

m(T )+n−2∑
k=1

Pe2α
T,k(ϕ, f, ε)


= lim sup

n→∞

1

n+m(T )− 2
log

n+m(T )−2∑
k=1

Pe2α
T,k(ϕ, f, ε)


≤ lim sup

n→∞

1

im(T )+n−2

log
(

[m(T ) + n− 2]Pe2α
T,im(T )+n−2

(ϕ, f, ε)
)

≤ lim sup
n→∞

1

im(T )+n−2

log
(
Pe2α

T,im(T )+n−2
(ϕ, f, ε)

)
= Pe2α

ψ (ϕ|T , f |T , ε)
≤ Pe2αψ(ϕ, f, ε)
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Since α > 0 and ε > 0 were arbitrary chosen, we obtain that P (ϕ|T , f |T ) ≤
Peψ(ϕ, f). Also, as T was taken arbitrarily, then by Equation (5.10) we obtain

P (ϕ, f) ≤ Peψ(ϕ, f). (5.12)

We will show the reciprocal inequality. Let α > 0, ε > 0, and n ∈ N. If E is an
(n, ε)-separated collection of periodic α-pseudo-orbits of period n. By definition, E
is also a (n, ε)-separated collection of α-pseudo-orbits, then

∑
(xi)∈E

exp

{
n−1∑
i=0

ϕ(xi)

}
≤ Pα

n (ϕ, f, ε).

Since E is arbitrary, we get that

Peαn(ϕ, f, ε) ≤ Pα
n (ϕ, f, ε).

In the same way, as α, ε, and n were taken arbitrary, then

Peαψ(ϕ, f, ε) ≤ Pα
ψ (ϕ, f, ε),

P eψ(ϕ, f, ε) ≤ Pψ(ϕ, f, ε),

and applying the Theorem 5.0.1, we obtain

Peψ(ϕ, f) ≤ Pψ(ϕ, f) = P (ϕ, f).

Together with Equation (5.12) completes the proof.

Finally, we present a generalization of corollary Corollary 4.0.2.1.

Corollary 5.0.2.1. Let f be an expansive homeomorphism on a compact metric
space (X, d). Let ϕ ∈ C(X). If f has the shadowing property. Then

P (ϕ, f) = lim sup
n→∞

1

n
log sup

F⊆Fix(fn)

{∑
x∈F

exp

{
n−1∑
i=1

ϕ(xi)

}}
. (5.13)

Proof. Let α > 0, ε > 0, and n ∈ N. Since f is expansive and as the proof of
Corollary 4.0.2.1, for every x, y ∈ Fix(fn) the orbits Ox and Oy are (n, ε)-separated
periodic α-pseudo-orbits of period n. Thus, if F ⊆ Fix(fn), then the collection of
orbits {Ox|x ∈ F} is an (n, ε)-separated collection of periodic α-pseudo-orbits with
period n. This implies that

∑
x∈F

exp

{
n−1∑
i=0

ϕ(f i(x))

}
≤ Peαn(ϕ, f, ε).

Since this holds for every subset of Fix(fn), we get

sup
F⊆Fix(fn)

∑
x∈F

exp

{
n−1∑
i=0

ϕ(f i(x))

}
≤ Peαn(ϕ, f, ε).
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Since this is true for all α > 0, ε > 0, and n ∈ N , then

lim sup
n→∞

1

n
log sup

F⊆Fix(fn)

∑
x∈F

exp

{
n−1∑
i=0

ϕ(f i(x))

}
≤ Peψ(ϕ, f). (5.14)

We also in saw in the proof of Corollary 4.0.2.1 that, since f has the shadowing prop-
erty, then for each β > 0 with β ≤ ε

2
, there exists δ > 0 such that for all periodic

α-pseudo-orbit (xi) with period n we can relate a single periodic point x ∈ Fix(fn)
that shadows (xi), i.e., for every i ∈ N we have d(f i(x), xi) < β.

On the other hand, let θ > 0. Since ϕ is uniformly continuous, then there ex-
ists β > 0 such that for every x, y ∈ X with d(x, y) < β, we have d(ϕ(x), ϕ(y)) < θ.
Without loss of generality suppose that β < ε

2
. Let E be a (n, ε)-separated collection

of periodic α-pseudo-orbits with period n. Therefore, if F ⊆ Fix(fn) is the subset
of elements in Fix(fn) whose orbits shadows the elements of E, then∑

(xi)∈E

exp

{
n−1∑
i=0

ϕ(xi)

}
≤
∑
x∈F

exp

{
n−1∑
i=0

ϕ(f i(x)) + θ

}
.

Since this holds for every E (n, ε)-separated collection of periodic α-pseudo-orbits
with period n, we obtain that

Pα
n (ϕ, f, ε) ≤ sup

F⊆Fix(fn)

∑
x∈F

exp

{
n−1∑
i=0

ϕ(f i(x)) + θ

}
As n was arbitrarily chosen, we get

Pα
ψ (ϕ, f, ε) ≤ lim sup

n→∞

1

n
log eθ sup

F⊆Fix(fn)

∑
x∈F

exp

{
n−1∑
i=0

ϕ(f i(x))

}
Since θ depends on β and β depends on α,

Pψ(ϕ, f, ε) ≤ lim
α→0

lim sup
n→∞

1

n
log eθ sup

F⊆Fix(fn)

∑
x∈F

exp

{
n−1∑
i=0

ϕ(f i(x))

}

= lim
θ→0

lim sup
n→∞

1

n
log eθ sup

F⊆Fix(fn)

∑
x∈F

exp

{
n−1∑
i=0

ϕ(f i(x))

}

= lim sup
n→∞

1

n
log sup

F⊆Fix(fn)

∑
x∈F

exp

{
n−1∑
i=0

ϕ(f i(x))

}
.

Also, as this is true for all ε > 0, then

Pψ(ϕ, f) ≤ lim sup
n→∞

1

n
log sup

F⊆Fix(fn)

∑
x∈F

exp

{
n−1∑
i=0

ϕ(f i(x))

}
.

Thus, together with Equation (5.14) and applying Theorem 5.0.1, we conclude

lim sup
n→∞

1

n
log sup

F⊆Fix(fn)

∑
x∈F

exp

{
n−1∑
i=0

ϕ(f i(x))

}
= Peψ(ϕ, f) = P (ϕ, f).

.
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