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Chapter 1

Introduction

1.1 The Research Context

The general focus of this thesis is the development of a class of probability distributions

that explicitly parametrizes what is often referred to as repulsion. Developing repulsive

distributions arised in the context of density and regression estimation using mixtures of

Gaussian distributions in the Bayesian framework. Many of the approaches available in

the literature (Escobar and West (1995); Müller et al. (1996); McLachlan and Peel (2000);

Frühwirth-Schnatter (2006) for example) assume that a priori the location parameters of each

mixture component are i.i.d. generated by an appropriate probability law. Because of the

independence assumption, any pair of location parameters can be a priori very close to each

other. This has repercussions on model complexity and out of sample prediction, leading to

eventual overfitting. Our work uses repulsion as a mechanism to obtain parsimonious models

without sacrificing too much goodness of fit.

Since there are strong connections between the class of repulsive distributions we develop

and ideas found in the theory of Finite Point Processes (FPPs), we begin by making explicit

connections between the two. Doing this will hopefully provide context and also connect the

1



ideas we develop to well established statistical concepts.

1.2 Finite Point Processes

A finite point process X can be thought of as a finite random configuration of points that lie

in a suitable space. From a technical point of view, the elements of the random set X live in a

measure space (S,B(S), ν), where B(S) is the Borel σ-algebra of subsets of a locally compact

Polish space S (complete and separable metric space) and ν is a finite diffuse measure, i.e.

0 < ν(S) <∞ and ν({s}) = 0 for all s ∈ S. This last property implies that two points can

not share the same location in S. FPPs have been widely used to describe random patterns

in biology, ecology, agronomy and physics, among others (Møller and Waagepetersen 2003;

Illian et al. 2008; Diggle 2013). Daley and Vere-Jones (2002) (Chapter 5, Proposition 5.3.II.)

give a natural and constructive way to define FPPs X on S under the following (sufficient)

assumptions:

• A discrete distribution {pn}n∈N0 that determines the total number of points.

• A family of probability densities {πn}n∈N with respect to the n-fold product of ν that

determines the locations of the points in S, given that their total number is n. πn must

be invariant under permutations of its argument for all n ≥ 2.

The presence of {πn}n∈N connects FPPs with probability distributions that are invariant to

permutations of their arguments. This guarantees that the order in which the points are

observed is irrelevant. This is a natural feature of FPPs considering that they are random

sets of points.
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1.2.1 Poisson Point Process

A process that serves as a basis to construct a wide variety of more complicated processes is

the so called (finite) Poisson Point Process (PPP). The PPP can be expressed using

pn = exp{−ν(S)}ν(S)n

n!

πn(s1, . . . , sn) =
n∏
i=1

f(si)

ν(S)
,

where f is a non-negative measurable function such that ν(A) =
∫
A
f(s)dµ(s) for all A ∈

B(S) and some dominating measure µ on (S,B(S)) that guarantees the mentioned properties

of ν. In this setting, ν and f are often referred to as an intensity measure and intensity

function, respectively. A space S that is frequently used in modelling is Rd for some d ∈ N.

In this case ν(A) =
∫
A
fθ(s)ds, where fθ( · ) is a non-negative (Lebesgue) integrable function

and θ ∈ Θ is a parameter that controls ν. Several techniques are available to estimate θ for

an observed set of points. See, for example, Gaetan et al. (2010) and Gelfand et al. (2010).

When additional covariate information x ∈ X is collected at each point it is of interest

to learn how x influences the patterns available from the PPP probability model. This can

be done via the intensity measure ν(A) =
∫
A
fθ(s;x)ds, where {fθ( · ;x) : θ ∈ Θ} is a family

of non-negative (Lebesgue) integrable functions indexed by x. Just as when covariates are

not available, several techniques to estimate θ for an observed set of points (with covariates)

have been developed (Gaetan et al. 2010; Gelfand et al. 2010).

1.2.2 Repulsive Point Processes

A consequence of the PPP definition is that it is fairly restrictive about the types of patterns

it permits. In fact, for a given fixed number of points, elements of X are i.i.d. according

to the probability measure ν( · )
ν(S)

. This produces point patterns that exhibit “random scatter”
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and in most applications this feature is unrealistic (incompatible with the nature of the

observed data). It is then necessary to introduce FPPs that can generate patterns where the

points tend to be separated and/or grouped. A popular type of point processes that produce

regular patterns (more spread point configurations) due to repulsion are Determinantal Point

Processes in S = Rd (DPPs). The intuition behind the construction of DPPs is that their

Janossy densities (Daley and Vere-Jones 2002) are defined through the determinant of a

matrix MC whose entries depend on a continuous complex covariance function C : Rd×Rd →

C. If any pairwise distinct points si, sj ∈ Rd are such that ||si − sj||d ≈ 0, then MC

has almost linear dependent columns which implies det(MC) ≈ 0. Here, || · ||d is the d-

dimensional Euclidean norm. For excellent reviews of such stochastic processes and their

applications in statistical modelling and inference see Hough et al. (2006), Lavancier et al.

(2015) and Xu et al. (2016).

Another useful example of such FPPs on which our work is based are (finite) Gibbs

Point Processes (GPPs) on S = Rd. These types of processes arise in Statistical Mechanics

to model patterns exhibiting inter-particle interactions. The exact forms of pn and πn that

correspond to GPPs are

pn =
C(β)

n!

∫
Rdn

exp{−βUn(s1, . . . , sn)}ds1 · · · dsn with p0 = C(β)

πn(s1, . . . , sn) ∝ exp{−βUn(s1, . . . , sn)},

where Rd
n =

∏n
i=1 Rd. The parameter β ∈ (0,∞) is related to the temperature of the particle

system and the proportionality constant C(β) ∈ (0,∞) is known as the partition function.

Here, Un : Rd
n → [−∞,∞] is a measurable function that is exchangeable in its arguments

for each n ∈ N. This function, called potential energy, is fairly crucial to our methodology

as it models the interaction between n particles located at s1, . . . , sn. In order for GPPs to

be well-defined, the following conditions are necessary and sufficient (Daley and Vere-Jones
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2002):

∫
Rdn

exp{−βUn(s1, . . . , sn)}ds1 · · · dsn <∞ and

1 +
∞∑
n=1

1

n!

∫
Rdn

exp{−βUn(s1, . . . , sn)}ds1 · · · dsn =
1

C(β)
.

Suitable choices for Un induce repulsion, i.e. particles are encouraged to be separated.

1.3 A Class of Repulsive Distributions

In order to construct repulsive distributions, we take advantage of GPPs potential energy

Un (setting β = 1) using the following particular form:

Un(s1, . . . , sn) =
n∑
i=1

ϕ(si) +
n∑
j<k

φ{ρ(sj, sk)},

for suitable measurable functions ϕ : Rd → (0,∞) and φ : [0,∞) → (0,∞], and a metric

ρ : Rd×Rd → [0,∞) in Rd. The functions ϕ and φ are called potential functions of first and

second order, correspondingly. The remarkable aspect of the previous specification is that

πn(s1, . . . , sn) ∝ exp

[
−

n∑
i=1

ϕ(si)−
n∑
j<k

φ{ρ(sj, sk)}

]
≤

n∏
i=1

exp{−ϕ(si)}.

Because of the above inequality, exp{−ϕ( · )} can be associated to a continuous density

that emulates the i.i.d. scheme while φ models repulsion by penalizing small inter-particle

distances. This idea allows the construction of a general class of probability distributions

called (second order) Gibbs measures (Illian et al. 2008) which shares the same basis of

GPPs.
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1.4 Outline of this Dissertation

In Chapter 2 we more fully develop these ideas by discussing how (second order) Gibbs

measures can be used to define probability measures with repulsive properties. We will

briefly describe some global characteristics to get a better understanding of the nature of the

repulsion, and then use them in (Bayesian) Gaussian Mixture Models for density estimation.

We show a simple way to obtain posterior samples from our model, and prove theoretical

results relative to the Kullback-Leibler support of the prior and posterior convergence rate

under regularity conditions. This chapter concludes with a simulation study and illustrations

of our methodology applied to real data sets.

In this thesis we also consider the influence that x ∈ X = Rd has on the location of

points using a particular approach, details of which are found in Chapter 3. This chapter is

completely methodological. Using the ideas developed in Chapter 2 we construct a covariate

dependent (Bayesian) Gaussian Mixture Model that includes a repulsion component for

regression estimation. As in Chapter 2, the repulsion encourages the location parameters of

each mixture component to be well separated. Our approach is to model the response and

covariates jointly, which requires treating covariates as random quantities. From the joint

distribution of the response and covariates we induce a conditional probability law that is a

function of the covariates. The key aspect is that the repulsion is directly inherited to the

conditional distribution. We show mechanisms to generate posterior samples from the joint

distribution and how to use them for regression estimation. This chapter concludes with

illustrations of our methodology using simulated and real data sets.

Finally, Chapter 4 contains some overall conclusions and discussion of possible future

work (theoretical aspects and generalizations) that we want to study.
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Chapter 2

Density Estimation using Repulsive

Distributions

2.1 Chapter Overview

Employing nonparametric methods for density estimation has become routine in Bayesian

statistical practice. Models based on discrete nonparametric priors such as Dirichlet Process

Mixture (DPM) models are very attractive choices due to their flexibility and tractability.

However, a common problem in fitting DPMs or other discrete models to data is that they

tend to produce a large number of (sometimes) redundant clusters. In this work we propose

a method that produces parsimonious mixture models (i.e. mixtures that discourage the

creation of redundant clusters), without sacrificing flexibility or model fit. This method is

based on the idea of repulsion, that is, that any two mixture components are encouraged

to be well separated. We propose a family of d-dimensional probability densities whose

coordinates tend to repel each other in a smooth way. The induced probability measure has

a close relation with Gibbs measures, graph theory and point processes. We investigate its

global properties and explore its use in the context of mixture models for density estimation.
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Computational techniques are detailed and we illustrate its usefulness with some well-known

data sets and a small simulation study.

2.2 Introduction

Hierarchical mixture models have been very successfully employed in a myriad of applications

of Bayesian modeling. A typical formulation for such models adopts the basic form

yi | θi
ind.∼ k(yi;θi), θ1, . . . ,θn

i.i.d.∼
N∑
k=1

πkδφk , φ1, . . . ,φN
i.i.d.∼ G0, (2.2.1)

where k( · ;θ) is a suitable kernel density indexed by θ, 1 ≤ N ≤ ∞, component weights

π1, . . . , πN are nonnegative and
∑N

k=1 πk = 1 with probability 1, and G0 is a suitable prob-

ability distribution. Here N could be regarded as fixed or random and in the latter case

a prior p(N) would need to be specified. Depending on the modeling goals and data par-

ticularities, the model could have additional parameters and levels in the hierarchy. The

generic model (2.2.1) includes, as special cases, finite mixture models (Frühwirth-Schnatter

2006) and species sampling mixture models (Pitman 1996; Quintana 2006), in turn including

several well-known particular examples such as the Dirichlet Process (DP) (Ferguson 1973)

and the Pitman-Yor Process (Pitman and Yor 1997).

A common feature of models like (2.2.1) is the use of i.i.d. atoms φ1, . . . ,φN . This choice

seems to have been largely motivated by the resulting tractability of the models, specially in

the nonparametric case (N =∞). There is also a substantial body of literature concerning

important properties such as wide support, posterior consistency, and posterior convergence

rates, among others. See, for instance, Ghosal and van der Vaart (2007) and Shen et al.

(2013).

While the use of i.i.d. atoms in (2.2.1) is technically (and practically) convenient, a

8



typical summary of the induced posterior clustering will usually contain a number of very

small clusters or even some singletons. As a specific example, we considered a synthetic data

set of n = 300 independent observations simulated from the following mixture of 4 bivariate

normal distributions:

y ∼ 0.2N2(µ1,Σ1) + 0.3N2(µ2,Σ2) + 0.3N2(µ3,Σ3) + 0.2N2(µ4,Σ4), (2.2.2)

with

µ1 = (0, 0)>, µ2 = (3, 3)>, µ3 = (−3,−3)>, µ4 = (−3, 0)>

Σ1 =

(
1 0

0 1

)
, Σ2 =

(
2 1

1 1

)
, Σ3 =

(
1 1

−1 3

)
, Σ4 =

(
3 −2

−2 2

)
.

The left panel in Figure 2.1 shows the original data and clusters, labeled with different

numbers and colors. We fit to these data the variation of model (2.2.1) implemented in

the function DPdensity of DPpackage (Jara et al. 2011), which is the bivariate version of

the DP-based model discussed in Escobar and West (1995). The right panel of Figure 2.1

shows the same data but now displays the cluster configuration resulting from the least

squares algorithm described in Dahl (2006). The estimated partition can be thought of as

a particular yet useful summary of the posterior distribution of partitions for this model.

What we observe is a common situation in the application of models like (2.2.1): we find 6

clusters (the simulation truth involved 4 clusters), one of which is a singleton. Such small

clusters are very hard to interpret and a natural question arises, is it possible to limit and

ideally, avoid such occurrences?

In an example like what is described above, our main motivation is not pinning down

the “true” number of simulated clusters. What we actually want to accomplish is to develop

a model that encourages joining such small clusters with other larger ones. This would

9
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Figure 2.1: Data simulated from the mixture of 4 bivariate normal densities in (2.2.2). The
left panel shows the original n = 300 data points with colors and numbers indicating the
original cluster. The right panel shows the clustering resulting from applying Dahl’s least
squares clustering algorithm to a DPM.

certainly facilitate interpretation of the resulting clusters. Doing so has another conceptual

advantage, which is sparsity. The non-sparse behavior shown in the right panel of Figure 2.1

is precisely facilitated by the fact that the atoms in the mixture are i.i.d. and therefore, can

move freely with respect to each other. Thus to achieve our desired goal, we need atoms

that mutually repel each other.

Colloquially, the concept of repulsion among a set of objects implies that the objects tend

to separate rather than congregate. This notion of repulsion has been studied in the context

of Point Processes. For example, Determinantal Point Processes (Lavancier et al. 2015),

Strauss Point Processes (Mateu and Montes 2000; Ogata and Tanemura 1985) and Matérn-

type Point Processes (Rao et al. 2016) are all able to generate point patterns that exhibit

more repulsion than that expected from a Poisson Point Process (Daley and Vere-Jones 2002).

Given a fixed number of points within a bounded (Borel) set, the Poisson Point Process can
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generate point configurations such that two points can be very close together simply by

chance. The repulsion in Determinantal, Strauss and Matérn-type Processes discourages

such behavior and is controlled by a set of parameters that inform pattern configurations.

Among these, to our knowledge, only Determinantal Point Processes have been employed to

introduce the notion of repulsion in statistical modeling (see Xu et al. (2016)).

An alternative way to incorporate the notion of repulsion in modeling is to construct a

probability distribution that explicitly parameterizes repulsion. Along these lines Fúquene

et al. (2016) develop a family of probability densities called Non-Local Priors that incorpo-

rates repulsion by penalizing small relative distances between coordinates. Our approach

to incorporating repulsion is to model coordinate interactions through potentials (functions

that describe the ability to interact) found in so called (second order) Gibbs measures. As

will be shown, this allows us to control the strength of repulsion and also consider a large

variety of types of repulsion.

Gibbs measures have been widely studied and used for describing phenomena from Me-

chanical Statistics (Daley and Vere-Jones 2002). Essentially, they are used to model the

average macroscopic behavior of particle systems through a set of probability and physical

laws that are imposed over the possible microscopic states of the system. Through the action

of potentials, Gibbs measures can induce attraction or repulsion between particles. A num-

ber of authors have approached repulsive distributions by specifying a particular potential in

a Gibbs measure (though the connections to Gibbs measures was not explicitly stated). For

example, Petralia et al. (2012) use a Lennard-Jones type potential (Jones 1924) to introduce

repulsion. Interestingly, there is even a connection between Gibbs measures and Determi-

nantal Point Processes via versions of Papangelou intensities (Papangelou 1974). See Georgii

and Yoo (2005) for more details. It is worth noting that in each of the works just cited, the

particles (following the language in Mechanical Statistics) represent location parameters in

mixture models.
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Similar to the works just mentioned, we focus on a particular potential specification that

introduces repulsion via a joint distribution. There are at least three benefits to employing

the class of repulsive distributions we develop for statistical modeling:

(i) The repulsion is explicitly parameterized in the model and produces a flexible and

smooth repulsion effect.

(ii) The normalizing constant and induced probability distribution have closed forms, they

are (almost) tractable and provide intuition regarding the presence of repulsion.

(iii) The computational aspects related to simulation are fairly simple to implement.

In what follows, we discuss theoretical and applied aspects of the proposed class of re-

pulsive distributions and in particular we emphasize how the repulsive class of distributions

achieves the three properties just listed.

The remainder of this chapter will be organized as follows. In Section 2.3 we formally

introduce the notion of repulsion in the context of a probability distribution and discuss

several resulting properties. In Section 2.4, we detail how the repulsive probability distribu-

tions can be employed in hierarchical mixture modeling for density estimation. Section 2.5

contains results from a small simulation study that compares the repulsive mixture model

we develop to DPM and finite mixture models. In Section 2.6 we apply the methodology

to two well known datasets. Proofs of all technical results and computational strategies are

provided in Appendix A.

2.3 Probability Repulsive Distributions

We start by providing contextual background and introducing notation that will be used

throughout.
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2.3.1 Background and Preliminaries

We will use the k-fold product space of Rd denoted by Rd
k =

∏k
i=1 Rd and B(Rd

k) its associated

σ-algebra as the reference space on which the class of distributions we derive will be defined.

Here, k ∈ N (k ≥ 2) and d ∈ N. Let xk,d = (x1, . . . ,xk) with x1, . . . ,xk ∈ Rd. The k-tuple

xk,d can be thought of as k ordered objects of dimension d jointly allocated in Rd
k. We add

to the measurable space (Rd
k,B(Rd

k)) a σ-finite measure λkd, that is the k-fold product of the

d-dimensional Lebesgue measure λd. To represent integrals with respect to λkd, we will use

dxk,d instead of dλkd(xk,d). Also, given two metric spaces (Ω1, d1) and (Ω2, d2) we denote by

C(Ω1; Ω2) the class of all continuous functions f : Ω1 → Ω2. In what follows we use the

term repulsive distribution to reference a distribution that formally incorporates the notion

of repulsion.

As mentioned previously, our construction of non-i.i.d. distributions depends heavily on

Gibbs measures where dependence (and hence repulsion) between the coordinates of xk,d

is introduced via functions that model interactions between them. More formally, consider

ϕ1 : Rd → [−∞,∞] a measurable function and ϕ2 : Rd × Rd → [−∞,∞] a measurable and

symmetric function. Define

νG

(
k∏
i=1

Ai

)
=

∫
∏k
i=1 Ai

exp

{
−

k∑
i=1

ϕ1(xi)−
k∑
r<s

ϕ2(xr,xs)

}
dxk,d, (2.3.1)

where
∏k

i=1Ai is the cartesian product of Borel sets A1, . . . , Ak in Rd. Here, ϕ1 can be

thought of as a physical force that controls the influence that the environment has on each

coordinate xi while ϕ2 controls the interaction between pairs of coordinates xr and xs. If

ϕ1 and ϕ2 are selected so that νG(Rd
k) is finite, then by Caratheodory’s Theorem νG defines

a unique finite measure on (Rd
k,B(Rd

k)). The induced probability measure corresponding to

the normalized version of (2.3.1), is called a (second order) Gibbs measure. The normalizing
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constant (total mass of Rd
k under νG)

νG(Rd
k) =

∫
Rdk

exp

{
−

k∑
i=1

ϕ1(xi)−
k∑
r<s

ϕ2(xr,xs)

}
dxk,d

is commonly known as partition function (Pathria and Beale 2011) and encapsulates impor-

tant qualitative information about the interactions and the degree of disorder present in the

coordinates of xk,d. In general, νG(Rd
k) is (almost) intractable mainly because of the presence

of ϕ2.

Note that symmetry of ϕ2 (i.e., ϕ2(xr,xs) = ϕ2(xs,xr)) means that νG defines a sym-

metric measure. This implies that the order of coordinates is immaterial. If ϕ2 = 0 then

νG reduces to a structure where coordinates do not interact and are only subject to envi-

ronmental influence through ϕ1. When ϕ2 6= 0, it is common that ϕ2(x,y) only depends

on the relative distance between x and y (Daley and Vere-Jones 2002). More formally, let

ρ : Rd × Rd → [0,∞) be a metric on Rd and φ : [0,∞) → [−∞,∞] a measurable function.

To avoid pathological or degenerate cases, we consider metrics that do not treat singletons

as open sets in the topology induced by ρ. Then letting ϕ2(x,y) = φ{ρ(x,y)}, interactions

will be smooth if, for example, φ ∈ C([0,∞); [−∞,∞]). Following this general idea, Petralia

et al. (2012) use φ(r) = τ(1/r)ν : τ, ν ∈ (0,∞) to construct repulsive probability densities,

which is a particular case of the Lennard-Jones type potential (Jones 1924) that appears in

Molecular Dynamics. Another potential that can be used to define repulsion is the (Gibbs)

hard-core potential φ(r) = ∞I[0,b](r) : b ∈ (0,∞) (Illian et al. 2008), which is a particular

case of the Strauss potential (Strauss 1975). Here, IA(r) is the indicator function over a

Borel set A in R. This potential, used in the context of Point Processes, generates disperse

point patterns whose points are all separated by a distance greater than b units. However,

the threshold of separation b prevents the repulsion from being smooth (Daley and Vere-

Jones 2002). Other examples of repulsive potentials can be found in Ogata and Tanemura
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(1981, 1985). The key characteristic that differentiates the behavior of the potentials pro-

vided above is the action near 0; the faster the potential function goes to infinity as relative

distance between coordinates goes to zero, the stronger the repulsion that the coordinates of

xk,d will experiment when they are separated by small distances. Even though Fúquene et al.

(2016) do not employ a potential to model repulsion, the repulsion that results from their

model is very similar to that found in Petralia et al. (2012) and tends to push coordinates

far apart.

It is often the case that ϕ1 and ϕ2 are indexed by a set of parameters which inform

the types of patterns produced. It would therefore be natural to estimate these parameters

using observed data. However, νG(Rd
k) is typically a function of the unknown parameters

which makes deriving closed form expressions of νG(Rd
k) practically impossible and ren-

ders Bayesian or frequentist estimation procedures intractable. To avoid this complication,

pseudo-maximum likelihood methods have been proposed to approximate νG(Rd
k) when car-

rying out estimation (Ogata and Tanemura 1981; Penttinen 1984). We provide details of a

Bayesian approach in subsequent sections.

2.3.2 Repk,d(f0, C0, ρ) Distribution

As mentioned, our principal objective is to construct a family of probability densities for

xk,d that relaxes the i.i.d. assumption associated with its coordinates and we will do this by

employing Gibbs measures that include an interaction function that mutually separates the k

coordinates. Of all the potentials that might be considered in a Gibbs measure, we seek one

that permits modeling repulsion flexibly so that a soft type of repulsion is available which

avoids forcing large distances among the coordinates. As noted by Daley and Vere-Jones

(2002) and Ogata and Tanemura (1981) the following potential

φ(r) = − log{1− exp(−cr2)} : c ∈ (0,∞) (2.3.2)
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produces smoother repulsion compared to other types of potentials in terms of “repelling

strength” and for this reason we employ it as an example of interaction function in a Gibbs

measure. A question that naturally arises at this point relates to the possibility of specifying

a tractable class of repulsive distributions that incorporates the features discussed above.

Note first that connecting (2.3.2) with νG is straightforward: if we take

ϕ2(x,y) = − log[1− C0{ρ(x,y)}], C0(r) = exp(−cr2) : c ∈ (0,∞)

then νG will have a “pairwise-interaction term” given by

exp

{
−

k∑
r<s

ϕ2(xr,xs)

}
=

k∏
r<s

[1− C0{ρ(xr,xs)}]. (2.3.3)

The right-hand side of (2.3.3) induces a particular interaction structure that separates the

coordinates of xk,d, thus introducing a notion of repulsion. The degree of separation is

regulated by the speed at which C0 decays to 0. The answer to the question posed earlier

can then be given by focusing on functions C0 : [0,∞) → (0, 1] that satisfy the following

properties:

A1. C0 ∈ C([0,∞); (0, 1]).

A2. C0(0) = 1.

A3. C0(r)→ 0 (right-side limit) when x→∞.

A4. For all r1, r2 ∈ [0,∞), if r1 < r2 then C0(r1) > C0(r2).

For future reference we will call A1 to A4 the C0-properties. The following Lemma guarantees

that the type of repulsion induced by the C0-properties is smooth in terms of xk,d.
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Lemma 2.3.1. Given a metric ρ : Rd × Rd → [0,∞) such that singletons are not open sets

in the topology induced by ρ, the function RC : Rd
k → [0, 1) defined by

RC(xk,d) =
k∏
r<s

[1− C0{ρ(xr,xs)}] (2.3.4)

belongs to C(Rd
k; [0, 1)) for all d ∈ N and k ∈ N (k ≥ 2).

Through out the article we will refer to (2.3.4) as the repulsive component. We finish the

construction of repulsive probability measures by specifying a distribution supported on Rd

which will be common for all the coordinates of xk,d. Let f0 ∈ C(Rd; (0,∞)) be a probability

density function, then under ϕ1(x) = − log{f0(x)}, νG will have a “base component term”

given by

exp

{
−

k∑
i=1

ϕ1(xi)

}
=

k∏
i=1

f0(xi). (2.3.5)

Incorporating (2.3.3) and (2.3.5) into (2.3.1) we get

νG

(
k∏
i=1

Ai

)
=

∫
∏k
i=1 Ai

{
k∏
i=1

f0(xi)

}
RC(xk,d)dxk,d.

The following Proposition ensures that the repulsive probability measures just constructed

are well defined.

Proposition 2.3.2. Let f0 ∈ C(Rd; (0,∞)) be a probability density function. The function

gk,d(xk,d) =

{
k∏
i=1

f0(xi)

}
RC(xk,d) (2.3.6)

is measurable and integrable for all d ∈ N and k ∈ N (k ≥ 2).

With Proposition 2.3.2 it is now straightforward to construct a probability measure with

the desired repulsive structure; small relative distances are penalized in a smooth way. Notice
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that the support of (2.3.6) is determined by the shape of the “baseline distribution” f0 and

then subsequently distorted (i.e. contracted) by the repulsive component. The normalized

version of (2.3.6) defines a valid joint probability density function which we now provide.

Definition 2.3.1. The probability distribution Repk,d(f0, C0, ρ) has probability density func-

tion

Repk,d(xk,d) =
1

ck,d

{
k∏
i=1

f0(xi)

}
RC(xk,d), (2.3.7)

ck,d =

∫
Rdk

{
k∏
i=1

f0(xi)

}
RC(xk,d)dxk,d. (2.3.8)

Here xk,d ∈ Rd
k, f0 ∈ C(Rd; (0,∞)) is a probability density function, C0 : [0,∞) → (0, 1] is

a function that satisfies the C0-properties and ρ : Rd × Rd → [0,∞) is a metric such that

singletons are not open sets in the topology induced by it.

2.3.3 Repk,d(f0, C0, ρ) Properties

In this section we will investigate a few general properties of the Repk,d(f0, C0, ρ) class.

The distributional results are provided to further understanding regarding characteristics

of (2.3.7) from a qualitative and analytic point of view. As a first observation, because

of symmetry, Repk,d(xk,d) is an exchangeable distribution in x1, . . . ,xk. This facilitates

the study of computational techniques motivated by Repk,d(f0, C0, ρ). However, it is worth

noting that {Repk,d(f0, C0, ρ)}k≥2 does not induce a sample-size consistent sequence of finite-

dimensional distributions, meaning that

∫
Rd

Repk+1,d(xk+1,d)dxk+1 6= Repk,d(xk,d).
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This makes predicting locations of new coordinates problematic. In Section 2.4 we address

how this may be accommodated in modeling contexts. To simplify notation, in what follows

we will use [m] = {1, . . . ,m}, with m ∈ N.

Normalizing Constant

Because RC(xk,d) is invariant under permutations of the coordinates of xk,d, an interaction’s

direction is immaterial to whether it is present or absent (i.e., xr interacts with xs if and

only if xs interacts with xr). Therefore it is sufficient to represent the interaction between

xr and xs as (r, s) ∈ Ik where Ik = {(r, s) : 1 ≤ r < s ≤ k}. In this setting, Ik reflects the

set of all pairwise interactions between the k coordinates of xk,d and `k = card(Ik) = k(k−1)
2

,

where card(E) is the cardinality of a set E. Now, expanding (2.3.4) term-by-term results in

RC(xk,d) = 1 +

`k∑
l=1

(−1)l
∑
A⊆Ik

card(A)=l

[ ∏
(r,s)∈A

C0{ρ(xr,xs)}

]
. (2.3.9)

The right-side of (2.3.9) is connected to graph theory in the following way: A ⊆ Ik can be

interpreted as a non-directed graph whose edges are (r, s) ∈ A.

Using (2.3.9), it can be shown that expression (2.3.8) in Definition 2.3.1 has the following

form:

ck,d = 1 +

`k∑
l=1

(−1)l
∑
A⊆Ik

card(A)=l

Ψk,d(A) (2.3.10)

Ψk,d(A) =

∫
Rdk

{
k∏
i=1

f0(xi)

}[ ∏
(r,s)∈A

C0{ρ(xr,xs)}

]
dxk,d. (2.3.11)

Note that representing A as a graph or Laplacian matrix can help develop intuition on how

each summand contributes to the expression (2.3.10). Figure 2.2 shows one particular case

of how 3 of k = 4 coordinates in Rd might interact by providing the respective Laplacian
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matrix together with the contribution that (2.3.11) brings to calculating c4,d according to

(2.3.10).

Figure 2.2: The graph and Laplacian matrix for a possible interaction for k = 4 coordinates.

Equation (2.3.10) retains connections with the probabilistic version of the Inclusion-

Exclusion Principle. This result, which is very useful in Enumerative Combinatorics, says

that in any probability space (Ω,F ,P)

P

(
k⋂
i=1

Aci

)
= 1 +

k∑
l=1

(−1)l
∑
I⊆[k]

card(I)=l

P

(⋂
i∈I

Ai

)
,

with A1, . . . , Ak events on F and Aci denoting the complement of Ai. With this in mind,

ck,d is the result of adding/substracting all the contributions Ψk,d(A) that emerge for every

non-empty set A ⊆ Ik. If we think of ck,d as an indicator of the strength of repulsion, Ψk,d(A)

provides the specific contribution from the interactions (r, s) ∈ A. Moreover, it quantifies

how distant a Repk,d(f0, C0, ρ) distribution is from the (unattainable) extreme case C0 = 0

(i.e., the coordinates x1, . . . ,xk are mutually independent and share a common probability
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law f0).

The tractability of ck,d depends heavily on the number of coordinates k since the cost of

evaluating (2.3.11) becomes prohibitive as it requires carrying out (at least) 2`k−1 numerical

calculations. In Subsection 2.4.1 we highlight a particular choice of f0, C0 and ρ that produces

a closed form expression for (2.3.11).

2.4 Gaussian Mixture Models and NRepk,d(µ,Σ, τ ) Distri-

bution

In this section we will briefly introduce Gaussian Mixture Models, which are very popular in

the context of density estimation (Escobar and West 1995) because of their flexibility and

computational tractability. Then we show that repulsion can be incorporated by modeling

location parameters with the repulsion distribution described previously.

2.4.1 Repulsive Gaussian Mixture Models (RGMM)

Consider n ∈ N experimental units whose responses y1, . . . ,yn are d-dimensional and as-

sumed to be exchangeable. Gaussian mixtures can be thought of as a way of grouping the n

units into several clusters, say k ∈ N, each having its own specific characteristics. In this con-

text, the jth cluster (j ∈ [k]) is modeled through a Gaussian density Nd( · ;θj,Λj) with loca-

tion θj ∈ Rd and scale Λj ∈ Sd. Here, Sd is the space of real, symmetric and positive-definite

matrices of dimension d × d. We let θk,d = (θ1, . . . ,θk) ∈ Rd
k and Λk,d = (Λ1, . . . ,Λk) ∈ Sdk

where Sdk is the k-fold product space of Sd. Next let πk,1 = (π1, . . . , πk) ∈ ∆k−1, where

∆k−1 is the standard (k − 1)-simplex (∆0 = {1}), denote a set of weights that reflect the

probability of allocating yi : i ∈ [n] to a cluster. Then the standard Gaussian Mixture Model
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is

yi | πk,1,θk,d,Λk,d
i.i.d.∼

k∑
j=1

πjNd(yi;θj,Λj). (2.4.1)

It is common to restate (2.4.1) by introducing latent cluster membership indicators z1, . . . , zn ∈

[k] such that yi is drawn from the jth mixture component if and only if zi = j:

yi | zi,θk,d,Λk,d
ind.∼ Nd(yi;θzi ,Λzi) (2.4.2)

zi | πk,1
i.i.d.∼ P(zi = j) = πj. (2.4.3)

after marginalizing over the zi indicators. The model is typically completed with conjugate-

style priors for all parameters.

Specifying a prior distribution for k ∈ N is possible. For example, DPM models by

construction induce a prior distribution on the number of clusters k. Alternatively, Reversible

Jump MCMC (Green 1995; Richardson and Green 1997) or Birth-Death Chains (Stephens

2000) could be employed after assigning a particular prior for k. These methods do not

translate well to the non-i.i.d. case and so we employ a case-specific upper bound k ≥ 2.

In the above mixture model, the location parameters associated with each mixture com-

ponent are typically assumed to be independent a priori. This is precisely the assumption

that facilitates the presence of redundant mixture components. In contrast, our work focuses

on employing Repk,d(f0, C0, ρ) as a model for location parameters in (2.4.1) which promotes

reducing redundant mixture components without sacrificing goodness-of-fit, i.e, more parsi-

mony relative to alternatives with independent locations. Moreover, the responses will be

allocated to a few well-separated clusters. This desired behavior can be easily incorporated
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in the mixture model by assuming

θk,d ∼ Repk,d(f0, C0, ρ)

f0(x) = Nd(x;µ,Σ) : µ ∈ Rd,Σ ∈ Sd (2.4.4)

C0(r) = exp(−0.5τ−1r2) : τ ∈ (0,∞) (2.4.5)

ρ(x,y) = {(x− y)>Σ−1(x− y)}1/2. (2.4.6)

The specific forms of f0, C0 and ρ are admissible according to Definition 2.3.1. The re-

pulsive distribution parameterized by (2.4.4)–(2.4.6) will be denoted by NRepk,d(µ,Σ, τ).

Because NRepk,d(µ,Σ, τ) introduces dependence a priori (in particular, repulsion) between

the coordinates of θk,d, they are no longer conditionally independent given (yn,d, zn,1,Λk,d),

with yn,d = (y1, . . . ,yn) ∈ Rd
n and zn,1 = (z1, . . . , zn) ∈ [k]n. The parameter τ in (2.4.5)

controls the strength of repulsion associated with coordinates in θk,d via (2.4.6): as τ → 0

(right-side limit), the repulsion becomes weaker. The selection of (2.4.4) mimics the usual

i.i.d. multivariate normal assumption.

To facilitate later reference we state the “repulsive mixture model” in its entirety:

yi | zi,θk,d,Λk,d
ind.∼ Nd(yi;θzi ,Λzi) (2.4.7)

zi | πk,1
i.i.d.∼ P(zi = j) = πj (2.4.8)

together with the following mutually independent prior distributions:

πk,1 ∼ Dir(αk,1) : αk,1 ∈ (0,∞)k (2.4.9)

θk,d ∼ NRepk,d(µ,Σ, τ) : µ ∈ Rd,Σ ∈ Sd, τ ∈ (0,∞) (2.4.10)

Λj
i.i.d.∼ IWd(Ψ, ν) : Ψ ∈ Sd, ν ∈ (0,∞). (2.4.11)
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In what follows we will refer to the model in (2.4.7)–(2.4.11) as the (Bayesian) Repulsive

Gaussian Mixture Model (abbreviated as RGMM).

Parameter Calibration

We briefly discuss stategies of selecting values for parameters that control the prior dis-

tributions in (2.4.9)–(2.4.11). We select values for µ, Σ and τ of the RGMM instead of

treating them as unknown and assigning them hyperprior distributions because of computa-

tional cost. First notice that (µ,Σ) acts as a location/scale parameter: if Σ = CC> is the

corresponding Cholesky decomposition for Σ, then θk,d ∼ NRepk,d(0d, Id, τ) implies that

1k ⊗ µ+ (Ik ⊗C)θk,d ∼ NRepk,d(µ,Σ, τ),

where Id is the d × d identity matrix and 0d,1d ∈ Rd are d-dimensional vectors of zeroes

and ones, respectively. Although a Gaussian hyperprior for µ is a reasonable candidate

(the full conditional distribution is also Gaussian), it is not straightforward how to select

its associated hyperparameters. A slightly more complicated problem occurs with Σ, since

this parameter participates in the repulsive component and no closed form is available for

its posterior distribution. Even more problematic, the induced full conditional distribution

for τ turns out to be doubly-intractable (Murray et al. 2006) and as a result the standard

MCMC algorithms do not apply. To see this, it can be shown using (2.3.10), (2.3.11) and

the Gaussian integral that the normalizing constant of NRepk,d(µ,Σ, τ) is

ck,d = 1 +

`k∑
l=1

(−1)l
∑
A⊆Ik

card(A)=l

det(Ik ⊗ Id + LA ⊗ τ−1Id)−1/2,

where Ik is the k× k identity matrix, LA denotes the Laplacian matrix associated to the set

of interactions A ⊆ Ik (see Subsection 2.3.3) and ⊗ is the matrix Kronecker product, making
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it a function of τ .

To facilitate hyperparameter selection we standardize the yi’s (a common practice in

mixture models see, e.g. Gelman et al. 2014). Upon standardizing the response, it is rea-

sonable to assume that µ = 0d and Σ = Id. Further Gelman et al. (2014) argue that setting

αk,1 = k−11d produces a weakly informative prior for πk,1. Selecting ν and Ψ is particularly

important as they can dominate the repulsion effect. Setting ν = d+ 4 and Ψ = 3ψId with

ψ ∈ (0,∞) guarantees that each scale matrix Λj is centered on ψId and that their entries

possess finite variances. The value of ψ can be set to a value that accommodates the desired

variability.

To calibrate τ , we follow the strategy outlined in Fúquene et al. (2016). Their approach

consists of first specifying the probability that the coordinates of θk,d are separated by

a certain distance u and then set τ to the value that achieves the desired probability. To

formalize this idea, suppose first that θ1, . . . ,θk are a random sample coming from Nd(0d, Id).

To favor separation among these random vectors we can use (2.4.5) and (2.4.6) with Σ = Id

to choose τ such that for all r 6= s ∈ [k]

P[1− exp{−0.5τ−1(θr − θs)>(θr − θs)} ≤ u] = p,

for fixed values u, p ∈ (0, 1). Letting w(u) = − log(1− u) for u ∈ (0, 1), standard properties

of the Gaussian distribution guarantee that the previous relation is equivalent to

P{G ≤ w(u)τ} = p, G =
1

2
(θr − θs)>(θr − θs) ∼ G(d/2, 1/2). (2.4.12)

Creating a grid of points in (0,∞) it is straightforward to find a τ that fulfills criterion

(2.4.12). This criterion allows the repulsion to be small (according to u), while at the same

time preventing it with probability p from being too strong. This has the added effect

of avoiding degeneracy of (2.4.10), thus making computation numerically more stable. In
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practice, we apply the procedure outlined above to the vectors coming from the repulsive

distribution (2.4.10), treating them as if they were sampled from a multivariate Gaussian

distribution. This gives us a simple procedure to approximately achieve the desired goal of

prior separation with a pre-specified probability.

2.4.2 Theoretical Properties

In this section we explore properties associated with the support and posterior consistency

of (2.4.1) under (2.4.9)–(2.4.11). These results are based on derivations found in Petralia

et al. (2012). However, we highlight extensions and generalizations that we develop here.

Consider for k ∈ N the family of probability densities Fk = {f( · ; ξk) : ξk ∈ Θk}, where

ξk = πk,1 × θk,1 × {λ} = (π1, . . . , πk)× (θ1, . . . , θk)× {λ}, Θk = ∆k−1 × R1
k × (0,∞) and

f( · ; ξk) =
k∑
j=1

πjN( · ; θj, λ).

Let Bp(x, r) with x ∈ R1
k and r ∈ (0,∞) denote an open ball centered on x, and with radius

r, and Dp(x, r) its closure relative to the Euclidean Lp-metric (p ≥ 1) on R1
k.

The following four conditions will be assumed to prove the results stated afterwards.

B1. The true data generating density f0( · ; ξ0k0) belongs to Fk0 for some fixed k0 ≥ 2,

where ξ0k0 = π0
k0,1
× θ0k0,1 × {λ0} = (π0

1, . . . , π
0
k0

)× (θ01, . . . , θ
0
k0

)× {λ0}.

B2. The true locations θ01, . . . , θ0k0 satisfy min(|θ0r − θ0s | : r 6= s ∈ [k0]) ≥ v for some v > 0.

B3. The number of components k ∈ N follows a discrete distribution κ on the measurable

space (N, 2N) such that κ(k0) > 0.

B4. For k ≥ 2 we have ξk ∼ Dir(k−11k) × NRepk,1(µ, σ
2, τ) × IG(a, b). In the case that

k = 1, ξk ∼ δ1 × N(µ, σ2) × IG(a, b) with δ1 a Dirac measure centred on 1. In both

scenarios µ ∈ R and σ2, τ, a, b ∈ (0,∞) are fixed values.
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Condition B2 requires that the true locations are separated by a minimum (Euclidian) dis-

tance v, which favors disperse mixture component centroids within the range of the response.

For condition B4, the sequence {ξk : k ∈ N} can be constructed (via the Kolmogorov’s Ex-

tension Theorem) in a way that the elements are mutually independent upon adding to each

Θk an appropriate σ-algebra. This guarantees the existence of a prior distribution Π de-

fined on F =
⋃∞
k=1Fk which correspondingly connects the elements of F with ξ =

∏∞
k=1 ξk.

To calculate probabilities with respect to Π, the following stochastic representation will be

useful

ξ | K = k ∼ ξk, K ∼ κ. (2.4.13)

Our study of the support of Π employs the Kullback-Leibler (KL) divergence to measure the

similarity between probability distributions. We will say that f0 ∈ Fk0 belongs to the KL

support with respect to Π if, for all ε > 0

Π

{(
f ∈ F :

∫
R

log

{
f0(x; ξ0k0)

f(x; ξ?)

}
f0(x; ξ0k0)dx < ε

)}
> 0, (2.4.14)

where ξ? ∈
⋃∞
k=1 Θk. Condition (2.4.14) can be understood as Π’s ability to assign positive

mass to arbitrarily small neighborhoods around the true density f0. A fundamental step to

proving that f0 lies in the KL support of Π is based on the following Lemmas.

Lemma 2.4.1. Under condition B1, let ε > 0. Then there exists δ > 0 such that

∫
R

log

{
f0(x; ξ0k0)

f(x; ξk0)

}
f0(x; ξ0k0)dx < ε

for all ξk0 ∈ B1(θ
0
k0,1

, δ)×B1(π
0
k0,1

, δ)× (λ0 − δ, λ0 + δ).

Lemma 2.4.2. Assume condition B2 and let θk0,1 ∼ NRepk0,1(µ, σ
2, τ). Then there exists

δ0 > 0 such that

P{θk0,1 ∈ B1(θ
0
k0,1

, δ)} > 0.
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for all δ ∈ (0, δ0]. This result remains valid even when replacing B1(θ
0
k0,1

, δ) with D1(θ
0
k0,1

, δ).

Using Lemmas 2.4.1 and 2.4.2 we are able to prove the following Proposition.

Proposition 2.4.3. Assume that conditions B1–B4 hold. Then f0 belongs to the KL support

of Π.

We next study the rate of convergence of the posterior distribution corresponding to

a particular prior distribution (under suitable regularity conditions). To do this, we will

use arguments that are similar to those employed in Theorem 3.1 of Scricciolo (2011), to

show that the posterior rates derived there are the same here when considering univariate

Gaussian Mixture Models and cluster-location parameters that follow condition B4. First,

we need the following two Lemmas.

Lemma 2.4.4. For each k ≥ 2 the coordinates of θk,1 ∼ NRepk,1(µ, σ
2, τ) share the same

functional form. Moreover, there exists γ ∈ (0,∞) such that

P(|θi| > t) ≤ 2

(2π)1/2
ck−1
ck

σ(|µ|+ 1)−1 exp
{
− (4σ2)−1t2

}

for all t ∈ [γ,∞) and i ∈ [k]. Here, ck = ck,1 is the normalizing constant of NRepk,1(µ, σ
2, τ)

with c1 = 1.

Lemma 2.4.5. The sequence {ck : k ∈ N} defined in Lemma 2.4.4 satisfies

0 <
ck−1
ck
≤ A1 exp(A2k)

for all k ∈ N (k ≥ 2) and some constants A1, A2 ∈ (0,∞).

These results permit us to adapt certain arguments found in Scricciolo (2011) that are

applicable when the location parameters of each mixture component are independent and

follow a common distribution that is absolutely continuous with respect to the Lebesgue
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measure, whose support is R and with tails that decay exponentially. Using Lemmas 2.4.4

and 2.4.5, we now state the following

Proposition 2.4.6. Assume that conditions B1, B2 and B4 hold. Replace condition B3

with:

B3′. There exists B1 ∈ (0,∞) such that for all k ∈ N, 0 < κ(k) ≤ B1 exp{−B2k}, where

B2 > A2 and A2 ∈ (0,∞) is given by Lemma 2.4.5.

Then, the posterior rate of convergence relative to the Hellinger metric is εn = n−1/2 log(n).

2.4.3 Sampling From NRepk,d(µ,Σ, τ)

Here we describe an algorithm that can be used to sample from NRepk,d(µ,Σ, τ). Upon

introducing component labels, sampling marginally from the joint posterior distribution of

θk,d, Λk,d, πk,1 and zn,1 can be done with a Gibbs sampler. However, the full conditionals of

each coordinate of θk,d are not conjugate but they are all functionally similar. Because of this,

evaluating these densities is computationally cheap making it straightforward to carry out

sampling from NRepk,d(µ,Σ, τ) via a Metropolis–Hastings step inside the Gibbs sampling

scheme. In Appendix A we detail the entire MCMC algorithm (Algorithm RGMM), but

here we focus on the nonstandard aspects.

To begin, the distribution (θk,d | · · · ) is given by

(θk,d | · · · ) ∝

{
k∏
j=1

Nd(θj;µj,Σj)

}
k∏
r<s

[1− exp{−0.5τ−1(θr − θs)>Σ−1(θr − θs)}]

where µj = Σj(Σ
−1µ + Λ−1j sj), sj =

∑n
i=1 I{j}(zi)yi, Σj = (Σ−1 + njΛ

−1
j )−1 and nj =

card(i ∈ [n] : zi = j). Now, the complete conditional distributions (θj | θ−j, · · · ) for j ∈ [k]
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and θ−j = (θl : l 6= j) ∈ Rd
k−1, have the following form

f(θj | θ−j, · · · ) ∝ Nd(θj;µj,Σj)
k∏
l 6=j

[1− exp{−0.5τ−1(θj − θl)>Σ−1(θj − θl)}].

The following pseudo-code describes how to sample from f(θk,d | · · · ) by way of (θj |

θ−j, · · · ) via a random walk Metropolis–Hastings step within a Gibbs sampler:

1. Let θ(0)k,d = (θ
(0)
1 , . . . ,θ

(0)
k ) ∈ Rd

k be the actual state for θk,d.

2. For j = 1, . . . , k:

(a) Generate a candidate θ(1)j from Nd(θ
(0)
j ,Γj) with Γj ∈ Sd.

(b) Set θ(0)j = θ
(1)
j with probability min(1, βj), where

βj =
Nd(θ

(1)
j ;µj,Σj)

Nd(θ
(0)
j ;µj,Σj)

k∏
l 6=j

[
1− exp{−0.5τ−1(θ

(1)
j − θ

(0)
l )>Σ−1(θ

(1)
j − θ

(0)
l )}

1− exp{−0.5τ−1(θ
(0)
j − θ

(0)
l )>Σ−1(θ

(0)
j − θ

(0)
l )}

]
.

The selection of Γj can be carried out using adaptive MCMC methods (Roberts and

Rosenthal 2009) so that the acceptance rate of the Metropolis–Hastings algorithm is approx-

imately 50% within the burn-in period for each j ∈ [k]. One approach that works well for

the RGMM is to take

Γj =
1

B

B∑
t=1

{Σ−1 + n
(t)
j (Λ

(t)
j )−1}−1 : n

(t)
j = card(i ∈ [n] : z

(t)
i = j), (2.4.15)

where t ∈ [B] is the tth iteration of the burn-in period with length B ∈ N.

2.5 Simulation Study

To provide context regarding the proposed method’s performance in density estimation, we

conduct a small simulation study. In the simulation we compare density estimates from the
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RGMM to what is obtained using an i.i.d. Gaussian Mixture Model (GMM) and a Dirichlet

Process Gaussian Mixture Model (DPMM). This is done by treating the following as a data

generating mechanism:

y ∼ f0 = 0.3N(−5, 1.02) + 0.05N(0, 0.32) + 0.25N(1, 0.32) + 0.4N(4, 0.82). (2.5.1)

Using (2.5.1) we simulate 100 data sets with sample sizes 500, 1000 and 5000. For each of

these scenarios, we compare the following 4 models (abbreviated by M1, M2, M3 y M4) to

estimate f0:

M1. GMM corresponding to (2.4.7)–(2.4.8) with prior distributions given by (2.4.9)–(2.4.11),

replacing (2.4.10) by θ1, . . . ,θk
i.i.d.∼ Nd(µ,Σ). In this case:

• k = 10, d = 1, αk,1 = 10−1110, µ = 0, Σ = 1, Ψ = 0.06 and ν = 5.

We collected 10000 MCMC iterates after discarding the first 1000 as burn-in and

thinning by 10.

M2. RGMM with τ = 5.45. This value came from employing the calibration criterion from

Section 2.4.1 and setting u = 0.5 and p = 0.95. The remaining prior parameters are:

• k = 10, d = 1, αk,1 = 10−1110, µ = 0, Σ = 1, τ = 5.45, Ψ = 0.06 and ν = 5.

We collected 10000 MCMC iterates after discarding the first 5000 as burn-in and

thinning by 20.

M3. RGMM with τ = 17.17. This value came from employing the calibration criterion from

Section 2.4.1 and setting u = 0.2 and p = 0.95. Since τ is bigger here than in M2, M3

has more repulsion than M2. The remaining prior parameters are the same as in M2:

• k = 10, d = 1, αk,1 = 10−1110, µ = 0, Σ = 1, τ = 17.17, Ψ = 0.06 and ν = 5.
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We collected 10000 MCMC iterates after discarding the first 5000 as burn-in and

thinning by 20.

M4. DPMM given by:

yi | µi,Σi
ind.∼ Nd(µi,Σi) (2.5.2)

(µi,Σi) | H
i.i.d.∼ H (2.5.3)

H | α,H0 ∼ DP(α,H0) (2.5.4)

where the baseline distribution H0 is the conjugate Gaussian-Inverse Wishart

H0(µ,Σ) = Nd(µ;m1, k
−1
0 Σ) IWd(Σ; Ψ1, ν1) : ν1 ∈ (0,∞). (2.5.5)

To complete the model specification given by (2.5.2)–(2.5.5), the following independent

hyperpriors are assumed:

α | a0, b0 ∼ G(a0, b0) : a0, b0 ∈ (0,∞) (2.5.6)

m1 |m2,S2 ∼ Nd(m2,S2) : m2 ∈ Rd,S2 ∈ Sd (2.5.7)

k0 | τ1, τ2 ∼ G(τ1/2, τ2/2) : τ1, τ2 ∈ (0,∞) (2.5.8)

Ψ1 | Ψ2, ν2 ∼ IWd(Ψ2, ν2) : Ψ2 ∈ Sd, ν2 ∈ (0,∞). (2.5.9)

In the simulation study we set d = 1. The selection of hyperparameters found in

(2.5.6)–(2.5.9) was based on similar strategies as outlined in Escobar and West (1995)

which produced:

• a0 = 2, b0 = 5, ν1 = 4, ν2 = 4, m2 = 0, S2 = 1, Ψ2 = 1, τ1 = 2.01 and τ2 = 1.01.

We collected 10000 MCMC iterates after discarding the first 1000 as burn-in and
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thinning by 10.

Models M2 and M3 were fit using the Algorithm RGMM which was implemented in Fortran.

For model M4, density estimates were obtained using the function DPdensity which is avail-

able in the DPpackage of R (Jara et al. 2011).

To compare density estimation associated with the four procedures just detailed we em-

ploy the following metrics:

• Log Pseudo Marginal Likelihood (LPML) (Christensen et al. 2011) which is a model

fit metric that takes into account model complexity. This was computed by first es-

timating all the corresponding conditional predictive ordinates (Gelfand et al. 1992)

using the method in Chen et al. (2000).

• Mean Square Error (MSE).

• L1-metric between the estimated posterior predictive density and f0.

Additionally, to explore how the repulsion influences model parsimony in terms of the

number of occupied mixture components, we wecorded the following numeric indicators:

• Average number of occupied mixture components.

• Standard deviation of the average number of occupied mixture components.

Figures 2.3, 2.4 and 2.5 contain side-by-side boxplots of the LPML, MSE and L1-metric

respectively as the sample size grows. Notice that trends seen here indicate that M1 and M4

tend to fit better, but M2 and M3 are very competitive with the advantage of being more

parsimonious. In other words, very little model fit was sacrificed for the sake of parsimony.

Figures 2.6 and 2.7 show that the average number of occupied mixture components

is much smaller for M2 and M3 relative to M1 and M4. This pattern persists (possibly

becomes more obvious) as the number of observations grows. The number of occupied
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Figure 2.3: Boxplots that resume the behavior of LPML for each of the four models.
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Figure 2.4: Boxplots that resume the behavior of MSE for each of the four models.

mixture components for M2 and M3 are also highly concentrated around 3, 4 and 5 (recall

that the data were generated using a mixture of four components). Conversely, M1 and

M4 require many more occupied mixture components to achieve the same goodness-of-fit, a

trend that persists when the sample size grows.
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Figure 2.5: Boxplots that resume the behavior of L1-metric for each of the four models.
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Figure 2.6: Side-by-side boxplots of the average number of occupied mixture components for
each of the procedure.

2.6 Data Illustrations

We now turn our attention to two well known data sets. The first is the Galaxy data set

(Roeder 1990), and the second is bivariate Air Quality (Chambers 1983). Both are publicly

available in R. For the second data set we removed 42 observations that were incomplete. We

compare density estimates available from the DPMM to those from the RGMM. For each

procedure we report the LPML as a measure of goodness-of-fit, a brief summary regarding
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Figure 2.7: Side-by-side boxplots that display the average standard deviation associated with
the posterior distribution of occupied mixture components for each of the four procedures.

the average number of occupied components, and posterior distribution associated with the

number of clusters. It is worth noting that both data sets were standardized prior to model

fit. We now provide more details on the two model specifications.

1. DPMM: We employed the R function DPdensity available in DPpackage (Jara et al.

2011). Decisions on hyperprior parameter values for both data sets were again guided

by Escobar and West (1995). In both cases the model is specified by (2.5.2)–(2.5.9).

We collected 10000 MCMC iterates after discarding the first 1000 (5000) as burn-in for

Galaxy (Air Quality) data and thinning by 10. Specific details associated with model

prior parameter values are now provided:

(a) Galaxy: d = 1, a0 = 2, b0 = 2, ν1 = 4, ν2 = 4, m2 = 0, S2 = 1, Ψ2 = 0.15,

τ1 = 2.01 and τ2 = 1.01.

(b) Air Quality: d = 2, a0 = 1, b0 = 3, ν1 = 4, ν2 = 4, m2 = 02, S2 = I2, Ψ2 = I2,

τ1 = 2.01 and τ2 = 1.01.

2. RGMM: We coded Algorithm RGMM in Fortran to generate posterior draws for this

model. For both data sets, we collected 10000 MCMC iterates after discarding the first
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5000 as burn-in and thinning by 50. The values of τ were selected using the procedure

outlined in Subsection 2.4.1: (u, p) = (0.5, 0.95) and (u, p) = (0.05, 0.95) for Galaxy

and Air Quality data respectively. Parameter selection for model components (2.4.9)–

(2.4.11) were carried out according to the methods in Subsection 2.4.1. Specific details

now follow:

(a) Galaxy: k = 10, d = 1, αk,1 = 10−1110, µ = 0, Σ = 1, τ = 5.45, Ψ = 0.15 and

ν = 5.

(b) Air Quality: k = 10, d = 2, αk,1 = 10−1110, µ = 02, Σ = I2, τ = 116.76, Ψ = 3I2

and ν = 6.

Results of the fits are provided in Table 2.1. Notice that the fit associated with RGMM

is better relative to the DPMM, which corroborates the argument that RGMM sacrifices

no appreciable model fit for the sake of model parsimony. Figure 2.8 further reinforces the

idea that RGMM is more parsimonious relative to DPMM. This can be seen as the posterior

distribution of the number of clusters (or non-empty components) for RGMM concentrates on

values that are smaller relative to the DPMM. Graphs of the estimated densities (provided in

Figure 2.9) show that the cost of parsimony is negligible as density estimates are practically

the same.

Data LPML Mean (Clusters) SD (Clusters)
Galaxy (DPMM) -48.16 8.38 2.64
Galaxy (RGMM) -36.68 5.37 0.91

Air Quality (DPMM) -274.82 2.83 1.11
Air Quality (RGMM) -274.58 2.30 0.51

Table 2.1: Summary statistics related to model fit and the number of clusters for Galaxy
and Air Quality data based on DPMM and RGMM.
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Figure 2.8: Posterior distribution for the active number of clusters in (a) Galaxy and (b) Air
Quality data. Black (gray) bars correspond to RGMM (DPMM).
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Figure 2.9: Posterior predictive densities for (a) Galaxy and (b) Air Quality data. Black
solid (gray dashed) curves correspond to RGMM (DPMM).
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Chapter 3

Regression Estimation using Repulsive

Distributions

3.1 Chapter Overview

Flexible regression is a traditional motivation for the development of nonparametric Bayesian

models. A popular approach for this involves a joint model for responses and covariates,

from which the desired result arises by conditioning on the covariates. Many such models

involve the convolution of a continuous kernel with a discrete random probability measures

defined as an infinite mixture of i.i.d. atoms. Following this strategy, we propose a flexible

model that involves the concept of repulsion between atoms. We show that this results

in a more parsimonious representation of the regression than the i.i.d. counterpart. The

key aspect is that repulsion discourages mixture components that are near each other, thus

favoring parsimony. We show that the conditional model retains the repulsive features, thus

facilitating interpretation of the resulting flexible regression, and with little or no sacrifice

of model fit compared to the infinite mixture case. We show the utility of the methodology

by way of small simulation study and a well known application.
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3.2 Introduction

In Chapter 2 we defined a class of probability distributions whose coordinates are encouraged

to be mutually separated, a property we refer to as repulsion. The origins of this class of

distributions can be traced back to (finite) Gibbs Point Processes (Illian et al. 2008). The

main motivation for developing the class of repulsive distributions was the desire to make

Bayesian finite mixture models more parsimonious.

In Bayesian parametric and nonparametric hierarchical models, a common assumption

is that parameters (atoms) in the latent level of a hierarchy are assumed to be mutually

independent and sampled from a common distribution. This is particularly true for finite

and infinite mixture models where these typically correspond to component (cluster) loca-

tion parameters (see, for example, Frühwirth-Schnatter (2006) and Hjort et al. (2010)). A

consequence of the independence assumption is the creation of a large number of clusters,

often times making the models unnecessarily complex. This could result in overfitting which

may negatively impact out-of-sample prediction and model interpretability. To counteract

this, in Chapter 2 we showed how to use the class of repulsive distributions to model com-

ponent location parameters in a Bayesian mixture model. Therefore, cluster locations are

not modeled independently, but rather are encouraged to repel each other producing a more

parsimonious mixture model. The key component of the probability law that produces re-

pulsion is that small relative distances between the centers of the mixture components are

penalized by way of a single parameter that controls the strength of the repulsion.

In many studies, it is common for researchers to collect additional covariate information

on each experimental unit or subject. This is the case in the well known application that we

consider in Section 3.5. These data consist of duration times of Old Faithful geyser eruptions

and the waiting time until the next eruption occurs. Interest lies in being able to learn how

time until the next eruption influences eruption duration. There are a number of meth-
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ods developed in Bayesian nonparametrics that are available to model such data. Among

them are approaches classified as nonparametric residual distributions, nonparametric mean

functions, and fully nonparametric regression which is often times referred to as Bayesian

density regression (Dunson et al. 2007). For more details and references, we direct the reader

to Chapter 4 of Müller et al. (2015). A motivation for considering these methods is the desire

to flexibly accommodate arbitrarily shaped mean curves associated with the distribution of

the response given a covariate. However, flexibility comes at a cost as it is common that a

large number of clusters are created to carry this out, many of which are redundant. The

focus of this chapter then is to incorporate the same repulsive modeling ideas as considered

in Chapter 2, but now include covariate information. Since repulsion in statistical models

has only recently been studied (apart from Chapter 2 of this thesis, see Petralia et al. (2012),

Xu et al. (2016), and Fúquene et al. (2016)), this will be the first attempt (as far as we know)

of including covariate information in repulsive modeling. Because directly making the class

of repulsive distributions covariate dependent renders computation intractable, our approach

will be similar to what was done in Chapter 2. Specifically we will incorporate covariates in

a Bayesian mixture model and then model component centers with a repulsive distribution.

The remainder of this chapter is organized as follows: in Section 3.3 we provide a concise

description of dependent Gaussian Mixture Models for continuous covariates and discuss a

novel Bayesian approach in which repulsion is introduced at a latent level in the joint distri-

bution for responses and covariates (location parameters). We also provide guidance (similar

to that found in Chapter 2) to calibrate the hyperparameters of our model. Details associ-

ated with posterior sampling are also provided in this section. Sections 3.4 and 3.5 illustrate

the performance of our proposal applied to synthetic and real data sets. Computational

strategies are provided in Appendix B
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3.3 Covariate Dependent RGMM (RGMMx)

Consider n ∈ N experimental units where on each the orderer pairs (y1,x1), . . . , (yn,xn)

are recorded. In this case, y1, . . . ,yn ∈ Rd are the responses and x1, . . . ,xn ∈ Rp are the

corresponding subject-specific covariates. The motivation for considering x1, . . . ,xn is that

they provide additional information regarding the distribution of y1, . . . ,yn. It is common

to assume mutual independence among the responses. However, assuming that responses are

identically distributed is not tenable because of the dependence on covariates. The challenge

is to model how the covariates guide the evolution of the mean response. This task can be

solved by expressing it as a nonparametric Bayesian regression problem. In what follows, to

simplify the notation, we will use [m] = {1, . . . ,m} with m ∈ N.

The fundamental idea in the context of nonparametric Bayesian regression models is to

estimate the average behavior of a response variable y ∈ Rd as an (unknown) function of

available covariates x ∈ Rp for some d, p ∈ N. Müller and Quintana (2004) provide a nice

overview that details a number of possible Bayesian nonparametric regression approaches.

Among those is the approach of Müller et al. (1996) which we adopt. With the flexibility of

Gaussian Mixture Models to emulate smooth densities accurately in mind, they propose a

statistical model that reduces regression estimation to a density estimation problem. Specif-

ically they treat u = (y,x) ∈ Rd × Rp as a random vector generated by a Dirichlet Process

Gaussian Mixture Model (DPMM). The joint distribution is used to estimate the regres-

sion mean curve through the implied conditional distribution (y | x). To make these ideas

concrete, consider the hierarchical model

ui | (θi,Λi)
ind.∼ Nd+p(θi,Λi) (3.3.1)

(θi,Λi) | H
i.i.d.∼ H (3.3.2)

H | α,H0 ∼ DP(α,H0), (3.3.3)
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where the DP(α,H0) denotes a Dirichlet Process with base measure H0 (which is often times

selected to be the conjugate Normal-Inverse-Wishart) and dispersion parameter α ∈ (0,∞).

Being that DP(α,H0) is a discrete random probability measure (see Sethuraman (1994)),

Müller et al. (1996) show that the posterior predictive conditional density for (y | x) takes

the form of a locally weighted mixture of linear regressions, also known as WDDP (Weight

Dependent Dirichlet Process). For more technical and computational details see Müller et al.

(2015) and Jara et al. (2011).

In order to capture flexible mean structures the above proposal tends to produce a large

number of covariate dependent clusters making the models unnecessary complex. To make

the models more parsimonious, we propose a straightforward method similar to WDDP that

introduces repulsion in the location parameters of the joint distribution for u = (y,x). Thus,

we will consider x as a random quantity lying in Rp and therefore the stochastic behavior

of u can be modeled on the product space Rd ×Rp = Rd+p. Instead of employing a DPMM

for u, we use the following Gaussian Mixture Model (see Chapter 2 for justifications behind

this model choice):

u | πk,1,θk,d+p,Λk,d+p ∼
k∑
j=1

πjNd+p(u;θj,Λj), (3.3.4)

where πk,1 = (π1, . . . , πk) ∈ ∆k−1, θk,d+p = (θ1, . . . ,θk) ∈ Rd+p
k =

∏k
j=1 Rd+p and Λk,d+p =

(Λ1, . . . ,Λk) ∈ Sd+pk =
∏k

j=1 Sd+p. Here ∆k−1 is the standard (k − 1)-simplex (∆0 = {1})

and Sd is the space of real, symmetric and positive-definite matrices of dimension d × d.

Since u follows a Gaussian Mixture Model, the conditional distribution (y | x) will also be

a Gaussian Mixture Model. To see this, let u be modeled as in (3.3.4) and consider the
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following partitioned θj and Λj:

θj =

(
θyj

θxj

)
, Λj =

(
Λyy
j Λyx

j

Λxy
j Λxx

j

)
.

Using standard properties of the Gaussian distribution it can be shown that the conditional

distribution implied by (3.3.4) corresponds to the following weighted Gaussian regression

mixture

y | x,πk,1,θk,d+p,Λk,d+p
ind.∼

k∑
j=1

πj(x)Nd(y;θj(x),Λj(x)), (3.3.5)

where πj(x), θj(x) and Λj(x) have the following forms:

πj(x) ∝ πjNp(x;θxj ,Λ
xx
j ) (3.3.6)

θj(x) = θyj + Λyx
j (Λxx

j )−1(xi − θxj ) (3.3.7)

Λj(x) = Λyy
j −Λyx

j (Λxx
j )−1Λxy

j . (3.3.8)

To complete the Bayesian model, we need priors for πk,1, θk,d+p and Λk,d+p. It is com-

mon to assume mutual independent conjugate priors for these parameters. The location

parameters θk,d+p are often assumed to came from a common distribution and are mutually

independent (e.g., θj
i.i.d.∼ Nd+p(µ,Σ) with µ ∈ Rd+p and Σ ∈ Sd+p). Although this approach

generates flexible structures that capture non-linear patterns for the mean response, as men-

tioned previously, the independent assumption can encourage the creation of an unnecessary

number of mixture components. To avoid this, we propose modeling θk,d+p by means of the

NRepk,d+p(µ,Σ, τ) class. The repulsive feature is naturally inherited by (y | x), encouraging

more parsimonious models. The definition of NRepk,d+p(µ,Σ, τ) is provided in Chapter 2,

but for the sake of completeness we provide it here.
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Definition 3.3.1. The probability density function of NRepk,d+p(µ,Σ, τ) is

NRepk,d+p(θk,d+p) ∝

{
k∏
j=1

Nd+p(θj;µ,Σ)

}
RC(θk,d+p), (3.3.9)

RC(θk,d+p) =
k∏
r<s

[1− exp{−0.5τ−1(θr − θs)>Σ−1(θr − θs)}]. (3.3.10)

The parameters of this distribution are d, p, k ∈ N with k ≥ 2, µ ∈ Rd+p, Σ ∈ Sd+p and

τ ∈ (0,∞).

(3.3.10) introduces dependence between θ1, . . . ,θk by penalizing small relative distances

through the expression 0.5τ−1(θr−θs)>Σ−1(θr−θs). The parameter τ controls the strength

of the repulsion: as τ → 0 (right-side limit), (3.3.9) converges functionally to an i.i.d. model

for θ1, . . . ,θk with each following a common Gaussian distribution Nd+p(µ,Σ). Note further

that this probability density equals 0 when θr = θs for some r 6= s. Because of repulsion,

the implied conditional distribution (y | x) will tend to fit flexible regression curves by using

information from a small number of active clusters.

Notice that the joint likelihood derived from (3.3.4) involves an expansion into kn terms,

which is computationally expensive. An approach that simplifies the previous problem is

based on introducing mutually independent auxiliary variables z1, . . . , zn ∈ [k] called mixture

component indicators, such that u1, . . . ,un are conditionally independent given z1, . . . , zn.

The auxiliary variables can be thought of cluster labels: ui is generated by the jth cluster

if and only if zi = j. Notice that from the following hierarchical stochastic model

ui | zi,θk,d+p,Λk,d+p
ind.∼ Nd+p(ui;θzi ,Λzi) (3.3.11)

zi | πk,1
i.i.d.∼ P(zi = j) = πj. (3.3.12)

the model (3.3.4) is recovered after marginalizing over each zi in the joint distribution defined
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by (3.3.11) and (3.3.12).

Under this framework, the covariate dependent (Bayesian) Repulsive Gaussian Mixture

Model is completely specified by (3.3.11) and (3.3.12) with the following prior distributions

(mutually independent):

πk,1 ∼ Dir(αk,1) : αk,1 ∈ (0,∞)k (3.3.13)

θk,d+p ∼ NRepk,d+p(µ,Σ, τ) : µ ∈ Rd+p,Σ ∈ Sd+p, τ ∈ (0,∞) (3.3.14)

Λj
i.i.d.∼ IWd+p(Ψ, ν) : Ψ ∈ Sd+p, ν ∈ (0,∞). (3.3.15)

The conditional model derived from (3.3.11)–(3.3.15) from now on will be called RGMMx.

3.3.1 Parameter Calibration

One advantage of starting with (3.3.4) and then inducing (3.3.5) is that we can exploit

essentially the same recommendations described in Chapter 2 to elicit the hyperparameters

in (3.3.13)–(3.3.15). For completeness, we provide details.

To begin with, standardizing the response and covariates makes selecting values for µ

and Σ straightforward. This technique, which is suggested in Gelman et al. (2014), justifies

the assignment of µ = 0d+p and Σ = Id+p where 0d+p ∈ Rd+p is the vector whose entries are

all equal 0 and Id+p is the identity matrix of dimension (d+ p)× (d+ p). The same authors

suggest that fixing αk,1 = k−11d+p produces a weakly informative prior for the weights when

the number of mixture components is relatively high. Here, 1d+p ∈ Rd+p is a vector with

entries equal 1. As for ν and Ψ, their values are critical since misspecification can result

in masking the repulsion effect: large variances can produce an overlap between mixture

components, even though their location parameters are well-separated by the presence of

repulsion. We suggest fixing ν = p + d + 4 and Ψ = 3ψId+p with ψ ∈ (0,∞). This choice

guarantees that Λj is centered at ψId+p and has finite variance that is controlled by ψ.
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Finally, specifying a value for τ is of principal interest because it guides the repulsion

between the centers of each mixture components. In this case, we propose the following

criterion: for fixed values u, p ∈ (0, 1) choose τ such that

P{G ≤ −2 log(1− u)τ} = p, G ∼ G(d/2 + p/2, 1/2). (3.3.16)

After creating a grid of points in (0,∞) it is straightforward to find τ that satisfies (3.3.16).

For more details about the motivation behind (3.3.16) see Chapter 2.

3.3.2 Computation

In this section we describe the sampling mechanism to obtain posterior samples from RGMMx.

Although we are not interested in making inference on parameters in (3.3.4), these realiza-

tions can be used directly to sample from the induced conditional distribution (3.3.5).

As a starting point, the posterior sampling procedure for πk,1, θk,d+p and Λk,d+p is simply

a Gibbs Sampler. Due to conjugacy, the full conditional distributions for πk,1 and Λk,d+p have

known closed forms and are easy to sample from. Unfortunately, this is not the case for θk,d+p.

However, the fact that the coordinates of θk,d+p ∼ NRepk,d+p(µ,Σ, τ) are exchangeable

implies that all the associated full conditional distributions share the same functional form.

Moreover, evaluating the respective densities has a low computational cost. Because of this,

we incorporate a Metropolis–Hastings step inside the Gibbs Sampler. To illustrate we need

the full conditional distribution (θk,d+p | · · · ) which given by

(θk,d+p | · · · ) ∝

{
k∏
j=1

Nd+p(ui;µj,Σj)

}
k∏
r<s

[1− exp{−0.5τ−1(θr − θs)>Σ−1(θr − θs)}],

where µj = Σj(Σ
−1µ + Λ−1j sj), sj =

∑n
i=1 I{j}(zi)ui, Σj = (Σ−1 + njΛ

−1
j )−1 and nj =

card(i ∈ [n] : zi = j). With this information, the full conditional distributions (θj | θ−j, · · · )
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for j ∈ [k] and θ−j = (θl : l 6= j) ∈ Rd+p
k−1 have corresponding densities

f(θj | θ−j, · · · ) ∝ Nd+p(θj;µj,Σj)
k∏
l 6=j

[1− exp{−0.5τ−1(θj − θl)>Σ−1(θj − θl)}].

The following pseudo-code could then be used to sample from (θk,d+p | · · · ) using f(θj |

θ−j, · · · ) through a random walk Metropolis–Hastings step inside the Gibbs Sampler:

1. Let θ(0)k,d+p = (θ
(0)
1 , . . . ,θ

(0)
k ) ∈ Rd+p

k be the actual state for θk,d+p.

2. For j = 1, . . . , k:

(a) Generate a candidate θ(1)j comming from Nd+p(θ
(0)
j ,Γj) with Γj ∈ Sd+p.

(b) Set θ(0)j = θ
(1)
j with probability min(1, βj), where

βj =
Nd+p(θ

(1)
j ;µj,Σj)

Nd+p(θ
(0)
j ;µj,Σj)

k∏
l 6=j

[
1− exp{−0.5τ−1(θ

(1)
j − θ

(0)
l )>Σ−1(θ

(1)
j − θ

(0)
l )}

1− exp{−0.5τ−1(θ
(0)
j − θ

(0)
l )>Σ−1(θ

(0)
j − θ

(0)
l )}

]
.

Since Γj controls the variability of the generated candidates, care must be taken when

selecting it. An approach that seems to works well in practice is to fix

Γj =
1

B

B∑
t=1

{Σ−1 + n
(t)
j (Λ

(t)
j )−1}−1 : n

(t)
j = card(i ∈ [n] : z

(t)
i = j),

where t ∈ [B] is the tth iteration of the burn-in phase of length B ∈ N. In Appendix B we

provide the complete pseudo-code associated with the RGMMx model to obtain posterior

samples for the parameters that appear in (3.3.4) and how they can be used to estimate

regression densities and regression curves. We will refer to the algorithm in Appendix B as

Algorithm RGMMx.
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3.4 Simulation Study

As a means to explore the proposed methodology we take on the simulation situation of

Dunson et al. (2007). More specifically we generate data sets from the following density

f0(y | x) = exp(−2x)N(y;x, 0, 01) + {1− exp(−2x)}N(y;x4, 0, 05) : y ∈ R,

where x ∈ (0, 1) is taken as the covariate. This Gaussian regression mixture has weights that

vary smoothly in x, different variances for each mixture component, and a non-linear mean

in the second component. The mean regression curve m0 associated with f0 is

m0(x) = exp(−2x)x+ {1− exp(−2x)}x4 : x ∈ (0, 1). (3.4.1)

Notice that by construction f0 can take on a diverse number of shapes, ranging from unimodal

(symmetric or asymmetric) to bimodal densities.

In this small simulation study we focus on proof of concept associated with the RGMMx

by exploring how values of τ influence the repulsiveness of our methodology and ultimately

the number of estimated clusters and goodness-of-fit. We do this by fitting the RGMMx to

the generated data using different values for τ , namely, 0.01, 0.1, 1 and 10. Goodness-of-fit

will be evaluated using the following metrics:

• Log Pseudo Marginal Likelihood (LPML) for the joint model (Christensen et al. (2011))

which is a model fit metric that takes into account model complexity. We calculate

the LPML by first estimating all the corresponding conditional predictive ordinates

(Gelfand et al. 1992) using the method in Chen et al. (2000).

• L1-metric between the estimated mean regression curve and m0.

To see how τ influences the posterior distribution associated with the number of clusters, we
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include the following numeric indicators:

• Posterior average number of occupied components, i.e. nj = card(i ∈ [n] : zi = j) > 0.

• Standard deviation of the posterior average number of occupied components.

We will generate 100 data sets, each of size 500, by first generating xi from U(0, 1) and for

each xi generating a realization yi using f0(y | xi). For each value of τ we fit RGMMx to data

by collecting 5000 MCMC iterates after discarding the first 5000 as burn-in and thinning by

25. The rest of the prior parameter values in (3.3.13)–(3.3.15) will be set to the following:

• k = 10, d = 1, p = 1, αk,1 = 10−1110, µ = 02, Σ = I2, Ψ = 3−1I2 and ν = 6.

In Figure 3.1 we provide the results of each metric for each value of τ considered by way

of side-by-side box-plots. Interestingly, LPML is not a monotonic function of τ . There is an

initial increase and then a decrease of LPML as τ increases (and thus the number of clusters

decreases). The L1-metric does not seem to be influenced by τ . As expected, increasing

τ results in stronger repulsion and therefore less clusters. In addition, stronger repulsion

produces less variability in the number of components. This makes sense because as the

strength of repulsion increases, there are less locations at which cluster centers can exist.

3.5 Data Illustration

Azzalini and Bowman (1990) analized a data set concerning the eruptions from the Old Faith-

ful geyser in Yellowstone National Park, Wyoming. These were continuous measurements

from August 1 to August 15, 1985. The recorded data represents time eruptions (duration)

and waiting times for each eruption (waiting), both in minutes. In this illustration, the first

(last) variable is considered as the covariate (response). Of the 299 observations we removed

78 observations that were collected at night (coded as 2, 3 or 4 minutes) and originally de-
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Figure 3.1: Boxplots that display LPML, L1-metric, the average number of occupied mixture
components, and the average standard deviation associated with the distribution of occupied
mixture components for each value of τ .

scribed as “short”, “medium” or “long”. The original data can be found in R under the name

geyser (MASS library).

We will implement two WDDP and two RGMMx to compare the respective regression

mean curves for waiting in terms of duration. For each procedure we report the LPML as a
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measure of goodness-of-fit, a brief summary regarding the average number of occupied com-

ponents, and posterior distribution associated with the number of clusters. We standardized

the data before fitting the above models. Our main aim here is to assess the effect that the

prior specification on the repulsion parameter has on the reported inference. Specific details

now follow:

1. RGMMx: We coded Algorithm RGMMx in Fortran to generate posterior draws from

this model. For both model specifications (which will be referred to as RGMMx1 and

RGMMx2) we collected 5000 MCMC iterates after discarding the first 10000 as burn-in

and thinning by 20. We use the same prior parameter values in (3.3.13) to (3.3.15)

for both models. Specifically, we use: k = 10, d = 1, p = 1, αk,1 = 10−1110, µ = 02,

Σ = I2, Ψ = 3−1I2 and ν = 6. The respective values for τ , selected by the calibration

criterion from Subsection 3.3.1, are provided below.

(a) RGMMx1: τ = 0.2 with (u, p) = (0.999, 0.5).

(b) RGMMx2: τ = 4.6 with (u, p) = (0.5, 0.8).

We emphasize the fact that the setting τ = 0.2 in RGMMx1 produces a fairly weak

repulsive behavior when modeling the response and covariate jointly. The motivation

behind this selection is to avoid underfitting as large values of τ could result in mixture

models with a small number of occupied components. This would have serious reper-

cussions regarding the quality of model fit and flexibility in estimating the regression

curve. On the other hand, overfitting can be partially avoided by fixing the number of

components to a reasonable value k that is not too large. In addition, since (3.3.10)

models repulsion softly (see Ogata and Tanemura (1981)), the strength of repulsion

(i.e., the value of τ) would need to be very small for the active number of components

to be large. As for τ = 4.6 in RGMMx2, this value forces the number of occupied

components to be smaller than RGMMx1.
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2. WDDP: The baseline distribution H0 in (3.3.3) that we will use is the conjugate

Normal-Inverse-Wishart

H0(θ,Λ) = Nd+p(θ;m1, k
−1
0 Λ) IWd+p(Λ; Ψ1, ν1) : ν1 ∈ (0,∞). (3.5.1)

To complete the model specification given by (3.3.1)–(3.3.3) with (3.5.1), the following

independent hyperpriors are assumed:

α | a0, b0 ∼ G(a0, b0) : a0, b0 ∈ (0,∞) (3.5.2)

m1 |m2,S2 ∼ Nd+p(m2,S2) : m2 ∈ Rd+p,S2 ∈ Sd+p (3.5.3)

k0 | τ1, τ2 ∼ G(τ1/2, τ2/2) : τ1, τ2 ∈ (0,∞) (3.5.4)

Ψ1 | Ψ2, ν2 ∼ IWd+p(Ψ2, ν2) : Ψ2 ∈ Sd+p, ν2 ∈ (0,∞). (3.5.5)

We employed the R function DPcdensity available in DPpackage (Jara et al. 2011).

Decisions on hyperprior parameter values were guided by Escobar and West (1995). For

each of the following model specifications, named WDDP1 and WDDP2, we collected

5000 MCMC iterates after discarding the first 5000 as burn-in and thinning by 3. The

respective prior hyperparameter values in (3.5.2) to (3.5.5) are provided below.

(a) WDDP1: d = 1, p = 1, a0 = 10, b0 = 1, ν1 = 4, ν2 = 4, m2 = 02, S2 = I2,

Ψ2 = I2, τ1 = 6.01 and τ2 = 2.01.

(b) WDDP2: d = 1, p = 1, a0 = 2, b0 = 4, ν1 = 4, ν2 = 4, m2 = 02, S2 = I2,

Ψ2 = I2, τ1 = 2.01 and τ2 = 1.01.

These values make WDDP1 and RGMMx1 (WDDP2 and RGMMx2) “similar” in terms

of the distribution for the number of occupied components a priori : more (less) spread

around a high (small) average value.
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Model LPML Mean (Clusters) SD (Clusters)
RGMMx1 -195.14 6.15 0.97
RGMMx2 -208.62 4.90 0.74
WDDP1 -185.82 11.51 3.11
WDDP2 -226.73 5.64 1.39

Table 3.1: Summary statistics related to model fit and the number of clusters for Geyser
data based on WDDP and RGMMx.

Table 3.1 and Figure 3.2 show that for a small number of clusters RGMMx tends to fit the

Geyser data better than WDDP. On the other hand, WDDP is able to fit the data slightly

better than RGMMx when the number of clusters increases. This slight increase in the

LPML value comes at a substantial model complexity cost as the number of active mixture

components is doubled. Figure 3.3 shows that there is no appreciable difference between the

mean regression curves, but the estimated 95% point-wise credible bands under RGMMx are

slightly wider than those under WDDP. Figure 3.4 displays an estimated partition for each

procedure using Dahl’s least squares method (Dahl 2006). Notice that partitions associated

with model specifications that produce the highest LPML values (i.e., panels “b” (RGMMx2)

and “d” (WDDP2)) agree, inducing four well-formed groups and one isolated point. Panel

“a” (RGMMx1) reveals that a small repulsion effect allows grouping data into a moderate

number of clusters that are fairly separated. Different is the case in panel “c” (WDDP1),

where the number of clusters is quite high and some of these overlap.

Figures 3.5 and 3.6 provide a few estimated conditional densities for four different values

of time eruptions (2, 3, 4 and 4.5), and 95% point-wise credible bands. As expected, all plots

labeled with “a” (RGMMx1) exhibit similar densities to those labeled with “c” (WDDP1).

The same scenario occurs between plots labeled with “b” (RGMMx2) and “d” (WDDP2).

However, there are slight differences in the width of the point-wise credible bands with

WDDP1 and WDDP2 being slightly narrower.

The take home message from this application is that the RGMMx, being a parametric
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model, is a simple, parsimonious alternative to WDDP in being able to capture flexible

regression curves.
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Figure 3.2: Side-by-side box-plots of the posterior distribution for the active number of
clusters associated with the Geyser data.
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Figure 3.3: Estimated regression curve (gray solid) for Geyser data under (a) RGMMx1,
(b) RGMMx2, (c) WDDP1 and (d) WDDP2. In each scenario, the gray dashed curves
correspond to 95% point-wise credible intervals.
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Figure 3.4: Estimated partitions using Dahl’s least squares clustering algorithm for (a)
RGMMx1, (b) RGMMx2, (c) WDDP1 and (d) WDDP2.

57



40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

(a)

Waiting (min)

f(
W

ai
tin

g|
D

ur
at

io
n)

40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

(b)

Waiting (min)

f(
W

ai
tin

g|
D

ur
at

io
n)

40 60 80 100
0.

00
0.

05
0.

10
0.

15
0.

20

(c)

Waiting (min)

f(
W

ai
tin

g|
D

ur
at

io
n)

40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

(d)

Waiting (min)

f(
W

ai
tin

g|
D

ur
at

io
n)

Duration = 2 (min)

40 60 80 100

0.
00

0.
05

0.
10

0.
15

(a)

Waiting (min)

f(
W

ai
tin

g|
D

ur
at

io
n)

40 60 80 100

0.
00

0.
05

0.
10

0.
15

(b)

Waiting (min)

f(
W

ai
tin

g|
D

ur
at

io
n)

40 60 80 100

0.
00

0.
05

0.
10

0.
15

(c)

Waiting (min)

f(
W

ai
tin

g|
D

ur
at

io
n)

40 60 80 100

0.
00

0.
05

0.
10

0.
15

(d)

Waiting (min)

f(
W

ai
tin

g|
D

ur
at

io
n)

Duration = 3 (min)

Figure 3.5: Estimated conditional densities (black solid) for Geyser data under (a) RGMMx1,
(b) RGMMx2, (c) WDDP1 and (d) WDDP2. In each scenario, the gray dashed curves
correspond to 95% point-wise credible intervals. Here, the selected time eruptions (duration)
are 2 and 3 minutes.
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Figure 3.6: Estimated conditional densities (black solid) for Geyser data under (a) RGMMx1,
(b) RGMMx2, (c) WDDP1 and (d) WDDP2. In each scenario, the gray dashed curves
correspond to 95% point-wise credible intervals. Here, the selected time eruptions (duration)
are 4 and 4.5 minutes.
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Chapter 4

Discussion and Future Work

4.1 Density Estimation using Repulsive Distributions

We have created a class of probability models that explicitly parametrizes repulsion in a

smooth way. In addition to providing pertinent theoretical properties, we demonstrated how

this class of repulsive distributions can be employed to make hierarchical mixture models

more parsimonious. Acompelling result is that this added parsimony comes at essentially no

goodness-of-fit cost. We studied properties of the models, adapting the theory developed in

Petralia et al. (2012) to accommodate the potential function we considered. Moreover, we

generalized the results to include not only Gaussian Mixtures of location but of also of scale

(though the scale is constrained to be equal in each mixture component).

Our approach shares the same modeling spirit (presence of repulsion) as in Petralia

et al. (2012), Xu et al. (2016) and Fúquene et al. (2016). However, the specific mechanism

we propose to model repulsion differs from these works. Petralia et al. (2012) employ a

potential (based on Lennard-Jones type potential) that introduces a stronger repulsion than

our case, in the sense that in their model, locations are encouraged to be further apart. Xu

et al. (2016) is based on Determinantal Point Processes, which introduces repulsion through
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the determinant of a matrix driven by a Gaussian covariance kernel. By nature of the

point process, this approach allows a random number of mixture components (similar to

DPM models) something that our approach lacks. However, our approach allows a direct

modeling of the repulsion that is easier to conceptualize. Finally, the work by Fúquene

et al. (2016) defines a family of probability densities that promotes well-separated location

parameters through a penalization function, that cannot be re-expressed as a (pure) repulsive

potential. However, for small relative distances, the penalization function can be identified

as an interaction potential that produces repulsion similar to that found in Petralia et al.

(2012).

Presently we are pursuing a few directions of continued research. First, Propositions

2.4.3 and 2.4.6 were established for Gaussian mixtures of dimension d = 1 with mixture

components sharing the same variance. Extending results to the general d dimensional case

would be a natural progression. Additionally, we are exploring the possibility of relaxing the

assumption of common variance between mixture components and adapting the mentioned

theoretical results to a larger class of potential functions. Studying the influence of the

metric on the repulsive component in Definition 2.3.1 and allowing the number of mixture

components to be random are also topics of future research. Rousseau and Mengersen (2011)

developed some very interesting results that explore statistical properties associated with

mixtures when k is chosen to be conservatively large (overfitted mixtures) with decaying

weights associated with these extra mixture components. They did so using a framework

that is an alternative to what we developed here. Under some restrictions on the prior and

regularity conditions for the mixture component densities, the asymptotic behavior of the

posterior distribution on the weights tends to empty the extra mixture components. We are

currently exploring connections between these two approaches.

61



4.2 Regression Estimation using Repulsive Distributions

This chapter contains extensions to repulsive mixture modeling that are completely method-

ological. Using a similar approach to Müller et al. (1996) we propose a Bayesian mixture of

Gaussian distributions to jointly model responses and (continuous) covariates where the as-

sociated location parameters are driven by a probability distribution which encourages them

to repel each other. The joint model naturally induces a conditional distribution, which is

a weighted mixture of Gaussian regressions that inherits the repulsion effect. An important

consequence of this is that the conditional distribution allows estimation of regression curves

in a flexible and parsimonious way, i.e. using a reduced number of mixture components

at almost no cost in terms of goodness-of-fit. It is worth noting that a downside of both

methodologies is the curse of dimensionality. That is, when responses and/or covariates lie

on high dimensional Euclidean spaces, computation becomes very expensive.

Future research will be dedicated to studying the topological support associated with

RGMMx to determine the class of regression curves that can be approximated (a study that

is similar to what which was done in Barrientos et al. (2012)). Additionally, since τ seems

to influence model fit and predictions it would be natural to assign it a prior and treat it

as an unknown. In this way the data could guide τ ’s location and its uncertainty taken

into account. Doing this however will come at a formidable computational cost because it

can be shown that τ ’s posterior distribution is doubly intractable. Finally, we would like to

develop a method that avoids focusing on the joint distribution of a response and covariate

and instead incorporates repulsion directly in the conditional distribution. One possible

way of carrying this out is to employ a probit stick-breaking prior (Rodriguez and Dunson

2011) for the mixture weights and model the centers of each component by linear regressions.

Repulsion would then influence the vector of regression coefficients producing well separated

clusters of linear regressions.
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Appendix A

Supplementary Material for Chapter 2

A.1 Algorithm RGMM

In what follows we describe the Gibbs Sampler for the RGMM in its entirety. Let B, S, T ∈ N

be the total number of iterations during the burn-in, the number of collected iterates, and

the thinning, respectively.

• (Start) Choose initial values z(0)i : i ∈ [n], π(0)
k,1 and θ(0)j ,Λ

(0)
j : j ∈ [k]. Set Γj = Od :

j ∈ [k], where Od is the null matrix of dimension d× d.

• (Burn-in phase) For t = 0, . . . , B − 1:

1. (z
(t+1)
i | · · · ) ∼ P(z

(t+1)
i = j) = π

(t,i)
j independently for each i ∈ [n], where

π
(t,i)
j =

{
k∑
l=1

π
(t)
l Nd(yi;θ

(t)
l ,Λ

(t)
l )

}−1
π
(t)
j Nd(yi;θ

(t)
j ,Λ

(t)
j ) : j ∈ [k].
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2. (π
(t+1)
k,1 | · · · ) ∼ Dir(α

(t)
k,1), where

α
(t)
k,1 = (α1 + n

(t+1)
1 , . . . , αk + n

(t+1)
k )

n
(t+1)
j = card(i ∈ [n] : z

(t+1)
i = j) : j ∈ [k].

3. For j = 1, . . . , k:

3.1. Generate a candidate θ(?)j from Nd(θ
(t)
j ,Ω

(t)
j ), where

Ω
(t)
j = {Σ−1 + n

(t+1)
j (Λ

(t)
j )−1}−1.

3.2. Update θ(t)j → θ
(t+1)
j = θ

(?)
j with probability min(1, βj), where

βj =
Nd(θ

(?)
j ;µ

(t)
j ,Σ

(t)
j )

Nd(θ
(t)
j ;µ

(t)
j ,Σ

(t)
j )

k∏
l 6=j

[
1− exp{−0.5τ−1(θ

(?)
j − θ

(t)
l )>Σ−1(θ

(?)
j − θ

(t)
l )}

1− exp{−0.5τ−1(θ
(t)
j − θ

(t)
l )>Σ−1(θ

(t)
j − θ

(t)
l )}

]
.

In the above expression for βj

Σ
(t)
j = {Σ−1 + n

(t+1)
j (Λ

(t)
j )−1}−1

µ
(t)
j = Σ

(t)
j {Σ−1µ+ (Λ

(t)
j )−1s

(t)
j } : s

(t)
j =

n∑
i=1

I{j}(z(t+1)
i )yi.

Otherwise, set θ(t+1)
j = θ

(t)
j .

3.3. Update Γj → Γj +B−1Ω
(t)
j .

4. (Λ
(t+1)
j | · · · ) ∼ IWd(Ψ

(t)
j , ν

(t)
j ) independently for each j ∈ [k], where ν(t)j =

ν + n
(t+1)
j and

Ψ
(t)
j = Ψ +

n∑
i=1

I{j}(z(t+1)
i )(yi − θ(t+1)

j )(yi − θ(t+1)
j )>.
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• (Save samples) For t = B, . . . , ST + B − 1: Repeat steps 1, 2 and 4 of the burn-in

phase. As for step 3 ignore 3.3, maintain 3.2 and replace 3.1 with

3.1a. Generate a candidate θ(?)j from Nd(θ
(t)
j ,Γj).

Finally, save the generated samples every T th iteration.

• (Posterior predictive estimate) With the T saved samples, compute

f(y | y1, . . . ,yn) ≈ 1

T

T∑
t=1

{
k∑
j=1

π
(t)
j Nd(y;θ

(t)
j ,Λ

(t)
j )

}
.

A.2 Proof of Lemma 2.3.1.

Assign to Rd
k and [0, 1) the metrics d1(xk,d,yk,d) = max{ρ(xi,yi) : i ∈ [k]} and d2(x, y) =

|x−y|, respectively. Continuity of RC : Rd
k → [0, 1) follows from condition A1 of C0-properties

and the following inequality:

|ρ(xr,xs)− ρ(yr,ys)| < 2d1(xk,d,yk,d).

A.3 Proof of Proposition 2.3.2.

Notice that gk,d ∈ C(Rd
k; (0,∞)) by construction (see Lemma 2.3.1). Because of the conti-

nuity, measurability follows. Using conditions A1–A4 of C0-properties it follows that for all

x ∈ [0,∞), {1− C0(x)} ∈ [0, 1). By Tonelli’s Theorem

∫
Rdk

gk,d(xk,d)dxk,d ≤

(∫
Rd
f0(x)dx

)k

= 1.
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The upper bound only proves that gk,d is integrable. However, this does not guarantee that

gk,d is well defined, i.e. λkd(gk,d > 0) = 0. For this, it is sufficient to show that

∫
Rdk

gk,d(xk,d)dxk,d > 0

because for all xk,d ∈ Rd
k, gk,d(xk,d) ≥ 0 by construction. To prove the above inequality,

fix x0
k,d ∈ Rd

k such that x0
r 6= x0

s for r 6= s ∈ [k]. Then gk,d(x
0
k,d) > 0. Because gk,d is a

continuous function on Rd
k, there exists r0 ∈ (0,∞) such that for all xk,d ∈ B(x0

k,d, r0)

gk,d(xk,d) > 0,

where B(x0
k,d, r0) is the cartesian product of B2(x

0
1, r0), . . . , B2(x

0
k, r0). Further, B(x0

k,d, r0) ∈

B(Rd
k) and λkd{B(x0

k,d, r0)} = (πkd/2rkd0 )Γ(1+d/2)−k ∈ (0,∞) by the Volume Formula, where

Γ( · ) is the Gamma function. Thus

∫
Rdk

gk,d(xk,d)dxk,d ≥
∫
B(x0

k,d,r0)

gk,d(xk,d)dxk,d > 0.

A.4 Proof of Lemma 2.4.1.

For any x ∈ R we have that

|f0(x; ξ0k0)− f(x; ξk0)| ≤
||π0

k0,1
− πk0,1||1

(2πλ0)1/2
+
||θ0k0,1 − θk0,1||1
{2π exp(1)}1/2λ0

+ u(λ,θk0,1;x, λ0)|λ− λ0|

and

u(λ,θk0,1 ;x, λ0) =
1

(2π)1/2

[
k0

λλ
1/2
0 + λ0λ1/2

+
λ
1/2
0

2λλ20

k0∑
j=1

(x− θj)2
]
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for all (λ,θk0,1) ∈ (0,∞) × R1
k0
, with || · ||1 being the Euclidean L1-norm in R1

k0
. Because

u(λ,θk0,1;x, λ0) is continuous at (λ0,θ
0
k0,1

),

f(x; ξk0)→ f0(x; ξ0k0)

point-wise in x when ξk0 → ξ0k0 . The last statement is equivalent to the condition that

| log{f(x; ξk0} − log{f0(x; ξ0k0)}|f0(x; ξ0k0)→ 0

point-wise in x when ξk0 → ξ0k0 .

By condition B2, we can assume that θ01 < · · · < θ0k0 (possibly after an appropriate

relabeling). Choose t01, t02 ∈ R and l01, l
0
2 ∈ (0,∞) such that λ0 ∈ [l01, l

0
2] and, for all x ∈

(−∞, t01) ∪ (t02,∞)

f0(x; ξ0k0) < 1, θj ∈ (t01, t
0
2) : j ∈ [k0].

Since | log{f0(x; ξ0k0)}|f0(x; ξ0k0) is uniformly continuous for x ∈ [t01, t
0
2],

I1 =

∫
[t01,t

0
2]

| log{f0(x; ξ0k0)}|f0(x; ξ0k0)dx ∈ (0,∞).

Fix δ1 ∈ (0, 1), δ2 = 0.5 min(t02 − θ0k0 , θ
0
1 − t01) and define V0 = D1(π

0
k0,1

, δ1)×D1(θ
0
k0,1

, δ2)×

[l01, l
0
2]. Notice that M(x, ξk0) = | log{f(x; ξk0)}| is uniformly continuous for (x, ξk0) ∈

[t01, t
0
2]× V0. Then M0 = max(M(x, ξk0) : (x, ξk0) ∈ [t01, t

0
2]× V0) ∈ (0,∞) and

∫
[t01,t

0
2]

| log{f(x; ξk0)}|f0(x; ξ0k0)dx ≤ I2 =

∫
[t01,t

0
2]

M0f0(x; ξ0k0)dx ∈ (0,∞).

By the Triangle Inequality

∫
[t01,t

0
2]

| log{f0(x; ξ0k0)} − log{f(x; ξk0)}|f0(x; ξ0k0)dx ≤ I1 + I2 ∈ (0,∞).
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On the other hand, define the following continuous functions:

h1(x) = 0.5| log(2πλ0)|+ 0.5λ−10 (x− θ0k0)
2 : x ∈ (−∞, t01)

h2(x) = 0.5| log(2πl01)|+ (2l01)
−1(x− δ2 − θ0k0)

2 : x ∈ (−∞, t01)

h3(x) = 0.5| log(2πλ0)|+ 0.5λ−10 (x− θ01)2 : x ∈ (t02,∞)

h4(x) = 0.5| log(2πl01)|+ (2l01)
−1(x+ δ2 − θ01)2 : x ∈ (t02,∞).

Using the initial assumptions

| log{f(x; ξ0k0)}| ≤ h1(x) : x ∈ (−∞, t01)

| log{f(x; ξk0)}| ≤ h2(x) : (x, ξk0) ∈ (−∞, t01)× V0

| log{f(x; ξ0k0)}| ≤ h3(x) : x ∈ (t02,∞)

| log{f(x; ξk0)}| ≤ h4(x) : (x, ξk0) ∈ (t02,∞)× V0.

Taking into account the existence of second order moments of a Gaussian distribution

I3 =

∫
(−∞,t01)

{h1(x) + h2(x)}f0(x; ξ0k0)dx ∈ (0,∞)

I4 =

∫
(t02,∞)

{h3(x) + h4(x)}f0(x; ξ0k0)dx ∈ (0,∞).

Again, using the Triangle Inequality

∫
(−∞,t01)∪(t02,∞)

| log{f0(x; ξ0k0)} − log{f(x; ξk0)}|f0(x; ξ0k0)dx ≤ I3 + I4 ∈ (0,∞).

The previous arguments show that | log{f0(x; ξ0k0)}−log{f(x; ξk0)}|f0(x; ξ0k0) for all (x, ξk0) ∈

R× V0 is bounded above by a positive and integrable function that depends only in x ∈ R.
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As a consequence of Lebegue’s Dominated Convergence Theorem

∫
R

log

{
f0(x; ξ0k0)

f(x; ξk0)

}
f0(x; ξ0k0)dx→ 0

as ξk0 → ξ0k0 . In other words, for all ε > 0 there exists δ > 0 such that

∫
R

log

{
f0(x; ξ0k0)

f(x; ξk0)

}
f0(x; ξ0k0)dx < ε

provided that ξk0 ∈ B1(θ
0
k0,1

, δ)×B1(π
0
k0,1

, δ)× (λ0 − δ, λ0 + δ).

A.5 Proof of Lemma 2.4.2.

Set δ00 = 0.25vk0 with v > 0 specified by condition B2. Notice that

θk0,1 ∈ Bδ =

k0∏
i=1

(
θ0i −

δ

k0
, θ0i +

δ

k0

)
⊆ B1(θ

0
k0,1

, δ).

for all δ ∈ (0, δ00]. Using the definition of NRepk0,1(µ, σ
2, τ) and denoting ck0 = ck0,1 the

associated normalizing constant, we have that

P{θk0,1 ∈ B1(θ
0
k0,1

, δ)} ≥ 1

ck0

∫
Bδ

{
k0∏
i=1

N(θi;µ, σ
2)

}
k0∏
r<s

[
1− exp

{
− (θr − θs)2

2τσ2

}]
dθk0,1.

for all δ ∈ (0, δ00]. Now

k0∏
r<s

[
1− exp

{
− (θr − θs)2

2τσ2

}]
≥

[
1− exp

{
− v0

2τσ2

}]`k0
= R0 ∈ (0,∞)
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for all θk0,1 ∈ Bδ, with v0 = (v − 2δ00k
−1
0 )2 and `k0 = 0.5k0(k0 − 1). Using this information

and Fubini’s Theorem

P{θk0,1 ∈ B1(θ
0
k0,1

, δ)} ≥ R0

ck0

k0∏
i=1

{
Φ

(
θ0i − µ
σ

+
δ

k0σ

)
− Φ

(
θ0i − µ
σ
− δ

k0σ

)}

for all δ ∈ (0, δ00]. Because for each i ∈ [k0]

1

δ

{
Φ

(
θ0i − µ
σ

+
δ

k0σ

)
− Φ

(
θ0i − µ
σ
− δ

k0σ

)}
→ 2

k0σ
N

(
θ0i − µ
σ

; 0, 1

)
= S0

i ∈ (0,∞)

as δ → 0 (right-side limit), there exists δ0i > 0 such that

{
Φ

(
θ0i − µ
σ

+
δ

k0σ

)
− Φ

(
θ0i − µ
σ
− δ

k0σ

)}
≥ S0

i

2
.

for all δ ∈ (0, δ0i]. Finally, choose δ0 = min(δ0j : j ∈ {0} ∪ [k0]) to conclude that

P{θk0,1 ∈ B1(θ
0
k0,1

, δ)} ≥ R0

ck0

(
k0∏
i=1

S0
i

2

)
exp{−k0 log(1/δ)} ∈ (0,∞).

for all δ ∈ (0, δ0].

Remark: The previous inequality also applies replacing B1(θ
0
k0,1

, δ) by D1(θ
0
k0,1

, δ).

A.6 Proof of Proposition 2.4.3.

We will follow the proof of Lemma 1 in Petralia et al. (2012) with a few variations. For this,

let ε > 0 and define

BKL(f0, ε) =

{
f ∈ F :

∫
R

log

{
f0(x; ξ0k0)

f(x; ξ?)

}
f0(x; ξ0k0)dx < ε

}
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with ξ? ∈
⋃∞
k=1 Θk. Using the stochastic representation (2.4.13),

Π{BKL(f0, ε)} ≥ κ(k0)P

(
ξk0 ∈ Θk0 :

∫
R

log

{
f0(x; ξ0k0)

f(x; ξk0)

}
f0(x; ξ0k0)dx < ε

)
.

By condition B3, κ(k0) > 0. In this case, to guarantee (2.4.14) it is sufficient to show that

P

(
ξk0 ∈ Θk0 :

∫
R

log

{
f0(x; ξ0k0)

f(x; ξk0)

}
f0(x; ξ0k0)dx < ε

)
> 0.

Lemma 2.4.1 guaranties the existence of δ1 > 0 such that for all ξk0 ∈ B1(θ
0
k0,1

, δ1) ×

B1(π
0
k0,1

, δ1)× (λ0 − δ1, λ0 + δ1)

∫
R

log

{
f0(x; ξ0k0)

f(x; ξk0)

}
f0(x; ξ0k0)dx < ε.

Choose δ = min(δ0, δ1) where δ0 > 0 is given by Lemma 2.4.2. Now p1 = P{θk0,1 ∈

B1(θ
0
k0,1

, δ)} > 0. The same holds for p2 = P{πk0,1 ∈ B1(π
0
k0,1

, δ)) and p3 = P{λ ∈ (λ0 −

δ, λ0 + δ)}. Thus, independence between πk0,1, θk0,1 and λ implies

P

(
ξk0 ∈ Θk0 :

∫
R

log

{
f0(x; ξ0k0)

f(x; ξk0)

}
f0(x; ξ0k0)dx < ε

)
≥ p1p2p3 > 0.

A.7 Proof of Lemma 2.4.4.

As already mentioned at the beginning of Subsection 2.3.3, θk,1 ∼ NRepk,1(µ, σ
2, τ) is an

exchangeable distribution in θ1, . . . , θk for k ≥ 2. This implies that the probability laws of

each θi : i ∈ [k] are the same. To prove the desired inequality, observe that for all t ∈ (0,∞)

P(|θi| > t) ≤ ck−1
ck

∫
At

N(x;µ, σ2)dx =
ck−1
ck

∫
Bt

N(s; 0, 1)ds.
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where At = {x ∈ R : |x| > t} and Bt = {s ∈ R : |µ+ σs| > t}. Now

Bt ⊆ {s ∈ R : |µ|+ σ|s| > t} =

{
s ∈ R : |s| > t− |µ|

σ

}
= Ct.

Set γ = max{2|µ|+ 1, (2 +
√

2)|µ|} ∈ (0,∞). By Mill’s Inequality, for all t ∈ [γ,∞)

∫
Ct

N(s; 0, 1)ds ≤ 2

(2π)1/2
σ(t− |µ|)−1 exp{−(2σ2)−1(t− |µ|)2}

≤ 2

(2π)1/2
σ(|µ|+ 1)−1 exp{−(4σ2)−1t2}.

Using the previous information

P(|θi| > t) ≤ 2

(2π)1/2
σ(|µ|+ 1)−1 exp{−(4σ2)−1t2}

for all t ∈ [γ,∞) and i ∈ [k].

A.8 Proof of Lemma 2.4.5.

By the Change of Variables Theorem and Fubini’s Theorem, it can be shown that for all

k ≥ 2 (k ∈ N)

ck =

∫
R1
k−1

Fk−1(θ−1,1)

{
k∏
i=2

N(θi; 0, 1)

}
k∏

2≤r<s

[
1− exp

{
− (θr − θs)2

2τ

}]
dθ−1,1

where θ−1 = (θi : i 6= 1) ∈ R1
k−1 and Fk−1 : R1

k−1 → (0, 1) is given by

Fk−1(θ−1,1) =

∫
R

N(θ1; 0, 1)
k∏
j=2

[
1− exp

{
− (θ1 − θj)2

2τ

}]
dθ1.
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Notice that Fk−1 ∈ C(R1
k−1; (0, 1)) (as a consequence of Lebesgue’s Dominated Convergence

Theorem) and Fk−1(θ−1,1)→ 1 as ||θ−1,1|| → ∞. By Jensen’s Inequality, for all θ−1,1 ∈ R1
k−1

log{Fk−1(θ−1,1)} ≥
k∑
j=2

∫
R

N(θ1; 0, 1) log

[
1− exp

{
− (θ1 − θj)2

2τ

}]
dθ1.

Now

∣∣∣∣∣
∫
R

N(θ1; 0, 1) log

[
1− exp

{
− (θ1 − θj)2

2τ

}]
dθ1

∣∣∣∣∣ ≤ −2
τ 1/2

π1/2

∫ ∞
0

log{1− exp(−θ21)}dθ1.

Using the substitution θ1(z) = z1/2 : z ∈ (0,∞) and then integrating by parts

∫ ∞
0

log{1− exp(−θ21)}dθ1 = −
∫ ∞
0

z3/2−1

exp(z)− 1
dz = −Γ(3/2)ζ(3/2) ∈ (−∞, 0)

where Γ( · ) and ζ( · ) are the Gamma and Riemann Zeta functions, respectively. The previous

information implies that

∣∣∣∣∣
∫
R

N(θ1; 0, 1) log

[
1− exp

{
− (θ1 − θj)2

2τ

}]
dθ1

∣∣∣∣∣ ≤ 2.6124τ 1/2 ∈ (0,∞).

With this bound, defining A2 = 2.6124τ 1/2 and A−11 = exp(A2) the following holds: for all

θ−1,1 ∈ R1
k−1

log{Fk−1(θ−1,1)} ≥ −(k − 1)A2

which implies

Fk−1(θ−1,1) ≥ A−11 exp(−A2k).

To conclude the proof, notice that

ck−1 =

∫
R1
k−1

{
k∏
i=2

N(θi; 0, 1)

}
k∏

2≤r<s

[
1− exp

{
− (θr − θs)2

2τ

}]
dθ−1,1.
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Using the previous equation it follows that for all k ≥ 2 (k ∈ N)

ck ≥ A−11 exp(−A2k)ck−1 > 0,

the above being equivalent to

0 <
ck−1
ck
≤ A1 exp(A2k).

A.9 Proof of Proposition 2.4.6.

Following Theorem 3.1 in Scricciolo (2011) p = 2 induce a (finite) Gaussian Mixture Model,

λ ∼ IG(a, b) : a, b ∈ (0,∞) satisfy (i) and πk,1 ∼ Dir(k−11k) satisfy (iii). Condition B3′ is

equivalent to (ii). However, (iv) does not apply because the cluster-location parameters are

not i.i.d. in our framework.

Along the proof of Theorem 3.1 we identified those steps that can be adapted by the

assumption θk,1 ∼ NRepk,1(µ, σ
2, τ). It is important to mention that Theorem 3.1 appeals

to conditions (A.1), (A.2) and (A.3) in Theorem A.1 (Appendix of Scricciolo’s paper) which

is a powerful result given by Ghosal and van der Vaart (2001). We will check that (A.1) to

(A.3) are satisfied:

(A.1) The proof is the same as the arguments presented at page 277 and the first paragraph

in page 278. The reason for this is that it only depends on the structure of the mixture,

leaving aside the prior distributions for all the involved parameters.

(A.2) What needs to be modified on the first inequality found on page 278 is the term

E(K)Π([−an, an]c). This quantity is part of the chain of inequalities

kn∑
i=1

ρ(i)
i∑

j=1

P(|θj| > an) =
kn∑
i=1

iρ(i)Π([−an, an]c) ≤ E(K)Π([−an, an]c) . exp{−caϑn}
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under the conditions (ii) and (iv). In our case, ρ(i) = κ(i) for i ∈ N. By way of

Lemma 2.4.4

i∑
j=1

P(|θj| > an) ≤ 2i

(2π)1/2
ci−1
ci
σ(|µ|+ 1)−1 exp{−(4σ2)−1a2n}

under the convention that c0 = 1 and n ∈ N is big enough. Thus,

kn∑
i=1

ρ(i)
i∑

j=1

P(|θj| > an) ≤ 2

(2π)1/2
σ(|µ|+ 1)−1 exp{−(4σ2)−1a2n}

kn∑
i=1

iρ(i)
ci−1
ci

and by Lemma 2.4.5

kn∑
i=1

iρ(i)
ci−1
ci
≤ A1B1

∞∑
i=1

i exp{−(B2 − A2)i} ∈ (0,∞).

Finally, we obtain the following upper bound (in order), which is analogous to that

obtain in Scricciolo (2011):

kn∑
i=1

ρ(i)
i∑

j=1

P(|θj| > an) . exp{−(4σ2)−1a2n}.

(A.3) We only need to adapt the following inequality found on page 279, whose validity is

deduced from (iv):

P{θk0 ∈ B(θ0k0 ; ε)} = Π⊗k0{B(θ0k0 ; ε)} & exp{−d1k0 log(1/ε)}

In our case, θk0 = θk0,1, θ0k0 = θ0k0,1 and B(θ0k0 ; ε) = D1(θ
0
k0,1

, ε). At the end of the

proof of Lemma 2.4.2 it is shown that for every δ = ε ∈ (0, δ0]

P{θk0,1 ∈ D1(θ
0
k0,1

, ε)} ≥ R0

ck0

(
k0∏
i=1

S0
i

2

)
exp{−k0 log(1/ε)}.
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With this information, we obtain a lower bound (in order) analogous to that obtained

in Scricciolo (2011):

P{θk0 ∈ B(θ0k0 ; ε)} & exp{−k0 log(1/ε)}.
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Appendix B

Supplementary Material for Chapter 3

B.1 Algorithm RGMMx

In what follows we describe the Gibbs Sampler for the RGMMx in its entirety. Let B, S, T ∈

N be the total number of iterations during the burn-in, the number of collected iterates, and

the thinning, respectively.

• (Start) Choose initial values z(0)i : i ∈ [n], π(0)
k,1 and θ(0)k,d+p,Λ

(0)
k,d+p : j ∈ [k]. Set

Γj = Od+p : j ∈ [k], where Od+p is the null matrix of dimension (d+ p)× (d+ p).

• (Burn-in phase) For t = 0, . . . , B − 1:

1. (z
(t+1)
i | · · · ) ∼ P(z

(t+1)
i = j) = π

(t,i)
j independently for each i ∈ [n], where,

π
(t,i)
j =

{
k∑
l=1

π
(t)
l Nd+p(yi;θ

(t)
l ,Λ

(t)
l )

}−1
π
(t)
j Nd+p(yi;θ

(t)
j ,Λ

(t)
j ) : j ∈ [k].
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2. (π
(t+1)
k | · · · ) ∼ Dir(αtk,1), where

α
(t)
k,1 = (α1 + n

(t+1)
1 , . . . , αk + n

(t+1)
k )

n
(t+1)
j = card(i ∈ [n] : z

(t+1)
i = j) : j ∈ [k].

3. For j = 1, . . . , k:

3.1. θ(?)j from Nd+p(θ
(t)
j ,Ω

(t)
j ), where

Ω
(t)
j = {Σ−1 + n

(t+1)
j (Λ

(t)
j )−1}−1.

3.2. Update θ(t)j → θ
(t+1)
j = θ

(?)
j with probability min(1, βj), where

βj =
Nd+p(θ

(?)
j ;µ

(t)
j ,Σ

(t)
j )

Nd+p(θ
(t)
j ;µ

(t)
j ,Σ

(t)
j )

k∏
l 6=j

[
1− exp{−0.5τ−1(θ

(?)
j − θ

(t)
l )>Σ−1(θ

(?)
j − θ

(t)
l )}

1− exp{−0.5τ−1(θ
(t)
j − θ

(t)
l )>Σ−1(θ

(t)
j − θ

(t)
l )}

]
.

In the above expression for βj

Σ
(t)
j = {Σ−1 + n

(t+1)
j (Λ

(t)
j )−1}−1

µ
(t)
j = Σ

(t)
j {Σ−1µ+ (Λ

(t)
j )−1s

(t)
j } : s

(t)
j =

n∑
i=1

I{j}(z(t+1)
i )yi.

Otherwise, set θ(t+1)
j = θ

(t)
j .

3.3. Update Γj → Γj +B−1Ω
(t)
j .

4. (Λ
(t+1)
j | · · · ) ∼ IWd+p(Ψ

(t)
j , ν

(t)
j ) independently for each j ∈ [k], where ν(t)j =

ν + n
(t+1)
j and

Ψ
(t)
j = Ψ +

n∑
i=1

I{j}(z(t+1)
i )(yi − θ(t+1)

j )(yi − θ(t+1)
j )>.
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• (Save samples) For t = B, . . . , ST + B − 1: Repeat steps 1, 2 and 4 of the burn-in

phase. As for step 3, ignore 3.3, maintain 3.2 and replace 3.1 with

3.1. Generate a candidate θ?j from Nd+p(θ
(t)
j ,Γj).

Finally, save the generated samples every T th iteration.

• (Posterior conditional predictive estimates) With the T saved samples, compute

f(y | x,u1, . . . ,un) ≈ 1

T

T∑
t=1

{
k∑
j=1

π
(t)
j (x)Nd+p(u;θ

(t)
j ,Λ

(t)
j )

}

E[y | x,u1, . . . ,un] ≈ 1

T

T∑
t=1

{
k∑
j=1

m
(t)
j (x)π

(t)
j (x)Np(x; (θxj )(t), (Λxx

j )(t))

}

where u = (y,x) and

π
(t)
j (x) =

[
1

T

T∑
s=1

{
k∑
l=1

π
(s)
l Np(x; (θxl )(s), (Λxx

l )(s))

}]−1
π
(t)
j

m
(t)
j (x) = (θyj )(t) + (Λyx

j )(t){(Λxx
j )(t)}−1(x− (θxj )(t)).
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