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Abstract

We consider compactly supported electric perturbations of the Landau
Hamiltonian, and study the accumulation of the discrete spectrum to the
so called Landau levels. We review a result from [10], and then study
an improved version from [5] describing the accumulation in terms of the
logarithmic capacity of the support of the perturbation. We make the ob-
servation that the latter one requires the perturbation to be discontinuous
at the boundary of its support, and use it as a motivation to give a result
containing sufficient conditions for the asymptotics in [5] to hold true if
the perturbation is continuous, under some regularity assumptions on its
support.

Resumen

En este trabajo consideramos perturbaciones del Hamiltoniano de Lan-
dau por potenciales eléctricos con soporte compacto, y estudiamos la acu-
mulación del espectro discreto hacia los llamados niveles de Landau. Pri-
mero revisamos un resultado de [10], y luego estudiamos una versión me-
jorada de [5] que describe la acumulación en términos de la capacidad
logaŕıtmica del soporte de la perturbación. Observamos que la segunda
versión requiere que la perturbación sea discontinua en la frontera de su
soporte, y usamos esto como motivación para enunciar un resultado que
entrega condiciones suficientes para la validez de las relaciones asintóticas
de [5] en el caso en que la perturbación es continua, bajo algunas hipótesis
de regularidad sobre su soporte.
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1 Introduction

Our main object of study is the Landau Hamiltonian, which is the 2D Schrödinger
operator describing the behavior of a non-relativistic, spinless quantum particle
in the plane, subject to a constant magnetic field. The starting point is the fact
that the spectrum of this operator, which consists of an arithmetic progression
of positive eigenvalues of infinite multiplicity called the Landau levels, remains
to be the essential spectrum under the effect of electric perturbations which are
relatively compact in the sense of quadratic forms. However, with such pertur-
bations, discrete eigenvalues may appear, and it is of interest to study the rate
at which they shall accumulate to the Landau levels.

Recent works by Raikov-Warzel [10] and Filonov-Pushnitski [5] have addressed
the issue of accumulation in the case of compactly supported electric pertur-
bations with fixed sign. While [10] gives asymptotics for the case of bounded
perturbations, [5] allows for perturbations in Lp(R2) classes with p > 1. More
remarkable is the fact that [5] refines [10], in the sense that it contributes with
an aditional asymptotic term that exhibits in a explicit way the dependence on
the perturbation via the logarithmic capacity of its support. However, the result
in [5] includes an assumption that can only hold if the perturbation is discon-
tinuous at the boundary of its support, so the question arises of whether the
asymptotics in [5] still hold true if the perturbation is allowed to be continuous.
In this work, we present a result which guarantees that this is indeed possible
under some regularity assumptions on the exterior boundary of the support of
the perturbation.

This work is organized as follows. We begin by describing the main features
of the Landau Hamiltonian, and then discuss the general problem of perturba-
tions by relatively compact electric potentials. Next, we review the mentioned
results of [10] and [5], and conclude by studying the case of continuous pertur-
bations. Throughout this work, except for Section 3.1, we will only consider
perturbations with fixed sign.
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2 The Landau Hamiltonian

Let b > 0 be a constant magnetic field in R2, and consider the magnetic potential
A(x) = (A1(x), A2(x)) = b

2
(−x2, x1), x = (x1, x2) ∈ R2, associated with this

field, in the sense that b = ∂A2

∂x1
− ∂A1

∂x1
. Next, consider the symmetric operators in

L2(R2) given by

Πj = −i ∂
∂xj
− Aj, j ∈ {1, 2}.

The Landau Hamiltonian on R2 is then defined as the self-adjoint operator

H0 = Π2
1 + Π2

2

= (−i∇− A)2 (1)

in L2(R2), generated by the closure of the quadratic form

‖u‖2
A =

∫
R2

|i∇u+ Au|2dx, u ∈ C∞0 (R2),

where dx denotes the Lebesgue measure in R2.

In order to describe the spectral properties of H0(b), we introduce the magnetic
annihilation and creation operators given, respectively, by

a = Π1 + iΠ2, a∗ = Π1 − iΠ2. (2)

The operators a and a∗ are mutually adjoint in L2(R2), and admit the following
representation:

a = −2ie−ϕ∂eϕ, a∗ = −2ieϕ∂e−ϕ, (3)

where ϕ(x) = b|x|2
4

, ∂ = 1
2

(
∂
∂x1
− i ∂

∂x2

)
and ∂ = 1

2

(
∂
∂x1

+ i ∂
∂x2

)
, for x ∈ R2 as

above. Moreover, the operators a and a∗ satisfy the relations

[a, a∗] = 2b, (4)

and
H0 = a∗a+ b = aa∗ − b, (5)

We describe σ(H0) with the help of a convenient unitary equivalence. Consider
the linear mapping κb on R4 defined by

κb(x, ξ) =

(
1√
b
(x1 − ξ2),

1√
b
(ξ1 − x2),

√
b

2
(ξ1 + x2),−

√
b

2
(ξ2 + x1)

)
,

where x = (x1, x2) ∈ R2, ξ = (ξ1, ξ2) ∈ R2. The mapping κb is symplectic in the
sense that

σ(κbv, κbv
′) = σ(v,v′), v,v′ ∈ R4, (6)
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where σ is the symplectic form on R4 defined by

σ((x, ξ), (x′, ξ′)) = ξ · x′ − x · ξ′,

and · denotes the standard scalar product in R2.

In addition, κb satisfies

(Hb ◦ κb)(ξ,x) = b(x2
1 + ξ2

1), (7)

whereH0(x, ξ; b) = (ξ1+bx2/2)2+(ξ2−bx1/2)2 is the Weyl symbol corresponding
to H0. In this situation, Theorem A.2 in [4], Chapter 7, guarantees the existence
of a unitary operator Wb in L2(R2) satisfying

W∗bH0Wb = (bh)⊗ Iy, (8)

where Iy is the identity in L2(R) and

h = − d2

dx2
+ x2

is the one-dimensional harmonic oscillator, self-adjoint in L2(R) and essentially
self-adjoint on C∞0 (R). Moreover, the relations

W∗b aWb = (
√
bα)⊗ Iy, W∗b a∗Wb = (

√
bα∗)⊗ Iy, (9)

hold, α and α∗ being the standard annihilation and creation operators, given by

α = −i d
dx
− ix, α∗ = −i d

dx
+ ix,

closed on the domains

Dom(α) = Dom(α∗) = Dom(h1/2).

The well known spectral properties of h and relations (8) and (9) imply that

σ(H0) =
⋃
q∈Z+

{Λq}, Λq := b(2q + 1),

and
ker(H0 − Λq) = (a∗)q ker a, q ∈ Z+. (10)

Now, using (3) we see that

ker a = {u ∈ L2(R2) : u = ge−ϕ, ∂g = 0}.
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Hence, an orthonormal basis for ker a is given by the family

ϕk,0(x) =

√
b

2π

√
1

k!

(√
b

2
z

)k

e−b|x|
2/4, x ∈ R2, k ∈ Z+. (11)

Next, we set
ϕ̃k,q = (a∗)qϕk,0, q ∈ Z+,

and use (4) to compute

〈ϕ̃k,q, ϕ̃`,q〉L2(R2) = 〈aq(a∗)qϕk,0, ϕ`,0〉L2(R2)

= (2b)qq!δk`, k, ` ∈ Z+,

which implies, together with (10), that the functions

ϕk,q :=
ϕ̃k,q√
(2b)qq!

, k ∈ Z+,

constitute an orthonormal basis of ker(H0−Λq). Note that, in paticular, we have

σ(H0) = σess(H0),

since dim ker(H0 − Λq) =∞ for every q ∈ Z+.

By using the generalized Laguerre polynomials

L(k−q)
q (ξ) =

q∑
`=0

(
k

q − `

)
(−ξ)`

`!
, ξ ∈ R,

where
(
k
q−`

)
:= 0 if k < q − `, it is possible to derive a explicit formula for ϕk,q.

Namely,

ϕk,q(x) =
1

iq

√
b

2π

√
q!

k!

(√
b

2
z

)k−q

L(k−q)
q

(
b|x|2

2

)
e−b|x|

2/4, x ∈ R2. (12)

It is customary to refer Λq as the q-th Landau level, and the family {ϕk,q}k∈Z+

as the canonical basis of ker(H0 − Λq). For q ∈ Z+, we are going to denote the
spectral projection of H0 onto ker(H0 − Λq) by Pq.
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3 Electric perturbations

3.1 Relative compactness

Let V : R2 → R be a measurable function, playing the role of an electric potential,
and consider the perturbed Hamiltonian

HV := H0 + V.

Moreover, assume that V is suitable enough so that HV is self-adjoint in L2(R2).
It is of interest to find conditions on V under which relevant information about
σ(HV ) can be obtained. This can be done, for example, by taking V to be
H0-form compact, meaning that

|V |1/2H−1/2
0 ∈ S∞(L2(R2)), (13)

where S∞(L2(R2)) denotes the class of compact operators in L2(R2). Under this
assumption, we define HV as the self-adjoint operator in L2(R2) generated by
the closed lower bounded quadratic form∫

R2

(
|i∇u+ Au|2 + V |u|2

)
dx, u ∈ Dom(H

1/2
0 ).

Weyl theorem on relatively compact perturbations implies that

σess(HV ) = σess(H0).

In particular, it follows that the elements of σ(HV )\σ(H0) are isolated eigenval-
ues of finite multiplicity.

A wide variety of perturbations V satisfying (13) is provided by the class Lp(R2)
of measurable functions V : R2 → R such that, for every ε > 0, there exist
functions V1, V2 : R2 → R satisfying

V = V1 + V2, V1 ∈ Lp(R2), sup
x∈R2

|V2(x)| ≤ ε.

Indeed, it is known that for p > 1, any element V ∈ Lp(R2) satisfies

|V |1/2(−∆ + 1)−1/2 ∈ S∞(L2(R2)). (14)

Now, the diamagnetic inequality implies that

|V |1/2(H0 + 1)−1/2 ≤· |V |1/2(−∆ + 1)−1/2, (15)
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where, for any pair of bounded operators T, S on L2(R2), the relation T
≤· S

means that
|(Tu)(x)| ≤ (S|u|)(x), u ∈ L2(R2),

for almost every x ∈ R2. Using (14), (15) and Theorem 2.2 from [1], we deduce
that

|V |1/2(H0 + 1)−1/2 ∈ S∞(L2(R2)). (16)

Thus, writing

|V |1/2H−1/2
0 = |V |1/2(H0 + 1)−1/2(H0 + 1)1/2H

−1/2
0

and noting that (H0 + 1)1/2H
−1/2
0 is bounded, it becomes clear from (16) that

(13) holds.

3.2 Signed perturbations

Let V : R2 → [0,∞) be a measurable function such that (13) holds, and consider
the problem of studying the spectrum of the perturbed operators

H±V := H0 ± V.

According to the discussion in the previous section, the spectrum of H±V outside
σ(H0) is discrete, and thus it can only accumulate to the Landau levels. More-
over, since V ≥ 0, the elements in σd(HV ) can only accumulate to the Landau
levels from above, while those in σd(H−V ) can only do so from below.

In order to study this accumulations, we introduce the intervals

I−0 := (−∞,Λ0), I−q+1 := (Λq,Λq+1), I+
q := (Λq,Λq+1), q ∈ Z+, (17)

and
I±q (λ) := {s ∈ I±q : |s− Λq| > λ}, q ∈ Z+, λ ∈ (0, 2b), (18)

along with the counting functions

N±q (λ) = rank 1I±q (λ)(H±V ), q ∈ Z+, λ ∈ (0, 2b). (19)

In addition, for any compact self-adjoint operator T we define

n±(λ;T ) := rank 1(λ,∞)(±T ), λ > 0.

Here and in the sequel, 1S denotes the characteristic function of the set S. If T
is a self-adjoint operator in a Hilbert space and S ⊂ R is a Borel set, then 1S(T )
denotes the spectral projection of T associated with S.
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In this language, our interest is on studying the asymptotic behavior of N±q (λ)
as λ ↓ 0. The key ingredient is going to be the fact that this asymptotic be-
havior can be derived from that of n+(λ;PqV Pq) as λ ↓ 0, which can actually
be described in a fairly precise way for certain classes of perturbations V . This
reduction to the study of n+ is encoded in Proposition 1 below, which in turn
is based on a suitable version of Weyl inequalities for the functions n± of a
sum of two compact operators, and on a generalization of the Birman-Schwinger
principle. We give statements for this two results, respectively, without proof:

Lemma 1 ([3], Theorem 9, Section 9.2). Let T1, T2 be compact self-adjoint
operators on a Hilbert space. Then, for each s > 0 and ε ∈ (0, 1) we have

n±(s(1 + ε);T1)− n∓(sε;T2) ≤ n±(s;T1 + T2)

≤ n±(s(1− ε);T1) + n±(sε;T2).
(20)

Lemma 2 ([2], Proposition 1.5). Let V : R2 → [0,∞) be a measurable function
such that (13) holds. Then, for each E ∈ ρ(H0) we have

ν±(E;V ) : =
∑

0<g<1

dim ker(H0 ± gV − E)

= n±(1;V 1/2(E −H0)−1V 1/2),

(21)

where the sum is taken over the finite set of numbers g ∈ (0, 1) for which
dim ker(H0 ± gV − E) 6= 0.

Proposition 1 ([10], Proposition 4.1). Let V : R2 → [0,∞) be a measurable
function such that (13) holds and let q ∈ Z+. Then, for every ε ∈ (0, 1) and
small λ > 0 we have

n+(λ; (1− ε)PqV Pq) +O(1) ≤ N±q (λ)

≤ n+(λ; (1 + ε)PqV Pq) +O(1), λ ↓ 0.
(22)

Proof. Let q ∈ Z+. If q ≥ 1, pick λ′ ∈ (0, 2b) so that {Λq±λ′}∪I±q (λ′) ⊂ ρ(H±V ),
following the notation introduced (18). Else, if q = 0, take λ′ ∈ (0, 2b) so that
{Λq + λ′} ∪ I+

q (λ′) ⊂ ρ(HV ). In any case, denote Λ′± = Λq ± λ′ and observe that
for every λ ∈ (0, λ′) we have, for q ≥ 1,

N±q (λ) = ν±(Λq ± λ;V )− ν±(Λ′±;V ), (23)

while for q = 0 we have

N−0 (λ) = ν−(Λ0 − λ;V ), N+
0 (λ) = ν+(Λq + λ;V )− ν+(Λ′+;V ). (24)
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Thus, using (21) and noting that

n±(1;V 1/2(Λ′± −H0)−1V 1/2) = O(1), λ ↓ 0,

which follows from the fact that V 1/2H
−1/2
0 is compact, we deduce from (23) and

(24) that

N±q (λ) = n±(1;V 1/2(Λq ± λ−H0)−1V 1/2) +O(1), λ ↓ 0. (25)

We are going to estimate the first term at the r.h.s. of (25). To do this, fix
ε ∈ (0, 1) and set Qq = I − Pq, I being the identity map in L2(R2). Using (20)
with T1 := V 1/2(Λq ± λ − H0)−1PqV

1/2 and T2 := V 1/2(Λq ± λ − H0)−1QqV
1/2,

we obtain

n±(1;V 1/2(Λq ± λ−H0)−1V 1/2)

≥ n±

(
1

1− ε
;V 1/2(Λq ± λ−H0)−1PqV

1/2

)
− n∓

(
ε

1− ε
;V 1/2(Λq ± λ−H0)−1QqV

1/2

) (26)

and

n±(1;V 1/2(Λq ± λ−H0)−1V 1/2)

≤ n±

(
1

1 + ε
;V 1/2(Λq ± λ−H0)−1PqV

1/2

)
+ n±

(
ε

1 + ε
;V 1/2(Λq ± λ−H0)−1QqV

1/2

)
.

(27)

Now we deal with the r.h.s. of equations (26) and (27). On one hand, using the
fact that the non-zero singular numbers of PqV

1/2 and V 1/2Pq coincide, we see
that for ρ ∈ {1− ε, 1 + ε} we have

n±

(
1

ρ
;V 1/2(Λq ± λ−H0)−1PqV

1/2

)
= n±(λ;±ρV 1/2PqV

1/2)

= n+(λ; ρPqV Pq).

(28)

On the other hand, picking constants Cq,± > 0 for which the operator inequalities

|Λq ± λ−H0|−1Qq =
∑
`∈Z+
` 6=q

|Λq ± λ− Λ`|−1P`

≤ Cq,±
∑
`∈Z+

Λ−1
` P` = Cq,±H

−1
0
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hold uniformly for λ ∈ (0, λ′), we deduce from the fact that V 1/2H
−1/2
0 is compact

that

n∓

(
ε

1− ε
;V 1/2(Λq ± λ−H0)−1QqV

1/2

)
= O(1), λ ↓ 0, (29)

and

n±

(
ε

1 + ε
;V 1/2(Λq ± λ−H0)−1QqV

1/2

)
= O(1), λ ↓ 0. (30)

Thus, putting together (25), (26), (27), (28), (29) and (30) we obtain (22).
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4 Rough eigenvalue asymptotics for bounded

compactly supported perturbations

We now turn to study explicit descriptions of the accumulation of σd(H±V ) to
the Landau levels for some specific classes of perturbations V : R2 → [0,∞). In
this section, we consider one of the main results in [10], concerning the case in
which V is taken to be bounded and compactly supported.

Theorem 1 ([10], Theorem 2.2). Let V : R2 → [0,∞) be a bounded measurable
function. Assume that the support of V is compact, and there exists a constant
C− > 0 such that V ≥ C− on a non-empty open subset of R2. Then, for each
q ∈ Z+ we have

lim
λ↓0

N±q (λ)

(log | log λ|)−1| log λ|
= 1, (31)

N±q being the counting functions defined in (19).

Remark 1. From the proof below we can see that if V : R2 → [0,∞) is any
measurable function satisfying (13) and the condition V ≥ C− in Theorem 1,
then the operator HV (resp., H−V ) has an infinite number of eigenvalues, count-
ing multiplicities, in each interval I+

q (resp., I−q ), q ∈ Z+.

In virtue of Remark 1, for any such perturbation V and q ∈ Z+ we introduce
the non-increasing sequence of eigenvalues of HV in the interval I+

q and the non-
decreasing sequence of eigenvalues of H−V in the interval I−q , and denote them,
respectively, by

{λ+
q,k}k∈Z+ and {λ−q,k}k∈Z+ . (32)

Here and in the sequel, we enumerate eigenvalues counting multiplicities. Thus,
in particular, our discussion at the beginning of section 3.2 implies that

λ+
q,k ↓ Λq and λ−q,k ↑ Λq as k →∞, q ∈ Z+. (33)

The proof of Theorem 1 given in [10] has two main ingredients:

1. The reduction given by Proposition 1;

2. A study of the spectral asymptotics for the operators PqV Pq, q ∈ Z+.

We shall now review this proof as an instructive example of the benefits of having
the explicit representation for the canonical basis of ker(H0 − Λq) given in (12).
For x ∈ R2 and r > 0, set

Br(x) := {z ∈ R2 : |z− x| < r}.
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Proof. Let q ∈ Z+. In short, we are going to use Proposition 1 to reduce our
problem to that of studying the operator PqV Pq, and then we are going to com-
pare V with characteristic functions of some balls, for which radial symmetry will
allow to obtain the desired asymptotics. We begin by noting that if u ∈ L2(R2)
is radially symmetric, then the eigenvalues of the compact operator PquPq, are
given by

sq,k(u) := 〈uϕq,k, ϕq,k〉L2(R2), k ∈ Z+.

This is an immediate consequence of the fact that the relation

〈uϕq,k, ϕq,`〉L2(R2) =

{∫ ∞
0

fq,k,`(r)dr

}{∫ 2π

0

ei(k−`)θdθ

}
, k, ` ∈ Z+,

holds for some function fq,k,` : [0,∞)→ R, which follows from the symmetry of u.

In particular, if u = 1Br(0), r > 0, one can use the explicit formulas (12) to
deduce (see [10], Proposition 3.2) that

lim
k→∞

log sq,k(u)

k log k
= −1. (34)

Next, using the hypotheses on V , pick constants C± > 0, radii r± > 0 and points
x± ∈ R2 such that

C−1Br− (x−)(x) ≤ V (x) ≤ C+1Br+ (x+)(x), x ∈ R2. (35)

Then, estimates (22) and the min-max principle imply that

N±q (λ) ≥ n+(λ; (1− ε)C−Pq1Br− (x−)Pq) +O(1), λ ↓ 0, (36)

and
N±q (λ) ≤ n+(λ; (1 + ε)C+Pq1Br+ (x+)Pq) +O(1), λ ↓ 0. (37)

Now, the magnetic translations Tx′ on R2, defined for x′ = (x′1, x
′
2) ∈ R2 by

(Tx′u)(x) := exp

{
i
b

2
(x′1x2 − x1x

′
2)

}
u(x− x′), x = (x1, x2) ∈ R2,

commute with H0, and hence with Pq. This commutation relation implies that

Pq1Br± (x±)Pq = T ∗x′Pq1Br± (0)PqTx′ ,

which shows that the operators Pq1Br± (x±)Pq and Pq1Br± (0)Pq are unitarily equiv-

alent. Hence, denoting by {sq,k,±}k the non-increasing sequences of eigenvalues
of the operators Pq1Br± (0)Pq, k ∈ N, we see that

n+(E; (1± ε)C±Pq1Br± (x±)Pq)

= n+(E; (1± ε)C±Pq1Br± (0)Pq)

= #{k ∈ Z+ : (1± ε)C±sq,k,± > E}
= #{k ∈ Z+ : log sq,k,± + log((1± ε)C±) > logE}.

(38)
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Thus, using (34), we deduce from (38) that

lim
E↓0

n+(E; (1± ε)C±Pq1Br± (x±)Pq)

(log | logE|)−1| logE|
= −1,

which together with (36) and (37) entails (31).

We conclude this section by noting that relations (34), (36) and (37) imply that
the sequences {λ±q,k}k defined in (32), with V as in the statement of Theorem 1,
satisfy

log(±(λ±q,k − Λq)) = −k log k(1 + o(1)), k →∞, (39)

which, as we are going to see in the following section, can be refined.
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5 Precise eigenvalue asymptotics for discontin-

uous compactly supported perturbations

We are now going to study a result from [5] that can be considered as a re-
finement of Theorem 1, as it gives a more precise description of the rate of the
convergence in (33) in terms of the logarithmic capacity of the support of the
perturbation. Here, the perturbation V : R2 → [0,∞) will still be compactly
supported, but we will also require that it satisfies a positivity condition that
can only hold if V is discontinuous at the boundary of its support.

Recall that, for a subset E ⊂ R2, the logarithmic capacity of E is defined by

Cap(E) := e−V(E),

where V(E) is the infimum of∫
E

∫
E

log
1

|x− y|
dµ(x)dµ(y),

taken over all probability measures µ whose support is a compact subset of E.
Here, we adopt the convention that e−∞ = 0.

The following are some relevant properties of the logarithmic capacity (see, e.g.
[11], [14], [6] or[8]):

• If E1 ⊂ E2, then Cap(E1) ≤ Cap(E2);

• Cap(x0 + rE) = rCap(E), for every x0 ∈ R2 and r > 0;

• if K is compact, then Cap(K) coincides with the logarithmic capacity of
the boundary of the unbounded component of R2\K;

• if B1 ⊂ B2 ⊂ . . . are Borel sets and B =
⋃
k Bk, then

Cap(B) = lim
k→∞

Cap(Bk).

The type of boundary considered in the third point is going to play a crucial role
in the proof of the main result in Section 6, so we recall the following definition:

Definition 1. Let K ⊂ R2 be compact. The exterior boundary ∂eK of K is
defined to be the boundary of the unbounded connected component of R2\K.

Remark 2. If two compact subsets of R2 share exterior boundary, then their
logarithmic capacities are equal.
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We now state the main result of this section:

Theorem 2 ([5], Theorem 2). Let K ⊂ R2 be a compact set with Lipschitz
boundary, and let V ∈ Lp(R2), p > 1, be such that V (x) = 0 for x /∈ K, and
V (x) ≥ c for x ∈ K and a constant c > 0. Then, for q ∈ Z+ and {λ±q,k}k as
defined in (32), we have

lim
k→∞

(±k!(λ±q,k − Λq))
1/k =

b

2
(Cap(K))2. (40)

In a similar fashion to [10], the proof of Theorem 2 given in [5] relies on the
reduction given by Proposition 1 and in the study of spectral asymptotics for
PqV Pq. This time, we shall briefly discuss a modified version of the reduction
argument, while we are just going to give the statement of a result that addresses
the issue of spectral asymptotics for PqV Pq without proof (Lemma 3 below).

Take V as in the statement of the Theorem 2, and denote by

sq,0 ≥ sq,1 ≥ · · · (41)

the non-increasing sequence of eigenvalues of PqV Pq, q ∈ Z+. The key point
is to observe that Proposition 1 implies the existence of an integer k0 ∈ N and
constants Cq,1, Cq,2 > 0 such that, for all k ∈ Z+ sufficiently large, we have

Cq,1sq,k+k0 ≤ ±(λ±q,k − Λq) ≤ Cq,2sq,k−k0 . (42)

Note that if the limit limk→∞(k!ak)
1/k exists for a given sequence {ak}k ⊂ R,

then it remains unchanged if {ak}k is replaced by {Cak}k, C > 0 being any
constant. Hence, as a consequence of (42), the validity of Theorem 2 reduces to
the validity of the following result, for which a proof can be find in [5].

Lemma 3 ([5], Lemma 2). Let K ⊂ R2 be a compact set with Lipschitz boundary,
and let V ∈ Lp(R2), p > 1, be such that V (x) = 0 for x /∈ K, and V (x) ≥ c > 0
for x ∈ K and some constant c. Then, for q ∈ Z+ and {sq,k}k as defined in (41),
we have

lim
k→∞

(k!sq,k)
1/k =

b

2
(Cap(K))2. (43)

Remark 3. Using Stirling’s formula, which tells that

log(k!) = k log k − k +O(log k), k →∞,

we obtain from equation (40) the asymptotic relation

log(±(λ±q,k − Λq)) = −k log k + k

{
1 + log

(
b

2
(Cap(K))2

)
+ o(1)

}
, k →∞.

(44)

14



In particular, this shows that Theorem 2 yields the asymptotic relation (39).
Now, the novelty is that relation (44) allows us to see in a explicit way the
dependence of the accumulation on the perturbation itself, via the term involving
Cap(K). It is in this sense that Theorem 2 refines Theorem 1.
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6 Precise eigenvalue asymptotics for continuous

compactly supported perturbations

Here we prove that asymptotics in (40) remain valid when the perturbation
V : R2 → [0,∞) is taken to be continuous and compactly supported, under
appropriate regularity assumptions on its support. In particular, we relax the
requirement that V satisfies a condition of the type V (x) ≥ c > 0 on its support,
condition that is required in Theorem 2 and can only hold if V is discontinuous
at the boundary of its support. Here and in the sequel, we will say that a subset
D ⊂ R2 is a domain if it is open, connected and non-empty.

Let Ω ⊂ R2 be a bounded domain, let K = Ω, and let V : R2 → [0,∞)
be a continuous function supported in K. Then V satisfies the hypotheses of
Proposition 1, and we can again consider, for each q ∈ Z+, the sequences {λ±q,k}k
defined in (32). Applying Proposition 1 as before, we deduce that the asymptotic
relations (40) will hold if we verify that (43) holds when we take

sq,0 ≥ sq,1 ≥ · · · (45)

to be the non-increasing sequence of eigenvalues of the compact operator PqV Pq.

Our proof is based on the following result, which follows closely the lines of
[12].

Theorem 3. Let Ω ⊂ R2 be a bounded domain. Then there exists a family of
domains Ωj ⊂ R2, j ∈ N, such that ∂Ωj is Lipschitz, Ωj ⊂ Ω and

lim
j→∞

Cap(Ωj) = Cap(Ω). (46)

Proof. Let j ∈ N, j ≥ 2, be arbitrary, and for any compact set K ⊂ R2 with two
or more points define

∆j(K) = max
w1,...,wj∈K

∏
k,`
k 6=`

|wk − w`|.

It is known (see, e.g. [7]) that if K is connected, then

jjCap(K)j(j−1) ≤ ∆j(K) ≤ (4e−1 log j + 4)jjjCap(K)j(j−1). (47)

Set K = Ω. By the left-hand inequality in (47), there exist points w1, . . . , wj ∈ Ω
such that ∏

k,`
k 6=`

|wk − w`| ≥ jjCap(Ω)j(j−1).

16



In particular, we can choose w′k ∈ Ω sufficiently close to wk, k ∈ {1 . . . , j}, so
that ∏

k,`
k 6=`

|w′k − w′`| ≥ Cap(Ω)j(j−1).

Let C = {x(s) ∈ R2 : s ∈ [0, 1]} ⊂ Ω be a simple closed curve such that s 7→ x(s)
is C2 and regular, with

{w′1, . . . , w′j} ⊂ C.

Next, introduce the normal unit vector n = (−x′2, x′1)/|x′|, and pick εj > 0 small
enough so that the domain

Ωj := {x(s) + tn(s) : s ∈ [0, 1], t ∈ (−εj, εj)}

has Lipschitz boundary and satisfies Ωj ⊂ Ω. The set Ωj is compact, connected
and {w′1, . . . , w′j} ⊂ Ωj, so we have

∆j(Ωj) ≥ Cap(Ω)j(j−1). (48)

On the other hand, the right-hand inequality in (47) implies that

∆j(Ωj) ≤ (4e−1 log j + 4)jjjCap(Ωj)
j(j−1). (49)

Using (48) and (49) we obtain

Cap(Ω) ≤ (4e−1 log j + 4)1/(j−1)j1/(j−1)Cap(Ωj),

which implies
lim inf
j→∞

Cap(Ωj) ≥ Cap(Ω). (50)

Now, we have Cap(Ωj) ≤ Cap(Ω) for each j, so the desired conclusion follows
from (50).

We now state and prove the main result of this section:

Theorem 4. Let Ω ⊂ R2 a bounded domain with Lipschitz boundary, and let
K = Ω. Let also V : R2 → R be a continuous, non-negative function, for which
there exists a compact set Z ⊂ Ω such that V (x) = 0 for x ∈ Z ∪ (R2\Ω) and
V (x) > 0 for x ∈ Ω\Z. Then, for q ∈ Z+ and {λ±q,k}k as defined in (32), we
have

lim
k→∞

(±k!(λ±q,k − Λq))
1/k =

b

2
(Cap(K))2. (51)
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Proof. Let q ∈ Z+. As we already discussed, if suffices to show that, for the
sequence {sq,k}k defined in (45), equation (43) holds.

1. Upper bound. Our assumptions on V imply that there exists a constant
C+ > 0 such that

V (x) ≤ C+
1K(x), x ∈ R2. (52)

Next, note that the operator C+Pq1KPq is compact, and denote by

sq,0(C+) ≥ sq,1(C+) ≥ · · ·

the non-increasing sequence of its eigenvalues. Taking (52) into account, we
deduce from the min-max principle that

sq,k ≤ sq,k(C
+), k ∈ Z+. (53)

Now, since ∂K is Lipschitz, we can apply Lemma 3 to 1K , and use (53) to obtain

lim sup
k→∞

(k!sq,k)
1/k ≤ lim

k→∞
(k!sq,k(C

+))1/k

=
b

2
(Cap(K))2.

(54)

2. Lower bound. Let Ω′ be the set of points in Ω that belong to the unbounded
connected component of R2\Z. Since ∂eΩ′ = ∂eK, we have

Cap(Ω′) = Cap(K).

Thus, since Ω′ is a bounded domain, we can apply Theorem 3 to obtain a family
of domains Ωj ⊂ Ω′, j ∈ N, such that ∂Ωj is Lipschitz, Ωj ⊂ Ω′ and

lim
j→∞

Cap(Ωj) = Cap(K). (55)

Since V is continuous and Ωj ⊂ Ω\Z for each j ∈ N, there exist constants C−j > 0
such that

V (x) ≥ C−j 1Ωj
(x), x ∈ R2, j ∈ N. (56)

As before, the operator C−j Pq1Ωj
Pq is compact, and we denote by

sq,0(C−j ) ≥ sq,1(C−j ) ≥ · · ·

the non-increasing sequence of its eigenvalues. According to the min-max prin-
ciple, we deduce from (56) that

sq,k ≥ sq,k(C
−
j ), k ∈ Z+, j ∈ N. (57)

18



Now, we have that ∂Ωj is Lipschitz, so we can apply Lemma 3 to 1Ωj
, and use

(57) to obtain
lim inf
k→∞

(k!sq,k)
1/k ≥ lim

k→∞
(k!sq,k(C

−
j ))1/k

=
b

2
(Cap(Ωj))

2, j ∈ N.
(58)

Thus, taking (54), (55), and (58) into account, we complete the proof by letting
j →∞.
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