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1 Introduction and main results
The purpose of the present paper is to put into evidence a new formula in Hamiltonian dynamics, both simple
and general, relating the time evolution of localisation observables to the variation of energy along classical
orbits.

Our result is the following. LetM be a (finite or infinite-dimensional) symplectic manifold with symplectic
2-form ω and Poisson bracket { · , · }. Let H ∈ C∞(M) be an Hamiltonian on M with complete flow {ϕt}t∈R.
Let Φ ≡ (Φ1, . . . ,Φd) ∈ C∞(M ; Rd) be a family of observables satisfying the condition{

{Φj , H}, H
}

= 0 (1.1)

for each j ∈ {1, . . . , d}. Then we have (see Theorem 3.3, Corollary 3.4 and Lemma 3.6 for a precise statement):

Theorem 1.1. Let H and Φ be as above. Let f : Rd → C be such that f = 1 on a neighbourhood of 0, f = 0
at infinity, and f(x) = f(−x) for each x ∈ Rd. Then there exist a closed subset Crit(H,Φ) ⊂ M and an
observable Tf ∈ C∞

(
M \ Crit(H,Φ)

)
satisfying {Tf , H} = 1 on M \ Crit(H,Φ) such that

lim
r→∞

1
2

∫ ∞
0

dt
[(
f(Φ/r) ◦ ϕ−t

)
(m)−

(
f(Φ/r) ◦ ϕt

)
(m)

]
= Tf (m) (1.2)

for each m ∈M \ Crit(H,Φ).

The observable Tf admits a very simple expression given in terms of the Poisson brackets ∂jH := {Φj , H}
and the vector∇H := (∂1H, . . . , ∂dH), namely,

Tf := −Φ · (∇Rf )(∇H), (1.3)

where∇Rf : Rd → Cd is some explicit function (see Section 2).
In order to give an interpretation of Formula (1.2), consider for a moment the situation where M :=

T ∗Rn ' R2n is the standard symplectic manifold with canonical coordinates (q, p) and 2-form ω :=
∑n
j=1 dqj∧

dpj . Furthermore, let H(q, p) := h(p) be a purely kinetic energy Hamiltonian and let Φ(q, p) := q be the stan-
dard family of position observables. In such a case, the condition (1.1) is readily verified, the vector∇H reduces
to the usual velocity observable∇h associated to H , and the l.h.s. of Formula (1.2) has the following meaning:
For r > 0 and m ∈ M \ Crit(H,Φ) fixed, it is equal to the difference of times spent by the classical orbit
{ϕt(m)}t∈R in the past (first term) and in the future (second term) within the region Σr := supp[f(Φ/r)] ⊂M
defined by the localisation observable f(Φ/r). Moreover, if we interpret the map d

dH := {Tf , ·} as a derivation
on C∞

(
M \ Crit(H,Φ)

)
, then Tf on the r.h.s. of (1.2) can be seen as an observable “derivative with respect to

the energy H” on M \ Crit(H,Φ), since d
dH (H) = {Tf , H} = 1 on M \ Crit(H,Φ). Therefore, Formula (1.2)

provides a new relation between sojourn times and variation of energy along classical orbits. Evidently, this
interpretation remains valid in the general case provided that we consider the observables Φj as the components
of an abstract position observable Φ (see Remark 3.7).

Our interest in this issue has been aroused by a recent paper [31], where the authors establish a similar
formula in the framework of quantum (Hilbertian) theory. In that reference, H is a selfadjoint operator in a
Hilbert space H, Φ ≡ (Φ1, . . . ,Φd) is a family of mutually commuting selfadjoint operators in H, (1.1) is a
suitable version of the commutation relation

[
[Φj , H], H

]
= 0, and Tf is a time operator forH (i.e. a symmetric

operator satisfying the canonical commutation relation [Tf , H] = i). So, apart from its intrinsic interest, the
present paper provides also a new example of result valid both in quantum and classical mechanics. Points of
the symplectic manifold correspond to vectors of the Hilbert space, complete Hamiltonian flows correspond to
one-parameter unitary groups, Poisson brackets correspond to commutators of operators, etc. (see [1, Sec. 5.4]
and [24] for the interconnections between classical and quantum mechanics). Accordingly, we try put into
light throughout all of the paper the relation between both theories. For instance, we link in Remark 3.5 the
confinement (resp. the non-periodicity) of the classical orbits {ϕt(m)}t∈R, m ∈ M , to the affiliation of the
corresponding quantum orbits {eitH ψ}t∈R, ψ ∈ H, to the singular (resp. absolutely continuous) subspace of
H. Moreover, we show in Section 4.5.2 that the Hilbertian space theory of [31] can be recast into the present
framework of symplectic geometry by using expectation values.
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We also mention that Formula (1.2), with r.h.s. defined by (1.3), provides a crucial preliminary step for the
proof of the existence of classical time delay for abstract scattering pairs {H,H + V } (see [10], [14, Sec. 4.1],
and [35, Sec. 3.4] for an account on classical time delay). If V is an appropriate perturbation of H and S is the
associated scattering map, then the classical time delay τ(m) for m ∈ M defined in terms of the localisation
operators f(Φ/r) should be reexpressed as follows: it is equal to the l.h.s. of (1.2) minus the same quantity with
m replaced by S(m). Therefore, if m and S(m) are elements of M \ Crit(H,Φ), then the classical time delay
for the scattering pair {H,H + V } should satisfy the equation

τ(m) = (Tf − Tf ◦ S)(m).

Now, the property {Tf , H}(m) = 1 implies that Tf (m) = (Tf ◦ϕt)(m)− t for each t ∈ R. Since S commutes
with ϕt, this would imply that

τ(m) =
[
(Tf − Tf ◦ S) ◦ ϕt

]
(m)

for all t ∈ R, meaning that the classical time delay is a first integral of the free motion. This property corresponds
in the quantum case to the fact that the time delay operator is decomposable in the spectral representation of the
free Hamiltonian (see [32, Rem. 4.4]).

Let us now describe more precisely the content of this paper. In Section 2 we recall some definitions
in relation with the function f that appear in Theorem 1.1. The function Rf is introduced and some of its
properties are presented. Then we prove various versions of Formula (1.2) in the particular case where the
functions Φ◦ϕ±t : M → Rd are fixed vectors x± ty, x, y ∈ Rd (see Proposition 2.3, Lemma 2.4 and Corollary
2.6).

In Section 3.1, we introduce the Hamiltonian system (M,ω,H) and the abstract position observable Φ.
Then we define the (closed) set of critical points Crit(H,Φ) associated to H and Φ as (see [31, Def. 2.5] for the
quantum analogue):

Crit(H,Φ) :=
{
m ∈M | (∇H)(m) = 0

}
.

When H(q, p) = h(p) and Φ(q, p) := q on M = R2n, Crit(H,Φ) coincides with the usual set Crit(H) of
critical points of the Hamiltonian vector field XH , i.e.

Crit(H) ≡
{
m ∈M | XH(m) = 0

}
=
{

(q, p) ∈ R2n | (∇h)(p) = 0
}

= Crit(H,Φ).

But, in general, we simply have the inclusion Crit(H) ⊂ Crit(H,Φ).
In Section 3.2, we prove the main results of this paper. Namely, we show Formula (1.2) when the localisa-

tion function f is regular (Theorem 3.3) or equal to a characteristic function (Corollary 3.4). We also establish in
Theorem 3.8 a discrete-time version of Formula (1.2). The interpretation of these results is discussed in Remarks
3.5 and 3.7.

In Section 4, we show that our results apply to many Hamiltonian systems (M,ω,H) appearing in lit-
erature. In the case of finite-dimensional manifolds, we treat, among other examples, Stark Hamiltonians, ho-
mogeneous Hamiltonians, purely kinetic Hamiltonians, the repulsive harmonic potential, the simple pendulum,
central force systems, the Poincaré ball model and covering manifolds. In the case of infinite-dimensional man-
ifolds, we discuss separately classical and quantum Hamiltonians systems. In the classical case, we treat the
wave equation, the nonlinear Schrödinger equation and the Korteweg-de Vries equation. In the quantum case,
we explain how to recast into our framework the (Hilbertian) examples of [31, Sec. 7], and we also treat an
example of Laplacian on trees and complete Fock spaces. In all these cases, we are able to exhibit a family
of position observables Φ satisfying our assumptions. The diversity of the examples covered by our theory,
together with the existence of a quantum analogue [31], make us strongly believe that Formula (1.2) is of nat-
ural character. Moreover it also suggests that the existence of time delay is a very common feature of classical
scattering theory.

2 Integral formula
In this section, we prove an integral formula and a summation formula for functions on Rd. For this, we start
by recalling some properties of a class of averaged localisation functions which appears naturally when dealing
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with quantum scattering theory. These functions, which are denoted Rf , are constructed in terms of functions
f ∈ L∞(Rd) of localisation around the origin 0 ∈ Rd. They were already used, in one form or another, in
[17, 31, 32, 37, 38]. We use the notation 〈x〉 :=

√
1 + |x|2 for any x ∈ Rd.

Assumption 2.1. The function f ∈ L∞(Rd) satisfies the following conditions:

(i) There exists ρ > 0 such that |f(x)| ≤ Const.〈x〉−ρ for almost every x ∈ Rd.

(ii) f = 1 on a neighbourhood of 0.

It is clear that limr→∞ f(x/r) = 1 for each x ∈ Rd if f satisfies Assumption 2.1. Furthermore, one has
for each x ∈ Rd \ {0}∣∣∣∣∫ ∞

0

dµ
µ

[
f(µx)− χ[0,1](µ)

]∣∣∣∣ ≤ ∫ 1

0

dµ
µ
|f(µx)− 1|+ Const.

∫ +∞

1

dµµ−(1+ρ) <∞,

where χ[0,1] denotes the characteristic function for the interval [0, 1]. Therefore the functionRf : Rd \{0} → C
given by

Rf (x) :=
∫ +∞

0

dµ
µ

[
f(µx)− χ[0,1](µ)

]
is well-defined.

In the next lemma we recall some differentiability and homogeneity properties of Rf . We also give the
explicit form of Rf when f is a radial function. The reader is referred to [38, Sec. 2] for proofs and details. The
symbol S (Rd) stands for the Schwartz space on Rd.

Lemma 2.2. Let f satisfy Assumption 2.1.

(a) Assume that ∂f
∂xj

(x) exists for all j ∈ {1, . . . , d} and x ∈ Rd, and suppose that there exists some ρ > 0

such that
∣∣ ∂f
∂xj

(x)
∣∣ ≤ Const. 〈x〉−(1+ρ) for each x ∈ Rd. Then Rf is differentiable on Rd \ {0}, and its

gradient is given by

(∇Rf )(x) =
∫ ∞

0

dµ (∇f)(µx).

In particular, if f ∈ S (Rd) then Rf belongs to C∞(Rd \ {0}).

(b) Assume that Rf belongs to Cm(Rd \ {0}) for some m ≥ 1. Then one has for each x ∈ Rd \ {0} and
t > 0 the homogeneity properties

x · (∇Rf )(x) = −1, (2.1)

t|α|(∂αRf )(tx) = (∂αRf )(x),

where α ∈ Nd is a multi-index with 1 ≤ |α| ≤ m.

(c) Assume that f is radial, i.e. there exists f0 ∈ L∞(R) such that f(x) = f0(|x|) for almost every x ∈ Rd.
Then Rf belongs to C∞(Rd \ {0}), and (∇Rf )(x) = −x−2x.

In the sequel, we say that a function f : Rd → C is even if f(x) = f(−x) for almost every x ∈ Rd.

Proposition 2.3. Let f : Rd → C be an even function as in Lemma 2.2.(a). Then we have for each x ∈ Rd and
each y ∈ Rd \ {0}

lim
r→∞

1
2

∫ ∞
0

dt
[
f
(x− ty

r

)
− f

(x+ ty

r

)]
= −x · (∇Rf )(y). (2.2)

In particular, if f is radial, the l.h.s. is independent of f and equal to (x · y)/y2.
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Proof. The change of variables µ := t/r, ν := 1/r, and the fact that f is even, gives

lim
r→∞

1
2

∫ ∞
0

dt
[
f
(
x−ty
r

)
− f

(
x+ty
r

)]
= lim
ν↘0

1
2

∫ ∞
0

dµ
ν

[
f(νx− µy)− f(νx+ µy)

]
= lim
ν↘0

1
2

∫ ∞
0

dµ
{

1
ν

[
f(νx− µy)− f(−µy)

]
− 1

ν

[
f(νx+ µy)− f(µy)

]}
. (2.3)

By using the mean value theorem and the assumptions of Lemma 2.2.(a), one obtains that

1
ν

∣∣f(νx± µy)− f(±µy)
∣∣ ≤ Const. sup

ξ∈[0,1]

〈
ξνx± µy

〉−(1+ρ)

for some ρ > 0. Therefore, if µ is big enough, the integrant in (2.3) is bounded by

Const.
〈
µ|y| − |x|

〉−(1+ρ)
.

for all ν ∈ (0, 1). This implies that the integrant in (2.3) is bounded uniformly in ν ∈ (0, 1) by a function
belonging to L1

(
[0,∞),dµ

)
. So, we can apply Lebesgue’s dominated convergence theorem to interchange the

limit on ν with the integration over µ in (2.3). This, together with the fact that (∇f)(−x) = −(∇f)(x), leads
to the desired result:

lim
r→∞

1
2

∫ ∞
0

dt
[
f
(
x−ty
r

)
− f

(
x+ty
r

)]
= 1

2

∫ ∞
0

dµ
[
x · (∇f)(−µy)− x · (∇f)(µy)

]
= −

∫ ∞
0

dµx · (∇f)(µy)

= −x · (∇Rf )(y).

The result of Proposition 2.3 can be extended to less regular functions f : Rd → C. The interested reader
can check that the result holds for functions f admitting a weak derivative f ′ such that, for every real line
L ⊂ Rd, f ′ is of class L1 on L (see [41, Thm. 2.1.6]). We only present here the case (of particular interest for
the theory of classical time delay) where f is the characteristic function χ1 for the unit ball B1 := {x ∈ Rd |
|x| ≤ 1}.

Lemma 2.4. One has for each x ∈ Rd and each y ∈ Rd \ {0}

lim
r→∞

1
2

∫ ∞
0

dt
[
χ1

(x− ty
r

)
− χ1

(x+ ty

r

)]
=
x · y
y2

.

Proof. Direct calculations and the change of variables µ := t/r, ν := 1/r, give∫ ∞
0

dt χ1

(
x±ty
r

)
=
∫∞

0
dµ
ν χ[0,1]

(
|νx± µy|2

)
=
∫ ∞

0

dµ χ[0,y−2]

(
ν2x2

y2 ± 2νµx·y
y2 + µ2

)
=
∫ ∞

0

dµ
ν
χ[0,y−2]

((
µ± νx·y

y2

)2 + ν2

y4

(
x2y2 − (x · y)2

))
=
∫ ∞

0

dµ
ν
χ[−a(ν,x,y),y−2−a(ν,x,y)]

((
µ± νx·y

y2

)2)
,

with a(ν, x, y) := ν2

y4

(
x2y2− (x ·y)2

)
. Now, a(ν, x, y) ≥ 0, and y−2−a(ν, x, y) ≥ 0 if ν > 0 is small enough.

So, the last expression is equal to∫ ∞
0

dµ
ν
χ[0,y−2−a(ν,x,y)]

((
µ± νx·y

y2

)2) =
∫ ∞

0

dµ
ν
χ[
−
√
y−2−a(ν,x,y)∓ νx·y

y2
,
√
y−2−a(ν,x,y)∓ νx·y

y2

](µ)

=
1
ν

√
y−2 − a(ν, x, y)∓ x · y

y2
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if ν is small enough. This implies that

lim
r→∞

1
2

∫ ∞
0

dt
[
χ1

(
x−ty
r

)
− χ1

(
x+ty
r

)]
= lim
ν↘0

1
2

(1
ν

√
y−2 − a(ν, x, y) +

x · y
y2
− 1
ν

√
y−2 − a(ν, x, y) +

x · y
y2

)
=
x · y
y2

.

For the next corollary, we need the following version of the Poisson summation formula (see [15, Thm. 5]
or [39, Thm. 45]).

Lemma 2.5. Let g : (0,∞) → C be a continuous function of bounded variation in (0,∞). Suppose that
limt→∞ g(t) = 0 and that the improper Riemann integral

∫∞
0

dt g(t) exists. Then we have the identity

1
2 g(0) +

∑
n≥1

g(n) =
∫ ∞

0

dt g(t) + 2
∑
n≥1

∫ ∞
0

dt cos(2πnt)g(t).

Corollary 2.6. Let f : Rd → C be an even function such that

(i) f = 1 on a neighbourhood of 0.

(ii) For each α ∈ Nd with |α| ≤ 2, the derivative ∂αf exists and satisfies |(∂αf)(x)| ≤ Const. 〈x〉−(1+ρ)

for some ρ > 0 and all x ∈ Rd.

Then we have for each x ∈ Rd and each y ∈ Rd \ {0}

lim
r→∞

1
2

∑
n≥1

[
f
(x− ny

r

)
− f

(x+ ny

r

)]
= −x · (∇Rf )(y). (2.4)

In particular, if f is radial, the l.h.s. is independent of f and equal to (x · y)/y2.

Proof. For r > 0 given, the function

gr : (0,∞)→ C, t 7→ gr(t) := f
(
x−ty
r

)
− f

(
x+ty
r

)
,

satisfies all the hypotheses of Lemma 2.5. Thus

lim
r→∞

1
2

∑
n≥1

[
f
(
x−ny
r

)
− f

(
x+ny
r

)]
= lim
r→∞

1
2

∫ ∞
0

dt gr(t) + lim
r→∞

∑
n≥1

∫ ∞
0

dt cos(2πnt)gr(t).

The first term is equal to −x · (∇Rf )(y) due to Proposition 2.3. For the second term, the change of variables
µ := t/r, ν := 1/r, and two integrations by parts give

lim
r→∞

∑
n≥1

∫ ∞
0

dt cos(2πnt)gr(t)

= lim
ν↘0

∑
n≥1

∫ ∞
0

dµ
ν

cos(2πnµ/ν)
[
f(νx− µy)− f(νx+ µy)

]
=
∑
j

yj lim
ν↘0

∑
n≥1

∫ ∞
0

dµ
sin(2πnµ/ν)

2πn

(
∂f

∂xj
(νx− µy) +

∂f

∂xj
(νx+ µy)

)
=
∑
j

yj lim
ν↘0

∑
n≥1

2ν
(2πn)2

∂f

∂xj

(
νx
)

−
∑
j,k

yjyk lim
ν↘0

∑
n≥1

∫ ∞
0

dµ
ν cos(2πnµ/ν)

(2πn)2

(
∂2f

∂xk∂xj
(νx− µy) +

∂2f

∂xk∂xj
(νx+ µy)

)
.
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Since
∑
n≥1 1/n2 <∞, one sees directly that the first term is equal to zero. Using the fact that

∣∣ ∂2f
∂xk∂xj

(x)
∣∣ ≤

Const. 〈x〉−(1+ρ) for some ρ > 0 and all x ∈ Rd, one also obtains that the second term is equal to zero.
Therefore,

lim
r→∞

1
2

∑
n≥1

[
f
(
x−ny
r

)
− f

(
x+ny
r

)]
= −x · (∇Rf )(y),

and the claim is proved.

3 Hamiltonian dynamics
In the sequel, we require the presence of a symplectic structure in order to speak of Hamiltonian dynamics.
However our results still hold if one is only given a Poisson structure. A lack of examples and some complica-
tions in infinite dimension regarding the identification of vector fields with derivations have led us to restrict the
discussion to the symplectic case for the sake of clarity.

3.1 Critical points
Let M be a symplectic manifold, i.e. a smooth manifold endowed with a closed two-form ω such that the
morphism TM 3 X 7→ ω[(X) := ιXω is an isomorphism. In infinite dimension, such a manifold is said to
be a strong symplectic manifold (in opposition to a weak symplectic manifold, when the above map is only
injective; see [2, Sec. 8.1]). When the dimension is finite, the dimension must be even, say equal to 2n, and
the 2n-form ωn must be a volume form. The Poisson bracket is defined as follows: for each f ∈ C∞(M) we
define the vector field Xf := (ω[)−1(df), i.e. df( · ) = ω(Xf , · ), and set {f, g} := ω(Xf , Xg) for each
f, g ∈ C∞(M).

In the sequel, the function H ∈ C∞(M) is an Hamiltonian with complete vector field XH . So, the flow
{ϕt} associated to H is defined for all t ∈ R, it preserves the Poisson bracket:{

f ◦ ϕt, g ◦ ϕt
}

= {f, g} ◦ ϕt, t ∈ R,

and satisfies the usual evolution equation:

d
dt
f ◦ ϕt = {f,H} ◦ ϕt, t ∈ R. (3.1)

In particular, the Hamiltonian H is preserved along its flow, i.e. H ◦ ϕt = H for all t ∈ R. We also consider an
abstract family Φ ≡ (Φ1, . . . ,Φd) ∈ C∞(M ; Rd) of observables1, and define the associated functions

∂jH := {Φj , H} ∈ C∞(M) and ∇H := (∂1H, . . . , ∂dH) ∈ C∞(M ; Rd).

Then, one can introduce a natural set of critical points:

Definition 3.1 (Critical points). The set

Crit(H,Φ) := (∇H)−1({0}) ⊂M

is called the set of critical points associated to H and Φ.

The set Crit(H,Φ) is closed in M since∇H is continuous. Furthermore, since {Φj , H} = dΦj(XH), the
set

Crit(H) :=
{
m ∈M | XH(m) = 0

}
≡
{
m ∈M | dHm = 0

}
of usual critical points of H satisfies the inclusion Crit(H) ⊂ Crit(H,Φ).

Our main assumption is the following:

1If need be, the results of this article can be extended to the case where H and Φj are functions of class C1 with {Φj , H} also C1.
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Assumption 3.2. One has
{
{Φj , H}, H

}
= 0 for each j ∈ {1, . . . , d}.

Assumption 3.2 imposes that all the brackets {Φj , H} are first integrals of the motion given by H . When
M is a symplectic manifold of dimension 2n, these first integrals are functions of k ∈ {1, 2, . . . , 2n − 1}
independent first integrals J1 ≡ H,J2, . . . , Jk (J1, . . . , Jk are independent in the sense that their differential are
linearly independent at each point of M )2. So, one should have {Φj , H} = gj(J1, . . . , Jk) for some functions
gj ∈ C∞(Rn; R). Using the properties of {· , H} as a derivation, one infers that

{
gj(J1, . . . , Jk)−1Φj , H

}
= 1

outside gj(J1, . . . , Jk)−1({0}). Thus, if k first integrals as J1, . . . , Jk are known, finding functions Φj satisfying
Assumption 3.2 is to some extent equivalent to finding functions Φ0 solving {Φ0, H} = 1 (the equivalence is
not complete because these functions Φ0 are in general not C∞ since {· , H} is necessarily 0 on Crit(H)).

For further use, we define the C∞-function Tf : M \ Crit(H,Φ)→ R by

Tf := −Φ · (∇Rf )(∇H).

When f is radial, Tf is independent of f and equal to

T := Φ · ∇H
(∇H)2

,

due to Lemma 2.2.(c). In fact, the closed subset T−1({0}) ofM\Crit(H,Φ) admits an interesting interpretation:
If we consider the observables Φj as the components of an abstract position observable Φ, then∇H can be seen
as the velocity vector for the Hamiltonian H , and the condition

T (m) = 0 ⇐⇒ Φ(m) · (∇H)(m) = 0 (3.2)

means that the position and velocity vectors are orthogonal at m ∈ T−1({0}). Alternatively, one has T (m) = 0
if and only if the vector fields X|Φ|2 and XH are ω-orthogonal at m, that is, ωm

(
X|Φ|2(m), XH(m)

)
= 0.

The simplest example illustrating the condition (3.2) is when Φ(q, p) := q and H(q, p) := 1
2 |p|

2 are the usual
position and kinetic energy on (M,ω) :=

(
R2n,

∑n
j=1 dqj ∧ dpj

)
. In such a case, (3.2) reduces to q · p = 0.

3.2 Sojourn times of classical orbits
Next Theorem is our main result. We refer to Remark 3.7 below for its interpretation.

Theorem 3.3. Let H and Φ satisfy Assumption 3.2. Let f : Rd → C be an even function as in Lemma 2.2.(a).
Then we have for each point m ∈M \ Crit(H,Φ)

lim
r→∞

1
2

∫ ∞
0

dt
[(
f(Φ/r) ◦ ϕ−t

)
(m)−

(
f(Φ/r) ◦ ϕt

)
(m)

]
= Tf (m). (3.3)

In particular, if f is radial, the l.h.s. is independent of f and equal to Φ(m) · (∇H)(m)
(∇H)(m)2 .

Proof. Equation (3.1) implies that
d
dt

Φj ◦ ϕt = {Φj , H} ◦ ϕt

for each t ∈ R. Similarly, using Assumption 3.2, one gets that

d
dt
{Φj , H} ◦ ϕt =

{
{Φj , H}, H

}
◦ ϕt = 0.

So, Φj varies linearly in t along the flow of XH , and one gets for any m ∈M

(Φj ◦ ϕt)(m) = (Φj ◦ ϕ0)(m) + t
( d

dt
(Φj ◦ ϕt)(m)

∣∣∣
t=0

)
= Φj(m) + t(∂jH)(m).

2In the setup of Liouville’s theorem [5, Sec. 49], we have k = n and the first integrals are mutually in involution. Furthermore, on the
connected components of submanifolds given by fixing the values of these n integrals in involution, the flow is conjugate to a translation
flow on cylinders Rn−` × T` (see [1, Thm. 5.2.24]).
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This, together with Formula (2.2), gives

lim
r→∞

1
2

∫ ∞
0

dt
[(
f(Φ/r) ◦ ϕ−t

)
(m)−

(
f(Φ/r) ◦ ϕt

)
(m)

]
= lim
r→∞

1
2

∫ ∞
0

dt
[
f
(

Φ(m)−t(∇H)(m)
r

)
− f

(
Φ(m)+t(∇H)(m)

r

)]
= Tf (m).

Due to Lemma 2.4, the proof of Theorem 3.3 also works in the case f = χ1. So, we have the following
corollary.

Corollary 3.4. Let H and Φ satisfy Assumption 3.2. Then we have for each point m ∈M \ Crit(H,Φ)

lim
r→∞

1
2

∫ ∞
0

dt
[(
χ1(Φ/r) ◦ ϕ−t

)
(m)−

(
χ1(Φ/r) ◦ ϕt

)
(m)

]
= Φ(m) · (∇H)(m)

(∇H)(m)2 . (3.4)

We know from the proof of Theorem 3.3 that

(Φj ◦ ϕt)(m) = Φj(m) + t(∂jH)(m) for all t ∈ R and all m ∈M . (3.5)

Therefore, the l.h.s. of (3.3) and (3.4) are zero if m ∈ Crit(H,Φ).
For the next remark, we recall that any selfadjoint operator A in a Hilbert space H, with spectral measure

EA( ·), is reduced by an orthogonal decomposition [40, Sec. 7.4]

H = Hac(A)⊕Hp(A)⊕Hsc(A) ≡ Hac(A)⊕Hs(A),

where Hac(A),Hp(A),Hsc(A) and Hs(A) are respectively the absolutely continuous, the pure point, the sin-
gular continuous and the singular subspaces of A. Furthermore, a vector ϕ ∈ H is said to have spectral support
with respect to A in a set J ⊂ R if ϕ = EA(J)ϕ.

Remark 3.5. If m ∈ Crit(H,Φ), then one must have ϕt(m) ∈ Crit(H,Φ) for all t ∈ R, since (3.5) implies
(∂jH)(ϕt(m)) = (∂jH)(m) for all t ∈ R. Conversely, ifm ∈M \Crit(H,Φ), then one must have ϕt(m) 6= m
for all t 6= 0, since Φ cannot take two different values at a same point. So, under Assumption 3.2, each orbit
{ϕt(m)}t∈R either stays in Crit(H,Φ) if m ∈ Crit(H,Φ), or stays outside Crit(H,Φ) and is not periodic if
m /∈ Crit(H,Φ).

In the corresponding Hilbertian framework [31], the Hamiltonian H and the functions Φj are selfadjoint
operators in a Hilbert spaceH, and the critical set κ associated toH and Φ is a closed subset of the spectrum of
H . Outside κ, the spectrum of H is purely absolutely continuous [31, Thm. 3.6.(a)]. Therefore, vectors ψ ∈ H
having spectral support with respect to H in κ belong to the singular subspace Hs(H) of H , and thus lead
to orbits {eitH ψ}t∈R confined in Hs(H) (for instance, eitH ψ stays in a one-dimensional subspace of H if ψ
is an eigenvector of H). Conversely, vectors ψ ∈ H having spectral support outside κ belong to the absolute
continuous subspaceHac(H) ofH , and thus lead to orbits {eitH ψ}t∈R contained inHac(H) (see [3, Prop. 5.7]
for the escape properties of such orbits). These properties are the quantum counterparts of the confinement to
Crit(H,Φ) (when m ∈ Crit(H,Φ)) and the non-periodicity outside Crit(H,Φ) (when m /∈ Crit(H,Φ)) of the
classical orbits {ϕt(m)}t∈R.

Lemma 3.6. If H , Φ and f satisfy the assumptions of Theorem 3.3, then we have

{Tf , H} ◦ ϕt ≡
d
dt

(Tf ◦ ϕt) = 1 (3.6)

on M \ Crit(H,Φ). In particular, one has Tf ◦ ϕt = Tf + t on M \ Crit(H,Φ).

If we interpret the map d
dH := {Tf , · } as a derivation on C∞

(
M \ Crit(H,Φ)

)
, this implies that Tf can

be seen as an observable “derivative with respect to the energy H” on M \ Crit(H,Φ), since

d
dH (H) = {Tf , H} = 1

on each orbit {ϕt(m)}t∈R, with m ∈M \ Crit(H,Φ).
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Proof of Lemma 3.6. The first equality in (3.6) follows from (3.1). For the second one, we use successively the
fact that ϕt leaves invariant H and the Poisson bracket, Assumption 3.2, and Equation (2.1). Doing so, we get
on M \ Crit(H,Φ) the following equalities

d
dt

(Tf ◦ ϕt) = − d
dt

(Φ ◦ ϕt) · (∇Rf )
(
{Φ ◦ ϕt, H}

)
= − d

dt
(
Φ + t(∇H)

)
· (∇Rf )

(
{Φ + t(∇H), H}

)
= − d

dt
(
Φ + t(∇H)

)
· (∇Rf )(∇H)

= −(∇H) · (∇Rf )(∇H)
= 1.

Remark 3.7. Theorem 3.3 relates the sojourn times of classical orbits within expanding regions of M to the
observable Tf . If we consider the observables Φj as the components of an abstract position observable Φ, then
the l.h.s. of Formula (3.3) has the following meaning: For r > 0 and m ∈ M \ Crit(H,Φ) fixed, it can be
interpreted as the difference of times spent by the classical orbit {ϕt(m)}t∈R in the past (first term) and in
the future (second term) within the region Σr := supp[f(Φ/r)] ⊂ M defined by the localisation observable
f(Φ/r). Thus, Formula (3.3) shows that this difference of times tends as r →∞ to the value of the observable
Tf at m. Since Tf can be interpreted as an observable derivative with respect to the energy H , Formula (3.3)
provides a new relation between sojourn times and variation of energy along classical orbits.

As a final result, we give a discrete-time counterpart of Theorem 3.3, which could be of some interest in
the context of approximation of symplectomorphisms by time-1 maps of Hamiltonians flows (see e.g. [7], [18,
Appendix B], [23] and references therein).

Theorem 3.8. Let H and Φ satisfy Assumption 3.2. Let f : Rd → C be an even function such that

(i) f = 1 on a neighbourhood of 0.

(ii) For each α ∈ Nd with |α| ≤ 2, the derivative ∂αf exists and satisfies |(∂αf)(x)| ≤ Const. 〈x〉−(1+ρ)

for some ρ > 0 and all x ∈ Rd.

Then we have for each point m ∈M \ Crit(H,Φ)

lim
r→∞

1
2

∑
n≥1

[(
f(Φ/r) ◦ ϕ−n

)
(m)−

(
f(Φ/r) ◦ ϕn

)
(m)

]
= Tf (m).

In particular, if f is radial, the l.h.s. is independent of f and equal to Φ(m) · (∇H)(m)
(∇H)(m)2 .

Proof. Let m ∈M \ Crit(H,Φ). Then we have by Equation (3.5)

lim
r→∞

1
2

∑
n≥1

[(
f(Φ/r) ◦ ϕ−n

)
(m)−

(
f(Φ/r) ◦ ϕn

)
(m)

]
= lim
ν↘0

1
2

∑
n≥1

[
f
(

Φ(m)−n(∇H)(m)
r

)
− f

(
Φ(m)+n(∇H)(m)

r

)]
,

and the claim follows by Formula (2.4).

4 Examples
In this section we show that Assumption 3.2 is satisfied in various situations. In these situations all the results
of Section 3 such as Theorem 3.3 or Formula (3.6) hold. Some of the examples presented here are the classical
counterparts of examples discussed in [31, Sec. 7] in the context of Hilbertian theory.

The configuration space of the system under consideration will sometimes be Rn, and the corresponding
symplectic manifold M = T ∗Rn ' R2n. In that case, we use the notation (q, p), with q ≡ (q1, . . . , qn)
and p ≡ (p1, . . . , pn), for the canonical coordinates on M , and set ω :=

∑n
j=1 dqj ∧ dpj for the canonical

symplectic form. We always assume that f = χ1 or that f satisfies the hypotheses of Theorem 3.3.
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4.1 ∇H = g(H)

Suppose that there exists a function g ≡ (g1, . . . , gd) ∈ C∞(R; Rd) such that ∇H = g(H). Then H and Φ
satisfy Assumption 3.2 since {gj(H), H} = 0 for each j. Furthermore, one has Crit(H,Φ) = (g ◦H)−1({0}),
and Tf = −Φ · (∇Rf )

(
g(H)

)
on M \ Crit(H,Φ). We distinguish various cases:

(A) Suppose that g is constant, i.e. g = v ∈ Rd \ {0}. Then Crit(H) = Crit(H,Φ) = ∅, and we have the
equality Tf = −Φ · (∇Rf )(v) on the whole of M .

Typical examples of functionsH and Φ fitting into this construction are Friedrichs-type Hamiltonians and
position functions. For illustration, we mention the case (with d = n) of H(q, p) := v · p + V (q) and
Φ(q, p) := q on M := R2n, with v ∈ Rn \ {0} and V ∈ C∞(Rn; R). In such a case, one has ∇H = v
and

ϕt(q, p) =
(
vt+ q, p−

∫ t
0

ds (∇V )(vs+ q)
)
.

Stark-type Hamiltonians and momentum functions also fit into the construction, i.e.H(q, p) := h(p)+v·q
and Φ(q, p) := p on M := R2n, with v ∈ Rn \ {0} and h ∈ C∞(Rn; R). In such a case, one has
∇H = −v and

ϕt(q, p) =
(
q +

∫ t
0

ds (∇h)(p− vs), p− vt
)
.

Note that these two examples are interesting since the Hamiltonians H contain not only a kinetic part, but
also a potential perturbation.

(B) Suppose that Φ has only one component (d = 1), and assume that g(λ) = λ for all λ ∈ R (in the Hilbertian
framework, one says in such a case that H is Φ-homogeneous [9]). Then Crit(H,Φ) = H−1({0}) and
we have the equality Tf = −Φ(∇Rf )(H) on M \H−1({0}). We present a general class of pairs (H,Φ)
satisfying these assumptions:

The Hamiltonian flow of the function D(q, p) := q · p on R2n is given by ϕDt (q, p) = (et q, e−t p). So, D
is the generator of a dilations group on R2n (in the Hilbertian framework, the corresponding operator is the
usual generator of dilations on L2(Rn), see e.g. [4, Sec. 1.2]). Therefore, the relation {D,H} ∝ H holds
for a large class of homogeneous functions H on R2n, due to Euler’s homogeneous function theorem. Let
us consider an explicit situation. Take α > 0 and let M be some open subset of (Rn \ {0})×Rn. Define
on M the function Φ := 1

αD and the Hamiltonian H(q, p) := h(p) + V (q), where h ∈ C∞(Rn; R) is
positive homogeneous of degree α and V ∈ C∞(Rn \ {0}; R) is positive homogeneous of degree −α.
Then one has∇H ≡ {Φ, H} = H on M , and

Crit(H) =
{

(q, p) ∈M | (∇h)(p) = (∇V )(q) = 0
}

⊂
{

(q, p) ∈M | p · (∇h)(p) = q · (∇V )(q) = 0
}

=
{

(q, p) ∈M | H(q, p) = 0
}

= Crit(H,Φ).

Furthermore, if the functions h and V and the subsetM are well chosen, the Hamiltonian vector fieldXH

of H is complete. For instance,

(i) If V ≡ 0, then one can take M = R2n, and one has ϕt(q, p) =
(
q + t(∇h)(p), p

)
and

Crit(H) =
{

(q, p) ∈M | (∇h)(p) = 0
}
⊂
{

(q, p) ∈M | p · (∇h)(p) = 0
}

= Crit(H,Φ)

(when h(p) = 1
2 |p|

2 is the classical kinetic energy, one has Crit(H) = Crit(H,Φ) = Rn × {0}).
(ii) Let K > 0. Then the Hamiltonian given by H(q, p) := 1

2 (|p|2 +K|q|−2) on M := Rn \ {0} ×Rn
has a complete Hamiltonian vector field XH . To see it, we use the push-forward of XH by the
diffeomorphism ι : Rn \ {0} × Rn → Rn \ {0} × Rn, (q, p) 7→

(
q|q|−2, p

)
≡ (r, p), namely,

[ι∗(XH)](r, p) =
∑
j

((
|r|2pj − 2(p · r)rj

) ∂

∂rj

∣∣∣
(r,p)

+Krj |r|2 ∂

∂pj

∣∣∣
(r,p)

)
.
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Then, we obtain that ι∗(XH) is complete by using the criterion [1, Prop. 2.1.20] with the proper
function g : Rn \{0}×Rn → [0,∞) given by g(r, p) := |p|2 +K|r|2. Since ι is a diffeomorphism,
this implies that XH is also complete (see [19, Lemma 1.6.4]).

(C) Many other examples with ∇H = g(H) can be obtained using homogeneous Hamiltonians functions.
For instance, consider H(q, p) := q2/q1 + q1/q2 and Φ(q, p) := p1q

2 + p2q
1 on M := (R2 \ {0})×R2.

Then one has∇H = H2 − 4, ϕt(q, p) =
(
q, p− t∂H∂q (q, p)

)
and

Crit(H) = Crit(H,Φ) =
{
q ∈ R2 \ {0} | q1 = ±q2

}
× R2.

4.2 H = h(p)

Consider on M := R2n a purely kinetic Hamiltonian H(q, p) := h(p) with h ∈ C∞(Rn; R), and take the usual
position functions Φ(q, p) := q with d = n. Then ϕt(q, p) =

(
q + t(∇h)(p), p

)
, ∇H = ∇h, and Assumption

3.2 is satisfied: {
{Φj , H}, H

}
=
{

(∂jh)(p), h(p)
}

= 0.

In this example, we have Crit(H) = Crit(H,Φ) = Rn × (∇h)−1({0}).

4.3 The assumption {{Φj, H}, H} = 0 as a differential equation
Consider on M := R2n an Hamiltonian function H with partial derivatives Hpk := ∂H/∂pk and Hqk :=
∂H/∂qk. Then, finding the functions Φj of Assumption 3.2 amounts to solving for Φ0 the second-order linear
equation {

{Φ0, H}, H
}
≡
( n∑
`=1

(
Hp`∂q` −Hq`∂p`

))2

Φ0 = 0.

As observed in Section 3.1, this is essentially equivalent (when k independent first integrals J1 ≡ H,J2, . . . , Jk
are known) to find the solutions Φ0 to

{Φ0, H} =
n∑
`=1

(
Hp`∂q` −Hq`∂p`

)
Φ0 = g(J1, . . . , Jk). (4.1)

The case g ≡ 1 is sufficient, though trying to solve {Φ0, H} = 1 can at best provide solutions which are C∞

outside the set Crit(H). A way to remove these singularities could be to multiply the solutions by a function
g(H) that vanishes and is infinitely flat on Crit(H). For instance, if H

(
Crit(H)

)
consists of a finite number of

values c1, . . . , cs ∈ R, one could take g(H) =
∏s
j=1 e−(H−cj)−2

. Another possibility is to restrict the study to
a submanifold M ′ of M (typically an open subset of the same dimension). However, problems can arise as the
same (induced) symplectic structure (or Poisson bracket) must be used for the dynamic to remain unchanged;
in particular, it must checked that the Hamiltonian flow preserves M ′.

(A) Repulsive harmonic potential. In this example we first solve the equation {Φ0, H} = 1, and then correct
the functions Φ0 to make them C∞. So, let us consider for K 6= 0 the Hamiltonian H(q, p) := 1

2

(
|p|2 −

K2|q|2
)

on M := R2n. One can check that Crit(H) = {0} and that

ϕt(q, p) =
(
Kq+p

2K
eKt +Kq−p

2K
e−Kt, Kq+p2

eKt−Kq−p2
e−Kt

)
.

For j ∈ {1, . . . , n}, take Φj(q, p) := 1
K tanh−1(Kqj/pj), where tanh−1(z) ≡ 1

2 ln
∣∣ 1+z

1−z
∣∣ is C∞ on

R \ {±1}. Whenever pj = ±Kqj , the Φj are not well-defined, but outside these regions, they satisfy
{Φj , H} = 1. It is possible in this case to get rid of the singular regions. Indeed, the functionsHj(q, p) :=
1
2

(
p2
j − K2(qj)2

)
are first integrals of the motion and the singular regions correspond to the level sets

H−1
j ({0}). Therefore, the functions Φ′j := e−H

−2
j Φj are well-defined and satisfy Assumption 3.2:{

{Φ′j , H}, H
}

=
{

e−H
−2
j , H

}
= 0.

In this example, one has {0} = Crit(H) ( Crit(H,Φ′) =
⋂
j H
−1
j ({0}).
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(B) Simple pendulum. In this example we first consider the dynamics on a manifold and then restrict it to an
appropriate submanifold. For K > 0, take H(q, p) := 1

2

(
p2 + K(1 − cos q)

)
on M := R2. One has

Crit(H) = πZ × {0} (the values q ∈ 2πZ correspond to minima, while q ∈ 2πZ + π correspond to
inflexion points). Then, consider the open subset M ′ of M defined by the relation H > K, i.e. M ′ :={

(q, p) ∈ R2 | p2/2 −K cos2(q/2) > 0
}

. One verifies easily that M ′ is preserved by the Hamiltonian
flow, that M ′ ∩ Crit(H) = ∅ and that M ′ corresponds to the region where the values of q along an orbit
cover all of R. Define also

Φ(q, p) :=

√
2

H(q, p)
F
(
q/2
∣∣√K/H(q, p)

)
≡
√

2
∫ q/2

0

dϑ√
H(q, p)−K sin2(ϑ)

,

where F ( · | ·) denotes the incomplete elliptic integral of the first kind. Then one verifies that the function
Φ is well-defined on M ′ and a direct calculation gives {Φ, H}(q, p) = p/|p| for each (q, p) ∈ M ′. Now,
p/|p| = 1 on one connected component of M ′ and p/|p| = −1 on the other one. Thus Assumption 3.2 is
verified on M ′ and Crit(H,Φ) = ∅.

(C) Unbounded trajectories of central force systems. Once again, we first consider the dynamics on a manifold
and then restrict it to an appropriate submanifold. For K ∈ R \ {0}, take H(q, p) := 1

2

(
|p|2 −K|q|−1

)
on M := (Rn \ {0})× Rn, with n > 1 if K > 0 and n ≥ 1 if K < 0. One has Crit(H) = ∅.

When K > 0 (and n > 1), we must restrict our attention to the case where the Hamiltonian function
H is positive (to avoid periodic orbits), and where at least one of the two-dimensional angular momenta
Lij(q, p) := qipj − qjpi is nonzero (to avoid collisions, i.e. orbits whose flow is not defined for all t ∈ R,
see [29]). Therefore, the open set M ′ :=

{
(q, p) ∈ M |H(p, q) > 0,

∑n
i,j=1 |Lij(q, p)|2 6= 0

}
is an

appropriate submanifold of M when K > 0.

Consider now the real valued functions on M (resp. M ′) when K < 0 (resp. K > 0 and n > 1) given by

Φ±(q, p) :=
p · q

2H(q, p)
∓ K

2
(
2H(q, p)

)3/2 ln
(
|q|
(
2H(q, p) + |p|2

)
± 2
√

2H(q, p)p · q
)
.

Since |p|2 < 2H(q, p) (resp. |p|2 > 2H(q, p)), then(√
2H(q, p)− |p|

)2
> 0 =⇒ 2H(q, p)|p|2 ± 2

√
2H(q, p)p · q

|q|
> 0

⇐⇒ |q|
(
2H(q, p) + |p|2

)
± 2
√

2H(q, p)p · q > 0.

So, Φ± are well-defined, and further calculations show that {Φ±, H} = 1 on M (resp. M ′). As before,
Crit(H) = Crit(H,Φ±) = ∅. Note that Φ±(q, p) = p · q/|p|2 when K = 0, which is coherent with the
canonical function Φ for the purely kinetic Hamiltonian H(q, p) = 1

2 |p|
2.

One can construct a more intuitive function Φ0 in terms of Φ±, namely,

Φ0(q, p) := 1
2 (Φ+ + Φ−)(q, p) =

p · q
2H(q, p)

− K

2
(
2H(q, p)

)3/2 tanh−1

(
2
√

2H(q, p)p · q
|q|
(
2H(q, p) + |p|2

)),
which also satisfies {Φ0, H} = 1. Since the functions satisfying Assumption 3.2 are linear in t, one can
regard them as inverse functions for the flow. The appearance of the inverse hyperbolic function tanh−1

in Φ0 is related to the fact that unbounded trajectories of the central force system given by H > 0 are
hyperbolas.

(D) Poincaré ball model. Consider B1 :=
{
q ∈ Rn | |q| < 1

}
endowed with the Riemannian metric g given

by

gq(Xq, Yq) :=
4

(1− |q|2)2
(Xq · Yq), q ∈ B1, Xq, Yq ∈ TqB1 ' Rn.
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Let M := T ∗B1 '
{

(q, p) ∈ B1 × Rn
}

be the cotangent bundle on B1 with symplectic form ω :=∑n
j=1 dqj ∧ dpj , and let

H : M → R, (q, p) 7→ 1
2

n∑
j,k=1

gjk(q)pjpk = 1
8 |p|

2
(
1− |q|2

)2
be the kinetic energy Hamiltonian. It is known that the integral curves of the vector field XH correspond
to the geodesics curves of (B1, g) (see [19, Thm. 1.6.3] or [11, Sec. 6.4]). Since, (B1, g) is geodesically
complete (see Proposition 3.5 and Exercice 6.5 of [25]), this implies that XH is complete. There remains
only to find a function Φ satisfying Assumption 3.2 in order to apply the theory.

Some calculations using spherical-type coordinates suggest the function

Φ : M → R, (q, p) 7→ e−1/H(q,p) tanh−1

(
(p · q)(1− |q|2)√
2H(q, p)(1 + |q|2)

)
.

Indeed, since ∣∣∣∣∣ (p · q)(1− |q|2)√
2H(q, p)(1 + |q|2)

∣∣∣∣∣ =
∣∣∣∣ 2(p · q)
|p|(1 + |q|2)

∣∣∣∣ ≤ 2|q|
1 + |q|2

< 1,

the function Φ is well-defined. Furthermore, direct calculations show that Φ is C∞ and that {Φ, H} =
e−1/H

√
2H . Therefore, Assumption 3.2 is verified and one has Crit(H) = Crit(H,Φ) = B1 × {0}.

In one dimension, q(t) := tanh(t) is (up to speed and direction) the only geodesic curve, and

Φ(q, p) = e−1/H(q,p) tanh−1

(
2pq

|p|(1 + q2)

)
= 2 e−1/H(q,p) p

|p|
tanh−1(q).

So, apart from the smoothing factor 2 e−1/H , our Φ coincides in one dimension with the inverse function
of the flow.

4.4 Passing to a covering manifold
In this subsection we briefly discuss a way of avoiding the obstruction of periodic orbits: Given M a symplectic
manifold with symplectic form ω and Hamiltonian H , we let π : M̃ →M \Crit(H) be C∞-covering manifold.
In order to preserve the dynamics, we endow the manifold M̃ with the pullback ω̃ := π∗ω of the symplectic
form ω and with the pullback H̃ := π∗H of the Hamiltonian H .3

Here are two simple examples of finite-dimensional symplectic covering manifolds.

(A) Consider on the sphere M := S2 (as seen in R3 and with its standard symplectic structure) the Hamil-
tonian H given by the projection onto the z-coordinate. Outside the 2 polar critical points, all the orbits
are periodic: the flow corresponds to rotations around the z-axis. In this case, one can use the covering of
S2 \ {(0, 0,±1)} given by M̃ :=

{
(ϑ, z) | ϑ ∈ R, z ∈ (−1, 1)} and the covering map

π : M̃ →M \ Crit(H) ≡ S2 \ {(0, 0,±1)}, (ϑ, z) 7→
(√

1− z2 cos(ϑ),
√

1− z2 sin(ϑ), z
)
.

Consequently, H̃ : M̃ → (−1, 1) is the projection onto the z-coordinate and ω̃ = dϑ ∧ dz. One can also
check that ϕt(ϑ, z) := (ϑ+ t, z) is the flow of H̃ and that

{
Φ, H̃

}
= 1 for Φ(ϑ, z) := ϑ. So, Assumption

3.2 is verified on M̃ and Crit(H̃) = Crit(H̃,Φ) = ∅.

3If one wants to consider only a Poisson manifold M , a Poisson structure can also be defined on M̃ given that π is C∞. Indeed, for
U ⊂M \Crit(H) a sufficiently small open set (i.e. such that π−1(U) is a disjoint union of diffeomorphic copies), connected components
of π−1(U) are diffeomorphic to U and the Poisson structure can be induced by this diffeomorphism.
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(B) Harmonic oscillator. Consider on M := R2n (with its standard symplectic structure) the Hamiltonian
given byH(q, p) := 1

2

(
|p|2+K2|q|2

)
, whereK ∈ R\{0}. Define M̃ :=

{
(r, ϑ) | r ∈ (0,∞)n, ϑ ∈ Rn

}
and π : M̃ →M \ Crit(H) ≡ R2n \ {0}, with

π(r, ϑ) :=
(
K−1r1 cos(ϑ1), . . . ,K−1rn cos(ϑn), r1 sin(ϑ1), . . . , rn sin(ϑn)

)
.

Then H̃(r, ϑ) = 1
2 |r|

2, ω̃ = K−1
∑n
j=1 rj drj ∧ dθj , and ϕt(r, ϑ) = (r, ϑ − Kt) is the flow of H̃ .

Furthermore, one has
{

Φj , H̃
}

= −K for each function Φj(r, ϑ) := ϑj . Therefore, Assumption 3.2 is
verified on M̃ with Φ ≡ (Φ1, . . . ,Φn) and Crit(H̃) = Crit(H̃,Φ) = ∅.

4.5 Infinite dimensional Hamiltonian systems
4.5.1 Classical systems

In the following examples, the infinite dimensional manifold M is either L2(R) or L2(R)⊕ L2(R) (equivalence
classes of real valued square integrable functions)4. The atlas of M consists in only one chart, the tangent space
TuM at a point u ∈ M is isomorphic to M , and the Riemannian metric on M is flat (i.e. independent of the
base point in M ) and given by the usual scalar product 〈 · , · 〉 on L2(R) or L2(R)⊕ L2(R).

To define the symplectic form onM in terms of the metric 〈 · , · 〉 we letHs, s ∈ R, denote the real Sobolev
spaceHs(R) orHs(R)⊕Hs(R) (see [4, Sec. 4.1] for the definition in the complex case) and we let S denote
the real Schwartz space S (R) or S (R) ⊕S (R). Then we consider an operator J : S → S (which can be
interpreted by continuity as an endomorphism of the tangent spaces TuM 'M ) satisfying the following:

(i) There exists a number dJ ≥ 0, called the order of J , such that for each s ∈ R the operator J extends to
an isomorphismHs → Hs−dJ (which we denote by the same symbol).

(ii) J is antisymmetric on S , i.e. 〈Jf, g〉 = −〈f, Jg〉 for all f, g ∈ S .

It is known [22, Lemma 1.1] that the operator J̄ := −J−1 : M → HdJ (of order −dJ ) is bounded and
anti-selfadjoint in M . In consequence, for each s ≥ 0 the map ω : Hs ×Hs → R given by

ω(f, g) := −
〈
J̄f, g

〉
defines a symplectic form onHs.

The functions on the phase space (such as H or Φj) are infinitely Fréchet differentiable mappings from
OsH (a subset of HsH for some sH ≥ 0) to R, i.e. elements of C∞(OsH ; R). The Hamiltonian function H ∈
C∞(OsH ; R) is defined as follows: for some h ∈ C∞(Rk+1; R) (or h ∈ C∞(R2(k+1); R) if M = L2(R) ⊕
L2(R)), one has for each u ∈ OsH

H(u) :=
∫

R
dxh(u0, u1, . . . , usH ),

where uj := dju
dxj . Since H ∈ C∞(OsH ; R), the differential of H at u ∈ OsH on a tangent vector f ∈ S ⊂

M ' TuM is given by

dHu(f) = lim
t→0

1
t

[
H(u+ tf)−H(u)

]
=
∫

R
dx

sH∑
j=0

∂h

∂uj

djf
dxj

=
sH∑
j=0

∫
R

dx (−1)jf
dj

dxj
∂h

∂uj
,

where the second equality is obtained using integrations by parts (with vanishing boundary contributions).
The (Riemannian) gradient vector field gradH associated to the linear functional dH satisfies by definition〈
(gradH)(u), f

〉
= dHu(f) for all u ∈ OsH and f ∈ S (here (gradH)(u) a priori only belongs to the

4In the case of the wave and the Schrödinger equations below, one can easily extend the results to the situation where L2(R) is replaced
by L2(Rn). We restrict ourselves to the case n = 1 for the sake of notational simplicity.
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topological dual S ∗ of S , which means that 〈 · , · 〉 denotes a priori the duality map between S ∗ and S ). So,
(gradH)(u) is given by

(gradH)(u) =
sH∑
j=0

(−1)j
dj

dxj
∂h

∂uj
. (4.2)

Then, the Hamiltonian vector field XH is the map OsH → S ∗ satisfying〈
J̄f,XH(u)

〉
= −ω

(
f,XH(u)

)
= dHu(f) =

〈
f, (gradH)(u)

〉
for all u ∈ OsH and f ∈ S . Since J̄ is anti-selfadjoint, this implies that J̄XH(u) = −(gradH)(u) in
S ∗, which is equivalent to XH(u) = J(gradH)(u) in S ∗. So, the equation of motion with Hamiltonian
H has the form d

dt u = J(gradH)(u), and {Φ, H} = dΦ(XH) =
〈
gradΦ, J(gradH)

〉
for all functions

Φ, H ∈ C∞(OsH ; R) with appropriate gradient.
Before passing to concrete examples, we refer to [20] for standard results on the local existence in time of

Hamiltonian flows (global existence is specific to the system considered).

(A) The wave equation. We refer to [1, Ex. 5.5.1], [2, Ex. 8.1.12], [13, Sec. 2.1] and [30, Sec. X.13] for a
description of the model. The existence of the flow for all times depends on the nonlinear term in the
Hamiltonian (see for instance [30, Thm. X.74] and the corollary that follows).

In this example, the scale {Hs}s≥0 is given by Hs := Hs(R) ⊕ Hs(R). The metric on M := L2(R) ⊕
L2(R) is given for each (p, q), (p̃, q̃) ∈ M by

〈
(p, q), (p̃, q̃)

〉
:=
∫

R dx (pp̃ + qq̃), and the operator J is
given by

J : M →M, (p, q) 7→ (−q, p).

It is an isomorphism of degree 0 with J̄ = J . Given m ≥ 0 and F ∈ C∞(R; R), one can find a subset
O1 ⊂ H1 (depending on F ) such that the Hamiltonian function

H : O1 → R, (p, q) 7→
∫

R
dxh(p, q, ∂xq) ≡ 1

2

∫
R

dx
{
p2 + (∂xq)2 +m2q2 + 2F (q)

}
,

is well-defined and C∞. In fact, we assume that O1 is chosen such that (i) all the functions on the phase
space appearing below are elements of C∞(O1; R), and (ii) integrations by parts involving these functions
come vanishing boundary contributions. Then one checks that (gradH)(p, q) =

(
p,m2q+F ′(q)− ∂2

xq
)

due to (4.2), and that XH(p, q) is trivial if and only if p = 0 and m2q + F ′(q)− ∂2
xq = 0. The constraint

on q depends on the choice of F . For example, when F (q) = 0, q or q2, the solution q of the differential
equation does not decay as |x| → ∞. In consequence, the corresponding pairs (p, q) cannot belong to M ,
and Crit(H) = {(0, 0)}. The equation of motion

d
dt

(p, q) = J(gradH)(p, q) (4.3)

coincides with the usual the wave equation since the combination of d
dtp = ∂2

xq − m2q − F ′(q) and
d
dtq = p gives

d2

dt2
q = ∂2

xq −m2q − F ′(q).

When m 6= 0, this equation is called the Klein-Gordon equation, and F is usually assumed to be a
nonlinear term of the form F (q) = qλ for some λ ∈ R. A first relevant observation is that the function
C0 ∈ C∞(O1; R) given by C0(p, q) :=

∫
R dx p(∂xq) is a first integral of the motion. Furthermore, the

function Φ0 ∈ C∞(O1; R) given by Φ0(p, q) :=
∫

R dx idR h(p, q, ∂xq) has gradient (gradΦ0)(p, q) =(
idR p, idR m

2q + idR F
′(q)− ∂x(idR ∂xq)

)
. Therefore,

{Φ0, H}(p, q) =
〈
(gradΦ0)(p, q), J(gradH)(p, q)

〉
=
∫

R
dx p

{
idR ∂

2
xq − ∂x(idR ∂xq)

}
= −C0(p, q),
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and Φ0 satisfies Assumption 3.2. Here, we clearly have

Crit(H,Φ0) = C−1
0 ({0}) =

{
(p, q) ∈ O1 |

∫
R p(∂xq) dx = 0

}
) {(0, 0)} = Crit(H).

If we assume further that F ≡ 0, then the equation of motion (4.3) is linear. Therefore any pair (∂jxp, ∂
j
xq),

j ≥ 1, with (p, q) a solution of (4.3), also satisfies (4.3). Consequently, if the subsets Oj ⊂ Hj have
properties similar to the ones of O1, then the functions Cj ∈ C∞(Oj+1; R) and Hj ∈ C∞(Oj+1; R)
given by Cj(p, q) :=

∫
R dx

(
∂jxp
)(
∂j+1
x q

)
and Hj(p, q) :=

∫
R dxh

(
∂jxp, ∂

j
xq, ∂

j+1
x q

)
are first integrals

of the motion. Accordingly, one deduces that the functions Φj ∈ C∞(Oj+1; R) given by Φj(p, q) :=∫
R dx idR h

(
∂jxp, ∂

j
xq, ∂

j+1
x q

)
satisfy {Φj , H} = −Cj on Oj+1. So, if F ≡ 0, there is an infinite

family of functions Φj satisfying Assumption 3.2, and one has again Crit(H,Φj) ) Crit(H), with
∂jx : Crit(H,Φj)→ Crit(H,Φ0) an isomorphism.

Finally, when F ≡ 0 and m = 0 one can check that the function Φ̃0 ∈ C∞(O1; R) given by Φ̃0(p, q) :=∫
R dx idR p(∂xq) has gradient

(
gradΦ̃0

)
(p, q) = (idR ∂xq,− idR ∂xp− p). Then,

{
Φ̃0, H

}
(p, q) =

∫
R

dx
(

idR(∂xq)(∂2
xq)− idR p∂xp− p2

)
= − 1

2

∫
R

dx
(
(∂xq)2 + p2

)
= −H(p, q),

where the third equality is obtained using integrations by parts (with vanishing boundary contributions).
Thus Φ̃0 satisfies Assumption 3.2. Furthermore, since {Φ̃0, H}(p, q) = 0 implies

∫
R dx

{
(∂xq)2 +p2

}
=

0, one has Crit(H, Φ̃0) = Crit(H) = {(0, 0)}. As before, any derivative of a solution of the equa-
tion of motion is still a solution of the equation of motion. So, it can be checked that the functions
Φ̃j ∈ C∞(Oj+1; R) given by Φ̃j(p, q) :=

∫
R dx idR

(
∂jxp
)(
∂j+1
x q

)
satisfy {Φ̃j , H} = −Hj on Oj+1.

Therefore, one has once again Crit(H, Φ̃j) = Crit(H) = {(0, 0)} and the Φ̃j’s constitutes a second
infinite family of functions satisfying Assumption 3.2.

(B) The nonlinear Schrödinger equation. We refer to [22, Ex. 1.3, p. 3 & 5] for a description of the model.
The existence of the flow for all times depends on the nonlinear term in the Hamiltonian (see for instance
[8, Sec. I.2] and [33, Sec. 3.2.2-3.2.3]).

The setting is the same as that of the previous example, except that the Hamiltonian function H ∈
C∞(O1; R) is given by

H(p, q) := 1
2

∫
R

dx
{

(∂xp)2 + (∂xq)2 + V · (p2 + q2) + F (p2 + q2)
}
,

where V, F ∈ C∞(R; R). Using (4.2), one checks that the gradient of H at (p, q) ∈ O1 is

(gradH)(p, q) =
(
− ∂2

xp+ V p+ pF ′(p2 + q2),−∂2
xq + V q + qF ′(p2 + q2)

)
.

So, the equation of motion d
dt (p, q) = J(gradH)(p, q) is equivalent to the nonlinear Schrödinger equation

d
dt
u = i

(
− ∂2

xu+ V u+ uF ′(|u|2)
)
, (4.4)

with u := p + iq. Without additional assumptions on F or V , it is hardly possible to determine the set
Crit(H) of functions u for which the r.h.s. of (4.4) vanishes. However, it is known that in general Crit(H)
is not trivial, as in the case of elliptic stationary nonlinear Schrödinger equations (see Theorem 1.1 and
Proposition 1.1 of [6]).

Now, assume that V ≡ F ≡ 0 and for each j ≥ 1 let Oj ⊂ Hj be a subset having properties similar
to the ones of O1. Then the functions Hj ∈ C∞(Oj ; R) and Cj ∈ C∞(Oj+1; R) given by Hj(p, q) :=
1
2

∫
R dx

{
(∂jxq)

2 + (∂jxp)
2
}
≡
∫

R dxhj(p, q) and Cj(p, q) :=
∫

R dx
{

(∂jxq)(∂
j+1
x p)− (∂j+1

x q)(∂jxp)
}
≡∫

R dx cj(p, q) are first integrals of the motion. Furthermore, the functions Φj ∈ C∞(Oj ; R) and Φ̃j ∈
C∞(Oj+1; R) given by Φj(p, q) :=

∫
R dx idR hj(p, q) and Φ̃j(p, q) :=

∫
R dx idR cj(p, q) satisfy {Φj , H} =
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Cj and {Φ̃j , H} = 4Hj+1 on Oj+1. So, the Φj’s and the Φ̃j’s constitute two infinite families of func-
tions satisfying Assumption 3.2. Note that the sets Crit(H,Φj) = C−1

j ({0}) =
{

(p, q) ∈ Oj+1 |∫
R dx (∂jxq)(∂

j+1
x p) = 0

}
(with isomorphisms ∂jx : Crit(H,Φj) → Crit(H,Φ0)) are rather large,

whereas Crit(H, Φ̃j) = Crit(H) = {(0, 0)}.
Some of the above functions still work when V and F are not trivial. For instance, the identity {Φ0, H} =
C0 on O1 remains valid for all V and F . Furthermore, if V = Const., then {C0, H} = 0 on O1. Conse-
quently, Φ0 satisfies Assumption 3.2 for all F and for V = Const., and one has Crit(H,Φ0) ) Crit(H).
This last example is interesting since it applies to a large class of nonlinear Schrödinger equations.

(C) The Korteweg-de Vries equation. Among many other possible references, we mention [1, Ex. 5.5.7] and
[22, Ex. 1.4, p. 3 & 5]. For the global existence of the flow, we refer the reader to [12, Sec. 1] and references
therein.

In this example, the scale {Hs}s≥0 is given by Hs := Hs(R) and the sets Oj , j ∈ N, are appropriate
subsets ofHj . The Hamiltonian function H ∈ C∞(O1; R) is given by

H(u) :=
∫

R
dx
(

1
2 (∂xu)2 + u3

)
,

and the isomorphism J := ∂x is of order 1.

The gradient of H at u ∈ O1 is −∂2
xu + 3u2. So, the elements of Crit(H) are functions u satis-

fying −∂2
xu + 3u2 = 0; these are Weierstrass ℘-functions [21, Sec. 134.F], that is, functions with

many singularities and no decay at infinity. Thus, Crit(H) = {0}. Furthermore, the equation of motion
d
dtu = J(gradH)(u) coincides with the KdV equation d

dtu = ∂x
(
− ∂2

xu+ 3u2
)
.

There exists an infinite number of first integrals of the motion with polynomial density, that is, of the form
Hj :=

∫
R dxhj , where hj is a finite polynomial in u and its derivatives (see [27, Sec. 3]). For example,

when h1(u) = u, h2(u) = u2, h3(u) = 1
2 (∂xu)2 + u3, or h4(u) = (∂2

xu)2 + 10u(∂xu)2 + 5u4. So, let
Φ0 ∈ C∞(O0; R) be given by Φ0(u) :=

∫
R dx idR u. Then the gradient of Φ0 at u is idR, and {Φ0, H} =

−3H2 on O1. Since H2 is a first integral of the motion, this implies that Φ0 satisfies Assumption 3.2.
Furthermore, the fact that H2(u) = ‖u‖L2(R) implies that Crit(H,Φ0) = {0} = Crit(H).

Looking for others Φ of the form Φ(u) =
∫

R dx g(x) G(u, ∂xu, . . . , ∂kxu), with G a polynomial and g
a C∞ function, is unnecessay. Indeed, both {Φ, H} and Υ(t) := Φ − t{Φ, H} are first integrals of the
motion with density C∞ in x and polynomial in u and its derivatives (and t-linear in the case of Υ). Thus,
we know from [34, Thm. 1 & Rem. 3] that they are completely characterised, up to the usual equivalence
of conservation laws [28, Sec. 4.3]. Therefore, the functions Φ are also completely characterised. Note
however, that it is not excluded that functions Φ with an integrand G involving fractional derivatives,
an infinite number of derivatives, or of class C∞ might work. Non-polynomial conserved densities are
known to exist in the periodic case (see [27, Sec. 5]).

4.5.2 Quantum systems

Let H be a complex Hilbert space, with scalar product 〈 · , · 〉 antilinear in the left entry. Define on H the usual
quantum-mechanical symplectic form

ω : H×H → R, (ψ1, ψ2) 7→ 2 Im〈ψ1, ψ2〉.

The pair (H, ω) has the structure of an (infinite-dimensional) symplectic vector space. Now, define for any
bounded selfadjoint operator Hop ∈ B(H) the expectation value Hamiltonian function

H : H → R, ψ 7→ 〈Hop〉(ψ) := 〈ψ,Hopψ〉.

Then, it is known [26, Cor. 2.5.2] that the vector field and the flow associated to H are XH = −iHop and
ϕt(ψ) = e−itHop ψ. Therefore, the Poisson bracket of two such Hamiltonian functions H,K satisfies for each
ψ ∈ H

{K,H}(ψ) = ω
(
XK(ψ), XH(ψ)

)
= −ω(Kopψ,Hopψ) =

〈
ψ, i[Kop, Hop]ψ

〉
.

19



So, in this framework, verifying Assumption 3.2 amounts to finding Hamiltonian functions H ≡ 〈Hop〉 and
Φj ≡ 〈(Φj)op〉 satisfying the commutation relation[

[(Φj)op, Hop], Hop

]
= 0. (4.5)

In concrete examples, the operators Hop and (Φj)op are usually unbounded. Therefore, the preceding calcula-
tions can only be justified (using the theory of sesquilinear forms) on subspaces of H where all the operators
are well-defined. We do not present here the whole theory since much of it, examples included, is similar to that
of [31]. We prefer to present a new example inspired by [16], where all the calculations can be easily justified.

LetU be an isometry inH admitting a number operator, that is, a selfadjoint operatorN such thatUNU∗ =
N − 1. Define onH the bounded selfadjoint operators

∆ := Re(U) ≡ 1
2 (U + U∗) and S := Im(U) ≡ 1

2i (U − U
∗).

Then we know from [16, Sec. 3.1] that any polynomial in U and U∗ leaves invariant the domain D(N) ⊂ H of
N . In particular, the operator

A0 := 1
2 (SN +NS), D(A0) := D(N),

is well-defined and symmetric. In fact, it is shown thatA0 admits a selfadjoint extensionAwith domainD(A) =
D(NS). Furthermore, one has on D(N) the identity i[A,∆] = ∆2 − 1. So, if we define the Hamiltonian
functions

H : H → R, ψ 7→ 〈∆〉(ψ) and Φ : D(N)→ R, ψ 7→ 〈A〉(ψ),

we obtain for each ψ ∈ D(N)

(∇H)(ψ) = {Φ, H}(ψ) = 〈i[A,H]〉(ψ) = 〈∆2 − 1〉(ψ),

and Assumption 3.2 is verified for each ψ ∈ D(N):{
{Φ, H}, H

}
(ψ) = ω

(
X〈∆2−1〉(ψ), X〈∆〉(ψ)

)
=
〈
i[∆2 − 1,∆]

〉
(ψ) = 0.

Now, since the spectrum of ∆ is [−1, 1], the operator 1−∆2 is positive, so we have the equivalences

〈∆2 − 1〉(ψ) = 0 ⇐⇒
∥∥(1−∆2)1/2ψ

∥∥2 = 0 ⇐⇒ ψ ∈ E∆({±1}).

Thus,

Crit(H,Φ) ≡ (∇H)−1({0}) =
{
ψ ∈ D(N) | 〈∆2 − 1〉(ψ) = 0

}
= D(N) ∩ E∆({±1}).

On the other hand, the elements ψ ∈ Crit(H) satisfy the condition

0 = XH(ψ) = −i∆ψ ⇐⇒ ψ ∈ E∆({0}).

This implies that Crit(H) = {0}, since the spectrum of ∆ is purely absolutely continuous outside the points±1
[16, Prop. 3.2]. Finally, the function Tf is given by

Tf = −〈A〉 · (∇Rf )
(
〈∆2 − 1〉

)
on D(N) \ Crit(H,Φ).

Typical examples of operators ∆ and N of the preceding type are Laplacians and number operators on
trees or complete Fock spaces (see [16] for details).
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[29] M. Önder and A. Verçin. Orbits of the n-dimensional Kepler-Coulomb problem and universality of the
Kepler laws. European J. Phys., 27(1):49–55, 2006.

[30] M. Reed and B. Simon. Methods of modern mathematical physics. Volume II. Fourier analysis, self-
adjointness. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975.

[31] S. Richard and R. Tiedra de Aldecoa. A new formula relating localisation operators to time operators.
preprint on http://arxiv.org/abs/0908.2826.

[32] S. Richard and R. Tiedra de Aldecoa. Time delay is a common feature of quantum scattering theory.
preprint on http://arxiv.org/abs/1008.3433.

[33] C. Sulem and P.-L. Sulem. The nonlinear Schrödinger equation, volume 139 of Applied Mathematical
Sciences. Springer-Verlag, New York, 1999. Self-focusing and wave collapse.

[34] J. A. Sanders and J. P. Wang. Classification of conservation laws for KdV-like equations. Math. Comput.
Simulation, 44(5):471–481, 1997.

[35] W. Thirring. Classical mathematical physics. Springer-Verlag, New York, third edition, 1997. Dynamical
systems and field theories, Translated from the German by Evans M. Harrell, II.

[36] R. Tiedra de Aldecoa. Time delay and short-range scattering in quantum waveguides. Ann. Henri Poincaré,
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