MULTIFRACTAL ANALYSIS OF BIRKHOFF AVERAGES FOR
COUNTABLE MARKOV MAPS

GODOFREDO IOMMI AND THOMAS JORDAN

ABSTRACT. In this paper we prove a multifractal formalism of Birkhoff aver-
ages for interval maps with countably many branches. Furthermore, we prove
that under certain assumptions the Birkhoff spectrum is real analytic. We
also show that new phenomena occurs, indeed the spectrum can be constant
or it can have points where it is not analytic. Conditions for these to happen
are obtained. Applications of these results to number theory are also given.
Finally, we compute the Hausdorff dimension of the set of points for which the
Birkhoff average is infinite.

1. INTRODUCTION

The Birkhoff average of a regular function with respect to an hyperbolic dynam-
ical system can take a wide range of values. This paper is devoted to study the fine
structure of level sets determined by Birkhoff averages. The class of dynamical sys-
tems we consider are interval maps with countably many branches. These maps can
be modeled by the (non-compact) full-shift on a countable alphabet. The lack of
compactness of this model, and the associated convergence problems, is one of the
major difficulties that has to be overcome in order to obtain a precise description
of the level sets.

Let us be more precise, denote by I = [0,1] the unit interval. We consider the
class of EMR (expanding-Markov-Renyi) interval maps. This class was considered
by Pollicott and Weiss in [23] when studying multifractal analysis of pointwise
dimension.

Definition 1.1. A map T : I — I is an EMR map, if there exists a countable
family {I;}; of closed intervals (with disjoint interiors int I, ) with I; C I for every
1 € N, satisfying

(1) The map is C* on Uy int I;.

(2) There exists € > 1 and N € N such that for every x € U2 I; and n > N
we have |(T™) (x)] > &™.

(3) The map T is Markov and it can be coded by a full-shift on a countable
alphabet.
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(4) The map satisfies the Renyi condition, that is, there exists a positive number
K > 0 such that

7" (2)]
sup sup T———i—— <
neNz,y,zel, | T (W)|[T"(2)]

The repeller of such a map is defined by
A :={x e UX I;: T"(z) is well defined for every n € N}.

For simplicity we will also assume that zero is the unique accumulation point of the
set of endpoints of {I;}.

Example 1.1. The Gauss map G : (0,1] — (0,1] defined by
1 1
G(z)=—-— {} )

€T

where [-] is the integer part, is an EMR map.

The ergodic theory of EMR maps can be studied using its symbolic model and
the available results for countable Markov shifts. We follow this strategy in order to
describe the thermodynamic formalism for EMR maps for a large class of potentials
(see Section 2).

Let ¢ : A — R be a continuous function. We will be interested in the level sets
determined by the Birkhoff averages of ¢. Let

n—1
. . 1 i
Q= inf {nlingo - ZO H(T'x) :x € A} and

n—1
1 ,
o = sup {nh_)néo - E p(T'x) :x € A} .
i=0

Note that, since the space A is not compact, it is possible for a,, and aj; to be
minus infinity and infinity respectively. For « € [, aps] we define the level set of
points having Birkhoff average equal to « by

1 n—1 )
J(a) = A lim — T'x) = .
() {me ningon;¢( x) a}
Note that these sets induce the so called multifractal decomposition of the repeller,
QN

A= J |JT,

aA=Qm

where J' is the irreqular set defined by,

n—1
J = {x € A: the limit lim 1 Z $(T'x) does not exists } .
e iz
The multifractal spectrum is the function that encodes this decomposition and it is

defined by
b(a) = dimpy (J (),
where dim(-) denotes the Hausdorff dimension (see Subsection 2.3).
The function b(«) has been studied in the context of hyperbolic dynamical sys-
tems (for instance EMR maps with a finite Markov partition) for potentials with
different degrees of regularity. Initially this was studied in the symbolic space for
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Holder potentials by Pesin and Weiss [25] and for general continuous potentials
by Fan, Feng and Wu [8]. Lao and Wu, [8], then studied the case of continuous
potentials for conformal expanding maps. Barreira and Saussol [2] showed that the
multifractal spectrum for Hélder continuous functions is real analytic in the setting
of conformal expanding maps. They stated their results in terms of variational for-
mulas. Olsen [22], in a similar setting obtained more general variational formulae
for families of continuous potentials. The multifractal analysis for Birkhoff aver-
ages for some non-uniformly hyperbolic maps (such as Manneville Pomeau) was
studied by Johansson, Jordan, Oberg and Pollicott in [16]. There have also been
several articles on multifractal analysis in the countable state case see for example
[6, 10, 12, 18]. However, these papers look at the local dimension spectra or the
Birkhoff spectra for very specific potentials (e.g. the Lyapunov spectrum).

Our main result is that in the context of EMR maps we can make a variational
characterisation of the multifractal spectrum,

Theorem 1.1. Let ¢ € R be a potential then for o € (—o0, apr) we have that

h
(1) b(a):sup{)\EZ;:ueMT,/quu:a and)\(u)<oo},
where the class R is defined in Subsection 2.2, My denotes the set of T—invariant
probability measures, h(u) denotes the measure theoretic entropy and A(u) is the

Lyapunov exponent (see Section 2).

The other major result, which we proof in Section 4, is that when ¢ is suffi-
ciently regular and satisfies certain asymptotic behaviour as x — 0 the multifractal
spectrum has strong regularity properties.

Theorem 1.2. Let ¢ € R be a potential. The following statements hold.

(1) If lim, % = oo and there exists an ergodic measure of full di-
mension pu then b(c) is real analytic on ([ ¢du, anr) and b(e) = dim A for
all a < [ gdp.

(2) If lim,_o % = oo and there does not exist an ergodic measure of
full dimension then b(«) is real analytic for all o € (—o0, apy).

(3) If lim, .0 % = 0 then there are at most two point when b(«) is

non-analytic.

Without the assumptions made in Theorem 1.2 it is hard to say anything in
general but it is possible to say things in specific cases. We investigate this further
in Sections 5 and 6. In particular in Section 5 we look at the case when ¢(z) =
—log|T’| and we also look at the shapes b(«) can take.

In Section 6 we apply the above two theorems to the Gauss map and obtain
results relating to the continued fraction expansion. Our results relate to classical
ones by Khinchine [19] regarding the size of sets determined by averaging values of
the digits in the continued fraction expansion of irrational numbers. We not only
consider the behaviour of the limit

lim Yai-as-...- an,
n—oo
where the continued fraction expansion of z is given by [ajas . ..]. But we generalise

it to a wide range of other functions. For example, we are able to describe level
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sets determined by the arithmetic averages of the digits in the continued fraction:
1
lim — (a1 +as+ - +an).
n—oo M,

Note that there is related work in [7] where they look at the dimension of the sets
where the frequencies of values the a; can take are prescribed.

Since the potentials we consider are unbounded their Birkhoff average can be
infinite. In Section 7 we compute the Hausdorff dimension of the set of points for
which the Birkhoff average is infinite.

2. SYMBOLIC MODEL AND THERMODYNAMIC FORMALISM

In this Section we describe the thermodynamic formalism for EMR maps. In
order to do so, we will first recall results describing the thermodynamic formalism
in the symbolic setting.

2.1. Thermodynamic formalism for countable Markov shifts. The full-shift
on the countable alphabet N is the pair (X, 0) where

Y = {(xi)i>1 : ¥ € N},

and o : ¥ — ¥ is the shift map defined by o(z129---) = (ze2x3---). We equip ¥
with the topology generated by the cylinders sets

Ciyoi,, ={z €X:2;=14; for 1 <j <n}
The n—variation of a function ¢ : ¥ — R are defined by
V() =sup{|d(z) — d(y)| 12,y € X, 2; =y; for 0 <i <n—1}.

We say that a function ¢ : ¥ — R has summable variation if >~ , V,(¢) < co.
If ¢ has summable variation then it is continuous. A function ¢ : ¥ — R is called
weakly Holder if there exist A > 0 and 6 € (0,1) such that for all n > 2 we have
V(@) < A0™. The thermodynamic formalism is well understood for the full-shift
on a countable alphabet. The following definition of pressure is due to Mauldin
and Urbaniski [21],

Definition 2.1. Let ¢ : ¥ — R be a potential of summable variations, the pressure
of ¢ is defined by

n—1
(2) P(¢) = nlgngoﬁlog > exp (Z czS(crix)) :
o™ (z)=x =0

The above limit always exits, but it can be infinity. This notion of pressure
satisfies the following results (see [21, 26, 27, 28]),

Proposition 2.1 (Variational Principle). If ¢ : ¥ — R has summable variations
and P(¢) < oo then

P(¢):sup{h(,u)+/¢du:—/¢du<oo andue./\/lo},

where M, is the space of shift invariant probability measures and h(u) is the mea-
sure theoretic entropy (see [30, Chapter 4] ).
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Definition 2.2. Let ¢ : X2 — R be a potential of summable variations. A measure
uw € M, is called an equilibrium measure for ¢ if

P(O) =i+ [ odn
Proposition 2.2 (Approximation property). If ¢ : ¥ — R has summable varia-
tions then
P(¢) = sup{P,x(¢) : K C X : K # 0 compact and o-invariant},

where Py (¢) is the classical topological pressure on K (for a precise definition see
[30, Chapter 9]).

Definition 2.3. A probability measure p is called a Gibbs measure for the potential
¢ if there exists two constants M and P, such that for every cylinder C;,. i, and
every x € Cy, .., we have that

1 1(Ciy...i,)
M = exp(—nP + 372 d(oix)) ~

Proposition 2.3 (Gibbs measures). Let ¢ : ¥ — R be a potential such that
Yool V() < 00 and P(¢) < oo then ¢ has a unique Gibbs measure.

Proposition 2.4 (Regularity of the pressure function). Let ¢ : ¥ — R be a weakly
Hélder potential such that P(¢) < oo , there exists a critical value s* € (0,1] such
that for every s < s*we have that P(s¢) = oo and for every s > s*we have that
P(s¢) < 0o. Moreover, if s > s* then the function s — P(s¢@) is real analytic and
every potential s¢ has an unique equilibrium measure.

2.2. Symbolic model. It is a direct consequence of the Markov structure assumed
on a EMR map T that T : A — A can be represented by a full-shift on a countable
alphabet (X, o). Indeed, there exists a continuous map 7 : ¥ — A such that roo =
Tom. Moreover, if we denote by F the set of end points of the partition {I;}, the map
7: % — A\U,eny T "F is an homeomorphism. Denote by I(iy,...in) = 7(Cs;..4,)
the cylinder of length n for T'. We will make use of the relation between the symbolic
model and the repeller in order to describe the thermodynamic formalism for the
map 7. We first define the two classes of potentials that we will consider,

Definition 2.4. The class of regular potentials is defined by
R := {QS A= R: ¢ <0, ¢om has summable variations and lin%J o(x) = foo} .

Note that if we have a potential ¥ : A — R such that ay) + b € R for some
a,b € R then since we can compute the Birkhoff spectrum for ay) + b € R we can
compute the Birkhoff spectrum for .

Definition 2.5. The class of strongly regular potentials is defined by
R:={¢p:AN—R:¢€R and ¢ on is weakly Holder} .

Example 2.1. Let {a,}, be a sequence of real numbers such that a, — —oco. The
locally constant potential ¢ : A — R defined by ¢(x) = a, if x € I(n), is such that
bpER.
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The topological pressure of a potential ¢ € R is defined by

PT(¢)=Sup{h(,u)+/¢du:—/qﬁd,u<ooandu€MT},

where M denotes the space of T—invariant probability measures. Since there
exists a bijection between the space of o—invariant measure M, and the space of
T —invariant measures M, we have that

3) Pr(¢) = P(mo ¢).

Therefore, all the properties described in Subsection 2.1 can be translated into
properties of the topological pressure of the map 7. Since both pressures have the
exact same behaviour, for simplicity, we will denote them both by P(-).

Remark 2.1. Since we are assuming that the set E of end points of the parti-
tion has only one accumulation point and it is zero, we have that if ¢ € R then
lim,_,o ¢(x) = —o0 and if a € A\ {0} then lim,_,, ¢(z) < 0.

Remark 2.2. Note that if T is an EMR map then the potential —log |T'| € R. If
€ M then the integral

N i= [ 1og 7'\ d
will be called the Lyapunov exponent of p.

2.3. Hausdorff Dimension. In this subsection we recall basic definitions from
dimension theory. We refer to the books [1, 4, 24] for further details. A countable
collection of sets {U; }icn is called a d-cover of F C R if F' C | J,;oy Us, and for every
i € N the sets U; have diameter |U;| at most d. Let s > 0, we define

Hj(F) :=inf {i |U;|* : {U;}: is a é-cover of F}
i=1
and
H*(F):= }%Hg(F).

The Hausdorff dimension of the set F' is defined by

dimg (F) :=inf{s > 0: H*(F) =0}.
We will also define the Hausdorff dimension of a probability measure u by

dimg (p) = inf {dimg(Z) : p(Z) = 1}.

A measure p € My is called a measure of maximal dimension if dimy p = dimg A.

3. VARIATIONAL PRINCIPLE FOR THE HAUSDORFF DIMENSION

In this section we prove our main result. That is, we establish the Hausdorff
dimension of the level sets J(«a) satisfy a conditional variational principle.

Theorem 3.1. Let ¢ € R then for a € (—oo,apr)

(4) dimpy (J(«)) = sup {ZEZ; S E MT,/qbd,u =a and \(p) < oo} )
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Proof of the lower bound. In order to prove the lower bound first note that if
p € My is ergodic and [ ¢dp = o then p(J(e)) = 1. Moreover if A() < oo then
h(p)

dimpy (p) = 3o and we can conclude that
. . h(p)
dimg (J(er)) > dim = —.
Thus we can deduce that
h
dimg (J(«)) > sup {)\Efg : b € Myp and ergodic ,/qﬁdu =« and \(u) < oo} .

To complete the proof of the lower bound we need the following lemma

Lemma 3.1. Let o € (—oo, ). If p€ My, [ ¢dp = o and MN(p) < oo then for
any € > 0 we can find v € Mg which is ergodic and

(1) [¢dv=aq,
(2) [h(v) = h(w)| <,
(3) [AW) = Al < e

Proof. Let p € Mr, [¢dp = o and A(u) < oo. We can then find a sequence
of invariant measures {/,} supported on finite subsystems such that [¢du, =
a, limy o0 A(ptn) = M) and limy,— oo h(pn) = h(p). Since these measures are
supported on finite subsystems we can apply Lemma 2 and Lemma 3 from [16] to

complete the proof. O
We can now immediately deduce that
h
sup{(u) :MEMT,/qu,u:aand Ap) <oo} =
A
h(w) : _
sup o) w € Mp and ergodic , [ ¢du = a and AM(pu) < 0o ¢,
1

which completes the proof of the lower bound.

3.1. Upper bound. In this section we prove the upper bound of our main result.
We adapt to our setting the method used in [16].

Lemma 3.2. The function

F(a):= sup{m:uEMT,/qbdu:a and A(p) <oo}

is continuous in the domain (—oo, apr).

Proof. Let {un} be a sequence of measures in My satisfying A(p,) < oo and
converging to a measure p where [ ¢dp = a. Let 1, o € Mr such that

/¢dﬂ<a</¢dﬁ

and A(77), A(7r) < oo. By considering convex combinations of j,, with 7z or 4 we can
find a sequence of measures v,, where f ¢ dv, = « for each n and

h(ﬂn) h(vy,)

Apn)  AMvn)

lim ‘

n—oo

It then follows that
F(a) > limsup F(ay,).

n—00
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In the other direction we fix p,v € My with [¢dv = f < o = [¢dp. Let
vp = pv + (1 — p)p and note that

liminf F(z) 2 lim ])l\EZZ; N ;LEZ;
and

We can use this to deduce that
F(a) <liminf F(ay,).

n—oo

O

Denote by Spo(z) := Zf:_ol #(T'z). Let @« € R,N € N and € > 0 and consider
the following set,

(5) J(a,N,e) := {z e SMZ(I) € (a—e€a+e¢), for every k > N} .
Note that
J(@)c | J(@,N,e)
N=1

In order to obtain an upper bound on the dimension of J(a) we will compute
upper bounds on the dimension of J(a, N, ¢€). Denote by Ci, the cover of J(a, N, €)
by cylinders of length k£ € N, that is

Cr :={I(i1,...,ig) : L[(i1,...,ix) N J (o, N,€) # 0} .
Lemma 3.3. For every k € N the cardinality of Cy, is finite.

Proof. Since ¢ € R we can deduce that lim; .. inf,c;(;) ¢(z) = —oco and hence we
can find an ¢ € N such that for all z € I(j) with j > i we have that |¢(z)| > k(a+e).
It then follows that Cj, only contains cylinders I (i1, ..., %) where each i; < i. There
is clearly only a finite number of such cylinders. (|

Let s € R denote the unique real number such that
> (i, i) =1
I(i1,...i%)ECk
We define the following number:

(6) s := limsup sy,
k—o0

Lemma 3.4. The following bound holds,
dimgy (J(a, N,e€)) < s,

and there exists a sequence of T—invariant probability measures {u} such that

Ji (5= 55a) =

and [ ¢dur € (o — 2, o + 2¢).
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Proof. To see that dimpy (J(«, N,€)) < s, we note that for k sufficiently large and
e>0
HF(J(a, N, e) < Y (i, )T < 1
I(il,...ik)GCk

This means that H57¢(J(a, N,€)) < 1 and so dim J (o, N,€) < 5+ €.

For the second part let 7y, be the T*-invariant Bernoulli measure which assigns
each cylinder in Cj, denoted by I(i1,...,4), the probability |I(iy,...,i)|**. Note
that the entropy of this measure with respect to T will be

BT = —se S T .orin)* log |T(ir,....i0)
I(iy,...,ix)€C

and there will exist C' > 0 such that for all £ € N the Lyapunov exponent
(g, TFH1) satisfies

N Te) = > (i, i) log [I(in, ... ik)|| < C.
I(i1,...,ig)E€CK

This then gives that

Sk()‘(nkaTk) - C) < h(M,Tk) < Sk(A(nk’aTk) + C)
)‘(ﬁlmTk) h >‘(77k>Tk) n )\(ﬁlmTk)

and since \(ng, T%) > £F it follows that limy_.o };EZ:;:; — s, = 0. Moreover, for
k sufficiently large each cylinder in C will only contain points x where Si¢(x) €
(o — 26, + 2¢). This means that [ % dni € (o — 2¢,a + 2¢). To complete the

proof we simply let uj = Zf;ol ne o T2 O
Thus, we can deduce that
dimg J(o) <lim  sup  F(y)
=0 yE(a—e,a+te)
The fact that
dimy J(o) < F(a)
now follows by Lemma 3.2. This completes the proof of Theorem 3.1.

Remark 3.1. It is a direct consequence of the work of Barreira and Schmeling [3]
together with the approzimation property of the pressure (Proposition 2.2) that the
irreqular set has full Hausdorff dimension,

dimH J/ = dlmH A.

4. REGULARITY OF THE MULTIFRACTAL SPECTRUM

This section is devoted to the study of the regularity properties of the multi-
fractal spectrum. We relate the conditional variational principle to thermodynamic
properties and as a result prove Theorem 1.2 . Our proof is based on ideas developed
by Barreira and Saussol [2] in the uniformly hyperbolic (Markov with finitely many
branches) setting. Nevertheless, most of their arguments can not be translated into
the non-compact (Markov with countably many branches) setting. It should be
pointed out that the behaviour of the multifractal spectrum in this setting is much
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richer than in the compact setting. New phenomena occurs, in particular the mul-
tifractal spectrum can be constant and it can have points where it is not analytic.
We obtain conditions ensuring these new phenomena to happen.

The following Lemma is a direct consequence of results by Mauldin and Urbanski
[21], Sairg [27] and Stratmann and Urbariski [29]. We will use it to deduce certain
regularity properties of the multifractal spectrum. Throughout this section we will
let ¢ € R and ajps to be as in the introduction. Some of the results will need
additionally that ¢ € R.

Proposition 4.1 (Regularity). If ¢ € R, § € (0,1] and a € (—00,ans) then the
function

q— P(q(¢ — o) — dlog|T"]),
when finite is real analytic, and in this case

d
- Pl =a)=dlog )| = [dugs =

where fig, 5 is the equilibrium state of the potential qo(¢ — o)) — 0 log |T"|.

For a € (—o0, apr) we will let

6(a)zsup{m:uEMT,/Qﬁduzaand Alp) <oo}.

We wish to relate d(«) to the function g — P(q(¢ — «) — dlog |T”"]). To do this we
introduce the value 6* which is defined by

§* :=inf {6 € [0,1] : P(q¢ — dlog|T'|) < oo for some g > 0} .
This quantity will alway give a lower bound for §(«).
Lemma 4.1. For all o € (—o0, apr) we have that §(a) > §*.

Proof. If §* = 0 then this statement is obvious so we will assume that §* > 0. Let
0<s<d*and a € (—o0,apr). In order to show that §(a) > 6* we will exhibit a
sequence of invariant measures (1) such that for every n € N we have [ ¢ dv, = a

and L
lim (vn)

00 A(v)

> s.

First note that we can find a sequence of invariant measures (u,,) such that for all
n we have sA(uyn) < h(p,) < oo and lim, o —hf(ZdL = o0o0. Indeed, note that

for every ¢ > 0 we have that P(q¢ — dlog|T’|) = oo. Let ¢ > 0 and A > 0 with
A > qaps. Because of the approximation property of the pressure, we can choose
an invariant measure v satisfying

(8) h(v) + q/(b dv — sA(v) > A.
That is

h(v) > (A — qapr) + sA(v).
From where we can deduce that
sA(v) < h(v) < oc.
Since [ ¢ dv < 0 then from equation (8) we have
h(v) A A(v)
©) “Tédv” Jedv “Todv

+q>q.
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Since we can do this for every positive ¢ € R, let ¢ = n and denote by u, an
invariant measures satisfying equations (8) and (9). The sequence () complies
with the required conditions.

Passing to a subsequence if necessary, we can assume that the sequence [ ¢dus,
is monotone and that the following limit exists y = lim,_, [ ¢du,, (note that v can
be —o0).

For sufficiently large values of n € N the integral [ ¢du, is close to . Therefore,
there exists f € R and an invariant measure p satisfying:

(2) h(p) < oo and A(p) < oo,
(3) a€ (B, [¢duy] or a € [[ ¢duy, ) for n € N large enough.

For n sufficiently large we can also find constants p, € [0,1] such that o =
P+ (1 —py) [ ¢dpy,. If p, = 0 for all n sufficiently large then there is nothing to
prove. Consider the following sequence of invariant measures (v,,) defined by

Vn = pnpt+ (1 = pn)pin.-
Then [ ¢ dv, = a. By construction we have that lim, .. h(u,) = co. Since by
assumption « # 8 we have that lim, .. (1 — p,) € (0,1]. Therefore

lim (1 — pp)h(uy,) = co.

n—00

This implies that

lim = lim Pallp) (1 = pu)h(pn) =8
n—00 )\(Vn) n—oo pn>\(:u) + (1 71)”)/\(#") T

O

For notational ease we will allow P(g(¢ —«) —dlog|T”|) > 0 to include the case
when it is infinite.

Lemma 4.2. If p € R, a € (—00,apr) and §(a) > 6* then for all ¢ € R we have
P(q(¢ — ) — 6(a)log|T"]) > 0
Proof. Recall that

h
6(c) :Sup{)\gﬁg VRS MT,/q’)du =a and A\(p) < oo}.
Denote by (pn)n @ sequence of T—invariant measures such that for every n € N we
have
(1> f ¢ dﬂn = Q,
(2) h(pn) < oo and A(p,) < 0o,
(3)

h
im ) d(a).
n—o0 A(ftn)
If we choose §* < s < §(a) and gy > 0 such that P(go¢ — slog|T’|) = K < oo then
by the variational principle for all n we have

q/¢>dun — 5\ pn) + h(pn) < K.
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Since for n sufficiently large we have

h(,un) — §la
Njen) ~ 0

we obtain d*A(un) < h(py). Thus, for n sufficiently large we have that
0" —s

o<

)‘(un) < 5*/\(Mn) - 8)‘(/171) < h(un) - 5/\(/1%) < K- qo.

Furthermore by the variational principle we have

Plato— o) ~ 8(@) 10g ) > 1)+ ( [ & din ) = d(@)An) =

Blta) = @A) 2 M) (12— 5a) )

The result then follows since

i (Ao (32 - 66a) ) ) 2 0

(]
We can now describe the function ¢ — P(q(¢ — ) —d(a) log|T”|) in more detail.

Lemma 4.3. For any a € (—oo,ap] one of the following three statements will
hold,

(1) 6(ar) = 6*.
(2) There exists qo € R such that P (qo(¢ — o) — d(a) log|T’|) = 0 and
0
I (a6 —0) ~ 3()log )| =0
q 9=q0

(3) There exists q. € R such that P (q.(¢ — ) — §(a) log|T'|) = 0 and
P(q(¢ — a) = d(a)log |T"]) = oo
for all g < q..

Proof. We will assume throughout that 6(a) > ¢* since otherwise (1) is satisfied.
We know that when finite the function ¢ — P (¢(¢ — a) — d(«) log |T”]) is real
analytic. Moreover, in virtue of Lemma 4.2, for all ¢ € R we have

P(q(¢ — a) = 6(a)log [T"]) = 0.

We will show that if the derivative of the pressure is zero then the pressure itself is
also zero. Indeed, assume that there exists gg € R such that

P (a(6~ o)~ s(a)log ') | =0.
q q9=q0
Denote by g, the equilibrium measure corresponding to the potential go(¢ — o) —
0(a). Then, Ruelle’s formula for the derivative of pressure gives that f pdpg, = a.
Thus

P (q(¢ — &) — () log | T"]) = =6(c)A(pgo) + hlpigy) < 0.
So, P (qo(¢p — ) — é6(a)log|T’|) = 0 and statement 2 holds. Note that if the pres-
sure function ¢ — P (q(¢ — ) — d(«) log |T”]) is finite for every ¢ € R then there
must exists ¢o € R such that the derivative of P (q(¢ — o) — é(a)log|T"|) at ¢ = qo
is equal to zero. This follows from Ruelle’s formula for the derivative of pressure
and the fact that a € (—oo, o).
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Let us assume now that the derivative of the pressure does not vanish at any
point and let g, = inf{q : P(¢(¢—a)—d()log|T’|) < oo}. It follows from standard
ergodic optimization arguments [15, 20] that

0
lim —P(q(¢ — a) — §(a) log |T"]) > 0.
g+ —o0 Ogq q=q*

If P(g.(¢p — ) — () log|T'|) = oo then by considering compact approximations to
the pressure we can see that

lim+ P(q(¢p — a) — 6(a)log |T']) =

a—qd
But recall that for ¢ > ¢, the pressure is finite. This means that for small € > 0
the derivative of the pressure for ¢ € (g, q. + €) will be negative. This, in turn,
will imply that there is a zero for the derivative and so cannot happen. Thus
P(gu(6 — @) — 6(a) log|T"]) < oc and

0

5oL (ae(¢ — ) = 6(a) log |T7]) > 0.
q 9=qc
If P(q.(¢p — ) — () log|T'|) = C > 0 then there exits a compact invariant set

K on which the pressure restricted to K satisfy Pk (q(¢—«)—d(«)log|T’|) > 0 for
all ¢ € R. By considering the behaviour as ¢ — co and ¢ — —oo this function must
have a critical point that we denote by gx. denote by pux the equilibrium measure
corresponding to gx (¢ — a) — 6(c) log |T"|. We can conclude that [ ¢dux = a and
SO

0 < Pg(qx(¢ — a) = 6(a) log |T"]) = h(px) — 6(a)A(px ).
This means that h(pg)/A(pr) > 6(a) which contradicts the definition of 6(«). So
we can conclude that

P(qe(¢ — o) — 6(a) log [T"]) = 0
and Property 3 is satisfied. (I

We will denote by A(«) the set of values o € (—o0, apr) where case 2 of Lemma
4.3 is satisfied.

Lemma 4.4. Let I C A(a) be an interval. The function o — b(a) = §(«) is real
analytic on 1.

Proof. Recall that

b(a):sup{igz;:MEMT7/¢du:aand Aw) <oo}.

In virtue of the definition of I we have that for o € I there exists g(a) € R such
that

P(g(a)(¢ — a) = b(a) log |T"]) = 0.
Recall that the function (q,d) — P(q(¢ — «) — dlog|T”|) is real analytic on each

variable. In order to obtain the regularity of b(«) we will apply the implicit function
theorem. Proceeding as in Lemma 9.2.4 of [1], if

P(q(¢ — o) — dlog |T"])
G(q,0,a) == < OP(q(¢—a)—3 log |T’])

9q
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we just need to show that
det K@G 367)} _ 0P(q(¢ — a) — dlog|T"]) 9°P(q(¢ — a) — dlog|T"])

dq’ 86 dq 9504
9*P(g(¢ — @) —dlog|T"|) OP(q(¢ — o) — dlog|T"])
0q? 00 ’

is not equal to zero for § = b(«) and g = ¢(«). Since OP(q(¢ — ) —dlog|T’|)/0q =
0 at ¢ = g(a) it is sufficient to show that 0?(P(q(¢ — a) — dlog|T"|))/dq* and
O(P(q(¢p—a)—dlog|T’]))/dd are nonzero. Since the function P(q(¢—a)—0log|T’|)
is strictly convex as a function of the variable ¢ we have that

9*(P(q(¢ — a) — dlog |T"]))

0.

0q? 7

Since, there exists an ergodic equilibrium measure p. such that
P —a)—dlog|T’
1ol
then we have ,
0P(q(¢ — a) = Slog|T"]) _

00 '

Therefore the function b(«) is real analytic on I O

Let so = inf {s € R: P(—slog|T'|) < co}. We are now ready to complete the
proof of Theorem 1.2 with the following more general proposition.

Proposition 4.2. Let ¢ € R. We have that
1. If 6* = dimpy A then b(a) = 6* for all a € (—o0, apg].
2. If 0" < so0 < dim A then there exists a non-empty interval I for which
I C A(a) and thus b(«) is analytic for a region of values of «.
3. If lim,_.g ﬁ% = oo then either
(a) A(a) = (—o0,an] and thus b(«) is analytic for a € (—o0, apg) or
(b) there exists an ergodic measure of full dimension v with a = f odv >
—o0 and then I(a) = [a, anm], b(a) is analytic for a € (—a, an] and
b(a) = dim A for a < a.
4. If lim,_,q % = 0 then b(a) is analytic on (—o0, ap] except for at
most two points.

Proof. Each part will be proved separately.
Part 1 can be immediately deduced from Lemma 4.1.

To prove part 2 we let s = dim A and note that 6* < so, < s. Since sy, < s then
P(—slog|T’|) = 0 and P(—tlog|T’|) > 0 for so <t < s and P(—tlog|T"|) = o0
for §* <t < so. Denote by v be the equilibrium state corresponding to —slog |T”|
and @ = [¢dv (this can be —oo, but if finite then b(a) = s). Since d(a) is a
continuous function of @ we can define

a =sup{a: d(a) > S}

Now we assume that o € (o, @) and so in particular 6(«) > 0*. Since §(a) > §*
we are in either case 2 or 3 of Lemma 4.3. Therefore there exist gy € R such that
P(go(¢ — a) — §(a)log |T']) = 0. Let ¢ < 0 and note that there exists a compact
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invariant set K C A and a T-invariant measure v, such that dimy v, > d(«) and
J ¢ dva < a. We have that

P(g(¢— a) — 5(0)log ")) > h(va) +4 ( [ oava - a) ~ S(a)A(va)

:q(/(bdz/a—a)—l-)\(ua) (iéi‘:;-é(a)) >0

and so go > 0. We also have that P(—d(a)log|T’|) > 0 with equality if and only if
a = a. By the definition of §* and noticing that §(«) > §* there exists ¢* > 0 such
that if ¢ € (0,¢*) then

P(q(¢ — a) = d(a) log |T"]) < oo.
Thus if 6(a) < 6* then ¢ — P(q(¢ — o) — 6(«) log|T”’|) is decreasing for ¢ suffi-
ciently close to 0 and we can only be in case 2 from Lemma 4.3. If & = o then
P(—=4(a)log|T']) = 0 and B%P(q(gzﬁ —a) — slog|T"|) o 0 which means we are

also in case 2 from Lemma 4.3.

To prove part 3 we first note that §* = 0. Indeed, given A > 1 there exists ¢ > 0
such that if x € (0, ¢€) then
—6@) _

log [T"(x)] =
that is, ¢(x) < —Alog |T"(x)|. If we denote by P.(-) the pressure of T restricted to
the maximal T —invariant set in (0, €) we have that P.(¢) < P.(—Alog|T’|) < oc.
Since the entropy of T restricted to (0, 1)\ (0, €) is finite and the potential ¢ restricted
to this set is bounded, we can deduce that P(¢) < co. In particular, we obtain that
0" =0.

Let us consider first the case where soc < s. In this setting the potential
—slog|T’| has an associated equilibrium state v with h(v)/A(v) = s. If we have
[ ¢dv = —oc then we can just apply the techniques from the previous part. If
J¢dv :== a > —oo then for o € (a,ap) we can see that b(a) = () will be
analytic by applying part 2. For o < o we know for 0 < § < s

(1) P(g(¢p —a) —dlog|T"|) = oo for all ¢ < 0,
(2) P(=6log|T']) > 0,
(3) P(g(¢p — ) —dlog|T"]) > q(a— a) — A\(v) + h(v) > 0 for all ¢ > 0.

Note that the first statement follows from the assumption lim,_.q % = 00.

Therefore we cannot be in cases 1 or 2 from Lemma 4.3. This means that we must
be in case 3 from Lemma 4.3 with ¢. = 0 and thus §(«a) = s.

We now assume that s = so,. We start with the case where P(—slog|T’|) <
0. This means that if {u,}nen is a sequence of T-invariant measures such that
lim,, o ig‘;r; = s then limy, oo A(tn) = oo. Indeed, assume by way of contra-

diction that limsup,,_, . A(in) = L < oo. Given € > 0 there exists N € N such

that
h(pn)

Apn)

that is h(un) — sA(un) > —eL. Since this holds for arbitrary values of € we obtain
that P(—slog|T"|) > 0. This contradiction proves the statement. Now, since by

> S —E€,

assumption lim,_.q ﬁ% = oo we have that lim,,_, o f ¢dp, = —oo. Therefore
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for @ € (—00, aps) we must have §(«) < s. This means that P(—d(«)log|T’]) = oo
and for all ¢ > 0 we have P(q(¢ — o) — §(«) log|T’|) < oo. Thus we must be in
Case 2 from Lemma 4.3 and the proof is complete.

We now assume that P(—slog|T’|) = 0 and that v is the equilibrium state for
—slog|T"|. For any a < [ ¢dv we can argue exactly as when s, < s to show that
§(a) = s. For a > [ ¢dv we first need to show that §(a) < s. To prove this, note
that the function ¢ — P(q(¢ — &) — slog|T’|) has a one sided derivative at ¢ = 0
with derivative [(¢—a)dr < 0. Thus by Lemma 4.3 it is not possible that d(a) = s.
So d(ar) < s and we can use the same arguments as when P(—slog|T”|) < 0.

We now turn to part 4 of the Lemma. In this case §* = s.,. Indeed, given ¢ > 0
there exist € > 0 such that if x € (0,¢) then —tlog|T"(z)| < ¢(z). If we denote by
P.(-) the pressure of T restricted to the maximal T—invariant set in (0, €) we have
that P.(—(t + &) log|T']) < P.(q¢ — §log|T’|). Since the entropy of T restricted
to (0,1) \ (0,€) is finite and the potentials ¢ and log |T”| restricted to this set are
bounded, we can deduce that for ¢ > 0 and any positive ¢ > 0 we have

P(—(t+6)log|T"]) < P(qg¢ — dlog [T"]).
Therefore §* = 5.
This implies that if s = so, then §(a) = s for all & € (—o0,ap). So we

will assume that so < s. If 6(a) > Soo then by our assumption on ¢ we have
P(q(¢ — a) — 6(a)log |T']) < oo for all ¢ € R and

lim P(q(¢ — a) — d(a)log |T"]) = oo,
q—Foo

and so we must be in case 2 from Lemma 4.3. So we need to show that the set
J=Aa:0(a) > seot

is a single interval. Denote by v be the equilibrium measure corresponding to
—slog|T’| and by o = [¢dr. Let o € J we know that there is an equilibrium

measure fio, with [ ¢du, = a and Zgﬁzg = 6(a). Let 8 € R be real number

bounded by a and a. By considering convex combinations of pu, and v we can
see that §(8) > d(«). It therefore follows that J is a single interval and the only
possible points of non-analycity for 6(a)) = b(«) are the endpoints of J.

]

5. THE LYAPUNOV SPECTRUM

A special case of the Birkhoff spectrum, which has received a great deal of atten-
tion, is the Lyapunov spectrum. This can be included in our setting by considering
¢(x) = —log |T'(z)| and then the Lyapunov spectrum is given by L(a) = b(—a).
The present section is devoted not only to show how previous work on Lyapunov
spectrum can be deduced from ours, but also to present new results on the subject.

In related setting there has been work for the Gauss map in [18, 23]; for fairly
general piecewise linear systems [17] and in [14] the spectra for ratios of functions
is studied where one of the functions is —log |T"(x)|.

If T denotes an expanding-Markov-Renyi (EMR) map then the variational for-
mula proved in Theorem 1.1 holds for the Lyapunov spectrum. On the other hand,
neither of the assumptions for Theorem 1.2 are satisfied. However, it is still possible
to describe in great detail the Lyapunov spectrum.
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Let ¢(x) = —log |T"(x)| and, as in the previous Section, let
Soo = Inf{d € R: P(d¢) < oo}.
The following Theorem shows how our results fit in with the results in [18, 14, 17].

Theorem 5.1. For all o € (—o0, apr) we have that

(10) b(a) :igf{w])(uf)}.

Furthermore
(1) If P(s00®) = 00 then b(a) is real analytic on (—oo, apy).
(2) If P(secp) = k < 00 and . is the equilibrium state for seo¢ then b(a) is
analytic except at a. = [ ¢pdp.. For a < e we have that b(a) = Seo — g
Proof. The formula for b(a) given in equation (10) was shown in a slightly different
setting in [17]. We show how it can also be derived from the methods in this paper.
For each 6 € R we will denote the function fs: R — R by

f5(@) = P(q¢ + 6¢) = P((¢ + 6)9).
We first assume that P(sec¢) = co. Thus, we have

00 if ¢ <800 — 6
Jsta) = {ﬁnite if g > so0 — 0.

Therefore, for each a € (—o0, apr) and for each § € R there exist ¢(0) > soo — 3
such that f5(¢(0)) = a. Denote by ¢(6(a)) € R the corresponding value for §(c).
We have that

d%P<q¢+6<a><z>>

a=q(5(a))
Moreover
P(q(6(a))¢ + 6()¢) = q(d(a))a.
Thus, for all & € (—oo,aps] we are in case 2 from Lemma 4.3. Therefore, the
Lyapunov spectrum is real analytic on (—oo, apz].

Now let P : R — R be defined by P(u) := u + #j). We can then deduce that
Pq(6(c)) + 0(a)) = d(er) and P’(q(6(cx)) + 0(«)) = 0. Finally since the pressure
is convex we must have that P”(¢(6(«))) > 0 and that ¢(d(«)) will be the only
minimum point for P. Thus

/
d(a) = inf {u + Plzulog |T)) } )
u «

We will now assume that P(—s.¢) = k. Let pu. be the equilibrium measure
associated to —soo¢p. If @ > [ ¢dp, then we can argue exactly as in the previous
case. For a < a, we let ¢ = 2 and note that

P(q(¢p — @) + (500 — @)9) = P(50c¢) —aqg =k —k = 0.
Note that if ¢ < k/a then

P(q<¢—a)+(sm—2)¢) = .

Therefore we are in case (3) from Lemma 4.3. Thus b(a) = s — =. We again
define P : R — R by P(u) := u + w. If ¢ € R is such that P(q) < oo

K
«
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then we denote by p, be the equilibrium measure associated with g¢. Note that
P'(q) = 1+ —A(pg)—a > 0. Thus the infimum of P will be achieved at so.. We
can then calculate. )

If{P(u)} = P(s00) = S0 — o

]

We now turn our attention to the shapes the Lyapunov spectrum can take. We
start by giving a result which holds for all potentials ¢ € R

Theorem 5.2. Let T be an EMR map with dimg A = s and ¢ € R, then

(1) If there exists a T-ergodic measure of mazimal dimension p and o* = [ ¢du
then b(«) is non-increasing on [a*, aps] and non-decreasing on (—oo, a*].
(Note that it is possible that a* = —o0.)

(2) If there exists no ergodic measure of mazimal dimension then b(«) is non-
decreasing on (—oo, apg].

Proof. For the first part. Let a1 > as > a* > —oo. For any € > 0 there exists
an invariant measure i such that [ ¢dpu; = aq and h(pr) > A(pa)(b(ar) —e€). If
a* > —oo we can then find p € (0,1) such that ay = pa* + (1 — p)ay. Now let
vy =pp+ (1 —p)pr. Thus [ ¢dvy = ap and

h(v1) = psA(pa) + (1 = p)(blar) — A(p1) = (blar) — €)A(v1).

Therefore b(ag) > b(ap). The case where a3 < as < a* is handed analogously.
Now assume that a* = co and a1 > as. Let apr > a1 > as > —oo. By considering
compact approximations we can find an invariant measure p such that [ ¢dp < as
and co > h(p) > (b(ar) — e)A(u). We can also find a measure pp such that
Jodpr < a1 and h(p1) > (b(aq) — €)A(p1). To complete the proof we take a
suitable convex combination of p and p;.

In the case where there is no ergodic measure of maximal dimension we know
that s = so.. Again by considering compact approximations we can find a sequence
of invariant measures p,, such that lim,, . ¢dp, = —oo and lim,,_, ?\EZ :g
The proof now simply follows the first part when o* = —cc.

= S.

We now return to the Lyapunov spectrum. It was shown in [13] that in the
hyperbolic case it can have inflection points and it clearly has to have such points
in the non-compact case. An application of the methods used in Theorem 5.2
combined with results from Theorem 5.1 allow us to prove in a simple way that as
long as se < s = dimg(A) the inflection points can only appear in the decreasing
part of the spectrum. We present the proof in the non-compact case however it
also holds in the compact, hyperbolic case.

Corollary 5.1. Let T be an EMR map such that soo < s = dimg(A) then the
increasing part of the Lyapunov spectrum is concave.

Proof. Again we will let ¢ = —log|T’| and note that in this case the Lyapunov
spectrum satisfies L(a) = b(—a). Since so < s there exists an ergodic measure
of maximal dimension that we denote by u. Let [ ¢du = a*. By Theorem 5.2 we
know that b(«) is non-increasing on [a*, apr). Moreover the proof of Theorem 5.1
implies that for all a € [a*, apr) there will exist a measure p, such that A(pe) = —«

and %ZZ% = d(a).
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We now introduce variables A1, A2 such that
inf{/log|T’| dv : Z/EMT} = A <A1 < A2 <A ::/1og|T’\ dy.

Thus we we can find uq, po € My such that L(A\) = dimgy p1, L(A2) = dimpy po,
A(p1) = A1 and A(p2) = 2. Let

L(e) o M) + (1= ()

tA(p2) + (1 = 1)A(p1)
for t € [0,1]. In order to study the convexity properties of the Lyapunov spectrum
L(a)) we compute the derivatives of the function L(¢) and note that L(t\; + (1 —
t)A2) > L(t) with equality when ¢ = 0, 1. The derivative of L(¢) is,

h(p2)A(p1) — h(p1)A(p2)
11 L'(t) = .
) W= i 2) + (1= AGu))?
The second derivative is given by:
2(h(p2)A(p1) — h(p1)A(p2))
L'(t) = A - A
O = = @xa) + (T DG ) A

Note that all the Lyapunov exponents are positive therefore the denominator of
(12) is positive. Since

h(p1) h(p2)

Alp) Ap2)’
we have that 2(h(u2)A(11) — h(p1)A(p2)) > 0. Therefore the sign of (12) is deter-

mined by the sign of A(u2) — A(p1). Which by definition satisfies Ay = A(u1) <
A(p2) = Ag. Therefore L (t) < 0 and the function L(«) is concave on [A,, A*]. O

(12)

= dimy J(\1) < dimp J(\o) =

In the case where s = s then if P(ss¢) = oo then the above proof can be
easily adapted to show the Lyapunov spectrum is concave.

6. EXAMPLES

An irrational number z € (0,1) can be written as a continued fraction of the

form

1
T = = [aragasz...],

a1+
az +

1

az + ...
where a; € N. For a general account on continued fractions see [11, 19]. The Gauss
map (see Example 1.1) G : (0,1] — (0, 1], is the interval map defined by

Gla) =~ - H

€T x

This map is closely related to the continued fraction expansion. Indeed, for 0 <
x < 1 with ¢ = [ajagas...] we have that a; = [1/z],a2 = [1/Gx],...,a, =
[1/G™'z]. In particular, the Gauss map acts as the shift map on the continued
fraction expansion,

ap, = [I/anlx]

The following result was initially proved by Khinchin [19, p.86] in the case where
p(n) < Cnl/?=r,
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Theorem 6.1 (Khinchin). Let ¢ : N — R be a non-negative potential. If there
exists constants C > 0 and p > 0 such that for every n € N,

¢(n) < Cn'~7,
then for Lebesgue almost every x € (0,1) we have that

n—1 _ oo log (1 + #
=0 n=1

Remark 6.1. The above results directly follows form the ergodic theorem applied
to the (locally constant) potential ¢ with respect to the (ergodic) Gauss measure,

1 dx
A) = iy
1a(A) logQ/AlJrI

The Gauss measure is absolutely continuous with respect to the Lebesgue measure.
Moreover, it is the measure of maximal dimension for the map G.

As a direct consequence of Theorem 1.1 we can compute the Hausdorff dimension
of the level sets determined by the potential ¢ (strictly speaking we should apply
our results to the potential —¢, but clearly this does not make any difference).
Indeed, first note that potentials satisfying the assumptions of Khinchin’s Theorem
such that lim, . ¢(n) = oo satisfy the assumptions of Theorem 1.1. That is, if
¢ :(0,1) — R is a non-negative potential such that

(1) if x € (0,1) and & = [a1,az...] then ¢(x) = ¢(aq),
(2) there exists constants C' > 0 and p > 0 such that for every n € N and
ze(1/(n+1),1/n),
¢(x) = d(n) < Cn'~?,

(3) limg— o ¢(z) = oo,
then ¢ € R. Our first result in this setting is the following immediate Corollary to
Theorem 1.1.

Corollary 6.1. Let ¢ € R. Then if we denote by

1 n—1 .
K(a):= 1): lim — ‘) =
() {x6(07 ) nl_{gon;ab(Gx) a},
we have that

(13)  dimpy(K(«)) = sup {I;E'Z; TpE Mg,/cédu = exp(a) and A(u) < oo} .

A particular case of the above Theorem has received a great deal of attention.
If ¢(x) = logay then the Birkhoff average can be written as the so called Khinchin

function:
k(z) := lim (log /a1 -az ... an,).
This was first studied by Khinchin who proved that

Proposition 6.1 (Khinchin). Lebesque almost every number is such that

e 1 1123’5
nlLH;o (log vaiy-ag - ... C(,n) = 10g H (1 + n(n—|—2)> =26...

n=1
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Recently, Fan et al [6] computed the Hausdorff dimension of the level sets deter-
mined by the Khinchin function. They obtained the following result f loga; dug ==
QsrB < 00,

Proposition 6.2. The function
b(a) := dimpy ({x €(0,1): lim log({/ay-ag-...-an) = a}) ,
n—oo
is real analytic, it is strictly increasing and strictly concave in the interval [, asrB)
and it is decreasing and has an inflection point in (asrp, ).

An interesting family of related examples is given by letting v > 0 and consid-
ering the locally constant potential ¢.([a1,as,...]) = —a]. For this potential the
Birkhoff average is given by

n—1

1 - 1
(14) HILH;OEZ¢7(G15U) == lim —(a] + a0+ +a7),
i=0
where = [a1,aq9,...,an,...]. Let us note that if v > 1 then for Lebesgue almost

every point z € (0,1) the limit defined in (14) is not finite. For v < 1 we let
G(v) := [ ¢ydpe > —oo. Nevertheless for any v > 0 we have that ¢, € R, so the
following result is a direct corollary of Theorem 1.1

Corollary 6.2. Denote by
1
Aa,y) = {x €(0,1): lim = (a] +a3 +---+a)) a},
n—oo N

we have that

(15)  dimpg(A(a,v)) = sup {;LE'Z; CpE /\/lg,/Ad,u = —a and \(p) < oo} .

We can also use Theorem 1.2 to give more detail about the function @ —
dimy (A(a, 7)).
Proposition 6.3. Let v > 0 then
(1) If v > 1 the function o — dimpy (A(e, 7)) is real analytic and it is strictly
increasing.
(2) If0 < v < 1 the function @ — dimpy (A(«, 7)) is real analytic on [G(7), anr)
and for a < G(vy) we have dimpy (A(a, 7)) = 1.

Proof. Since lim,_.q % = oo the Theorem immediately follows from the
first part of Theorem 1.2. ([

The sets A(a,1) are related to the sets where the frequency of digits in the
continued fraction is prescribed. The Hausdorff dimension of these sets was recently
computed in [7].

We conclude this section exhibiting explicit examples of dynamical systems and
potentials for which the behaviour of the Birkhoff spectra is complicated.

A version of following example appears in [27]. Consider the partition of the
interval [0,1] given by the sequence of points of the form =, = 1/(n(log2n)?)
together with the points {0,1}. Let T be the EMR map defined on each of the
intervals generated by this sequences to be linear, of positive slope and onto. Then

00 t<1
finite ¢ > 1.

P(—tlog|T'|) = {
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Moreover, P(—log|T’|) = 1 and for ¢ > 1 we have P(—tlog|T’|) < 0. Therefore,
dimg A = s = s = 1. Choose now ¢ € R such that limmHO% = 0.
We can then see that for any § < 1 we have P(gp — dlog|T’|) = oo for all ¢ € R
and so 6* = 1. Therefore, it is a consequence of Lemma 4.1 that b(«) = 1 for all
a € (—o0, apr]. Other examples of dynamical systems satisfying these assumptions
can be found in [21].

7. HAUSDORFF DIMENSION OF THE EXTREME LEVEL SETS

This section is devoted to study the Hausdorfl dimension of one of the two
extreme level sets. Since the potentials we have considered are not bounded the
level set

) 1 n—1 .
J(—00) 1= {ﬂc €(0,1): nh—{goﬁ z;¢(T x) = —00
1=
can have positive Hausdorff dimension. In this section we compute it.

Theorem 7.1. Let ¢ € R then
(16) dimg(J(—00)) = lim F(a).

a— —00

Proof of Theorem 7.1. To start we need a lemma showing that the limit on the
right hand side of equation (16) does indeed exist.

Lemma 7.1. There exists s € [0, 1] such that lim,—,_o F(a) = s.

Proof. The limit clearly exists since by Theorem 5.2 the function a« — F(a) is
monotone when —c« is sufficiently large. O

In order to prove the upper bound,
dimpy (J(—00)) < lim F(a),
we first give a uniform lower bound for lim,_, o F(a).

Proposition 7.1. Let t* be the critical value for the pressure of the potential
—log |T’|. We have that lim,_, _, F(a) > t*.

Proof. Consider the sets A, = 7({n,n + 1,...}1). Note that dimpg A, > t* by
the definition of t*. However, for any € > 0 the set A,, will support a T-invariant
measure f, with A(u,) < oo, ZEﬁn; > dimg A,, — € and fgi) dpy, > —oco. We also

have that lim,, . [ ¢ du,, = —co. The result now follows. O

We now fix o € R and consider the set

Srp(z)
k

J(a,N):{xEA: Sa,foreveryk:ZN}.

It is clear that J(—o0) C UnenJ (e, N). Thus it suffices to show that for all N € N

dimgy J(o, N) < sup F(f).
B>«

Fix N € N and for k € N let
Ck(a) :{I(Zla7Zk)I(217aZk)ﬂJ(a7N)7é®}
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Let € > 0 and note that if for infinitely many k we have

> [I(iy,...,ix)] T <1

then dimgy J(a, N) < t* + € < lim,—,_o F(a) + €. So we may assume that there
exists K € N such that for k£ > K

1< Y i) <
I(i1,eeik) ECR ()

Note that the sum must be convergent because t* + € is greater than the critical
value t*. Thus for each k£ > K we can find ¢, such that

> [I(i1, ... i) = 1.
I(i1,...,ik)ECK ()

It follows that dimpy J(a, N) < limsup,_, ., tx. To complete the proof we need
to relate t; to the entropy and Lyapunov exponent of an appropriate T-invariant
measure.

Since Cf () contains infinitely many cylinders we need to consider a finite subset
of Ci(«), that we denote by Dy (), where

ST i) = A1
I(i1,...,ix) €Dk ()

As in the proof of Lemma 3.4 we let 7 be the 7% invariant measure which assign
each cylinder in Dy(a) the measure &|I(iy,...,iy)|". Note that there will exist
C > 0 such that for all £ > K the Lyapunov exponent (1, T**!) satisfies

1
—A(77,€7T,€)—Z | Z [I(iy, ... i) log |I(iy, ... ix)|| < C.
I(i1,-..ik)EDg ()

Computing the entropy with respect to T% of n; gives
t
h(ne, T*) = | Z Zk\l(il,...,ikﬂt’“log\l(il,...,ikﬂ—|—logA.
I(iy,...,ix)€Dk(cx)

Since A > 1—¢ and A(ng, T%) > £F it follows that limy_ o )\E”’“Tkg tr = 0. Since 7

is compactly supported we know that [ ¢ dn, > —oo and by the distortion property

limsupy,_, . [ ¢ dni < . To finish the proof we simply let py, = Zf:_ol ne o T,
To prove the lower bound we use the method of constructing a w-measure as done

by Gelfert and Rams in [9]. We will let lim,—, . F'(«) = s and start by observing

that there exists a sequence of ergodic measures { i, }nen where lim,, o f o dp, =

—00, A(pn) < o0, for all n € N, % < 2 and lim,_ ZEZ"; = s. We now let

€ > 0 and assume that for all n )\E“"; > s —e. For all i € N by Egorov’s Theorem
we can find § > 0 and n; € N such that there exists a set X;(0) where for all n > n;
and z € X;(9)

) Sno(x) < nfai +€).
g (s +€)(—log|Cn(z)|) < —log pi(Crn(x)) = (s — €)(—log |Cn(x)])
)

)
108 [0u(X)] € (M) — e)m(A() + €).
1i(X(0)) =1 —46.
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i1 T
We can let kl =n1+ [%] +1 and k’b — |:(Ell kl)+(?(“7r+1) + :| _’_1. We let }/; be all

ki level cylinders with nonzero intersection with X;(5). We then define Y to be the
space such that z € Y if and only if TEI= R (x) €Y, for all j € N. We will need
to consider the size of n—th level cylinders for points in Y. We get the following
lemma

Lemma 7.2. There exists K(¢) > 0 such that lim._o K(¢) =0 and for allz € Y
and n sufficiently large

v(B(z,|Cn(2)])) < (14 K(€))"v(|Cria(2)))-

Proof. To proof this we use the condition in the definition of Y. For any z,y € Y
we need to compare the diameter of Cy, (x) and Cy,11(y) and the measure of C,41(y)
and Cp41(z) . We consider the case when k; < n < k; + n; — 1 we then have that
forall z,y € Y

7 n+1
—10g [Cri1 () < Y kj(A(1y) + €) + i1 (A(pig1) +€) + Y vary(log [T])
j=1 ji=2

and
n+1

—log|Cy(z)| > ij(A(uj) —€) — Zvark(log IT')).

In the case where k; +n; < n < k; 11 we simply have that for all z,y € Y

n+1

108 |Cru1 ()] — log | ()] < me+ 3 varg(log [T']) + Avs1.
j=2

We can thus deduce that there exists Z(e) such that lim._,o Z(e) = 0 and
v(B(z, |Co(@)]) < (1+ Z(en)) maxv(B(y, [Cns1(v)])).

To complete the proof we need a uniform estimate of % forallz,y € Y.
This follows from the definition of Y. O

We can then define a measure supported on Y as follows. Let v; be the measure
which gives each cylinder in Y; equal weight. We then take the measures

By T b,
and note that this can be extended to a measure v supported on Y.
Lemma 7.3. For all x € Y we have that lim,,_, %(1) = —o0 and
dimy Y > dimg v > s — C(9),
for some constant C(8) > 0 where C(§) — 0 as 6 — 0.

Proof. For convenience we will let z; = Zle k;. By our definition of k; we will
have that ”z—jl < §. If z € Y then we have that for n € [z;, 2; + nit1],

Sud(w) < (@i + s + (max{d@)}) (n - ) + D V;(0):
j=1
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Moreover for n € [z; + 141, zi+1] we have that

oo
Snd(x) < (i +8)zi + (n— zi) (i1 +6) + > _ Vi(9).
j=1
Combining these two estimates and the definition of k; we obtain that lim,, %@) =
—o00. To find a lower bound for dim v we need to find a lower bound for lim,._q W
for all x € Y. To start we let x € Y, n € [z, 2; + n;41] and note that by the defi-
nition of k; this will mean that
log Cz, ()
Cy ()

By the definition of v we have that

> (1-4).

log v(C,(x)) < —ilogd + (s —€) Zlog |C: ((T7(2)))]

=1
which then gives using distortion estimates that

logv(Cp(x)) < —ilogd + (s — €) log |Cy, (z)| + Z V;(log |T"]).

Jj=1

For n € [Z;Zl ki +mig1, Z;g kl] we have that

logv(Cn(r)) < —ilogd + (s —¢) ((Z (log |Ci(T* (w))|)> + G | (T (ﬂf))) :

1=1
Again by applying distortion estimates we get that

o0
logv(Ch(z)) < —ilogd + (s —€) log |Cy(z)| + Z V;(log |T"]).
j=1
Thus for all n € [z;, z;+1] we have that
logv(Cp(z)) < —ilogd
log |Cp(z)] — log |Cn(2)|
and taking the limit as ¢ — oo gives that
log v(Ch(x))
log |Cr(z)]
Now fix r > 0 and n such that C,,(z) > r > Cp,41(x). We then have by Lemma
that for n sufficiently large

v(B(xz,r)

> Vi
log |Cn($)|

+(1=06)(s—¢€) +

> (1=0)(s =)

v(B(z,|Cn()]))

(1 + k()" v(|Cnya(2)])

(1+k(€)"[Cryr ()] < (1 + k(e))"r" "
The proof is obtained by noting that W
choosing € sufficiently small. O

IAIACIA

can be made arbitrarily small by

The proof of Theorem 7.1 is now finished. We finish this section by noting that
combining Theorem 7.1 and Proposition 7.1 gives that for all ¢ € R, dim J(—o0) >
t*.
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