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SPECTRAL CONTINUITY FOR APERIODIC QUANTUM SYSTEMS I.

GENERAL THEORY

SIEGFRIED BECKUS, JEAN BELLISSARD, GIUSEPPE DE NITTIS

Abstract. How does the spectrum of a Schrödinger operator vary if the the corresponding
geometry and dynamics change? Is it possible to define approximations of the spectrum of
such operators by defining approximations of the underlying structures? In this work a positive
answer is provided using the rather general setting of groupoid C∗-algebras. A characterization
of the convergence of the spectra by the convergence of the underlying structures is proven.
In order to do so, the concept of continuous field of groupoids is slightly extended by adding
continuous fields of cocycles. With this at hand, magnetic Schrödinger operators on dynamical
systems or Delone systems fall into this unified setting. Various approximations used in com-
putational physics, like the periodic or the finite cluster approximations, are expressed through
the tautological groupoid, which provides a universal model for fields of groupoids. The use
of the Hausdorff topology turns out to be fundamental in understanding why and how these
approximations work.
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1. Introduction and main results

The present paper delivers a characterization of the convergence of the spectrum of Schrödinger-
type operators via the convergence of the underlying structures equipped with a suitable topol-
ogy. This is the first paper of a series of articles aiming to provide a method to compute the
spectrum of a self-adjoint operator on a Hilbert space. Such operators describe the quantum
motion of a particle in a solid that might be aperiodic in its structure and/or submitted to a
(not necessarily uniform) magnetic field. Special focus of this approach is to deal with aperiodic
environments, in particular the ones with long range order, that have been mainly handled so
far in one dimensional systems only. Our method delivers a general theory independent of the
dimension by using C∗-algebraic techniques. Since this problem arises primarily in Solid State
Physics, a special emphasis will be put on periodic approximations. This is because Physicists
have at their disposal several numerical codes, based on Floquet-Bloch theory, permitting to
compute the band spectrum of a periodic system.

The present article is written for readers who have no expertise in the theory of groupoids and
their C∗-algebras. It is expected to serve as an introduction to these techniques for experts in
Analysis and Spectral Theory. In order to do so, fundamental and known results in groupoid
C∗-algebras are presented and proven for the convenience of the reader, a theory initiated in the
classical work by Renault [81]. Some of these results are slightly extended to cover all potential
applications. In view of applications to Physics problems, such as the electron motion in an
aperiodic solid, submitted to a magnetic field, uniform or not, the case of 1-cocycles depending
on a parameter has been added. This addition does not change substantially the techniques
used by experts in C∗-algebra theory to prove the main results. But it has not been formally
introduced in previous works. The central new concept introduced in this work, is the definition
of the tautological groupoid of a groupoid Γ (see Section 3) providing the connection of the
underlying structures with the spectra of the corresponding operators. It is a universal groupoid
in classifying all continuous fields of groupoids with Γ as their enveloping one.

Within the tautological groupoid, the key concept is the use of the Hausdorff topology on the
set of closed invariant subsets of the unit space, expressed in its various topological versions due
to Vietoris [100], Chabauty [25] and Fell [42]. The power of such a topology in dealing with
various approximations has already been illustrated by various previous results obtained by the
three authors over the last seven years and that can be found in the PhD Thesis of one of us [9]
or in various talks that can be found online [20]. It is expected that these results will be written
in forthcoming publications. Specifically, in the upcoming works it will be shown that Delone
dynamical systems fall into this setting. These systems include examples in Solid State Physics,
such as the Sturmian sequences, the Penrose tiling, and, more generally, the model sets used to
describe the structures of quasicrystals. As a warm up, it is shown here that this theory applies
to a wide class of effective Hamiltonian and Schrödinger operators associated with dynamical
systems. Within this future projects, the Hausdorff topology on the underlying structures is
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carefully analyzed explaining when Delone dynamical systems converge. Also a the existence of,
the construction of, and the obstruction to periodic approximations is on the schedule of this
program.

Acknowledgements: The three authors are indebted to Jean Renault for his invaluable email
comments made to one of us (S.B.) about the validity of some arguments provided in his book
[81]. Many valuable comments were made during the last seven years during seminars, workshops
and keynote presentations, by several participants, helping this work to be shaped in its present
form. In particular, J.B. wants to thanks Pedro Resende about his input on the concept and
the properties of open groupoids [83]. He is indebted to André Katz for a two-day conversation
on defects for 2D-quasicrystals [15]. S.B. wants to express his deep gratitude to Daniel Lenz for
his constant and fruitful discussions and support over the last years. Additionally, he wants to
thank Anton Gorodetski for a stimulating discussion about the convergence of spectra, at BIRS,
Oaxaca 2015.

1.1. Proving the Continuity of the Spectrum: a Strategy. The first step of the strategy
was proved in [8] (see also the more detailed account in [1, 9]) and can be expressed as follows:
let T be a topological space. For each t ∈ T let Ht be a Hilbert space and let At be a bounded
self-adjoint operator on Ht. The family A = (At)t∈T is called a field of self-adjoint operators.
It will be called p2-continuous whenever, for any polynomial p ∈ R[X] of degree at most 2, the
map t ∈ T 7→ ‖p(At)‖ ∈ [0,∞) is continuous.

Theorem 1 ([8]). A field A = (At)t∈T of self-adjoint operators is p2-continuous if and only
if the spectral gap edges of the At’s are continuous in t, if and only if the spectrum σ(At) is
continuous as a compact set w.r.t. the Hausdorff metric.

In [8], the cases of fields of unitary or of unbounded self-adjoint operators are also treated. The
results are similar in spirit.

Proving the continuity of the norm of a field of operators might not always be easy though. So,
it becomes convenient to enlarge the framework of this approximation method by considering
continuous fields of C∗-algebras [57, 96, 97, 34, 35]. If a field of C∗-algebras A = (At)t∈T is
continuous then, from the definition, there is a dense algebra of continuous sections for which
Theorem 1 applies. If it becomes possible to prove that the field A can be seen as a continuous
section of a continuous field of C∗-algebras, then A is automatically p2-continuous and the
continuity of its spectrum is proved (see also [57], Lemma 3.3). However, it is not necessarily
easy to check that a field of C∗-algebras is actually continuous either.

Thankfully there is a more accessible way to built continuous fields of C∗-algebras. It is suffi-
cient indeed to consider the convolution algebras of a field of groupoids. In [65], Landsman and
Ramazan have investigated the definition of continuous field of groupoids and proved that the
corresponding C∗-algebras make up a continuous field, at least if the groupoids are amenable.
As it turns out, fields of groupoids are much easier to construct essentially because the con-
struction boils down to building genuine topological spaces and dynamical systems. Examples
of continuous fields of groupoids useful for Solid State Physics will be given in the second paper
of this series. In the present paper, a general construction, valid for a large class of groupoids,
will give rise to a tautological continuous field, indexed by the set of invariant subsets of the
unit space. For example, a periodic orbit can be seen as an invariant subset of a groupoid. The
main point will be to endow the set of invariant closed subsets with a suitable topology, which
was first defined by Hausdorff for compact subsets of a metric spaces [50, 51], then extended by
Vietoris [100] and, more recently, by Chabauty [25] and Fell [42]. It will be called the Hausdorff
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topology. Then it will be shown that not every invariant set can be approximated by a family
of periodic orbits. Characterizing invariant sets that can be approximated by periodic orbits is
exactly where the difficulty lies. In the second paper of this series criteria will be provided in
various cases.

1.2. The Case of Dynamical Systems. Before going on, let the classical case of dynamical
systems be considered. Let (X,G,α) be a topological dynamical system where X is a second
countable compact Hausdorff space, G is a discrete countable group and α : G × X → X a
continuous group action. In what follows e will denote the neutral element of G. For convenience
α(x, g) = αg(x) will be denoted by gx instead. A subset Y ⊆ X is called invariant if gY ⊆ Y for
all g ∈ G. The set of all non-empty closed invariant subsets of X is denoted by J(G). The set
J(G) equipped with the Hausdorff topology gets the structure of a second countable compact
Hausdorff space.

A generalized discrete Schrödinger operator is built as follows. Let `2(G) be the Hilbert space
on which this operator acts. Then G is represented by its left regular representation defined by

Uhψ(g) = ψ(h−1g) , ψ ∈ `2(G) , g, h ∈ G .
Let K ⊆ G be a finite subset such that e /∈ K. Then for k ∈ K let tk : X → C be a
continuous functions. Similarly let v : X → C be continuous as well. For x ∈ X, let the
operator Hx : `2(G)→ `2(G) be defined by

(1) (Hxψ)(g) :=
∑
h∈K

th(g−1x) · ψ(gh) + v(g−1x) · ψ(g) ,

where ψ ∈ `2(G) and g ∈ G. The operator Hx is linear bounded. In order to be self-adjoint the
following are required:

(R1) v is real valued,
(R2) K is invariant by k → k−1,

(R3) the functions tk satisfies tk−1(x) = tk(k−1x).
The family of operators HX := (Hx)x∈X is obviously strongly continuous with respect to the
variable x ∈ X. In addition, it is G-covariant, namely

U(h)HxU(h)−1 = Hhx , x ∈ X , h ∈ G .
In particular, σ(Hx) = σ(Hhx) for all h ∈ G. Using strong continuity, it follows that if y belongs
to the closure Ωx of the G-orbit of x, then σ(Hy) ⊆ σ(Hx). It follows that if the G-action
on X is minimal (namely any orbit is dense), the previous inclusion holds both ways so that
σ(Hy) = σ(Hx) for any x, y ∈ X. It is worth noticing that such an equality between spectra for
all x, y ∈ X is equivalent to (X,G,α) being minimal (see [9], Theorem 3.6.8, page 109, a result
motivated by [66]).

It turns out that the family HX can be seen as an element (also denoted HX) of the crossed
product C∗-algebra A = C(X) oα G [10]. The spectrum of this element in A can be shown to
be [10]

σ(HX) =
⋃
x∈X

σ(Hx) .
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As will be seen, amenability is a crucial property required on the group G (see [48] and Sec-
tion 2.7) in order to get useful continuous fields. If G is amenable, there is no need to take the
closure so that σ(HX) =

⋃
x∈X σ(Hx) holds [39, 74].

From the previous construction, if Y ⊆ X is closed and G-invariant, then (Y,G, α) is also a
dynamical system, so that HY is well defined. The main question investigated in this work is:
if Y moves in the set of closed G-invariant subsets of X, how is the spectrum of HY evolving ?
The following result is a consequence of Theorem 3, in Section 1.3

Theorem 2. Let (X,G,α) be a topological dynamical system where G is an amenable discrete
countable group. Let J(G) denotes the set of closed G-invariant subsets of X equipped with
its Hausdorff topology. Let K(R) denotes the set of compact subsets of R, equipped with the
Hausdorff metric.
For each Y ∈ J(G), the generalized Schrödinger operator HY := (Hx)x∈Y defined in eq. (1) and
satisfying (R1, R2, R3). Then the map

ΣH : J(G)→ K(R) , Y 7→ σ(HY ) ,

is continuous.

It is worth noticing here that Theorem 2, extends without further assumption to any self-adjoint
element of the C∗-algebra, in particular allowing discrete Schrödinger operatos with infinite
range. Furthermore, the convergence of non-empty invariant closed subsets is characterized by
the convergence of the associated spectra for all generalized Schrödinger operators:

Corollary 1. Let (X,G,α) be a topological dynamical system where G is an amenable discrete
countable group. Then the following assertions are equivalent, whenever Yn ∈ J(G) , n ∈ N :=
N ∪ {∞}.

(i) The sequence (Yn)n∈N converges to Y∞ ∈ J(G).
(ii) For all generalized Schrödinger operators HX := (Hx)x∈X , the equation

lim
n→∞

σ
(
HYn

)
= σ

(
HY∞

)
holds, where the limit is taken with respect to the Hausdorff metric on K(R).

Proof: This Corollary is a consequence of Corollary 2 in Section 1.3. 2

1.3. The Case of Groupoids. The previous examples provide a large class of models liable
to represent concrete situations in Condensed Matter Physics. However, a discrete translation
group is not necessarily available in general. The most general situation in Condensed Matter
Physics is the existence of a dynamical system (X,G,α) in which G = Rd for some d ∈ N, called
the space dimension. More precisely, in practical cases X can be seen as a closed G-invariant
subset of the space of Delone sets [17, 19]: each element of X represents the instantaneous
position of atomic nuclei and is a typical configuration of a solid or a liquid. Whenever d = 1,
discretization can be done using the concept of Poincaré section: namely it is a closed subset
Σ ⊆ X such that for any x ∈ Σ the smallest t ≥ 0 such that αt(x) ∈ Σ is strictly positive for any
x. This concept can be generalized as follows: let (X,G,α) be a topological dynamical system,
where X is a compact Hausdorff second countable space, G is a locally compact Hausdorff second
countable group (where G may not be discrete), and α is a continuous action of G on X by
homeomorphisms. Then a closed subset Σ ⊆ X is called a transversal if for each x ∈ Σ there is
an open neighborhood U of the neutral element e ∈ G such that for g ∈ U then gx /∈ Σ. Then



6 SIEGFRIED BECKUS, JEAN BELLISSARD, GIUSEPPE DE NITTIS

the set ΓΣ of pairs (x, g) ∈ Σ × G such that gx ∈ Σ becomes a groupoid (see below) [28, 81].
But in general it is not a topological dynamical system.

To treat these cases, the concept of groupoid is more universal. A precise definition will be
provided in Section 2. But a groupoid can be described as a category with all morphisms
invertible, for which the family of objects and of morphisms makes up a set. An object of this
category is called a unit and Γ(0) will denote the set of units. A morphism γ : x → y between
the units x and y is called an arrow with range r(γ) = y and source s(γ) = x. Then Γ denotes

the set of arrows. By definition, all arrows are invertible. In addition, any unit x ∈ Γ(0) can be
associated with a unique arrow ex such that γ ◦ ex = γ = ey ◦ γ if γ : x→ y. Consequently Γ(0)

can be seen as a subset of Γ. An ordered pair of arrows (γ, γ′) ∈ Γ×Γ′ will be called composable
if s(γ) = r(γ′) (morphism composition) in which case their composition is denoted by γ ◦ γ′.
The set of composable pairs is denoted by Γ(2). At last, given x ∈ Γ(0), then Γx will denote the
set of arrows with range x and Γx will denote the set of arrow with source x.

In this work, all such groupoids will be endowed with a topology, making Γ a locally compact
Hausdorff second countable space. This topology will be such that the range and the source
maps r, s, the inversion map γ → γ−1 and the composition map (γ, γ′) ∈ Γ(2) 7→ γ ◦ γ′ ∈ Γ

are continuous. It follows that Γ(0) and Γ(2) are closed. In addition, in this work, all groupoids
considered will be assumed to satisfy

(i) their unit space is compact,
(ii) the two maps r, s being open.

Such groupoids will be called handy (see Section 2.1), because they are convenient and practi-
cal. Moreover, they arise naturally in all known realistic problems motivated by Physics. The
requirement that the unit space be compact is not necessary as will be seen in Section 2.2. But
the space of closed invariant subset of the unit space has a unique Hausdorff topology only if
the unit space is compact. Otherwise, the Vietoris and the Chabauty-Fell topologies may differ
(see a discussion in [8]).

The analog of the case of a topological dynamical system with a discrete group action is provided
by étale groupoids. Γ will be called étale whenever any γ ∈ Γ admits a neighborhood U such
that the map γ′ ∈ U 7→ r(γ′) ∈ Γ(0) is an homeomorphism onto its image.

A typical example of a groupoid is provided by a topological dynamical system as in Section 1.2.
In the latter case Γ(0) = X and Γ is the set of pairs γ = (x, g) ∈ X ×G with

(i) r(x, g) = x, s(x, g) = g−1x,
(ii) (x, g) ◦ (g−1x, h) = (x, gh),
(iii) ex = (x, e) if e ∈ G is the neutral element,
(iv) (x, g)−1 = (g−1x, g−1) .

The topology on Γ is defined by the product topology of X ×G. Such a groupoid is denoted by
X oα G and is called the crossed product of X by G.

Another example is the groupoid of a transversal. Namely if Σ ⊆ X is a transversal, then the
same definition applied to ΓΣ gives a locally compact groupoid, which is étale.

Any locally compact group admits a Haar measure. The convolution of functions allows to
define an algebra of functions, and ultimately a C∗-algebra. For groupoid such a concept can
be defined and will be called a Haar system (see Section 2.2) [81], or a transverse function [28].
It is worth mentioning that not all locally compact groupoid admit a Haar system. However,
a deep result by Blanchard [22] permits to prove that a groupoid is handy if and only if (i) its
unit space is compact and (ii) it admits a Haar system (see Section 2.2, Theorem 4).
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Correspondingly, the analog of the convolution algebra, defined with complex valued continuous
functions on Γ, defines a C∗-algebra after completion. However, this C∗-algebra is not unique
in general. The smallest such C∗-algebra is called the reduced C∗-algebra and is denoted by
C∗red(Γ). This algebra is unique if Γ is amenable [2, 3].

Given a groupoid Γ an invariant set is a subset F ⊆ Γ(0) such that if x ∈ F then any γ ∈ Γx

satisfies s(γ) ∈ F . If Γ is a Hausdorff locally compact groupoid, let J(Γ) denotes the set of closed

invariant subsets of Γ(0), equipped with the Hausdorff topology. It will be shown that, whenever
Γ is handy, J(Γ) is compact. It follows that, for each F ∈ J(Γ) the set of arrows γ with range
in F makes up a closed subgroupoid ΓF . If f : Γ → C is a continuous function with compact
support then its restriction to ΓF will be denoted by fF . This restriction is continuous with
compact support. It follows that the restriction map f → fF extends as a ∗-homomorphism
from C∗red(Γ) onto C∗red(ΓF ). It is worth reminding at this point that a normal element f , in a
C∗-algebra , is an element such that f∗f = f f∗.

The main result of this paper can be summarized as follows (see the proof in Section 5):

Theorem 3. Let Γ be an amenable handy groupoid. For every normal element f ∈ C∗red(Γ), the
spectral map

Σf : J(Γ)→ K(C) , F 7→ σ(fF ) ,

is continuous.

Proof of Theorem 2: Theorem 2 immediately follows from Theorem 3. For the amenability
of the groupoid X oG follows from the amenability of the group G [2, 3]. 2

Remark 1. The amenability assumption is required only to make sure that the reduced and
the full C∗-algebras coincide. In view of [104], this coincidence may occur without the groupoid
Γ being amenable, in which case the previous Theorem applies. 2

Corollary 2. Let Γ be an amenable handy groupoid Γ. Consider a sequence Xn ∈ J(Γ) of
invariant, closed sets for each n ∈ N = N ∪ {∞}. Then the following assertions are equivalent.

(i) The sequence (Xn)n∈N converges to X∞ in the Hausdorff-topology of J(Γ).
(ii) For all self-adjoint (normal) f ∈ Cc

(
T(Γ)

)
, the equation

lim
n→∞

σ
(
fXn

)
= σ

(
fX∞

)
,

holds, where the limit is taken with respect to the Hausdorff metric K(R).

Proof: (i)⇒(ii) follows by Theorem 3.

(ii)⇒(i): Assume that (Xn)n∈N does not converge to X∞ ∈ J(Γ). Since J(Γ) is compact, there is
a subsequence (Xnk)k∈N such that limk→∞Xnk =: Y exists and Y 6= X∞. There are two cases,
namely (a) X∞ \ Y 6= ∅ and (b) Y \X∞ 6= ∅. Both cases lead as follows to a contradiction.

(a) If X∞ \Y is non-empty, consider an x ∈ X∞ \Y . Using the Lemma of Urysohn, there exists
a continuous function a : T(Γ) → [0, 1] with compact support such that a(x) = 1 and aΓY ≡ 0.
Without loss of generality we can assume that a is self-adjoint (otherwise consider a∗a). Then
‖a|X∞‖ > 0 while ‖a|Y ‖ = 0. Thus, limn→∞ σ

(
aXn

)
= σ

(
aX∞

)
does not hold contradicting (ii).

(b) If Y \X∞ 6= ∅, a similar argument like in (a) leads to a contradiction. 2

1.4. How to Construct Approximations ? What is the strategy to built some approxima-
tions, using Theorem 3 or the Corollary 2 ? Here are some guesses.
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1.4.1. Periodic Approximations. Let G be assumed to be Zd for instance (or more generally
a free Abelian group), and let (Y,Zd, β) be a minimal dynamical system, with Y a second
countable compact Hausdorff space. Let assume that for each n ∈ N there is a minimal periodic
dynamical system (Yn,Zd, βn). By periodic, it is meant that there is a subgroup Hn ⊆ Zd of
finite index fixing each point of Yn. The minimality of Yn implies that it is finite then. Let X
be the disjoint union of the Yn’s and of Y . Clearly Zd acts on X through the action α such
that α coincides with β on Y and with βn on Yn. The next step will be to find a topology on
X making it a second countable compact Hausdorff space, so that (i) Y and the Yn are closed
Zd-invariant subsets, and that (ii) Yn converges to Y in the Hausdorff topology. In many cases
such a strategy works (see for instance [79] for disordered systems and [9] for other examples).
If so, then the previous Corollary 1 applies and gives a sequence of periodic approximations to
the generalized Schrödinger operator HY permitting to approximate its spectrum.

1.4.2. Finite Cluster Approximations. Another approximation used in Physics, consists in cut-
ting a finite piece of an infinite distribution of atoms, namely to choose a cluster (see for instance
[62]). Let L be a distribution of atoms: namely it will be a Delone set. In such a set, the Voronoi
construction gives rise to a tiling by polyhedrons [19] centered at each atom. Two atoms are
nearest neighbors (n.n.) whenever their Voronoi tiles intersect along a facet (face of codimen-
sion one). If an edge is a pair of n.n., this gives a graph defining L. In order to prove that this
approximation is appropriate, let C1 ⊆ · · · ⊆ Cn ⊆ · · · be an increasing family of such clusters
such that the union is all the atomic sites. Each such cluster gives rise to a finite groupoid Γn,
generated by the edges of the graph associated with it. In the infinite volume limit, there is a
groupoid Γ describing all such constructions. Then let Γtot be obtained as the disjoint union
of these groupoids, which is also a groupoid. If there is a topology on this union making it a
continuous field over the set N ∪ {∞}, then the generalization to groupoids of the Corollary 1,
will give convergence of the spectrum as well.

1.5. Methodology: a Review. The problem of investigating the spectral properties of aperi-
odic quantum system has a long history, both in Physics and in Mathematics.

1.5.1. Transfer Matrix Method. For one-dimensional models, the transfer matrix method has
been quite successful. The earliest result obtained for Schrödinger’s operators with non periodic
coefficient is probably the one provided by Dinaburg and Sinai [33], using this method to provide
results about the spectral properties of the 1D-Schrödinger operator on the real line with a
quasiperiodic potential. The method used for the KAM theorem turns out to be effective. This
method was used successfully since the early eighties on similar problems on the discrete line.
Eventually, it gave rise to the theory of cocycles. A spectacular achievement, using this method,
has been the solution of the Ten Martini Problem [6].

However the transfer matrix method is limited in several ways. First it applies only to one
dimensional systems. Secondly, it applies only to the case of finite range Hamiltonians. Nev-
ertheless, this method was used successfully to investigate numerically the case of a random
potential (Anderson model) using a transfer matrix in high dimension for systems of infinite
length but with large finite transverse area [63]. However, all attempt made to use this method
for systems in higher dimension in order to get rigorous mathematical results, have failed so
far, if one except models that can be decomposed into a direct sum or a product of commuting
one-dimensional systems [31].
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1.5.2. Renormalization Group Method. In the eighties and the early nineties the case of 1D-
discrete Schrödinger Operators with potential provided by a substitution was illustrated by
several examples. The first example was the Fibonacci Hamiltonian, also called the Kohmoto
model [61, 76, 77, 23, 95]. The spectrum could be computed through a Renormalization Group
method induced by the substitution applied to the transfer matrix [11, 12, 13]. Since then, the
method has been refined and pushed to the limit, thanks to the two decades persistent work
of D. Damanik and A. Gorodetski. A spectacular achievement, for instance can be the recent
review on the Fibonacci Hamiltonian [32].

An attempt was made to use this approach in higher dimension [94]. For indeed, most quasicrys-
tals studied so far admits a special symmetry (mostly the icosahedral symmetry in 3D) and, as
a consequence admits also an inflation symmetry playing the role of a space Renormalization
Map. However, the method turned out to be hopeless unless in the region of energy for which
the kinetic energy can be treated as a very small perturbation. Example of Hamiltonian in high
dimension that can be considered as Cartesian product of 1D-operators, have shown that the
qualitative results concerning the spectrum can be surprisingly complicate [93]. In particular
the RG-method is unlikely to give so much information.

1.5.3. Other Numerical Approaches. Soon after the discovery of quasicrystals [92], one of the
earliest numerical calculations were made on a large cluster of the Penrose lattice [27, 75, 62].
The cluster size (varying from 251 to 3806) and the nature of the parameters in the model
investigated, may change the results. The existence of inflation rules gives a fast algorithm to
grow a cluster from a seed. This gives a sequences C1, · · · , Cn of cluster with size increasing
exponentially fast. However, this inflation rule can hardly been used to implement relations
between the various Hamiltonians H1, · · · , Hn in order to get more rigorous results on its spectral
properties [94]. The finite size effect were not systematically estimated, but they are visible. It
is expected that the errors, as measured in Density of States (DOS), be of the order of the ratio
{boundary area(Cn)}/{V olume(Cn)} namely of the order of the inverse of the cluster diameter.
This is a slow convergence.

Another method, promoted in [21], consists in finding a periodic approximation and to use the
Bloch Theory to compute the spectrum like in [79]. In most situations investigated so far, it
can be proved that the error is much smaller and decay exponentially fast with the diameter of
the unit cell of the periodic lattice.

1.5.4. Defect Creation. Periodic approximations may come with a prize. Depending upon how
the sequence of approximations is built, defects might show up in the limit. This was demon-
strated in [77] and proved rigorously in [14] for the case of 1D-quasicrystals (also called Sturmian
sequences). As it turns out, such defects also occur, the so-called worms, in the 2D-case for a
nearest neighbor Hamiltonian on the quasicrystal with octagonal symmetry. This quasicrystal
can be computed by mean of a projection from Z4 onto R2 respecting the 8-fold symmetry. But
the projection 2-plane is not in generic position w.r.t. the lattice Z4, precisely because of the
symmetry. As a result, generically, a periodic approximation will produce defects [15]. How-
ever, there is a way, in this example, to find a sequence of periodic approximation avoiding the
occurrence of defects, as was proposed in [36]. In the second paper of this series, this problem
will be addressed and solved from using the Anderson-Putnam complex [4].
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2. Groupoids: a Reminder

This Section offers a summary of the definitions and properties of groupoids that will be needed
later. Most of this material can be found in [28, 81, 58].

2.1. Definitions. A groupoid Γ is a small category in which all morphisms γ : x → y are
invertible. By a small category it is meant that both the families of objects and morphisms are
sets. Then Γ will denote the set of morphisms. Let Γ(0) denote the set of objects. If γ : x→ y,
the notation will be s(γ) = x which will be called the source, and r(γ) = y which will be called
the range. Similarly a morphism γ will be called an arrow. Then x can be identified with the
morphism γ−1 ◦ γ = ex and y with γ ◦ γ−1 = ey. Then x = s(ex) = r(ex) and ex ◦ γ = γ if
r(γ) = x, while γ ◦ ex = γ when s(γ) = x. Hence ex is a unit and is the identity morphism for

the object x, so that the map x→ ex gives a bijection identifying Γ(0) with the set of units and
will be called the unit space, instead, and can then be seen as a subset of Γ. It will be convenient
though to separate the concept of unit, the set of which will be sometimes denoted by UΓ, from
the concept of object in practice, even if the two sets are in bijection. If (γ1, γ2) ∈ Γ × Γ the
composition γ1 ◦ γ2 makes sense only if s(γ1) = r(γ2). The notation will be

Γ(2) = {(γ1, γ2) ; s(γ1) = r(γ2)} .
For y ∈ Γ(0), its fibers are the r-fiber Γy = {γ ∈ Γ ; r(γ) = y}, the s-fiber Γy = {γ ∈ Γ ; s(γ) = y}
and the rs-fiber Γyy = {γ ∈ Γ ; r(γ) = s(γ) = y} which is a group. The relation “x is isomorphic
to y” , namely ∃γ ∈ Γ , γ : x → y, is an equivalence relation which will be denoted by x ∼ y.
Given F ⊆ Γ(0), its saturation [F ] denotes the set {x ∈ Γ(0) ; ∃y ∈ F , x ∼ y}. Given F ⊆ Γ(0),

ΓF will denote the subgroupoid ΓF = {γ ∈ Γ ; s(γ) ∈ F , r(γ) ∈ F}. A subset F ⊆ Γ(0) will
be called invariant if F = [F ]. The concept of subgroupoid is straightforward and left to the
reader.

Example 1 (Groups). Let G be a group with neutral element e ∈ G. Then Γ := G is a

groupoid where Γ(2) = G × G. In addition, the range r(g) and the source s(g) are equal to e.

Thus, Γ(0) = {e}.

Example 2 (Sets). LetX be a set. Then Γ := X is a groupoid with Γ(2) := {(x, y) ∈ X×X | x =

y}, composition x ◦ x := x and inverse x−1 := x for x ∈ X. Thus, the unit space Γ(0) = X.

Example 3 (Equivalence Relation). Let X be a set and let ∼ be an equivalence relation on X.
Then the graph of the equivalence relation becomes a groupoid Γ := {(x, y) ∈ X ×X | x ∼ y}
with Γ(2) :=

{(
(x1, x2), (x3, x4)

) ∣∣ x2 = x3

}
, with the composition (x, y) ◦ (y, z) := (x, z) and

inverse (x, y)−1 := (y, x). Then Γ(0) = X with ex = (x, x).

Example 4 (Dynamical Systems). Let (X,G,α) be a dynamical system with X a set, G a
group and α : (x, g) ∈ X ×G→ gx ∈ X a left action of G on X by bijections. Then Γ = X ×G
becomes a groupoid if Γ(0) = X, r(x, g) = x, s(x, g) = g−1x, and the composition is defined
by (x, g) ◦ (g−1x, h) = (x, gh). Then (x, g)−1 = (g−1x, g−1). This groupoid will be denoted by
X oα G and will be called crossed product. 2

Example 5 (Induced Subgroupoid). If (X,G,α) is a dynamical system, and if Y ⊆ X, then
the set ΓY = {(y, g) ∈ Y ×G ; g−1y ∈ Y } is a subgroupoid of X oα G. 2

Definition 1. A groupoid Γ is topological whenever the set of arrows Γ and it unit space Γ(0)

admit a topology such that
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(i) the range map r, the source map s, are continuous,
(ii) the composition and the inverse are continuous.

It is worth reminding here that a topological space X is Hausdorff if given any two points
x, y ∈ X such that x 6= y, there are open sets U 3 x and V 3 y such that U ∩ V = ∅.
Equivalently this condition holds if and only if the diagonal ∆X = {(x, x) ∈ X ×X ; x ∈ X} is
closed in X ×X. In such a case, for x ∈ X the singleton {x} is a closed subset.

Lemma 1. (i) Let Γ be a topological groupoid. If Γ(0) is Hausdorff, then the r, s fibers and Γ(2)

are closed.
(ii) If, in addition Γ is Hausdorff, then the set of units UΓ is closed inside Γ.

Proof: (i) Since Γ(0) is Hausdorff, any singleton {x} in Γ(0) is closed and the diagonal ∆ in

Γ(0) × Γ(0) is closed. Since r, s are continuous, the preimages r−1({x}) = Γx and s−1({x}) = Γx
are closed, implying that Γxy = Γx ∩ Γy is closed as well. In addition let Φ : Γ× Γ→ Γ(0) × Γ(0)

be the map defined by Φ(γ1, γ2) = (s(γ1), r(γ2)). This map is continuous by assumption and

the preimage of the diagonal ∆ is precisely Γ(2), hence it is closed.

(ii) Let UΓ denotes the set of units inside Γ, namely the set of e ∈ Γ such that there is γ ∈ Γ for
which γ−1 ◦ γ = e. It follows that r(e) = s(e) and that, from the associativity of the product,
e ◦ e = e implying e−1 ◦ e = e ◦ e−1 = e. Consequently e is a unit if and only if r(e) = s(e) and
e ◦ e = e. The map ξ : Γ → Γ × Γ given by ξ(γ) = (γ, γ ◦ γ−1) is continuous. The diagonal
∆ ⊆ Γ × Γ is closed if Γ is Hausdorff. It follows that UΓ = ξ−1(∆) hence proving that it is
closed. 2

Among topological groupoids, the open ones will be important. As a reminder, a continuous
map f : X → Y between two topological spaces is called open whenever the image of any open
set of X by f is open in Y .

Definition 2. A topological groupoid Γ will be called open if its range and source maps are both
open.

It is worth remarking that because of the continuity of the map i : γ 7→ γ−1, the range map
is open if and only if the source map is. In addition since i is its own inverse, its continuity
impies that i is open as well. Being open is actually sufficient to define the tautological groupoid
of a groupoid Γ (See Section 3). The following result is known in category theory [83], but it is
worth giving a more topological proof.

Lemma 2. Let Γ be an open groupoid. Then, the multiplication map m : Γ(2) → Γ is open.

Proof: (i) First let Γ ×r Γ ⊆ Γ × Γ be the set of pairs (γ1, γ2) such that r(γ1) = r(γ2). Let
πi , i = 1, 2 be the projection onto the i-th coordinate defined by πi(γ1, γ2) = γi. Then πi is
open. For indeed, let U1, U2 be two open sets in Γ and let W be the trace of U1×U2 on Γ×r Γ.
Then π1(W ) = U1 ∩ r−1(r(U2)). Since r is both continuous and open, it follows that r(U2) is
open, so that r−1(r(U2)) is open too, showing that π1(W ) is open. A similar argument holds
for π2.

(ii) Let now ξ : Γ ×r Γ → Γ(2) be the map defined by ξ(γ1, γ2) = (γ1, γ
−1
1 ◦ γ2). This map

is continuous. Moreover it is invertible with inverse ξ−1(γ, γ′) = (γ, γ ◦ γ′) as can be checked
immediately. In particular ξ−1 is also continuous, so that ξ is a homeomorphism. In particular,
it is clear that m = π2 ◦ ξ−1, which is open as composition of open maps. 2

Corollary 3. Let Γ be an Hausdorff open groupoid with Hausdorff unit space. Then the map
x ∈ Γ(0) 7→ ex ∈ UΓ is a homeomorphism.
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Proof: Since Γ is Hausdorff with Hausdorff Γ(0), it follows, from Lemma 1 that UΓ and all fibers
are closed subsets in Γ. In addition, thanks to Lemma 2, the product map is open. Let U ⊆ UΓ
be an open set in the set of units for the induced topology. Let r̂ denote the restriction of the
range map r to UΓ. Then let ψ : Γ → UΓ be the continuous map defined by ψ(γ) = γ ◦ γ−1.

Hence W = ψ−1(U) is open. In addition r(W ) = r̂(U), showing that r̂(U) is open in Γ(0). Hence

the map r̂ : e ∈ UΓ 7→ r(e) ∈ Γ(0) is open. Since this map is open, continuous, one-to-one and
onto, it follows that its inverse is continuous as well, so that this map is a homeomorphism. 2

The groupoid analog of a discrete group is a provided by

Definition 3. A topological groupoid Γ is étale whenever any γ ∈ Γ admits an open neighborhood
U such that the map γ′ ∈ U 7→ r(γ′) ∈ Γ(0) is an homeomorphism onto its image.
Equivalently, Γ is étale whenever its topology is generated by a basis of bisections, namely subsets
F ⊆ Γ such that the restriction of the range map to F is a homeomorphism.

Thanks to the continuity of the inverse map i, the range map r can be replaced by the source
map s as well in the previous definition.

The canonical transversal of the Hull of a tiling in Rd with finite local complexity gives rise
to an étale groupoid with Cantor unit space [59, 18, 54]. Étale groupoid with Cantor unit
space have recently been the focus of attention from the group theory community in order to
produce groups of intermediate growth with remarkable properties, like simplicity, amenability,
finite presentation or finitely generated [73]. This is because the set of bisections of an étale
groupoid with range or source given by the whole unit space can be identified with a group of
homeomorphisms of the unit space, called the full group of Γ. The concept of full group was
introduced in [64, 45] for Zd-actions on a Cantor set. The full group of a Cantor set was proved
to be amenable in a remarkable paper [55] .

Lemma 3 ([81], Prop. 2.8). An étale groupoid Γ has discrete fibers.

Proof: Let x ∈ Γ(0). If now γ ∈ Γx, let U be an open neighborhood of γ making the map
rU : U → r(U) ⊆ Γ(0) an homeomorphism. Since rU is one-to-one, it follows that Γx ∩ U is
reduced to γ. Hence γ is isolated inside Γx, showing that Γx is discrete. The same argument
works for the s-fiber. 2

Lemma 4. Any étale topological groupoid is open.

Proof: Let Γ be an étale groupoid. Let U be an open subset in Γ. If x ∈ r(U), there is
γ ∈ U such that x = r(γ). Since Γ is étale, there is an open set Vγ ⊆ U , containing γ, on
which the restriction of the source map is an homeomorphism on its image. By construction,
x ∈ r(Vγ) ⊆ r(U). Hence r(U) is open. The same argument works for the source map. 2

Most groupoids used to describe physical systems have additional properties that make them
remarkable and more convenient. In this work they will be called handy.

Definition 4. A topological groupoid Γ will be called handy whenever:
(i) it is locally compact, Hausdorff, second countable,
(ii) its unit set is compact,
(iii) the source map and the range map are open.

It follows that Γ(0) is Hausdorff.

Examples of handy groupoids are obtained from previous examples in an obvious way: (i)
Example 1 if the group is locally compact, Hausdorff, second countable; (ii) Example 2 where
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X is a compact Hausdorff second countable set; (iii) Example 3 if X is a compact, Hausdorff,
second countable space, and if the graph of the equivalence relation is closed.

Example 6 (Topological Dynamical System). Let (X,G,α) be a dynamical system. If (i) X is
compact, Hausdorff, second countable, (ii) G is a locally compact, Hausdorff, second countable
group, (iii) the action α : (g, x) → gx is continuous and the maps αg : x ∈ X → gx ∈ X are
homeomorphism, (iv) X oα G is endowed with the topology of the Cartesian product X × G.
Then X oα G is a handy groupoid. The proof is a consequence of the Theorem 4 below. 2

Example 7. If Γ is a handy groupoid, any closed sub-groupoid is handy. In particular, if
Y ⊆ Γ(0) is closed, then the induced groupoid ΓY is handy. 2

Remark 2. The condition of second countability allows to use Urysohn’s metrization theorem
and the Tietze extension theorem. In practice it is not much of a restriction. The condition of
local compactness is convenient to construct a C∗-algebra by convolution. Without it, not much
is known. The separation axiom is not absolutely needed [29], but it makes the groupoid much
easier to handle. The compactness of the unit space is not necessary, but almost all examples
used to describe physical systems so far, have this property. The openness of the source and
range maps will turn out to be necessary when dealing with the tautological groupoid (see
Section 3). 2

2.2. Continuous Haar Systems. A locally compact group G is known to admit a left invariant
positive measure, called the Haar measure [101], which is unique modulo a normalization factor.
It follows that the space L1(G) can be endowed with an algebraic structure using the convolution
product. Similarly an adjoint can also be defined. The algebra obtained in this way, denoted
by L1(G), is called the Wiener algebra. It also gives rise to a C∗-algebra denoted by C∗(G).
If G is Abelian, the Gelfand theorem and the Pontryagin duality give the Fourier transform as

a ∗-isomorphism between C∗(G) and the space C0(Ĝ) of continuous function of the Pontryagin

dual Ĝ vanishing at infinity.

Such a construction can be extended to groupoids. The Haar measure is replaced by what has
been called a Haar system [102, 89, 90, 81] or a transverse function [28]. The latter concept
is actually helping in understanding the concept of transverse measure [28], which permits to
express all positive weights of the C∗-algebra of a groupoid in an analytic way. In particular it
gives rise to a noncommutative analog of integration theory.

Definition 5. A left-continuous Haar system on a topological groupoid Γ is a family of positive
Borel measures (µx)x∈Γ(0) on Γ such that the following assertions hold.

(H1): For each x ∈ Γ(0), the support of the measure µx is equal to the r-fiber Γx.

(H2): For each f ∈ Cc(Γ), the function Γ(0) → C defined by

x 7→ µx(f) =

∫
Γx
f(γ)dµx(γ) .

is continuous.
(H3): These measures are left-invariant, namely if γ : x→ y then∫

Γx
f(γ ◦ η)dµx(η) =

∫
Γy
f(η′)dµy(η′) .

for any f ∈ Cc(Γ).
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In this definition, the conditions (H1) and (H3) are similar to the case of a Haar measure on a
group. However (H2) is new. It turns out to be necessary and sufficient so that the convolution
defined on Cc(Γ) maps into Cc(Γ) see [91] (see also Section 2.5 below).

It is worth mentioning that not all locally compact groupoid admits a Haar system: a simple
counter example can be founded in [47], for which the axiom (H2) is violated. However every
étale groupoid Γ has one, using the counting measure

µx(f) =
∑
γ∈Γx

f(γ) , f ∈ Cc(Γ) .

Indeed, since the fibers are discrete, if f has compact support, the sum admits only a finite
number of nonzero terms. By construction, the support of µx is Γx. By definition of “étale”
the map x→ µx(f) is continuous. The left invariance comes from the remark that if γ : x→ y,
then the map η ∈ Γx 7→ γ ◦ η ∈ Γy is a bijection, since γ is invertible. In particular this applies
to Example 2, for the groupoid defined by a compact Hausdorff second countable set X, where
µx(f) = f(x) is the Dirac measure. It is worth mentioning that any other Haar system on a

handy étale groupoid is given by νx = g(x)µx where g : Γ(0) → R+ is a non-negative continuous

function such that x ∼ y ⇒ g(x) = g(y). In particular if [{x}] is dense in Γ(0), it follows that
the counting Haar measure is the unique Haar system on Γ modulo normalization.

Another important example is given by a topological dynamical system (X,G,α) (see Exam-
ple 6): since G is locally compact it admits a Haar measure denoted by dh here, leading to

µx(f) =

∫
G
f(x, h) dh , f ∈ Cc(Γ) .

It is easy to check that the axioms are satisfied. The previous two examples are the most
important in view of applications to Physics.

The following characterization is a deep result

Theorem 4 ([102, 22]). A second countable locally compact Hausdorff topological groupoid ad-
mits a left-continuous Haar system if and only if it is open.

The proof that such a groupoid admitting left-continuous Haar system is open is due to Westman
[102]. The proof can be found below. The proof of the converse will be skipped here. But it can
be found in [103] and is based upon a deep result by Blanchard [22].

Westman’s Proof: Here Γ is a second countable locally compact Hausdorff topological
groupoid admitting a left-continuous Haar system. Using the continuity of the inverse map, it is
sufficient to show that the range map is open. Let U ⊆ Γ be an open set and let γ ∈ U . Since Γ
is second countable, locally compact and Hausdorff, Urysohn’s Lemma applies. Thus, there is a
continuous function f ∈ Cc(Γ) satisfying 0 ≤ f ≤ 1, f(γ) = 1 and supp(f) ⊆ U . Let the interior
of the support of f be denoted by Vγ . It is an open subset of U by construction. Hence µx(f) > 0

holds if and only if x ∈ r(Vγ). Since the map Φf : x ∈ Γ(0) 7→ µx(f) ∈ C is continuous by (H2),

the preimage Φ−1
f

(
(0,∞)

)
⊆ Γ(0) is open. By the previous considerations, Φ−1

f

(
(0,∞)

)
is equal

to r(Vγ). Hence, r(Vγ) is an open subset of r(U) containing r(γ). Altogether, r(U) =
⋃
γ∈U r(Vγ)

is a union of open sets implying that r(U) is open in Γ(0). 2

Corollary 4. Any second countable locally compact topological groupoid, with compact unit space
and with a left-continuous Haar system, is handy.
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2.3. Cocycles and Gauge Fields. A fair part of the book by J. Renault [81] is dedicated to
the problem of groupoid cohomology. He introduced the concept of n-cocycles. For the purpose
of the construction of the convolution algebra only the cases of n = 0, 1 are relevant. Here, Γ
will be a handy groupoid. It is convenient to introduce Γ(n) to be the subset of Γ×n made of
families (γ1, · · · , γn) such that s(γk) = r(γk+1) whenever 1 ≤ k < n. Such a family defines a

path within Γ. Since Γ is Hausdorff, Γ(n) is a closed subset of Γ×n, thus a locally compact space.
Let L denote an Abelian topological group, which will be called the group of coefficients. The
composition law in L will be written as an addition and therefore the neutral element will be
written as 0. However, in application, L will often be the unit circle S1 seen as the multiplicative
subgroup of C∗ = C \ {0} or the group of unitaries in an Abelian C∗-algebra. The reader is
invited to proceed to the change of notations between an additive and a multiplicative group law.
Then an n-cochain with coefficients in L is a continuous map σ : Γ(n+1) → L. The set of such
cochains will be denoted by Cn(Γ, L). For the pointwise addition it is an Abelian group. The
differential map d is defined as a group homomorphism d : Cn(Γ, L)→ Cn+1(Γ, L) such that

dσ(γ0, · · · , σn+1) = σ(γ1, · · · , γn+1) +(2)
n+1∑
k=1

(−1)kσ(γ0, · · · , γk−2, γk−1 ◦ γk, γk+1, · · · γn+1)

+(−1)n+2σ(γ0, · · · , γn) .

It can be checked that d2σ = 0. An n-cocycle σ is an n-chain with dσ = 0, namely σ is closed.
An n-coboundary σ is an n-chain for which there is an (n − 1)-chain τ such that σ = dτ . For
the present purpose, only 0- and 1-cocycles matter.

The case n = 0: it can be checked that a 0-cocycle is a groupoid homomorphism σ : Γ → L,
namely the condition dσ = 0 becomes σ(γ0 ◦ γ1) = σ(γ0) + σ(γ1). By definition, it is a 0-
coboundary if and only if it vanishes.

Example 8. Let X be a compact Hausdorff second countable space. Let t be an homeomor-
phism of X. Then t defines a Z-action. Let Γ = X ot Z be the corresponding handy (étale)
groupoid. Then a unitary module δ is a 0-cocycle with coefficients in L = S1. Hence it can be
checked that δ(x, 0) = 1, while δ is entirely defined by the function h : x ∈ X 7→ δ(x, 1) ∈ S1,
since, for any n ∈ N

δ(x, n) = h(x)h(t−1x) · · ·h(t−n+1x) , δ(x,−n) = h(tx)h(t2x) · · ·h(tnx) .

2

The case n = 1: It will be convenient for the rest of the paper to denote by L a compact
Abelian group for which the group law will be denoted multiplicatively. Then a 1-cocycle is a
continuous function on Γ(2) with values in L such that

(3)
σ(γ0, γ1 ◦ γ2)

σ(γ0 ◦ γ1, γ2)
=
σ(γ0, γ1)

σ(γ1, γ2)
.

In addition σ is a coboundary if and only if there is a continuous function τ : Γ→ L such that

σ(γ0, γ1) =
τ(γ0)τ(γ1)

τ(γ0 ◦ γ1)
.
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Example 9 (Uniform magnetic fields: see [10]). The main example relevant for Physics is the
effect of a magnetic field. Let X be a compact Hausdorff second countable space. Let t be a
Z2-action on X and let Γ = X o Z2 be the corresponding handy (étale) groupoid. Then an
arrow can be labeled by a pair (x, n) with x ∈ X and n = (n1, n2) ∈ Z2. A unitary 1-cocycle
(namely with L = S1) can be defined by

σ
(
(x, n), (t−nx,m)

)
= eıB n∧m , B ∈ R , n ∧m = n1m2 − n2m1 ,

as can be check easily. Here B plays the role of a magnetic field perpendicular to the plane of
the physical space in which the lattice Z2 lies [10]. Such a cocycle is not a coboundary, except
for special values of B. 2

Lemma 5. Let σ be a 1-cocycle on Γ with values in L. If x ∈ Γ(0) then

σ(ex, γ) = σ(ex, ex) = σ(γ−1, ex) , σ(γ, γ−1) = σ(γ−1, γ) , ∀γ ∈ Γx .

Proof: Use equation (3) with γ0 = ex and x = r(γ1). It gives

σ(ex, γ1 ◦ γ2)

σ(γ1, γ2)
=
σ(ex, γ1)

σ(γ1, γ2)
.

Consequently σ(ex, γ1) = σ(ex, γ1 ◦ γ2), for any choice of γ1, γ2 compatible with the definition.
Choosing γ1 = ex and γ2 = γ this gives the first set of identities. Now, choosing γ1 = ex with
x = s(γ0) = r(γ2), the same equation gives

σ(γ0, γ2)

σ(γ0, γ2)
= 1 =

σ(γ0, ex)

σ(ex, γ2)
,

which gives the second set of identities.

At last, if γ1 = γ and γ0 = γ2 = γ−1, the last equation follows. 2

Corollary 5. Let σ be a 1-cocycle on Γ with values in L and let τ : Γ → L be a continuous
function. Then the function σ̃ defined by

σ̃(γ0, γ1) = σ(γ0, γ1)
τ(γ0)τ(γ1)

τ(γ0 ◦ γ1)

defines also a 1-cocycle. If then τ is chosen so that τ(γ) = σ(ex, ex)−1 where x = r(γ), then σ̃
is normalized, namely σ̃(ex, ex) = 1.

2.4. An Example: Non Uniform Magnetic Fields. In a series of articles [68, 69, 70],
Măntoiu and his collaborators proposed a pseudo-differential calculus for studying the Schrödinger
operator describing the quantum motion of a charged particle submitted to both an electric po-
tential and a non uniform magnetic field. To this end, he built a C∗-algebra in which the product
is defined through a cocycle taking values in an Abelian C∗-algebra. The same idea was also
used by Rieffel in [84] to build a more general theory of continuous fields of C∗-algebras. In
this Section, it will be shown that there is a way around such an extension to get an S1-valued
cocycle instead. In order to do so, the idea developed here is the same developed in [10, 16] to
build the Hull. The general method is developed first and the specific for magnetic field will
be explained afterwards. It is worth mentioning [78] in which the case of a continuous field
of cocycles corresponding to a family of magnetic fields, is proved to lead to continuity of the
spectrum.
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Let G be a locally compact Lindelöf group. For simplicity it will be assumed to be Hausdorff
and second countable. The neutral element of G will be denoted by e and the composition
law, not necessarily commutative, will be denoted multiplicatively. Then a complex valued
function F : G → C is called uniformly continuous whenever for any ε > 0, there is an open
neighborhood W of the the neutral element e such that |F (g)− F (h)| < ε for any pair (g, h) ∈
G such that g−1h ∈ W . Any such function is obviously continuous. Let Cu(G) denote the
set of all complex valued, bounded, uniformly continuous function on G. It can be checked
that the uniform limit of a uniformly convergent sequence of uniformly continuous functions
is also unifomly continuous. Consequently, equipped with the pointwise addition, product,
complex conjugacy and the uniform norm ‖F‖ = supg∈G |F (g)|, Cu(G) becomes a unital, Abelian
C∗-algebra. In addition, G acts on Cu(G) through a group α of ∗-automorphisms defined by
αh(F )(g) = F (h−1g). Thanks to the uniform continuity it follows that limh→e ‖αh(F )−F‖ = 0
for any F ∈ Cu(G). Hence the group α is norm-pointwise continuous. Let now F ⊂ Cu(G)
be a countable set. Then A(F, G) will denote the sub-C∗-algebra of Cu(G) generated by the
family F(G) = {αg(F ) ; g ∈ G , F ∈ F} of G-translated of elements of F. The C∗-algebra
A(F, G) is unital, Abelian, so, by Gelfand’s Theorem (see for instance [5, 30]), it is isomorphic
to C(ΩF) where ΩF is a compact space. Since the family F is countable and since G is second
countable, it follows that A(F, G) is separable, so that ΩF is also second countable. It is Hausdorff
by construction. Actually, ΩF is built as the spectrum, namely the set of characters defined
as the ∗-homomorphisms x : A(F, G) → C. It follows that G acts by duality on ΩF using
gx = x ◦ αg−1 . Consequently, (ΩF, G) is a genuine topological dynamical system, where G
acts by homeomorphisms. Moreover, the Gelfand isomorphism is defined by the map F ∈
A(F, G) 7→ GF ∈ C(ΩF) where the Gelfand transform G is defined by GF (x) = x(F ). In ΩF

there is a remarkable point namely xe defined by xe(F ) = F (e). It is straightforward to show
that the G-orbit of xe is dense in ΩF, so that the Gelfand transform is entirely defined by the
equation GF (g−1xe) = F (g). Following [10, 16]

Definition 6. The compact space ΩF, endowed with its canonical G-action and defined as the
Gelfand spectrum of the C∗-algebra generated by the G-translated elements of the family F, will
be called the hull of F.

The idea is to use this hull to built a groupoid and a cocycle with values in S1 to represent
the algebra of observables behind a Schrödinger operator with magnetic field. To illustrate the
method, let L be a Delone set in Rd, supposed to represent the location of the atomic nuclei
of an assembly of atoms making up a condensed material (solid or liquid). If there are several
species of atoms, each atom is labeled by a letter l in a finite alphabet A. Then let Ll ⊆ L
denote the subset of positions of the atomic nuclei of species l. Let V denote the potential
energy seen by an individual valence electron, liable to travel through the material. With a very
good approximation V can be described as

V (x) =
∑
l∈A

∑
q∈Ll

vl(x− q) ,

where vl(x) is the effective atomic Coulomb potential created by atoms of the l-species at the
position x relative to the position of it nucleus. It includes both the Coulomb attraction by the
nucleus and the screening effect of the core electrons. A magnetic field is usually described as

a closed two-form B =
∑d

i,j=1Bij(x)dxi ∧ dxj . In most cases the coefficients Bij are smooth

functions of the variable x ∈ Rd. It will be assumed here that these coefficients are uniformly
continuous over the whole Rd. Such a condition is satisfied for instance if the gradient of the
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coefficients are uniformly bounded on Rd. Using the Poincaré construction, B can be locally

built from a vector-potential A =
∑d

i=1Ai(x)dxi, a one-form satisfying dA = B, that is Bij =
∂iAj − ∂jAi. However, as can be seen from the case of a constant magnetic field, A is not
bounded in general. The Schrödinger operator describing the quantum motion of a particle of
mass m and charge −e moving in the potential V , is the PDE

H = − ~2

2m

d∑
i=1

(∂i − ıeAi)2 + V .

It is a standard result to show that there is a dense domain D in H = L2(Rd) such an operator,
defined on D is essentially self-adjoint (see for instance [80]). The kinetic term is the square of
the generator of translations. But the presence of the magnetic field induces a change in the
translation operators, leading to the concept of magnetic translations [105]. Namely the usual
translation operators T (a) by the vector a ∈ Rd, acting on the quantum Hilbert space of states
H, is replaced by

(4) U(a)ψ(x) = eı(e/~)
∮ x
x−a A ψ(x− a) , ψ ∈ H .

where
∮ x
x−aA denotes the line integral of the one-form A along the straight line joining x− a to

x. This is the usual rule used in Physics when a gauge field is present, namely to change the
momentum operator p, which is the infinitesimal generator of translations, into p − eA. The
commutation rules for these unitary operators is given by

(5) U(a)U(b)U(a+ b)−1 = eı(e/~) Φ(0,a,b) ,

where Φ(0, a, b) represents the map x ∈ Rd 7→ Φx(0, a, b), namely the magnetic flux through the
oriented triangle defined by the ordered family of points (x, x−a, x−a−b). If (0, a, b) represents
the oriented triangle with vertices (0, a, a+ b), it can be written as

(6) Φx(0, a, b) =

∫
(0,a,b)

d∑
i,j=1

Bij(x− s)dsi ∧ dsj ,

seen as a multiplication operator acting on H. To implement a good product on the set of
observable, this rule must be used, leading to the appearance of a cocycle. In the case of a
uniform magnetic field, the cocycle is described in Example 9. But if B is not uniform, the main
difficulty at this point is that the magnetic translation is no longer independent of the position
x at which the state is evaluated. The solution to this problem proposed by Măntoiu et. al.,
consists in seeing the phase factor in the r.h.s. of eq. (5), as a bounded continuous function of
x, and therefore as an element of a “good” sub-algebra of Cb(Rn).

This difficulty admits another solution though, using the groupoid approach of the present
work. First, if the Delone set L is not periodic, it has a hull ΩL, a Hausdorff, second countable
compact space. This hull can be defined as the closure of the orbit of L under the translation
group G = Rn, after a genuine topology is defined on the space of Delone sets (see for instance
[17]). This Hull allows to see the electric potential V as a function Vω(x) = V(t−xω) for a
continuous function V on the compact space Ω and an Rd-action by homeomorphism t. Then,
because the magnetic field B is assumed to be uniformly continuous, it admits another hull
which will be denoted by ΩB, another Hausdorff, second countable, compact space, endowed
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with an Rd-action which, for simplicity, will also be denoted t. This leads to a combined hull
Ω = ΩL×ΩB and the combined Rd-action tx(ω, ω′) = (txω,txω′). The combined hull Ω admits
also a remarkable point, ω0 so that both the actual magnetic field and the electric potential can
be written in the from V (x) = V(t−xω0) and Bij(x) = Bij(t−xω0). The underlying groupoid will

then be ΩotRd here. It ought to be reminded here that an typical arrow in this groupoid has the
form of a pair γ = (ω, x) with ω ∈ Ω and x ∈ Rd, and that r(γ) = ω while s(γ) = t−xω. Then
the magnetic translation operator becomes ω-dependent, through the left regular representation
of this groupoid. Similarly the cocycle defining the C∗-algebra is given now by

σ((ω, x), (t−xω, y)) = eıeΦω(0,x,y)/~ ,

where Φω(0, x, y) represent the magnetic flux through the oriented triangle (0, x, y) with vertices
(0, x, x+ y) defined by

Φω(x, y) =

∫
(0,x,y)

d∑
i,=1

Bij(t−sω)dsi ∧ dsj .

A similar situation occurs for the discrete version of the Schrödinger operator. Given the Delone
set L and a point ω in the combined hull Ω, there is Lω another Delone set such that Lω + x =
Ltxω. The canonical transversal is the closed subset Ξ ⊂ Ω of points such that Lω contains the
origin 0 ∈ Rd. Let ΓΞ be the groupoid associated with Ξ. Then, the Hilbert space of quantum
states will be Hξ = `2(Lξ) for ξ ∈ Ξ. A typical Hamiltonian will be given by an expression of
the form

Hξψ(a) =
∑
b∈Lξ

h(t−aξ, b)eı(e/~)
∮ a
b Aξ ψ(b) , a ∈ Lξ , ψ ∈ `2(Lξ) ,

where (i) h is a continuous function on ΓΞ decaying fast enough at infinity to insure that the sum
converges and (ii) Aξ is a vector potential associated with the magnetic field Bξ(x) = B(t−xξ).
So the treatment will be similar, as indicated in the next Sections.

2.5. Convolution and the Full C∗-algebra. Given a locally compact space Y , let Cc(Y )
denote the space of complex valued continuous functions defined on Y with compact support.
This is a topological complex vector space. The topology is defined so that a net (fα)α∈A
converges to f if and only if (i) there is K ⊆ Y compact and α ∈ A, such that for β ≥ α
supp(fβ) ⊆ K, and (ii) for any ε > 0 there is α ≤ α′ ∈ A such that supy∈K |fβ(y)− f(y)| < ε for
β ≥ α′.
Let Γ be a handy groupoid. Then Γ admit a Haar system µ = (µx)x∈Γ(0) . In addition, let σ be

a 1-cocycle with values in the unit circles S1 seen as a multiplicative subgroup of C∗. Then a
structure of ∗-algebra can be defined on the function space Cc(Γ) in complete analogy with the
case of locally compact groups (see [37, 35]). If f, g ∈ Cc(Γ), their convolution is defined by

(7) fg(γ) =

∫
Γx
σ(η, η−1 ◦ γ) f(η) g(η−1 ◦ γ) dµx(η) , r(γ) = x .

Following [81], thanks to the cocycle property of σ, it is straightforward to check that this
product is associative and bilinear. In addition, the function fg is continuous thanks to (H2)
and has compact support [91]. An adjoint map is now defined as follows
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(8) f∗(γ) = σ(γ, γ−1) f(γ−1) .

A straightforward calculation shows that f → f∗ is antilinear. Moreover, thanks to Lemma 5,
it is involutive, namely (f∗)∗ = f . It also satisfies

(f g)∗ = g∗ f∗ .

In addition, these two operations are continuous with respect to the topology of Cc(Γ) [81].

Definition 7. The topological ∗-algebra obtained from Cc(Γ) by using the product (eq. (7)) and
the adjoint (eq. (8)) will be denoted by Cc(Γ, µ, σ).

The topology of Cc(Γ) is not coming from a norm. It is often considered as more convenient to
define algebraic norms and to complete this topological algebra in order to get a more practical
tool for analysis. In this Section only two examples of such norms will be proposed. The first
one is the extension of the Wiener algebra. For this purpose, let ‖f‖∼∞,1 be defined by [49, 81]

‖f‖∼∞,1 = sup
x∈Γ(0)

∫
Γx
|f(γ)| dµx(γ) .

It is straightforward to check that this defined a norm on Cc(Γ) such that

‖fg‖∼∞,1 ≤ ‖f‖∼∞,1‖g‖∼∞,1 .
In general though, this norm is not invariant under taking the adjoint. This leads to set

‖f‖∞,1 = max{‖f‖∼∞,1, ‖f∗‖∼∞,1}
The completion of Cc(Γ, µ, σ) w.r.t. this norm will be denoted by L∞,1(Γ, µ). Using a 3ε-
argument it is easy to check that any element of this normed ∗-algebra can be seen as a µ-
measurable function which is L1 along each fiber, such that x ∈ Γ(0) → µx(f) is continuous.

In order to define a C∗-algebra, the usual procedure consists in looking at the representations
of Cc(Γ, µ, σ) by operators on a Hilbert space. Following [81], a representation of Cc(Γ, µ, σ) on
a Hilbert space H is a weakly continuous ∗-homomorphism ρ : Cc(Γ, µ, σ) → B(H), such that
the linear span of the set {ρ(f)ψ ; f ∈ Cc(Γ, µ, σ) , ψ ∈ H} is dense in H. This representation is
called bounded whenever ‖ρ(f)‖ ≤ ‖f‖∞,1. A C∗-norm can be defined by

(9) ‖f‖ = sup
ρ
‖ρ(f)‖ , ρ bounded representation

Definition 8. The full C∗-algebra of Γ is the completion of Cc(Γ, µ, σ) under the norm ‖ · ‖
(eq. (9)). It will be denoted by C∗(Γ, µ, σ) or C∗(Γ, σ) if there is no ambiguity on µ.

2.6. The Reduced C∗-algebra. Let G be a locally compact group equipped with a left-
invariant Haar measure λ. A unitary representation U of G, in a Hilbert space H, is a group
homomorphism U : G → U(H), where U(H) denotes the set of unitary operators on H. Such
a representation is strongly continuous whenever the map g ∈ G 7→ U(g) ∈ U(H) is strongly
continuous. Since U(g) is a unitary operator, strong continuity holds if and only if it is weakly
continuous, that is, for any pair φ, ψ of elements of H, the map g → 〈φ|U(g)ψ〉 is continuous.
The left-regular representation is an important example. Let H = L2(G) be the space of square
integrable complex valued functions with respect to λ. Then G acts on H by left multiplication,
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namely if ψ ∈ L2(G) and g ∈ G, then L(g)ψ(h) = ψ(g−1h) defines a strongly continuous unitary
representation of G in H. Similarly it acts by right multiplication with R(g)ψ(h) = ψ(hg),
giving another strongly continuous unitary representation of G in H. It can be checked that
L(g)R(g′) = R(g′)L(g). If, in addition, G is a compact group, the Peter-Weyl Theorem ex-
presses that L (resp. R) is a direct sum of irreducible unitary representations of G, each such
representation occurring with multiplicity equal to its dimension. It is therefore legitimate to ask
whether the left-regular (resp. the right-regular) representation, is sufficient to recover entirely
the group G.

To express this concept, let C∗red(G) denotes the C∗-algebra generated by the bounded operators
acting on H of the form R(f) =

∫
G f(g)R(g)dλ(g) for f ∈ Cc(G), and let ‖ · ‖red be its norm.

It is worth noticing that L(g)R(f)L(g)−1 = R(f). In particular, if G is a compact group, R(f)
is the direct sum of representative in each irreducible component of L. If the right-regular
representation suffices to generate all unitary representation, as suggested by the Peter-Weyl
theorem, then any other strongly continuous unitary representation V of G, on some Hilbert
space K, must satisfy ‖

∫
G f(g)V (g) dλ(g)‖ ≤ ‖f‖red. As it turns out, this is the case if and only

if G is amenable [53] (for the concept of amenability, see Section 2.7 and [43, 48]). Any locally
compact Abelian group, or any compact group, is amenable. On the other hand, the free group
with n ≥ 2 generators is not amenable and it does not satisfy the previous criterion.

A similar phenomenon occurs for groupoids, for which there is also a concept of amenability
[3]. To understand more precisely, the first concept to be defined is the definition of a strongly
continuous unitary representation of a groupoid (analogous to the definition of measurable rep-
resentations [28]). Since a groupoid Γ is a category, a unitary representation will be a (covariant)
functor from Γ into the category Hilb the objects of which are Hilbert spaces, with morphism
given by unitary operators. Hence for each object (unit) x ∈ Γ(0), a Hilbert space Hx should be
given so that if γ : x→ y, then there is a unitary operator U(γ) : Hx → Hy. To be a covariant
functor, the additional property should be that U(γ1 ◦ γ2) = U(γ1)U(γ2). To express the strong
continuity, it will be assumed that the field (Hx)x∈Γ(0) of Hilbert space is continuous [35]. Namely
there are enough continuous vector fields ψ = (ψx)x∈Γ(0) to generate each of the Hilbert spaces

Hx. By definition of a continuous vector field, the map x ∈ Γ(0) 7→ ‖ψx‖ ∈ [0,∞) is continuous.
Hence, by analogy with the case of groups, strong continuity of U can be expressed by demand-
ing that for any pair φ, ψ of continuous vector fields, the map γ ∈ Γ 7→ 〈φr(γ)|U(γ)ψs(γ)〉 ∈ C is
continuous.

If σ is a 1-cocycle, a σ-representation of Γ will be defined as in the previous construction, with
the following modifications

U(γ1)U(γ2) = σ(γ1, γ2) U(γ1 ◦ γ2) , U(γ)∗ = σ(γ, γ−1) U(γ−1) .

The simplest example is provided by left regular representation. Namely, given a continuous
Haar system on Γ, then Hx = L2(Γx, µx). If γ : x → y, the unitary operator U(γ) is now
replaced by

L(γ)ψ(η) = σ(γ, γ−1 ◦ η) ψ(γ−1 ◦ η) , ψ ∈ L2(Γx, µx) .

Thanks to the Assumption (H3), it follows that L(γ) is a unitary operator. It becomes straight-
forward to check that L(γ1)L(γ2) = σ(γ1, γ2) L(γ1 ◦ γ2). It is worth noticing that the subspace
of L2(Γx, µx) generated by the restriction to Γx of elements of Cc(Γ) is dense.
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The analog of the operators R(f) acting on L1(G) in the group case, can be also defined in the
groupoid case. Indeed, if f ∈ Cc(Γ, µ, σ), an operator can be defined on L2(Γx, µx) as follows

(10) πx(f)ψ(γ) =

∫
Γx
f(γ−1 ◦ η)σ(γ, γ−1 ◦ η) ψ(η) dµx(η) , ψ ∈ L2(Γx, µx) .

Standard estimates imply

‖πx(f)‖ ≤ ‖f‖∞,1 .
showing that πx(f) is a bounded operator. A tedious but simple computation shows that πx is
linear in f , that

πx(fg) = πx(f) πx(g) , πx(f)∗ = πx(f∗) , f, g ∈ Cc(Γ) .

Therefore πx is a bounded representation of Cc(Γ, µ, σ). In addition, using the density of
Cc(Γ, µ, σ) in L2(Γx, µx), the Assumption (H2) and a 3ε-argument, it follows that x→ πx(f) is
strongly continuous. At last, if γ : x→ y then, the following covariance property holds

U(γ)πx(f)U(γ)−1 = πy(f) .

It then follows that x ∼ y implies ‖πx(f)‖ = ‖πy(f)‖. Moreover, whenever f = f∗ is self-
adjoint, then πx(f) and πy(f) have the same spectral measure and the same spectrum. It is also
straightforward to check that πx(f) = 0 if and only if f vanishes on the fiber Γx. Consequently

πx(f) = 0 for all x ∈ Γ(0) if and only if f = 0. This implies that

‖f‖red = sup
x∈Γ(0)

‖πx(f)‖ ,

defines a norm. By construction this norm is algebraic, invariant by the adjoint and satisfies
‖f∗f‖red = ‖f‖2red. Hence it is a C∗-norm.

Definition 9. Let Γ be a handy groupoid endowed with a Haar system µ and a 1-cocycle σ.
Then the reduced C∗-algebra of Γ is the completion of Cc(Γ, µ, σ) under the C∗-norm ‖ · ‖red.
This completion will be denoted by C∗red(Γ, µ, σ).

In general the left regular representation is not sufficient to encode all representations. A result
of Anantharaman-Delaroche and Renault [2] shows that, at least for handy étale groupoids,
amenability implies C∗red(Γ) = C∗(Γ) (Theorem 6.1.8) and a similar result in a more general
situation. However, even in the étale case, R. Willett [104] gave an example of handy étale
groupoid that is not amenable and for which C∗red(Γ) = C∗(Γ).

2.7. Amenability. At this point it might help the reader to give some hint about the concept
of amenability. The most elementary way to address this problem is as follows: consider a
time-dependent function f . Here the time is represented by a variable t ∈ R. The average of f
over time is simply defined as

〈f〉 = lim
T→∞

1

2T

∫ +T

−T
f(t)dt .

If f is unbounded such a limit might not even exist. But even if f is bounded and continu-
ous, there might be several limits. In this precise example, all possible limits are classified by
ultrafilters, or, equivalently by the Čech compactification of R. Then any of these limits are
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translation-invariant, namely if s ∈ R and if fs(t) := f(t − s), then 〈fs〉 = 〈f〉 for all s’s. This
is because, if ‖f‖ = supt |f(t)|,∣∣∣∣ 1

2T

∫ +T

−T
f(t− s)dt− 1

2T

∫ +T

−T
f(t)dt

∣∣∣∣ ≤ |s| ‖f‖T

T↑∞−→ 0

A similar problem might occur in higher dimension, if the time axis R is replaced by the position
space Rd, in order to average over space. This problem occurs in Thermodynamics for which
an observable can be defined as a position dependent function, f(x) , x ∈ Rd. Then its space-
average can be defined by

〈f〉 = lim
Λ↑Rd

1

|Λ|

∫
Λ
f(x)ddx ,

where |Λ| denotes the volume of Λ, namely its Lebesgue measure. Again in this case, at least
if f is continuous and bounded, the Čech compactification of Rd classifies all limits and it is
possible to show that, under suitable conditions on the choice of Λ, these limits are translation
invariant. Such a limit defines what is called an invariant mean. In dealing with translation
invariance, it becomes easy to realize that the ratio of the area |∂Λ| of the boundary of Λ should
become negligible w.r.t. the volume of Λ as this volume grows to become infinite. This concept
is crucial in Thermodynamics or in Statistical Mechanics, where the limit above is controlled by
the concept of Van Hove limit (see [98] Section 2 Axiom (e)).

If Rd is replaced by a locally compact group G, the same problem can be addressed in similar
terms. A mean is defined as a state on the the Abelian C∗-algebra Cb(G) of complex valued,
continuous, bounded functions on G. That is to say

(i) m : Cb(G)→ C is linear,
(ii) m is positive, namely if f ∈ Cb(G) is non-negative everywhere in G, then m(f) ≥ 0,
(iii) m is normalized, namely m(1) = 1.

Given s ∈ G and f ∈ Cb(G), let fs be defined by fs(t) = f(s−1t) for t ∈ G. Then a mean m is
G left-invariant whenever m(fs) = m(f) for all s ∈ G.

However, there are examples of groups for which there is no invariant mean ! Such is the case
for the free group with n ≥ 2 generators. In general, a locally compact group G will be called
topologically amenable whenever there is a G-invariant mean. Characterizing amenable groups
has been a challenge for a long time. The concept of Følner sequence became central [43, 48]: it
expresses the idea that in taking the average over a subset Λ ⊆ G, the boundary of Λ has a Haar-
measure negligible compared to the Haar measure of Λ. More precisely, if λ is a left-invariant
Haar measure on G, a sequence (Λn)n∈N of λ-measurable subsets of G is called a Følner-sequence
whenever

(i) λ(Λn) <∞ for all n ∈ N,
(ii) λ(Λn)→∞ as n ↑ ∞,
(iii) for any s ∈ G, the symmetric difference sΛn4Λn satisfies

lim
n→∞

λ(sΛn4Λn)

λ(Λn)
= 0 .

Remark 3. A Følner sequence might escape to infinity, far from the “origin” (namely the neutral
element) of the group. In particular the construction of a Følner sequence is less constrained
than the construction of a Van Hove sequence that is commonly used in Physics for the purpose
of controlling the infinite volume limit [98, 99]. 2
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Given a Følner sequence and given an ultrafilter F on the set N of natural integers, let m be the
mean defined by

m(f) = lim
F

1

λ(Λn)

∫
Λn

f(t)dλ(t) , f ∈ Cb(G) .

That such a limit is well defined comes from the fact that sequence on the r.h.s. is bounded by
‖f‖. Moreover,

|m(fs)−m(f)| ≤ lim
F
‖f‖λ(gΛn4Λn)

λ(Λn)
= 0 ,

showing that this mean is G-invariant. Hence, the existence of a Følner sequence implies the
existence of an invariant mean. It turns out that the converse is true [48].

Eventually, at least for locally compact Hausdorff and second countable groups, amenability
could be described in terms of the equality C∗red(G) = C∗(G) [53]. For a handy groupoid Γ, the
concept of amenability is much more involved. Anantharaman-Delaroche and Renault expressed
it in terms of positive definite functions in [3]. They distinguish between several concepts of
amenability, topological, Borel or measurable.

As a consequence, a dynamical system (X,G,α) where G is a locally compact, Hausdorff,
second countable and amenable group and X a compact Hausdorff, second countable space,
gives rise to an amenable groupoid Γ = X oα G. If Y ⊆ X is closed, any sub-groupoid
ΓY ⊆ X oαG is also amenable. And this is the only property that will be needed in the present
work. However, there are dynamical systems for which G is not amenable but the action on X
admits an invariant probability measure, leading to an amenable groupoid. The typical example
is the action of the free group with 2-parameters acting on its boundary (see [2], Ex. 3.8).

3. The Tautological Groupoid

In all this Section Γ denotes a handy groupoid. The set of closed invariant sets J(Γ) of a handy
groupoid Γ is introduced. Among these subsets, some are minimals, like in the case of dynamical
systems. In many examples of applications to Physics, minimal finite invariant subsets can be
identified with periodic orbits. Using the Hausdorff topology (as defined either by Vietoris
[100], by Chabauty [25] or by Fell [42]), the space J(Γ) becomes a compact Hausdorff second
countable space. This leads to the definition of the tautological groupoid of Γ, denoted by T(Γ).
Consequently, at least whenever Γ is étale and amenable, thanks to a Theorem by Landsman
and Ramazan [65], the C∗-algebra of the tautological groupoid appears as the enveloping algebra
of a continuous field of C∗-algebras indexed by J(Γ). This machinery permits to control whether
or not a closed invariant subset can be approximated by a sequence of periodic orbits. If so, a
genuine Schrödinger operator H, defined on the minimal invariant subset, can be approximated
by periodic operators for which Bloch Theory applies, leading to a convergent sequence of
approximations of the spectrum of H.

3.1. Invariant Sets. If F ⊆ Γ(0), its saturated is defined by [F ] = {x ∈ Γ(0) ; ∃y ∈ F, x ∼ y}.
F is called invariant whenever F = [F ]. Equivalently, F is invariant if and only if, whenever
x ∈ F and y ∼ x then y ∈ F . Hence an invariant set is the union of the equivalence classes
of its elements. If x ∈ Γ(0), [x] is its equivalence class, namely it is the saturated of {x}. If Γ

is provided by a dynamical system (X,G,α) (see Example 6), and if x ∈ X = Γ(0), then [x] is
nothing but the set {g−1x ; g ∈ G}, namely it is the G-orbit of x. By analogy, [x] will be also
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called the Γ-orbit of x (or simply “orbit” if there is no ambiguity) and the notation [x] = Orb(x)
will be used. The first result is the following

Proposition 1. Let F ⊆ Γ(0) be invariant. Then its closure F is also invariant.

Proof: Let x ∈ F . For y ∼ x let γ : y → x. Let then V be an open neighborhood of y. Since
the source map is continuous, it follows that s−1(V ) is an open set in Γ containing γ. Since the

range map is open, U = r(s−1(V )) is also open in Γ(0) and contains r(γ) = x. Since x ∈ F the
intersection U ∩F is not empty. Let x′ ∈ U ∩F . Then there is γ′ ∈ s−1(V ) such that r(γ′) = x′,
so that s(γ′) ∈ V . Since x′ ∈ F and F is invariant s(γ′) = y′ ∈ F . Hence V ∩F 6= ∅. Since V is
arbitrary, it follows that y ∈ F . 2

Definition 10. The set of closed invariant subset in Γ(0) is denoted by J(Γ).

Using the analogy with topological dynamical systems [46], the following result holds

Theorem 5. The set J(Γ), ordered by inclusion, has minimal elements. A closed invariant
subset M ∈ J(Γ) is minimal if and only if any orbit is dense in M .

Proof: (i) Any intersection of closed invariant subsets (Fj)j∈J of Γ(0) is closed and invariant: (a)
it is closed since any intersection of closed sets is closed, (b) it is invariant because if F denotes
the intersection, if x ∈ F then, for all j ∈ J , x ∈ Fj . Hence if y ∼ x, it follows that y ∈ Fj as
well for all j’s. Hence y ∈ F and F is closed and invariant. In particular, the intersection of a
decreasing family of elements of J(Γ) belongs to J(Γ). By Zorn’s Lemma, J(Γ) admits minimal
elements.

(ii) Let M be minimal. If x ∈M then [x] ⊆M since M is invariant. In addition the closure [x]
is also included in M since M is closed, and is invariant by Proposition 1. Since M is minimal
[x] = M .

(iii) Conversely, let M ∈ J(Γ) be such that every of its orbit is dense. If N ⊆ M is closed and

invariant, then given x ∈ N it follows that M = [x] ⊆ N , so that M = N and M is minimal. 2

If (X,G,α) is a topological dynamical system giving rise to a handy groupoid, then for x ∈ X,
[x] is the G-orbit of x. In particular, G acts transitively on [x]. Let Hx be the stabilizer of x in
G, namely Hx = {h ∈ G ; h−1x = x}. It follows that the g−1x depends only on the right coset
[g] = Hxg, so that Hxg ∈ Hx\G 7→ g−1x ∈ [x] is a bijection. In addition, it is continuous. The
following result, initially proved by Freudenthal [44] gives a condition under which this map is
an homeomorphism.

Theorem 6 (Open Action [44]). Let G be a group acting on a space X in a transitive way (the
orbit of any point is X). If G and X are locally compact and if G is a Lindelöf space, then the
map φx : G→ X, defined by φx(g) = g−1x is open.

It is worth reminding that a topological space is Lindelöf whenever every open covers contains a
countable sub-cover. In particular all compact space are Lindelöf. The proof below is provided
because it will be used later in the case of groupoid.

Sketch of the Proof of Theorem 6: Let K ⊆ G be any compact symmetric (namely K is
invariant by g 7→ g−1) neighborhood of the identity in G. Then G can be seen as the countable

union of sets of the form g−1K. Let
◦
A denote the interior of a subset A ⊆ X. By Baire’s

theorem, some of the φx(g−1K) has a closure with non empty interior. By transitivity of the

action, there is h ∈ K such that φx(h) ∈
◦

φx(K). In particular x = φx(e) ∈
◦

φx(h−1K)⊆
◦

φx(K2).
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Let now U ⊆ G be open and let g ∈ U . Then K can be chosen small enough so that gK2 ⊆ U .

Therefore φx(g) ∈
◦

φx(gK2)⊆ φx(U). Hence φx(U) is open. 2

Corollary 6. Let (X,G,α) be a topological dynamical system giving rise to a handy groupoid.
Let x ∈ X have a closed G-orbit. If Hx ⊆ G is the stabilizer of x, then [x] is homeomorphic to
Hx\G and the groupoid Γ[x] is isomorphic to the dynamical system (Hx\G,G, β) where β is the
canonical right G-action on Hx\G.

Proof: If [x] is closed, then it is compact (since X is compact). In particular the condition that
the groupoid X oα G is handy, implies that G is Lindelöf. Of course so is [x] then. The map
g ∈ G→ g−1x ∈ [x] being open, it follows from the definition of the quotient topology that the
induced map [g] ∈ Hx\G → [x] is also open. Hence the inverse of this map is also continuous,
meaning that this map is actually an homeomorphism. Consequently, Hx\G is compact, namely
Hx is co-compact in G. The last statement is an exercise left to the reader. 2

In the specific case for which G = Rd, a co-compact subgroup is isomorphic to H = Zn × Rd−n
for some 0 ≤ n ≤ d. The special case n = d corresponds to a non-singular periodic dynamical
system. So, it is natural to study points x ∈ Γ(0) with closed Γ-orbit. If so [x] is automatically
minimal in J(Γ). The following definition and the arguments after it are a generalization of
Corollary 6 to the groupoid case:

Definition 11. A unit x ∈ Γ(0) is called periodicoid if its Γ-orbit is closed.

Let x be periodicoid unit of Γ. We want to know what is the structure of the sub-groupoid
Γ[x]. In order to do so, let Γx be the r-fiber of x and let Hx = Γxx its rs-fiber. Then Γx and
Hx are both locally compact, Hausdorff and second countable. In particular they are Lindelöf.
Hx acts on Γx on the left, namely if η ∈ Hx then γ → η ◦ γ gives this action. Similarly, Hx

acts diagonally on the product space Γx × Γx namely through (γ, γ′) 7→ (η ◦ γ, η ◦ γ′). Let then
SΓx = Hx\(Γx × Γx) be the set of diagonal left Hx-cosets of Γx × Γx. The equivalence class of
a pair (γ, γ′) ∈ Γx × Γx will be denoted by [(γ, γ′)].

A groupoid structure can be defined on SΓx as follows:
(i) Range map: r[(γ, γ′)] = s(γ),
(ii) Source map: s[(γ, γ′)] = s(γ′)

Since s(η◦γ) = s(γ) for all η ∈ Hx, these definitions make sense in the coset space. Then [(γ1, γ
′
1)]

and [(γ2, γ
′
2)] are composable if and only if s(γ′1) = s(γ2), namely if and only if η = γ2◦γ′−1

1 ∈ Hx.
Hence, γ2 = η ◦ γ′1. Therefore there is a unique γ3 ∈ Γx such that (γ2, γ

′
2) = (η ◦ γ′1, η ◦ γ3). This

gives the product rule
(iii) Product: [(γ1, γ

′
1)] ◦ [(η ◦ γ′1, η ◦ γ3)] = [(γ1, γ3)],

(iv) Inverse: [(γ, γ′)]−1 = [(γ′, γ)]
(v) Unit: if y ∈ [x] and γ : y → x then ey = [(γ, γ)]

If γ, γ′ ∈ Γx it follows that γ−1 ◦ γ′ is an element of Γ[x]. This is because r(γ−1 ◦ γ′) = s(γ) ∼ x
and s(γ−1 ◦ γ′) = s(γ′) ∼ x as well.

Proposition 2. Let Γ be a handy groupoid. Let x ∈ Γ(0) be a periodicoid element. Then there
is a topological groupoid isomorphism φ : SΓx → Γ[x] defined by

φ
(
[(γ, γ′)]

)
= γ−1 ◦ γ′ ,
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Proof: (i) Let ϕ : Γx × Γx → Γ[x] be defined by ϕ(γ, γ′) = γ−1 ◦ γ′. Clearly ϕ is continuous. In
addition, ϕ(γ, γ′) = ϕ(η ◦ γ, η ◦ γ′) for all η ∈ Hx. Hence ϕ defines a map φ : SΓx → Γ[x]. Using
the quotient topology implies that φ is continuous as well.

(ii) The map φ is onto: if δ : z → y belongs to Γ[x], then there are γ : y → x and γ′ : z → x so

that η = γ ◦ δ ◦ γ′−1 ∈ Hx. Therefore δ = γ−1 ◦ η ◦ γ′ = ϕ(γ, η ◦ γ′).
(iii) The map φ is one-to-one. This is because γ−1

1 ◦ γ′1 = γ−1
2 ◦ γ′2, if and only if γ′2 ◦ γ

′−1
1 =

γ2 ◦ γ−1
1 = η ∈ Hx, namely if and only if (γ2, γ

′
2) = (η ◦ γ1, η ◦ γ′1).

(iv) Under the composition φ satisfies

φ ([(γ1, γ3)]) = γ−1
1 ◦ γ3

= γ−1
1 ◦ γ′1 ◦ γ′−1

1 ◦ η−1 ◦ η ◦ γ3

= φ[(γ1, γ
′
1)] ◦ φ[(η ◦ γ′1, η ◦ γ3)] .

Showing that φ is a groupoid isomorphism.

(v) The map φ is open: if U ⊆ SΓx is open, then, by the very definition of the quotient topology,
there is V ⊆ Γx × Γx open and Hx-invariant such that [V ] = U . Hence, because the topology
on Γx × Γx is induced by the topology on PΓ = Γ ×r Γ, there is W ⊆ PΓ which is open and
satisfies W ∩ Γx × Γx = V . Now, let r̂ be the map defined on PΓ by r̂(γ1, γ2) = r(γ1) = r(γ2).
It is clearly continuous. Thanks to Lemma 2, it follows that r̂ is also open. Consequently

Ŵ = r̂−1 (r̂(W )) is open. It follows also, from the proof of Lemma 2, that the map m̂ : PΓ→ Γ

defined by m̂(γ1, γ2) = γ−1
1 ◦ γ2 is continuous and open. Consequently m̂(Ŵ ) is open in Γ. It

should be remarked, at this point, that ϕ coincides with the restriction of m̂ on Γx × Γx. Thus

ϕ(Ŵ∩Γx×Γx) is obviously included in m̂(Ŵ )∩Γ[x]. This inclusion is actually an equality: this is

because, if γ ∈ m̂(Ŵ ), there is a pair (γ1, γ2) ∈ Ŵ , with γ−1
1 ◦γ2 = γ. Hence u = r̂(γ1, γ2) ∈ [x].

By the transitivity property, it follows that there is δ : u → x such that replacing γi by δ ◦ γi
m̂(δ ◦ γ1, δ ◦ γ2) = γ. Since Ŵ is r̂-invariant, it follows that (δ ◦ γ1, δ ◦ γ2) ∈ Ŵ ∩Γx×Γx as well.

Therefore φ(U)) = ϕ(Ŵ ∩ Γx × Γx) = m̂(Ŵ ) ∩ Γ[x], proving that φ(U) is open. Since this
conclusion holds for any open set U ⊆ SΓx, φ is open. Hence, φ is a homeomorphism. 2

Proposition 3. Let Γ be a handy étale groupoid. Then a periodicoid element x ∈ Γ(0) has a
finite orbit. Conversely any finite invariant subset is a disjoint union of periodicoid orbits.

Proof: (i) Let X,Y be topological spaces and let φ : X → Y be a surjective open map. If X is
discrete, then {x} is open for any x ∈ X. It follows that φ({x}) = {φ(x)} is also open. Since φ
is onto, it implies that Y is discrete as well. On the other hand, if X is also compact the family
U = {{x} ; x ∈ X} is an open cover. Since X is compact one can extract a finite subcover. But
U is also a partition, therefore it must be finite, namely X is finite.

(ii) Let x ∈ Γ(0) be periodicoid, namely the equivalence class [x] is closed. Since Γ is handy,

Γ(0) is compact, and therefore [x] is compact as well. Thanks to Proposition 2, the topological
groupoid Γ[x] is isomorphic to SΓx. Since Γ is étale, the r-fiber Γx is discrete, so that Γx × Γx

is discrete as well. The quotient map π : Γx × Γx → SΓx is always open by definition of the
quotient topology. It follows that SΓx is discrete, and thus Γ[x] is discrete. Since Γ is handy,

the source and the range maps are open. Hence [x] = r
(
Γ[x]

)
= s

(
Γ[x]

)
is also discrete. Since

[x] is compact, it must be finite.
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(iii) Let F ⊆ Γ(0) be finite and invariant. Then it is closed, since Γ(0) is Hausdorff. The
equivalence classes {[x] ; x ∈ F} make up a finite partition of F . By construction each x ∈ F is
periodicoid. 2

Remark 4. If the groupoid Γ is proper, in addition to being handy, namely if the source and
range maps are proper, then every unit is periodicoid (see [26]). 2

3.2. The Hausdorff Topology. In his famous 1914 memoir [50, 51, 52], Hausdorff defined the
foundations of topology. He also defined a topology on the set of closed subsets of a complete
metric space (X, d) using the so-called Hausdorff metric, defined as follows: if A,B are two
subset of X, then

δ(A,B) = sup
x∈A

dist(x,B) , dH(A,B) = max{δ(A,B), δ(B,A)} .

By definition dH(A,B) = dH(B,A). In addition, it is straightforward to check that dH(A,B) ≤
dH(A,C)+dH(C,B) for any C. In general dH(A,B) may not be finite. In addition dH(A,B) = 0
if and only if A and B have the same closure. But if both A,B are compact, dH is finite and
defines a metric on the space K(X) of non empty compact subsets of X. If X is complete, so is
K(X). If X is compact, so is K(X) (see [71, 72, 7] for instance).

In 1922, Vietoris [100] published a paper in which he defined a topology on the set C(X) of
nonempty closed subsets of X, whenever X is only a topological space and showed that whenever
X is metric and complete, his definition coincides, on K(X) with the topology defined by the
Hausdorff metric [24]. In 1950, Chabauty [25] revisited the problem in the framework of locally
compact Abelian groups, and in 1962, Fell [42] did the same in the context of C∗-algebras.
Both defined a modification of the Vietoris topology leading to C(X) being compact, but not
necessarily Hausdorff. However, both topology coincide if X is compact.

A basis for the Vietoris topology on a topological space X is defined by the family U(F,F)
defined below, where F ⊆ X is closed and F is a finite family of open sets:

U(F,F) = {A ∈ C(X) ; A ∩ F = ∅ & ∀O ∈ F , A ∩O 6= ∅} .
Such a topology is also known under the name of hit-and-miss [67], since elements of U(F,F)
must hit each open set in F and miss F . It is tedious but elementary to check that this family
defines indeed a basis for a topology. The Fell topology is defined in a similar way by restricting
F to be compact. If X is compact the Fell topology and the Vietoris topology coincide and will
be called the Hausdorff topology. The following result is a consequence of the results obtained
by Vietoris, Michael and Fell [100, 71, 42]

Theorem 7. Let X be a compact Hausdorff second countable space. Then, equipped with the
Hausdorff topology, C(X) is Hausdorff, compact, and second countable.

If now Γ is a handy groupoid, the following holds

Proposition 4. Let Γ be a handy groupoid. Then, if C(Γ(0)) is equipped with the Hausdorff
topology, the subset J(Γ) is closed. Consequently it is compact Hausdorff and second countable.

Proof: It is sufficient to prove that J(Γ) is closed, since the rest follows from Theorem 7. Let

A be a closed subset of Γ(0) belonging to the Vietoris closure of J(Γ). If, by contradiction, A is
not an element of J(Γ), then there is a unit x ∈ A, and an arrow γ ∈ Γ, such that r(γ) = x,
s(γ) = y, and y /∈ A. For any open neighborhood Ox of x the preimage V = r−1(Ox) is an open
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neighborhood of γ. Similarly, given any open neighborhood Oy of y the preimage W = s−1(Oy)
is an open neighborhood of γ. Let then U be an open neighborhood of γ contained in V ∩W .
Since Γ is handy, x ∈ r(U) ⊆ Ox is open and y ∈ s(U) ⊆ Oy is also open. The separability of Γ

allows to choose Oy such that A ∩ Oy = ∅. Let F,F be defined by F = s(U) and F = {r(U)}.
It follows that F is closed and does not intersect A. Then U(F,F) is an open neighborhood of
A in the Hausdorff topology. Therefore it intersects J(Γ) by assumption. In particular there

is a closed invariant subset B of Γ(0) such that B ∩ F = ∅ and B ∩ r(U) 6= ∅. Therefore, if
x′ ∈ B ∩ r(U), there is γ′ ∈ U such that x′ = r(γ′) ∈ B. As B is invariant, it follows that
s(γ′) ∈ s(U) ∩B ⊆ F ∩B = ∅, a contradiction. Hence A ∈ J(Γ). 2

The question addressed in this paper is to control the approximation of an invariant subset by a
sequence of periodic orbits. In the general framework we chose to use here, periodic orbits are,
in general only periodicoid elements. In the case of étale groupoids, these are finite invariant
subsets. So the question is “Can any invariant subset be approximate by a sequence of periodicoid
orbits ?”. The following example shows that the answer is: NO.

Example 10 (Periodic Orbits are not Hausdorff-dense). Let A be a finite set, called an alphabet.
A will be seen as equipped with its discrete topology. Let X = AZ be equipped with the
product topology. By Tychonov’s Theorem, X is compact. It is also clearly Hausdorff and
second countable. The shift defines a Z-action by

(Sx)n = xn−1 , x = (xn)n∈Z ∈ X .

A periodic point, of period p ∈ N, is a sequence x such that xn+p = xn for all n ∈ Z. Hence
if w = x0x1 · · ·xp−1, then x = w∞ is the concatenation of the word w infinitely many times on

both sides. Given a, b ∈ A with a 6= b, let yab = (yn)n∈N be the sequence defined by yn = a
if n ≥ 0 and yn = b if n < 0. Then yab = b∞ · a∞ where the · indicates the position of the
separation between negative and nonnegative integers. Then,

(i) The set of periodic point is dense in X, a property of the product topology,
(ii) The closure Y of the orbit of yab cannot be approximated, in the Hausdorff topology by

a sequence of periodic orbits.
To see this it is sufficient to equip X with a compatible metric defining the topology, and to
check that the Hausdorff distance between Y to any periodic orbit is bounded from below by a
constant independent of the periodic orbit (see [9] Example 5.2.8). 2

3.3. The Tautological Groupoid: Definition. Let Γ be a handy groupoid. Let then T(Γ) ⊆
J(Γ) × Γ be the set of pairs (M,γ) such that r(γ) ∈ M . Since M is a closed invariant subset

of Γ(0), it follows that s(γ) ∈ M as well. Equivalently γ ∈ ΓM . Then T(Γ), equipped with the
topology induced by the product topology of J(Γ)× Γ is closed, so that it is a locally compact
Hausdorff, second countable space. In addition, it becomes a groupoid if endowed with the
following structure

(T1): the set of units TΓ(0) is the set of pairs (M,x) ∈ J(Γ)× Γ(0) such that x ∈M ;
(T2): the range and the source maps are defined by r(M,γ) = (M, r(γ)) and s(M,γ) =

(M, s(γ));

(T3): the set TΓ(2) of composable pairs of arrows is the set of pairs
(
(M,γ), (M,η)

)
such

that s(γ) = r(η);
(T4): The composition is then given by (M,γ) ◦ (M,η) = (M,γ ◦ η); consequently, the

inverse map is given by (M,γ)−1 = (M,γ−1).
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Proposition 5. Let Γ be a handy groupoid. Then, if J(Γ) is equipped with the Hausdorff
topology, the set T(Γ), endowed with the product topology of J(Γ) × Γ and with the groupoid
structure defined by (T1)-(T4), is a handy groupoid as well, which will called the tautological
groupoid of Γ.

The term tautological reflects the fact that it is a universal object for all continuous fields of
groupoids modeled on Γ, as will be seen in the next Section 4, in Theorem 8.

Proof: (i) it is straightforward to check that (T1)-(T4) defines a groupoid structure. In

addition, the range map is continuous: any open set in TΓ(0) is containing an open set of the
form U × V ∩ TΓ(0), the preimage of which by r is U × r−1(V ) ∩ T(Γ), which is an open set in

T(Γ). Similarly, the source map is continuous. Since Γ is handy, Γ(0) is Hausdorff, so is J(Γ).

Hence, since Γ is also Hausdorff, it follows that T(Γ) is Hausdorff as well. Hence TΓ(2) is closed
in T(Γ)×T(Γ). By the same argument, the groupoid product is continuous and the inverse map

also. Since TΓ(0) ⊆ J(Γ)×Γ(0) is closed, it is compact. At last the range map is open because if
U is an open set in J(Γ) and if U ⊆ Γ is open, then U × U ∩ T(Γ) is open in T(Γ) and such sets

generate the topology. Therefore r(U × U ∩ T(Γ)) = U × r(U) ∩ TΓ(0) as can be checked easily,
which is open. Similarly, the source map s is open. 2

4. Continuous Fields

4.1. Continuous Fields of Groupoids. The definition below was proposed and studied in
[65] as a way to construct continuous fields of C∗-algebras, in connection with the concept of
deformation quantization. The latter concept has a long history (see [65]), but Rieffel deserves
the credit for providing a rigorous satisfactory definition for deformations of C∗-algebras [84,
85, 86, 87, 88].

Definition 12 ([65]). A field of groupoids is a triple (Γ, T, p) where Γ is a groupoid, T a set

and p : Γ → T is a map such that, if p0 is the restriction of p to the unit space Γ(0), then
p = p0 ◦ r = p0 ◦ s.
If, in addition, Γ is a topological groupoid, T a topological space and if p is continuous and open,
then (Γ, T, p) is called a continuous field of topological groupoids.
If, moreover, Γ is locally compact (resp. handy) and if T is Hausdorff, and if p is continuous
and open, then (Γ, T, p) is called a continuous field of locally compact (resp. handy) groupoids.

As remarked in [65], given S ⊆ T , the set M = p−1
0 (S) ⊆ Γ(0) is invariant. If, in addition,

the field (Γ, T, p) is continuous and S is closed, so is M . In particular, if Γ is handy, since p0

is continuous, the map p̂0 : M ∈ J(Γ) 7→ p0(M) takes on values in the compact subsets of T ,
and is continuous if the set of closed subsets of T is endowed with Vietoris’ topology (see [8],
Proposition 2). If, in addition, T is compact, then p̂0 is Hausdorff continuous. The following
Theorem provides a description of all possible field of handy groupoids based on Γ

Theorem 8. Let Γ be a handy groupoid.
(i) Let pΓ : T(Γ) → J(Γ) be the map defined by pΓ(M,γ) = M for M ∈ J(Γ) and γ ∈ ΓM .

Then (T(Γ), J(Γ), pΓ) is a continuous field of handy groupoids, called the tautological field of Γ.
(ii) If (Γ, T, p) is continuous field of handy groupoids, with T compact and Hausdorff, then

the map p̂0 : J(Γ) → C(T ) is continuous for the Hausdorff topologies, and p = p̂0 ◦ pΓ. Hence
the tautological field of Γ serves as an initial object for any continuous field based on Γ.
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Proof: (i) Since, by Proposition 4, J(Γ) is compact and second countable, it is sufficient to prove
that pΓ is both continuous and open. Since the topology on T(Γ) is induced by the product
topology of J(Γ)× Γ and since p is the first projection, the claim is obvious by definition.

(ii) the relation p = p̂0 ◦ pΓ is just another way to write p̂0(M) = p0(M) = p(M,γ). 2

Lemma 6. Let Γ be a handy groupoid equipped with a left-continuous Haar system µ. Then
the restriction µM = x ∈ M 7→ µx is a well-defined left-continuous Haar system on ΓM . In
addition, if (M,x) ∈ TΓ(0) and if δM denotes the Dirac measure supported by M on J(Γ), then

µ(M,x) = δM × µx on {M} × Γx, defines a left-continuous Haar system on T(Γ)

Proof: for each x ∈ Γ(0), µx is a positive Borel measure on the r-fiber Γx satisfying the
conditions described in Definition 5. If M ∈ J(Γ) it follows that for any x ∈M and any γ ∈ Γx,
then s(γ) ∈ M as well. In particular Γx ⊆ ΓM , namely ΓxM = Γx. Therefore the restriction
µM = x ∈M 7→ µx can be seen as a left-continuous Haar system on ΓM . The rest is left to the
reader. 2

4.2. Continuous Field of C∗-Algebras: a Reminder. The concept of continuous field of
C∗-algebras has been investigated at least since Kaplansky in [57]. In particular he gave the first
proof that a self-adjoint continuous section of such a field has a spectrum varying continuously
with the parameter. This concept was developed and used by Fell [40, 41], Tomiyama [96, 97]
and later studied by Dixmier and Douady [34, 35], who gave a complete definition. It is worth
noticing that continuous fields are sometimes called “bundle” [60]. But this name does not
corresponds to the concept of bundle in Differential Geometry, as continuous fields might not
be locally trivial.

Let T be a topological space. For each t ∈ T let At be a C∗-algebra. The family A = (At)t∈T
is called a field. A section or a field of operators is a family A = (At)t∈T for which At ∈ At for
all t ∈ T . Given a set Υ of sections, Υt will denote the set of At ∈ At such that A ∈ Υ.

Definition 13. A field A of C∗-algebras will be called continuous whenever there is a set Υ of
sections with the following property

(CF1): for each t ∈ T , then Υt is a dense ∗-subalgebra of At,
(CF2): for each A ∈ Υ, the map t ∈ T 7→ ‖At‖ is continuous,
(CF3): a section B belongs to Υ if and only if for each t ∈ T , for each ε > 0, there is an

open neighborhood U of t in T and a section A ∈ Υ, such that ‖As−Bs‖ < ε for s ∈ U .

Then an element of Υ is called a continuous section.

The set Υ, endowed with the pointwise addition, scalar multiplication, product and adjoint,
becomes a ∗-algebra. However, in general, this is not a normed algebra. A continuous section
A ∈ Υ will be called bounded whenever ‖A‖ = supt∈T ‖At‖ is finite. In this case, ‖ · ‖ is a C∗-
norm and the set of bounded continuous sections becomes a C∗-algebra, which will be denoted by
Cb(T,A). Then the pointwise multiplication by a complex valued bounded continuous function
on T makes it a Cb(T )-C∗-module [22]. If, in addition, T is locally compact, then the set of
continuous sections vanishing at infinity is also a C∗-algebra when endowed with that norm,
which will be denoted by C0(T,A). Again, it can be seen as a C0(T )-C∗-module.

It is not difficult in practice to check that a field of C∗-algebra satisfies (CF1). The axiom (CF3)
looks hard to check, but, as can be seen in [35], Υ can be replaced by a smaller set generating
it, and in most situations, it is not difficult to built such a generating set. The tricky part is
the axiom (CF2). Proving the continuity of the norm is always a problem. For this reason,
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Rieffel defined the concept of upper and lower semi-continuous field, by replacing the continuity
property (CF2) by the corresponding semi-continuity.

Following Rieffel [84], if T is locally compact and if B is a C∗-algebra, it will be called a C0(T )-
C∗-module whenever there is an injective ∗-homomorphism defined on C0(T ) with values in the
center of the multiplier algebra M(B) (see Section 5.1 for a definition of the multiplier algebra).
Then B can be seen as the the set of continuous sections, vanishing at infinity, of an upper
semi-continuous field of C∗-algebras [84]. The lower semi-continuity requires a specific property,
for instance the existence of a suitable representation of B. In the case of groupoid C∗-algebras,
the left regular representation does the job. But then, the difference between the reduced and
the full algebra may prevent those fields to be more than only semi-continuous, one way or the
other.

It is also worth noticing that the tensor product of two continuous fields may not be continuous.
This is due to the non uniqueness of the tensor product of C∗-algebras, more precisely, on the
algebraic tensor product of two C∗-algebras there are, in general, several C∗-norms, one being
minimal and one maximal. The point of view of C(T )-modules turns out to be very useful to
investigate the tensor product [22, 60].

Building upon such a concept, Landsman and Ramazan [65] showed that continuous field of
groupoids lead to semi-continuous fields of C∗-algebras depending upon whether the full or the
reduced C∗-algebra are used. For convenience, this theorem will be reformulated for handy
groupoids, since the purpose of this paper is to consider applications rather than a general
mathematical result. In [65], only the case of a trivial cocycle is considered

Theorem 9 (see [65], Section 5). Let (Γ, T, p) be a continuous field of handy groupoids. Let
µ be a Haar system on Γ. Then, the field (C(Γt, µ))t∈T is upper semi-continuous and the field
(Cred(Γt, µ))t∈T is lower semi-continuous.

As a result, if the field has the “Amenability Property” (see [84], Hypothesis 2.6), namely if each
fiber satisfies Cred(Γt, µ) = C(Γt, µ), then the field obtained this way is continuous. Here some
remark is in order: since the fiber Γt is a sub-groupoid of Γ, it follows that µ restricts to Γt is a
left-continuous Haar system as well.

4.3. Continuous Fields of 1-Cocycles. In the previous result, the C∗-algebras are defined
without reference to a cocycle, meaning that σ = 1. Adding a cocycle on a handy groupoid Γ,
defines a field of cocycles σM on each fiber of the tautological groupoid. However, in view of
applications to Physics, it might be convenient to also consider the continuity w.r.t. the cocycle
itself. Such a problem arises in Physics precisely whenever a magnetic field is added, which
might be uniform or not. In the study of the Heisenberg group [85], which corresponds to the
Weyl quantization procedure, a similar problem occurs where the magnetic field is replaced by a
semiclassical parameter, generalizing the concept of Planck constant, leading to a continuous field
of cocycles. It becomes important, in view of potential applications, to include the possibility
of changing the cocycle along the way and to get results about the continuity of the field of
C∗-algebras.

In the case for which Γ is actually a discrete group, the space of all possible 1-cocycles can be
equipped with a topology making it a compact space ([84], Corollary 2.8). But in the case of
a handy groupoid, even an étale one, this is not the case. To see the difficulty, let the case of
0-cocycles, called modules, be considered as in Example 8: a module over the groupoid X o Z
is entirely defined by a continuous function h : X → S1. To put a topology on the set of such
modules, it is sufficient to define a topology on the space Ω = C(X,S1) of such functions. The
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problem is that compactness can be achieved using the pointwise convergence, but then Ω is not
closed, since discontinuous function will show up in the closure. If then the uniform convergence
is defined, the space Ω is closed, but not compact, not even locally compact. In the definition
of Dixmier-Douady [35], the space of parameters needs not be locally compact in general, so
that it is not an obstacle. However, the argument provided by Rieffel [84] to prove the upper
semi-continuity fails if Ω is not locally compact, so that the definition of Dixmier-Douady cannot
be used since the upper semi-continuity of the norm cannot be proved. As a compromise, Rieffel
propose to use a continuous field of 1-cocycles instead. Adjusting his definition to the groupoid
case is provided below. The notations are the following: let TΓ(2) ⊆ Γ(2) × T denote the set of

(γ, η, t), such that (γ, η) ∈ Γ
(2)
t . Clearly, since the map p is continuous, it follows that TΓ(2) is

closed in Γ(2) × T . Then it will be endowed with the induced topology.

Definition 14. Let (Γ, T, p) be a a continuous field of handy groupoids. Then a continuous field

σ = (σt)t∈T of 1-cocycles is a continuous function σ : TΓ(2) → S1 such that, for each t ∈ T , the

map σt : (γ, η) ∈ Γ
(2)
t 7→ σ(γ, η, t) ∈ S1 is a 1-cocycle.

5. Proof of Theorem 3

In this Section all the previous concepts and results will be used to prove Theorem 3. The
assumptions made in the statement of this theorem imply that the groupoid Γ is handy, thanks
to Theorem 4. The strategy for the proof is not new. It follows the ideas first used by J. Renault
[81], by G. Elliott [38], by M. Rieffel [84] and by N. P.Landsman and B. Ramazan [65]. However,
none of these results include the case for which there is a continuous field of cocycles defining the
C∗-algebra. Hence, a new proof is in order, to show that adding such a cocycle does not change
the strategy nor the result. The proof is organized in two parts. The first, entitled “Upper
Semi-Continuity” follows the strategy proposed by Rieffel: if A = (At)t∈T is a continuous field
of C∗-algebras, then Jt denotes the closed two sided ideal generated by continuous sections
vanishing at t. If it can be proved that At is ∗-isomorphic to the quotient algebra A/Jt, then
the norm on At is a quotient norm, namely the infimum over continuous semi-norms, leading
to the upper semi-continuity (see [84], Proposition 1.2). The second part, entitled “Lower
Semi-Continuity”, uses the left regular representation to show that the norm on the reduced
C∗-algebra is the supremum of continuous functions, leading to the lower semi-continuity.

In this Section, Γ is a handy groupoid, equipped with a left-continuous Haar system, µ. Then
for M ∈ J(Γ), µM will denote the restriction of µ to the subgroupoid ΓM (see Lemma 6). For
T a locally compact second countable space, let p0 : J(Γ) → T be a continuous open map. It
induces a continuous field of groupoid (T(Γ), T, p) if p is the map p = p0 ◦ r = p0 ◦ s. Then let
σ be a continuous field of 1-cocycles over T with values in S1. Such a field can be seen as a

continuous field over J(Γ) instead by setting σM
def
= σp0(M). Hence there is no loss of generality

in assuming that T = J(Γ). For convenience, it will always be assumed that σ is normalized (see
Corollary 5).

5.1. The Algebra A and its Ideals. In this Section A will denote the ∗-algebra A =
Cc(T(Γ), σ, µ). It is reminded that its topology is defined as the inductive limit topology, namely
a net (aα)α∈A in A converges to a ∈ A if there is a compact subset K ⊆ T(Γ) supporting each
aα and a and sup(M,γ)∈K |a(M,γ) − aα(M,γ)| → 0. With this topology the product and the
adjoint are continuous.
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Let C denote the space C(J(Γ)) of complex valued continuous functions on the space of closed
invariant subsets of the groupoid Γ. Since J(Γ) is compact, it follows that C is a unital Abelian
C∗-algebra when endowed with the uniform norm

‖h‖ = sup
M∈J(Γ)

|h(M)| .

For F ∈ J(Γ), let IF denotes the set of functions h ∈ C such that h(F ) = 0. This is a maximal
(closed, two-sided) ideal of C and any maximal ideal is of this type.

As a reminder, a multiplier of A is a pair (L,R) of linear continuous operators on A such that,
for any a, b ∈ A

L(ab) = L(a)b , R(ab) = aR(b) , R(a)b = aL(b) (compatibility) .

If M = (L,R), it is common to write Ma = L(a) and aM = R(a). The relation above are
expressing the associativity of such a product. If b ∈ A then b can be seen as a multiplier
through

b = (Lb, Rb) , Lb(a) = ba , Rb(a) = ab .

If (L,R) and (L′, R′) are two multipliers then (L+ L′, R+R′) is a multiplier, called their sum.
If λ ∈ C is a scalar then λ(L,R) = (λL, λR) is also a multiplier. The product is defined by
(L,R)(L′, R′) = (LL′, R′R), and it can be checked that this is a multiplier. At last, if S : A → A
is linear and continuous, the operator S∗ is defined by S∗(a) = (S(a∗))∗. Then the adjoint of
a multiplier is defined by (L,R)∗ = (R∗, L∗). It can be checked that the adjoint is also a
multiplier. Consequently, endowed with these algebraic operations, the set of multipliers is a ∗
algebra. An elementary exercise shows that given any two multipliers (L,R) and (L′, R′), then
LR′ = R′L and, similarly L′R = RL′. In particular if L = R then (L,R)(L′, R′) = (LL′, R′R) =
(RL′, R′L) = (L′R,LR′) = (L′L,RR′) = (L′, R′)(L,R).

Lemma 7. For h ∈ C and a ∈ A let mh : A → A be the linear operator defined by

(mha)(M,γ) = h(M) a(M,γ) , M ∈ J(Γ) , γ ∈ ΓM .

Then, mh defines a multiplier of A commuting with all multipliers of A.

Proof: It is immediate to check that the pair (mh,mh) of linear operators on A satisfies
these algebraic relations defining a multiplier (L,R). The relation L = R is equivalent to this
multiplier commuting with elements of A. In addition, for a ∈ A and h ∈ C

supp(mha) ⊆ supp(a) , |mha(M,γ)| ≤ ‖h‖|a(M,γ)| ,
as can be checked by inspection. It follows that the map a ∈ A 7→ mha ∈ A is continuous. 2

Definition 15 (See for instance [22]). The multiplier mh will be written as mh(a) = ha = ah.
Then A becomes a ∗-C-modules.

Let n ∈ N be an integer. Then Mn(A) denotes the n × n matrices with elements in A. The
algebraic operations, sum, scalar multiplication, product and adjoint are defined in the usual
way. An element T ∈ Mn(A) will be called positive whenever there is S ∈ Mn(A) such that
T = S∗S. Then the relation T ≤ T ′ means T ′ − T is positive. If h ∈ C then the multiplier mh

extend to Mn(A) by multiplying h to each matrix element.
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Proposition 6. Given h ∈ C, then, for any S ∈Mn(A),

S∗h∗hS ≤ ‖h‖2S∗S .
In particular, given {a1, · · · , an} in A, the matrix T hk,l = a∗kh

∗hal satisfies

T h ≤ ‖h‖2T 1 , where 1(M) = 1 ∀M ∈ J(Γ) .

Proof: Let g be the function defined by

g(M) =
√
‖h‖2 − |h(M)|2 , |h(M)|2 = (h∗h)(M) .

Then as a multiplier g∗ = g ≥ 0. Moreover, g∗g+h∗h = ‖h‖2 1 where 1(M) = 1 for all M ∈ J(Γ).
Thus

‖h‖2S∗S = S∗h∗hS + S∗g∗gS ,

proving the inequality. If a = {a1, · · · , an} in A, let Sa be the matrix defined by

Sa =


a1 · · · an
0 · · · 0
...

. . .
...

0 · · · 0

 ∈Mn(A) .

Then T h = S∗ah
∗hSa and the second inequality follows from the first. 2

Corollary 7. Let ρ be a representation of A in the Hilbert space H. Then for each h ∈ C there
is a bounded operator ρ(h), commuting with the operators ρ(a) for a ∈ A such that ρ becomes a
C-module ∗-homomorphism.
Consequently, the C-action extends by continuity to both the full and the reduced C∗-algebras of
(T(Γ), µ, σ).

Proof: If ρ is a representation, by definition the map a → ρ(a), is a weakly continuous ∗-
homomorphism such that the linear span of the vectors of the from ρ(a)ξ with a ∈ A and ξ ∈ H
is dense in H. Then, if ξ1, · · · , ξn are vectors in H and if a1, · · · , an are elements of A it follows
from Proposition 6 that∑

k,l

〈ρ(h ak)ξk|ρ(h al)ξl〉 ≤ ‖h‖2
∑
k,l

〈ρ(ak)ξk|ρ(al)ξl〉 .

Hence if ψ =
∑

k ρ(ak)ξk and if Tψ =
∑

k ρ(hak)ξk, then ‖Tψ‖ ≤ ‖h‖‖ψ‖, and the map ψ → Tψ
is well defined, linear by construction and bounded. This map is denoted by ρ(h) and it is an
exercise that this defines ρ as a weakly continuous C-module ∗-homomorphism. The second part
of the statement is just a consequence of the definition of the reduced and the full C∗-algebras.
2

The following Lemma will be used in the proof of the next result

Lemma 8. Let X be a compact Hausdorff space. Let f : X → [0, 1] be a function with the
following properties

(a) f is lower semi-continuous,
(b) there is x0 ∈ X such that f(x0) = 0 and f is continuous at x = x0.

Then there exists a continuous function h : X → [0, 1] such that h(x0) = 0 and f(x) ≤ h(x) for
x ∈ X.
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Proof: (i) Since f is continuous at x0, for any natural integer n there is an open set Un
containing x0 such that if x ∈ Un then 0 ≤ f(x) < 1/n. Let then Vn be defined by

Vn =
⋃
m≥n

Um .

By construction Vn contains x0, it is open and Vn+1 ⊆ Vn for all n’s. Similarly let Wn be the
open set defined by

Wn = Vn \ Vn+2 .

Then, for each n, x0 /∈ Wn. Let W denote the union of all the Wn’s (which coincides with
V1 \ {x0}). Its complement K = X \ W is a compact set, containing x0. By compactness
it is possible to extract a finite subset {x0, x1, · · · , xl} ⊆ K and for each 0 ≤ k ≤ l an open

neighborhood Ok of xk such that K ⊆
⋃l
k=0Ok. It is even possible to choose this open cover so

that x0 /∈ Ok for k ≥ 1. Then let W0 denotes the open set W0 = O0 ∪ O1 ∪ · · · ∪ Ol \ {x0}. In
addition the family W = {Wn ; n ∈ Z+} is an open cover of the locally compact normal space
X \ {x0}. By construction, it is locally finite. Using the Urysohn’s Lemma, let (φn)n∈Z+ be
a partition of unity subordinate to the open cover W of X \ {x0}: namely for each n ≥ 0, φn
is continuous, 0 ≤ φn(x) ≤ 1, the support of φn is included in Wn, and for any x ∈ X \ {x0},∑∞

n=0 φn(x) = 1. It is easy to check, using the definition of the Wn’s, that if x 6= x0 is contained
in Wn but not in Wn−1, then it is not contained in Wk if k 6= n, n + 1. Therefore the previous
infinite sum has at most two nonzero terms, so it is finite.

(ii) For N ∈ N let hN be the function defined by

hN (x) = φ0(x) +

N∑
n=1

1

n
φn(x) .

By construction, hN is continuous, it vanishes at x = x0, and 0 ≤ hN (x) ≤ hN+1(x). In addition

hN (x) ≤
N∑
n=0

φn(x) ≤ 1 ,

Consequently the sequence (hN )N∈N converges monotonically pointwise to a function h, such
that h(x0) = 0 and 0 ≤ h(x) ≤ 1. However, for 1 ≤M < N two integers

0 ≤ hN (x)− hM (x) =

N∑
n=M+1

1

n
φn(x) ≤ 1

M + 1

N∑
n=M+1

φn(x) ≤ 1

M + 1
.

Consequently the sequence (hN )N∈N is Cauchy for the uniform topology, so that supx∈X |h(x)−
hN (x)| → 0 and therefore h is continuous. By construction, if x ∈Wn, 0 ≤ f(x)φn(x) < φn(x)/n
for n ≥ 1, while for n = 0, 0 ≤ f(x)φ0(x) ≤ φ0(x). Consequently, summing over n and using
the pointwise convergence, this gives 0 ≤ f(x) ≤ h(x). 2

Let now F ∈ J(Γ) be a closed invariant subset. Then IF will denote the set of functions h ∈ C
such that h(F ) = 0. Thus IF is a maximal (closed two-sided) ideal of C. Similarly JF will
denote the set of a ∈ A such that a(F, γ) = 0 for γ ∈ ΓF . The following result holds

Proposition 7. (a) The set JF is a closed two-sided ideal of A which coincides with the closed
two-sided ideal generated by IFA.
(b) The quotient algebra AF = A/JF is ∗-isomorphic to the algebra Cc(ΓF ).
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Proof: (i) That JF is a two-sided ideal can be checked by inspection: namely if a ∈ JF and if
b ∈ A then ab(F, γ) = 0 = ba(F, γ) for γ ∈ ΓF . That it is closed comes from the fact that if a is
the limit of a net aα of elements of JF then, in particular, a(F, γ) = limα aα(F, γ) = 0 for any
γ ∈ ΓF .

(ii) Given a ∈ JF there are a0, a1, a2, a3 such that a = a0−a2 +ı(a1−a3) and al(M,γ) ≥ 0 for all
l’s and (M,γ). This is because a can be decomposed into real and imaginary part. In addition,
each continuous real valued function f on a topological space X can be written as f = f+− f−,
with f±(x) = max{±f(x), 0} for x ∈ X. Hence f± are continuous with support contained in
the support of f . In particular each al is continuous and supported in the support of a. In
addition, each al vanishes at F so that al ∈ JF . Thus, there is no loss of generality in assuming
that a(M,γ) ≥ 0 for all (M,γ) ∈ T(Γ). Similarly, changing a into λa if necessary, where λ ∈ R+

there is no loss of generality in assuming that 0 ≤ a(M,γ) ≤ 1. Let f : IΓ → [0, 1] be defined
by f(M) = supγ∈ΓM a(M,γ). Then f is lower semi-continuous, f(F ) = 0 and 0 ≤ f(M) ≤ 1.

(iii) Let K denote the support of a. By assumption, K is compact in T(Γ). It follows that f is
continuous at M = F . Indeed, thanks to the Bolzano-Wëıerstrass theorem , given M ∈ J(Γ),
there is γM ∈ ΓM such that a(M,γ) reaches its supremum at (M,γM ). Hence f(M) = a(M,γM ).
Let (Mn)n∈N be a sequence converging to F in J(Γ). Thanks to the compactness of K, by
extracting a sub-sequence if necessary, the corresponding γMn converge to a point η ∈ ΓF . Since
a is continuous it follows that limn→∞ f(Mn) = limn→∞ a(Mn, γMn) = a(F, η) = 0. Since Γ is
second countable, it follows, from the properties of the Hausdorff topology (see Proposition 4),
that J(Γ) is second countable as well, so that this convergence is sufficient to prove the continuity
of f at M = F .

(iv) Thanks to Lemma 8, let then h ∈ IF be such that h(M) ≥ f(M). Then given 0 < ε < 1,
let aε be defined by

aε(M,γ) = h(M)ε a(M,γ)1−ε .

Hence aε ∈ IF . It follows that if R denotes the ratio h(M)/a(M,γ) then R ≥ 1 (it can be
infinite) and

0 ≤ (aε − a)(M,γ) = (Rε − 1)a(M,γ) =

∫ ε

0
ln(R)Rsa(M,γ) ds ≤ εRε−1 ln(R)h(M) .

where a(M,γ) = R−1h(M) is used. The support of aε is contained in the support of a. Moreover,

Rε−1 ln(R) ≤ (e(1− ε))−1. Therefore limε→0 aε = a in the topology of A. Hence a ∈ IFA.

(v) For a ∈ A let aF denote the function aF (γ) = a(F, γ) for γ ∈ ΓF . The map pF : a → aF
is a continuous ∗-homomorphism with kernel JF by construction. Hence it defines an injective
∗-homomorphism from AF into Cc(ΓF ). Conversely, if b ∈ Cc(ΓF ), with support in the compact
subset K ⊆ ΓF it can be seen as a function defined on the compact subset {F} × K ⊆ T(Γ).

Since Γ is handy, the Tietze Extension Theorem applies, so that there is a function b̂ ∈ A such
that b̂F = b. Hence pF is onto. 2

5.2. The Full C∗-algebra. The definition of the full C∗-algebra was provided in Section 2.5.
As a preparation, the following result is elementary but is needed.

Lemma 9. Let 0 → J
i→ A

p→ B → 0 be a sequence of C∗-algebras with i, p being ∗-
homomorphisms such that i is injective, p is surjective and p◦ i = 0. If, for any ∗-representation
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π of A vanishing on Im(i), there is a ∗-representation πB of B such that πB ◦ p = π, then the
previous sequence is exact at A, namely Ker(p) = Im(i).

Proof: From the assumptions it follows easily that Im(i) ⊆ Ker(p). If i(J) 6= Ker(p), there
is a ∈ Ker(p) such that a /∈ Im(i). Consequently there is a ∗-representation π of A vanishing
on Im(i) such that π(a) 6= 0. By the assumption, there is a representation πB of B such that
π(a) = πB ◦ p(a) = 0, leading to a contradiction. 2

Like in Section 5.1 let A = Cc(TΓ, σ, µ). Given F a closed invariant subset of Γ(0), let JF
denotes the ideal of functions a ∈ A such that a(F, γ) = 0 for all γ ∈ ΓF . In addition, AF
denotes the ∗-algebra Cc(ΓF , σF , µF ) where σF represents the restriction of the cocycle σ on ΓF
and, similarly, µF denotes the restriction of the Haar system µ to ΓF . Then the following result
holds

Lemma 10. Let iF : JF → A be the injection map and let pF : A → AF be the evaluation map
at F . Then:

(a) The sequence of topological ∗-algebras 0→ JF
iF→ A pF→ AF → 0 is exact.

(b) The maps iF and pF extends as ∗-homomorphisms to the completions of the previous
algebras for both the reduced and the full norms. In both case iF is injective and pF ◦ iF = 0.

Proof: (i) The map iF is defined as iF (f)(M,γ) = f(M,γ), for f ∈ JF , which makes sense
since JF ⊆ A. The map pF is defined by pF (a)(γ) = a(F, γ) for any γ ∈ ΓF . The result of
Proposition 7 is equivalent to Ker(pF ) = Im(iF ).

(ii) The map pF is onto which will prove the exactness at AF . Namely if b ∈ AF , it defines a
continuous function with compact support on ΓF , which can be seen as a continuous function
with compact support on {F} × ΓF ⊆ TΓ. Thanks to the Tietze extension theorem, there is
a ∈ A coinciding with b on {F} × ΓF . Then, by definition pF (a) = b. Together with (i) this
proves (a).

(iii) Given a bounded, ∗-representation π of A, the map f ∈ JF 7→ π ◦ iF (f) gives a bounded,
∗-representation of JF . In particular, if M ∈ IΓ and if x ∈ M , let πM,x denote the left

regular representation of TΓ on the fiber space L2(TΓM,x, µM,x). Then the reduce norm ‖a‖red
of a ∈ A is obtained by taking the supremum over (M,x) of ‖πM,x(a)‖. It then follows that
‖iF (f)‖red = supM,x ‖πM,x(i(f))‖ ≤ ‖f‖red. Similarly, taking the supremum over all bounded,
∗-representations π of A, this argument gives ‖iF (f)‖ = supπ ‖π(iF (f))‖ ≤ ‖f‖. Hence iF
extends as a ∗-homomorphism to the completions of JF and A w.r.t. both the reduced and the
full norm. By construction iF (f) = f for f ∈ JF , therefore the same identity holds in both
completions. Hence iF is injective and therefore it is an isometry in both completions.

(iv) A similar argument holds for pF . If ρ is a bounded, ∗-representation of AF , then ρ ◦ pF is
also a bounded, ∗-representation of A as can be checked by inspection, using the invariance of
the closed set F . As a result the same argument shows that pF extends to both the reduced
and the full completions of A and AF as a ∗-homomorphism. The relation pF ◦ iF = 0 holds on
JF so it must hold on both completions as well by continuity. 2

The following Lemma is using an argument due to Renault (see [81], p. 102) used in a different
context.

Lemma 11. Let A denotes the full C∗-algebra A = C∗(T(Γ), σ, µ) and let JF be the closure
of JF in A. Similarly let AF be the full algebra C(ΓF , σF , µF ). If π a ∗-representation of A
vanishing on JF , there is a ∗-representation ρ of AF such that ρ ◦ pF = π.
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Proof: The restriction of π on A is a bounded ∗-representation of A. Since π vanishes on JF , it
also vanishes on JF . Let then ρ be defined, for b ∈ AF , by ρ(b) = π(a) for any a ∈ A coinciding
with b on ΓF , namely for any a ∈ A such that a(F, γ) = b(γ) for γ ∈ ΓF . This definition makes
sense since changing a into a′ implies a − a′ ∈ JF namely π(a) = π(a′). This construction
gives ρ ◦ pF = π when restricted to A. By completion, ρ extends to a ∗-representation of the
full algebra AF . The relation ρ ◦ pF = π, valid on A, extends to A since both π and pF are
∗-homomorphisms. 2

Corollary 8. The sequence of C∗-algebras 0→ JF
iF→ A

pF→ AF → 0 is exact. In particular, AF
is ∗-isomorphic to the quotient algebra A/JF .

Proof: Thanks to Lemma 9, it follows from Lemma 11 that Ker(pF ) = Im(iF ) in this sequence.
Hence it is exact at A. It remains to prove that pF : A → AF is surjective. Since pF is a ∗-
homomorphism, the image pF (A) is closed ([56], Theorem 4.1.9). Since A is dense in A and since
pF (A) = AF (thanks to Lemma 10) is dense in AF , it follows that AF = pF (A) ⊆ pF (A) ⊆ AF ,

so that AF = AF = pF (A) ⊆ pF (A) ⊆ AF . Hence pF (A) = AF and pF is surjective. 2

The following result is using an argument that can be found in Rieffel ([84], Proposition 1.2)
and the author credits Varela for it.

Proposition 8. For any a ∈ A, the map M ∈ IΓ 7→ ‖pM (a)‖ ∈ R+ is upper semi-continuous.

Proof: Given a ∈ A, let F ∈ IΓ and let ε > 0. Using the exactness of the sequence in
Corollary 8, it follows that pF defines a ∗-isomorphism from the quotient algebra A/JF into AF .
By definition of the quotient norm, ‖pF (a)‖ = inf{‖a− b‖ ; b ∈ JF }. Now, JF is the closure of

JF . Moreover, thanks to Proposition 7, JF = IFA. Hence there is a finite sum b =
∑N

n=1 fnbn
with fn ∈ IF and bn ∈ A, such that

‖pF (a)‖ ≥ ‖a− b‖ − ε .
Let g ∈ C(IΓ) be chosen such that 0 ≤ g(M) ≤ 1 and such that g(M) = 1 in a neighborhood
U of F . In particular ‖ga‖ ≤ ‖a‖. Choosing U and the support of g small enough, it is even
possible to assume that ‖gb‖ < ε, since g(F )fn(F ) = 0 and since fn is continuous for 1 ≤ n ≤ N .
Consequently,

‖pF (a)‖ ≥ ‖a− b‖ − ε ≥ ‖g(a− b)‖ − ε > ‖ga‖ − 2ε

= ‖a− (1− g)a‖ − 2ε

Since 1− g vanishes at M ∈ U , the element (1− g)a ∈ JM for M ∈ U , so that ‖a− (1− g)a‖ ≥
‖pM (a)‖, leading to

‖pF (a)‖ ≥ ‖pM (a)‖ − 2ε , ∀M ∈ U .
2

5.3. The Reduced C∗-algebra. Using the previous notations, let a ∈ A. Then pF (a) ∈ AF
is the function γ ∈ ΓF 7→ a(F, γ).

Proposition 9. Given a ∈ C∗red(TΓ, σ, µ) the map F ∈ IΓ 7→ ‖pF (a)‖red is lower semi-
continuous.
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Proof: (i) The left-regular representation ofAF is acting on the Hilbert spaceHF,x = L2(Γx, µx)
whenever x ∈ F . The corresponding operator is given by the following formula (see Section 2.6,
eq. (10)), where ψ ∈ HF,x

πF,x(a)ψ(γ) =

∫
Γx
a(F, γ−1 ◦ η)σF (γ, γ−1 ◦ η) ψ(η) dµx(η) .

In particular, if φ ∈ HF,x then the inner product is given by

〈φ|πF,x(a)ψ〉HF,x =

∫
Γx×Γx

φ(γ) a(F, γ−1 ◦ η)σF (γ, γ−1 ◦ η) ψ(η) dµx(γ) dµx(η) .

(ii) At this point, it is worth reminding that Cc(Γx) ⊆ HF,x and the former is dense in the later.
Since TΓ is normal, using the Tietze Extension Theorem, any continuous function with compact
support defined on Γx, seen as the subset {F} × Γx ⊆ TΓ, can be extended as a continuous
function with compact support in TΓ. For such a function, say f , its restriction fF,x to {F}×Γx

is an element of HF,x, while f itself belongs to A. Therefore if f, g ∈ A the following formula
holds

〈fF,x|πF,x(a)gF,x〉HF,x =

∫
Γx×Γx

f(F, γ) a(F, γ−1 ◦ η)σF (γ, γ−1 ◦ η) g(F, η) dµx(γ) dµx(η) .

From the definition of a Haar system, in particular the axiom (H2), it follows immediately that

the map (F, x) ∈ TΓ(0) 7→ 〈fF,x|πF,x(a)gF,x〉HF,x is continuous whenever f, g, a ∈ A. Similarly,

the map (F, x) ∈ TΓ(0) 7→ ‖fF,x‖HF,x ∈ R+ is also continuous. Using the density result it follows
that

‖πF,x(a)‖ = sup
f,g∈A

∣∣∣∣〈fF,x|πF,x(a)gF,x〉HF,x
‖fF,x‖HF,x ‖gF,x‖HF,x

∣∣∣∣ .
In addition, the reduced C∗-norm of pF (a) is given by

‖pF (a)‖red = sup
x∈F
‖πF,x(a)‖ .

Consequently the map F ∈ IΓ 7→ ‖pF (a)‖red is lower semi continuous, as it is the supremum
over a family of continuous functions.

(iii) If now a ∈ C∗red(TΓ, σ, µ), it can be approximated by a sequence (an)n∈N of elements of A in
the reduced norm. Hence, given ε > 0, there is N ∈ N such that for n ≥ N , ‖a− an‖red < ε/3.
Since pF extends as a ∗-homomorphism from A to the reduced C∗-algebra, it follows immediately
that ‖pF (a) − pF (an)‖red < ε/3 for n ≥ N . Now choosing n ≥ N , by lower semi-continuity,
there is a neighborhood U of F in IΓ such that for M ∈ U

‖pF (an)‖red ≤ ‖pM (an)‖red + ε/3 , ⇒ ‖pF (a)‖red ≤ ‖pM (a)‖red + ε .

This finishes the proof. 2

Proof of Theorem 3: The continuity of the norm t 7→ ‖φ(f)‖ of a normal element f ∈
C∗red(TΓ, σ, µ) for any continuous φ : C→ C follows directly from Propositions 8 and 9 whenever
the reduced and full C∗-algebras agree. A sufficient condition for this is that the groupoid
is amenable [2, 3]. However, there is a subtlety depending upon whether or not the reduced
C∗-algebra is unital or not unital.
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(i) If the reduced C∗-algebra is unital, and if f is self-adjoint, the continuity of the spectrum
follows by Theorem 1 proven in [8]. For normal elements, see [35] and a more precise statement
in [9, Thm. 2.7.9], implying the continuity of the spectra.

(ii) If the reduced C∗-algebra is not unital, the usual way consists in adding a unit (in the Abelian
case it consists in replacing the locally compact spectrum by its Alexandrov compactification
adding one point at infinity). By convention then, the spectrum σ(fF ) contains always 0. Then
the continuity of the spectrum follows by [9, Thm. 2.7.9] but only functions with φ(0) = 0 can
be used [35, Prop. 10.3.3]. 2

Remark 5. If Γ is a handy étale groupoid, the reduced C∗-algebra is unital, where the char-
acteristic function χΓ(0) of the unit set is the unit. Note that χΓ(0) ∈ Cc(Γ) since the unit set is
compact and open [82]. 2
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[50] F. Hausdorff, “Grundzüge der Mengenlehre”, Leipzig, Veit, (1914).
[51] F. Hausdorff, [1927], “Mengenlehre”, (3rd ed.), Berlin-Leipzig: de Gruyter, (1935). Republished by Dover

Publications, New York, (1944).
[52] F. Hausdorff, [1957], Set theory (2 ed.), New York: Chelsea Publishing Co., (1962). Republished by AMS-

Chelsea, (2005).
[53] A. Hulanicki, “Means and Følner condition on locally compact groups”, Studia Math., 27, (1966), 87-104.
[54] A. Julien, J. Savinien, “Tiling groupoids and Bratteli diagrams II: Structure of the orbit equivalence

relation”, Ann. Henri Poincaré, 13, 297332, (2012).
[55] K. Juschenko, N. Monod, “Cantor systems, piecewise translations and simple amenable groups” Annals of

Mathematics, 178, (2), 775-787, (2013).
[56] Kadison, Ringrose, Fundamentals of the theory of operator algebras. Vol. I. Elementary theory, (Reprint

of the 1983 original), Graduate Studies in Mathematics, 15, American Mathematical Society, Providence,
RI, (1997).

[57] I. Kaplansky, “The structure of certain algebras of operators”, in Trans. Amer. Math. Soc., 70, 219-255,
(1951).

[58] D. Kastler, “On A. Connes’ Noncommutative Integration Theory”, Commun. Math. Phys., 85, 99-120,
(1982).

[59] J. Kellendonk, “The local structure of tilings and their integer group of coinvariants”, Comm. Math. Phys.,
187, 115157, (1997).

[60] E. Kirchberg, S. Wassermann, “Operations on continuous bundles of C∗-algebras”, Math. Ann., 303,
677-697, (1995).

[61] M. Kohmoto, L. Kadanoff, C. Tang, “Localization problem in one dimension: Mapping and escape”, Phys.
Rev. Lett., 50, 18701872, (1983).

[62] M. Kohmoto, B. Sutherland, “Electronic States on a Penrose Lattice”, Phys Rev. Lett., 56, 2740-2743,
(1986).

[63] B. Kramer, A. MacKinnon, “Localization: Theory and Experiments”, Rep. Prog. Phys., 56, 1469-1564,
(1993).

[64] W. Krieger, “On a dimension for a class of homeomorphism groups”, Math. Ann., 252 (2), 8795, (1979/80).
[65] N. P. Landsman, B. Ramazan, “Quantization of Poisson algebras associated to Lie algebroids”, Groupoids

in analysis, geometry, and physics (Boulder, CO, 1999), 282 of Contemp. Math., 159-192. Amer. Math.
Soc., Providence, RI, (2001).

[66] D. Lenz, P. Stollmann, “Algebras of random operators associated to Delone dynamical systems”, Math.
Phys. Anal. Geom., 6, 269, (2003).

[67] R. Lucchetti, A. Pasquale, “A New Approach to a Hyperspace Theory”, in Journal of Convex Analysis, 1,
173-193, (1994).
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