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This paper systematically develops the Schrödinger formalism that is valid

also for gyrotropic media where the material weights W =
� ǫ χ
χ∗ µ

�
6= W are

complex. This is a non-trivial extension of the Schrödinger formalism for non-
gyrotropic media (where W =W ) that has been known since at least the 1960s

[Wil66; Kat67]. Here, Maxwell’s equations are rewritten in the form i∂tΨ =

MΨ where the selfadjoint (hermitian) Maxwell operator M = W−1 Rot
��
ω≥0
=

M∗ takes the place of the Hamiltonian and Ψ is a complex wave representing

the physical field (E,H) = 2ReΨ. Writing Maxwell’s equations in Schrödinger

form gives us access to the rich toolbox of techniques initially developed for

quantum mechanics and allows us to apply them to classical waves. To show

its utility, we explain how to identify conserved quantities in this formalism.

Moreover, we sketch how to extend our ideas to other classical waves.
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1 Introduction

The idea to realize quantum phenomena with classical waves, light in particular, harkens

back to the beginnings of modern quantum mechanics in the 1920s. The heuristic basis for

such quantum-light analogies is the fact that both theories describe waves. Quantum-wave

analogies can be read both ways: on the one hand they serve as a source for inspiration and

guide physicists in the search for novel effects. On the other experiments with classical

waves are often easier to realize, allow for more latitude in the design and can image

the waves directly (in stark contrast to quantum wave functions which are not observable

as a matter of principle). To mention but one example is an experiment performed by

Schneider et al [Sch+08a] who have managed to capture the dynamics of a spin wave

packet in an yttrium iron garnet film. Such measurements allow physicists to probe the

transition from “quantum” to “classical dynamics” and offer new insights into the inner

workings of various quantum phenomena.

Recent advances in manufacturing [Fis+13; TSW13; Zie+17] coupled with new theoret-

ical insights gave new impulses in the search for novel media for classical waves. One par-

ticularly notable work is that of Raghu and Haldane [RH08] who predicted the existence

of unidirectional, backscattering-free edge modes in two-dimensional gyrotropic photonic

crystals in analogy to the Quantum Hall Effect. Their work jumpstarted the search for

topological phenomena in classical waves, which culminated in a number of spectacular

experiments for electromagnetic [Wan+09; Rec+13; Lu+15], mechanical [KL14; PCV15;

SH15] and acoustic waves [Xia+15]. Furthermore, others [Shi+13; Jin+16] have been

proposed but not yet observed experimentally.

Maxwell’s equations are not mere partial differential equations, they contain more math-

ematical structure that can be exploited; they can be studied within the Lagrangian or

Hamiltonian formalism (see e. g. [Spo04, Chapter 2.3 and Chapter 13.1], [MR99, Chap-

ter 1.6] or [Jac98, Chapter 12.7]). But when one wants to determine how and to what
extent specific quantum-wave analogies can be made rigorous, one natural starting point

is to write the dynamical equation in the form of a Schrödinger equation,

i∂tψ(t) = Mψ(t)− iJ(t), ψ(0) = φ ∈H,

where M = M∗ is a selfadjoint operator on a complex Hilbert space H and J(t) a current.

The general idea is by no means new: the founding fathers of quantum mechanics were

well-aware that the in vacuo Maxwell equations are the relativistically covariant equa-

tions for a massless spin-1 particle [Wig39, pp. 151 and 198]. Similarly, the Schrödinger

formalism has been employed to develop scattering theory for electromagnetic [BS87]

and other classical waves [Wil66; Kat67; SW71; RS77] among other things [BS87; FK97;

Kuc01; DL14a]. However, these works crucially assume that the material weights W =� ǫ χ
χ∗ µ

�
= W , which phenomenologically describe the properties of the medium, be real

— and this excludes gyrotropic media where W 6= W . During our investigation of the ray
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1 Introduction

optics limit [DL15, Section 2.2], we discovered that the Maxwell equations for media with
complex weights that are commonly used in the physics literature are incomplete. What has

been missing is the restriction of these equations to (complex) waves composed only of

non-negative or non-positive frequencies to ensure that they describe the propagation of

real-valued fields (compare also with the discussion in [DL14b, Section 6]). However, in

[DL15, Section 2.2] we only gave the solution and promised a first principles derivation

from Maxwell’s equations for linear, dispersive media later. With this article we will pay

our debt to the reader.

One of the problems which arises is to balance the real-valuedness of physical fields with

the need to work with complex Hilbert spaces in order to be able to reach into the rich

mathematical tool box developed for quantum systems. While the idea to write an elec-

tromagnetic wave as the real part of a complex wave is part and parcel of every course on

electromagnetism, usually no explicit reference to the Hilbert spaces these waves belong

to is made, something that needs to be specified in the Schrödinger formalism; this is es-

pecially relevant when the waves propagate in media rather than vacuum. The two earlier

attempts to adapt the Cartan-Altland-Zirnbauer classification scheme [AZ97; Sch+08b;

Chi+16] to photonic crystals by the authors [DL14b] and to coupled mechanical oscilla-

tors by Süsstrunk and Huber [SH16] neglected to take the reality of physical fields properly

into account. Explaining why this is so and how to develop a “fully native” topological clas-

sification for classical waves will be one of the main points of this paper. More specifically,

our main goals are:

(1) We derive the Schrödinger formalism for electromagnetic waves propagating in linear,

dispersionless, lossless media that takes the real-valuedness of the physical fields into

account. Recasting the dynamical equation allows one to readily adapt and apply

techniques initially developed for quantum mechanics to classical electromagnetism.

At least for gyrotropic media, this is new.

(2) To demonstrate the utility of the Schrödinger formalism, we show how it helps to iden-

tify physically meaningful conserved quantities. Moreover, we contrast and compare

that to works that use the Lagrangian mechanics and Noether’s theorem.

(3) And we show that the above scheme can be implemented also for other classical waves,

including coupled mechanical oscillators and transverse acoustic waves.

Outline of the paper First, we derive Maxwell’s equations for linear, possibly gyrotropic

media in Section 2 from linear dispersive constitutional relations. Then we introduce the

Schrödinger formalism of Maxwell’s equations (Section 3), the main matter of this work.

In Section 4 we contrast and compare the Schrödinger formalism of electromagnetism

with previous approaches in the literature and quantum mechanics. To show the utility
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of the Schrödinger formalism, we include a discussion of conserved quantities for electro-

magnetism in media in Section 5. Moreover, to illustrate that the ideas of Section 3 apply

to other classical wave equations, we sketch how to formulate the Schrödinger formalism

for certain linear acoustic equations (Section 6).

Acknowledgements G. D. research is supported by the grant Iniciación en Investigación
2015 - No 11150143 funded by FONDECYT. M. L. has been supported by JSPS through a

WAKATE B grant (grant number 16K17761) and a Fusion grant from the WPI-AIMR. M. L.

is indebted to Kostya Bliokh for the discussions which initiated this work.

2 Deriving Maxwell’s equations for linear, non-dispersive

media

The purpose of this section is to systematically derive Maxwell’s equations for gyrotropic

media where the material weights are complex. The difficulty here is that there are actually

two distinct Maxwell’s equations, one for positive and one for negative frequencies. This

ambiguity is not a mere footnote, but a manifestation of the real-valuedness of the phys-

ical fields (E,H). To derive these equations systematically, we implement the following

strategy:

(1) We start with Maxwell’s equations for linear, dispersive media in the time domain,

equation (2.1).

(2) Taking the Fourier transform in time, these are then rewritten in the frequency domain.

(3) Assuming that the material weights are approximately constant for waves from a nar-

row frequency window, we replace the frequency-dependent weights with the fre-

quency independent ones.

(4) We then Fourier transform back to obtain two equations (2.24), one for positive and

one for negative frequencies.

These equations form the natural starting point for the Schrödinger formalism we will

present later in Section 3; we will postpone a discussion of necessary technical assump-

tions and other mathematical details until then. Given this goal, we will also take the

opportunity here and show how a Hilbert space structure emerges naturally in this con-

text; the scalar product (2.14) is obtained from the field energy.
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2 Deriving Maxwell’s equations for linear, non-dispersive media

2.1 Fundamental equations and notions

During our investigation of the ray optics limit [DL15], we learnt that it was helpful to

compare not just (i) states and (ii) the dynamical equation for the classical waves with

the corresponding quantum system, but also include (iii) observables and (iv) additional

information on the physics (such as typical states, regimes, length and time scales) in our

considerations. This paper will initially focus on (i) and (ii) and revisit (iii) and (iv) in

Sections 5.

The propagation of electromagnetic waves in media is described by 4 equations that we

collectively refer to as Maxwell’s equations in media:

∂

∂ t

�
D(t)
B(t)

�
=

�
+∇×H(t)
−∇× E(t)

�
−
�

jD(t)
0

�
(dynamical equation)

�
∇ ·D(t)
∇ · B(t)

�
=

�
ρD(t)

0

�
(constraint equation)

�
D(t),B(t)
�
=
�
W(E,H)
�
(t) (constitutive relations)

∂tρ
D +∇ · jD = 0 (charge conservation)

(2.1a)

(2.1b)

(2.1c)

(2.1d)

These equations involve the electromagnetic field (E,H) and the auxiliary fields (D,B) con-

sisting of the electric displacement D and the magnetic induction B; by definition (D,B)

are such that (2.1a) is satisfied, and the dependence of (D,B) on the electromagnetic field

is codified in the constitutive relations (2.1c) which provide an effective description of the

interaction between the electromagnetic field and the microscopic charges in the medium

[Jac98, Chapter 6]. Hereon after, we shall assume that the fields
�
E(t),H(t)
�

have square

integrable amplitudes, i. e. the waves are elements of the Banach space of physical fields

Hphys = L2(R3,R6) =
¦
(E,H) : R3 −→ R6

��
∫

R3

dx
�
|E(x)|2 + |H(x)|2

�
<∞
©

. (2.2)

For the media of interest here this is equivalent to considering waves with finite field en-

ergy.

Sources, that is charge densities ρρρ = (ρD, 0) and current densities J= ( jD, 0), can drive

electromagnetic fields, and appear as inhomogeneities in the differential equations; they

have to satisfy local charge conservation (2.1d). Mathematically, we could admit magnetic

charge densities ρB and current densities jB , but those are unphysical. Because electro-

magnetic media do not necessarily carry waves of all frequencies and directions, e. g. pho-

tonic crystals and dispersive media may sport photonic band gaps, only the contribution to

the current density that is proportional to excitable states is relevant; we will go into more

detail at the end of Section 2.3 and condense it down to Assumption 2.3 for the current

density.
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2.1 Fundamental equations and notions

For linear dispersive media the auxiliary fields at time t (see e. g. [Jac98, Chapter 7.10],

[BC91, Section 2] or [Bla07, Chapter 8.1])

�
D(t, x)
B(t, x)

�
=
�
W(E,H)
�
(t) =
�
W ∗ (E,H)
�
(t) =

∫ t

−∞
ds W (t − s, x)

�
E(s, x)
H(s, x)

�
, (2.3)

are computed from the past history (−∞, t] ∋ t 7→
�
E(t),H(t)
�

of the electromagnetic

field by convolving
�
E(t),H(t)
�

with the 6× 6 matrix-valued function

W (t, x) =

�
ǫ(t, x) χ EH(t, x)
χHE(t, x) µ(t, x)

�

in the time variable; it is customarily split into 3 × 3 blocks, namely the electric permit-

tivity ǫ, the magnetic permeability µ, and the magnetoelectric couplings χ EH and χHE.

W describes the response of the medium to the impinging electromagnetic waves, and

necessarily needs to satisfy the following two conditions:

Assumption 2.1 (a) W =W is real (electromagnetic fields are real).

(b) W (t) = 0 for all t < 0 (causality, events in the presents are only influenced by the past).

Typically, W (t, x) = Wnd(x)δ(t) +Wdis(t, x) is split into a non-dispersive part Wnd that

describes the contribution which reacts instantaneously, and a bona fide dispersive part

Wdis that depends on the past field configuration,

�
D(t, x)
B(t, x)

�
=
�
W(E,H)
�
(t) =Wnd(x)

�
E(t, x)
H(t, x)

�
+
�
Wdis ∗ (E,H)
�
(t).

The fact that the auxiliary fields
�
D(t),B(t)
�

not only depend on the electromagnetic field�
E(t),H(t)
�

at time t but on the field at times in the past means the medium has a memory.

Note that non-dispersive media have no memory, because the auxiliary fields
�
D(t),B(t)
�

are computed from the electromagnetic field
�
E(t),H(t)
�

at time t.
Later on in Section 2.5 we will explain how to neglect dispersion by replacing the con-

volution integral in (2.3) with

�
D(t, x)
B(t, x)

�
=W (x)

�
E(t, x)
H(t, x)

�
(2.4)

where W (x) is now independent of time.

The constitutive relations of non-linear media are typically expressed as power series

in the fields where the higher-order terms are either iterated convolutions in time akin to

(2.3) (see e. g. [BF01; BF03]) or instantaneous in time similar to (2.4) [LL63, § 80]. In
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2 Deriving Maxwell’s equations for linear, non-dispersive media

principle the analysis made in this paper can be adapted to the non-linear setting. Babin

and Figotin, for example, have shown that in a certain scaling limit, the non-linear Maxwell

equations reduce to a non-linear Schrödinger equation [BF05] and taken the reality of elec-

tromagnetic waves correctly into account; while strictly speaking their derivation was done

for non-gyrotropic media, in view of our results, their arguments should extend straight-

forwardly to media with complex material weights.

Electromagnetic observables, constituent (iii) of the physical theory of electromagnetism,

are functionals of the fields F : L2(R3,R6) −→ R, they map electromagnetic fields onto real

numbers. In stark contrast to quantum mechanics, the components of E and H themselves

are accessible to experiment. While observables do not have to be linear or quadratic in the

fields, the most frequently considered ones are. We postpone a more in-depth discussion

of electromagnetic observables and examples to Section 5.

2.2 Maxwell’s equations in the frequency domain

To see how the response of the medium depends on the light’s frequency, we apply the

(inverse) Fourier transform in time

bΨ(ω) =
�
F −1
Ψ

�
(ω) =

1p
2π

∫

R

dt e+itω
Ψ(t). (2.5)

to Maxwell’s equations in order to decompose
�
E(t),H(t)
�

into its frequency components:

ωcW (ω)
�bE(ω), bH(ω)
�
= Rot
�bE(ω), bH(ω)
�
− ibJ(ω)

Div
�cW (ω)
�bE(ω), bH(ω)
��
= bρρρ(ω)

�bD(ω), bB(ω)
�
=cW (ω)
�bE(ω), bH(ω)
�

ω bρρρ(ω) + iDivbJ(ω) = 0

(2.6a)

(2.6b)

(2.6c)

(2.6d)

To simplify notation, we have abbreviated the Fourier transformed electromagnetic field by
bΨ =
�ÓψE,ÓψH
�
, the charge density by bρρρ =

�ÓρD,cρB
�

and the current density by bJ=
�cjD,ÒjB
�
,

and introduced the free Maxwell or rotation operator

Rot =

�
0 +i∇×
−i∇× 0

�
.

Moreover, Div (D,B) =
�
∇ · D,∇ · B
�

consists of two copies of the usual divergence, and

for convenience we have absorbed a factor of
p

2π into the definition of cW =
p

2πF −1W
that stems from F −1( f ∗ g) =

p
2πF −1 f F −1 g. The fact that W is real, W =W , yields a

relation of cW at ±ω,

cW (−ω) =cW (+ω). (2.7)
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2.2 Maxwell’s equations in the frequency domain

The Fourier transforms of other real quantities such as bΨ(−ω) = bΨ(ω), bρρρ(−ω) = bρρρ(ω)
and bJ(−ω) = bJ(+ω) also satisfy relation (2.7). Real electromagnetic fields

�
E,H
�
= (E,H)

are necessarily composed of complex waves with frequencies ±ω,

�
E(t),H(t)
�
=

1p
2π

∫

R

dωe+itω
�bE(ω), bH(ω)
�
.

Fortunately, the information contained in the positive and negative frequency contributions

Ψ±(t) =
1p
2π

∫ +∞

0

dωe±itω
�bE(±ω), bH(±ω)

�
(2.8)

is redundant because the real-valuedness of (E,H) implies their relative phase is locked,

Ψ− = Ψ+, (2.9)

and it suffices to focus on e. g. Ψ+ only. Similarly, we denote the positive and negative

frequency contributions to the current and charge densities with J± and ρ±, and also here

positive and negative frequency parts satisfy the phase locking condition (2.9). Note that

even though Ψ+ 6= Ψ− = Ψ+, their real parts necessarily agree,

2ReΨ+ = Ψ+ +Ψ+ = (E,H) = Ψ− +Ψ− = 2ReΨ−. (2.10)

Viewing Maxwell’s equations in the frequency domain allows us clearly identify different

frequency regimes where the medium has certain characteristic properties. In addition to

reality and causality, repeated as (a) and (b) below, physics imposes three more constraints

on the material weights (see e. g. [Jac98, Section 6.8], [Sil16a] or [BC91, Section 2]):

Assumption 2.2 (Material weights) (a) The physical fields are real-valued, i. e. the ma-

terial weights satisfy cW (−ω) = cW (+ω).

(b) Causality holds, i. e. W (t) = 0 for all t < 0, and therefore ω 7→ cW (ω) extends to a
function which is analytic on the upper half complex plane C+.

(c) At large frequenciesω→±∞, any medium behaves like vacuum, i. e. limω→±∞cW (ω) =
1 in suitable units.

(d) For small frequencies, the material weights are real and the bianotropic tensors bχ EH and
bχHE which quantify the magnetoelectric coupling vanish,

lim
ω→0
cW (ω) = lim

ω→0

�
bǫ(ω) bχ EH(ω)

bχHE(ω) bµ(ω)

�
=

�
bǫ(0) 0

0 bµ(0)

�
=

�
bǫ(0) 0

0 bµ(0)

�
.

9



2 Deriving Maxwell’s equations for linear, non-dispersive media

(e) The field energy density

¬�bE(ω), bH(ω)
�
, d

dω

�
ωcW (ω)
� �bE(ω), bH(ω)
�¶
> 0 (2.11)

is positive definite for all ω, i. e. there exists a constant c > 0 so that

d

dω

�
ωcW (ω)
�
≥ c 1.

2.3 The Hilbert space of electromagnetic fields with finite field energy

The field energy density (2.11) not only singles out electromagnetic fields with finite field

energy, but it also gives rise to a scalar product — and therefore, a Hilbert space. This is

important as a mathematical definition of linear partial differential equations requires us

to fix a vector space on which these equations act. The purpose of this subsection is to give

a suitable re-interpretation of equations (2.8)–(2.10), and while parts of it seem technical

and perhaps unnecessary, we will need all of this to arrive at physically relevant equations

for gyrotropic, non-dispersive media.

The total field energy of an electromagnetic wave is computed by integrating up all the

frequency components,

E(E,H) =
1

2

∫

R

dω
¬�bE(ω), bH(ω)
�
, d

dω

�
ωcW (ω)
� �bE(ω), bH(ω)
�¶
=


(E,H)


2
C
, (2.12)

which is defined in terms of the scalar product for C6-valued waves on R3,

〈Φ,Ψ〉=
∫

Rd

dx Φ(x) ·Ψ(x) =
∫

Rd

dx
6∑

j=1

Φ j(x)Ψ j(x).

Complex linear combinations of such (time- and space-dependent) fields
�
E(t, x),H(t, x)
�

which solve Maxwell’s equations (2.1) in the absence of sources form the vector space

HC :=
¦
Ψ ∈ L∞
�
R, L2(R3,C6)
� �� E(Ψ) <∞,

Ψ(t) solves (2.1a) with J(t) = 0
©

. (2.13)

where “distances” are naturally measured in terms of the (field) energy norm ‖Ψ‖C =p
E(Ψ) and the energy scalar product

〈Φ,Ψ〉C =
1

2

∫

R

dω
¬
bΦ(ω), d

dω

�
ωcW (ω)
� bΨ(ω)
¶

(2.14)
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2.3 The Hilbert space of electromagnetic fields with finite field energy

gives meaning to the notion of orthogonality. The index C emphasizes that HC is a complex
Hilbert space as the natural basis with respect to which to expand are complex exponentials
e−itω.

Going from the Maxwell equations (2.1) in the time domain to Maxwell’s equations (2.6)

in the frequency domain has a natural interpretation here in terms of Hilbert spaces: the

Fourier transform in time decomposes

ÒHC = F −1HC =

∫ ⊕

R

dωH(ω) (2.15)

into a direct integral of Hilbert spaces. The mathematically inclined reader may look up the

somewhat technical definition in [Dix81, Part II, Chapter 2, Section 3] which explains how

theH(ω) are glued together, but in a nutshell it means the following: the Fourier transform

in time decomposes electromagnetic fields into frequency components
�bE(ω), bH(ω)
�

which

themselves are elements of Hilbert spaces

H(ω) :=
¦
bΨ(ω) : R3 −→ C6

�� ‖Ψ‖C <∞,

Ψ(t) solves (2.1a) with bJ(ω) = 0
©

(2.16)

with energy scalar product at frequency ω,


bΦ(ω), bΨ(ω)
�
ω
=
¬
bΦ(ω), d

dω

�
ωcW (ω)
� bΨ(ω)
¶

=

∫

R3

dx bΦ(ω, x) · d
dω

�
ωcW (ω, x)
� bΨ(ω, x), (2.17)

and associated norm


bΨ(ω)



ω
=

bΨ(ω), bΨ(ω)
�1/2
ω

. This frequency-dependent scalar prod-

uct has been widely used in the literature (see e. g. [Sil16b, equation (3)] or [RH08,

equation (38)]). Note that waves bΨ(ω) and bΦ(ω′) from different frequencies ω 6= ω′
are automatically orthogonal to one another by definition of the direct integral of Hilbert

spaces.

These Hilbert spaces H(ω) really depend on the frequency not just through the scalar

product, but may “shrink” or “grow” as vector spaces: for example, dispersive material

weights may have singularities or produce spectral gaps (such as [Sil16b, equations (17) or

(18)]), so it can happen thatH(±ω) = {0} actually reduces to the trivial vector space. Note

that the reality condition W (t, x) = W (t, x) imposed on the weights and fields translate

to �bE(−ω), bH(−ω)
�
=
�bE(ω), bH(ω)
�

(2.18)

and manifests itself in a symmetry between the Hilbert spaces at±ω: complex conjugation

(CΨ)(x) = Ψ(x) can be seen as an antiunitary between H(ω) and H(−ω) as the weights

11



2 Deriving Maxwell’s equations for linear, non-dispersive media

cW (−ω) = cW (+ω) = CcW (+ω)C are related by C . Therefore, poles and spectral gaps

necessarily come in pairs of opposite frequency.

Introducing H(ω) and HC clarifies an earlier comment we made regarding the current

density: since the medium can only carry certain states at a given frequency, namely those

contained in H(ω), only those can be excited by sources. Put another way, we need to

impose

Assumption 2.3 (Current density only excites states supported by the medium)

Suppose the current density J ∈ L1
�
R, L2(R3,R6)
�

is such that bJ(ω) ∈cW (ω)H(ω) holds for
almost all frequencies.

2.4 The subspace of real electromagnetic fields and reduction to complex

waves of non-negative frequencies

The real-valuedness of (E,H) manifests itself in the phase locking condition (2.18) after

Fourier transform, and it follows just like in our discussion around equation (2.9) that the

information contained in the negative frequency part is redundant. This singles out the

real subspace

HR =
¦
Ψ ∈HC
�� bΨ(−ω) = bΨ(+ω) for almost all ω ∈ R

©
⊂HC (2.19)

of the complex Hilbert space HC.

However, while physical solutions (E,H) = 2ReΨ are real, it is often more convenient to

represent them as the real part of a complex wave Ψ. However, the complex wave is not

uniquely determined by the real wave, and there are many choices we could conceivably

make. Two have already been suggested in equation (2.10), positive and negative fre-

quency contributions Ψ± defined through (2.8). For this pair we can see explicitly that the

information contained in Ψ− = Ψ+ and Ψ+ is redundant, the symmetry constraint (2.10)

shows how to reconstruct one from the other.

Customarily, one picks complex waves composed of non-negative frequencies, Ψ = Ψ+.

This has several advantages, all of which will be explored further in Section 3: first of all,

restricting ourselves to complex waves in this way is convenient, because ω ≥ 0 is a spec-
tral condition that, mathematically speaking, can be easily and consistently imposed. And a

single set of Maxwell equations (2.24) forω≥ 0 suffices to describe the waves and their dy-

namics. Moreover, this set of equations is naturally compatible with the Helmholtz decom-
position into transversal and longitudinal waves. Another advantage is that the transversal,

bounded pseudo eigenfunctions1 of this first-order equation are necessarily complex; in the

1Simply put, a pseudo eigenfunction is an eigenfunction that lies outside of the vector space of the solutions one

considers. Plane waves have infinite field energy, and therefore lie outside of the space of electromagnetic

waves with finite field energy; nevertheless, they solve the eigenvalue equation for homogeneous media and

arbitrary solutions may be expanded in terms of plane waves.

12



2.5 Neglecting dispersion: Maxwell equations for approximately monochromatic waves

simplest case where the weights are independent of position (i. e. the medium is homoge-

neous) the pseudo eigenfunctions are plane waves of positive frequency which gives rise

to two linearly independent real solutions,

ARe cos(k · x −ωt) + AIm sin(k · x −ωt) = Re
��

ARe − iAIm

�
e+i(k·x−ωt)
�
. (2.20)

Here, real and imaginary part of the complex amplitudes, ARe and AIm , become the pref-

actors of cos and sin. The above arguments hold verbatim if plane waves are replaced

by another suitable basis, e. g. Bloch waves in case the weights W± describe a periodic

electromagnetic medium. In fact, in view of (2.7) it is not possible to find real pseudo

eigenfunctions for the first-order Maxwell equations: non-zero real waves are always lin-

ear combinations of complex waves of positive and negative frequencies.

Put mathematically, restricting to ω≥ 0 means we consider the Hilbert space

ÒH = F −1 H =

∫ ⊕

[0,∞)
dωH(ω) (2.21)

instead, and if we endow it with the scalar product

〈Φ,Ψ〉=
∫ ∞

0

dω

bΦ(ω), bΨ(ω)
�
ω

,

then the inclusion of the factor of 1/2 in the definition of 〈 · , · 〉C and the fact that the field

energy is equally distributed in the ω > 0 and ω< 0 part yields E(E,H) = ‖(E,H)‖2.

To summarize what we have done here: we have identified real electromagnetic fields

with finite field energy
�
E(t),H(t)
�

with a complex wave Ψ(t) composed of non-negative

frequencies. In fact, Ψ is an element of the complex Hilbert space H that comes furnished

with the energy scalar product and the energy norm. Working with complex (as opposed

to real) Hilbert spaces becomes necessary if we want to even define the notion of field en-

ergy and adapt methods from quantum mechanics to classical electromagnetism. Any real

electromagnetic field has a unique representative in H while minimizing the amount of un-

physical fields to complex gradient fields; the Hilbert space HC, which we have introduced

initially, can be seen as the complexification of H and contains unphysical transversal fields

with non-zero imaginary part.

2.5 Neglecting dispersion: Maxwell equations for approximately

monochromatic waves

In a great many situations dispersion can be safely neglected if the electromagnetic waves

are composed of frequencies ω ≈ω0, provided that

d

dω
cW (ω0) ≈ 0 (2.22)

13



2 Deriving Maxwell’s equations for linear, non-dispersive media

and therefore cW (ω) ≈cW (ω0) holds in some sense. Then the operator

d

dω

�
ωcW (ω)
�
≈cW (ω0) ≈cW (ω)

which enters the energy density (2.11) can be Taylor expanded in ω−ω0 and is approxi-

mately given by the material weights themselves. Hence, for states bΨ(ω) from within this

narrow frequency region we have


bΨ(ω), bΨ(ω)
�
ω
=
¬
bΨ(ω), d

dω

�
ωcW (ω)
� bΨ(ω)
¶
≈

bΨ(ω),cW (ω0) bΨ(ω)

�

≈
¬
bΨ(ω), d

dω

�
ωcW (ω)
���
ω=ω0

bΨ(ω)
¶
=

bΨ(ω), bΨ(ω)
�
ω0

,

(2.23)

and the left-hand side is finite if and only if the right-hand side is.

To obtain a mathematical model we will use the same weights cW (±ω0) for all frequen-

cies of a given sign, even those away fromω0 where the approximation (2.22) is no longer

accurate. Of course, the range of validity is still limited to frequencies ω ≈ ω0 and only

makes physically meaningful predictions for waves from within that narrow frequency

range. This model is the one that is widely used in the literature, the only important dif-
ference here compared to most of the literature is that we take the difference in weights for
positive and negative frequencies properly into account. Put another way, in the absence of

dispersion we need to distinguish between non-gyrotropic media with real weights,

W+ =cW (ω0) =cW (ω0) =cW (−ω0) =W−,

and gyrotropic media whose weights a non-vanishing imaginary part,

W+ =cW (ω0) 6=cW (ω0) =cW (−ω0) =W−.

Therefore, for non-gyrotropic media the Hilbert space HC has a single, frequency-indepen-

dent scalar product. In fact, for lossless, positive index media we will show later on that

HC defined in (2.13) coincides with L2
W+
(R3,C6), the Hilbert space of complex fields with

integrable amplitude and weighted scalar product


Φ,W+Ψ
�
; we will properly introduce

this Hilbert space in Section 3.1.2. The Hilbert space for gyrotropic media splits in two,

HC ⊂H+ ⊕H−, with two different scalar products


Φ,W±Ψ
�
.

Given that in general W+ 6=W−, after undoing the Fourier transform we obtain not one,

but two sets of Maxwell equations on two different Hilbert spaces H± — one for the positive
frequency component Ψ+ and one for the negative frequency component Ψ−:

2

±ω≥ 0





W± i∂tΨ±(t) = RotΨ±(t)− iJ±(t),

Div W±Ψ±(t) = ρ±(t),

Ψ
(D,B)
± (t) =W±Ψ±(t),

Div J±(t) + ∂tρ±(t) = 0.

(2.24a)

(2.24b)

(2.24c)

(2.24d)

2
Ψ
(D,B)
± which enters (2.24c) are the positive and negative frequency contributions to (bD, bB) defined via (2.8).

14



2.5 Neglecting dispersion: Maxwell equations for approximately monochromatic waves

Note that we have yet to explain how to decompose the real, physical initial condition�
E(t0),H(t0)
�
= (E0,H0) into its non-negative and non-positive frequency components

Ψ±(t0) that enter as complex initial conditions; we will address this later in Section 3.2.2.

Clearly, for non-gyrotropic media where W+ = W−, the two sets of equations coincide

and Ψ± are elements of the same Hilbert space. In fact, we may choose to work with (E,H)

directly.

Therefore, if cW (±ω) ≈ cW (±ω0) = W± describe a lossless, positive index medium, this

heuristic argument shows that the field energy is proportional to W± and integrates up to

E
�
E(t),H(t)
�
=

1

2

�

Ψ+(t) , W+Ψ+(t)

�
+


Ψ−(t) , W−Ψ−(t)

��

=


Ψ+(t) , W+Ψ+(t)

�
, (2.25)

because the field energy content of positive and negative frequency contribution is nec-

essarily the same due to the symmetry W− = W+ and Ψ− = Ψ+; we will show that this

expression is consistent with equation (2.12) later in Section 3.5. The total field energy is

also a conserved quantity: that can be checked by deriving equation (2.25) with respect

to time and plugging in (2.24a).

Fortunately, once we represent real electromagnetic fields as a complex wave composed

solely of non-negative frequencies (as explained in Section 2.5), we can treat both, non-

gyrotropic and gyrotropic media in exactly the same manner.

From the perspective of mathematics, an immediate interesting question is to quantify the

error we make when neglecting dispersion, i. e. when replacing the frequency-dependent
cW (±ω) with W± = cW (±ω0). Put succinctly, we would like to estimate the difference�
Edis(t),Hdis(t)
�
−
�
End(t),Hnd(t)
�

between the solution to the dispersive Maxwell equa-

tions and the approximate equations where dispersion has been neglected. This is more

intricate than it seems at first glance: the initial condition for the full equation with disper-

sion is a past trajectory (−∞, t0] ∋ t 7→
�
E(t),H(t)
�

— dispersive media have a “memory”

— whereas the solutions to the approximate Maxwell equations (2.24) depend only on the

instantaneous field configuration
�
E(t0),H(t0)
�
= (E0,H0). So the matter is not as simple

as evolving the same initial conditions with two equations, because there are many past

trajectories with
�
E(t),H(t)
���

t=t0
= (E0,H0),

and there is no unique or “obvious” choice of past trajectory on the basis of which to

compare (2.6) with (2.24). One physically sensible solution would be to place the same

source in a medium described by (2.6) and the dispersion-free medium (2.24), and then

estimate the difference of the two solutions.
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3 Schrödinger formalism for linear, non-dispersive media

3 Schrödinger formalism for linear, non-dispersive media

Up until now, the formalism covers any linear medium, Assumption 2.2 only lists neces-
sary assumptions which have to be imposed on physical grounds. Away from singularities

of cW (ω) we showed how to neglect dispersion and reduce Maxwell’s equations (2.1) to

(2.24) governing complex waves of non-negative frequencies. Having gotten rid of redun-

dant information does not just lead to an aesthetically more pleasing formalism, one of the

benefits being that non-gyrotropic, gyrotropic and lossy materials can be described with

the exact same set of equations, but also avoids introducing unphysical transversal fields.

However, to obtain a Schrödinger formalism, we need to impose additional constraints,

namely we will only consider electromagnetic waves (E,H) with finite field energy propa-

gating in lossless positive index materials (such as dielectrics):

Assumption 3.1 (Material weights) The material weights are a 6×6 matrix-valued func-
tion

W (x) =

�
ǫ(x) χ(x)
χ(x)∗ µ(x)

�
(3.1)

that has the following properties:

(a) The medium is lossless, i. e. W (x) =W (x)∗ takes values in the hermitian matrices.

(b) The medium is not a negative index material, i. e. there exist positive constants C ≥
c > 0 so that C 〈Ψ,Ψ〉 ≥ 〈Ψ,WΨ〉 ≥ c 〈Ψ,Ψ〉 holds. Put another way, the eigenvalues
w1(x), . . . , w6(x) of the hermitian matrix W (x) are all positive and bounded away from
0 and∞ uniformly in x.

To unburden the notation, we will systematically drop the index + from all non-negative
frequency objects: from now on, W+ is replaced with W, Ψ+ with Ψ, J+ with J and so forth.

Thanks to the second assumption on the weights, the inverse of the weights W−1 is

bounded and takes values in the hermitian matrices again. Therefore, multiplying of both

sides of (2.24a) with iW−1 for ω≥ 0 leads to

i∂tΨ(t) = M Ψ(t)− i J(t), Ψ(0) = Φ, (3.2)

as an equivalent form of the dynamical law (2.24a). Here, the non-negative frequency part

Ψ of the electromagnetic field plays the role of the wave function and the non-negative

frequency Maxwell operator

M =W−1 Rot
��
ω≥0

(3.3)

takes the place of the Hamiltonian.

Seemingly, a simple algebraic operation is all it takes to go from (2.24a) to (3.2), obviat-

ing the need for further discussion. However, specifying a Hilbert space is more subtle than
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3.1 Abstract setting

in quantum mechanics for several reasons: we have to explain how to restrict (2.24) to
non-negative frequencies ω ≥ 0, make a judicious choice of scalar product so that M is self-

adjoint (or hermitian in physics parlance) and verify that the divergence constraint (2.24b)

is satisfied. We emphasize that this is not a mere mathematical footnote, but its choice has

a clear physical interpretation. Before we do, though, we take a step back and outline the

Schrödinger formalism in the abstract.

3.1 Abstract setting

Not just electromagnetism but many other classical wave equations, including transverse

acoustic waves [Pie90; Ali92], mechanical waves [SH15] and magneto plasmons [Jin+16],

admit a Schrödinger formalism, because they share certain characteristics: (1) The equa-

tions are first-order in time, (2) the operators generating the dynamics have a product
structure, and (3) in contrast to quantum mechanics the wave fields take values in Rn (in-

stead of Cn). Therefore, the ideas we develop here can be applied quite broadly to other

wave equations. To fix a frame of reference, let us quickly recap the Schrödinger picture

of quantum mechanics.

3.1.1 Quantum mechanics

A quantum system is specified by a Hamilton operator, e. g.

H =
1

2m
(−iħh∇)2 + V (x)

describes a non-relativistic quantum particle on the continuum Rd subjected to a conser-

vative force F(x) = −∇V (x). Typically, in the physics literature the Hilbert space H —

whose elements represent states — is not made explicit, since once a Hamiltonian is se-

lected, there is a default choice with respect to which H is selfadjoint (hermitian). For a

non-relativistic quantum particle on Rd with internal degrees of freedom Cn the Hilbert

space is constructed from the vector space of square integrable functions3,

L2(Rd ,Cn) =
¦
Ψ : Rd −→ Cn
��
∫

Rd

dx |Ψ(x)|2 <∞
©

, (3.4)

that is endowed with the scalar product

〈Φ,Ψ〉=
∫

Rd

dx Φ(x) ·Ψ(x) (3.5)

3The mathematically inclined reader will undoubtedly have noticed that we have used the same symbol for

the vector space of square integrable functions and that composed of equivalence classes of square integrable

functions differing only on a set of measure 0 (following [LL01, Chapter 2]). Distinguishing the two is a

necessary technical, but for our purposes inconsequential detail of the proper definition of weighted Lp-

spaces.
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3 Schrödinger formalism for linear, non-dispersive media

and the induced norm ‖Ψ‖ = 〈Ψ,Ψ〉1/2. Complex conjugation is implicitly contained in the

dot product Φ(x) ·Ψ(x) =
∑n

j=1
Φ j(x) Ψ j(x). Pure states, rank-1 projections P = |Ψ〉〈Ψ|,

can be represented as wave functions Ψ normalized to 1 = ‖Ψ‖2; the normalization is

necessary to link the wave function to probabilities of experimental outcomes.

Note that (complex) quantum wave functions themselves are not physically observable

as wave functions are only defined up to a phase (pure states can be identified with rays
in the Hilbert space). Indeed, only the associated probabilities and expectation values

are accessible. This is in stark contrast to (real-valued) classical waves that are directly

observable.

The Hamiltonian H = H∗ is selfadjoint (hermitian) with respect to the scalar product of

choice, meaning that in addition to technical questions regarding domains we have

〈Φ, HΨ〉= 〈H Φ,Ψ〉.

Hamiltonians such as the one above are typically selfadjoint with respect to the “default”

scalar product (3.5), which is why the choice is often not made explicit. The selfadjointness

then implies that the evolution group e−i t
ħh H associated to the Schrödinger equation

iħh∂tΨ(t) = HΨ(t), Ψ(0) = Φ, (3.6)

exists, is unitary and solves (3.6) in the form Ψ(t) = e−i t
ħh H
Φ. Unitarity has a second

consequence, namely the existence of a conserved quantity — probabilities in this case.

Put succinctly, a quantum system is fixed by specifying a Hilbert spaceH whose elements

represent states and a selfadjoint operator H, the Hamiltonian, that enters the dynamical

law, the Schrödinger equation.

3.1.2 Classical waves

The reason we have spent a few paragraphs recalling basic facts on quantum mechanics

is that we can now concisely list the three ingredients of the Schrödinger formalism of

classical waves:

(S1) States, real vector fields, are represented as elements of a complex Hilbert space H

which itself is a subspace of the Hilbert space

L2
W (R

d ,Cn) =
¦
Ψ : Rd −→ Cn
��
∫

Rd

dx Ψ(x) ·W (x)Ψ(x) <∞
©

=
¦
Ψ : Rd −→ Cn
��
∫

Rd

dx |Ψ(x)|2 <∞
©

(3.7)
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consisting of waves with square integrable amplitudes of non-negative frequencies
and is endowed with the weighted scalar product,

〈Φ,Ψ〉W =


Φ,W Ψ
�
=

∫

Rd

dx Φ(x) ·W (x)Ψ(x), (3.8)

where the operator W describes the properties of the medium and has to possess

properties akin to those enumerated in Assumption 3.1:

(a) W is selfadjoint (hermitian) with respect to the standard scalar product (3.5).

(b) W is bounded away from 0 and∞, i. e. there exist C > c > 0 so that c 〈Ψ,Ψ〉 ≤
〈Ψ,W Ψ〉 ≤ C 〈Ψ,Ψ〉 holds true.

These conditions arise naturally in the context of the Schrödinger formalism. First,

the boundedness assumption of W is necessary to guarantee that fields Ψ with square

integrable amplitudes, 〈Ψ,Ψ〉 <∞, lie in H. The remaining properties ensure that

〈Φ,Ψ〉W = 〈Φ,W Ψ〉 satisfies the axioms of scalar products: requiring

〈Φ,Ψ〉W = 〈Φ,W Ψ〉 !
= 〈Ψ,W Φ〉 = 〈Ψ,Φ〉W

means we need to impose W = W ∗, i. e. part of condition (a). Another defining

property of scalar products is non-negativity, 〈Ψ,Ψ〉W ≥ 0, and that 〈Ψ,Ψ〉W = 0

should imply Ψ = 0; therefore, W has to be strictly positive, 〈Ψ,W Ψ〉 ≥ c 〈Ψ,Ψ〉.

(S2) These weights also enter the Maxwell-type operator

M =W−1 D (3.9)

that is the product of the weights W and a second “free” operator D, which is also

selfadjoint (hermitian) with respect to the unweighted scalar product (3.5). This

operator (endowed with the domain of D) takes the place of the Hamiltonian in the

Schrödinger equation (potentially with a current J(t) as source term),

i∂tΨ(t) = MΨ(t)− i J(t), Ψ(0) = Φ. (3.10)

Due to the product structure M is selfadjoint with respect to the weighted scalar

product 〈 · , · 〉W defined in equation (3.8) above, something that can be seen from

a straightforward computation. Again, dispensing with technical questions of do-

mains, M∗W = M follows from



Φ, MΨ
�

W
=


Φ,W W−1 RotΨ

�
=


RotΦ,Ψ
�

=


W−1 RotΦ,WΨ
�
=


MΦ,Ψ
�

W
. (3.11)
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3 Schrödinger formalism for linear, non-dispersive media

Therefore its evolution group e−it M exists and is unitary with respect to 〈 · , · 〉W . In

the absence of sources, 〈Ψ(t),Ψ(t)〉W = 〈Ψ(0),Ψ(0)〉W and similar quantities are

conserved; in case of Maxwell’s equations the former quantity is the total field energy.

(S3) The biggest conceptual difference to quantum mechanics is that physical fields u
are real, and the equation u(t) = 2ReΨ(t) connects the solution u(t) of the classical

wave equation in question to the complex wave Ψ(t) that solves (3.10). To avoid

including unphysical field configurations, we had to restrict ourselves to complex

fields of non-negative frequencies.

3.2 Imposing the frequency constraints

When the material weights are complex, then the two equations equations (2.24) for±ω ≥
0 are distinct and one natural question emerges: how do I split a real wave into its positive

and negative frequency part? Once we are given a solution
�
E(t),H(t)
�

that is easy, we just

need to Fourier transform the solution. However, usually we are given an initial condition�
E(t0),H(t0)
�

and are tasked to find a solution. Consequently, we need to break down this

initial condition prior to being able to determine the associated solution.

So as a first step in identifying (S1)–(S3) for electromagnetism in matter, we start by

studying the operator (3.3) without imposing frequency constraints and with the help of

that auxiliary operator relate the real, physical fields to the complex fields representing

them. The conditions on W spelled out in Assumption 3.1 allow us define the complex

Hilbert space L2
W (R

3,C6) as in (3.7) associated with the non-negative frequency weights

W , endowed with the weighted scalar product (3.8). Later on, we will link the square of

the induced norm ‖Ψ‖2W = 〈Ψ,Ψ〉W to the total field energy, so this object has a neat phys-

ical interpretation. Hence, the second equality in (3.7) tells us that under the conditions

imposed on the material weights W , electromagnetic waves have finite field energy if and

only if their amplitudes are square integrable.

3.2.1 The Helmholtz decomposition into transversal and longitudinal waves

Another useful and physically significant concept is that of a Helmholtz decomposition
adapted to the medium; as we shall show at the end of this section, the dynamics of the

transversal and longitudinal components of electromagnetic fields is very different. Con-

cretely, we would like a Helmholtz decomposition associated to the either one of the aux-
iliary Maxwell operators

Maux
± =W−1

± Rot , (3.12)

one for the positive frequency weights W+ = W and the other for the negative frequency

weights W− =W . Their actions on complex fields coincides with (3.3) but lacks the restric-

tion to non-negative or non-positive frequencies. Put another way, L2
W±
(R3,C6) contains
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3.2 Imposing the frequency constraints

unphysical states. Note that the phase locking condition (2.9) manifests itself as

C Maux
± C = −Maux

∓ ,

and we are free to choose only one of these auxiliary operators. We shall pick Maux = Maux
+

and drop the index + consistently to unburden the notation.

Originally, the standard Helmholtz decomposition (cf. e. g. [DL14c, Appendix A.4] and

references therein) refers to the splitting of a vector field B on R3 into a rotational field

and a gradient field,
B = B⊥ + B‖ =∇× A+∇ϕ.

An alternative characterization of transversal and longitudinal components is ∇ · B⊥ = 0

and ∇× B‖ = 0, and it is not coincidental that the latter appears as a constraint for the in
vacuo Maxwell equations in the absence of charges.

Also in matter does this decomposition have an elegant geometric interpretation if writ-

ten in terms of Hilbert spaces, namely

L2
W (R

3,C6) = J ⊕ G (3.13)

is split into the orthogonal sum of longitudinal gradient fields

G =
¦
Ψ =
�
∇ϕE,∇ϕH
�
∈ L2

W (R
3,C6)
�� �ϕE,ϕH
�
∈ L2

loc
(R3,C2)
©

= ran
�
∇,∇
�
= ker Rot = ker Maux

and transversal fields
J = G⊥W = ker

�
Div W
�
= ran Maux,

which by definition are those that are 〈 · , · 〉W -orthogonal to gradient fields. The notation

⊕ here means that any Ψ = Ψ⊥ + Ψ‖ ∈ L2
W (R

3,C6) can be split uniquely into the sum of

two mutually 〈 · , · 〉W -orthogonal waves Ψ⊥ ∈ J and Ψ‖ ∈ G.

The fact that elements of J satisfy the constraint condition (2.24b) for ρ = 0 can be

easily seen by taking the scalar product of Φ =
�
∇ϕE,∇ϕH
�

with Ψ ∈ J and performing

partial integration.

The utility of the Helmholtz decomposition becomes apparent when solving the dynam-

ical equation (2.24a) under the constraint (2.24d): writing the field Ψ = Ψ⊥ +Ψ‖ and the

current J(t) = J⊥(t)+ J‖(t) as the sum of transversal and longitudinal contributions, then

∇×∇ϕ = 0 implies the longitudinal gradient field is obtained by simply integrating up

the current,

Ψ‖(t) = Ψ‖(0) + i

∫ t

0

ds J‖(s). (3.14)

Thanks to charge conservation (2.24d) and Ψ⊥(t) ∈ ker
�
Div W
�
, the solution automati-

cally satisfies the constraint (2.24b).

21



3 Schrödinger formalism for linear, non-dispersive media

While the Helmholtz decomposition of Ψ = Ψ⊥+Ψ‖ is uniquely determined by W alone,

a priori it is not clear how to compute Ψ⊥ and Ψ‖ from Ψ. Secondly, we actually wish to

obtain these two complex waves from the real, physical fields (E,H) in such a way that

Ψ is composed only of waves of non-negative frequencies. Excluding negative frequencies

is necessary, because otherwise we would evolve the negative frequency component Ψ−
with the wrong dynamical equation in case positive and negative frequency weights differ,

W+ =W 6=W =W−; that is the whole reason why (2.24a) comes as two sets of equations,

one for ω≥ 0 and another for ω ≤ 0.

3.2.2 Systematically representing real fields as complex waves

The key idea is to define G = ker Maux and the positive frequency subspace J+ ⊂ J as

spectral subspaces associated to the auxiliary Maxwell operator Maux: endowed with the

domain of the free Maxwell operator Rot , we know from standard arguments that Maux

is selfadjoint (cf. [BS87] and Appendix B) and therefore admits a functional calculus that

ascribes meaning to the expressions

P+ = 1(0,∞)(M
aux),

P0 = 1{0}(M
aux),

(3.15a)

(3.15b)

for the spectral projections onto (0,∞) and the eigenspace for the eigenvalue 0 that are

defined in terms of the characteristic functions

1(0,∞)(ω) =

¨
1 ω> 0

0 else
,

1{0}(ω) =

¨
1 ω= 0

0 else
,

onto the sets of the positive numbers and 0, respectively. These two operators are orthogo-

nal projections associated to different parts of the spectrum of Maux, namely P+ maps onto

the positive frequencies and P0 onto the eigenspace G = ker Maux = ran P0 to the eigen-

value 0. Fields in ran P+ = J+ are automatically transversal, because P+ P0 = 0 implies

any Ψ⊥ ∈ J+ is 〈 · , · 〉W -orthogonal to all gradient fields and therefore J+ ⊂ J = G⊥W .

While the definition of P+ may seem very abstract, it can in many situations be computed

quite explicitly. For waves from a finite frequency range propagating in periodic media,

P+(E,H) can be expressed in terms of finitely many Bloch waves.

Then the map4 which extracts the non-negative frequency contribution from (E,H) is

Q = P+ +
1
2 P0.

4 Without the factor of 1/2 this operator would sometimes be called the Hardy projection [Noe21; CW77]; it

enters in the modern extension of the Noether, Gohberg and Krein [GK57] and has applications in the analysis

of topological insulators and index theorems [Sch15; PS16].
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3.2 Imposing the frequency constraints

Real fields (E,H) ∈Hphys = L2(R3,R6) are represented as the complex wave Ψ = Q(E,H)

on the complex Banach space H = J+ ⊕ G = Q
�
L2

W (R
3,C6)
�
; once we endow H with the

weighted energy scalar product 〈 · , · 〉W , it becomes a Hilbert space.

Non-gyrotropic media It is these two orthogonal projections and the map Q which will

implement the frequency restrictions implied in equations (2.24) and allow us to compute

Ψ⊥ = P+(E,H) and Ψ‖ =
1
2

P0(E,H). Let us first start with the non-gryotropic case where

W =W+ =W =W− are real. The motivation to include the factor of 1/2 in the definition of

Q is to avoid counting longitudinal gradient fields “twice”: we can use functional calculus

and the symmetry relation C Maux C = −Maux to deduce

2Re Q Re =
1

2

�
1(0,∞)(M

aux) + C 1(0,∞)(M
aux)C + 1(0,∞)(M

aux)C + C 1(0,∞)(M
aux)

+ 1
2

1{0}(M
aux) + 1

2
C 1{0}(M

aux)C + 1
2

C 1{0}(M
aux) + 1

2
1{0}(M

aux)C
�

=
�
1(0,∞)(M

aux) + 1(−∞,0)(M
aux) + 1{0}(M

aux)
�

Re = Re

as maps on L2
W (R

3,C6). Therefore, Q maps real fields onto their complex representatives

while given a complex field, taking 2Re restores the real field.

Lemma 3.2 Suppose W = W is real and satisfies Assumption 3.1. Then any real field
(E,H) ∈ L2(R3,R6) can be uniquely represented by Ψ = Q(E,H) ∈ H and the real field
is recovered by taking 2Re ,

2Re Q(E,H) = (E,H) ∈ L2(R3,R6). (3.16)

Put mathematically, Q : L2(R3,R6) is one-to-one and 2Re Q = 1 : L2(R3,R6) −→ L2(R3,R6)

reduces to the identity map.

The fact that Q is one-to-one is the content of Lemma A.1 (1) while the computation above

shows the second part.

Generalization to gyrotropic media The simple arguments used in the computation con-

firming that 2Re is the inverse of Q fail if W+ 6=W− =W+ has a non-vanishing imaginary

part, and it is not clear whether also here 2Re Q Re = Re holds true. For such gyrotropic

media, two distinct auxiliary Maxwell operators Maux
± =W−1

± Rot enter the above compu-

tation and it no longer clear whether P+ is orthogonal to

P− = 1(−∞,0)

�
Maux
−
�
,

meaning whether P+ P− = 0 = P− P+ still holds, since P+ and P− are spectral projections

associated to two different selfadjoint operators. Similarly, functional calculus is of no help
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3 Schrödinger formalism for linear, non-dispersive media

when trying to show that

1{0}
�
Maux
−
�

1(0,∞)
�
Maux
+

�
= 0= 1{0}
�
Maux
+

�
1(0,∞)
�
Maux
−
�

holds. If that were true, though, then the “projection defect”

�
2Re Q Re
�2 − 2Re Q Re =

�
P+ P− + P− P+
�

Re+

− 1

4

�
1{0}
�
Maux
−
�

P+ + 1{0}
�
Maux
+

�
P−
�

Re

would vanish, and combined with the injectivity of 2Re Q : L2(R3,R6) −→ L2(R3,R6) we

deduce that 2Re QRe is an injective projection, consequently the identity, and 2Re Q Re =

Re follows.

Nevertheless, we can show that Q and 2Re Q restricted to real fields are one-to-one

(Lemma A.1 (1) and (2)), and therefore provide us with a unique association between

real fields and complex fields composed solely of positive frequencies. This generalizes

Lemma 3.2 to gyrotropic media.

Proposition 3.3 (Identification of real and complex fields) Suppose the material weights
W satisfy Assumption 3.1.

(1) Any physical (i. e. real-valued) electromagnetic field (E,H) ∈ L2(R3,R6) with square
integrable amplitudes can be uniquely represented by a complex wave Ψ = Q(E,H) ∈H
with Q = P+ +

1
2 P0.

(2) Any complex Ψ = Q(E′,H′) ∈H field constructed from a real field (E′,H′) ∈ L2(R3,R6)

uniquely represents (E,H) = 2ReΨ ∈ L2(R3,R6).

The mathematically inclined reader may find the proof in Appendix A, which heavily relies

on [DL15, Lemma 2.5].

While the above statement still yields a one-to-one correspondence between real and

complex waves, the above statement is weaker than Lemma 3.2. That is because we do not

know whether (E,H) = (E′,H′) in item (2) agree, i. e. whether 2Re Q Re = Re holds in case

the material weights are complex. We attempted unsuccessfully to modify Q = P+ +
1
2

P0

the maps 2Re is its left-inverse while imposing a number of conditions:

(1) Q maps real fields onto complex fields composed solely of non-negative frequencies,

Q
�
L2(R3,R6)
�
= 1[0,∞)(M

aux)
�
L2

W (R
3,C6)
�
.

(2) Q : L2(R3,R6) −→H is one-to-one.

(3) 2Re Q : L2(R3,R6) −→ L2(R3,R6) is one-to-one.

(4) When the weights are real, Q reduces to Q = P+ +
1
2 P0.
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3.3 Schrödinger formalism for classical electromagnetism

The first condition ensures that the relevant Maxwell operator is still M while the second

and the third are the key ingredients for showing 2Re Q Re = Re . As explained above,

it may be easier to show
�
2Re Q Re
�2
= 2Re Q Re instead. The last one is a consistency

condition for the non-gyrotropic case where we already know the correct association.

3.3 Schrödinger formalism for classical electromagnetism

Now we are in a position to (S1) identify the Hilbert space, (S2) show that the Schrödinger

equation along with the Maxwell operator are equivalent to Maxwell’s equation (2.24),

and (S3) take the real-valuedness of physical fields properly into account.

3.3.1 States

The physical fields (E,H) and the complex fields Ψ =Q (E,H) that represent them are con-

nected through the projection Q = 1(0,∞)(M
aux) + 1

2
1{0}(M

aux), and therefore the Hilbert

spaces is the subspace of non-negative (ω≥ 0) frequency states,

H =Q
�
L2

W (R
3,C6)
�
= P+
�
L2

W (R
3,C6)
�
⊕ P0

�
L2

W (R
3,C6)
�
= J+ ⊕ G,

which inherits the scalar product 〈 · , · 〉W from L2
W (R

3,C6); any vector Ψ = Ψ⊥ + Ψ‖ can

again be split into transversal and longitudinal components,

Ψ =Q (E,H),

Ψ⊥ = P+ (E,H),

Ψ‖ = P0 (E,H).

(3.17a)

(3.17b)

(3.17c)

Note that applying Q to the physical fields makes sense, because real fields (E,H) with

square integrable amplitudes are elements of Hphys = L2(R3,R6) (defined in analogy to

(3.4)), i. e. those can also be regarded as elements of L2
W (R

3,C6).

3.3.2 The Maxwell operator and the Schrödinger equation

The relevant Maxwell operator

M = 1[0,∞)(M
aux) Maux 1[0,∞)(M

aux)
��
H
= Maux
��
H
=W−1 Rot
��
J+
⊕ 0|G

is just the restriction of the auxiliary Maxwell operator to ω ≥ 0; for a complete math-

ematical definition, we refer to Appendix B. This operator inherits the selfadjointness of

Maux and enter the Schrödinger equation

i∂tΨ(t) = MΨ(t)− i J(t), Ψ(0) =Q (E0,H0), (3.18)
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3 Schrödinger formalism for linear, non-dispersive media

in place of the Hamilton operator; the complex currents

J(t) = J⊥(t) + J‖(t) =Q W−1 J(t)

are defined from the real current J(t) via J⊥(t) = P+W−1 J(t) and J‖(t) = P0 W−1 J(t).
Cutting out the negative part of the spectrum is not just necessary for a coherent physical

interpretation, but that procedure also changes essential properties of M . Akin to Dirac op-

erators and auxiliary Maxwell operators have positive and negative spectrum. The easiest

way to see this is to recognize that the Maxwell equations are the relativistic equations for

a massless spin-1 particle [Wig39, pp. 197]. However, this is not to be interpreted as par-

ticles (positive frequency states) and antiparticles (negative frequency states), but rather

an artifact of the complexification of the fields. Indeed, the phase locking condition (2.9)

between positive and negative frequency wave functions, which stems from the reality of

physical fields, tells us that positive and negative frequency fields are not independent

degrees of freedom. Mathematical similarities do not always imply analogous physical

interpretations.

In quantum mechanics, the physical implication of the Hamilton operator’s selfadjoint-

ness is conservation of total probability. Similarly, the selfadjointness of the Maxwell leads

to conservation of total field energy in the absence of sources: according to the arguments

preceding (2.25) the total field energy is nothing but the square of the weighted norm so

that the 〈 · , · 〉W -unitarity of the evolution group e−it M yields

E
�
E(t),H(t)
�
=
¬
Q
�
E(t),H(t)
�

, Q
�
E(t),H(t)
�¶

W

=
¬
e−it M Q
�
E(0),H(0)
�

, e−it M Q
�
E(0),H(0)
�¶

W

=
¬
Q
�
E(0),H(0)
�

, Q
�
E(0),H(0)
�¶

W
.

We will explain in Section 3.5 below that this expression is consistent with the more general

definition of field energy (2.12) for dispersive media.

Of course, this is a convenient choice of scalar product and we could have gone with,

say, the regular, unweighted scalar product. In fact, for a large share of the arguments

the only restriction we need to impose on the scalar product is that the associated norms

be equivalent; this is so that H is complete with respect to any of these norms. How-

ever, when using scalar products different from 〈 · , · 〉W , we can no longer exploit many of

the neat simplifications that are directly linked to the selfadjointness of M . For instance,

Bloch functions of photonic crystals do not form an orthonormal basis with respect to the

unweighted scalar product 〈 · , · 〉.
Another useful consequence is the existence of a resolution of the identity via the so-

called projection-valued measure associated to M , commonly (albeit inaccurately) referred

to in the physics literature as the existence of a complete set of eigenfunctions. Concretely,
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3.4 Complexified equations for gyrotropic materials

this allows us to expand electromagnetic fields in terms of Bloch functions associated to

periodic light conductors (also called photonic crystals).

3.3.3 Equivalence of the Schrödinger formalism

Now we can put all the pieces together: in Sections 3.2.2 and 3.3.1 we have shown that

there is a one-to-one correspondence between real fields (E,H) = 2ReΨ with square inte-

grable amplitudes and complex fields of non-negative frequency Ψ, introduced the relevant

Hilbert space and the Maxwell operator, and our efforts culminate in the main result of

this paper:

Theorem 3.4 (Equivalence of Maxwell’s equations and Schrödinger formalism)

Suppose the material weights W which describe the medium satisfy Assumption 3.1. The
sources ρρρ(t) and J(t) are assumed to only excite states supported by the medium (in the sense
of Assumption 2.3) and their non-negative frequency contributions ρ+(t) and J+(t) satisfy
charge conservation (2.24d). And lastly, on the initial conditions (E0,H0) ∈ L2(R3,R6) we
impose that the field energy shall be finite and that Ψ+(t0) = Q(E0,H0) satisfies the constraint
equation (2.24b). Then under these technical conditions the following holds:

(1) Equations (2.24) and (3.18) are equivalent, i. e. the solution

Ψ(t) = e−i(t−t0)MΨ(t0)− i

∫ t

t0

ds J(t) (3.19)

of the Schrödinger-type equation (3.18) satisfies the non-negative frequency Maxwell
equations (2.24) with initial condition Ψ(t0) = Q(E0,H0) and current density J(t) =
Q W−1 J(t). Conversely, the non-negative frequency solutionΨ+(t) to (2.24) withΨ+(t0) =

Q(E0,H0) satisfies equation (3.18).

(2) The physical fields
�
E(t),H(t)
�

can be uniquely reconstructed from its complex represen-

tative Ψ(t) = Ψ+(t) =Q
�
E(t),H(t)
�
.

For physicists we reckon our systematic derivation is persuasive. However, for the bene-

fit of more mathematically minded people, we have included a proof in Appendix A. The

key ingredients are the one-to-one correspondence between physical fields and complex

states representing them (Proposition 3.3) as well as showing that the frequency decom-

position via the Fourier transform in time is the same as that obtained from the spectral

decomposition of M .

3.4 Complexified equations for gyrotropic materials

For non-gyrotropic media where thanks to W = W the two sets of equations (2.24) co-

incide, and it is much more straight-forward to treat those equations. The easiest way to
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3 Schrödinger formalism for linear, non-dispersive media

proceed here is to mathematically admit complex electromagnetic fields and consider

MC =W−1 Rot

on the complexified Hilbert space HC = L2
W (R

3,C6) without making any frequency con-

straints. The dynamical equation (2.24a) can be recast as

i∂tΨ = MCΨ − iW−1 J(t), Ψ(0) = (E0,H0), (3.20)

where J(t) is the real current and Ψ(t) is just a relabelling of
�
E(t),H(t)
�

to make the simi-

larity to quantum mechanics more explicit. Admitting complex fields of course doubles the

degrees of freedom, because mathematically we have to admit complex electromagnetic

fields for technical reasons. These equations and their non-linear generalizations have

been studied extensively in the literature (see e. g. [BS87; FK97; Kuc01; BF03; DL14a]).

Using the Helmholtz decomposition and local charge conservation (2.24d), it is straight-

forward to verify that the solution Ψ(t) also satisfies the constraint equation (2.24b).

The reality of the waves emerges from a symmetry that MC necessarily possesses: for

non-gyrotropic materials where W =W = C W C holds, complex conjugation anticommutes

with the Maxwell operator,

C MC C = −MC.

In the parlance of the Cartan-Altland-Zirnbauer scheme [AZ97; Sch+08b] C is an “even

particle-hole-type symmetry”, although we would like to reiterate what we stated in Sec-

tion 3.2.2, namely that the terminology has been created with quantum mechanics in mind

and its interpretation does not carry over to electromagnetism. Due to phase locking (2.9)

“particles” and “holes” are not independent degrees of freedom.

Consequently, C and therefore also the real part Re = 1
2 (1+ C) commute with the evo-

lution group,

Re e−it MC = e−it MC Re .

This is of course just a fancy way of saying that initially real electromagnetic fields remain

real. If one restrict oneself to real initial states, then these complexified equations indeed

give a simple way to study Maxwell’s equations using techniques from quantum mechan-

ics. Real solutions of course retain the symmetry Ψ− = Ψ+ where now Ψ− = P−(E,H) is

computed with the help of the spectral projection P− = 1(−∞,0)(MC) onto the negative

frequencies.

It would be tempting to surmise that a version of this simplified complexification proce-

dure also works in case W 6= W . But our first-principles derivation of (2.24) in Section 2

shows that this is unfortunately not the case. Postulating (3.20) for complex weights leads

to unphysical electromagnetic fields, because even if they are initially real, they acquire a

non-zero imaginary part over time — in direct contradiction with one of the basic tenets
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3.5 Comparison with the dispersive Hilbert space H from Section 2.3

of electromagnetism, that physical fields are real. The correct, albeit somewhat compli-

cated complexification procedure is to write MC = M+ ⊕M− as the direct sum of positive

and negative frequency operators acting on HC = H+ ⊕H− (see [DL15, Section 2.2] for

details). But in many situations there is no advantage to work with the complexified equa-

tions; in fact for things such as the topological classification of electromagnetic media it

is detrimental [DL16]. Indeed, Theorem 3.4 guarantees that all of the physical phenom-

ena are described by the non-negative frequency equations, because they are equivalent

to Maxwell’s equations.

3.5 Comparison with the dispersive Hilbert space H from Section 2.3

We close this section by comparing the Hilbert spaces H =
∫∞

0
dωH(ω) introduced in

Sections 2.3 and H = Q
�
L2

W (R
3,C6)
�

from Section 3.3; it turns out that in the absence

of dispersion these two Hilbert spaces are one and the same. Because their definitions

initially seem very different from one another, so it is worthwhile to make the necessary

identifications explicit.

As we are only interested in real states, we may restrict our discussion toω ≥ 0. Suppose

the weights cW (ω) = W , ω ≥ 0, are frequency-independent. Then for fixed sign of the

frequency all the scalar products coincide,

〈Φ,Ψ〉ω =
¬
Φ, d

dω

�
ωcW (ω)
�
Ψ

¶
= 〈Φ,W Ψ〉 = 〈Φ,Ψ〉W ,

and we have to figure out how to identify H(ω) using properties of the Maxwell operator

M . The key ingredient is the resolution of the identity

1H =

∫ ∞

0

d1ω(M)

provided by the so-called projection-valued measure [RS72, Chapter VIII.3]; simply put,

this is the generalization of expanding the identity in terms of eigenfunctions of a selfad-

joint (hermitian) operator in case the operator’s spectrum does not just consist of eigen-

values. Here, d1ω(M) projects onto the (usually infinitesimal) sliver of the Hilbert space

composed of states that rotate with frequency ω when time evolved, i. e. it consists of

(generalized) solutions to

Mϕω =ωϕω.

But this is exactly the definition of H(ω), and we see that H =
∫∞

0
dωH(ω) and H =

Q
�
L2

W (R
3,C6)
�

coincide not just as vector spaces, but because they share their scalar prod-

uct also as Hilbert spaces. Put another way, we have just proven

Lemma 3.5 (Equivalence of Hilbert spaces) Suppose the material weights satisfy Assump-
tion 3.1. Then H defined in equation (2.21) for the constant frequency weights cW (ω) =W,
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4 Comparison to previous works and quantum mechanics

ω ≥ 0, coincides with H = 1[0,∞)(M
aux)
�
L2

W (R
3,C6)
�

as Hilbert spaces with energy scalar
product 〈 · , · 〉W .

Because we can canonically identify these two Hilbert spaces, we also justify calling 〈 · , · 〉W
energy scalar product and ‖·‖2W the energy norm: for frequency-independent material

weights, d
dω

�
ωcW (ω)
�
= W holds and ‖Ψ‖2W = 〈Ψ,W Ψ〉 computes the energy content of

the real electromagnetic field (E,H) represented by Ψ = Q(E,H).

4 Comparison to previous works and quantum mechanics

Let us close this Section by making a comparison to earlier works and quantum mechanics.

For simplicity, let us repeat the list of all three ingredients:

(S1) States are represented by complex fields of non-negative frequency, and they form the

Hilbert space H = J+ ⊕ G composed of transversal fields of positive frequency J+

and longitudinal gradient fields G. The representative Ψ = Q(E,H) is obtained by

projecting the real field onto the non-negative frequencies.

(S2) The Maxwell operator M = W−1 Rot
��
ω≥0

plays the role of the Hamiltonian in the

Schrödinger-type equation

i∂tΨ(t) = MΨ(t)− iW−1 J(t), Ψ(0) = Q(E0,H0).

(S3) The real, physical fields are recovered by taking the real part,
�
E(t),H(t)
�
= 2ReΨ(t).

The range of validity of the Schrödinger formalism (as covered in Section 3.3) has the exact

same range of validity as equations (2.24): they hold for approximately monochromatic

waves composed of frequencies ω ≈ ω0 so that cW (ω) does not change appreciably. And

while for non-gyrotropic media, our somewhat elaborate construction is unnecessary, it is

compulsory for media with W 6=W in order to obtain the correct and physically meaningful

equations. Given the role that gyrotropic media play in novel applications such as topo-

logically non-trivial photonic crystals [RH08; Wan+08], we expect that the Schrödinger

formalism for Maxwell’s equation we have derived here will prove useful when investigat-

ing quantum-light analogies.

4.1 Quantum–wave analogies revisited

Historically speaking, the first quantum-wave analogies were actually wave-quantum analo-

gies: the founding fathers of modern quantum mechanics relied on the similarity to waves

to find their bearing and arrive at a consistent interpretation of quantum theory. Nowa-

days, these are often “read in reverse”, where quantum phenomena serve as inspiration
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4.1 Quantum–wave analogies revisited

for finding novel effects in classical waves. Two prime examples are Yablovnovitch’s pro-

posal of photonics crystals [Yab93] and Haldane’s seminal insight that topological effects

are not inherently quantum, but bona fide wave effects [RH08]. Both of these extremely

influential works have ended up creating whole subfields in multiple communities.

Most works on quantum-light or, more broadly, quantum-wave analogies, focus on sim-
ilarities in the dynamical equation. For example, Rechtsman et al [Rec+13] based their

prediction of the existence of topological edge modes in periodic waveguide arrays on the

similarity between the paraxial wave equation and the Schrödinger equation; in their setup

the fussili-like twist of the waveguides leads to a vector potential that enters the “paraxial

Hamiltonian” the same way a magnetic vector potential would in a quantum Hamilto-

nian. That explains how the twist leads to the breaking of time-reversal symmetry, and

ultimately, to the presence of unidirectional edge modes.

Compared to quantum systems the Schrödinger form of Maxwell’s equations has two

important differences, namely that (1) Maxwell-type operators M =W−1 D have a product
structure instead of being a sum, and (2) if J(t) 6= 0 a source term is present, something

which has no quantum analog. The product structure prevents us from applying many

techniques from perturbation theory, linear response theory or scattering theory, because

they rely on the sum structure of the Hamiltonian H = 1
2m (−iħh∇)2 + V . New methods

tailored to Maxwell-type operators need to be developed.

Establishing quantum-wave analogies systematically often requires going beyond a com-

parison of just the dynamics, also the nature of observables and additional information on

typical regimes and configurations play a significant role (see Table 4.1). Quantum ob-

servables are defined in terms of selfadjoint operators like position, momentum or spin,

and as a matter of principle, the quantum wavefunction itself is not observable. The situ-

ation in electromagnetism is very different: not only are the fields themselves measurable

quantities, observables are functionals of the fields. To give one specific example where this

enters in crucial steps of the analysis, in our work on the derivation of ray optics equations

in photonic crystals [DL15] the specific form of observables was essential when we wanted

to find out in what sense and quantify how well ray optics approximates electrodynamics.

Because we borrowed a semiclassical technique from quantum mechanics, Weyl quanti-

zation, we were only able to establish a ray optics limit for quadratic observables which

can be written as a “quantum expectation value”. For such observables, the quantum-light

analogy lines up nicely: also such electromagnetic observables come in pairs, a ray optics

observable on phase space and a functional on the fields — just like classical momentum

is associated to the momentum operator, its quantization. Nevertheless, not in all cases

do we recover what is naïvely expected: the ray optics observable associated to local av-

erages of the Poynting vector P(E,H) = 1
2

Re
�
E×H
�

is not ṙ, but of a more complicated

form [DL15, Section 3.3.2].

Fundamental differences in the physics, the form of typical states and regimes, can re-

31



4 Comparison to previous works and quantum mechanics

Classical Waves Quantum Mechanics

Generator of

dynamics

M =W−1 D
(product structure)

H = 1
2m (−iħh∇)2 + V

(sum structure)

Hilbert space
H+ ⊂ L2

W (R
d ,Cn)

(weighted, ω≥ 0 states)

L2(Rd ,Cn)

(unweighted)

Wave function R-valued C-valued

Conserved

quantity
field energy probability

Observables Functionals of the fields Selfadjoint operators

Table 4.1: Comparison of quantum mechanics and Schrödinger formalism of classical fields

sult in vastly different phenomenology despite relatively similar mathematics. One of our

motivations to study the ray optics limit was to investigate whether it is possible to link the

“transverse conductivity” in topological photonic crystals to a Chern number using “semi-

classical” arguments (we discuss this point in detail in [DL15, Section 5.1]). But there are

two fundamental obstacles to that: first of all, as we mentioned above the ray optics ob-

servable associated to the Poynting vector is not ṙ. But even ignoring that for the moment,

a second important assumption is not fulfilled: unlike in solid state physics completely

filled (frequency) bands in photonics make no physical sense. Instead, experimentalists

typically excite wave packets with well-defined momentum and frequency (e. g. with laser

light).

4.2 Comparison to the literature

While the general idea of exploiting similarities between quantum mechanics and Maxwell’s

equations is as old as modern quantum mechanics itself, there are several different ap-

proaches on how to go beyond heuristics and systematically compare classical and quan-

tum waves. Broadly speaking, these approaches fall into one of three categories: (1) via

the second-order equations, (2) in the sense of a generalized eigenvalue problem and

(3) using the first-order formalism akin to the one presented here.

4.2.1 Second-order formalism

An introduction to the second-order formalism can be found e. g. in [Joa+08, pp. 10–16]:

in the absence of charges and currents, ρρρ = 0 and J(t) = 0 and coupling between electric

and magnetic field (χ = 0), squaring Maxwell’s equations yields two seemingly uncoupled
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4.2 Comparison to the literature

equations,

∂ 2
t Ψ +M2

Ψ =

� �
∂ 2

t +M2
EE

�
ψE

�
∂ 2

t +M2
HH

�
ψH

�
= 0, (4.1)

one for the electric and one for the magnetic field; we emphasize that they only decouple

at first glance, because second-order equations not only require Ψ(0) as initial condition,

but also ∂tΨ(0), and the latter connects E to H and vice versa. One of the two operators,

e. g. the magnetic one

M2
HHψ

H = µ−1∇×
�
ǫ−1∇×ψH
�
, (4.2)

is then regarded as the analog of the quantum Hamiltonian. In many media where µ =

1 holds to good approximation and ǫ = ǫ real, M2
HH is selfadjoint (hermitian) on the

unweighted Hilbert space L2(R3,C3).

Certainly the second-order formalism is a perfectly valid and equivalent way of studying

Maxwell’s equations, but it is not ideally suited to transfer methods from quantum mechan-

ics. That is because many methods — explicitly or implicitly — rely on the Schrödinger

equation being first order in time. For instance, the selfadjointness of M2
HH means that

e−it M2
HH is well-defined, but it does not solve the dynamical equation (4.2); hence, it is

not apt to call M2
HH the analog of the quantum Hamiltonian. Therefore, standard tech-

niques such Duhamel arguments, which allow us to make perturbation expansions of the

evolution group, do not readily apply.

Another example which will be explored in a future work [DL16] is the topological

classification of photonic crystals, adapting the Cartan-Altland-Zirnbauer scheme [AZ97;

Sch+08b; Chi+16]. Here, the distinction between commuting and anticommuting sym-

metries is crucial for a proper classification. But we can no longer distinguish between

operators U which commute or anticommute with M , because in either case U M2 U−1 =

(±1)2 M2 = M2 holds. This was the source of confusion for calling complex conjugation C
a time-reversal symmetry in [RH08] rather than an even particle-hole-type symmetry; the

actual time-reversal symmetry that is broken for gyrotropic media is

T : (ψE,ψH) 7→
�
ψE,−ψH
�
. (4.3)

Related to the topic of topological phenomena are Chern numbers: as we will show in

[DL16], the only topological invariants which play a role for topological photonic crys-

tals are (first and second) Chern numbers. First Chern numbers can be computed from

the Berry curvature, and mathematically speaking, we have three distinct choices: the

“electromagnetic” Chern number is given in terms of the Berry curvature computed from

electromagnetic Bloch functions ϕn(k) =
�
ϕE

n (k),ϕ
H
n (k)
�
. But alternatively, we may use

ϕE
n (k) and ϕH

n (k) to define an “electric” and a “magnetic” Chern number. We see no obvi-

ous reason why they should be related, e. g. why the sum of electric and magnetic Chern

number should yield the electromagnetic Chern number. This is evidently a problem if
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4 Comparison to previous works and quantum mechanics

we want to obtain photonic bulk-boundary correspondences. This is significant, because

we have found a number of publications which compute Chern numbers from the electric

field alone (e. g. [Wan+08; Jac+15]). For qualitative predictions whether or not unidirec-

tional, backscattering-free edge modes exist, finding a non-zero electric Chern number, for

example, may suffice, because that necessitates breaking time-reversal symmetry (4.3).

Nevertheless, we reckon that the second-order formalism is suited to investigate wave-

wave analogies and when adapting techniques initially developed for other wave equa-

tions.

However, there is also a deeper, more subtle issue, which to our knowledge have not been

addressed in the literature before. As equation (4.2) stands, it only holds for non-gyrotropic
media. Here, U : (ψE ,ψH) 7→ (ψE,−ψH) is an anticommuting, unitary symmetry of Maux,

U Maux U−1 = −Maux,

that maps complex fields composed of non-negative frequencies onto fields composed

solely of non-positive frequencies. Therefore, HH =
�
ψH | (ψE,ψH) ∈ H

	
, by which

we mean the magnetic component of the non-negative frequency Hilbert space H de-

fined in Section 3.3.1 and endowed with the scalar product


φH ,µψH
�
, coincides with

L2
µ(R

3,C3) = HH . Put succinctly, we may start with (4.2) acting on all of L2
µ(R

3,C3). So

even though squaring the auxiliary Maxwell operator Maux
+

destroys the information on

the sign, we are still able to pick a sign of ±ω by choosing a sign of ±∂tψ
H = ∓µ−1∇×ψE .

Again, the electric and the magnetic equation couple via the initial condition ∂t

�
ψE(0),ψH (0)
�
.

Heuristically, this is consistent with the heuristic argument that L2
µ
(R3,C3) and L2(R3,R6)

are of “the same dimension” if we identify C with R2.

However, when the weights (ǫ,µ) 6= (ǫ,µ) have a non-vanishing imaginary part, we start

from two sets of Maxwell equations and evolve waves composed of frequencies ±ω ≥ 0

with different material weights; this has nothing to do with the formalism one chooses, but

is merely a consequence of the real-valuedness of electromagnetic fields (see the discussion

in Section 2.5). The insight that the information contained in the negative frequency con-

tribution is redundant of course also applies here, and we can study (4.2) as an equation

on the Hilbert space HH ⊆ L2
µ
(R3,C3).

This restriction to HH is now more subtle, and necessitates the use of the first-order

formalism. Making the weights complex breaks the symmetry U : (ψE ,ψH) 7→ (ψE,−ψH),

and it is not automatic that HH coincides with all of L2
µ(R

3,C3). Therefore, if one starts

with (4.2) (or its electric counterpart) on all of L2
µ(R

3,C3), then if HH 6= L2
µ(R

3,C3) it is

no longer possible to discard unphysical solutions. In case of photonic cyrstals where the

weights are periodic, this would lead to artificial band crossings (where at least one of the

bands involved is due to an unphysical Bloch function).
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4.2.2 Generalized eigenvalue problem

Generalized eigenvalue problems are of the form DΨ =ωWΨ; this corresponds to starting

with (2.24a) and is the approach adopted in [RH08, pp. 3] and many other works [Sil16a].

The main drawback is that this no longer gives a dynamical description of the system.

Nevertheless, more general types of media can be treated in this framework, including

those with dispersion and with zero modes where W is no longer invertible. However, for

lossless positive index materials, and that is the case typically considered in the theory of

photonic crystals, we can invert W and use the Schrödinger formalism instead.

4.2.3 First-order formalism

The use of the Schrödinger formalism in the sense it is discussed here, where (S1)–(S3)

from Section 3.1.2 are spelled out explicitly, is surprisingly rare in the physics literature.

While quite a few write down the Maxwell operator (see e. g. [Pro+16, equation (39)]),

very few supply also the scalar product and discuss selfadjointness M = M∗W of the

Maxwell operator. Most exceptions are due to more mathematically minded theoretical

physicists and mathematical physicists (see e. g. [BF01; BF05; Tip98; TMC00; DL14b;

GSH17]).

Among this group, very, very few discuss how the real-valuedness of electromagnetic

fields should be consistently combined with the complexification that is necessary. One no-

table exception are the works by Babin and Figotin. In [BF05] they derived the non-linear

Schrödinger equation from Maxwell’s equations for non-linear, non-gyrotropic media via

a suitable scaling limit. Here, the even “particle-hole”-type symmetry C is responsible for

the point symmetry of the band spectrum (cf. [BF05, Figure 3]), which in turn ensures

that it is always possible to satisfy the so-called frequency matching condition. The con-

dition Ψ− = CΨ+ further allows them to obtain a scalar non-linear Schrödinger equation

rather than a pair of coupled non-linear Schrödinger equations (i. e. going from equa-

tions (98)–(99) to equation (108) in [BF05]). While Babin and Figotin always assumed

to work with non-gyrotropic media where W = W [BF05, equation (6)], we expect that

all of their results straightforwardly extend to the non-gyrotropic case if the Schrödinger

formalism developed here is employed.

Noteworthy are also the works by by Tip et al [Tip98; TMC00]who develop a Schrödinger

formalism for dispersive, absorptive media. This goes beyond what we do here as we have

neglected dispersion. To deal with dispersion, they address the concerns discussed at the

end of Section 2.5 by choosing a specific initial trajectory, namely those that are 0 for t < t0

and “spring to life” at the initial time t0; this . The second main idea is to add fictitious

electromagnetic fields to the equations so that the total field energy balance is restored;

the absorbed field energy is now used to excite these fictitious fields.

What distinguishes our work from these earlier publications, including our own [DL14c;
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5 Obtaining Conserved Quantities in the Schrödinger Formalism

DL14a; DL14b], is that ours gives a physically meaningful description also of gyrotropic

materials where W 6=W .

5 Obtaining Conserved Quantities in the Schrödinger

Formalism

We close the discussion of Maxwell’s equations with an application of the Schrödinger for-

malism. Perhaps surprisingly, the topic of conserved quantities is still an area of active

research in electromagnetism (see e. g. [BBN13; Pro+16] and references therein), in par-

ticular in media. The default strategy is nicely explained in [BBN13] for the in vacuo equa-

tions: given that Maxwell’s equations are the relativistic equations for a massless spin-1

particle, their symmetry group is the Poincaré group. To each continuous symmetry there

exists a conserved quantity, e. g. the rotational symmetry leads to conservation of total

angular momentum and “dual symmetry”

�
E

H

�
7→
�

cosϑ − sinϑ

sinϑ cosϑ

��
E

H

�
(5.1)

ensures conservation of helicity. Media break some, perhaps all of these symmetries.

Therefore, the question arises that given material weights, how can we systematically find

conserved quantities? The standard approach is to reformulate Maxwell’s equation in the

Lagrangian formalism and to exploit Noether’s theorem. Even in vacuum, this approach

has unexpected complications, something that Bliokh, Beshaev and Nori explain very ele-

gantly in [BBN13]. We will briefly summarize the main points of their discussion. First of

all, the Lagrangian does not have all the symmetries of the Maxwell equations. The stan-

dard Lagrangian density L(E,H) = E2−H2 breaks the dual symmetry (5.1), so identifying

symmetries of the physical equations directly from the Lagrangian is harder. Moreover, the

conserved quantities obtained from this Lagrangian lack a clear physical interpretation.

Bliokh et al propose a dual symmetric Lagrangian formulation of electromagnetism

where the Lagrangian density involves two R6-valued vector fields F and G as indepen-

dent variables, and then impose the relation F = (E,H) and G = (H,−E) afterwards. This

corresponds to complexifying the fields and then restricting to real solutions afterwards.

The complexification is necessary, because the generator for the continuous transforma-

tion (5.1) is J = σ2⊗1 and its eigenvectors, the helicity basis, are complex. Consequently,

the conserved quantities they derive inherit the evident dual symmetry of the Lagrangian

density, are more symmetric under exchange of E and H and are more “consistent” (Fig-

ure 1 and the discussion in Sections 2–3 of [BBN13] make this precise).

While Bliokh et al’s paper conclusively answers the question of systematically finding

physically meaningful conserved electromagnetic observables in vacuum, we believe the
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5.1 The nature of electromagnetic observables

Schrödinger formalism offers additional insight into the topic. Chiefly, we are immedi-

ately able to extend the discussion to non-homogeneous electromagnetic media where the

material weights ǫ, µ and χ may depend on position. While we have no doubt that it is

possible to find a version of the dual symmetric formalism for media, this requires no extra

effort in the Schrödinger formalism. Secondly, as we shall see below, identifying conserved

quantities and associated currents becomes straightforward.

5.1 The nature of electromagnetic observables

Electromagnetic observables are generically functionals F : L2(R3,R6) −→ R of the fields,

i. e. functions associate real numbers to electromagnetic fields. The two most obvious

examples are the energy density

Ex (E,H) =
�
Q+(E,H)
�
(x) ·W (x)
�
Q+(E,H)
�
(x)

or the volume integrals of components of the Poynting vector

P j(E,H) =

∫

R3

dx Px , j(E,H) =

∫

R3

dx 1
2
Re
�
ψE ×ψH
�

j

=
¬
Q+(E,H) , W−1

�
−iσ2 ⊗ e×j
�
Q+(E,H)
¶

W

(5.2)

Here, Ψ = (ψE ,ψH) = Q+(E,H) is the complex positive frequency component of the real

field (E,H), e j is one of the three canonical basis vectors e1 = (1,0,0), e2 = (0,1,0) or

e3 = (0,0,1) and e×j E = e j × E is a convenient notation to associate a matrix e×j to the

vector e j. We will list a few more observables in Section 5.4 below. It is worth mentioning

that the fields themselves are electromagnetic observables. This is fundamentally different
from quantum mechanics where observables are represented as selfadjoint operators on

the relevant Hilbert space.

Nevertheless, many interesting observables such as the Poynting vector, total angular

momentum and helicity can be written as “quantum expectation values”, i. e. F is defined

in terms of a selfadjoint operator F = F∗W with

F(E,H) =


Q+(E,H) , F Q+(E,H)

�
W

. (5.3)

We emphasize that the similarity to quantum expectation values is purely computational,

and we are not ascribing some “quantum interpretation” to these electromagnetic observ-

ables. For such observables we were able to derive ray optics equations in photonic crystals

where W is periodic using semiclassical techniques [DL15]. Fortunately, the fundamental

conserved quantities for Maxwell’s equations are indeed of this form (see e. g. [BBN13,

equations (3.40’)–(3.45’)] for a list).
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5 Obtaining Conserved Quantities in the Schrödinger Formalism

5.2 The conservation criterion for quadratic electromagnetic observables

A quantity F is conserved if

F
�
E(t),H(t)
�
= F
�
E(0),H(0)
�

(5.4)

does not depend on time and the choice of initial state.

Proposition 5.1 (Conserved quantity) Suppose F is a quadratic electromagnetic observ-
able of the form (5.3) associated to some bounded selfadjoint operator F = F∗W on H+. Then
F is a conserved quantity for all electromagnetic fields (E,H) ∈ L2(R3,R6) if and only if�
F , e−it M+
�
= 0 holds for all times.

The assumption that F be bounded is non-essential and meant to avoid a non-essential,

technical discussion on domains in the proof. In the same vein, the condition
�
F, e−it M+
�
=

0 can in practice be replaced by [F, M+] = 0 or [F, Maux] = 0.

Proof Assume
�
F , e−it M+
�
= 0 for all t ∈ R. Hence, we can commute the time evolution

operator with F and exploit the 〈 · , · 〉W -unitarity,

F
�
E(t),H(t)
�
=
¬
e−it M+ Q+
�
E(0),H(0)
�

, F e−it M+ Q+
�
E(0),H(0)
�¶

W

=
¬
e−it M+ Q+
�
E(0),H(0)
�

, e−it M+ F Q+
�
E(0),H(0)
�¶

W

=
¬
Q+
�
E(0),H(0)
�

, F Q+
�
E(0),H(0)
�¶

W
= F
�
E(0),H(0)
�
.

Conversely, suppose F satisfies (5.4) for all fields. This translates to the condition

e+it M+ F e−it M+ = F

for all t ∈ R, i. e. F commutes with the evolution group. �

One could also think to consider observables which are only conserved for a certain class

of states, e. g. electromagnetic fields with a particular symmetries. Technically speaking,

these are still of the form (5.4), although F = ΠGΠ is now flanked on both sides by a

projection Π onto the subspace spanned by the high symmetry states.

5.3 Conservation in helicity in media

Let us illustrate our ideas with helicity so that we can contrast and compare with a recent

preprint on that subject [Pro+16]. Suppose we are given a medium described by W (x) =�
ǫ(x) χ(x)
χ(x)∗ µ(x)

�
that is dual symmetric. That means J = σ2 ⊗ 1 has to commute with M+ =
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5.3 Conservation in helicity in media

W Rot
��
ω≥0

. Evidently, J commutes with Rot = −σ2 ⊗∇× and we need to check whether

J and W commute. So writing the material weights

W =
3∑

j=0

σ j ⊗w j

as the sum ofσ0 = 1 and the Pauli matrices, we immediately find that [W, J] = 0 translates

to the vanishing of w1 = 0= w3. Such material weights are of the form

W (x) = 1⊗ ǫ(x) +σ2 ⊗χ(x) =
�
ǫ(x) −iχ(x)
+iχ(x) ǫ(x)

�

where χ(x)∗ = χ(x) takes values in the hermitian matrices.

For such media, helicity, also known as the Lipkin zilch [cite Lipkin’s paper]

C
�
E(t),H(t)
�
=

1

2

∫

R3

dx
�
B(t, x) · ∂tD(t, x)−D(t, x) · ∂tB(t, x)

�

is conserved (it was initially referred to as zilch because its physical interpretation was

initially mysterious); note that unlike many other authors, complex conjugation is implic-

itly contained in the dot product E(x) · H(x) =
∑3

j=1
E j(x)H j(x). To rewrite it in the

Schrödinger formalism in the form (5.3), we use the constitutive relations (2.4) to express

the auxiliary fields (D,B) in terms of (E,H), remember that positive and negative frequency

contributions evolve according to different equations and note that this difference of fields

can be written as iJ = iσ2 ⊗1:

C
�
E(t),H(t)
�
=
¬
We−it M+Q+
�
E(0),H(0)
�

, J M+ e−it M+Q+
�
E(0),H(0)
�¶

=
¬
e−it M+Q+
�
E(0),H(0)
�

, J M+ e−it M+Q+
�
E(0),H(0)
�¶

W
(5.5)

The factor of 1/2 has disappeared, because the negative frequency contribution, which

we have omitted due to symmetry, contributes the same amount. Since [J , M+] = 0 the

helicity is in fact a conserved quantity, C
�
E(t),H(t)
�
= C
�
E(0),H(0)
�
.

This Proskurin et al have found expressions very similar to (5.5), namely equations (24)–(26)

in [Pro+16] for vacuum and equation (62). Apart from the non-essential difference that

they compute these electromagnetic observables from the Fourier transformed fields, they

miss the important fact that the negative frequency fields evolve according with the com-

plex conjugate weights W = 1 ⊗ ǫ − σ2 ⊗ χ. Lastly, we note that generalizations akin

to [Pro+16, equation (27)] are straight-forward: higher-order time derivatives become

factors of
�
−iM+
�n

.
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5.4 Other observables

Helicity is not the only observable that has seen a lot of attention up until now. A second

one is, perhaps surprisingly to the uninitiated, the discussion on what the physical mo-

mentum observable in electromagnetism is. There are two separate issues: the first one

is the so-called Abraham-Minkowski controversy (see e. g. [Pfe+07] [Siverheina]), which

we will not get into, and circles whether the momentum vector should be defined in terms

of (E,H) (which yields the Poynting vector) or (D,B) (resulting in the Abraham vector).

We will discuss the second one, though: the Poynting vector Px arises from deriving the

local energy density in time so as to satisfy the local energy conservation law

∂tEx

�
E(t),H(t)
�
+∇ ·Px

�
E(t),H(t)
�
= 0, (5.6)

and even in the present of position-dependent weights, we nevertheless obtain the usual

form of Px (E,H) as defined in equation (5.2).

While it is very suggestive to call the Poynting vector the momentum vector, we have a

“gauge freedom” here: if all we require for a momentum density to satisfy the local energy

conservation law (5.6), we can replace the Poynting vector Px with

P ′x (E,H) = Px (E,H) +∇×F(E,H),

which differs from the Poynting vector by a divergence-free quantity. One physically rele-

vant question is how to split the Poynting vector

Px (E,H) = PO,x(E,H) +PS,x(E,H)

into an orbital and a spin component, that then allows us to define orbital and spin angular

momentum. In vacuum, the orbital and the spin parts for waves of frequency ω [BBN13,

Section 3.3] are given by

PO,x(E,H) = Ψ(x) · (−i∇Ψ)(x)
PS, j,x(E,H) = Ψ(x) · (∇× S j)(x)

where the spin part is defined in terms of the three spin matrices whose entries

(S j)nk = −iε jnk

are −i times the Ricci tensor ε jnk. Note that due to the absence of sources, ∇ · E = 0 and

∇ ·H= 0, the spin contribution is divergence free

The Schrödinger formalism again allows for a straight-forward generalization of the

work of Bliokh et al [BBN13, Section 3.2.2 and 3.3] for the in vacuo equations to homo-

geneous media. So suppose W is independent of x . Then evidently, the weights and the
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Maxwell operator commute with the generator of translations P = −i∇, i. e. [W, P] = 0

and [M+, P] = 0. Note that P = −i∇ should not be interpreted as an electromagnetic

“momentum operator”, although it does give rise to orbital momentum via

PO(E,H) =


Q+(E,H) , P Q+(E,H)

�
W

. (5.7)

Evidently, the three components of PO are conserved quantities if integrated over space,

and generalizes [BBN13, equation (3.32)] to homogeneous media in a straight-forward

fashion. Depending on the experimental setup, it is possible to measure the orbital contri-

bution Px ,O to the momentum density Px , because the radiation force for a particle with

an electric and a magnetic dipole is proportional to Px ,O rather than Px (cf. discussion in

[BBN13, Section 5] and references therein).

There are a number of other quadratic observables of the same mold such as spin and

helicity density (see e. g. [BBN13, Section 3.3] and [Pro+16, Section II]),

Sx , j(E,H) = Ψ(x) ·
�
1⊗ S j

�
Ψ(x),

Hx (E,H) =

3∑

j=1

Ψ(x) ·
�
Pj (1⊗ S j)
�
Ψ(x).

5.5 Going beyond continuous symmetries

Not all symmetries of physical systems are continuous, e. g. periodic systems have dis-

crete symmetries, and these are beyond the reach of Noether’s Theorem. This is a second

advantage the Schrödinger formalism: Assume W describes a photonic crystal where the

weights are periodic. Then the above is no longer a conserved quantity, but it is compatible

with the Bloch-Floquet transform in that we can consider the contributions to the orbital

current density for fixed Bloch momentum.

The orbital momentum could then be studied in the ray optics approximation scheme of

[DL15]. In the parlance of [DL15, Definition 3.4] the orbital momentum PO,x is a scalar
observable, meaning it does not mix different components of the electromagnetic field.

For scalar observables like the orbital momentum (and unlike for the Poynting vector!),

the Berry curvature explicitly enters the ray optics equations (cf. [DL15, Theorem 3.7 (i)]).

Consequently, it seems as if the orbital momentum which behaves analogously to the cur-

rent in quantum condensed matter systems, a link which may prove useful when studying

the Quantum Hall Effect of Light [RH08].

6 Schrödinger formalism for acoustic waves

The Schrödinger formalism developed in the preceding sections for classical electromag-

netism applies also to many other types of classical waves, because they share the same
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6 Schrödinger formalism for acoustic waves

essential characteristics: they are (i) linear, (ii) first-order in time and (iii) the classical

fields are real-valued. While we are not the first to point this out (see e. g. [Wil66, Ap-

pendix] or [RS77]), these works do not take the reality of waves into account. We first

distill down our ideas in the abstract and then apply them to linearized magnetohydrody-

namics, Alvfén waves and transverse acoustic waves.

6.1 The abstract mathematical formalism

For these examples, we need to slightly widen the scope as compared to Section 3.1.2 and

generalize the notion of

Definition 6.1 (Maxwell-type operator) A (generalized) Maxwell-type operator

M :=WL D WR (6.1)

is a linear operator with product structure on a complex Hilbert space H that has the following
properties:

(a) D is a (possibly unbounded) selfadjoint operator on H with domain D0.

(b) WL,WR ∈ B(H) are bounded, selfadjoint, commuting operators with bounded inverses,
i. e. [WL ,WR] = 0 and W−1

L ,W−1
R ∈ B(H).

(c) The product WR W−1
L is selfadjoint and bounded away from 0, i. e. there exists a constant

c > 0 so that WR W−1
L > c 1H.

(d) M is endowed with the domain DR :=W−1
R D0.

(e) M anticommutes with complex conjugation (CΨ)(x) := Ψ(x), i. e. C DR = DR is left
invariant and C M C = −M holds.

We will show that operators of this type fit exactly into the same framework we have devel-

oped previously. Note that several authors prefer to study the (electromagnetic) Maxwell

operator M =W−1/2 Rot W−1/2 (see e. g. [Tip98, Section III] or [GSH17, Section II.A.]), be-

cause WL =WR means the operator M is selfadjoint (hermitian) with respect to the usual,

unweighted scalar product (see Section 6.1.2 below).

6.1.1 Endowing H with a suitably weighted scalar product and selfadjointness of M

The commutativity of WL and WR also implies
�
W±1

L ,W±1
R

�
= 0 for all of the other three

other sign combinations. Therefore, we can exchange the order of the two factors in the

weight operator

W :=W−1
L WR =WR W−1

L
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6.1 The abstract mathematical formalism

which enters the definition of a weighted scalar product



Φ,Ψ
�

W
:=


Φ,W Ψ
�
H

. (6.2)

Thanks to the conditions imposed on WL and WR in Definition 6.1 (b)–(c), this sesquilin-

ear map is strictly positive definite, and therefore indeed defines a scalar product. To

distinguish H with its standard scalar product, we will write HW for the Banach space H

endowed with 〈 · , · 〉W .

Since the norm ‖Ψ‖W := 〈Ψ,Ψ〉1/2W of HW is equivalent to the original norm H came with,


W−1/2



B(H)
‖ψ‖W ≤ ‖ψ‖ ≤



W+1/2



B(H)
‖ψ‖W ,

H and HW agree as Banach spaces, and we can think of both as the same vector spaces with

differing notions of orthogonality. Consequently, we may consider operators to be acting

on either space and properties such as boundedness or closedness transfer immediately.

The advantage of changing scalar product comes from the fact that M is in fact selfadjoint

with respect to 〈 · , · 〉W (but not the original scalar product 〈 · , · 〉H).

Proposition 6.2 The generalized acoustic operator M =WL D WR turns out to be selfadjoint
on HW with dense domain DR :=W−1

R D0.

The symmetry of M follows from the same arguments as in equation (3.11), and the in-

terested reader may find the remaining technical details for proving selfadjointness in

Appendix B.

6.1.2 Change of representation: bringing M to the form (3.9)

Borrowing the terminology quantum mechanics, a change of representation can bring M =
WL D WR to the form eM =W D, the operator studied in Section 3.1.2. That is because

WR : L2
W (R

3,C6) −→ L2
fW (R

3,C6),

seen as a map between two suitably weighted Hilbert spaces, is in fact unitary: Setting the

other weight to be fW :=W−1
L W−1

R , a quick computation yields



WRΦ,WRΨ
�
fW =


WRΦ,WR W−1

L W−1
R Ψ

�
=


Φ,W−1

L WRΨ
�
=


Φ,Ψ
�

W
.

In this new representation, the Maxwell-type operator takes the form considered previ-

ously,
eM :=WR M W−1

R =WL WR D,

and endowed with the domain D0 of D, it inherits the selfadjointness and the even particle-

hole-type symmetry CR := WR C W−1
R from M . Consequently, under these hypotheses

M = WL D WR is unitarily equivalent to eM = W D, the type of operator considered in

Section 3.1.2.
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6 Schrödinger formalism for acoustic waves

6.1.3 Reduction to ω ≥ 0

Condition (e) in Definition 6.1 ensures that real solutions to the associated Schrödinger

equation

i∂tΨ(t) = MΨ(t), Ψ(0) = Φ ∈H,

supports real solutions. Put another way, H contains a lot of unphysical, complex waves

and not just real fields u ∈HR := ReH. Following the next step in the scheme developed

for classical electromagnetism, Section 3.3.3, we exploit that we can represent real fields as

the real part of complex waves composed solely of non-negative frequencies: the spectral

projection Q := 1[0,∞)(M) implements this restriction, and show that 2Re is a left-inverse

of Q restricted to HR,

2Re Q
��
HR
= 1HR

.

To verify this, we can modify the arguments which prove Proposition 3.3 in a straightfor-

ward fashion (Lemma B.2).

Therefore, the whole physics of real waves is contained in the restriction to ω≥ 0,

M+ := Q M Q
��
H+

,

where this operator now acts on the complex Hilbert space of non-negative frequency

fields,

H+ := Q[H] = ranQ,

that comes with the weighed scalar product (6.2).

6.2 Linearized magnetohydrodynamics

The first example is linearized magnetohydrodynamics (MHD). The set of equations (6.3)

below describes the interaction of magnetic fields with electrically conducting fluids such

as plasmas or liquid metals, and can be deduced phenomenologically by coupling the hy-

drodynamic equations of ordinary fluids to a magnetic field via Ampère’s Law. The main

approximation is to neglect the displacement current. In the standard non-relativistic form

the MHD equations consist of the basic conservation laws of mass, momentum and energy

together with the induction equation for the magnetic field.

6.2.1 Ideal linearized MHD equations

Consider a stationary plasma permeated by a stationary magnetic field. The equilibrium
configuration of the plasma is described by the density ρ0, the pressure ℘0, the background
magnetic field B0 =

�
B0,1, B0,2, B0,3

�
and the gravitational field g =

�
g1, g2, g3

�
. When the
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6.2 Linearized magnetohydrodynamics

system is perturbed only slightly from its equilibrium state, the state variable can be written

in the form
ρ(x , t) = ρ0(x) +ρ1(x , t),

℘(x , t) = ℘0(x) +℘1(x , t),

B(x , t) = B0(x) +B1(x , t),

and in this ansatz the quantities ρ1, ℘1 and B1 can be considered “small” if compared with

the unperturbed part. Since the stationary condition implies v0 = 0 for the equilibrium

velocity of the plasma we will use the symbol v(x , t) =
�
v1(x , t), v2(x , t), v3(x , t)

�
for the

“small” velocity induced by the perturbation. According to [Lif89, Chapter 5, Section 2]

the linearized ideal MHD equations are:

dρ1

dt
= −∇ ·
�
ρ0 v
�
,

ρ0

dv

dt
= −∇℘1 − gρ1 +

�
J0 ×B1 + J1 ×B0

�
,

dB1

dt
=∇×
�
v×B0

�
,

℘1 = Γ (ρ1,v).

(6.3a)

(6.3b)

(6.3c)

(6.3d)

The continuity equation (6.3a) expresses mass conservation. Equation (6.3b), usually

called Euler equation, is the equation of motion of an element of the fluid. The vectors

J0 and J1 are the electric current densities associated to the magnetic field B0 and B1 as

computed from Ampère’s Law

Jk =
1

µ
∇×Bk, k = 0,1,

with µ being the magnetic permeability. Equation (6.3b) conceals a second equilibrium

state constraint, ∇℘0 + gρ0 = J0 × B0. The induction equation (6.3c) is derived from the

Maxwell’s equations. The last equation (6.3d), usually called energy equation or adiabatic
state equation, establishes a linear functional constraint which may be derived from the

thermodynamic equations for the plasma and allows us to remove the variable ℘1 from

equation (6.3a)–(6.3c). For example, if we impose the local isothermal condition ℘ρ−γ =
const. for a homogeneous medium, in the linearized regime equation (6.3d) assumes the

form

℘1 = γ

�
℘0

ρ0

�
ρ1 = γν

2
s ρ1

where the quantity νs :=
p
℘0/ρ0 is the local sound velocity.

The system of equations (6.3) provides the time evolution of the “small” perturbations

ρ1, v and B1 in terms of the stationary quantities ρ0, ℘0 and B0. The linear approximation

45



6 Schrödinger formalism for acoustic waves

allows to rewrite this equation in a more compact form,

i
d

dt




ρ1

v

B1



= M(ρ0,℘0,B0)




ρ1

v

B1



 , (6.4)

where M(ρ0,℘0,B0) is a differential operator of order 1 which depends from the stationary

quantities ρ0, ℘0 and B0. We will give the explicit form of M(ρ0,℘0,B0) for the special case

of Alfvén waves below. If one interprets Ψ = (ρ1,v,B1) as a wave function in L2(R3,C7),

then the above equation can be written in the evocative form

i
d

dt
Ψ = MΨ

where M = M(ρ0,℘0,B0) plays the role, at least formally, of a Schrödinger operator acting

in L2(R3,C7). Of course, the physical interpretations of the evolved quantities ρ1, ℘1

and B1 requires us to introduce of the reality constraint in the Schrödinger formalism for

electromagnetism.

6.2.2 Alfvén waves

One situation which affords a lot of simplifications when we specialize the linearized

MHD equations to a stratified stationary plasma permeated by a stationary magnetic field

(e. g. the atmosphere [Axe98]). This is the typical setting for the production of the Alfvén

waves. Mathematically, the adjective stratified translates to the assumption that all the

physical quantities only depend on x1. In this simplified 1d context the continuity equa-

tion (6.3a) reads

dρ1

dt
= − ∂

∂ x1

�
ρ0 v1

�
, (6.5)

the Euler equation (6.3b) can be rewritten componentwise as

ρ0

dv1

dt
= −∂ ℘1

∂ x1

− g ρ1 −
1

µ

∂

∂ x1

�
B0,2 B1,2 + B0,3 B1,3

�
,

ρ0

dv2

dt
=

1

µ

�
B1,1

∂ B0,2

∂ x1

+ B0,1

∂ B1,2

∂ x1

�
,

ρ0

dv3

dt
=

1

µ

�
B1,1

∂ B0,3

∂ x1

+ B0,1

∂ B1,3

∂ x1

�
,

(6.6a)

(6.6b)

(6.6c)
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6.3 The linear acoustic equation

and the induction equation takes the form

dB1,1

dt
= 0,

dB1,2

dt
=

∂

∂ x1

�
v2 B0,1 − v1 B0,2

�
,

dB1,3

dt
=

∂

∂ x1

�
v3 B0,1 − v1 B0,3

�
.

(6.7a)

(6.7b)

(6.7c)

Equation (6.7a) says that the component B1,1 is constant in time. In particular one can

assume that the “small” magnetic perturbation starts (and stays) parallel to the stratifi-

cation, namely B1,1 = 0. And this results in further simplifications the equations (6.6b)

and (6.6c). Under the further assumption B0,2 = 0, which forces the equilibrium magnetic

field to lies in the x1 x3-plane, one can see that (6.6b) and (6.7b) provides a system of

dynamical equation for the pair (v2, B1,2) that is decoupled from the other equations and

can be written in the following form

i
d

dt

�
v2

B1,2

�
=

� B0,1

ρ0 µ
0

0 1

��
0 i∂x1

i∂x1
0

��
B0,1 0

0 1

� �
v2

B1,2

�
.

The above differential equation for the “wavefunction” Ψ = (v2, B1,2) can be rewritten in

the Schrödinger-type formalism in such a way the time evolution for the Alfvén waves

assumes the form

i
d

dt
Ψ = MAlfΨ

with the Alfvén Hamiltonian MAlf =WL D WR.

6.3 The linear acoustic equation

The behavior of acoustic waves is modeled a set of equations

dρ1

dt
= −∇ ·
�
ρ0v
�
,

ρ0

dv

dt
= −∇℘1,

℘1 = γν
2
s ρ1

(6.8a)

(6.8b)

(6.8c)

which are very similar to MHD. In fact, we may obtain these equations by disregarding

the electromagnetic degrees of freedom and gravity in equations (6.3) and pick the (lin-

earized) isothermal condition in the adiabatic state equation (6.8c). The above system can

be rewritten in Schrödinger form as

i
d

dt

�
ρ1

v

�
=

�
1 0

0 ρ−1
0
1R3

��
0 −i∇T

−i∇ 0R3

��
γν2

s 0

0 ρ01R3

��
ρ1

v

�
,
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A Rigorous proof of the correspondence between real and complex fields

where Ψ = (ρ1,v) is the “wavefunction” that enters

i
d

dt
Ψ = MacΨ

and the acoustic operator Mac =WL D WR again has the characteristic product structure.

Mathematically, we can widen the scope a little and generalize the above operator D to

an arbitrary dimension d. The free acoustic operator

D :=

�
0 i∇T

i∇ 0Cd

�

turns out to be essentially selfadjoint if endowed with the domain D0 := H1(Rd ,Cd+1).

The 1d incarnation entered the “Hamilton operator” for van Alfvén waves and for d = 3 it

founds its way into the acoustic operator.

Evidently, D anticommutes with complex conjugation, C D C = −D, so it possess the

fundamental symmetry which characterizes “Hamilton operators” for classical waves. As

this is a differential operator, it is “diagonalized” with the help of the Fourier transform,

and we obtain a family of hermitian (d + 1)× (d + 1) matrices

D(k) = −
�

0 kT

k 0Cd

�
.

The spectrum of D(k) is in this case just the set of eigenvalues, namely 0 with multiplicity

d − 1 and ±|k| with multiplicity 1. The spectrum of D is the union of the eigenvalues of

the D(k),
σ(D) =
⋃

k∈Rd

σ
�
D(k)
�
= σac(D)∪σpp(D) = R∪ {0},

and we see that D comes with an infinite-dimensional kernel. For example, for j = 2, . . . , d
functions of the form Ψ = (0,∂x j

f , 0, . . . , 0,−∂x1
f , 0, . . .) are in the kernel, where −∂x1

f is

in the ( j + 1)th position. This is very reminiscent of the free Maxwell operator Rot whose

kernel consists of gradient fields.

A Rigorous proof of the correspondence between real and

complex fields

For notational clarity, let us restore the index ±, i. e. the auxiliary Maxwell operators

are denoted with Maux
± = W−1

± Rot where W+ = W = W− and give rise to the spectral

projections

P± = 1(0,∞)
�
±Maux
±
�
,

P±,0 = 1{0}
�
Maux
±
�
,

Q± = P± +
1
2 P±,0.
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These operators are naturally defined on the weighted L2
W±
(R3,C6). The two auxiliary

Maxwell operators are related by complex conjugation, C Maux
± C = −Maux

∓ , and thus, this

symmetry C relates the projections and the maps Q±,

C P± C = P∓,

C P0,± C = P0,∓,

C Q± C = Q∓.

The relevant Hilbert spaces of physical states are H± = ranQ±, which inherit their scalar

products 〈 · , · 〉W± from L2
W±
(R3,C6).

Before we prove the main result, Theorem 3.4, which guarantees the equivalence of

the two descriptions of Maxwell’s equations, we first establish that we can systematically

identify the real Hilbert space L2(R3,R6) with the real subspace

HR :=
¦�
Ψ+,Ψ+
�
∈H+ ⊕H−
�� Ψ+ ∈H+
©
⊆H+ ⊕H−

of the complex Hilbert space H+⊕H−. The latter can be seen as the “real part” of H+⊕H−
with respect to the abstract real part operator 2Re K = 1+K , namely HR = 2Re K

�
H+⊕H−
�
,

where

K = (σ1 ⊗1)C =
�

0 C
C 0

�

takes the place of complex conjugation. Alternatively, L2(R3,R6) can be included into H+,

thereby embedding a real Hilbert space into a complex Hilbert space.

Lemma A.1 Suppose we are in the setting of Proposition 3.3. Then the following statements
hold:

(1) The map Q± : L2(R3,R6) −→H± is injective.

(2) The map 2Re Q± : L2(R3,R6) −→ L2(R3,R6) is injective.

(3) The map Q+ ⊕Q− : L2(R3,R6) −→HR is injective.

(4) The map HR −→ L2(R3,R6), (Ψ+,Ψ−) 7→ Ψ+ +Ψ−, is injective.

Note that in case W+ 6= W− we do not know whether 2Re Q+Re = Re holds true. That is

because in the non-gyrotropic case W+ =W− we can write

1L2(R3,R6) =
�
1(−∞,0)

�
Maux
−
�
+ 1

2 1{0}
�
Maux
−
�
+ 1

2 1{0}
�
Maux
+

�
+ 1(0,∞)
�
Maux
+

�����
L2(R3,R6)

=
�
Q+ +Q−
���

L2(R3,R6)

as the sum of orthogonal projections of the same operator Maux
+
= Maux

− that acts on a single
Hilbert space L2

W+
(R3,C6) = L2

W−
(R3,C6).

49



A Rigorous proof of the correspondence between real and complex fields

Proof (1) First of all, the fact that the material weights c1≤W ≤ C 1 are bounded away

from 0 and∞, implies that the ordinary L2(R3,C6) conincides with L2
W±
(R3,C6) as

Banach spaces. Therefore, (un)bounded operators on L2
W±
(R3,C6) can also be con-

sidered as (un)bounded operators on L2(R3,C6) — and vice versa. The Maux
± are

selfadjoint on the appropriately weighted Hilbert spaces L2
W±
(R3,C6).

For proving injectivity, namely that Q±(E,H) = 0 implies (E,H) = 0, we exploit that

any (E,H) ∈ L2(R3,R6) can be seen as an element of L2
W±
(R3,C6), and therefore we

can use two resolutions of the identity,

(E,H) = P±(E,H) + P±,0(E,H) + 1(−∞,0)

�
±Maux
±
�
(E,H).

Suppose now that Q±(E,H) = 0 holds. Then the mutual orthogonality of the three

contributions as well as Q± = P± +
1
2

P±,0 implies only the last term survives,

(E,H) = 1(−∞,0)

�
±Maux
±
�
(E,H),

and consequently, (E,H) ∈ ran 1(−∞,0)

�
+Maux

+

�
∩ 1(−∞,0)

�
−Maux
−
�

holds. However,

the same arguments in the proof of [DL15, Lemma 2.5] that allow us to conclude

ran P+ ∩ ran P− = {0} also ensure that the intersection

ran 1(−∞,0)

�
+Maux

+

�
∩ 1(−∞,0)

�
−Maux
−
�
= {0}

is zero. Hence, the vector (E,H) = 0 is zero and we have shown injectivity of Q± :

L2(R3,R6) −→H±.

(2) In the proof of [DL15, Lemma 2.5] we have shown that 2Re is injective on ran P± by

arguing that the intersection ran P+ ∩ ran P− = {0} is trivial.

Therefore, it remains to show that 2Re is injective on the set P±,0 Re
�
L2(R3,C6)
�
=

P±,0

�
L2(R3,R6)
�
. Suppose this is false and there exists a non-zero real vector field

(E,H) so that P±,0(E,H) 6= 0 while 2Re P±,0(E,H) = 0.

In that case P±,0(E,H) is purely imaginary,

Ψ±,0 = i ImΨ±,0 =
1
2

�
P+,0 − P−,0

�
(E,H),

and we deduce P+,0(E,H) = −P−,0(E,H). Now the fact that both projections have

the same range, G = ran P±,0, applying P−,0 to left- and right-hand side yields the

eigenvalue equation

P−,0

�
P+,0(E,H)
�
= −P2

0,−(E,H) = −P0,−(E,H)

of P0,− to−1. However, orthogonal projections can only have 0 and+1 as eigenvalues,

so P+,0(E,H) = 0. The reality of (E,H) = C(E,H) and C P±,0 C = P∓,0 also lead us to

conclude P−,0(E,H) = C P+,0(E,H) = 0. Thus, 2Re : H± −→ L2(R3,R6) is injective.
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(3) This follows from (1) and the observation that the real-valuedness of (E,H) implies

Ψ− =Q−(E,H) = C Q+(E,H) = CΨ+.

(4) The injectivity follows from 2ReΨ+ = Ψ+ +Ψ− as well as (2). �

We will need one more essential ingredient for the proof of Theorem 3.4, namely that the

spectral decomposition according to the selfadjoint operator M for time-dependent fields

and currents coincides with that obtained by the Fourier transform in time.

Lemma A.2 Suppose we are in the setting of Theorem 3.4. Then we have:

(1) W−1 J+(t) defined as in (2.8) via the Fourier transform coincides with

J(t) = Q W−1 J(t) =W−1 J+(t).

(2) The same two statements hold for the solution Ψ+(t) to Maxwell’s equations (2.24) and
the solution Ψ(t) to the Schrödinger-type equation (3.18).

Proof (1) First of all, the Fourier transform of J(t) is well-defined: because we may view

L2(R3,R6) a subset of L2
W (R

3,C6), and the operators Q and W−1 are bounded (the

latter by Assumption 3.1), the current density J(t) =Q W−1 J(t) inherits the Bochner-

integrability of J ∈ L1
�
L2(R3,C6)
�

in t.

Moreover, because W−1 J(t) ∈ L2
W (R

3,C6) can be uniquely represented by the complex

wave J(t) = Q W−1 J(t) ∈ H ⊂ L2
W (R

3,C6), we can insert the spectral resolution of

the selfadjoint operator M to verify that

J(t) =

∫ ∞

0

d1ω(M)W
−1 J(t)

is indeed only supported on the spectrum of M which, by definition, is contained in

the subset [0,∞).
Given that W−1 is time-independent, the Fourier componentsF−1

�
W−1 J
�
=W−1 F−1J

are just W−1 times the Fourier components of J; a similar equality holds for J+. More-

over, because the resolution of the identity associated to H exactly coincides with

the the fibration H =
∫∞

0
dωH(ω) (Lemma 3.5), Assumption 2.3 (bJ(ω) ∈W H(ω))

translates to

bJ(ω′) =W d1ω′(M)W
−1 J(t) = bJ+(ω′)

for ω ≥ 0 and a similar expression involving the complex conjugated weights W for

ω < 0. However, the ω < 0 does not matter as the spectral projections only filter out
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A Rigorous proof of the correspondence between real and complex fields

the ω≥ 0 contributions, and we may replace bJ(ω) by bJ+(ω) = 1[0,∞)(ω) bJ(ω) in the

expression below,

J(t) =
1p
2π

∫

R

dω′
∫ ∞

0

e−itω′ d1ω(M)W
−1bJ(ω′)

=
1p
2π

∫

R

dω′
∫ ∞

0

e−itω′ d1ω(M) d1ω′(M)W
−1 J(t)

=
1

2π

∫ ∞

0

e−itω d1ω(M)W
−1 J+(t)

=W−1 J+(t).

That proves the claim.

(2) This follows exactly as above from the spectral decomposition. �

Now let us proceed to the proof of the main result of this paper.

Proof (Theorem 3.4) (1) Suppose Ψ(t) solves the Schrödinger-type equation (3.18) and

we now verify that it satisfies Maxwell’s equations (2.24). Note that by Lemma 3.5

both equations are defined on the same Hilbert space. Our assumptions on the mate-

rial weights guarantee that W and its inverse W−1 are bounded operators. Then not

only are the currents related by multiplication with W±1 (Lemma A.2 (1)), but also

the dynamical equations (2.24a) and (3.18) are.

The solution of the Schrödinger equation also satisfies the constraint equation (2.24b):

we split the solution into transversal and longitudinal parts according the Helmholtz

decomposition introduced in Section 3.2.1 and verify that this constraint propagates

in time, i. e. since it is initially satisfied at t0, then it will also remain satisfied for

t > t0.

The constitutive relations (2.24c) are not involved in the Schrödinger formalism.

Lastly, by assumption ρρρ(t) and J(t) satisfy the charge conservation law (2.24d). Writ-

ing charge conservation in the frequency domain and using J+(t) =W J(t) (again by

Lemma A.2 (1)), we conclude that also the current density satisfies charge conserva-

tion.

Conversely, assume Ψ+(t) solves Maxwell’s equations (2.24). By the same argument

as before, the two dynamical equations are equivalent and Ψ+(t) is also a solution to

the Schrödinger-type equation (3.18).

(2) This is a consequence of the injectivity of Q : L2(R3,R6) −→ H (Lemma A.1), which

means that if we restrict the target space of the map Q to its range, it is invertible.

Therefore, it makes sense to write
�
E(t), H(t)
�
=Q−1

Ψ(t) ∈ L2(R3,R6). �
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B Generalized Maxwell-type operators

We briefly collect a few facts about generalized Maxwell-type operators. First of all, they

are closed operators.

Lemma B.1 Let M = WL D WR be a generalized Maxwell-type operator in the sense of Defi-
nition 6.1 with domain DR. Then M is a closed operator.

Proof The operator M is initially well defined on DR and this implies that DR ⊆ D(M)

is contained in the closure of D(M) := DR
|||·|||

with respect to the graph norm |||ϕ|||2 :=

‖ϕ‖2
H
+ ‖Mϕ‖2

H
of M .

Therefore DR = D(M) follows if we show the opposite inclusion DR ⊇ D(M). By as-

sumption the domain D0 is closed with respect to the topology induced by the graph norm

|||ϕ|||2
0

:= ‖ϕ‖2
H
+ ‖Dϕ‖2

H
. Let ψn := W−1

R ϕn be a sequence in DR (with ϕn the related

sequence in D0) which converges to a vector ψ ∈ D(M) with respect to the graph norm

||| · |||. The estimate

������ϕn −WRψ
������2

0
=
������WR(ψn −ψ)
������2

0
≤max
¦

W−1

L



2
B(H)

,


WR



2
B(H)

©
|||ψn −ψ|||2

tells us that WRψ ∈D0 holds, and consequently, WR

�
D(M)
�
⊆D0. Put differently, D(M) ⊆

DR is shown. �

The closedness of M enters the proof of selfadjointness.

Proof (Proposition 6.2) For each pair of vectors ψ,ϕ ∈DR the following computation


ψ, Mϕ
�

W
=


ψ,WR D WRϕ
�
=


WR D WRψ,ϕ
�

=


W−1

L WL D WRψ,WRϕ
�
=


Mψ,ϕ
�

W

shows that M is a symmetric operator on HW . Since HW agrees with H as Banach spaces,

Lemma B.1 tells us that M is also closed if seen as an operator on HW .

To show selfadjointness, we need to consider now the 〈 · , · 〉W -adjoint of M which we

will denote with M∗W in order to distinguish it from the 〈 · , · 〉-adjoint M∗. Let φ,η ∈HW

be a pair of vectors such that φ ∈ D
�
M∗W
�

and M∗Wφ = η. This conditions implies that

φ, Mψ
�

W
= 〈η,ψ〉W for allψ ∈DR and this equality can be rewritten as



WRφ, D WRψ
�
=


W−1
L η,WRψ
�
. Since D is selfadjoint (by assumption) and WRψ ∈ D0 for all ψ ∈ DR (by

definition) the last equality implies that WRφ ∈ D0 and D∗WRφ = D WRφ =W−1
L η. Hence,

φ ∈ W−1
R [D0] = DR holds and consequently, the domain of the adjoint M∗W agrees with

the domain DR of M . The last fact along with the symmetry of M assures that M is a

selfadjoint operator on the weighted Hilbert space HW . �

Lastly, the idea to be able to uniquely write real fields as complex waves composed solely

of non-negative frequencies generalizes to Maxwell-type operators.
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Lemma B.2 For Maxwell-type operators (cf. Definition 6.1) the analogs to Proposition 3.3
and Lemma A.1 holds true.

Proof In principle, we can adapt the strategy of the proof of Lemma A.1, with the added

simplification that we need not distinguish between Maux
± . Instead M = Maux

± , the kernel is

by definition G := ker M =W−1
R [ker D] and the positive frequency fields are again defined

through J+ := ran 1(0,∞)(M). The tricky bit [DL15, Lemma 2.5] simplifies tremendously,

because we can deduce

1(0,∞)(M)1(−∞,0)(M) = 0= 1(−∞,0)(M)1(0,∞)(M)

directly from functional calculus instead of having to use an indirect argument. �

Remark B.3 Note that the last step simplifies because we are restricting ourselves to what

would be called the non-gyrotropic case in electromagnetism. This is an inessential restric-

tion, which can be lifted by following the line of argumentation in the proof of Lemma A.1.
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One-Way Edge Modes in a Gyromagnetic Photonic Crystal. Phys. Rev. Lett. 100,

013905, 2008.

[Wan+09] Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić. Observation of
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