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In a seminal paper Haldane conjectured that topological phenomena are

not particular to quantum systems, and indeed experiments realized unidirec-

tional, backscattering-free edge modes with electromagnetic waves. This raises

two immediate questions: (1) Are there other topological effects in electro-

magnetic media? And (2) is Haldane’s “Quantum Hall Effect for light” really

analogous to the Quantum Hall Effect?

We conclusively answer both of these questions by classifying topological pho-

tonic crystals according to material (as opposed to crystallographic) symme-

tries. It turns out there are four topologically distinct types of media, of which

only one, gyrotropic media, is topologically non-trivial in d = 2,3. That means

there are no as-of-yet undiscovered topological effects; in particular, there is no

analog of the Quantum Spin Hall Effect in classical electromagnetism. More-

over, at least qualitatively, Haldane’s Quantum Hall Effect for light is analogous

to the Quantum Hall Effect from condensed matter physics as both systems as

in the same topological class, class A. Our ideas are directly applicable to other

classical waves.
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1 Introduction

Raghu and Haldane proposed in a seminal work [RH08] that topological effects are bona

fide wave rather than quantum phenomena. In analogy to the Quantum Hall Effect, they

predicted unidirectional, backscattering-free edge modes in periodic gyrotropic light con-

ductors, also known as gyrotropic photonic crystals, and attributed their existence to the

“non-trivial topology of the system”. More specifically, they made the following

Conjecture 1.1 (Raghu and Haldane’s Photonic Bulk-Edge Correspondence [RH08])

In a two-dimensional photonic crystals with boundary the difference of the number of left-

and right-moving boundary modes in bulk band gaps is a topologically protected quantity

and equals the Chern number associated to the frequency bands below the bulk band gap.

Raghu and Haldane base their arguments on the analogy to the corresponding quantum

systems: they proposed (as opposed to derived) ray optics equations, which contain ge-

ometric Berry curvature terms to subleading order. And since the Chern number can be
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computed as the Brillouin zone average of the Berry curvature, the analogy to the Bloch

electron is then invoked in an ad hoc fashion without making any reference to the underly-

ing dynamical equations. Their prediction has been confirmed in a number of spectacular

experiments in electromagnetic, acoustic and phononic waves [Wan+09; Rec+13; Lu+15;

Xia+15; SH15]. Up until now a first-principles understanding starting from Maxwell’s

equations is an open problem. These and other, more recent works have naturally raised

two questions:

(1) How similar is the Quantum Hall Effect for light to the one from solid state physics?

(2) Are there other, as-of-yet unknown topological effects in electromagnetic media?

To answer these questions and get a more complete picture, we will rigorously establish

what “topological” means in the context of classical electromagnetism. This keyword is

inserted into the discussion of a lot of physical effects — even if it is not always clear what

that actually means. For example, three different groups [Kha+13; BSN15; WH15] have

claimed to have found a photonic analog of the Quantum Spin Hall Effect, implying that

the spin-momentum locking they find is of topological origin. Our first principles approach

will clear up this confusion, and we will analyze these three works in the conclusion (Sec-

tion 5.2.2).

The crucial ingredient in the analysis of topological effects is symmetries, and when de-

signing topological electromagnetic media, there are two axes to explore: One can choose

the materials from which to build the photonic crystal (material symmetries) and then

decide how to periodically arrange these materials (crystallographic symmetries). In this

work we will focus on material symmetries. For those we answer both of these questions

conclusively by first reformulating Maxwell’s equations in Schrödinger form [DL17b], and

then adapting the Cartan-Altland-Zirnbauer classification scheme for topological insula-

tors. The latter is the content of the present paper and the fifth in a sequence of earlier

works [DL14c; DL14a; DL14b; DL17a] that tries to systematically understand how topo-

logical effects emerge from electrodynamics.

Initially, the term topological insulator was born of the topological interpretation of the

Quantum Hall Effect [Tho+82]. This seminal work by Thouless, Kohmoto, Nightingale

and den Nijs linked a measurable quantity, the transverse conductivity, to a topological in-

variant of the so-called Bloch vector bundle, the Chern number. Put succinctly, they have

established a connection between the topology of a mathematical object, in this case a

vector bundle, and a concrete physical quantity, the transverse conductivity. Topological

insulators come in more than one flavor, and their systematic classification and characteri-

zation (see e. g. [HK10; Chi+16; PS16] for three recent reviews) is the main aim of several

vibrant communities within theoretical and mathematical physics; the most common clas-

sification tool is the so-called Cartan-Altland-Zirnbauer (CAZ) scheme [AZ97; Sch+08;

Chi+16]. So not only can breaking symmetries can lead to topological effects, also their
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1 Introduction

presence might [KM05; PS16; DG14a; DG15]. The idea to realize an analog of the Quan-

tum Hall Effect with electromagnetic waves in photonic crystals relies on the breaking of

an even time-reversal symmetry.

Just like with (quantum) topological insulators the existence of “conducting” electro-

magnetic boundary states in a region where the bulk is “insulating” is expected to be ex-

plainable via bulk-boundary correspondences; in the context of classical waves conducting

means the presence of states while insulating refers to their absence. This idea goes back

to Hatsugai’s works on topological condensed matter systems [Hat93b; Hat93a] and states

that certain aspects of the system at the boundary are completely determined by its proper-

ties in the interior. Bulk-boundary, sometimes also known as bulk-edge correspondences,

usually consist of three equalities:

Obulk/edge(t) ≈ Tbulk/edge

Tbulk = Tedge

(1.1a)

(1.1b)

The first two identify physical observables Obulk/egde in the bulk and at the boundary that

are approximately given in terms of topological quantities Tbulk/edge, and the third states

that the two topological quantities necessarily agree with one another. The number and

nature of topological invariants depends on the presence or absence of certain discrete

symmetries. For the Quantum Hall Effect an even time-reversal symmetry is broken by

the magnetic field, and [Tho+82] proved equation (1.1a) in the bulk while Hatsugai con-

tributed the other two. Note that in the more mathematically minded subcommunity,

usually (1.1b) by itself is referred to as bulk-edge correspondence, but we insist that it is

(1.1a) which imbues Tbulk = Tedge with physical meaning.

Therefore, justifying the Quantum Hall Effect for Light from first principles rests on prov-

ing photonic bulk-boundary correspondences, and with this paper we aim to work towards

this goal. A necessary prerequisite is to first classify linear, lossless and dispersionless me-

dia for electromagnetic waves according to certain discrete symmetries in the spirit of the

CAZ scheme, as the symmetries which are present determine the number and nature of

topological invariants which are supported in photonic crystals.

This paper provides an exhaustive classification of electromagnetic lossless, positive in-

dex media according to their material symmetries. Here, we will only consider symmetries

which relate electric and magnetic components (as opposed to crystallographic symme-

tries), i. e. those of the form

Un = σn ⊗1, n= 1,2,3,

Tn =
�
σn ⊗1
�

C , n= 0,1,2,3,

(1.2a)

(1.2b)

where C is complex conjugation, σ0 = 1 is the identity and the σn for n = 1,2,3 are the

Pauli matrices, seen as acting on the electromagnetic splitting. For instance, T3 : (E,H) 7→
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�
E,−H
�

complex conjugates the fields and garnishes H with a minus sign. Note that since we

can always rescale the fields by constants such as ǫ0 and µ0, conditions such as ǫ(x) = µ(x)

are equivalent to ǫ(x) = const. µ(x). To simplify presentation, we shall always assume

from hereon that the fields have been suitably rescaled so that the symmetries are of the

form (1.2).

It turns out that of those 7 symmetries only three are admissible (cf. Section 3.1 for a

detailed explanation).

Proposition 1.2 (Admissible material symmetries) Suppose the medium satisfies Assump-

tion 2.1 is lossless and is a positive index material. Then of all symmetries of the form (1.2)

only the even time-reversal symmetries T1 and T3 as well as the dual symmetry U2 are ad-

missible.

The presence or absence of these symmetries translate to conditions on the electric per-

mittivity ǫ, the magnetic permeability µ and the bianistropic tensor χ which enter the

constitutive relations

�
D(x)

B(x)

�
=W (x)

�
E(x)

H(x)

�
=

�
ǫ(x) χ(x)

χ(x)∗ µ(x)

��
E(x)

H(x)

�
(1.3)

that relate the auxiliary fields (D,B) to the electromagnetic field (E,H); these enter as 3×3

blocks into the 6 × 6 matrix-valued function W (x) which we will collectively refer to as

the material weights. W phenomenologically describes how the microscopic charges in the

medium react to impinging electromagnetic waves.

Just like in quantum mechanics, for the purpose of a topological classification, only the

anti-linear symmetries T1 and T3 are relevant and we suppose that all other symmetries

have been reduced out:

Assumption 1.3 (No additional symmetries) (a) Assume W commutes with at most one

of the T j , j = 1,3 and that there are no unitaries U which commute with the material

weights W and the free Maxwell operator

Rot =

�
0 +i∇×
−i∇× 0

�
.

(b) Assume W commutes with T1 and T3. Then we suppose that apart from a phase times

U2 = σ2⊗1 there are no other unitaries U which commute with the material weights W

and the free Maxwell operator Rot .

If there were an additional unitary, discrete, commuting symmetry U present, then we

first need to make a block decomposition of the Maxwell operator M+ =W−1 Rot
��
ω≥0

, the

analog of the quantum Hamiltonian defined by equation (2.6) below, with respect to the
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1 Introduction

eigenspaces of U and analyze each of the block operators separately. Depending on the

interplay of all of M+’s symmetries, the individual block operators may or may not inherit

symmetries from M+; we will give a detailed analysis of both of these cases in Section 5.2.2.

Therefore, we identify four distinct types of media which correspond to the presence of

no time-reversal symmetries (1), one even time-reversal symmetry (2) and two even time-

reversal symmetries (1).

Theorem 1.4 (Symmetry classification of media) Suppose the material weights

W (x) =

�
ǫ(x) χ(x)

χ(x)∗ µ(x)

�
=

�
w0(x) +w3(x) w1(x)− iw2(x)

w1(x) + iw2(x) w0(x)−w3(x)

�
,

expressed in terms of four hermitian 3×3 matrices w j(x) = w j(x)
∗, j = 0,1,2,3, are lossless

and have strictly positive eigenvalues that are bounded away from 0 and∞, i. e. they satisfy

Assumption 2.1. Moreover, we assume there are no additional unitary commuting symmetries

(Assumption 1.3). Then there are four topologically distinct materials:

Material Realizations Conditions on W Symmetries
CAZ

Class

Dual symmetric

materials & vacuum

Yes

[FZM12;

Fer+13]

w0 = Re w0,

w3 = 0, w1 = 0,

w2 = Re w2

T1, T3, U2

not

applicable

Non-dual

symmetric

& non-gyrotropic

Yes

[BB04;

OMN04;

OO09]

w0 = Re w0,

w3 = Re w3,

w1 = i Im w1,

w2 = Re w2

T3 AI

Magneto-electric

Yes

[Tel48;

Lin+08]

w0 = Re w0,

w3 = i Im w3,

w1 = Re w1,

w2 = Re w2

T1 AI

Gyrotropic

Yes

[Wan+08;

He+14]

None None A

The conditions on the material weights in each row are exclusive, meaning that e. g. non-

gyrotropic materials must violate at least one of the conditions that single out magneto-electric

materials.

Three of these four cases fall within the standard CAZ classification scheme and there-

fore closely resemble the corresponding quantum systems. Although, as we discuss below,

6



drawing conclusions from that is not as easy as it might appear at first. Dual symmet-

ric, non-gyrotropic media, the first case, falls outside of standard theory as it has two

anti-commuting even time-reversal symmetries, and we will perform an analysis of the

topological phases this topological class supports in Section 4.2.4.

At the end of the day, it turns out that of all periodic media in dimensions 1, 2 and

3, only gyrotropic media in dimensions 2 and 3 can be topologically non-trivial; the phases

are labelled by one and three first Chern numbers, respectively. For periodic 3d photonic

crystals with periodic time-dependence (d = 4), second Chern classes will also play a

role when distinguishing topologically distinct phases. More specifically, our classification

result reads:

Theorem 1.5 (Topological bulk classification of periodic media) Suppose the material

weights are periodic and satisfy Assumption 2.1.

(1) Class A: Gyrotropic media

Phases are labelled by Z-valued Chern numbers, in

d = 1 by none (topologically trivial),

d = 2 by a single first Chern number (Z),

d = 3 by three first Chern numbers (Z3),

d = 4 by six first and one second Chern number (Z6 ⊕Z).

(2) Class AI: Non-dual symmetric, non-gyrotropic and magneto-electric media

In d = 1,2,3 these media are topologically trivial, i. e. there is a single phase.

In d = 4, phases are labelled by a single second Chern number (Z).

(3) Dual-symmetric, non-gyrotropic media

In d = 1,2,3 these media are topologically trivial, i. e. there is a single phase.

In d = 4, phases are labelled by two second Chern numbers (Z2).

Outline This work is separated into 5 Sections: following this introduction, we give an

overview of the Schrödinger formalism for classical electromagnetism in media in Sec-

tion 2, summarizing the results of [DL17b] to make this work more self-contained. After a

discussion of the relevant material symmetries (Section 3), we give a bulk classification of

electromagnetic media (Section 4). That includes a precise definition of what we mean by

topology and how topological invariants are connected to relevant families of frequency

bands. We close this work by contrasting and comparing it to the literature and outlining

future developments (Section 5).
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2 The Schrödinger formalism for electromagnetism in linear, dispersionless media

2 The Schrödinger formalism for electromagnetism in linear,

dispersionless media

The first step prior to adapting a quantum mechanical concept such as the symmetry classi-

fication is to write Maxwell’s equations in Schrödinger form; this is a little more involved,

and we have dedicated a separate paper [DL17b] to address all the intricacies that oc-

cur. These intricacies arise because we want to include gyrotropic lossless media in our

discussion where the material weights

W (x) =

�
ǫ(x) χ(x)

χ(x)∗ µ(x)

�
(2.1)

are complex, W 6= W . Here, W is a 6 × 6 matrix-valued function and is usually split

into 3× 3 blocks, the electric permittivity ǫ = ǫ∗, the magnetic permeability µ = µ∗ and

the bianisotropic tensor χ . It phenomenologically describes how the microscopic charges

inside the material react to impinging electromagnetic fields. To be able to write Maxwell’s

equations (2.3) we need to impose two conditions on the medium:

Assumption 2.1 (Material weights) (a) The medium is lossless, i. e. W (x) =W (x)∗ takes

values in the hermitian matrices.

(b) The medium is not a negative index material, i. e. the eigenvalues

0< c ≤ w1(x), . . . , w6(x) ≤ C <∞

of the hermitian matrix W (x) are all positive and bounded away from 0 and∞ uniformly

in x.

2.1 Maxwell’s equations in linear, dispersionless media

In case the material weights W 6=W are complex, it is necessary split the physical field

�
E(t) , H(t)
�
= Ψ+(t) +Ψ−(t)

into a complex wave

Ψ+(t) =
�
ψE
+
(t) , ψH

+
(t)
�
=

1p
2π

∫ ∞

0

dωe−itω
�bE(ω) , bH(ω)
�
, (2.2)

consisting only of positive frequencies and the analogously defined negative frequency con-

tribution Ψ−, defined in terms of the Fourier transformed fields
�bE(ω) , bH(ω)
�
. We will
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2.2 Rewriting Maxwell’s equations in Schrödinger form

similarly have to split charge density ρρρ(t) =
�
ρD(t) , 0
�
= ρ+(t) + ρ−(t) and current

density J(t) =
�
JD(t) , 0
�
= J+(t) + J−(t) into positive and negative frequency parts.

Ψ+ and Ψ− evolve according to different Maxwell equations, namely

ω≥ 0






�
ǫ χ

χ∗ µ

�
∂

∂ t

�
ψE
+
(t)

ψH
+
(t)

�
=

�
+∇×ψH

+
(t)

−∇×ψE
+
(t)

�
−
�

J D
+
(t)

0

�
,

�
∇ ·
�
ǫψE

+
(t) +χ ψH

+
(t)
�

∇ ·
�
χ∗ψE

+
(t) +µψH

+
(t)
�
�
=

�
ρD
+
(t)

0

�
,

∇ · J D
+
(t) + ∂tρ

D
+
(t) = 0,

(2.3a)

(2.3b)

(2.3c)

for non-negative frequencies and an analogous set of equations involving the complex

conjugate weights W when ω ≤ 0. For otherwise
�
E(t) , H(t)
�

would acquire a non-

vanishing imaginary part over time.

To readers who would like to know why these equations, consisting of the dynamical

equation (2.3a), the constraint equation (2.3b) and local charge conservation (2.3c), are

physically sensible, we refer to [DL17b, Section 2] where we have derived them from

Maxwell’s equations for linear, dispersive media. The main point is that the real-valuedness

of the electromagnetic field as well as current and charge densities translates to

�bE(ω) , bH(ω)
�
=
�bE(−ω) , bH(−ω)

�

after Fourier transform and gives rise to phase locking condition

Ψ− = Ψ+ (2.4)

for complex waves. Put another way, positive and negative frequency contributions of the

wave are not independent degrees of freedom, if we know one, we can reconstruct the other.

Hence, it suffices to consider (2.3) forω ≥ 0 only. Implicitly, we have exploited that we can

uniquely represent real fields with finite field energy as complex waves composed solely of

non-negative frequencies (see [DL17b, Proposition 3.3]); this systematic link to a complex

Hilbert space is essential if one wants to apply methods from quantum mechanics.

2.2 Rewriting Maxwell’s equations in Schrödinger form

If we multiply both sides of (2.3a) by iW−1 (which is bounded thanks to our assumptions

on W), we obtain the Schrödinger form of the dynamical law,

i∂tΨ+(t) = M+Ψ+(t)− iW−1 J+(t), Ψ+(0) =Q+ (E0,H0). (2.5)

Here, the complex positive frequency wave Ψ+ represents the real electromagnetic field

and plays the role of the wave function; the map Q+ which connects Ψ+ to the real fields
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2 The Schrödinger formalism for electromagnetism in linear, dispersionless media

(E0,H0) will be introduced below. The role of the Hamiltonian is played by the positive

frequency Maxwell operator

M+ =W−1 Rot
��
ω≥0

(2.6)

which is defined in terms of the free Maxwell operator

Rot =

�
0 +i∇×
−i∇× 0

�
.

∇×E=∇× E denotes the usual curl.

Of course, we still need to specify the Hilbert space this operator acts on, and prove that

M+ is selfadjoint (or in physics parlance, hermitian). To do that, let us drop the frequency

restrictions and define the auxiliary positive frequency Maxwell operator

Maux
+
=W−1 Rot .

Because Maux
+

defines a selfadjoint (aka hermitian) operator on the Hilbert space

L2
W
(R3, C6) =
¦
Ψ : Rd −→ Cn
��
∫

Rd

dx Ψ(x) ·W (x)Ψ(x) <∞
©

endowed with the energy scalar product

〈Φ,Ψ〉W =


Φ,W Ψ
�
=

∫

R3

dx Φ(x) ·W (x)Ψ(x), (2.7)

we can give meaning to the map

Q+ = 1(0,∞)(M
aux
+
) + 1

2
1{0}(M

aux
+
)

with which we can uniquely represent real fields as complex waves composed solely of non-

negative frequencies. The factor 1/2 is necessary so that gradient fields (which are static,

i. e. eigenfunctions to frequency 0) are not counted twice (see [DL17b, Section 3.2.2] for

further explanations).

Now M+ = Maux
+

��
ω≥0

is the restriction of the auxiliary Maxwell operator to the non-

negative frequency states, and M+ acts on the Hilbert space

H+ =Q+
�
L2

W
(R3,C6)
�

of non-negative frequency states that inherits the energy scalar product; we need to in-

clude ω = 0 waves, i. e. gradient fields, so that we are able to cope with sources. What is

more, there is a one-to-one correspondence between real electromagnetic fields (E,H) ∈

10



2.3 Symmetry between positive and negative frequency equations

L2(R3,R6)with finite field energy and complex fields of non-negative frequencies (cf. [DL17b,

Proposition 3.3]),

(E,H) ∈ L2(R3,R6) ←→ Ψ+ =Q+ (E,H) ∈H+.

This systematic identification of real and complex fields allows us to employ technqiues

from the theory of selfadjoint operators, and that necessarily forces us to work with complex

vector spaces.

M+ inherits the selfadjointness of Maux
+

, and therefore the evolution group e−it M+ is uni-

tary with respect to 〈 · , · 〉W . The unitarity implies the conservation of field energy in the

absence of currents,

E
�
E(t),H(t)
�
=


e−it M+Ψ+(0) , e−it M+Ψ+(0)

�
W
=


Ψ+(0) , Ψ+(0)
�

W
= E
�
E(0),H(0)
�
,

thereby justifying the term energy scalar product in the process.

Lastly, there is the matter of the constraint equation (2.3b). Provided local charge

conservation (2.3c) holds, the solution to (2.5) automatically satisfies (2.3b). The key

idea here is to decompose Ψ+ into transversal and longitudinal components, and then use

(2.3c).

2.3 Symmetry between positive and negative frequency equations

For the symmetry arguments we also need to define the negative frequency counterparts,

the Maxwell operator

M− = Maux
−
��
ω≤0
=W

−1
Rot
��
ω≤0

,

the projection onto non-positive states, Q− = 1(−∞,0)(M
aux
− )+

1
2

1{0}(M
aux
− ) and the Hilbert

space H− are defined with the complex conjugated weights W . Complex conjugation

(CΨ)(x) = Ψ(x) defines an antiunitary between H± and H∓ that relates positive and

negative frequency operators with one another,

M− = −C M+ C ,

Q− = C Q+ C .

However, complex conjugation can never be a physically meaningful symmetry of the Maxwell

operator, because the real-valuedness of the physical fields is an unbreakable tenet of clas-

sical electromagnetism and the resulting phase locking condition (2.4) implies that positive

and negative frequency fields are not independent degrees of freedom.

2.4 Maxwell’s equations in other dimensions

Maxwell’s equations are naturally defined in three spatial dimensions, but electromagnetic

waves can be confined to lower-dimensional media. One common way to obtain those
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2 The Schrödinger formalism for electromagnetism in linear, dispersionless media

lower-dimensional media is to consider wave guides where in one or two directions the

medium is terminated by a metal. Conversely, there are cases when the effective dimension

of the system may exceed 3.

We emphasize that all the symmetries that we will consider in the next section do not

depend on x , derivatives∇ or time t, and only impose conditions such as ǫ = Re ǫ or ǫ = µ.

These symmetries then define (anti)unitaries on the relevant Hilbert space on which the

(auxiliary) Maxwell operator is defined. Again, we postpone the technical details to a

future work.

2.4.1 Lower-dimensional electromagnetic media

The two-dimensional gyrotropic photonic crystal realized in [Wan+08] which exhibited

topologically protected edge modes is an example of a lower-dimensional electromagnetic

medium. Here, YIG rods (immersed in a constant magnetic field to tune the material

weights) were arranged in a quadratic lattice and sandwiched between two metal plates,

thereby forming a waveguide for microwaves with periodic interior. The height h≈ 7mm

of the wave guide (which we take to point in the z-direction) was comparable to the lattice

length l ≈ 40mm. Usually, the metal walls are approximated by an idealized perfect

electric conductor (PEC) where appropriate boundary conditions

Ex (x , 0) = 0= Ex (x ,h),

Hz(x , 0) = 0= Hz(x ,h),

(2.8a)

(2.8b)

are imposed on the electromagnetic field. As the notation suggests, Ex = (Ex1
, Ex2
) is

the in-plane component of the electric field E = (Ex , Ez) and Hz the z-component of the

magnetic field H = (Hx , Hz). We will forgo a precise mathematical definition (which is

straight-forward, but technical), and only sketch the strategy of defining first the auxiliary,

then the physical Maxwell operator. The weights W (x , z) evidently only need to be periodic

in the x-direction with respect to a two-dimensional periodicity lattice. Straight-forward

arguments show that Maux
+
= W−1 Rot , endowed with the proper domain, is a selfadjoint

(hermitian) operator, and we may impose the condition ω ≥ 0 just like before via the

projection

Q+ = 1(0,∞)(M
aux
+
) + 1

2 1{0}(M
aux
+
)

onto the physical states with frequencies ω≥ 0. This gives rise to M+ = Maux
+
|ω≥0 and the

Hilbert space

H+ = ranQ+ ⊂ L2
�
R

2 × [0,h],C6
�
.
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2.4 Maxwell’s equations in other dimensions

The situation further simplifies if we assume that

W (x , z) =





ǫx (x) 0 0 0

0 ǫz(x) 0 0

0 0 µx (x) 0

0 0 0 µz(x)





is independent of z and ǫ and µ split cleanly into x and z components. Then we can express

every electromagnetic wave as a linear combination of plane waves
�
E(x , kz),H(x , kz)

�
e+ikz z

in kz , where of course, kz may only take discrete values. Put another way, the discrete

Fourier transform Fz in the z-direction decomposes the auxiliary Maxwell operator

Fz M+F
−1
z
=
⊕

kz∈ 2π
h Z

M+(kz)

into a direct sum of operators M+(kz), each associated to a fixed momentum kz that governs

the dynamics of
�
E(x , kz),H(x , kz)

�
. In the aforementioned experiment [Wan+08] only the

kz = 0 mode contributed, and it suffices to consider

M+(0) = W (x)

�
0 +i(∇x , 0)×

−i(∇x , 0)× 0

�����
ω≥0

acting the positive frequency subspace of L2
W
(R2,C6); this operator has a more compact

expression as a 3 × 3-matrix-valued operator (see e. g. [DL14b, Section 2.4]). We can

adapt all of our arguments without any essential changes, e. g. employ the Bloch-Floquet

transform in x = (x1, x2) in order to obtain frequency bands and Bloch functions that now

depend on kx = (kx1
, kx2
) (cf. Section 4.1).

The construction of the Maxwell operator for quasi-one-dimensional waveguides is anal-

ogous. Evidently, the more complicated the waveguide geometry is, the less explicit ex-

pressions we get.

2.4.2 Time-dependent media and media with synthetic dimensions

Photonic crystals which are modulated periodically in time could also be treated within this

framework by making use of techniques developed for time-dependent quantum systems

(see e. g. [PST03b, Section 4.4] or [KV93; Res92; PST09; DL13]). Time then appears

alongside k = (k1, . . . , kd) as a periodic variable, and for topological considerations the

system becomes d + 1-dimensional.

Physical systems can also be designed to have synthetic dimensions by making the system

parameter-dependent or adding internal degrees of freedom (see e. g. [Oza+16; Zil+17]).
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3 Discrete material symmetries of electromagnetic media

3 Discrete material symmetries of electromagnetic media

The standard classification scheme for topological insulators [AZ97; Sch+08], also known

as the Ten-Fold Way or the Cartan-Altland-Zirnbauer (CAZ) scheme, distinguishes 10 dif-

ferent topological classes. Which topological class a system belongs to is determined by

the symmetries of the Hamilton or Maxwell operator M which enters the dynamical equa-

tion i∂tΨ = MΨ. Inside of each topological class there are inequivalent phases labeled by

a finite set of topological invariants such as Chern numbers or the Kane-Mele invariant.

The number and nature of these invariants depends crucially on the symmetries and the

dimensionality of the system.

We have applied this scheme in a previous work [DL14b] to Maxwell’s equations, but

as mentioned in the introduction, the equations we used for media with complex material

weights included states that were unphysical. Now that we have rewritten these equations

in Schrödinger form, we have finished all preparations to have a physically meaningful

classification of PTIs.

Compared to the classification theory developed for quantum mechanics, there is one

major difference: electromagnetic fields are real. Hence, it is not clear whether we are

able to employ the standard classification machinery developed for complex vector spaces.

The systematic identification of real fields with complex wave functions that was part and

parcel of the Schrödinger formalism allows us to overcome this conceptual chasm. We em-

phasize that all of what we do in this section applies to homogeneous, random and periodic

media alike, covers lower-dimensional waveguides and time-dependent media1, and is a

prerequisite to the symmetry classification of periodic light conductors in Section 4.

3.1 Relevant symmetries

For the purpose of classifying photonic topological insulators, we are interested in four

basic types of symmetries: unitary operators with U2 = +1 are called regular symmetries

if

U M U−1 = +M , (3.1)

and chiral (pseudo) symmetries in case

U M U−1 = −M . (3.2)

Antiunitaries U are said to be of time-reversal-type if (3.1) holds, and are particle-hole-

type symmetries if just as in (3.2) U anticommutes with M . Regardless of whether they

commute or anticommute, antiunitaries come in the even and the odd variety, depending

on whether U2 = ±1. In what follows, we will refer to all four merely as symmetries

1To simplify our presentation, we will not make the time-dependence explicit in case the medium changes

periodically in time.
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3.1 Relevant symmetries

unless the distinction between proper, i. e. commuting, symmetries and anticommuting

pseudo symmetries becomes important.

Let us emphasize that the terminology originates from quantum mechanics and should

not be taken literally in this context. The presence of a particle-hole symmetry, i. e. an

anticommuting antiunitarity, does not necessarily postulate the existence of particles and

antiparticles.

The notable absence of commuting unitaries in the CAZ scheme rests on the assumption

that all commuting unitary symmetries commute with all other types of symmetries listed

above. This allows us to reduce out all of these commuting unitary symmetries first and

consider the block decomposition with respect to these commuting symmetries; the block

operators retain all of the other (time-reversal, particle-hole and chiral) symmetries. How-

ever, a priori we cannot be sure whether the assumption that regular unitary symmetries

commute with the others, this is something that remains to be checked on a case-by-case

basis.

The form of the relevant symmetries is suggested by the problem: we can express the

weights

W =

�
ǫ χ

χ∗ µ

�
=

3∑

j=0

σ j ⊗w j

and the free Maxwell operator

Rot = −σ2 ⊗∇×

in terms of the identity σ0 = 1, the Pauli matrices σ1, σ2 and σ3, and 3×3 block operators

acting on the electric or magnetic fields. The first one ∇×ψE = ∇×ψE is just the usual

curl. Electric permittivity ǫ and magnetic permeability µ determine w0 =
1
2 (ǫ + µ) and

w3 =
1
2
(ǫ − µ); hermitian and antihermitian parts of the bianisotropic tensor χ fix w1 =

1
2 (χ +χ

∗) and w2 =
i
2 (χ −χ∗).

Therefore, we shall consider either

Un = σn ⊗ 1, n= 1,2,3, (3.3)

as candidates for linear symmetries and

Tn = (σn ⊗1)C , n= 0,1,2,3, (3.4)

for antilinear symmetries. T1 =
�

0 1

1 0

�
C exchanges electric and magnetic fields, then com-

plex conjugates them, and captures whether the medium treats electric and magnetic fields

differently; this symmetry will play a role in our analysis later on. Symmetries in our

case have to satisfy two conditions which seemingly have to be imposed in addition to

U M+ U−1 = ±M+, namely (1) U maps non-negative frequency states onto non-negative

frequency states and (2) it needs to satisfy U∗W =W−1 U∗W = U−1, where U∗W denotes the
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3 Discrete material symmetries of electromagnetic media

adjoint with respect to the weighted scalar product (2.7) (cf. [DL17b, Section 3.1.2]); this

adjoint is to be distinguished from U∗, the adjoint with respect to the usual, unweighted

scalar product. It turns out only commuting unitaries or time-reversal-type symmetries are

admissible.

Lemma 3.1 (Conditions for admissibility of symmetries) Suppose the material weights

W satisfy Assumption 2.1. Then all admissible symmetries U : H+ −→H+ of the form (3.3)

or (3.4) must commute with

(1) the material weights W (due to 〈 · , · 〉W -unitarity), and

(2) the Maxwell operator M+ or, equivalently, with Maux
+

or Rot (due to non-negative states

are mapped onto non-negative states).

Analogous statements hold for the case ω ≤ 0 with weights W and M− =W Rot
��
ω≤0

.

Proof For simplicity, let us only consider the case of non-negative frequencies and write

(anti)unitary to mean either unitary or antiunitary.

Let us initially work on L2
W
(R3,C6), the Hilbert space prior to restricting to ω ≥ 0.

Because all of the operators U are defined in terms of the Pauli matrices, they not only pre-

serve the domain of Maux
+

, U D(Maux
+
) =D(Maux

+
), they are also automatically (anti)unitaries

with respect to the ordinary scalar product. Therefore, the ordinary adjoint

U∗ = U−1 !
= U∗W =W−1 U∗W

necessarily agrees with the weighted adjoint U∗W = W−1 U∗W on L2
W
(R3,C6), and this

means that U needs to commute with W (condition (1)).

Initially, these equalities hold on L2
W
(R3,C6), and we have to check whether U : H+ −→

H+, restricted to the non-negative frequencies, is well-defined and still (anti)unitary. Math-

ematically, we have to impose [U ,Q+] = 0 or, alternatively,

U Q+ U−1 = U
�
1(0,∞)(M

aux
+
) + 1

2 1{0}(M
aux
+
)
�

U−1

= 1(0,∞)
�
U Maux

+
U−1
�
+ 1

2 1{0}
�
U Maux

+
U−1
�

!
=Q+ = 1(0,∞)(M

aux
+
) + 1

2 1{0}(M
aux
+
).

Thus, not only the domain of Maux
+

but also that of M+ is preserved,

U D(M+) = U Q+D(M
aux
+
) =Q+ U D(Maux

+
) = D(M+)

and we conclude that anticommuting symmetries are forbidden, only commuting sym-

metries are admissible. Furthermore, due to the product structure of Maux
+
= W Rot and

[U ,W ] = 0, this is equivalent to saying [U ,Rot ] = 0, and we have shown condition (2).
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3.2 Conditions on ǫ, µ and χ

Evidently, these arguments hold verbatim for M− = W Rot
��
ω≤0

after replacing W with

W and Q+ with Q−. What is more, because complex conjugation relates M+ and M− =
−C M+ C (including C : H± −→H∓), if U is a symmetry of M+, then C U C is a symmetry

of M−. �

3.2 Conditions on ǫ, µ and χ

Now we check which of the symmetries (3.3) and (3.4) is admissible and translate their

presence to conditions on ǫ, µ and χ . With the help of Lemma 3.1 and the algebra of Pauli

matrices, we can summarize the results as follows:

Proposition 3.2 (Symmetry conditions on the w j) Suppose W satisfies Assumption 2.1.

Of the 7 operators considered in (3.3) and (3.4) only three are admissible, and their presence

([T j ,W ] = 0) translates to the following conditions on the material weights:

Symmetry w0 = w1 = w2 = w3 = Symmetry Type

T1 = (σ1 ⊗ 1)C Re w0 Re w1 Re w2 i Im w3 +TR

U2 = σ2 ⊗1 w0 0 w2 0 unitary, commuting

T3 = (σ3 ⊗ 1)C Re w0 i Im w1 Re w2 Re w3 +TR

All of them are either proper symmetries or even time-reversal symmetries.

Note that since T1 T3 = iU2 the presence of any two symmetries implies the presence of

the third.

Proof We have to check conditions enumerated in Lemma 3.1: Computing the signs of

U Rot U−1 = ±Rot is straightforward. Imposing U W U−1 = W then singles out those

three above, because only they commute with Rot and hence, lead to U M+ U−1 = +M+.

The conditions on the w j listed in the table can then be obtained by comparing U W U−1

and W . �

3.3 Four topologically distinct media

At least three experimentally realized materials fall within our classification scheme; though

the first two can be understood within the ordinary CAZ classification scheme, the last be-

longs to none of the 10 classes, and could therefore exhibit novel topological effects.

Theorem 3.3 (Symmetry classification of media) Suppose the material weights satisfy As-

sumption 2.1. Then there are four topologically distinct electromagnetic media:
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3 Discrete material symmetries of electromagnetic media

Material Realizations Symmetries CAZ Class

Dual symmetric,

non-gyrotropic
vacuum, [FZM12; Fer+13] T1, T3, U2 N/A

Non-dual symmetric,

non-gyrotropic
[BB04; OMN04; OO09] T3 AI

Magneto-electric [Tel48; Lin+08] T1 AI

Gyrotropic [Wan+08; He+14] None A

The specific conditions which arise from imposing [T j ,W ] = 0 can be read off of the table in

Proposition 3.2.

One of our main motivations is to give a first-principles explanation of the Quantum Hall

Effect for Light [RH08; Wan+09]. The above result sheds some light on its inner workings:

while making W complex is the right thing to do, the symmetry to be broken is the even

time-reversal symmetry T3 = (σ3 ⊗ 1)C rather than complex conjugation C as claimed

in [RH08]. In fact, C is not even an admissible symmetry in the Schrödinger formalism,

since it swaps positive and negative frequency states. Even in the non-gyrotropic case

where W = W , complex conjugation acts as an even particle-hole-type symmetry of the

auxiliary Maxwell operator Maux
+
= −C Maux

+
C , and therefore no matter the framework

the nature of C can never be of time-reversal type. Evidently, breaking time-reversal T3 is

a necessary condition for the existence of unidirectional edge modes. For otherwise modes

come in counterpropagating pairs related by time-reversal. Before applying these results

to photonic crystals, though, we will briefly consider the relationship of symmetries and

sources.

3.4 Symmetries imposed on sources

Apart from the reality of the physical fields, a second difference to quantum mechanics is

the potential presence of sources in the Schrödinger equation (2.5), and we may ask what

role symmetries play here. From our discussion above, we only need to consider ordinary

symmetries and those of time-reversal type.

The idea here is to generalize the condition

U e−it M+ = e−i(±t)M+ U ,

with + chosen for linear, commuting symmetries and − for time-reversal symmetries, to

solutions of the equation with sources,

(UΦ)(t) = e−it M+Φ− i

∫ t

0

ds e−i(t−s)M+ W−1 J+(s).

Imposing U(UΦ)(t) =
�
U(UΦ)
�
(±t) yields U J+(t) = J+(±t), i. e. the signs need to match.
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4 Bulk classification of topological photonic crystals

Generally, we need two ingredients to create topological effects: (1) We need to break or

preserve the right symmetries. And (2), we need a spectral gap. In electromagnetic media,

gaps can either be created by periodic patterning [Yab93] or by using dispersion [Sil16].

While Silveirinha’s recent works [Sil16; GSH17]make first steps to classify homogeneous,

dispersive media, we focus on photonic crystals, i. e. electromagnetic media with periodic

structure.

Phase relations are at the root of all topological effects, and one way to encode them is to

construct vector bundles. If necessary, these vector bundles are endowed with symmetries

that are inherited from the Maxwell operator. This follows the exact same playbook as

in the quantum case, pioneered by [Tho+82]. Just like in the theory of crystalline solids,

the Bloch bundle is obtained from a collection of Bloch waves which arise naturally in the

context of periodic systems.

4.1 The frequency band picture

Let us start with a time-independent three-dimensional medium where d = 3, the dimen-

sion where Maxwell’s are naturally defined. The periodicity of the weights W and of the

Maxwell operator M+ with respect to the lattice Γ ∼= Z3 can be exploited via the Bloch-

Floquet-Zak transform

(FΨ)(k, x) =
∑

γ∈Γ
e−ik·(x+γ)

Ψ(x + γ) (4.1)

which maps onto the space-periodic part of the Bloch functions. This is a standard tool in

the theory of periodic operators and has been applied to great effect to various types of

equations [GP03; Kuc93; Kuc01; DL14c]. F defines a unitary map between the Hilbert

spaces before restricting to non-negative frequencies, L2
W
(R3,C6) and L2(B)⊗ L2

W
(T3,C6);

the first factor L2(B) is the usual, unweighted L2-space over the Brillouin torus B and

L2
W
(T3,C6) is the Hilbert space over the Wigner-Seitz cell, also seen as a torus, and en-

dowed with a weighted scalar product akin to (2.7),



φ(k),ψ(k)
�

W
=


φ(k),W ψ(k)
�
=

∫

T3

dx φ(k, x) ·W (x)ψ(k, x). (4.2)

Both, the auxiliary and the frequency constrained Maxwell operators are periodic and

therefore admit a fiber decomposition in Bloch momentum k ∈ B. Starting with the auxil-

iary Maxwell operator, we see that

F Maux
+

F −1 =

∫ ⊕

B

dk Maux
+
(k)

19



4 Bulk classification of topological photonic crystals

consists of a collection of operators

Maux
+
(k) =W Rot (k) =

�
ǫ χ

χ∗ µ

� �
0 −(−i∇+ k)×

+(−i∇+ k)× 0

�

acting on L2
W
(T3,C6), the Hilbert space associated to electromagnetic fields defined on the

unit cell in real space. Here, the operator v×E= v ×E denotes the matrix form associated

to the crossed product with any vectorial quantity v = (v1, v2, v3) from the left. Following

the procedure of the quantum case, we arrive at the frequency band picture by looking at

solutions to

Maux
+
(k)ϕn(k) =ωn(k)ϕn(k)

where ϕn(k) =
�
ϕE

n
(k),ϕH

n
(k)
�

is a (necessarily complex) Bloch function and ωn(k) an

eigenvalue.

Properties of Maux
+
(k) have been investigated extensively in the past (e. g. in [Kuc01;

DL14c]), and there are a few features of note that set it apart from the condensed matter

case: first of all, the longitudinal gradient fields contribute an infinitely degenerate flat

band ω0(k) = 0, and these bands only play a role if sources are present. In the absence

of charge densities, electromagnetic waves that satisfy (2.3b) are necessarily transversal.

Apart from the infinitely degenerate eigenvalue 0, all other (positive and negative!) eigen-

values ωn(k) that make up the frequency bands have finite degeneracy, and their Bloch

functions span the space L2
W
(T3,C6). The analyticity of Maux

+
(k) in k (the operator is linear

in k and its domain is independent of k [DL14c, p. 68]) means that these eigenvalues form

(frequency) bands. By convention, the flat band ω0(k) = 0 due to the gradient fields has

band index 0, frequency bands for which ωn(k) > 0 when k 6= 0 are enumerated with

positive integers n> 0 while negative indices n< 0 are reserved for the unphysical Bloch

functions with ωn(k) < 0 for k 6= 0.

Secondly, there are always ground state bands, i. e. two positive and two negative fre-

quency bands (including degeneracy) with approximately linear dispersion at k ≈ 0 and

ω ≈ 0. (That is why we had to exclude k = 0 when labeling frequency bands.) The ground

state Bloch functions are necessarily discontinuous at k = 0, since the transversality condi-

tion degenerates there and consequently, the dimensionality if the eigenspace changes by

2 [DL14c, Section 3.2–3.3]. Apart from the ground state bands, though, both Bloch func-

tions (after a judicious choice of phase) and frequency band functions are locally analytic

away from band crossings; in these respects, they mimic the Schrödinger case.

The physical Maxwell operator is the restriction of Maux
+

to complex waves with ω ≥ 0,

i. e. we discard unphysical waves of frequencyω < 0; these waves are unphysical, because

the physically relevant negative frequency waves are subject to the complex conjugate

weights W [DL17b, Section 2.3]. For periodic systems, we can make this restriction more

explicit: The Bloch waves associated to the physically relevant Bloch bands ωn(k) ≥ 0
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4.2 The Bloch bundle and its topological classification

span the Hilbert space of physically relevant waves

H+(k) = J+(k)⊕ G(k) ⊂ L2
W
(T3,C6)

where we distinguish between the (positive frequency) transversal fields

J+(k) = span
¦
ϕ ∈ L2

W
(T3,C6)
�� Maux

+
(k)ϕ =ωn(k)ϕ, n> 0

©

and the longitudinal gradient fields

G(k) =
¦
ϕ ∈ L2

W
(T3,C6)
�� Maux

+
(k)ϕ = 0
©

.

The symbol ⊕ for the orthogonal sum means that we can uniquely write any Ψ = Ψ⊥+Ψ‖ ∈
H+(k) as the sum of a transversal fieldΨ⊥(k) ∈ J+(k) and a longitudinal field Ψ‖(k) ∈ G(k)

that are orthogonal to each other with respect to the weighted scalar product (4.2). The

restriction of the auxiliary operator Maux
+
(k) to the physically relevant subspace of fields

with non-negative frequencies yields the k-dependent Maxwell operator

M+(k) = Maux
+
(k)
��
H+(k)

,

whose Bloch functions are those of Maux
+
(k) for non-negative frequency bands.

Symbolically we write that the Bloch-Floquet-Zak transform is a unitary between the

Hilbert spaces

F : H+ −→
∫ ⊕

B

dkH+(k)

that fiber-decomposes the Maxwell operator

F M+F
−1 =

∫ ⊕

B

dk M+(k).

All of these arguments can be straightforwardly adapted to include time-dependent media

or lower-dimensional photonic crystals (cf. Section 2.4).

4.2 The Bloch bundle and its topological classification

A vector bundle is a collection of vector spaces, indexed by a (base space) variable, that

is glued together in a continuous or analytic fashion; for more information, we refer the

interested reader to [DL13, Section 3.3], [DL11, Section IV.A] and references therein. The

Bloch bundle is a vector bundle constructed from a family of (energy or frequency) bands.

When physicists use expressions such as “band topology”, what they actually mean is the

following: they pick a family of isolated bands, which are relevant to the discussion.
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4 Bulk classification of topological photonic crystals

Assumption 4.1 (Gap Condition) Suppose σrel(k) =
�
ωn(k)
	

n∈I is a finite family of rel-

evant bands, indexed by a set of positive integers I, that does not cross or merge with other

bands. Put another way, they are separated by local spectral gaps from the other bands,

inf
k∈B

dist
�
σrel(k) , σ
�
M+(k)
�
\σrel(k)
�
> 0. (4.3)

Once the relevant bands have been selected, the collection of vector spaces

Hrel(k) = span
�
ϕn(k)
	

n∈I

which make up the Bloch bundle are the eigenspaces spanned by the relevant Bloch func-

tions and indexed by Bloch momentum k. “Band topology” refers to how Hrel(k) “twists

and turns” as k is varied; note that at this level the actual shape of the relevant frequency

band functions ωn(k) is irrelevant.

Physically, the significance of the Gap Condition is that states supported in such an iso-

lated family of bands decouple from the others, because band transitions outside of σrel(k)

are typically exponentially suppressed. Note that the assumption that σrel(k) consists of

finitely many bands excludes ground state bands, since they merge into the infinitely de-

generate gradient field band ω0(k) = 0. This is not a mere technical obstacle either: since

ground state Bloch waves for k ≈ 0 have very long wavelengths, they no longer see the pe-

riodic structure but just homogeneous material weights that are averaged over the unit cell.

And homogeneous media require a different classification approach than periodic media.

Mathematically, this manifests itself in the fact that the ground state Bloch functions are

necessarily discontinuous, hence non-analytic, at k = 0, and this discontinuity prevents us

from defining a vector bundle over the whole Brillouin torus B.

Symmetries of the Maxwell operator are inherited by the bundle: Should M+(k) possess

a time-reveral symmetry T , for example, i. e. T is an antiunitary operator with T M+(k) =

M+(−k) T , then T relates the fibers Hrel(k) and Hrel(−k). Mathematically, symmetries of

M+(k) give rise to additional structures on the vector bundle [DG14b; DG14a; DG15]; this

will be explained in Section 4.2.3 below.

4.2.1 The mathematical definition of the Bloch bundle

One convenient way to think of Hrel(k) = ran Prel(k) is as the range of the projection

Prel(k) =
∑

n∈I
|ϕn(k)〉〈ϕn(k)|,

although it is the weighted scalar product that is implicit in the bra-ket notation,

|ϕn(k)〉〈ϕn(k)|ψ(k) =


ϕn(k),ψ(k)
�

W
ϕn(k). (4.4)
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4.2 The Bloch bundle and its topological classification

The Gap Condition ensures that k 7→ Prel(k) is not just locally analytic, but analytic over

the whole Brillouin torus; put another way, locally around any point k0 there is family of

k-dependent unitaries U(k, k0) so that they are analytic and relate the projections at k and

k0, Prel(k) = U(k, k0) Prel(k0)U(k, k0)
∗. Consequently, the dependence of Hrel(k) on Bloch

momentum k is also analytic, and the Bloch bundle is the triple

EB(Prel) :
⊔

k∈B
Hrel(k)

π−→ B, (4.5)

consisting of the total space, the disjoint union of all the Hrel(k)s, the Brillouin torus B

as base space, and the projection π
�
Ψ(k)
�
= k onto the base point. Necessarily, the di-

mension m = dimHrel(k) of the fiber vector space, the rank of the vector bundle, has to

be independent of k. In some contexts we need to distinguish between continuous and

analytic vector bundles, although here, thanks to the so-called Oka principle, this is not

necessary for vector bundles over the torus (the reader may find a detailed argument in

[DL11, Section II.F]).

In the simplest case, the vector bundle is a trivial complex vector bundle, meaning it is

isomorphic to the product bundle EB(Prel)
∼= B ×Cm of base space and fiber. However, in

general vector bundles can only be trivialized locally, i. e. only in a sufficiently small neigh-

borhood U of a point k0 do we haveπ−1(U) ∼= U×Cm. In fact, a second and equivalent way

to assemble the vector bundle from a trivializing open covering {U j} is to glue together

π−1(U j)
∼= U j × Cm using transition functions, which then contain all the information on

the “twists”.

The Bloch vector bundle is suited to describe continuous deformations of the system:

as M+(k) is deformed continuously, then also the frequency bands and the relevant sub-

spaces Hrel(k) change continuously as well — provided that the spectral gap does not

close. Should additional symmetries be present, then these must not be broken during the

deformation. Thus, continuous deformations of physical systems translate to continuous

deformations of vector bundles.

4.2.2 Classification of complex vector bundles (CAZ class A)

To give rigorous meaning to the notion of “vector bundle up to continuous deformations”,

we need to say when two vector bundles are considered equivalent and then classify equiva-

lence classes of vector bundles. This is quite standard for complex vector bundles and explicit

criteria are known when the base space is low-dimensional (d ≤ 4 suffices to cover time-

dependent systems) and has such a simple structure as B ∼= Td [Nen83; Pan07; DL11].

All of these are immediately relevant for our discussion of periodic light conductors, start-

ing from layered media (d = 1) [Cho+16], two-dimensional [Dri+04; Wan+08; WH15;

Kha+13] and three-dimensional [JJ00; Ege+04; Joa+08; Kur11] photonic crystals and
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4 Bulk classification of topological photonic crystals

the as-of-yet unrealized case of a three-dimensional photonic crystal which is deformed

periodically in time.

Mathematical definition of equivalence Now let us explain when vector bundles are mathe-

matically equivalent: So let E j =
�
ξ j, X ,π j

�
, j = 1,2, be two vector bundles over the same

base space. An X -map f : ξ1 −→ ξ2 is a continuous function between the total spaces so

that the fiberwise restriction fx = f |π−1
1 ({x}) defines a linear homomorphism between the

vector spaces π−1
1
({x}) and π−1

2
({x}) attached to the same base point x . Put another way,

f preserves fibers and is compatible with the linear structure in each of the fibers. The set

of such maps is denoted by Hom(E1,E2). If in addition f restricts fiberwise to vector space

isomorphisms for all x ∈ X , then f is in fact a homeomorphism between ξ1 and ξ2, and

therefore defines an X -isomorphism between the bundles E1 and E2 [Hat09, Lemma 1.1].

This defines an equivalence relation E1 ≃ E2, and because isomorphic vector bundles have

the same rank, we write Vecm
C
(X ) for the set of equivalence classes of isomorphic rank

m hermitian vector bundles. Classification theory of complex vector bundles concerns itself

with the description of Vecm
C
(X ) for different m and X . One particularly important element

is that associated to the trivial vector bundle εm =
�
X × Cm, X , proj1

�
of rank m where

the total space is just the cartesian product of base space and fiber, and the projection

proj1(x ,ψ) = x onto the first element.

Mimicking the construction above, we could define equivalence of bundles in terms of

analytic X -isomorphisms, something that enters when establishing the existence of expo-

nentially localized Wannier functions [Pan07; Kuc09; DL11]. Fortunately, though, in the

present case we need not distinguish between continuous and analytic equivalence of vec-

tor bundles, because the so-called Oka principle [Gra58] holds for B ∼= Td (see [DL11,

Section II.F] for the detailed mathematical argument).

Abstract classification results Now that we have defined Vecm
C
(Td) as the set of vector

bundles up to equivalence, two natural questions arise: first of all, how many different

equivalence classes are there? And secondly, given a concrete realization, can we compute

what equivalence class it belongs to? We postpone the second question and focus on the

first. This classification problem is quite standard, and there are many different mathemat-

ical tools (e. g. K-theory [Hus66; Kar08] or the vector bundle theoretic methods [DG14b;

DG14a; DG15]) with which we all arrive at the same conclusion:

Theorem 4.2 (Classification of Vecm
C
(Td)) For the cases of rank-m vector bundles over the

d-dimensional torus listed below, the set of equivalence classes is countable and given by:

(1) d = 1, m≥ 1: Vecm
C
(S1) ∼= {0}

(2) d ≥ 2, m= 1: Vec1
C
(Td) ∼= Z
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4.2 The Bloch bundle and its topological classification

(3) d = 2, m≥ 2: Vecm
C
(T2)∼= Z

(4) d = 3, m≥ 2: Vecm
C
(T3)∼= Z3

(5) d = 4, m≥ 2: Vecm
C
(T2)∼= Z6 ⊕Z

Computing topological invariants The above classification would be quite academic if we

were not able to actually compute the “coordinates” of a concretely given vector bundle

in Vecm
C
(Td); the coordinates which make up the address are topological invariants, in this

case first and second Chern classes. To define the Chern classes

c j(EB) ∈ H2 j(B,Z) = Zn(d, j), j = 1,2,

abstractly, one approach (see e. g. [LM84; MS74]) is to view EB as the pullback of the

universal vector bundle and define EB’s Chern classes as the pullbacks of universal Chern

classes. They are elements of the 2 jth cohomology group H2 j(B,Z) over the Brillouin

torus with integer coefficients; these cohomology groups can be computed explicitly by

recursion to be Z to the power n(d, j) = d!/j! (d− j)! for all 0≤ j ≤ d and n(d, j) = 0 if j > d.

Thanks to the Universal Coefficient Theorem [Hat02, Theorem 3.2], we can embed

H2 j(B,Z) into the de Rham cohomology H
2 j

dR
(B), and Chern-Weil Theory [MS74, Appendix C]

allows us to connect the algebraically defined Chern classes with differential geometric ob-

jects such as the Berry curvature. For details we refer the interested reader to [DL11,

pp. 28].

The upshot is that these arguments not only ensure that they are integer-valued, but also

allow us to compute Chern classes via the usual formulas. In case d = 2 the first Chern

class can be identified with the first Chern number

c1(EB) =
1

2π

∫

B

dk TrH+(k)

�
Ω(k)
�

(4.6)

whose equation involves the Berry curvature Ω(k) = dA+A∧A, which in turn is defined

locally in terms of the Berry connection A(k) =
�
A jn(k)
�

1≤ j,n≤m

A jn(k) = i


ϕ j(k) ,∇kϕn(k)

�
W

with respect to a locally trivializing basis. Alternatively, we can recast

c1(EB) =
1

2π

∫

B

dk TrH+(k)

�
i Prel(k)
�
∂k1

Prel(k) , ∂k2
Prel(k)
��

solely in terms of the projection onto the relevant bands. Similar formulas exist for c1(EB)

in d ≥ 3 and for the second Chern class c2(EB) (cf. e. g. [DL11, equations (5.9)–(5.10)]).

Collecting our results, we can restate the above classification Theorem 4.2 as follows:
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4 Bulk classification of topological photonic crystals

Corollary 4.3 The equivalence class a Bloch bundle belongs to is given in terms of the first

two Chern classes. More specifically:

(1) For the cases (2)–(4) enumerated in Theorem 4.2 the Bloch vector bundle is classified by

its first Chern class alone.

(2) For case (5) (d = 4, m ≥ 2), the Bloch vector bundle is classified by its first and second

Chern classes.

Put another way, two vector bundles can be continuously deformed into one another if and

only if all (first and second) Chern numbers agree; a vector bundle is trivial, i. e. isomorphic

to the product bundle B×Cm, if and only if all Chern numbers vanish.

4.2.3 Classification of vector bundles in the presence of even time-reversal symmetries

(class AI)

Since the work of Nenciu [Nen83] (note also the later works [Pan07; DL11; Kuc09]), it

was understood that in d ≤ 3 the presence of an anti-unitary T satisfying

T Prel(k) = Prel(−k) T (4.7)

guarantees that the first Chern numbers vanish. However, in general the presence of ad-

ditional symmetries does not mean the bundle is necessarily trivial, and the triviality of

Chern numbers does not preclude the existence of other topological invariants. In fact, if

T is odd, i. e. T 2 = −1 (class AII), a new, Z2-valued topological invariant appears [Fur+00;

KM05; DG14a]. However, in the context of Maxwell operators time-reversal symmetries

are necessarily even (T 2 = +1) and have to satisfy (4.7) (cf. Proposition 3.2). Conse-

quently, if only one time-reversal symmetry is present, the classification theory for class AI

vector bundles applies [DG14b].

Theorem 4.4 ([DG14b, Theorem 1.6]) Suppose there exists an anti-unitary operator T

satisfies (4.7). Then the first Chern class of the Bloch bundle EB(Prel) vanishes and we have:

(1) For d ≤ 3 the Bloch bundle is trivial.

(2) For d = 4 the Bloch bundle is trivial if and only if the second Chern class vanishes.

Note, however, it is critical for this Theorem to hold that T relates Prel(k) and Prel(−k). If

T Prel(k) = Prel

�
τ(k)
�

T held for some other involution τ(k) 6= −k, then the presence of the

even time-reversal symmetry T would not necessarily ensure the triviality of the bundle

[DG14b, Section 4].
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4.2 The Bloch bundle and its topological classification

4.2.4 Classification of dual symmetric, non-gyrotropic materials

Dual symmetric, non-gyrotropic media have two even time-reversal symmetries and fall

outside of the standard Cartan-Altland-Zirnbauer classification scheme. While media in

d ≤ 3 with a single even time-reversal symmetry are trivial, it is not permissible to simply

omit the other. Moreover, because these two symmetries anticommute with each other,

their interplay needs to be carefully studied. We will perform the analysis of this topolog-

ical class here.

As luck would have it we can derive the classification with relatively simple, straight-

forward arguments and do not need to perform a rather technical analysis along the lines

of [DG14b; DG14a; DG15] that involves advanced tools from the theory of vector bundles

and K-theory.

So we will have to perform the analysis ourselves here. The presence of two even time-

reversal symmetries in such media,

T j M+(k) T
−1
j
= M+(−k),

T 2
j
= +1,

where j = 1,3, means they automatically possess one unitary, commuting symmetry U2 =

σ2 ⊗ 1= −i T1 T3,

U2 M+(k)U
−1
2
= M+(k),

which up to a factor of −i equals the product of T1 = (σ1 ⊗1)C and T3 = (σ3⊗1)C . The

presence of this symmetry means that each frequency band is helicity degenerate, and we

may choose Bloch functions with a specific (left- or right-handed) helicity.

Put another way, the Maxwell operator

M+ =

�
M+,+ 0

0 M+,−

�

admits a block decomposition into helicity components, where the operators M+,± =Q±M+Q±
are obtained from the projections

Q± =
1
2 (1± U2)

onto right-handed (eigenvalue +1) and left-handed (eigenvalue −1) circularly polarized

waves.

Consequently, we may split the projection onto the relevant bands Prel(k) = Prel,+(k) +

Prel,−(k) as well as the Bloch bundle

EB(Prel) = EB(Prel,+)⊕ EB(Prel,−) = E+ ⊕ E−

into a right-handed (+) and left-handed (−) component. Note that the ranks of E± neces-

sarily have to agree because each band has even helicity degeneracy.
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4 Bulk classification of topological photonic crystals

Below, we will show that the time-reversal symmetries are compatible with this decom-

position (Lemma 4.8), independently of whether the time-reversal symmetries commute

or anticommute (Lemma 4.7). That means they do not mix left- and right-handed states,

and we may write T j = T j,+⊕ T j,− where T j,± =Q± T j Q±. What is more, the time-reversal

symmetries restricted to each helicity component, T1,± and T2,±, are no longer distinct

physical symmetries (Theorem 4.9), and effectively, E± come with only a single even time-

reversal symmetry.

To summarize, for dual symmetric gyrotropic media the Bloch bundle is the sum of two

class AI bundles, and E± can be classified with standard theory (see Theorem 4.4).

Theorem 4.5 (Classification of dual symmetric gyrotropic media) Suppose the weights

W are periodic with respect to Γ ∼= Zd and possess the two even time-reversal symmetries T1

and T3. Then the Bloch bundle associated to an isolated family of bands (in the sense of the

Gap Condition 4.1) EB(Prel) = E+⊕E− is the sum of two class AI bundles that can be classified

as follows:

(1) Independently of the dimension of the periodicity lattice, one topological invariant is the

total rank of the bundle, rankEB = 2rankE±.

(2) When the rank is fixed, then in dimensions d = 1,2,3 the Bloch bundle is the sum of two

trivial vector bundles, i. e. all vector bundles are topologically equivalent.

(3) When the rank is fixed, then in dimensions d = 4 the Bloch vector bundles are distin-

guished by the two second Chern numbers of E±.

We emphasize that the notion of trivial vector bundle depends on the symmetries, i. e. on

the topological class: for complex vector bundles (the quantum Hall class, class A, with no

symmetries) a trivial bundle by definition is one that is isomorphic to a product bundle.

Given that the Chern numbers for product bundles all vanish, this gives a simple criterion

for bundle triviality. For vector bundles that are endowed with additional symmetries, the

situation can be more delicate. For low-dimensional class AI bundles over the torus there is

only one phase and all vector bundles of the same rank can be continuously deformed into

one another (provided the time-reversal symmetry is preserved); put another way, not just

a specific bundle, but the whole class of bundles is trivial. However, for other topological

classes (e. g. class AIII) where bundles are characterized by relative topological invariants,

there exists no canonical notion of trivial bundle.

We now proceed with the derivation of this classification result; our arguments are divided

up into several steps. The proofs are all non-technical and we think they are instructive for

the reader to follow our reasoning with which we arrive at Theorem 4.5. We will broaden

our setting: suppose H is a selfadjoint (hermitian) operator, a stand-in for a quantum

28



4.2 The Bloch bundle and its topological classification

Hamiltonian or the Maxwell operator, that comes furnished with two antiunitary symme-

tries,

T j H T−1
j
= ε jH, j = 1,2,

T 2
j
= λ j1.

(4.8a)

(4.8b)

That means we do not restrict ourselves to even time-reversal symmetries, but admit any

combination of even (λ= 1) or odd (λ= −1) symmetries, be it of time-reversal- (ε= +1)

or of particle-hole-type (ε = −1). For the sake of brevity, we will say that T j is of type

(ε j ,λ j).

First, we have a certain amount of freedom when picking antiunitary symmetries, for ex-

ample we may multiply them with a phase to transform an anticommuting to a commuting

pair of symmetries.

Lemma 4.6 Suppose T is a symmetry of type (ε,λ) in the sense of equation (4.8) and eiϕ ∈ C
a phase. Then T ′ = eiϕ T is a symmetry of type (ε,λ).

Proof The antiunitarity of T implies T ′2 = eiϕ e−iϕ T 2 = λ1, and T ′ is even or odd when-

ever T is.

To show that T ′ (anti)commutes with H if and only if T does, we express T = U C as the

product of a unitary U and complex conjucation C (which is always possible). Therefore,

the inverse of T ′,

T ′−1
=
�
eiϕ U C
�−1
= C
�
eiϕ U
�∗
= C e−iϕ U∗

= e+iϕ C U∗ = eiϕ T−1,

is just eiϕ times the inverse of T , and hence, T ′ is a symmetry of the same type,

T ′H T ′−1
= T e−iϕ H eiϕ T−1 = T H T−1 = εH. �

Secondly, if the two antiunitary symmetries commute up to a phase,

T1 T2 = eiϕ T2 T1, (4.9)

then we can find equivalent symmetries which commute; here, the previous Lemma . In

particular, two anticommuting, antiunitary symmetries are equivalent to a pair of antiuni-

tary, commuting symmetries.

Lemma 4.7 Suppose T1 and T2 are two antiunitary symmetries of types (ε j ,λ j), j = 1,2,

which commute up to a phase eiϕ ∈ C. Then T ′
1
= T1 and T ′

2
= ei

ϕ
2 T2 are a pair of commuting

symmetries of the same types.

Proof According to the preceding Lemma, T ′
2

is also of type (ε2,λ2), the same as T2. And

a quick computation shows that T ′
2

commutes with T ′
1
= T1 because the phase factors

cancel:

T ′
1

T ′
2
= T1 ei

ϕ
2 T2 = e−i

ϕ
2 T1 T2 = e−i

ϕ
2 eiϕ T2 T1 = T ′

2
T ′

1 �
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4 Bulk classification of topological photonic crystals

Now suppose the two symmetries commute and are of the same type, (ε1,λ1) = (ε2,λ2).

As we have just seen, assuming T1 T2 = T2 T1 instead of (4.9) imposes no additional re-

strictions. Then their product

U = T1 T2

is a unitary that squares to +1,

U2 =
�
T1 T2

�2
= T 2

1
T 2

2
= λ2

1 = +1, (4.10)

and commutes with H,

U H U−1 = T1

�
T2 H T−1

2

�
T−1

1
= ε T1 H T−1

1
= ε2 H = H. (4.11)

Combining the unitarity of U with (4.10), we deduce that U = U∗ = U−1 is selfadjoint

(hermitian), and due to U2 = +1 the spectrum σ(U) ⊆ {−1,+1} consists of either one or

two eigenvalues. Let us exclude the trivial cases U = ±1 where T1 and T2 = ±T−1
1
= ±λT1

are equivalent as they differ only by a phase (Lemma 4.6). When U 6= ±1 both eigenvalues

occur and the corresponding spectral projections

Q± =
1
2
(1± U)

map onto the eigenspaces associated with the eigenvalues ±1. For dual symmetric elec-

tromagnetic media these are the projections onto right-handed (+1) and left-handed (−1)

electromagnetic waves.

These give rise to a decomposition of the Hilbert space

H =H+ ⊕H−

where the two subspaces H± = Q±[H] are the ranges of Q±. As U commutes with H

(equation (4.11)), so do the associated spectral projections, which leads us to conclude

H = H+ ⊕H− =

�
H+ 0

0 H−

�
,

since Q± H Q∓ = H Q±Q∓ = 0 and only the block-diagonal contributions H± = Q± H Q±
remain. It turns out that also the two antiunitary symmetries T j = T j,+ ⊕ T j,− are block-

diagonal with respect to this decomposition.

Lemma 4.8 Suppose T1 and T2 are two commuting, antiunitary symmetries of the same type

(ε,λ), and their product U 6= ±1 is not trivial. Then T1, T2 and U are block-diagonal,

T j =

�
T j,+ 0

0 T j,−

�
, j = 1,2,

U =

�
+1 0

0 −1

�
.
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4.2 The Bloch bundle and its topological classification

Moreover, the block components of the two antiunitaries are related,

T2,± = ±T−1
1,± = ±λT1,±. (4.12)

The condition U 6= ±1 is necessary to ensure that the two time-reversal symmetries are

distinct and the block decomposition meaningful.

Proof Since T1 and T2 commute with one another by assumption, U also necessarily com-

mutes with T j ,
U T j = T1 T2 T j = T j T1 T2 = T j U .

Consequently, they commute with the spectral projections Q± =
1
2
(1±U) as well, and the

symmetries are all block-diagonal with respect to H =H+ ⊕H−.

Computing U block-wise yields

U = (+1)⊕ (−1) =
�
T1,+ T2,+

�
⊕
�
T1,− T2,−
�
,

and comparing left- and right-hand side yields equation (4.12). �

The main result is now within reach:

Theorem 4.9 Suppose T1 and T2 are two antiunitary symmetries of type (ε,λ) that commute

up to the phase eiϕ according to equation (4.9). Then the system block decomposes with respect

to H =H+ ⊕H− (defined as above), namely H = H+ ⊕H− and T j = T j,+⊕ T j,− for j = 1,2.

Moreover, on H± one of the symmetries is redundant, because

T2,± = ±e−i
ϕ
2 T−1

1,± = ±λe−i
ϕ
2 T1,±

equals T1,± up to a phase.

Proof For commuting symmetries where eiϕ = 1 the statement is an immediate conse-

quence of Lemma 4.8 and Lemma 4.6.

When eiϕ 6= 1 we apply the above argument to T ′
1
= T1 and T ′

2
= ei

ϕ
2 T2 as they are

equivalent commuting symmetries (Lemma 4.7). To translate that back to the generic

case, all we need to do is add the phase factor e−i
ϕ
2 ,

T2 = e−i
ϕ
2 T ′

2
=
�
+λe−i

ϕ
2 T1,+

�
⊕
�
−λe−i

ϕ
2 T1,−
�
.

�

The classification of Bloch bundles with two even time-reversal symmetries is just a special

case:

Corollary 4.10 Suppose M+ is the Maxwell operator for a periodic, dual symmetric gy-

rotropic medium, and Prel(k) the projection associated to a family of isolated frequency bands

(i. e. they satisfy the Gap Condition 4.1). Then the associated Bloch bundle

EB(Prel) = E+ ⊕ E− (4.13)
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5 Conclusion and future developments

decomposes into the sum of two class AI vector bundles E± = EB(Prel,±), each associated to one

helicity component.

Proof First of all, M+ is a selfadjoint operator furnished with two even time-reversal sym-

metries that anticommute (i. e. the phase is −1 = eiπ). Hence, we are in the setting

of Theorem 4.9. Instead of T3 = (σ3 ⊗ 1)C we may use iT3 so that it commutes with

T1 = (σ1 ⊗ 1)C and their product yields U = T1 iT3 = σ2 ⊗ 1. The eigenspaces of

U correspond to electromagnetic fields with right- (+1) and left-handed (−1) helicities.

Therefore, M+ = M+,+ ⊕ M+,− and Prel(k) = Prel,+(k) ⊕ Prel,−(k) as well as the two time-

reversal symmetries decompose into helicity components. The components of the projec-

tion Prel,±(k) = Q± Prel(k)Q± are defined analogously to H±; the projections Q± =
1
2
(1+U)

do not depend on crystal momentum because U is independent of x and −i∇.

Setting E± = EB(Prel,±), we see that the Bloch bundle splits into helicity components

as given in equation (4.13). On each helicity component, the two symmetries T1,± and

T3,± = ±e−i π2 T1,± are equivalent. Thus, the vector bundles E± are endowed with only one

even time-reversal symmetry, and we may consider them as class AI vector bundles. �

Note that analogous statements hold for when H has two odd time-reversal or two (even

or odd) particle-hole symmetries. In those cases, the Bloch bundle splits into two class AII,

class D or class C bundles, respectively. However, these cases are not relevant in our

analysis of photonic crystals.

Proof (Theorem 4.5) (1) The fact that the frequency bands for right- and left-handed

circularly polarized Bloch waves always have the same multiplicity stems from the

fact that the degeneracy of +1 and −1 of σn are the same. Therefore, the ranks of

the right-handed and left-handed circularly polarized sub bundles E± are always the

same.

(2) Corollary 4.10 tells us that the Bloch bundle can be seen as the sum of two class AI bun-

dles. In dimension d = 1,2,3 vector bundles over the torus where the time-reversal

symmetry relates fibers at ±k are trivial (Theorem 4.4).

(3) This again follows from Corollary 4.10 and the fact that class AI bundles are distin-

guished topologically by the second Chern number of which there are two (Theo-

rem 4.4). �

5 Conclusion and future developments

We close this work by contrasting and comparing our results to the literature and sketch

what avenues we would like to explore in the future. Our main aim in this paper was to
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5.1 Topological effects due to material symmetries

make precise what “topological photonic crystal” means, and how to differentiate between

topologically distinct types of electromagnetic media. Our first principles approach is very

different from most attempts in the literature where the keyword “topological” is tacked

onto a lot of physical effects even if the link to topology is not made explicit. We emphasize

that phenomenological similarities such as a locking of spin and propagation direction

are not conclusive evidence of a topological origin. Instead, a direct causal link should be

established between physical effects and the topology of a mathematical object.

5.1 Topological effects due to material symmetries

We framed this article with two specific questions, and we owe it to the reader to provide

the answers we have promised in the introduction. The first concerns the similarities

between the Quantum Hall Effect in photonic crystals and condensed matter physics.

5.1.1 Haldane’s Quantum Hall Effect for light

We can only give a partial answer: Gyrotropic media belong to the same topological class

as quantum systems exhibiting the Quantum Hall Effect — in both cases an even time-

reversal symmetry is broken so that they both belong to class A. That is consistent with

Haldane’s conjecture, and we intend to give a complete derivation in a future work.

Our analysis provides a number of new insights: first of all, the relevant symmetry that

is broken is the even time-reversal symmetry T3 rather than complex conjugation C as is

argued in some of the literature (see e. g. [RH08; WH15]). In fact, complex conjugation

symmetry of Maxwell’s equations can never be broken since one of the tenets of classical

electromagnetism is that fields (E,H) are necessarily real; this reality constraint is pre-

served in the correct complexified Maxwell equations (cf. [DL17a, Section 2.2]) where C

acts as an even particle-hole symmetry. Such subtle distinctions are essential for a topo-

logical classification, because it is crucial we correctly identify the nature of the relevant

symmetries.

The bulk classification of gyrotropic photonic crystals as class A topological insulators

made here is an important first step towards establishing Haldane’s Photonic Bulk-Edge

Correspondence conjecture. At first glance, adapting derivations of the Quantum Hall Ef-

fect may now seem completely straightforward and further research unnecessary: there is

a wealth of literature (e. g. [Tho+82; BES94; KRS02; KS04b; KS04a; PS16]) with differ-

ent approaches to deriving bulk-edge correspondences that generalize the early works of

Hatsugai [Hat93a; Hat93b].

However, there are important mathematical and physical differences between the quan-

tum system and its electromagnetic analog, and these differences are not mere technical

footnotes but essential. Taking these differences into account was already important to

properly understand the analogy between semiclassical limits and the derivation of ray
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optics equations [DL17a, Section 5]. One of the issues that was discussed there was the

form of “typical” states: in solid state physics, the relevant states are perturbations of the

Fermi projection where all states up to the Fermi energy EF are completely filled; in the con-

text of topological insulators, the Fermi energy is usually assumed to lie in a spectral gap

or, more generally, a zone of dynamical localization. Electromagnetic waves, though, are

not fermions, so there is no physical principle that forbids us to arbitrarily populate bands.

Instead, states are often excited by a laser, and therefore, states are peaked around some

wave vector k0 and frequency ω0, i. e. wave packet states. Another method is to use an

antenna to excite a given frequency in multiple directions at the same time. Nevertheless,

it stands to reason that the analog of the “Fermi projection” may enter the derivation of this

photonic bulk-edge correspondence as an auxiliary object (as opposed to being interpreted

as the physical state of the system).

A second difference is that there does not seem to be a photonic “bulk observable” and

only the edge observable “net number of boundary states” (right moving vs. left-moving)

enters equations (1.2) so that we need to prove the following two equalities

signed ♯ edge modes = C1,edge = C1,bulk.

A prerequisite for proving this photonic bulk-edge correspondence is to be able to compute

the Chern number of the “photonic Fermi projection” (again, seen only as an auxiliary

object). Unfortunately, our definition of Bloch bundle from Section 4.2 does not apply

without modification. We had to exclude the so-called ground state bands, i. e. the bands

which have approximately linear dispersion near k = 0 and ω = 0; these necessarily exist

in any periodic medium [DL14c, Theorem 1.4 (iii)]. If the relevant bands include the

ground state bands, then the dimension dimHrel(0) = dimHrel(k) + 2 is larger by 2 than

for k 6= 0 as the transversality condition

�
(−i∇+ k) ·ψE(k)

(−i∇+ k) ·ψH(k)

�
=

�
0

0

�

degenerates there; this is further explained in [DL14c, Sections 3.2–3.3]. We intend to

revisit this question in a future work.

A third, perhaps more mathematical question concerns how to create interfaces (edges

and surfaces) in the first place, and one can choose from at least three different options:

(1) We can sandwich two different photonic crystals [Kha+13; WH15] whose relevant

photonic band gaps overlap.

(2) We can terminate the photonic crystal with a metal [Wan+09]; the metal is typically

modeled as a perfect electric conductor and enters as boundary conditions imposed

on solutions to Maxwell’s equations.
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(3) In principle, we could also choose to terminate with a perfect magnetic conductor,

which translates to a different set of boundary conditions.

While in spirit this closely resembles the quantum case, we may obtain different photonic

bulk-edge correspondences for some or all of these choices. Such differences already ap-

pear when considering interfaces between homogeneous (as opposed to periodic) electro-

magnetic media, where the existence and polarization of surface modes depends on the

details [BSN15, Supplementary Material]. Therefore, it is not a foregone conclusion that

the form of the photonic bulk-edge correspondences is independent of how boundaries are

created.

5.1.2 Absence of novel topological effects in d ≤ 3 due to material symmetries

The second question concerned the existence of novel topological effects, i. e. other than

the Quantum Hall Effect for light. When we began our investigation, we were hoping

to find that certain media belong to topological classes that support topological invariants

other than Chern numbers, which in turn would indicate the existence of other topological

effects. Unfortunately, this is not the case: barring additional (isospin) symmetries, our

finding here is that apart from gyrotropic materials, which are in the same topological

class as the Quantum Hall Effect, the other three types of media do not support as-of-

yet unknown topological effects in d ≤ 3; for three-dimensional photonic crystals with

periodic time-dependence, there could be topological effects related to the second Chern

number — independently of which of the four topological classes the material belongs

to. While that does not exclude topological effects due to crystallographic symmetries

(e. g. [Cho+16; FGB12; Ale+14; Che+15]), those will have to be considered separately.

The case of time-reversal symmetric media with additional (linear, commuting) symmetries

reduces either to class AI (topologically trivial) or the Quantum Hall Class, class A; we will

discuss both of these in more detail next.

5.2 Comparison with the literature

Ever since Raghu and Haldane’s first proposed topological phenomena in periodic electro-

magnetic media [RH08], there has been a growing body of work on the subject; for recent

reviews we point to [LJS14; LJS16]. To keep the discussion brief, we will focus on a few

select publications that are directly related to the core of this work and representative for

a number of others.

5.2.1 Haldane’s Quantum Hall Effect for light

While the experimental confirmation [Wan+09] of Quantum Hall Effect for light settled

the question that topological phenomena exist, very little effort was made to probe the
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quantitative validity of Haldane’s Photonic Bulk-Edge Correspondence and derive it from

first principles.

Ray optics equations Raghu and Haldane based their arguments on postulating ray optics

equations which included an “anomalous velocity term”; however, the form of the sub-

leading terms was a topic of discussion, one that was settled only recently with our rigorous

work [DL17a] (see [DL17a, Section 5.2] for an in-depth discussion). Unfortunately, it is

not possible to derive bulk-boundary correspondences purely on the basis of ray optics

equations — not only because those govern the light dynamics in the bulk, but also because

the semiclassical arguments with which one may show the quantization of the transverse

conductivity (see e. g. [PST03a, Section 1]) do not generalize to electromagnetism due to

the fundamental differences between both physical theories (cf. the discussion in [DL17a,

Section 5.1]).

Justification for effective “Hamiltonians” A great deal of theoretical works on topological

phenomena in photonic crystals argue in two steps: first, a system is identified which has

the desired features in its frequency band diagram (in the simplest case a photonic band

or a conical intersection). Then based on the dispersion of the frequency bands of interest,

a simpler, effective Hamiltonian is postulated that shares the same essential features in its

band spectrum. This ad hoc procedure is performed without making any reference to the

dynamical problem – which has been falsely considered to be well-understood by analogy

to the Bloch electron’s quantum dynamics.

The reason for this is that in a great number of cases, physicists study the second-order

Maxwell equations obtained by “squaring” equation (2.3): that is because in media where

the bianisotropic tensor χ = 0 vanishes, the second-order eigenvalue problem for electric

and magnetic field can be solved separately, e. g.

ǫ−1∇×
�
µ−1∇×ϕE

n
(k)
�
=ωn(k)

2ϕE
n
(k)

for the electric Bloch functions and an analogous equation for the magnetic Bloch func-

tions.2 The “effective Hamiltonian” then supposedly approximates the physics of the full

equations associated to M2
EE
= ǫ−1∇× µ−1∇× (see e. g. [WH15]).

However, things are not as simple as they appear. In the absence of sources the dynam-

ical equation for the electric field is the wave equation

∂ 2
t
ψE(t) +M2

EE
ψE(t) = 0,

2We will ignore the problem of properly defining this equation when ε or µ is hermitian instead of real-

symmetric; because we lose the information on the sign and we are no longer able to implement the restriction

to positive frequencies in a straightforward fashion.
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and as it is second order in time, we not only need to specify ψE(t0) but also the time

derivative ∂tψ
E(t0) = ǫ

−1∇×ψH(t0), which is determined through the magnetic field at

initial time t0. Consequently, the solution cannot be of the form e−i(t−t0)M
2
EEψE(t0), which

would allow us to replace the “evolution group” e−it M2
EE by the effective “evolution” e−itHeff.

Again, this problem disappears if we stick to the proper Schrödinger formalism where the

evolution equation is first-order in time and is mathematically of the form of a Schrödinger

equation, namely

i∂tΨ(t) = MΨ(t), Ψ(t0) = Φ,

where M = W−1 Rot
��
ω≥0

is selfadjoint (hermitian). Now suppose we are given a closed

subspace Hrel spanned by states which we deem relevant, and that this subspace is left

invariant by the dynamics; one common example would be states from a given finite fre-

quency range. That means if we start with Φ ∈ Hrel then the time-evolved state Ψ(t) =

e−it M
Φ ∈ Hrel remains in the relevant subspace. This translates to M Prel = P Mrel for the

orthogonal projection Prel onto Hrel. Now if you can approximate M Prel ≈ Meff Prel by some

effective Maxwell operator Mrel for states from Hrel, then a Duhamel argument

e−it M Peff − e−it Meff Peff =

∫ t

0

ds
d

ds

�
e−it M e−i(t−s)Meff

�
Peff

≈
∫ t

0

ds e−it M
�
M −Meff

�
Peff e−i(t−s)Meff ≈ 0 (5.1)

yields that the effective dynamics remain close to the full dynamics, e−it Meff Peff ≈ e−it M Peff.

Evidently, this argument (which we have made rigorous in [DL14a]) crucially relies on the

fact that we deal with first-order equations in time.

If V is a commuting or anticommuting linear or antilinear symmetry of M that leaves

Hrel invariant (i. e. [V, Prel] = 0), then Meff necessarily inherits V as at least an approximate

symmetry,

V Meff Peff ≈ V M Peff = M Peff V ≈ Meff V Peff.

Of course, we can also make this argument in reverse: any symmetry of the effective

Maxwell operator is at least an approximate symmetry of the original, full Maxwell oper-

ator M . This immediately disqualifies effective “Hamiltonians” that possess an odd time-

reversal symmetry due to the choice of material.

Electric vs. magnetic vs. electromagnetic Chern numbers The second-order formalism

suggests that knowledge of the electric part of the Bloch functions suffices for all of our

subsequent arguments. Indeed, many works (e. g. [Wan+08]) compute the Chern num-

bers based only on the electric field. That is because to any given family of relevant fre-

quency bands we can associated an electric Bloch vector bundle E E
B

: just as described in
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Section 4.2 we glue together the electric subspaces HE
rel
(k) = span
�
ϕE

n
(k)
	

n∈I spanned by

the electric parts of the relevant Bloch functions. Such a bundle is then characterized up

to continuous deformations by electric (first and second) Chern numbers C E
j
, j = 1,2.

Of course, we could base our arguments off of the magnetic field and obtain a magnetic

Bloch vector bundle EH
B

, characterized by magnetic Chern numbers CH
j

, j = 1,2. That is

all in addition to the electromagnetic Bloch bundle EB = E EH
B

constructed in Section 4.2

and electromagnetic Chern numbers C EH
j

. A priori there is no reason to believe that there

necessarily exist simple relations between them, e. g. we do not know whether they sum

up, C EH
j
= C E

j
+ CH

j
, or whether C EH

j
6= 0 implies C E

j
6= 0 and CH

j
6= 0 — or vice versa.

Any such relations need to be verified at the very least by example, preferable through a

mathematical proof.

While the first-order formalism clearly singles out electromagnetic Chern number, from

the vantage point of the second-order formalism it seems as if we have three choices. From

a mathematical perspective, C E
j

are collections of Chern numbers and as such integers,

but it is no longer clear what physical significance they hold. Even though we do not

know whether C E
1
6= 0 implies that also the electromagnetic Chern numbers C EH

1
6= 0 are

non-zero, it is not unreasonable to use C E
1
6= 0 as a way to qualitatively decide whether

unidirectional boundary modes exist. However, we cannot expect this to translate to the

quantitative prediction Haldane has made (Conjecture 1.1).

5.2.2 No analog of the Quantum Spin Hall Effect exists

There are several distinct effects which claim to be photonic analogs of the “Quantum Spin

Hall Effect”, because the propagation direction of a boundary mode is locked to its spin or

isospin degree of freedom (e. g. [Kha+13; Che+15; BSN15; WH15]). The naming at the

very least suggests that topology is at the heart of this spin-momentum locking.

In the context of quantum solid state physics, the Quantum Spin Hall Effect [KM05]

has a very precise meaning: the system is of class AII, meaning it possesses an odd time-

reversal symmetry, and the presence of this symmetry is the immediate cause for the

spin-momentum locking. However, as we have discovered here electromagnetic media

do not support odd time-reversal symmetries — only even ones are admissible (cf. Propo-

sition 3.2). Thus, in a topological sense, these phenomena are not photonic analogs of

the Quantum Spin Hall Effect. Nevertheless, of the four works mentioned, one of them

[WH15] actually does describe a topological effect.

Bliokh et al’s “Quantum Spin Hall Effect for light” Interfaces between electromagnetic

media such as between a dielectric and a metal (so that the sign of ǫ flips) can support

surface modes which are localized to the vicinity of the surface layer. Such surface waves

are also known as surface plasmon-polaritons. For simplicity, let us focus on interfaces

between two homogeneous media, as that situation admits an explicit analytical solution.
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Bliokh, Smirnova and Nori [BSN15] gave a very concise and elegant explanation for the

following effect: if these surface waves are excited with circularly polarized light, then

the propagation direction of the surface wave is locked to the handedness of the incoming

light. To be clear, despite calling this an analog of the “Quantum Spin Hall effect” Bliokh

et al did not claim that this effect is of topological origin. Instead, spin-momentum locking

here is due to the transversality constraint and the fact that surface modes come in a single,

fixed polarization — they are necessarily transverse magnetic waves.

The localization of the surface wave to the interface means that both, the local wave vec-

tor k = (kx , ikz) and the polarization vector Ψsurf(k) =
�
ψE

surf
(k) , ψH

surf
(k)
�

are necessarily

complex (cf. [BSN15, equation (4)]), for otherwise the transversality constraint

k ·ψE
surf
(k) = 0= k ·ψH

surf
(k)

could not be satisfied. The fact that these polarization vectors are complex forces the

electric field into a rotation in the plane of propagation, which, in turn, gives rise to a spin

angular momentum transverse to the plane. And the sense of rotation, i. e. the sign of

the transverse spin is locked to the propagation direction of the surface wave (cf. [BSN15,

Figure 3A]); time-reversal symmetry, which flips spin and and the in-plane momentum kx ,

relates these two counterpropagating waves.

Because the incoming circularly polarized light can only excite surface modes whose

sense of rotation matches its own, the sense of rotation dictates which of the two counter-

propagating surface modes will be excited — and therefore the propagation direction. This

robust mechanism, which is responsible for spin-momentum locking, is at the heart of a

broad range of phenomena [Bli+15; Hat+09; Kur+12]. However, this is not a topological

effect, in particular not an analog of the Quantum Spin Hall Effect in the topological sense.

Time-reversal symmetric media with isospin symmetry Manufacturing electromagnetic

media for which time-reversal symmetry is broken at optical frequencies is difficult. To

circumvent that difficulty several researchers had had the idea to add an isospin symmetry

to a medium with time-reversal symmetry. One way to do that is by introducing a crys-

tallographic symmetry: Wu and Hu [WH15] proposed to arrange identical rods made of

a dielectric in a hexagonal lattice and sandwiched between two metal plates. To be spe-

cific, the electric permittivity ǫ(x) = ǫd(x) 1 is a real scalar, the magnetic permeability

µ(x) = µ0 equals the vacuum value and the bianisotropic tensor χ = 0 is absent; were

it not for the additional isospin symmetry, this material would be of class AI. Instead, it

possesses three symmetries, namely the even time-reversal symmetry T3, the (unitary, com-

muting) isospin symmetry as well as their product.

Provided the parameters are chosen correctly, such photonic crystals have a photonic

band gap for TM modes and there are edge modes at the boundary (cf. [WH15, Fig-

ure 3]). Due to the presence of the time-reversal symmetry T3 these boundary modes
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come in pairs that are mirror symmetric with respect to reflection kx 7→ −kx ; here, kx is

the Bloch momentum associated to the remaining periodic direction parallel to the edge.

Moreover, each of these boundary modes have a definite pseudospin. This leads to a locking

between pseudospin and propagation direction: according to the band diagram [WH15,

Figure 5] the boundary modes associated to isospin ↑ has a strictly positive group ve-

locity (∂xωedge,↑ > 0) while its symmetric partner ↓ has strictly negative group velocity

(∂xωedge,↓ < 0). Moreover, they propose that this is described by an effective Hamiltonian

with an odd time-reversal symmetry. Therefore, Wu and Hu incorrectly argue that this is an

analogue to the Quantum Spin Hall Effect and the system possesses a Z2-valued invariant.

It is worthwhile to outline their argument in order to trace the mistakes in their analysis:

first of all, they employ the second-order formalism which is not suited for the symmetry

classification (cf. [DL14b, Section 3]) as it becomes impossible to distinguish between com-

muting and anticommuting symmetries of the auxiliary Maxwell operator Maux
+
= Maux

− .

Wu and Hu erroneously identify complex conjugation as being of time-reversal type,

C
�
Maux
+

�2
C = (−1)2
�
Maux
+

�2
=
�
Maux
+

�2

whereas C actually anticommutes with Maux
+

. In fact, because the real-valuedness of elec-

tromagnetic fields is one of the tenets of electromagnetism, the equations describing elec-

tromagnetic waves in media can never break complex conjugation symmetry. Therefore,

this unbreakable symmetry is not relevant for the topological classification.

Not only this point, but also the next item illustrates why the second-order formalism

is unsuitable for making quantum-wave analogies rigorous: The authors then note the

(avoided) conical intersection at k = 0 and propose an effective operator for those which

possesses an odd time-reversal symmetry. Because this effective 4-band operator [WH15,

Supplementary Material, equations (S28)–(S29)] supposedly approximates
�
Maux
+

�2
, it is

quadratic instead of linear in k. We caution against making such ad hoc arguments without

making any reference to the dynamical problem – the reasoning to replace a Hamiltonian

with an effective one crucially relies on the equations of motion being first order in time

(e. g. via a Duhamel argument akin to equation (5.1)). Without having established a direct

link between the “effective Hamiltonian” and Maxwell’s equations, the presence of an odd

time-reversal symmetry for the “effective Hamiltonian” does not imply that the original

equations, Maxwell’s equations, sport such a symmetry as well.

Then the frequency bands and their Chern numbers are computed; two of these bands

have Chern numbers 0 while the other two have Chern numbers ±1. The Z2-invariant

is the Chern number mod 2. Note that due to the presence of the even time-reversal

symmetry Chern numbers come in pairs of equal magnitude and opposite sign.

We can give a simple and systematic explanation of Wu’s and Hu’s finding, the locking

of spin and momentum in the boundary modes, by applying the topological classification
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tools of Section 4. In particular, the presence of topologically protected boundary modes

does not contradict our main classification result (Theorem 1.5).

The system Wu and Hu studied exemplifies why assuming the absence of additional

unitary, commuting symmetries (Assumption 1.3) is absolutely crucial for the physics and

not a mathematical footnote. The existence of a unitary, commuting (isospin) symmetry

means we can decompose the Maxwell operator

M(k) = M↑(k)⊕M↓(k) =

�
M↑(k) 0

0 M↓(k)

�

into block operators M↑/↓ that act on the isospin ↑/↓ subspaces. Now two things may

happen: either the time-reversal symmetry is block-diagonal or it is not. The block operators

for dual symmetric media retain a time-reversal symmetry whereas for the system that Wu

and Hu consider, it turns out to be broken as we will explain below. Put another way, we are

dealing with a “2 × class A” system (one for each isospin eigenstate). The topology of such

a system is completely determined by the Chern numbers of the isospin-↑ bands; again,

thanks to the even time-reversal symmetry T3 the Chern numbers of the isospin-↓ bands

are necessarily equal in magnitude but have opposite sign compared to their symmetric

isospin-↑ partners.

The simplest way to see this is by observing that akin to [WH15, Supplementary Ma-

terial, equation (S11)] time-reversal symmetry flips isospins, and is therefore completely

block-offdiagonal in the isospin basis. Retracing these arguments on the level of Maxwell’s

equations with the correct symmetries is straightforward but lengthy — and fortunately

for us unnecessary.

That is because breaking of time-reversal symmetry can be deduced solely from the band

picture obtained by Wu and Hu (cf. [WH15, Figure 5]): if the time-reversal symmetry were

block-diagonal, then M↑/↓ would inherit a time-reversal symmetry. Therefore, isospin-↑
edge bands would necessarily come in pairs, and that would mean the edge modes had to

be two-fold spin degenerate. However, according to the [WH15, Figure 5] the edge modes

are non-degenerate and have a definite isospin — M↑/↓ cannot possess a time-reversal

symmetry.

In summary, M↑/↓ are operators of class A, the same topological class as gyrotropic media

or quantum systems exhibiting the Quantum Hall Effect, and the topological invariants are

the usual Z-valued Chern numbers, rather than a Z2-valued invariant. Given the topolog-

ical classification, the spin-momentum locking cannot be seen as a topological analog of

the Quantum Spin Hall Effect; instead, it is analogous to the usual Quantum Hall Effect.

These Chern numbers come in isospin pairs: due to the time-reversal symmetry of the total

system, isospin-↓ Chern numbers are equal in magnitude but have opposite sign compared

to their symmetric isospin-↑ partner — after all, they need to sum to 0. This correct clas-

sification explains why edge modes of given isospin are unidirectional and are afforded

topological protection — provided that the perturbation preserves the isospin symmetry.
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However, generic perturbations, i. e. those that break the honeycomb symmetry, will mix

isospin states and backscattering may occur. That is why topological effects which are

due to crystallographic symmetries are less robust than those which only depend on sym-

metries of the medium; however, in light of the difficult of fabricating media which are

gyrotropic and lossless in the optical or infrared, this may still be a worthwhile tradeoff in

practice.

Certain bianisotropic media A different approach is taken by Khanikaev et al [Kha+13]

as well as Chen et al [Che+15] who propose to realize an isospin degree of freedom due

to a symmetry of the material weights

W =

�
ǫ χ

χ ǫ

�
= 1⊗ ǫ +σ1 ⊗χ 6=W = 1⊗ ǫ −σ1 ⊗χ

where ǫ = diag
�
ǫ⊥,ǫ⊥,ǫz

�
is purely diagonal and the bianistropic tensor

χ =




0 +iχx y 0

−iχx y 0 0

0 0 0





is purely imaginary and offdiagonal. According to the nomenclature introduced here, the

medium described by W possesses a single even time-reversal symmetry, T3, and therefore

belongs to the non-gyrotropic class of media (class AI, cf. the table in Theorem 1.4). Absent

any crystallographic symmetries, our analysis shows there are no topological effects — in

direct contradiction to the predictions made in [Kha+13; Che+15]. We will explain where

their mistake lies.

Once we express W = 1⊗ǫ+σ1⊗χ in terms of Pauli matrices, we immediately see that

the weights commute with the operator J1 = σ1 ⊗ 1. The authors of [Kha+13; Che+15]

exploited the fact that W and J1 can be diagonalized simultaneously proceeded to split

Maxwell’s equations into separate “spin-up” and “spin-down” equations. Time-reversal

symmetry T3 maps between spin-up and spin-down states. The authors then show the

existence of boundary modes; especially [Che+15] seems to make a very persuasive argu-

ment as they even verify the bulk-edge correspondence quantitatively.

Unfortunately, the analyses in [Kha+13; Che+15] start out with unphysical equations —

“spin” eigenmodes
�
E + H , E − H
�

are not transversal. There are two main reasons for

this: first of all, J1 anticommutes with the free Maxwell operator Rot =
�

0 +i∇×
−i∇× 0

�
and

therefore also anticommutes with the product Maux =W−1 Rot . That means J1 necessarily

maps positive onto non-positive states. Secondly, the authors did not take into account

that negative frequency states are governed by a different set of Maxwell’s equations that

involve the complex conjugate weights W 6=W .
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As a consequence of J1 Maux J1 = −Maux, there exist no positive frequency solutions to

the spin eigenvalue equation J1Ψ = ±Ψ. In fact, J1 is not even well-defined as an operator

on the non-negative frequency subspace H −→ H. The same arguments apply to the

ω ≤ 0 subspace. Consequently, spin eigenstates necessarily contain linear combinations

of positive and negative frequency states.

The last fact makes verifying the transversality of spin eigenstates more difficult as we

have two distinct transversality conditions (2.3b) that mix — one for positive frequency

waves with weights W+ =W and one for negative frequencies with the complex conjugate

weights W− =W 6=W . The fact that the projections Π± =
1
2

�
1± J1

�
onto the eigenspaces

are explicit means that we need to check whether for an arbitrary positive frequency state

Ψ the complex electromagnetic field J1Ψ (composed solely of non-positive frequencies!)

is transversal. However, a direct computation shows

W J1 = −1⊗χ +σ1 ⊗ ǫ 6=W = 1⊗ ǫ +σ1 ⊗χ ,

and J1Ψ violates the transversality condition,

Div W J1Ψ 6= Div W Ψ = 0.

In fact, replacing W with W in the above computation shows that J1Ψ also does not satisfy

the positive frequency transversality condition either. Hence, spin eigenstates
�
E+H , E−H
�

cannot be transversal, they violate one of Maxwell’s equations (2.3b).

5.3 Possible directions for future work

The premise of the article was to distinguish between material symmetries, which have

been studied here, and crystallographic symmetries. Because electromagnetic and media

for other classical waves can be fabricated to exact specifications, there is a strong interest

in understanding the role that crystallographic symmetries play. Our analysis of [WH15]

shows the power our approach holds — we were straightfowardly able to link the pres-

ence of a C6-symmetry to a topological effect without making reference to an “effective

Hamiltonian” whose link to the original equations is tenuous. What is more, rewriting

Maxwell’s equations in the form of a Schrödinger equation (that is first order in time!)

opens the door to the rich library of results from the condensed matter community (see

e. g. the references in [HK10; Chi+16; PS16]).

Secondly, we still owe an answer to the first of the two questions from the introduction

— a derivation of Haldane’s Phontonic Bulk-Boundary Conjecture. That requires us to

tackle the problems outlined in Section 5.2.1.

Then we intend to look beyond electromagnetism and broaden our considerations to in-

clude other classical waves. Indeed, analogs of the Quantum Hall Effect have been realized

with other classical waves, including certain acoustic waves [Fle+14; Saf+14; Pea+15;
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Che+17] and coupled pendula [SH15; SH16], and we would like to understand to what

extent these phenomenological similarities are founded on similar mathematics. Indeed,

quite a few wave equations share the same essential structure that characterize Maxwell’s

equations: they are first-order in time, feature a product structure and the physical fields

are real. For such wave equations the construction outlined in [DL17b, Section 6] yields

a Schrödinger formalism. Just like with electromagnetism this will allow us and others to

reach into the rich toolbox of techniques initially developed for quantum systems and ap-

ply them to classical waves; the topological classification of media these waves propagate

in would be but one example.

A mathematically and physically very intriguing question concerns the generalization of

our Schrödinger formalism and mathematical classification to metals and metamaterials

which violate the essential assumption that the material weights be positive. One mathe-

matical consequence is that 〈 · , · 〉W fails to be a scalar product; similar to measuring dis-

tances with respect to the Lorentzian metric, 〈Ψ,Ψ〉W = 0 can vanish even if Ψ 6= 0. Spaces

with such indeterminate inner products are called Krein spaces [AI89], and their mathe-

matical properties are very different from those of Hilbert spaces. Unfortunately, Krein-

selfadjointness (Krein-hermitianness) is a much weaker notion, e. g. Krein-selfadjoint op-

erators do not necessarily possess a functional calculus, and because of that it is a priori not

even clear how to implement the restriction to positive frequencies. Exploring a topologi-

cal classification and more advanced topics such as bulk-boundary correspondences would

be mathematically very intriguing while at the same time having clear physical applica-

tions. Perhaps these give rise to topological effects with no quantum analog [BMS75]. One

“drosophila system” we have our eyes on are spin waves [Shi+13]where W = σ3⊗1; they

lack many of the technical complications yet still force us to work with an indeterminate

inner product.
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