
ar
X

iv
:1

80
1.

02
77

9v
1 

 [
m

at
h-

ph
] 

 9
 J

an
 2

01
8

Quantum walks with an anisotropic coin II : scattering theory

S. Richard1∗, A. Suzuki2†, R. Tiedra de Aldecoa3‡

1 Graduate school of mathematics, Nagoya University, Chikusa-ku,

Nagoya 464-8602, Japan

2 Division of Mathematics and Physics, Faculty of Engineering, Shinshu University, Wakasato,

Nagano 380-8553, Japan

3 Facultad de Matemáticas, Pontificia Universidad Católica de Chile,

Av. Vicuña Mackenna 4860, Santiago, Chile

E-mails: richard@math.nagoya-u.ac.jp, akito@shinshu-u.ac.jp, rtiedra@mat.puc.cl

Abstract

We perform the scattering analysis of the evolution operator of quantum walks with an anisotropic

coin, and we prove a weak limit theorem for their asymptotic velocity. The quantum walks that we

consider include one-defect models, two-phase quantum walks, and topological phase quantum walks

as special cases. Our analysis is based on an abstract framework for the scattering theory of unitary

operators in a two-Hilbert spaces setting, which is of independent interest.
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1 Introduction

This paper is motivated by recent works on topological phenomena for quantum walks [3, 6, 7, 13, 14, 15,

16, 23]. It is the second part of a series of papers on one-dimensional quantum walks with an anisotropic

behaviour at infinity. In our first paper [25], we performed the spectral analysis of the quantum walks and

we developed abstract commutator methods for unitary operators in a two-Hilbert spaces setting. Here

we pursue our study by investigating the scattering theory of the quantum walks and establishing a weak

limit theorem [17, 18]. We also present a suitable abstract framework for the proof of the existence and

completeness of wave operators for unitary operators in a two-Hilbert spaces setting.

The one-dimensional anisotropic quantum walks that we consider are described by a unitary operator

U := SC in the Hilbert space H := ℓ2(Z,C2), where S is a shift operator and C is a coin operator acting

by multiplication by unitary matrices C(x) ∈ U(2), x ∈ Z, with short-range asymptotics at infinity:

C(x) =

{
Cℓ +O(|x |−1−εℓ) as x → −∞
Cr +O(|x |−1−εr) as x → +∞

with Cℓ, Cr ∈ U(2), εℓ, εr > 0. (1.1)

The assumption (1.1) covers a wide range of quantum walks such as homogeneous (or translation-

invariant) quantum walks [1, 12, 17, 18], one-defect models [5, 19, 20, 29], and two-phase quantum
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walks [8, 9, 10]. Some classes of inhomogeneous (or position-dependent) quantum walks [4, 28] and

split-step quantum walks [14] are also covered by our assumption. We refer to the introduction of [25]

for additional references on earlier works.

A weak limit theorem for quantum walks is a result of the following type: If Xn denotes the random

variable for the position of a quantum walker at time n ∈ Z, then Xn/n converges in law to a random

variable V as n →∞. Since Xn/n is the average velocity of the quantum walker, the random variable V can

be interpreted as the asymptotic velocity of the walker. It is therefore of particular interest to determine

the density function of the probability distribution µV of V. As was put into evidence in [28], where the

second author considered the case Cℓ = Cr in (1.1), the key ingredients for the proof of the weak limit

theorem are the following:

(i) absence of singular continuous spectrum for U,

(ii) existence of an asymptotic velocity operator Vac for U.

Once these assertions are proved, a weak limit theorem can be established in a way similar to [28] and

the distribution µV can be expressed as

µV =
∥∥EUp Ψin

∥∥2
H δ0 +

∥∥EVac( ·)EUacΨin
∥∥2
H, (1.2)

with δ0 the Dirac measure for the point 0, Ψin ∈ H the initial state of the walker, EUp and EUac the

projections onto the pure point and absolutely continuous subspaces of U, and EVac the spectral measure

of Vac. In our first paper [25], we proved the assertion (i) and provided information on the eigenvalues of

U by constructing a conjugate operator A for U under the assumption (1.1). Here, we build on the results

of [25] to prove the assertion (ii) and to establish a detailed formula for the distribution (1.2).

The organisation of the paper is the following. In Section 2, we develop our framework for the

scattering theory for unitary operators in a two-Hilbert spaces setting. Given two unitary operators U and

U0 acting in Hilbert spaces H and H0, and a bounded operator J : H0 → H, we establish in Theorem

2.5 and Corollary 2.6 criteria for the existence and completeness under smooth perturbations of the local

wave operators

W±(U,U0, J,Θ) := s-lim
n→±∞

U−nJUn0E
U0(Θ), (1.3)

where EU0 is the spectral measure of U0 and Θ ⊂ T := {z ∈ C | |z | = 1} an open set. These results for

the scattering theory of unitary operators in two Hilbert spaces are new in such a generality. They are a

natural analogue of similar results for the scattering theory of self-adjoint operators in two Hilbert spaces,

which can be found for example in [26, 30].

In Section 3, we apply our results on scattering theory to anisotropic quantum walks with full evolution

operator U = SC and free evolution operator U0 := Uℓ⊕Ur, where Uℓ := SCℓ and Ur := SCr describe the

behaviour of the quantum walker as x → −∞ and x → +∞. We prove in Theorem 3.3 the existence and

completeness of the wave operators for the pair {U0, U}, and in Proposition 3.4 we give a description of

the initial sets of the wave operators in terms of the velocity operators Vℓ, Vr for the evolution operators

Uℓ, Ur.

Section 4 is dedicated to the proof of the weak limit theorem for the anisotropic quantum walks.

First, we prove in Proposition 4.1 the assertion (ii) above, that is, the existence of an asymptotic velocity

operator Vac for the full evolution operator U. We show that Vac is given by

Vac = W+(U,U0, J,Θ)V0W+(U,U0, J,Θ)
∗,

with V0 := Vℓ⊕ Vr the asymptotic velocity operator for the free evolution operator U0. Then, in Theorem

4.3 we use the results (i) and (ii) above to prove the weak limit theorem, and in Theorem 4.8 we establish

an explicit formula for the density function of the probability distribution µV given in (1.2). Namely, if we
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set aℓ := |(Cℓ)1,1| and ar := |(Cr)1,1|, let fK : R × (0, 1] → [0,∞) be the Konno function, and write χB
for the characteristic function for a set B, then we prove that V has distribution

µV(dυ) = κ0 δ0(dυ) + κℓ δ−1(dυ) + κr δ1(dυ)

+ χ[−aℓ,0)(υ)wℓ(υ)
1
2 fK(υ, aℓ)dυ + χ(0,ar ](υ)wr(υ)

1
2 fK(υ, ar)dυ, (1.4)

with κ0 := ‖EUpΨin‖2H, κℓ, κr ≥ 0 and wℓ, wr : R → [0,∞). In addition, we show that κℓ is nontrivial

when aℓ = 1, κr is nontrivial when ar = 1, wℓ is nontrivial and has support in [−aℓ, 0) when aℓ ∈ (0, 1),
and wr is nontrivial and has support in (0, ar] when ar ∈ (0, 1). See Theorem 4.8 for the explicit formulas

of κℓ, κr and wℓ, wr. We also show that the decomposition (1.4) of µV is unique.

An interpretation of the formula (1.4) detailed after Theorem 4.3 and in Example 4.10 is the following.

Localisation occurs if the probability that the asymptotic velocity vanishes is positive, i.e., P(V = 0) > 0.

Since (1.4) implies that P(V = 0) = κ0 = ‖EUpΨin‖2H, localisation occurs if and only if the initial state Ψin
has an overlap with the pure point subspace of U. Furthermore, the quantum walker moves asymptotically

to the left at speed υ ∈ [−aℓ, 0) if aℓ ∈ (0, 1) and at speed υ = 1 if aℓ = 1. Similarly, the quantum

walker moves asymptotically to the right at speed υ ∈ (0, ar] if ar ∈ (0, 1) and at speed υ = 1 if ar = 1.

In particular, if aℓ > ar, then the quantum walker can move faster on the left-hand side than on the

right-hand side.

Finally, in Example 4.11 at the end of Section 4, we explain how our formula (1.4) for the distribution

µV generalises several formulas already available in the literature. For example, it generalises a similar

formula for isotropic quantum walks where C(x) = C∞ + O(|x |−1−ε) [28], which include one-defect

models [20] and homogeneous quantum walks [17, 18, 12]. The formula (1.4) also generalises the formula

obtained in [9] for two-phase quantum walks where C(x) = C− for x ≤ −1 and C(x) = C+ for x ≥ 1,
and (C−)1,1 = (C+)1,1.

2 Scattering theory in a two-Hilbert spaces setting

We discuss in this section the existence and the completeness under smooth perturbations of the local

wave operators for unitary operators in a two-Hilbert spaces setting. Namely, given two unitary operators

U0, U in Hilbert spaces H0,H with spectral measures EU0 , EU , a bounded operator J : H0 → H, and an

open set Θ ⊂ T := {z ∈ C | |z | = 1}, we give criteria for the existence and the completeness of the

strong limits

W±(U,U0, J,Θ) := s-lim
n→±∞

U−nJUn0E
U0(Θ)

under the assumption that the difference JU0−UJ factorises as a product of a locally U-smooth operator

on Θ and a locally U0-smooth operator on Θ. We start with a standard result on the intertwining property

of wave operators. Note that we use the notation B(H1,H2) (resp. K (H1,H2)) for the set of bounded

(resp. compact) operators between Hilbert spaces H1 and H2, and we set B(H1) := B(H1,H1) and

K (H1) := K (H1,H1).

Lemma 2.1 (Intertwining property). Let U0, U be unitary operators in Hilbert spaces H0,H with spectral

measures EU0 , EU , let J ∈ B(H0,H), and let Θ ⊂ T be an open set. Assume that W±(U,U0, J,Θ) exist.

Then, we have for each bounded Borel function η : T→ C the intertwining property

W±(U,U0, J,Θ)η(U0) = η(U)W±(U,U0, J,Θ). (2.1)

Proof. A direct calculation implies the equality W±(U,U0, J,Θ)Uk0 = U
kW±(U,U0, J,Θ) for each k ∈ Z.

Using Stone-Weierstrass theorem we infer from this equality that (2.1) holds for each η ∈ C(T). Finally,

using a standard approximation argument in the weak topology we extend the result to each bounded

Borel function η : T→ C.
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Next, we define the closed subspaces of H

N±(U, J,Θ) :=

{
ϕ ∈ H | lim

n→±∞

∥∥J∗UnEU(Θ)ϕ
∥∥
H0 = 0

}
,

and note that EU(T \Θ)H ⊂ N±(U, J,Θ), that U is reduced by N±(U, J,Θ), and that

Ran
(
W±(U,U0, J,Θ)

)
⊥ N±(U, J,Θ),

this last fact being shown as in the self-adjoint case, see [30, Lemma 3.2.1]. In particular, one has the

inclusion

Ran
(
W±(U,U0, J,Θ)

)
⊂ EU(Θ)H⊖N±(U, J,Θ),

which motivates the following definition:

Definition 2.2 (J-completeness). Assume that W±(U,U0, J,Θ) exist. The operators W±(U,U0, J,Θ) are

J-complete on Θ if

Ran
(
W±(U,U0, J,Θ)

)
= EU(Θ)H⊖N±(U, J,Θ).

Remark 2.3. In the particular case H0 = H and J = 1H, the J-completeness on Θ reduces to the

completeness of W±(U,U0, J,Θ) on Θ in the usual sense. Namely, Ran
(
W±(U,U0, 1H,Θ)

)
= EU(Θ)H,

and the operators W±(U,U0, 1H,Θ) are unitary from EU0(Θ)H to EU(Θ)H.

The following criterion for J-completeness is shown as in the self-adjoint case, see for example [30,

Thm. 3.2.4]:

Lemma 2.4. If W±(U,U0, J,Θ) and W±(U0, U, J∗,Θ) exist, then W±(U,U0, J,Θ) are J-complete on Θ.

Proof. The intertwining property and the existence of the operators W±(U0, U, J∗,Θ) imply that for any

ϕ ∈ H and ψ ∈ H0
〈
W±(U,U0, J,Θ)

∗ϕ,ψ
〉
H0 =

〈
ϕ,EU(Θ)W±(U,U0, J,Θ)ψ

〉
H

= lim
n→±∞

〈
EU(Θ)ϕ,U−nJUn0E

U0(Θ)ψ
〉
H

= lim
n→±∞

〈
EU0(Θ)U−n0 J∗UnEU(Θ)ϕ,ψ〉H0

=
〈
W±(U0, U, J

∗,Θ)ϕ,ψ
〉
H0 .

Thus, W±(U0, U, J∗,Θ) is the adjoint ofW±(U,U0, J,Θ). Since ker
(
W±(U0, U, J∗,Θ)

)
= N±(U, J,Θ) and

EU(T \Θ)H ⊂ N±(U, J,Θ), it follows that

Ran
(
W±(U,U0, J,Θ)

)
= H⊖ ker

(
W±(U,U0, J,Θ)

∗)

= H⊖N±(U, J,Θ)

= EU(Θ)H⊖N±(U, J,Θ),

which proves the claim.

For the next theorem, we recall that the spectral support suppU(ϕ) of a vector ϕ ∈ H with respect

to U is the smallest closed set Ω ⊂ T such that EU(Ω)ϕ = ϕ. We also recall that if G is an auxiliary

Hilbert space, then an operator T ∈ B(H,G) is locally U-smooth on an open set Θ ⊂ T if for each closed

set Θ′ ⊂ Θ there exists cΘ′ ≥ 0 such that
∑

n∈Z

∥∥TUnEU(Θ′)ϕ
∥∥2
G ≤ cΘ′ ‖ϕ‖

2
H for each ϕ ∈ H, (2.2)

and we refer to [11, Sec. 2] or [25, Sec. 3.1] for more information on locally U-smooth operators.
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Theorem 2.5. Let U0, U be unitary operators in Hilbert spaces H0,H with spectral measures EU0 , EU ,

J ∈ B(H0,H), andΘ ⊂ T be an open set. Let G be an auxiliary Hilbert space, T0 ∈ B(H0,G) a locally U0-

smooth operator on Θ and T ∈ B(H,G) a locally U-smooth operator on Θ such that JU0−UJ = T ∗T0.
Then, the wave operators

W±(U,U0, J,Θ) = s-lim
n→±∞

U−nJUn0E
U0(Θ) (2.3)

exist, are J-complete on Θ, and satisfy the relations

W±(U,U0, J,Θ)
∗ = W±(U0, U, J

∗,Θ) and W±(U,U0, J,Θ)η(U0) = η(U)W±(U,U0, J,Θ)

for each bounded Borel function η : T→ C.

Proof. We adapt the proof of [2, Thm. 7.1.4] to the case of unitary operators in a two-Hilbert spaces

setting. The existence of the limits (2.3) is a direct consequence of the following assertion: For each

ϕ0 ∈ H0 such that Θ0 := suppU0(ϕ0) ⊂ Θ, and for each η ∈ C∞c (Θ,R) such that η(θ) = 1 on a

neighbourhood of Θ0

s-lim
n→±∞

η(U)U−nJUn0ϕ0 exist and lim
n→±∞

∥∥(1− η(U)
)
U−nJUn0ϕ0

∥∥
H = 0. (2.4)

To prove the first claim in (2.4), we take ϕ ∈ H and observe that Wn := η(U)U−nJUn0 satisfies for

m ≤ n − 1

∣∣∣
〈
ϕ, (Wn −Wm)ϕ0

〉
H

∣∣∣ =

∣∣∣∣∣∣

n∑

j=m+1

〈
ϕ, η(U)U−j(JU0 − UJ)U j−10 ϕ0

〉
H

∣∣∣∣∣∣

=

∣∣∣∣∣∣

n∑

j=m+1

〈
TU jη(U)ϕ, T0U

j−1
0 ϕ0

〉
G

∣∣∣∣∣∣

≤




n∑

j=m+1

∥∥TU jη(U)ϕ
∥∥2
G



1/2


n∑

j=m+1

∥∥T0U j−10 ϕ0
∥∥2
G



1/2

≤ c1/2Θ1 ‖ϕ‖H




n∑

j=m+1

∥∥T0U j−1)0 ϕ0
∥∥2
G



1/2

,

with Θ1 := supp(η) and cΘ1 the constant appearing in the definition (2.2) of a locally U-smooth operator.

Since T0 is locally U0-smooth on Θ, it follows that ‖(Wn −Wm)ϕ0‖H → 0 as m →∞ or n → −∞. This

proves the first claim in (2.4).

To prove the second claim in (2.4), we take η0 ∈ C∞c (Θ,R) such that η0 ≡ 1 on Θ0 and ηη0 = η0.

Then, we have ϕ0 = η0(U0)ϕ0 and

(
1− η(U)

)
Jη0(U0) =

(
1− η(U)

)(
Jη0(U0)− η0(U)J

)
,

and thus the second claim in (2.4) follows from

lim
n→±∞

∥∥(Jη0(U0)− η0(U)J
)
Un0ϕ0

∥∥
H = 0.

Since the set of monomials zk with z ∈ T and k ∈ Z is total in C(T) for the sup norm, it is sufficient to

show that

lim
n→±∞

∥∥(JUk0 − UkJ
)
Un0ϕ0

∥∥
H = 0
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for all k ∈ Z. For k ≥ 1, the result follows from the formula JUk0 − UkJ =
∑k
j=1 U

j−1(JU0 − UJ)Uk−j0

and the local U0-smoothness of T0 since

lim
n→±∞

∥∥(JUk0 − UkJ
)
Un0ϕ0

∥∥
H ≤ lim

n→±∞

k∑

j=1

∥∥(JU0 − UJ)Uk−j0 Un0ϕ0
∥∥
H

≤ Const. k lim
m→±∞

∥∥T0Um0 η0(U0)ϕ0
∥∥
G

= 0,

and for k ≤ 0 the result follows from what precedes since JU
−|k|
0 −U−|k|J = −U−|k|

(
JU
|k|
0 −U |k|J

)
U
−|k|
0 .

So, the existence of the limits (2.3) has been established. Similar arguments, using the relation

U∗0J
∗ − J∗U∗ = T ∗0T instead of JU0 − UJ = T ∗T0, show that W±(U0, U, J∗,Θ) exist too. This, together

with standard arguments in scattering theory, implies the claims that follow (2.3).

To present the last result of this section, we need to recall some basic definitions of the conjugate

operator theory borrowed from [2, Chap. 5]: Let S ∈ B(H) and let A be a self-adjoint operator in H with

domain D(A). For k ∈ N, we say that S ∈ Ck(A) if the map R ∋ t 7→ e−i tA S ei tA ∈ B(H) is strongly of

class Ck . In the case k = 1, one has S ∈ C1(A) if and only if the quadratic form

D(A) ∋ ϕ 7→
〈
Aϕ,Sϕ

〉
H −

〈
ϕ,SAϕ

〉
H ∈ C

is continuous for the topology induced byH on D(A). The operator associated to the continuous extension

of the form is denoted by [A,S] ∈ B(H). Three regularity conditions slightly stronger than S ∈ C1(A)
are defined as follows: S ∈ C1,1(A) if

∫ 1

0

∥∥ e−i tA S ei tA+ei tA S e−i tA−2S
∥∥

B(H)
dt

t2
<∞.

S ∈ C1+0(A) if S ∈ C1(A) and

∫ 1

0

∥∥ e−i tA[A,S] ei tA−[A,S]
∥∥

B(H)
dt

t
<∞.

S ∈ C1+ε(A) for some ε ∈ (0, 1) if S ∈ C1(A) and
∥∥ e−i tA[A,S] ei tA−[A,S]

∥∥
B(H) ≤ Const. t

ε for all t ∈ (0, 1).

As banachisable topological vector spaces, these sets satisfy the continuous inclusions [2, Sec. 5.2.4]

C2(A) ⊂ C1+ε(A) ⊂ C1+0(A) ⊂ C1,1(A) ⊂ C1(A) ⊂ C0(A).

Let us also recall from [25, Sec. 3.1] that if U is unitary operator in H with U ∈ C1(A), then the

function ˜̺AU : T→ (−∞,∞] is defined by

˜̺AU(θ) := sup
{
a ∈ R | ∃ε > 0 such that EU(θ; ε)U−1[A,U]EU(θ; ε) & aEU(θ; ε)

}
, θ ∈ T,

where EU(θ; ε) := EU
(
Θ(θ; ε)

)
,Θ(θ; ε) := {θ′ ∈ T | | arg(θ−θ′)| < ε}, and for S, T ∈ B(H) the notation

T & S means that there exists K ∈ K (H) such that T +K ≥ S. By analogy with the self-adjoint case,

we say that A is conjugate to U at a point θ ∈ T if ˜̺AU(θ) > 0, and we write

µ̃A(U) :=
{
θ ∈ T | ˜̺AU(θ) > 0

}

for the open subset of T where A is conjugate to U. The set µ̃A(U) is open because the function ˜̺AU(θ)
is lower semicontinuous. Finally, we denote by σp(U0) and σp(U) the pure point spectra of U0 and U.

Now, by combining [25, Thm. 3.4] and Theorem 2.5, we obtain the following criterion for the existence

and completeness of the local wave operators.
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Corollary 2.6. Let U0, U be unitary operators in Hilbert spaces H0,H with spectral measures EU0 , EU and

A0, A self-adjoint operators inH0,H. Assume either that U0, U have a spectral gap and U0 ∈ C1,1(A0), U ∈
C1,1(A), or that U0 ∈ C1+0(A0), U ∈ C1+0(A). Let

Θ :=
{
µ̃A0(U0) \ σp(U0)

}
∩
{
µ̃A(U) \ σp(U)

}
,

J ∈ B(H0,H), G be an auxiliary Hilbert space, and assume there exist T0 ∈ B(H0,G) and T ∈ B(H,G)
with JU0 − UJ = T ∗T0 and such that T0 extends continuously to an element of B

(
D(〈A0〉s)∗,G

)
and T

extends continuously to an element of B
(
D(〈A〉s)∗,G

)
for some s > 1/2. Then, the strong limits

W±(U,U0, J,Θ) := s-lim
n→±∞

U−nJUn0E
U0(Θ)

exist, are J-complete on Θ, and satisfy the relations

W±(U,U0, J,Θ)
∗ = W±(U0, U, J

∗,Θ) and W±(U,U0, J,Θ)η(U0) = η(U)W±(U,U0, J,Θ)

for each bounded Borel function η : T→ C.

3 Scattering theory for quantum walks with an anisotropic coin

In this section, we present our results on the scattering theory for the pair {U0, U} when U is the evolution

operator of a one-dimensional quantum walk with an anisotropic coin and U0 is the corresponding free

evolution operator. We start by recalling from [25, Sec. 4] the needed definitions and facts on the operators

U and U0.

Let H be the Hilbert space of square-summable C2-valued sequences

H := ℓ2(Z,C2) =
{
Ψ : Z→ C2 |

∑

x∈Z
‖Ψ(x)‖22 <∞

}
,

where ‖ · ‖2 is the usual norm on C2. Then, the evolution operator of the one-dimensional quantum walk

in H that we consider is given by U := SC, with S a shift operator defined by

(SΨ)(x) :=

(
Ψ(0)(x + 1)

Ψ(1)(x − 1)

)
, Ψ =

(
Ψ(0)

Ψ(1)

)
∈ H, x ∈ Z,

and C a coin operator defined by

(CΨ)(x) := C(x)Ψ(x), Ψ ∈ H, x ∈ Z, C(x) ∈ U(2).

In particular, the evolution operator U is unitary in H since both S and C are unitary in H.

We assume that the coin operator C has an anisotropic behaviour at infinity. More precisely, we

assume that C converges with short-range rate to two asymptotic coin operators, one on the left and one

on the right in the following way:

Assumption 3.1 (Short-range assumption). There exist Cℓ, Cr ∈ U(2), κℓ, κr > 0, and εℓ, εr > 0 such

that

∥∥C(x)− Cℓ
∥∥

B(C2)
≤ κℓ |x |−1−εℓ if x < 0

∥∥C(x)− Cr
∥∥

B(C2)
≤ κr |x |−1−εr if x > 0,

where the indexes ℓ and r stand for “left" and “right".
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This assumption provides us with two new unitary operators Uℓ := SCℓ and Ur := SCr describing the

asymptotic behaviour of U on the left and on the right.

From now on, we shall use the symbol ⋆ to denote either the index ℓ or the index r, and we define

the space

Hfin :=
⋃

n∈N

{
Ψ ∈ H | Ψ(x) = 0 if |x | ≥ n

}
⊂ H,

the Hilbert space K := L2
(
[0, 2π), dk2π ,C

2
)
, and the unitary Fourier transform F : H → K which

corresponds to the unique continuous extension of the operator

(FΨ)(k) :=
∑

x∈Z
e−ikx Ψ(x), Ψ ∈ Hfin, k ∈ [0, 2π).

The operator U⋆ is decomposable in the Fourier representation, namely, for all f ∈ K and almost every

k ∈ [0, 2π) we have

(F U⋆F
∗f )(k) = Û⋆(k)f (k) with Û⋆(k) :=

(
eik 0

0 e−ik

)
C⋆ ∈ U(2).

Also, since Û⋆(k) ∈ U(2), the spectral theorem implies that

Û⋆(k) =

2∑

j=1

λ⋆,j(k)Π⋆,j (k),

with λ⋆,j(k) the eigenvalues of Û⋆(k) and Π⋆,j (k) the corresponding orthogonal projections. Furthermore,

for j ∈ {1, 2} we let v⋆,j : [0, 2π)→ R be the bounded function given by

v⋆,j(k) := i λ
′
⋆,j(k)

(
λ⋆,j(k)

)−1
, (3.1)

where ( ·)′ means the derivative with respect to k. The function v⋆,j is real valued because λ⋆,j takes values

in T. Then, we define for all f ∈ K and almost every k ∈ [0, 2π) the decomposable operator V̂⋆ ∈ B(K),

(
V̂⋆f

)
(k) := V̂⋆(k)f (k) where V̂⋆(k) :=

2∑

j=1

v⋆,j(k)Π⋆,j (k) ∈ B(C2), (3.2)

and we call asymptotic velocity operator the operator V⋆ := F ∗ V̂⋆F .

We can now start studying the scattering theory for the operator U. As free evolution operator, we

use the unitary operator U0 := Uℓ ⊕ Ur in the Hilbert space H0 := H⊕H. In [25, Sec. 4.2], it has been

shown that the spectrum of U0 coincides with the essential spectrum of U, namely,

σess(U) = σ(Uℓ) ∪ σ(Ur) = σ(U0).

As identification operator between the Hilbert spaces H0 and H, we use the operator J ∈ B(H0,H)
defined by

J(Ψℓ,Ψr) := jℓΨℓ + jrΨr, (Ψℓ,Ψr) ∈ H0,
where

jr(x) :=

{
1 if x ≥ 0
0 if x ≤ −1

and jℓ := 1− jr.

The first lemma of the section consists in a simple observation related to the J-completeness of the

wave operators for the pair {U0, U} :

Lemma 3.2. For any Ψ ∈ H, we have limn→∞ ‖J∗UnΨ‖H0 = 0 if and only if Ψ = 0.
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Proof. We know from [25, Lemma 4.7] that JJ∗ = 1H. Therefore, we have for any n ∈ Z and Ψ ∈ H

‖J∗UnΨ‖2H0 =
〈
J∗UnΨ, J∗UnΨ

〉
H0 =

〈
UnΨ, JJ∗UnΨ

〉
H = ‖U

nΨ‖2H = ‖Ψ‖2H,

which implies the claim.

A direct consequence of this lemma is that the abstract spaces N±(U, J,Θ) defined in Section 2 are

trivial in our case:

N±(U, J,Θ) = E
U(T \Θ)H. (3.3)

Now, in order to prove with the help of Corollary 2.6 the existence and the completeness of the

wave operators for the pair {U0, U}, we need to recall some facts about conjugate operators A0 and A

introduced in [25]. In the proof of [25, Thm. 4.5(c)], it has been shown that there exists for ⋆ = ℓ, r

an operator A⋆, defined in terms of the velocity operator V⋆ and essentially self-adjoint on Hfin, such

that U⋆ ∈ C2(A⋆). In addition, the operator A⋆ is conjugate to the operator U⋆ outside the set ∂σ(U⋆)

of boundary points of σ(U⋆) in T. As a consequence, the operator A0 := Aℓ ⊕ Ar is well-defined and

conjugate to U0 on the set σ(U0) \ τ(U), with

τ(U) := ∂σ(Uℓ) ∪ ∂σ(Ur).

The set τ(U), which contains at most 8 values, is called for this reason the set of thresholds of U. In

[25, Lemma 4.9], it has also been shown that the operator JA0J
∗ is essentially self-adjoint on Hfin, with

self-adjoint extension denoted by A, and that A is conjugate to U on σ(U0) \ τ(U).
We also recall a relation between the conjugate operator A and the position operator Q given by

(
QΨ

)
(x) := xΨ(x), x ∈ Z, Ψ ∈ D(Q) :=

{
Ψ ∈ H | ‖QΨ‖H <∞

}
.

This relation has already been used in the proof of [25, Lemma 4.13], but we make it more explicit now.

As mentioned in that proof, the operator 〈Q〉−1A⋆ defined on Hfin extends continuously to an element of

B(H). This implies that D(〈Q〉) ⊂ D(A⋆), and thus that D(〈Q〉) ⊂ D(A) due to the equality

A = JA0J
∗ = jℓAℓ jℓ + jrAr jr on Hfin. (3.4)

Therefore, we obtain by real interpolation the inclusions

D(〈Q〉)s ⊂ D(〈A〉)s and B
(
D(〈Q〉)−s ,H

)
⊂B

(
D(〈A〉)−s ,H

)
(3.5)

for each s > 0.

We can now state our theorem on the J-completeness of the wave operators for the pair {U0, U},
with the notation EUac for the orthogonal projection on the absolutely continuous subspace of U.

Theorem 3.3. Let Θ := {σ(Uℓ) ∪ σ(Ur)} \ {τ(U) ∪ σp(U)}. Then, the operators

W±(U,U0, J,Θ) = s-lim
n→±∞

U−nJUn0E
U0(Θ) (3.6)

exist and satisfy Ran
(
W±(U,U0, J,Θ)

)
= EUacH. In addition, the relations

W±(U,U0, J,Θ)
∗ = W±(U0, U, J

∗,Θ) and W±(U,U0, J,Θ)η(U0) = η(U)W±(U,U0, J,Θ)

hold for each bounded Borel function η : T→ C.

Before the proof, it is convenient to highlight some properties of the projection EU0(Θ). First, let

the matrices C⋆ ∈ U(2) be parameterised as

C⋆ = e
iδ⋆/2

(
a⋆ e

i(α⋆−δ⋆/2) b⋆ e
i(β⋆−δ⋆/2)

−b⋆ e−i(β⋆−δ⋆/2) a⋆ e
−i(α⋆−δ⋆/2)

)
(3.7)
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with a⋆, b⋆ ∈ [0, 1] satisfying a2⋆ + b
2
⋆ = 1, and α⋆, β⋆, δ⋆ ∈ (−π, π]. Then, recall from [25, Lemma 4.1 &

Prop. 4.5] that the operator U⋆ has pure point spectrum with σ(U⋆) ⊂ τ(U) if a⋆ = 0 and purely absolutely

continuous spectrum with ∂σ(U⋆) ⊂ τ(U) if a⋆ ∈ (0, 1]. Since we also know from [25, Thm. 2.4] that

the number of eigenvalues of U in any closed set Θ′ ⊂ T \ τ(U) is finite, we infer that

EU0(Θ) = EU0ac =





1H ⊕ 1H if aℓ, ar ∈ (0, 1],
1H ⊕ 0H if aℓ ∈ (0, 1] and ar = 0,

0H ⊕ 1H if aℓ = 0 and ar ∈ (0, 1],
0H ⊕ 0H if aℓ = ar = 0.

(3.8)

Thus, in the generic case aℓ, ar ∈ (0, 1], the projection EU0(Θ) appearing in (3.6) can simply be replaced

by 1H0 = 1H ⊕ 1H.

Proof of Theorem 3.3. All the claims except the equality Ran
(
W±(U,U0, J,Θ)

)
= EUacH follow from

Corollary 2.6 whose assumptions are checked now.

The proof of [25, Prop. 4.5(c)] implies that U0 ∈ C2(A0), [25, Lemma 4.13] implies that U ∈ C1+ε(A)
for each ε ∈ (0, 1) with ε ≤ min{εℓ, εr}, and [25, Prop. 4.11] implies that

{σ(Uℓ) ∪ σ(Ur)} \ {τ(U) ∪ σp(U)} ⊂
{
µ̃A0(U0) \ σp(U0)

}
∩
{
µ̃A(U) \ σp(U)

}
.

Thus, in order to apply Corollary 2.6, it is sufficient to prove the existence of operators T0 ∈ B(H0,G)
and T ∈ B(H,G) with JU0 − UJ = T ∗T0 and such that T0 extends continuously to an element of

B
(
D(〈A0〉s)∗,G

)
and T extends continuously to an element of B

(
D(〈A〉s )∗,G

)
for some s > 1/2. For

that purpose, we set s := (1 + ε)/2 and define the sesquilinear form D : H0 ×H → C by

D
(
(Ψℓ,Ψr),Ψ

)
:=

〈
〈Q〉sΨ,

∑

⋆∈{ℓ,r}

(
[j⋆, S]C⋆ − S(C − C⋆) j⋆

)
〈Q〉sΨ⋆

〉

H

for each (Ψℓ,Ψr) ∈ Hfin ⊕ Hfin and Ψ ∈ Hfin. With arguments similar to the ones used in the proofs

of [25, Lemmas 4.12 & 4.13], one shows that the form D extends continuously to a bounded form on

H0×H. Thus, there exists an operator D ∈ B(H0,H) (the same notation is used on purpose) such that

D
(
(Ψℓ,Ψr),Ψ

)
=

〈
Ψ, D(Ψℓ,Ψr)

〉
H, (Ψℓ,Ψr) ∈ H0, Ψ ∈ H.

Also, we define the operators T0 := 〈Q〉−s ⊕ 〈Q〉−s ∈ B(H0) and T := D∗〈Q〉−s ∈ B(H0,H), and

observe that JU0 − UJ = T ∗T0 due to the definition of D and Equation [25, Eq. (4.6)]:

JU0 − UJ =
∑

⋆∈{ℓ,r}

(
[j⋆, S]C⋆ − S(C − C⋆) j⋆

)
.

Finally, we note that the second inclusion in (3.5) implies that

〈Q〉−s ∈ B
(
D(〈Q〉)−s ,H

)
⊂ B

(
D(〈A〉)−s ,H

)
,

and thus that T ∈ B
(
D(〈A〉)−s ,H0

)
. Similarly, since

〈Q〉−s ⊕ 〈Q〉−s ∈ B
(
D(〈Q〉−s ⊕ 〈Q〉−s),H0

)
⊂B

(
D(〈A0〉)−s ,H0

)
,

we have that T0 ∈ B
(
D(〈A0〉)−s ,H0

)
, and thus all the assumptions of Corollary 2.6 are verified.

Therefore, it only remains to show that Ran
(
W±(U,U0, J,Θ)

)
= EUacH. For this, we recall from (3.3)

that N±(U, J,Θ) = EU(T \Θ)H. This, together with the J-completeness of the wave operators and [25,

Thm. 2.4], implies that

Ran
(
W±(U,U0, J,Θ)

)
= EU(Θ)H⊖N±(U, J,Θ) = E

U(Θ)H = EUacH.
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In the last proposition of the section, we determine explicitly the kernels of the wave operators

W±(U,U0, J,Θ). We use the notation χΛ for the characteristic function of a set Λ ⊂ R and χ± for the

characteristic functions of the sets (0,∞) and (−∞, 0), respectively.

Proposition 3.4. Let Θ := {σ(Uℓ)∪σ(Ur)}\{τ(U)∪σp(U)}. Then, the wave operatorsW±(U,U0, J,Θ) :
H0 → H are partial isometries with initial sets

H±0 := χ∓(Vℓ)H⊕ χ±(Vr)H. (3.9)

Let us make two observations before giving the proof. Firstly, if aℓ 6= 0 and ar 6= 0, then [25,

Lemma 4.6] implies that the value 0 is not an atom of the spectral measures of Vℓ and Vr. Therefore, one

has the following orthogonal decomposition of H0 :

H0 = H⊕H =
(
χ−(Vℓ) + χ+(Vℓ)

)
H⊕

(
χ+(Vr) + χ−(Vr)

)
H = H+0 ⊕H−0 .

Secondly, if aℓ = 0, then [25, Lemma 4.2(a)] implies that Vℓ = 0. Thus χ±(Vℓ) = 0, and (3.9) implies that

W±(U,U0, J,Θ) are isometric only on vectors 0⊕Ψr with Ψr ∈ χ±(Vr)H. Such a result is not surprising

since we know from [25, Lemma 4.1(a)] that in this case one has σ(Uℓ) = σp(Uℓ) and

W±(U,U0, J,Θ) = W±(U,U0, J,Θ)E
U0(Θ) = W±(U,U0, J,Θ)

(
0⊕ EUr(Θ)

)
.

A similar result holds if ar = 0.

Proof of proposition 3.4. We give the proof forW+(U,U0, J,Θ), treating separately the cases correspond-

ing to the different values of aℓ and ar. The proof for W−(U,U0, J,Θ) is similar.

(i) If aℓ = ar = 0, then we know from (3.8) that EU0(Θ) = 0, and

W+(U,U0, J,Θ) = W+(U,U0, J,Θ)E
U0(Θ) = 0.

Thus, the wave operator W+(U,U0, J,Θ) is isometric only on the subspace {0}⊕ {0}. But, we also have

H+0 = {0} ⊕ {0} since Vℓ = 0 = Vr. So, W+(U,U0, J,Θ) is a partial isometry with (trivial) initial set H+0 .

(ii) If aℓ, ar ∈ (0, 1], we know from (3.8) that EU0(Θ) = 1H0. To show thatH−0 ⊂ ker
(
W+(U,U0, J,Θ)

)
,

take (Ψℓ,Ψr) ∈ H−0 such that χ[ε,∞)(Vℓ)Ψℓ = Ψℓ and χ(−∞,−ε](Vr)Ψr = Ψr for some ε > 0. Then, one

has

∥∥W+(U,U0, J,Θ)(Ψℓ,Ψr)
∥∥
H =

∥∥∥s-lim
n→∞

U−nJUn0 (Ψℓ,Ψr)
∥∥∥
H

= lim
n→∞

∥∥∥∥∥∥
∑

⋆∈{ℓ,r}
U−nj⋆U

n
⋆ Ψ⋆

∥∥∥∥∥∥
H

≤
∑

⋆∈{ℓ,r}
lim
n→∞

∥∥U−nj⋆Un⋆ Ψ⋆
∥∥
H

=
∑

⋆∈{ℓ,r}
lim
n→∞

∥∥U−n⋆ j⋆U
n
⋆ Ψ⋆

∥∥
H.

Now, if ηℓ, ηr ∈ C(R, [0, 1]) satisfy

ηℓ(s) :=

{
1 if s < 0

0 if s ≥ ε
and ηr(s) :=

{
0 if s ≤ −ε
1 if s > 0,

one obtains for each n ∈ N∗ the inequality

∥∥U−n⋆ j⋆U
n
⋆ Ψ⋆

∥∥
H ≤

∥∥U−n⋆ η⋆(Q/n)U
n
⋆ Ψ⋆

∥∥
H.

11



Furthermore, since

ηℓ(Vℓ)Ψℓ = ηℓ(Vℓ)χ[ε,∞)(Vℓ)Ψℓ = 0 and ηr(Vr)Ψr = ηr(Vr)χ(−∞,−ε](Vr)Ψr = 0,

one infers from [28, Thm. 4,1] and a standard result on the convergence in the strong resolvent sense

[24, Thm. VIII.20(b)] that

lim
n→∞

∥∥U−n⋆ η⋆(Q/n)U
n
⋆ Ψ⋆

∥∥
H =

∥∥η⋆(V⋆)Ψ⋆
∥∥
H = 0.

Putting together what precedes, one obtains that
∥∥W+(U,U0, J,Θ)(Ψℓ,Ψr)

∥∥
H ≤

∑

⋆∈{ℓ,r}
lim
n→∞

∥∥U−n⋆ j⋆U
n
⋆ Ψ⋆

∥∥
H = 0,

meaning that (Ψℓ,Ψr) ∈ ker
(
W+(U,U0, J,Θ)

)
. Since

(Ψℓ,Ψr) =
(
χ[ε,∞)(Vℓ)Ψℓ, χ(−∞,−ε](Vr)Ψr

)
,

a density argument taking into account the fact that the value 0 is not an atom of the spectral measures

of Vℓ and Vr then shows that H−0 ⊂ ker
(
W+(U,U0, J,Θ)

)
.

To show thatW+(U,U0, J,Θ) is an isometry onH+0 , take (Ψℓ,Ψr) ∈ H+0 such that χ(−∞,−ε](Vℓ)Ψℓ =
Ψℓ and χ[ε,∞)(Vr)Ψr = Ψr for some ε > 0, and let ζℓ, ζr ∈ C(R, [0, 1]) satisfy

ζℓ(s) :=

{
0 if s ≤ −ε
1 if s > 0

and ζr(s) :=

{
1 if s < 0

0 if s ≥ ε.

Then, using successively the identity EU0(Θ) = 1H0 , the identity J∗J = jℓ ⊕ jr of [25, Lemma 4.7], the

definition of the asymptotic velocity V⋆, and the assumption on the support of Ψ⋆, one gets
∣∣∣
∥∥W+(U,U0, J,Θ)(Ψℓ,Ψr)

∥∥2
H −

∥∥(Ψℓ,Ψr)
∥∥2
H0

∣∣∣ = lim
n→∞

∣∣∣
∥∥U−nJUn0 (Ψℓ,Ψr)

∥∥2
H −

∥∥(Ψℓ,Ψr)
∥∥2
H0

∣∣∣

= lim
n→∞

∣∣∣
〈
Un0 (Ψℓ,Ψr), (J

∗J − 1)Un0 (Ψℓ,Ψr)
〉
H0

∣∣∣

= lim
n→∞

〈
Un0 (Ψℓ,Ψr), (1− jℓ ⊕ jr)Un0 (Ψℓ,Ψr)

〉
H0

≤
∑

⋆∈{ℓ,r}
lim
n→∞

〈
Ψ⋆, U

−n
⋆ ζ⋆(Q/n)U

n
⋆ Ψ⋆

〉
H

=
∑

⋆∈{ℓ,r}

〈
Ψ⋆, ζ⋆(V⋆)Ψ⋆

〉
H

= 0.

Thus, W+(U,U0, J,Θ) is isometric on (Ψℓ,Ψr). Since

(Ψℓ,Ψr) =
(
χ(−∞,−ε](Vℓ)Ψℓ, χ[ε,∞)(Vr)Ψr

)
,

a density argument taking into account the fact that the value 0 is not an atom of the spectral measures

of Vℓ and Vr then shows that W+(U,U0, J,Θ) is an isometry on whole of H+0 .

(iii) If aℓ = 0 and ar ∈ (0, 1] or if aℓ ∈ (0, 1] and ar = 0, then the claim can be shown as in point (ii).

We leave the details to the reader.

Remark 3.5. Let Ψ = (Ψℓ,Ψr) ∈ H0. Then, we have

W±(U,U0, J,Θ)Ψ = s-lim
n→±∞

U−nJUn0E
U0(Θ)Ψ

= s-lim
n→±∞

U−n
(
jℓU
n
ℓ E
Uℓ(Θ)Ψℓ + jrU

n
r E
Ur(Θ)Ψr

)

= W±(U,Uℓ, jℓ,Θ)Ψℓ +W±(U,Ur, jr,Θ)Ψr
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with

W±(U,U⋆, j⋆,Θ) := s-lim
n→±∞

U−nj⋆U
n
⋆E
U⋆(Θ).

That is, the wave operators W±(U,U0, J,Θ) act as the sum of the operators W±(U,U⋆, j⋆,Θ) :

W±(U,U0, J,Θ)Ψ = W±(U,Uℓ, jℓ,Θ)Ψℓ +W±(U,Ur, jr,Θ)Ψr.

This simple observation will be used in the following section.

4 Weak limit theorem

We prove in this section a weak limit theorem for quantum walks with an anisotropic coin, and we give

an interpretation of this weak limit theorem by comparing it with its classical analogue, the central limit

theorem for classical random walks. Our first proposition gives a description of the asymptotic velocity

operator associated to the the full evolution operator U. To state it, we introduce the Heisenberg evolution

Q(n) := U−nQUn, n ∈ Z, of the position operator Q, and the velocity operator V0 := Vℓ ⊕ Vr for the free

evolution operator U0 = Uℓ ⊕ Ur.

Proposition 4.1. Let Θ := {σ(Uℓ)∪σ(Ur)}\{τ(U)∪σp(U)}, Vac := W+(U,U0, J,Θ)V0W+(U,U0, J,Θ)∗,
and ξ ∈ R. Then, one has

s-lim
n→∞

eiξQ(n)/n = EUp + e
iξVac EUac.

Proof. The finiteness of τ(U) and [25, Thm. 2.4] imply that U has no singular continuous spectrum, and

[28, Thm. 4.2] implies the equality s-limn→∞ eiξQ(n)/n EUp = E
U
p . Therefore,

s-lim
n→∞

eiξQ(n)/n = s-lim
n→∞

eiξQ(n)/n
(
EUp + E

U
ac

)
= EUp + s-lim

n→∞
eiξQ(n)/n EUac,

and thus it is sufficient to show that

s-lim
n→∞

eiξQ(n)/n EUac = e
iξVac EUac. (4.1)

Now, we know from Theorem 3.3 and Proposition 3.4 that Ran
(
W+(U,U0, J,Θ)

)
= EUacH and that

W+(U,U0, J,Θ) is a partial isometry with initial set H+0 . Furthermore, we have the inclusion V0H+0 ⊂ H+0
due to the definition of H+0 (see (3.9)). So, we obtain for each k ∈ N the identity

(
W+(U,U0, J,Θ)V0W+(U,U0, J,Θ)

∗)kEUac = W+(U,U0, J,Θ)V k0 W+(U,U0, J,Θ)∗EUac,

and thus the r.h.s. of (4.1) satisfies

eiξVac EUac =
∑

k≥0

1

k!
W+(U,U0, J,Θ)

(
iξV0

)k
W+(U,U0, J,Θ)

∗EUac

= W+(U,U0, J,Θ) e
iξV0 W+(U,U0, J,Θ)

∗EUac. (4.2)

On another hand, if we set Wn := U−nJUn0 and Q0(n) := U−n0 (Q ⊕ Q)Un0 for n ∈ Z, then a direct

calculation using the definition of the operator J implies that

eiξQ(n)/n = Wn e
iξQ0(n)/nW ∗n .

Therefore, we obtain that

eiξQ(n)/n EUac − eiξVac EUac = Wn eiξQ0(n)/nW ∗nEUac −W+(U,U0, J,Θ) eiξV0W+(U,U0, J,Θ)∗EUac
= I1(n) + I2(n) + I3(n),
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with

I1(n) := Wn e
iξQ0(n)/n

(
W ∗n −W+(U,U0, J,Θ)∗

)
EUac,

I2(n) := Wn
(
eiξQ0(n)/n− eiξV0

)
W+(U,U0, J,Θ)

∗EUac,

I3(n) :=
(
Wn −W+(U,U0, J,Θ)

)
eiξV0 W+(U,U0, J,Θ)

∗EUac.

But, Theorem 3.3 and the identity EU(Θ) = EUac imply that s-limn→∞ I1(n) = 0. Theorem 3.3, the identity

EU0(Θ) = EU0ac , the inclusion Ran
(
W+(U,U0, J,Θ)

∗) ⊂ EU0acH, and the fact that eiξV0 EU0ac = EU0ac e
iξV0

(which follows from (3.8)) imply that s-limn→∞ I3(n) = 0. Finally, [28, Thm. 4,1] and [24, Thm. VIII.20(b)]

imply that s-limn→∞ I2(n) = 0. Therefore, we obtain that

s-lim
n→∞

(
eiξQ(n)/n EUac − eiξVac EUac

)
= 0,

which proves (4.1).

Remark 4.2. If we define the asymptotic velocity operator V ∈ B(H) for the full evolution operator U

as

VΨ :=

{
0 if Ψ ∈ EUpH
VacΨ if Ψ ∈ EUacH,

then the result of Proposition 4.1 can be rephrased in the more compact form

s-lim
n→∞

eiξQ(n)/n = eiξV , ξ ∈ R.

We are now in a position to state the weak limit theorem. For that purpose, we denote by Xn the

random variable for the position of a quantum walker with evolution U and initial normalised state Ψin ∈ H
at time n ∈ Z. The probability distribution of Xn is given by

P(Xn = x) :=
∥∥(UnΨin

)
(x)

∥∥2
C2
, x ∈ Z,

and the characteristic function of the average velocity Xn/n of the quantum walker is given by

E(eiξXn/n) :=
〈
UnΨin, e

iξQ/n UnΨin
〉
H,=

〈
Ψin, e

iξQ(n)/nΨin
〉
H, ξ ∈ R,

We also use the notation δ0 for the Dirac measure on R for the point 0 :

Theorem 4.3 (Weak limit theorem). Let Ψin ∈ H with ‖Ψin‖H = 1, let Θ := {σ(Uℓ)∪ σ(Ur)} \ {τ(U)∪
σp(U)}, and let V be the random variable with probability distribution

µV :=
∥∥EUpΨin

∥∥2
H δ0 +

∥∥EVℓ( ·)W+(U,Uℓ, jℓ,Θ)∗Ψin
∥∥2
H +

∥∥EVr( ·)W+(U,Ur, jr,Θ)∗Ψin
∥∥2
H (4.3)

with the operators W±(U,U⋆, j⋆,Θ) defined in Remark 3.5. Then, the average velocity Xn/n converges in

law to V as n →∞, namely,

lim
n→∞

E(eiξXn/n) = E(eiξV), ξ ∈ R. (4.4)

Since the average velocity Xn/n of the quantum walker converges in law to V as n → ∞, V can

be interpreted as the asymptotic velocity of the quantum walker, with µV its probability distribution.

Therefore, Theorem 4.3 implies that the probability that the quantum walker has velocity 0 is

P(V = 0) = µV({0}) ≥
∥∥EUpΨin

∥∥2
H.

Accordingly, we say that localisation occurs if P(V = 0) > 0, and (4.3) tells us that this happens if the

initial state Ψin has an overlap with the pure point subspace of U. Later in this section, we will see that

P(V = 0) =
∥∥EUpΨin

∥∥2
H

and that localisation occurs in fact if and only if the initial state Ψin has an overlap with the pure point

subspace of U.
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Proof. Using Proposition 4.1, Equation (4.2), and the identity W+(U,U0, J,Θ)
∗EUac = W+(U,U0, J,Θ)

∗,
one obtains

lim
n→∞

E(eiξXn/n) = lim
n→∞

〈
Ψin, e

iξQ(n)/nΨin
〉
H

=
〈
Ψin,

(
EUp + e

iξVac EUac
)
Ψin

〉
H

=
∥∥EUpΨin

∥∥2
H +

〈
Ψin,W+(U,U0, J,Θ) e

iξV0 W+(U,U0, J,Θ)
∗EUacΨin

〉
H

=
∥∥EUpΨin

∥∥2
H +

〈
W+(U,U0, J,Θ)

∗EUacΨin, e
iξV0W+(U,U0, J,Θ)

∗EUacΨin
〉
H0

=

∫

R

eiξλ
(∥∥EUpΨin

∥∥2
H δ0(dλ) +

∥∥EV0(dλ)W+(U,U0, J,Θ)∗EUacΨin
∥∥2
H0

)
.

Therefore, to prove the claim, it only remains to observe that
∥∥EV0( ·)W+(U,U0, J,Θ)∗EUacΨin

∥∥2
H0

=
∥∥(EVℓ( ·)⊕ EVr( ·)

)
W+(U,U0, J,Θ)

∗Ψin
∥∥2
H0

=
∥∥EVℓ( ·)W+(U,Uℓ, jℓ,Θ)∗Ψin

∥∥2
H +

∥∥EVr( ·)W+(U,Ur, jr,Θ)∗Ψin
∥∥2
H.

In order to give a better description of the probability distribution µV, we recall from Section 3 that

we have for k ∈ [0, 2π)

Û⋆(k) =

2∑

j=1

λ⋆,j(k)Π⋆,j(k), V̂⋆(k) =

2∑

j=1

v⋆,j(k)Π⋆,j (k) and v⋆,j(k) = i λ
′
⋆,j(k)

(
λ⋆,j(k)

)−1
.

We also recall from [25, Lemma 4.2] the following properties of the functions v⋆,j given in terms of the

parameters a⋆, α⋆, δ⋆ of (3.7):

(i) If a⋆ = 0, then v⋆,j = 0 for j ∈ {1, 2}.

(ii) If a⋆ ∈ (0, 1), then v⋆,j(k) =
(−1)j ς⋆(k)
η⋆(k)

for j ∈ {1, 2}, k ∈ [0, 2π) and

τ⋆(k) := a⋆ cos(k + α⋆ − δ⋆/2), η⋆(k) :=
√
1− τ⋆(k)2, ς⋆(k) := a⋆ sin(k + α⋆ − δ⋆/2).

(iii) If a⋆ = 1, then v⋆,j(k) = (−1)j for j ∈ {1, 2} and k ∈ [0, 2π).
With this done, we can start our study of the probability distribution µV by collecting some information

on the operators W+(U,U⋆, j⋆,Θ) appearing in (4.3):

Lemma 4.4. Let Θ := {σ(Uℓ) ∪ σ(Ur)} \ {τ(U) ∪ σp(U)}.
(a) If a⋆ = 0, then W+(U,U⋆, j⋆,Θ) = 0.

(b) If aℓ ∈ (0, 1), then W+(U,Uℓ, jℓ,Θ) is a partial isometry with initial subspace χ−(Vℓ)H, and if

ar ∈ (0, 1), then W+(U,Ur, jr,Θ) is a partial isometry with initial subspace χ+(Vr)H.

(c) If aℓ = 1, then W+(U,Uℓ, jℓ,Θ) is a partial isometry with initial subspace ℓ2
(
Z,

(
C
0

))
, and if ar = 1,

then W+(U,Ur, jr,Θ) is a partial isometry with initial subspace ℓ2
(
Z,

(
0
C

))
.

Proof. The claim (a) is a direct consequence of Remark 3.5 and Equation (3.8). The claim (b) is a

direct consequence of Remark 3.5, Equation (3.8) and Proposition 3.4. For the claim (c), we recall from

Proposition 3.4 and the point (iii) above that in the case aℓ = 1 the initial subspace of W+(U,Uℓ, jℓ,Θ)

coincides with the eigenspace of Vℓ for the eigenvalue −1 (see the case j = 1 in the point (iii) above).

Then, the formula for u⋆,1(k) in [25, Sec. 4.1] directly implies that this eigenspace is equal to the space

ℓ2
(
Z,

(
C
0

))
. The proof of the claim in the case ar = 1 is similar.
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Now, to pursue our study of the probability distribution µV, we recall the definition of the Konno

function

fK : R× (0, 1]→ [0,∞), (υ, r ) 7→
{ √

1−r2
π(1−υ2)

√
r2−υ2 if |υ| < r ,

0 otherwise.

With this definition at hand, we can establish the following:

Proposition 4.5. Let Ψin ∈ H with ‖Ψin‖H = 1, and let Θ := {σ(Uℓ) ∪ σ(Ur)} \ {τ(U) ∪ σp(U)}.

(a) If a⋆ = 0, then
∥∥EV⋆( ·)W+(U,U⋆, j⋆,Θ)∗Ψin

∥∥2
H = 0.

(b) If a⋆ ∈ (0, 1) and υ ∈ R, then

d
∥∥EV⋆

(
(−∞, υ]

)
W+(U,U⋆, j⋆,Θ)

∗Ψin
∥∥2
H

dυ
=

{
1
2χ[−aℓ,0)(υ)ωℓ(υ)fK(υ, aℓ) if ⋆ = ℓ

1
2χ(0,ar ](υ)ωr(υ)fK(υ, ar) if ⋆ = r

for some nonnegative functions ωℓ ∈ L1
(
[−aℓ, 0), 12 fK( · , aℓ)dυ

)
and ωr ∈ L1

(
(0, ar],

1
2 fK( · , ar)dυ

)
.

(c) If a⋆ = 1, then

∥∥EV⋆( ·)W+(U,U⋆, j⋆,Θ)∗Ψin
∥∥2
H =

{∥∥W+(U,Uℓ, jℓ,Θ)∗Ψin
∥∥2
H δ−1 if ⋆ = ℓ

∥∥W+(U,Ur, jr,Θ)∗Ψin
∥∥2
H δ1 if ⋆ = r

with δ±1 the Dirac measures on R for the points ±1.

Proof of (a) and (c). In the case aℓ = 0, the claim (a) follows directly from Lemma 4.4(a). In the

case of aℓ = 1, we know from Lemma 4.4(c) that W+(U,Uℓ, jℓ,Θ) has initial subspace ℓ2
(
Z,

(
C
0

))
,

so that W+(U,Uℓ, jℓ,Θ)
∗Ψin ∈ ℓ2

(
Z,

(
C
0

))
. On the other hand, we have shown in [25, Sec. 4.1] that

σ(Vℓ) = σp(Vℓ) = {−1, 1}, with ℓ2
(
Z,

(
C
0

))
the eigenspace associated to the eigenvalue −1. Thus, we

obtain for any Borel set B ⊂ R that

∥∥EVℓ(B)W+(U,Uℓ, jℓ,Θ)∗Ψin
∥∥2
H =

{∥∥W+(U,Uℓ, jℓ,Θ)∗Ψin
∥∥2
H if −1 ∈ B,

0 otherwise.

Since a similar result holds for the operatorW+(U,Ur, jr,Θ), the eigenspace ℓ2
(
Z,

(
0
C

))
and the eigenvalue

+1, we infer the result of the claim (c).

In order to prove the claim (b) of Proposition 4.5, we need two preparatory lemmas. The first one is

the following:

Lemma 4.6. Define for ⋆ ∈ {ℓ, r}, j ∈ {1, 2}, m ∈ {0, 1} and a⋆ ∈ (0, 1) the function

k⋆,j,m : [−a⋆, a⋆]→ Im, υ 7→ δ⋆
2
− α⋆ +mπ + arcsin

(
(−1)j+mb⋆υ
a⋆
√
1− υ2

)
,

where

I0 :=
[
− π/2− α⋆ + δ⋆/2, π/2− α⋆ + δ⋆/2

]
and I1 := I0 + π.

Then, the function k⋆,j,m is differentiable on (−a⋆, a⋆) with

k ′⋆,j,m(υ) = (−1)j+mπ fK(υ, a⋆), υ ∈ (−a⋆, a⋆), (4.5)

and k⋆,j,m is a bijection with inverse v⋆,j |Im , that is,

(
v⋆,j ◦ k⋆,j,m

)
(υ) = υ for υ ∈ [−a⋆, a⋆] and

(
k⋆,j,m ◦ v⋆,j

)
(k) = k for k ∈ Im. (4.6)
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Proof. Set f⋆(υ) :=
b⋆υ

a⋆
√
1−υ2 for υ ∈ [−a⋆, a⋆]. Since f ′⋆(υ) =

b⋆
a⋆(1−υ2)3/2 > 0 on (−a⋆, a⋆), the function

f⋆ is strictly increasing on (−a⋆, a⋆) with f⋆([−a⋆, a⋆]) = [−1, 1]. It follows that k⋆,j,m is differentiable on

(−a⋆, a⋆) with derivative

k ′⋆,j,m(υ) =
d
(
arcsin ◦(−1)j+mf⋆

)

dυ
(υ) =

(−1)j+mf ′⋆(υ)√
1− f⋆(υ)2

=
(−1)j+m

√
1− a2⋆√

a2⋆ − υ2 (1− υ2)
.

This implies (4.5).

Now, the fact that k ′⋆,j,m 6= 0 on (−a⋆, a⋆) implies that k⋆,j,m is invertible. Since ς⋆
(
k⋆,j,m(υ)

)
=

(−1)ja⋆f⋆(υ) and η⋆
(
k⋆,j,m(υ)

)
=

√
b2⋆ + a

2
⋆f
2
⋆ (υ) for υ ∈ [−a⋆, a⋆], one also obtains that

v⋆,j
(
k⋆,j,m(υ)

)
=
(−1)jς⋆

(
k⋆,j,m(υ)

)

η⋆
(
k⋆,j,m(υ)

) =
a⋆f⋆(υ)√

b2⋆ + a
2
⋆f⋆(υ)

2
= υ.

On the other hand, since f⋆
(
v⋆,j (k)

)
= (−1)j sin(k + α⋆ − δ⋆/2) for k ∈ [0, 2π), one obtains that

k⋆,j,m
(
v⋆,j (k)

)
=
δ⋆
2
− α⋆ +mπ + arcsin

(
(−1)m sin(k + α⋆ − δ⋆/2)

)
.

Therefore, if m = 0 and k ∈ I0, then k + α⋆ − δ⋆/2 ∈ [−π/2, π/2] and thus k⋆,j,m(v⋆,j (k)) = k. And if

m = 1 and k ∈ I1, then k+α⋆−δ⋆/2 ∈ [π/2, 3π/2] and (−1)m sin(k+α⋆−δ⋆/2) = sin(k+α⋆−δ⋆/2−π).
Thus k +α⋆ − δ⋆/2− π ∈ [−π/2, π/2], and one obtains once again k⋆,j,m

(
v⋆,j(k)

)
= k, which concludes

the proof.

To state our second preparatory lemma, we need to introduce some notations. For k ∈ [0, 2π), we

denote by u⋆,j(k) ∈ C2 a normalised eigenvector of the operator Û⋆(k) for the eigenvalue λ⋆,j(k). In [25,

Sec. 4], we have shown that u⋆,j(k) can be chosen C∞ in the variable k. For ⋆ ∈ {ℓ, r}, we set

G⋆ := L2
(
[−a⋆, a⋆], 12 fK( · , a⋆)dυ

)
.

Finally, for j ∈ {1, 2} and m ∈ {0, 1}, we define the operator K⋆,j,m : H → G⋆ by
(
K⋆,j,mΨ

)
(υ) :=

〈
u⋆,j

(
k⋆,j,m(υ)

)
, (FΨ)

(
k⋆,j,m(υ)

)〉
C2
, Ψ ∈ H, υ ∈ [−a⋆, a⋆].

Lemma 4.7. The operator K⋆,j,m is bounded and satisfies the following:

(a) For g ∈ G⋆, one has (K⋆,j,m)
∗g = F ∗{χImg

(
v⋆,j( ·)

)
u⋆,j

}
.

(b) For j, j ′ ∈ {1, 2} and m,m′ ∈ {0, 1}, one has K⋆,j,m(K⋆,j ′,m′)
∗ = δj,j ′δm,m′ idG⋆ .

(c)
∑
j∈{1,2},m∈{0,1}(K⋆,j,m)

∗K⋆,j,m = idH.

(d) For any Borel function F : [−a⋆, a⋆] → C, the multiplication operator by F in G⋆ (denoted by the

same symbol) satisfies the equation
∑

j∈{1,2},m∈{0,1}
(K⋆,j,m)

∗FK⋆,j,m = F (V⋆).

Proof. Using the change of variables k := k⋆,j,m(υ), Equation (4.5), and the normalisation of u⋆,j(k), we

obtain for any Ψ ∈ H
∥∥K⋆,j,mΨ

∥∥2
G⋆ =

1
2

∫ a⋆
−a⋆

∣∣(K⋆,j,mΨ
)
(υ)

∣∣2fK(υ, a⋆)dυ

= 1
2π

∫

Im

∣∣〈u⋆,j(k), (FΨ)(k)
〉
C2

∣∣2 dk

≤ 1
2π

∫ 2π

0

∣∣(FΨ)(k)
∣∣2
C2
dk

= ‖Ψ‖2H,
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which proves that K⋆,j,m is bounded. Furthermore, using the change of variables k := k⋆,j,m(υ) and (4.6),

we obtain for any g ∈ G⋆
〈
g,K⋆,j,mΨ

〉
G⋆ =

1
2

∫ a⋆
−a⋆

g(υ)
〈
u⋆,j

(
k⋆,j,m(υ)

)
, (FΨ)

(
k⋆,j,m(υ)

)〉
C2
fK(υ, a⋆)dυ

= 1
2π

∫

Im

g
(
v⋆,j (k)

)〈
u⋆,j(k), (FΨ)(k)

〉
C2
dk

=
〈
F
∗{χImg

(
v⋆,j( ·)

)
u⋆,j

}
,Ψ

〉
H,

which proves (a). To prove (b), we observe that points (a) and (4.6) imply for any g ∈ G⋆ and υ ∈ [−a⋆, a⋆]
(
K⋆,j,m(K⋆,j ′,m′)

∗g
)
(υ) =

〈
u⋆,j

(
k⋆,j,m(υ)

)
,
(
F (K⋆,j ′,m′)

∗g
)(
k⋆,j,m(υ)

)〉
C2

= χIm′
(
(k⋆,j,m(υ)

)
g
(
v⋆,j ′

(
k⋆,j,m(υ)

))〈
u⋆,j

(
k⋆,j,m(υ)

)
, u⋆,j ′

(
k⋆,j,m(υ)

)〉
C2

= δj,j ′δm,m′g(υ).

On the other hand, for any Ψ ∈ H and k ∈ [0, 2π) we have

(
F (K⋆,j,m)

∗K⋆,j,mΨ
)
(k) = χIm(k)

(
K⋆,j,mΨ

)(
v⋆,j(k)

)
u⋆,j(k)

= χIm(k)
〈
u⋆,j

(
k⋆,j,m

(
v⋆,j(k)

))
, (FΨ)

(
k⋆,j,m

(
v⋆,j(k)

))〉
C2
u⋆,j(k)

= χIm(k)
〈
u⋆,j(k), (FΨ)(k)

〉
C2
u⋆,j(k).

Hence, we obtain

(K⋆,j,m)
∗K⋆,j,mΨ = F

∗{χIm
〈
u⋆,j( ·), (FΨ)( ·)

〉
C2
u⋆,j

}
= F

∗χImΠ⋆,j( ·)FΨ,

and thus ∑

j∈{1,2},m∈{0,1}
(K⋆,j,m)

∗K⋆,j,mΨ =
∑

j∈{1,2},m∈{0,1}
F
∗χImΠ⋆,j( ·)FΨ = Ψ,

which shows (c). Finally, for any Ψ ∈ H and k ∈ [0, 2π) we have

(
F (K⋆,j,m)

∗FK⋆,j,mΨ
)
(k) = χIm(k)

(
FK⋆,j,mΨ

)(
v⋆,j(k)

)
u⋆,j(k)

= χIm(k)F
(
v⋆,j(k)

)
Π⋆,j(k)FΨ

which implies that

∑

j∈{1,2},m∈{0,1}
(K⋆,j,m)

∗FK⋆,j,m =
∑

j∈{1,2}
F
∗F

(
v⋆,j( ·)

)
Π⋆,j ( ·)F = F

∗F (V̂⋆)F = F (V⋆),

as stated in (d).

We can now provide the proof of the claim (b) of Proposition 4.5:

Proof of Proposition 4.5(b). Take a Borel set B ⊂ R. Then, Lemma 4.4(b), Lemma 4.7(d) and [25,

Lemma 4.2(b)] imply that

EVℓ(B)W+(U,Uℓ, jℓ,Θ)
∗Ψin = χB(Vℓ)χ−(Vℓ)W+(U,Uℓ, jℓ,Θ)

∗Ψin

=
∑

j∈{1,2},m∈{0,1}
(Kℓ,j,m)

∗χB∩[−aℓ,0)Kℓ,j,mW+(U,Uℓ, jℓ,Θ)
∗Ψin.
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Thus, it follows by Lemma 4.7(b) that

∥∥EVℓ(B)W+(U,Uℓ, jℓ,Θ)∗Ψin
∥∥2
H

=
∑

j∈{1,2},m∈{0,1}

∥∥χB∩[−aℓ,0)Kℓ,j,mW+(U,Uℓ, jℓ,Θ)∗Ψin
∥∥2
Gℓ

= 1
2

∑

j∈{1,2},m∈{0,1}

∫

B∩[−aℓ,0)

∣∣(Kℓ,j,mW+(U,Uℓ, jℓ,Θ)∗Ψin
)
(υ)

∣∣2fK(υ, aℓ)dυ,

which means that the density function of
∥∥EVℓ(B)W+(U,Uℓ, jℓ,Θ)∗Ψin

∥∥2
H is given by

d
∥∥EVℓ

(
(−∞, υ]

)
W+(U,Uℓ, jℓ,Θ)

∗Ψin
∥∥2
H

dυ

= 1
2

∑

j∈{1,2},m∈{0,1}
χ[−aℓ,0)(υ)

∣∣(Kℓ,j,mW+(U,Uℓ, jℓ,Θ)∗Ψin
)
(υ)

∣∣2fK(υ, aℓ).

Since a similar argument leads to

d
∥∥EVr

(
(−∞, υ]

)
W+(U,Ur, jr,Θ)

∗Ψin
∥∥2
H

dυ

= 1
2

∑

j∈{1,2},m∈{0,1}
χ(0,ar ](υ)

∣∣(Kr,j,mW+(U,Ur, jr,Θ)∗Ψin
)
(υ)

∣∣2fK(υ, ar),

the claim follows by setting

ω⋆(υ) :=
∑

j∈{1,2},m∈{0,1}

∣∣(K⋆,j,mW+(U,U⋆, j⋆,Θ)∗Ψin)(υ)
∣∣2. (4.7)

In our final theorem, we gather the results obtained so far on the probability distribution µV and we

prove a uniqueness result.

Theorem 4.8. Let Ψin ∈ H with ‖Ψin‖H = 1, and let V be the random variable defined by (4.4). Then,

V has probability distribution

µV(dυ) = κ0 δ0(dυ) + κℓ δ−1(dυ) + κr δ1(dυ)

+ χ[−aℓ,0)(υ)wℓ(υ)
1
2 fK(υ, aℓ)dυ + χ(0,ar ](υ)wr(υ)

1
2 fK(υ, ar)dυ, υ ∈ R, (4.8)

with κ0, κ⋆ ≥ 0 given by

κ0 :=
∥∥EUpΨin

∥∥2
H and κ⋆ :=

{∥∥W+(U,U⋆, j⋆,Θ)∗Ψin
∥∥2
H if a⋆ = 1

0 otherwise,

and with wℓ ∈ L1
(
[−aℓ, 0), 12 fK( · , aℓ)dυ

)
and wr ∈ L1

(
(0, ar],

1
2 fK( · , ar)dυ

)
given by

w⋆(υ) :=

{∑
j∈{1,2},m∈{0,1}

∣∣(K⋆,j,mW+(U,U⋆, j⋆,Θ)∗Ψin
)
(υ)

∣∣2 if a⋆ ∈ (0, 1)
0 otherwise.

Furthermore, the decomposition of µV is unique.
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Proof. In view of Theorem 4.3 and Proposition 4.5, only the uniqueness of the decomposition of µV has

to be established. For that purpose, we observe that µV is the sum of a pure point measure located at the

three distinct points −1, 0, 1 and an absolutely continuous measure. As a consequence, the coefficients

κℓ, κ0, κr are unique. In addition, since the absolutely continuous measure is the sum of two absolutely

continuous measures with disjoint supports [−aℓ, 0) and (0, ar], each of these measures is unique in the

L1-sense given by their density functions in L1
(
[−aℓ, 0), 12 fK( · , aℓ)dυ

)
and L1

(
(0, ar],

1
2 fK( · , ar)dυ

)
.

Remark 4.9. In the case of the one-dimensional random walk where the walker moves to the left with

probability p and to the right with probability q, the classical central limit theorem implies that the

random variable Xn−n(q−p)
2
√
npq converges in law as n → ∞ to a random variable Z with standard normal

distribution N(0, 1). Therefore, the weak limit theorem 4.3 can be interpreted as a quantum analogue of

the classical central limit theorem. On the other hand, the classical central limit theorem implies that the

average velocity Xn/n always converges in law as n →∞ to a Gaussian random variable with distribution

N(q− p, 4pq/n), whereas the weak limit theorem leads to a variety of limit distributions µV depending on

the outgoing states W+(U,U⋆, j⋆,Θ)
∗Ψin.

To conclude, we discuss in more detail some particular cases of Theorem 4.8:

Example 4.10. (a) In the case aℓ = 0 and ar ∈ (0, 1), the formula (4.8) reduces to

µV(dυ) = κ0 δ0(dυ) +
1
2χ(0,ar ](υ)wr(υ)fK(υ, ar)dυ.

Thus, the density function of the absolutely continuous part of µV is supported in (0, ar], and the quantum

walker can asymptotically move only to the right at a speed belonging to the interval (0, ar].

(b) In the case aℓ = 1 and ar ∈ (0, 1), the formula (4.8) reduces to

µV(dυ) = κ0 δ0(dυ) + κℓ δ−1(dυ) +
1
2χ(0,ar ](υ)wr(υ)fK(υ, ar)dυ.

Thus, the quantum walker can asymptotically move to the left at speed 1 or to the right at a speed

belonging to the interval (0, ar].

(c) In the case aℓ, ar ∈ (0, 1), the formula (4.8) reduces to

µV(dυ) = κ0 δ0(dυ) +
1
2χ[−aℓ,0)(υ)wℓ(υ)fK(υ, aℓ)dυ +

1
2χ(0,ar ](υ)wr(υ)fK(υ, ar)dυ. (4.9)

Thus, the quantum walker can asymptotically move to the left at a speed belonging to the interval (0, aℓ]

or to the right at a speed belonging to the interval (0, ar]. In particular, if aℓ > ar, then the quantum

walker can move faster on the left-hand side than on the right-hand side.

Finally, we note that the formula (4.9) covers various previously known results:

Example 4.11. (a) In the case aℓ = ar = 1/
√
2, the formula (4.9) reduces to

µV(dυ) = κ0 δ0(dυ) +
1
2

(
χ[−1/

√
2,0)(υ)wℓ(υ) + χ(0,1/

√
2](υ)wr(υ)

)
fK(υ, 1/

√
2)dυ. (4.10)

This generalises the formula obtained by Endo et al. in the case of a two-phase quantum walk with one

defect [9, Thm. 2.1]. Indeed, in their work Endo et al. consider a coin operator given by

C(x) =





C+ =
1√
2

(
1 eiσ+

e−iσ+ −1
)
if x ≥ 1

C0 =
(
1 0
0 −1

)
if x = 0

C− =
1√
2

(
1 eiσ−
e−iσ− −1

)
if x ≤ −1,

for some σ± ∈ [0, 2π), and they obtain the formula

µV(dυ) = c δ0(dυ) + w(υ)fK(υ, 1/
√
2)dυ (4.11)

20



where c :=
∑
x∈Z

(
limN→∞

1
N

∑N−1
n=0 P(Xn = x)

)
and w : R → R is some particular function. However,

by applying a discrete analogue of the RAGE theorem, or Wiener’s theorem, or in a way similar to [27,

Appendix], one can prove that c = κ0 =
∥∥EUpΨin

∥∥2
H, thus showing that (4.10) is a generalisation of

(4.11). Moreover, the uniqueness of the decomposition (4.9) leads to the explicit formula for w :

w(υ) = 1
2

(
χ[−1/

√
2,0)(υ)wℓ(υ) + χ(0,1/

√
2](υ)wr(υ)

)
,

Endo et al. obtained an explicit expression for w only in the case the initial state satisfies Ψin(x) = 0

everywhere except for x = 0.

(b) The isotropic case where C(x) = C∞ + O(|x |−1−ε), C∞ ∈ U(2), and a∞ := |(C∞)1,1| ∈ (0, 1),
was studied in [28] by the second author. In our setup, this corresponds to setting Cℓ = Cr = C∞ and

εℓ = εr = ε in Assumption 3.1 and having aℓ = ar = a∞ ∈ (0, 1) in (3.7). In [28], it was shown that

µV(dυ) = κ0 δ0(dυ) + w(υ)fK(υ, a∞)dυ,

where w ∈ L1
(
[−a∞, a∞], 12 fK( · , a∞)dυ

)
is a function similar to (4.7) but defined in terms of the wave

operatorW+(U,U∞, 1H,Θ), with the identity 1H instead of the identification operator J and the evolution

operator U∞ := SC∞ in H instead of the evolution operator U0 in H0. Thus, by using once again the

uniqueness of the decomposition of (4.9), we obtain the explicit formula for w :

w(υ) = 1
2χ[−a∞,0)(υ)wℓ(υ) +

1
2χ(0,a∞](υ)wr(υ).

In the one-defect case, where C(x) = C∞ everywhere except for x = 0, Konno et al. obtained in [19] an

explicit expression of w only in the case the initial state satisfies Ψin(x) = 0 everywhere except for x = 0.

(c) The homogeneous case, where C(x) = C∞ and a∞ ∈ (0, 1), has been studied by several authors

[12, 17, 18]. It is a particular case of the isotropic case (b) above. Because U = SC∞ has no eigenvalue

whenever a∞ ∈ (0, 1), (4.9) reduces to

µV(dυ) = w(υ)fK(υ, a∞)dυ

with

w(υ) = 1
2χ[−a∞,0)(υ)wℓ(υ) +

1
2χ(0,a∞](υ)wr(υ).

As noted in Remark 4.9, the outgoing states determines w⋆ uniquely. However, in the homogeneous case,

the initial state Ψin and the coin matrix C∞ determine the function w ∈ L1
(
[−a∞, a∞], 12 fK( · , a∞) dυ

)

uniquely. For a special initial state Ψin and coin matrix C∞, w can be computed explicitly. We refer to

the works [21, 22] of Machida for more information on the relation between the limit distribution and the

initial state.
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