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Abstract

We perform the scattering analysis of the evolution operator of quantum walks with an anisotropic
coin, and we prove a weak limit theorem for their asymptotic velocity. The quantum walks that we
consider include one-defect models, two-phase quantum walks, and topological phase quantum walks
as special cases. Our analysis is based on an abstract framework for the scattering theory of unitary
operators in a two-Hilbert spaces setting, which is of independent interest.
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1 Introduction

This paper is motivated by recent works on topological phenomena for quantum walks [3, 6, 7, 13, 14, 15,
16, 23]. It is the second part of a series of papers on one-dimensional quantum walks with an anisotropic
behaviour at infinity. In our first paper [25], we performed the spectral analysis of the quantum walks and
we developed abstract commutator methods for unitary operators in a two-Hilbert spaces setting. Here
we pursue our study by investigating the scattering theory of the quantum walks and establishing a weak
limit theorem [17, 18]. We also present a suitable abstract framework for the proof of the existence and
completeness of wave operators for unitary operators in a two-Hilbert spaces setting.

The one-dimensional anisotropic quantum walks that we consider are described by a unitary operator
U := SC in the Hilbert space H := £°(Z, C?), where S is a shift operator and C is a coin operator acting
by multiplication by unitary matrices C(x) € U(2), x € Z, with short-range asymptotics at infinity:

with  Cy, C, € U(2), €4, > 0. (1.1)

Co+O(|x|717#) as x - —c0
C(X) - —1—¢
Cr + O(|x] ") as x — +oo

The assumption (1.1) covers a wide range of quantum walks such as homogeneous (or translation-
invariant) quantum walks [1, 12, 17, 18], one-defect models [5, 19, 20, 29], and two-phase quantum
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walks [8, 9, 10]. Some classes of inhomogeneous (or position-dependent) quantum walks [4, 28] and
split-step quantum walks [14] are also covered by our assumption. We refer to the introduction of [25]
for additional references on earlier works.

A weak limit theorem for quantum walks is a result of the following type: If X,, denotes the random
variable for the position of a quantum walker at time n € Z, then X,/n converges in law to a random
variable V as n — oo. Since X,/n is the average velocity of the quantum walker, the random variable V can
be interpreted as the asymptotic velocity of the walker. It is therefore of particular interest to determine
the density function of the probability distribution uy of V. As was put into evidence in [28], where the
second author considered the case C; = C; in (1.1), the key ingredients for the proof of the weak limit
theorem are the following:

(i) absence of singular continuous spectrum for U,
(ii) existence of an asymptotic velocity operator V. for U.

Once these assertions are proved, a weak limit theorem can be established in a way similar to [28] and
the distribution wy can be expressed as

v = |EYW13 80 + [|E%< () EL W2, (1.2)

with g the Dirac measure for the point 0, V;, € H the initial state of the walker, Eé’ and Eé’c the
projections onto the pure point and absolutely continuous subspaces of U, and E%c the spectral measure
of V. In our first paper [25], we proved the assertion (i) and provided information on the eigenvalues of
U by constructing a conjugate operator A for U under the assumption (1.1). Here, we build on the results
of [25] to prove the assertion (ii) and to establish a detailed formula for the distribution (1.2).

The organisation of the paper is the following. In Section 2, we develop our framework for the
scattering theory for unitary operators in a two-Hilbert spaces setting. Given two unitary operators U and
Uy acting in Hilbert spaces ‘H and Hgo, and a bounded operator J : Hg — H, we establish in Theorem
2.5 and Corollary 2.6 criteria for the existence and completeness under smooth perturbations of the local
wave operators

Wy (U, Uy, 4.©) := s-lim UT"JUJEY(©), (1.3)
n—+oo

where EY is the spectral measure of Uy and © C T := {z € C | |z| = 1} an open set. These results for
the scattering theory of unitary operators in two Hilbert spaces are new in such a generality. They are a
natural analogue of similar results for the scattering theory of self-adjoint operators in two Hilbert spaces,
which can be found for example in [26, 30].

In Section 3, we apply our results on scattering theory to anisotropic quantum walks with full evolution
operator U = SC and free evolution operator Uy := U, @ U,, where U, := SC; and U, := SC, describe the
behaviour of the quantum walker as x — —oc and x — +o00. We prove in Theorem 3.3 the existence and
completeness of the wave operators for the pair {Uy, U}, and in Proposition 3.4 we give a description of
the initial sets of the wave operators in terms of the velocity operators V4, V; for the evolution operators
Uy, U,.

Section 4 is dedicated to the proof of the weak limit theorem for the anisotropic quantum walks.
First, we prove in Proposition 4.1 the assertion (ii) above, that is, the existence of an asymptotic velocity
operator V4 for the full evolution operator U. We show that V4 is given by

Vac = W (U, Up, J ©)Vo W, (U, Up, J. ©),

with Vo .= V; @& W, the asymptotic velocity operator for the free evolution operator Uy. Then, in Theorem
4.3 we use the results (i) and (ii) above to prove the weak limit theorem, and in Theorem 4.8 we establish
an explicit formula for the density function of the probability distribution wuy given in (1.2). Namely, if we



set ag := |(Cy)1.1| and a, := |(C/)1.1], let fix : R x (0, 1] — [0, c0) be the Konno function, and write x5
for the characteristic function for a set B, then we prove that V has distribution

wy(dv) = Ko do(dv) + Ked_1(dv) + k01 (dv)
+ X[ ap,0) (V)We(V) 3 fic(v, ag) dU + X (0,27 (V)W (V) 3k (v, ar) dv, (1.4)

with ko = [|[EYWinll3,, ke, & > 0 and wy, w, - R — [0, 00). In addition, we show that k, is nontrivial
when a; = 1, Kk, is nontrivial when a, = 1, wy is nontrivial and has support in [—ag, 0) when a, € (0, 1),
and w; is nontrivial and has support in (0, a;] when a, € (0,1). See Theorem 4.8 for the explicit formulas
of kg, kr and wg, w,. We also show that the decomposition (1.4) of uy is unique.

An interpretation of the formula (1.4) detailed after Theorem 4.3 and in Example 4.10 is the following.
Localisation occurs if the probability that the asymptotic velocity vanishes is positive, i.e., P(V = 0) > 0.
Since (1.4) implies that P(V = 0) = ko = ||EY Wi, 13, localisation occurs if and only if the initial state Wi,
has an overlap with the pure point subspace of U. Furthermore, the quantum walker moves asymptotically
to the left at speed v € [—a,,0) if a, € (0,1) and at speed v = 1 if a, = 1. Similarly, the quantum
walker moves asymptotically to the right at speed v € (0, a] if a, € (0,1) and at speed v =1 if a, = 1.
In particular, if a, > a,, then the quantum walker can move faster on the left-hand side than on the
right-hand side.

Finally, in Example 4.11 at the end of Section 4, we explain how our formula (1.4) for the distribution
Wy generalises several formulas already available in the literature. For example, it generalises a similar
formula for isotropic quantum walks where C(x) = C, + O(|x|717¢) [28], which include one-defect
models [20] and homogeneous quantum walks [17, 18, 12]. The formula (1.4) also generalises the formula
obtained in [9] for two-phase quantum walks where C(x) = C_ for x < —1 and C(x) = C4 for x > 1,
and (C-)11 = (C4)11-

2 Scattering theory in a two-Hilbert spaces setting

We discuss in this section the existence and the completeness under smooth perturbations of the local
wave operators for unitary operators in a two-Hilbert spaces setting. Namely, given two unitary operators
Uo, U in Hilbert spaces Hg, H with spectral measures EY%, EY, a bounded operator J : Hg — H, and an
openset © C T := {z € C | |z| = 1}, we give criteria for the existence and the completeness of the
strong limits
Wi (U, Uy, J,©) := s-lim U"JUJEY (©)
n—+oo

under the assumption that the difference JUy — UJ factorises as a product of a locally U-smooth operator
on © and a locally Ug-smooth operator on ©. We start with a standard result on the intertwining property
of wave operators. Note that we use the notation Z(H1, Ho) (resp. # (Hi1, H2)) for the set of bounded
(resp. compact) operators between Hilbert spaces Hi and H,, and we set B(H1) = HB(H1,H1) and
%(7‘[1) = %(HLHl).

Lemma 2.1 (Intertwining property). Let Uy, U be unitary operators in Hilbert spaces Ho, H with spectral
measures EY, EY let J € B(Ho,H), and let © C T be an open set. Assume that Wy (U, Uy, J, ©) exist.
Then, we have for each bounded Borel function n: T — C the intertwining property

W (U, U, J,©)n(Uo) = n(U)Wx(U, Up, J, ©). (2.1)

Proof. A direct calculation implies the equality W (U, Uy, J, ©) U = U*W. (U, Uy, J, ©) for each k € Z.
Using Stone-Weierstrass theorem we infer from this equality that (2.1) holds for each n € C(T). Finally,
using a standard approximation argument in the weak topology we extend the result to each bounded
Borel functionn : T — C. [l



Next, we define the closed subspaces of H
— H s n U .
N (U, 4, ©) == {(p eHn| lim [[JUEY(O)ell,, = o} :

and note that EY(T \ ©)H C N4 (U, J, ©), that U is reduced by N+ (U, J, ©), and that

Ran (Wj:(U, Uo, J, 6)) 1 ‘ﬂi(U, J, @),

this last fact being shown as in the self-adjoint case, see [30, Lemma 3.2.1]. In particular, one has the
inclusion

Ran (Wx (U, Uo, 4, ©)) C EY(@)H &M (U, J,©),
which motivates the following definition:

Definition 2.2 (J-completeness). Assume that Wo(U, Uy, J, ©) exist. The operators W. (U, Uy, J, ©) are
J-complete on © if

Ran (Wx (U, Uo, J,©)) = EY(©)H &M (U, J,©).

Remark 2.3. In the particular case Ho = H and J = 1y, the J-completeness on © reduces to the
completeness of W (U, Uy, J,©) on © in the usual sense. Namely, Ran (W (U, U, 13, ©)) = EV(O)H,
and the operators Wy (U, Uy, 14, ©) are unitary from E%(©)H to EY(O)H.

The following criterion for J-completeness is shown as in the self-adjoint case, see for example [30,
Thm. 3.2.4]:

Lemma 2.4. If Wi(U, Uy, J, ©) and Wy (Up, U, J*, ©) exist, then Wi (U, Uy, J, ©) are J-complete on ©.

Proof. The intertwining property and the existence of the operators W (Uy, U, J*, ©) imply that for any
@ €H and P € Hy

(Wi (U, Uo, . ©) 0, %), = (¢, EY(©O)WL(U, Uo, J ©)9),,
= lim_(EY(©)p, U"JUZEX(©)¥),,

= lim (E%(0)U; " U"EY(©)p, ¥)u,
= (We(Un, U, I, ©)0, %), .

Thus, Wa (Up, U, J*, ©) is the adjoint of W (U, U, J, ©). Since ker (W4 (U, U, J*, ©)) = N+ (U, J, ©) and
EY(T\ ©)H C MNL(U, J, ©), it follows that

Ran (Wi(U, Uo, J, @)) =H © ker (Wi(U, Uo., J, @)*)
=HoeNL(U JO)
= EY(@)YHoNL(U, J0),

which proves the claim. Ol

For the next theorem, we recall that the spectral support supp (@) of a vector ¢ € H with respect
to U is the smallest closed set Q C T such that EY(Q)p = ¢. We also recall that if G is an auxiliary
Hilbert space, then an operator T € Z(H, G) is locally U-smooth on an open set © C T if for each closed
set ©' C © there exists cor > 0 such that

STIITUTEY(@)0lf; < cor i3, for each ¢ € H, (2.2)

nez

and we refer to [11, Sec. 2] or [25, Sec. 3.1] for more information on locally U-smooth operators.



Theorem 2.5. Let Uy, U be unitary operators in Hilbert spaces Ho, H with spectral measures EY, EY,
Je B(Ho,H), and© C T be an open set. Let G be an auxiliary Hilbert space, To € B(Ho, G) a locally Us-
smooth operator on © and T € B(H,G) a locally U-smooth operator on © such that JUy —UJ = T*Ty.
Then, the wave operators

W(U, Up, 4, ©) = slim U"JURE™(O) (2.3)

exist, are J-complete on ©, and satisfy the relations
Wi(U, Uo, J, @)* = Wj:(U(), U, J*, @) and Wj:(U, Uo, J, e)’f](Uo) = n(U)Wj:(U, Uo, J, @)
for each bounded Borel functionm : T — C.

Proof. We adapt the proof of [2, Thm. 7.1.4] to the case of unitary operators in a two-Hilbert spaces
setting. The existence of the limits (2.3) is a direct consequence of the following assertion: For each
Yo € Ho such that ©g = suppy, (o) C ©, and for each n € CX(©,R) such that n(6) = 1 on a
neighbourhood of ©g

slim n(U)U™"JUgpo exist and lim_||(1 = n(U))U~"JUgeol[,, = O. (2.4)

To prove the first claim in (2.4), we take ¢ € H and observe that W, = n(U)U~"JU] satisfies for
m<n-—1

n

(0. (Wa = Wandoo), | = | S (0. n(U)U (U — UNUE o),
Jj=m+1

n

=1 D (TUnW)e. Tols o),

Jj=m+1
, 1/2 ) 1/2
<| X Tl > [I7oUs  oollg
Jj=m+1 J=m+1
. 1/2
<cgloll | > ([Tl Veoll}

J=m+1

with ©1 := supp(n) and ce, the constant appearing in the definition (2.2) of a locally U-smooth operator.
Since Ty is locally Up-smooth on ©, it follows that ||(W,, — W)woll3 — 0 as m — oo or n — —oo. This
proves the first claim in (2.4).

To prove the second claim in (2.4), we take mp € C°(O, R) such that ng = 1 on ©g and Ny = Mo.
Then, we have @o = 19(Ug)wo and

(1 —n(U))Ino(Uo) = (1 —n(V)) (Ino(Uo) — mo(U)J),
and thus the second claim in (2.4) follows from

im | (Ino(Uo) = m0(U) ) Ug o[, = O

Since the set of monomials zK with z € T and k € Z is total in C(T) for the sup norm, it is sufficient to
show that
lim [|(JU§ — U*J)Ugpol|,, = 0

n—=4oo



for all k € Z. For k > 1, the result follows from the formula JU§ — UKJ = Y2 (/=Y (JUy — UJ)US™
and the local Up-smoothness of Tq since

K
; k k : k—j
lim [[(JUg = UKI)Ugepoll,, < ngrinooz; |(JUo — UNUs U o,
J:
< Const.k lim_{|ToUg™no(Uo)#olg
= Ov
and for k < 0 the result follows from what precedes since JU, ¥ — U=IKlJ = —u=IK (JUl! — Ukl 1)Uy ™.
So, the existence of the limits (2.3) has been established. Similar arguments, using the relation

UsJs — J*U* = T§T instead of JUy — UJ = T*Ty, show that Wy (U, U, J*, ©) exist too. This, together
with standard arguments in scattering theory, implies the claims that follow (2.3). O

To present the last result of this section, we need to recall some basic definitions of the conjugate
operator theory borrowed from [2, Chap. 5]: Let S € B(H) and let A be a self-adjoint operator in H with
domain D(A). For k € N, we say that S € CK(A) if the map R > t — e "4 S e/t € B(H) is strongly of
class CK. In the case k = 1, one has S € C1(A) if and only if the quadratic form

D(A) 2 ¢ — (Agp, S<p>H — (o, SA<p>H eC

is continuous for the topology induced by H on D(A). The operator associated to the continuous extension
of the form is denoted by [A, S] € Z(H). Three regularity conditions slightly stronger than S € C*(A)
are defined as follows: S € CY1(A) if

1
/ e se rettse ™ 25| o) % < o0
0

S e CHO(A) if S € CL(A) and

/O e ALA ] (4, ]y o < o
S e CHe(A) for some e € (0,1) if S € C1(A) and
| e~ ""A[A, S]e'™ —[A, S|z < Const.t® forall t € (0,1).
As banachisable topological vector spaces, these sets satisfy the continuous inclusions [2, Sec. 5.2.4]
C3(A) C CHe(A) C CHO(A) c CHE(A) c CHA) C COA).

Let us also recall from [25, Sec. 3.1] that if U is unitary operator in H with U € C!(A), then the
function g} : T — (—oo0, oo is defined by

0y(0) :==sup{a€ R|3e>0such that EY(6;e)U[A UIEY(6;€) = aEY(6;¢)}, 0 €T,

where EY(6;¢) := EY(©(6;¢)), ©(6:€) := {6’ € T | |arg(6—6')| < €}, and for S, T € B(H) the notation
T 2 S means that there exists K € # (H) such that T + K > S. By analogy with the self-adjoint case,
we say that A is conjugate to U at a point 8 € T if 5@(9) > 0, and we write

pAU) == {6 €T|gje6) >0}

for the open subset of T where A is conjugate to U. The set p#(U) is open because the function g/}()
is lower semicontinuous. Finally, we denote by o,(Up) and o,(U) the pure point spectra of Uy and U.

Now, by combining [25, Thm. 3.4] and Theorem 2.5, we obtain the following criterion for the existence
and completeness of the local wave operators.



Corollary 2.6. Let Uy, U be unitary operators in Hilbert spaces Ho, H with spectral measures E%, EY and
Ao, A self-adjoint operators in Ho, H. Assume either that Uy, U have a spectral gap and Uy € CY1(Ag), U €
CLI(A), or that Uy € C*O(Ag), U € CYO(A). Let

© = {@™(Uo) \ 05 (Uo) } N {EA(U) \ 0,(U) },

Je B(Ho, H), G be an auxiliary Hilbert space, and assume there exist To € B(Ho,G) and T € B(H,G)
with JUy — UJ = T*To and such that Ty extends continuously to an element of (D({Ao)*)*,G) and T
extends continuously to an element of %(D((A)*)*,G) for some s > 1/2. Then, the strong limits

Wx(U, Uo, J,©) := s-lim U"JURE™(©)
exist, are J-complete on ©, and satisfy the relations
Wj:(U, Uo, J, 6)* = Wi(Uo, U, J*, @) and Wi(U, UQ, J, @)’n(UQ) = n(U) Wi(U, Uo, J, @)

for each bounded Borel functionm : T — C.

3 Scattering theory for quantum walks with an anisotropic coin

In this section, we present our results on the scattering theory for the pair {Uy, U} when U is the evolution
operator of a one-dimensional quantum walk with an anisotropic coin and Uy is the corresponding free
evolution operator. We start by recalling from [25, Sec. 4] the needed definitions and facts on the operators
U and U,.

Let H be the Hilbert space of square-summable C2-valued sequences

H = 4%(Z,C?) = {w 12— C? Y (X3 < OO} ,

XEL

where || - || is the usual norm on C2. Then, the evolution operator of the one-dimensional quantum walk
in H that we consider is given by U := SC, with S a shift operator defined by

(0) (0)
(SW)(x) = (&Qj* 3) v @(1)) cH xez

and C a coin operator defined by
(CV)(x):=C(x)V(x), VeH xeZ, C(x)eU2).

In particular, the evolution operator U is unitary in H since both S and C are unitary in H.

We assume that the coin operator C has an anisotropic behaviour at infinity. More precisely, we
assume that C converges with short-range rate to two asymptotic coin operators, one on the left and one
on the right in the following way:

Assumption 3.1 (Short-range assumption). There exist Cy, C, € U(2), K¢, Ky > 0, and &g, > 0 such
that

100 = Cell oy < melxI T if x <0

C(x)—C, < ke |x|71Eif x >0,
[C(x) | x|

B(C2)

where the indexes £ and r stand for “left" and “right".



This assumption provides us with two new unitary operators U; := SC,y and U, := SC,; describing the
asymptotic behaviour of U on the left and on the right.

From now on, we shall use the symbol x to denote either the index £ or the index r, and we define
the space

Hin = | J{W eH | V(x)=0if |x| > n} CH,
neN

the Hilbert space K := L2 ([0,2m), 3%,C?), and the unitary Fourier transform % : H — K which
corresponds to the unique continuous extension of the operator

(FU)(k) =) e W(x), W EH, ke0,2m).
XEL
The operator U, is decomposable in the Fourier representation, namely, for all f € K and almost every

k € [0, 2m) we have

,\ A oik
(Z U, Z*F)(k) = U.(k)f(k) with U, (k) := (O e_,k> C, € U(2).

Also, since U:(k) € U(2), the spectral theorem implies that
2
K) =D Ai(K) My (k).
j=1

with X, j(k) the eigenvalues of U:(k) and I, j(k) the corresponding orthogonal projections. Furthermore,
for j € {1,2} we let v, ; : [0,27) — R be the bounded function given by

v (k) == i X (k) (g (k) (3.1)

where (-)" means the derivative with respect to k. The function v, j is real valued because ), j takes values
in T. Then, we define for all f € IC and almost every k € [0, 2m) the decomposable operator V, € Z(K),

(VF) (k) = Vi(K)f(k) where V.(k) : Zvﬂ (k). (k) € B(C?), (3.2)
Jj=1

and we call asymptotic velocity operator the operator V, = .%* \7*33

We can now start studying the scattering theory for the operator U. As free evolution operator, we
use the unitary operator Uy := Uy @ U, in the Hilbert space Ho := H ® H. In [25, Sec. 4.2], it has been
shown that the spectrum of Uy coincides with the essential spectrum of U, namely,

Oess(U) = 0(Up) Ua(Ur) = a(lo).

As identification operator between the Hilbert spaces Ho and H, we use the operator J € #(Ho, H)
defined by
J(Wg, W) =g Wy + e W, (W, V) € Ho,

where
1 ifx>0
(X)) = - and  Jjy:=1—.
Jr(x) {0 fx< 1 Je Jr
The first lemma of the section consists in a simple observation related to the J-completeness of the
wave operators for the pair {Up, U} :

Lemma 3.2. For any W € H, we have lim,_ || J*U" V|3, = 0 if and only if ¥ = 0.



Proof. We know from [25, Lemma 4.7] that JJ* = 14;,. Therefore, we have for any n € Z and W € H
[ U3, = (UM, UMWY, = (UM, U, = (UM = (W,
which implies the claim. |

A direct consequence of this lemma is that the abstract spaces M4 (U, J, ©) defined in Section 2 are

trivial in our case:
N (U, J,0) = EY(T\ ©O)H. (3.3)
Now, in order to prove with the help of Corollary 2.6 the existence and the completeness of the
wave operators for the pair {Ug, U}, we need to recall some facts about conjugate operators Ag and A
introduced in [25]. In the proof of [25, Thm. 4.5(c)], it has been shown that there exists for x = £,r
an operator A,, defined in terms of the velocity operator V, and essentially self-adjoint on Hsin, such
that U, € C2(A,). In addition, the operator A, is conjugate to the operator U, outside the set 8o (U,)
of boundary points of o(U,) in T. As a consequence, the operator Ay := A; @ A, is well-defined and
conjugate to Uy on the set a(Up) \ 7(U), with

T(U) := 80(Uy) Uda(U,).

The set 7(U), which contains at most 8 values, is called for this reason the set of thresholds of U. In
[25, Lemma 4.9], it has also been shown that the operator JAqJ* is essentially self-adjoint on Hs,, with
self-adjoint extension denoted by A, and that A is conjugate to U on o(Up) \ T(U).

We also recall a relation between the conjugate operator A and the position operator Q given by

(QV)(x) =xV(x), x€Z VeDQ)={VeH]||QV|y < x}.

This relation has already been used in the proof of [25, Lemma 4.13], but we make it more explicit now.
As mentioned in that proof, the operator (Q) ! A, defined on Hs;, extends continuously to an element of
Z(H). This implies that D((Q)) C D(A,), and thus that D({(Q)) C D(A) due to the equality

A= JAoS" = joAee + Jr Ardr 0N Hiin. (3.4)
Therefore, we obtain by real interpolation the inclusions
D((Q))* € D((A))° and B(D((Q))°,H) C B(D((A)*. H) (3.5)

for each s > 0.
We can now state our theorem on the J-completeness of the wave operators for the pair {Up, U},
with the notation Eéjc for the orthogonal projection on the absolutely continuous subspace of U.

Theorem 3.3. Let © := {o(Uy) Ua(U)} \ {T(U)Uo,(U)}. Then, the operators

We(U, Up, 4. ©) = slim U"JUSE™(©) (3.6)
n o0

exist and satisfy Ran (Wi(U, U, J, 9)) = EYH. In addition, the relations
Wj:(U, Uo, J, 6)* = Wi(Uo, U, J*, @) and Wi(U, Uo, J, @)’n(Uo) = n(U) Wi(U, Uo, J, @)
hold for each bounded Borel functionn : T — C.

Before the proof, it is convenient to highlight some properties of the projection EY%(@). First, let
the matrices C, € U(2) be parameterised as

a ei(a*fé*/2) b, ei(ﬁ*f&/2) >

6.
C.=e?/ (b* e B.—0./2) 5 e~i(@.70./2) =



with a,, b, € [0, 1] satisfying a? + b? = 1, and a,, B, 6, € (—m, 7. Then, recall from [25, Lemma 4.1 &
Prop. 4.5] that the operator U, has pure point spectrum with o(U,) C 7(U) if a, = 0 and purely absolutely
continuous spectrum with do(U,) C T7(U) if a. € (0,1]. Since we also know from [25, Thm. 2.4] that
the number of eigenvalues of U in any closed set ©" C T\ 7(U) is finite, we infer that

1y ® 1y if 4, a € (0,1],

14 ® 0y ifage(0,1] and a, =0,
Oy ®1y ifa,=0anda € (0,1],
Oy ®0y ifag=a =0.

EY(©)=E% = (3.8)

Thus, in the generic case ay, a, € (0, 1], the projection E%(©) appearing in (3.6) can simply be replaced
by 17{0 = 17{ S 17{.

Proof of Theorem 3.3. All the claims except the equality Ran (W (U, Uy, J,©)) = EYH follow from
Corollary 2.6 whose assumptions are checked now.

The proof of [25, Prop. 4.5(c)] implies that Uy € C%(Ay), [25, Lemma 4.13] implies that U € C1T¢(A)
for each € € (0, 1) with € < min{ey, &/}, and [25, Prop. 4.11] implies that

{o(Up) Ua(UNI\ {T(U) Uop(U)} © {B% (Uo) \ 05(Uo) } N {BA(U) \ 0p(U) }.

Thus, in order to apply Corollary 2.6, it is sufficient to prove the existence of operators Ty € %(Ho,G)
and T € B(H,G) with JUy — UJ = T*Ty and such that Ty extends continuously to an element of
B(D((A0)*)*,G) and T extends continuously to an element of Z(D((A)*)*,G) for some s > 1/2. For
that purpose, we set s := (1 + €)/2 and define the sesquilinear form D : Ho x H — C by

D((Ve, W), V) := <<Q>S‘U, > (.sIc. - s(C - C*)J*)<Q>SW*>
H

~e{l,r}

for each (W,, W,) € Hfin ® Hsin and V € Hgn. With arguments similar to the ones used in the proofs
of [25, Lemmas 4.12 & 4.13], one shows that the form D extends continuously to a bounded form on
Ho x H. Thus, there exists an operator D € #(Ho, H) (the same notation is used on purpose) such that

D((We, W), W) = (W, D(W, ¥,)),,, (W, W) € Ho, W € H.

Also, we define the operators Tg = (Q)™°* ® (Q)™° € B(Ho) and T := D*(Q)~° € B(Ho, H), and
observe that JUy — UJ = T*Ty due to the definition of D and Equation [25, Eq. (4.6)]:

JUp—UJ= > (li. SIC. = S(C = C.)ju).

*e{e,r}

Finally, we note that the second inclusion in (3.5) implies that

Qe B(DUQ)) . H) C B(D(A)*. H),
and thus that T € Z(D((A))~°, Ho). Similarly, since

(@) & (Q)~* € B(D((Q)* & (Q) ), Ho) C B(D((As)) ™ Ho).

we have that Tq € Z(D((Ao)) ™, Ho). and thus all the assumptions of Corollary 2.6 are verified.

Therefore, it only remains to show that Ran (W4 (U, Uy, J, ©)) = EY.H. For this, we recall from (3.3)
that M4 (U, J, ©) = EY(T\ ©)H. This, together with the J-completeness of the wave operators and [25,
Thm. 2.4], implies that

Ran (Wx (U, Uo, J,©)) = EY(©)H &N (U, J,©) = EY(O)YH = ELH.
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In the last proposition of the section, we determine explicitly the kernels of the wave operators
Wi (U, Ug, J,©). We use the notation xa for the characteristic function of a set A C R and x+ for the
characteristic functions of the sets (0, c0) and (—o0, 0), respectively.

Proposition 3.4. Let © := {o(Uy)Ua(Uy)}\{T(U)Uo,(U)}. Then, the wave operators W (U, Uy, J, ©) :
Ho — H are partial isometries with initial sets

HE = x+(VOOH ® x+ (V) H. (3.9)

Let us make two observations before giving the proof. Firstly, if a, # 0 and a, # 0, then [25,
Lemma 4.6] implies that the value 0 is not an atom of the spectral measures of V; and V;. Therefore, one
has the following orthogonal decomposition of Hj :

Ho=HoH= (x-(Vo) +x+(V0))H & (x+(V) + x-(V))H = Hg ©Hy .

Secondly, if a; = 0, then [25, Lemma 4.2(a)] implies that V; = 0. Thus x+(V;) = 0, and (3.9) implies that
Wi (U, Ug, J, ©) are isometric only on vectors 0 & W, with W, € x+(V/)H. Such a result is not surprising
since we know from [25, Lemma 4.1(a)] that in this case one has o(U;) = o,(Up) and

W (U, Uy, J,©) = Wi (U, Ug, J, ©)EP () = Wy (U, Up, J,©) (0 EV(O)).
A similar result holds if a, = 0.

Proof of proposition 3.4. We give the proof for W, (U, Uy, J, ©), treating separately the cases correspond-
ing to the different values of a; and a,. The proof for W_(U, Uy, J, ©) is similar.
(i) If ag = a, = 0, then we know from (3.8) that EY%(©) =0, and

W (U, Ug, J.©) = Wy (U, Uy, J,O)EY(O) = 0.

Thus, the wave operator W4 (U, Uy, J, ©) is isometric only on the subspace {0} & {0}. But, we also have
HS = {0} & {0} since V, =0 = V. So, W, (U, Up, J, ©) is a partial isometry with (trivial) initial set Hg .

(ii) If ag, ar € (0, 1], we know from (3.8) that E%(©) = 14,. To show that Hy C ker (W (U, U, J, ©)),
take (W, W,) € Hy such that X(e.0)(Ve)We = Wy and X (—oo,—¢) (W)W, = W, for some € > 0. Then, one
has

W (U, Uo, 4, ©) (W, w1,

s-lim U™ JUL (W, W,)
n—oo

H

. Zn:
in| ¥ v,
~e{L,r} H

> i uniur
~€{L,r}

= Y lim |
n—o0

~€{L,r}

IN

TRURVATH S

Now, if mg, . € C(R, [0, 1]) satisfy

1 ifs<O 0 ifs<-—¢
s) = and s) = -
me(s) {o ifs>e m(s) {1 ifs>0,

one obtains for each n € N* the inequality

IUZS U2V < (U7 0 (@MU,

11



Furthermore, since
Ne(Vo)We = ne(Ve) Xje.oo) (Ve)We =0 and 0 (V)W = 1 (V) X(—o0,—e] (V)W = 0,

one infers from [28, Thm. 4,1] and a standard result on the convergence in the strong resolvent sense
[24, Thm. VII1.20(b)] that

Jim ([0S n(Q/mUIW |, = [[m. (V). |, = 0.
Putting together what precedes, one obtains that

Wi (U U, 4 @) (W, W]y, < S
~e{L,r}

meaning that (W, W,) € ker (W4 (U, Ug, J,©)). Since
(wlv wr) = (X[E,oo)(\/l)wlv X(—oo,—a](\/l’)wl’)y

a density argument taking into account the fact that the value O is not an atom of the spectral measures
of V; and Vf then shows that Hg C ker (W..(U, Up, J, ©)).

To show that W, (U, Up, J, ©) is an isometry on H, take (W,, W,) € Hg such that X(—o0,—e] (Vo) Vg =
Wy and Xje,00) (Vi)W = W, for some € > 0, and let {;, ¢, € C(R, [0, 1]) satisfy

Cz(S)IZ{O if s < —¢ and Cr(S)ZZ{l ifs<O0

lu Ul = 0.

[im
n—o0

1 ifs>0 0 ifs>e.

Then, using successively the identity E%(©) = 14, the identity J*J = j, @ j; of [25, Lemma 4.7], the
definition of the asymptotic velocity V., and the assumption on the support of V,, one gets

W (U, U, 4 @) (W, Wl = [[(We w3,

Jim (U703 v w5, = [[(ve vl

= tm (U v, (0 - DUV ),
= fim {U5(W, W), (1~ o @ J) U (Ve V1)),

D lim (WL U@/ UL,

~e{L,r}

> (LG (V)WL)
~e{L,r}
=0.

IN

Thus, W4 (U, Uy, J,©) is isometric on (W,, W,). Since

(We, V1) = (X(=o0—a (VD) Ve, Xe.o0) V)W),

a density argument taking into account the fact that the value 0 is not an atom of the spectral measures
of V; and V; then shows that W4 (U, Uy, J, ©) is an isometry on whole of H¢ .

(i) If 3z =0 and a, € (0,1] orif ag € (0, 1] and a, = 0, then the claim can be shown as in point (ii).
We leave the details to the reader. O

Remark 3.5. Let W = (W, V,) € Hy. Then, we have
W (U, Uo, J ©)V = s-lim U "JUSEY (@)W
n o0
= slim U™ (QUPE (@)W, + jUPEY (@) W)
= Wyi(U, Ug e, ©)Ve + We (U U, jr, ©)V,
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with
Wy (U, U, ji, ©) = s-lim U™, U"EY(©).
n—+oo

That is, the wave operators W.(U, Uy, J, ©) act as the sum of the operators Wy (U, Us, ji, ©) :
Wi (U, Uy, J, ©)V = Wy (U, Uy, Jjg, @)Wy + Wi(U, U, Jji, ©)V,.

This simple observation will be used in the following section.

4 Weak limit theorem

We prove in this section a weak limit theorem for quantum walks with an anisotropic coin, and we give
an interpretation of this weak limit theorem by comparing it with its classical analogue, the central limit
theorem for classical random walks. Our first proposition gives a description of the asymptotic velocity
operator associated to the the full evolution operator U. To state it, we introduce the Heisenberg evolution
Q(n) :=U~"QU", n € Z, of the position operator Q, and the velocity operator \j := V;, & V; for the free
evolution operator Uy = U; @ U;.

Proposition 4.1. Let © := {o(Up) Ua(U) I\ {T(U)Uop(U)}, Vac := Wi (U, Uy, J, ©) VoW, (U, U, J, ©)*,
and £ € R. Then, one has

s-lime®QN/n = FU 4 eltVac £U

n—o0 P ac’
Proof. The finiteness of 7(U) and [25, Thm. 2.4] imply that U has no singular continuous spectrum, and
[28, Thm. 4.2] implies the equality s-limp_o €9M/" EV = EV. Therefore,

s-lim e/ = s-[im e/ (Y 4 EV) = EY 4 s-lim /7 £V

n—oo n—oo n—oo

and thus it is sufficient to show that

s-lim e €QU/n EU = gtVac U (4.1)

n—oo

Now, we know from Theorem 3.3 and Proposition 3.4 that Ran (W, (U, Up, J,©)) = ELH and that
Wi (U, Uy, J,©) is a partial isometry with initial set Har. Furthermore, we have the inclusion \/07{5r C Har
due to the definition of H§ (see (3.9)). So, we obtain for each k € N the identity

(Wi (U, Uy, 4, ©) VoW, (U, Ug, J, e)*)kngc =W, (U, Uy, J, O)VF W, (U, Up, J O)EY,

and thus the r.h.s. of (4.1) satisfies

. 1 . \
e EY = WU o, J 0)(i€V6) "W, (U, Us, J, ©)"EY.
k>0

=W, (U, Up, J,©) e W, (U, Uy, J, @) EY. (4.2)

On another hand, if we set W, := U™"JUJ and Qqo(n) := Uy"(Q @ Q)U§ for n € Z, then a direct
calculation using the definition of the operator J implies that

eI€QUN/n _ . ei€Qo(n)/n

Therefore, we obtain that

efQm/n pU _ gitVac U — y e8Q/n 1 gl W (U, Uy, J, ©) e W, (U, Uy, J, ©)*EY.
= I1(n) + I2(n) + I3(n),
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with

11(n) == W, e€Q/n (W — W (U, Up, J,©)")EL,

I5(n) 1= W, ($@/n _ €0\ (U, Uy, J, ©) EL,

13(n) == (W, — W4 (U, Uy, J,©)) e W, (U, U, J, ©)EL.
But, Theorem 3.3 and the identity EY(©) = EY. imply that s-lim,_, /1(n) = 0. Theorem 3.3, the identity
E%(©) = E, the inclusion Ran (W (U, Up, J,©)*) C EYH, and the fact that €% £ = Elo etV

(which follows from (3.8)) imply that s-lim,_,« /3(n) = 0. Finally, [28, Thm. 4,1] and [24, Thm. VII1.20(b)]
imply that s-lim,_. /2(n) = 0. Therefore, we obtain that

s-lim (e!fQ(n)/” Eé{: o e/f\/ac E;{:) — O’

n—oo

which proves (4.1). O

Remark 4.2. If we define the asymptotic velocity operator VV € %(H) for the full evolution operator U

as
VU = 0 ?f Ve EF%”H
VoW if W e EUH,

then the result of Proposition 4.1 can be rephrased in the more compact form

s-lime®?/m = e ¢ e R.

n—o0o

We are now in a position to state the weak limit theorem. For that purpose, we denote by X, the
random variable for the position of a quantum walker with evolution U and initial normalised state V;, € H
at time n € Z. The probability distribution of X, is given by

P(X, =x) = ||(U”\Um)(x)||éz, X €7,
and the characteristic function of the average velocity X,/n of the quantum walker is given by
E(e™/7) = (U"Wiy, /UM, ) = (Wi, €990 £ ER,
We also use the notation g for the Dirac measure on R for the point 0 :
Theorem 4.3 (Weak limit theorem). Let Wi, € H with ||Win|ly = 1, let © .= {o(Uy) Ua(U)} \ {T(U)U
op(U)}, and let V be the random variable with probability distribution

(4.3)

py = ||ESWinll5, 60 + [|EVL(OWL(U, U, Jo, ©) Vi[5, + ||EY (- Wi (U, Ur. i, e)*winHi

% [

with the operators Wi (U, U,, j., ©) defined in Remark 3.5. Then, the average velocity X,/n converges in
law to V as n — oo, namely, _ _
lim E(e*/") = E(e’®"), ¢ eR. (4.4)

n—o0

Since the average velocity X,/n of the quantum walker converges in law to V. as n — oo, V can
be interpreted as the asymptotic velocity of the quantum walker, with wy its probability distribution.
Therefore, Theorem 4.3 implies that the probability that the quantum walker has velocity 0 is

P(V = 0) = w({0}) > || EVwal[2,

Accordingly, we say that localisation occurs if P(V = 0) > 0, and (4.3) tells us that this happens if the
initial state W;, has an overlap with the pure point subspace of U. Later in this section, we will see that

PV =0) = ||[EV Wi,

and that localisation occurs in fact if and only if the initial state W;, has an overlap with the pure point
subspace of U.
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Proof. Using Proposition 4.1, Equation (4.2), and the identity W, (U, Uy, J, ©)*EY. = W (U, Uy, J. ©)*,
one obtains

lim E(e®/") = lim (Wi, e/ W),

n—oo

= <win, (Ef + ¥ ES )W),

= || EYWin|[3, + (Win, Wi (U, Us, J, e)e'fVO Wi (U, Uo, J, ©)*ESL Wiy >
= [|EYWin 5, + (W (Ui Uo, 4 ©)* ELWin, €% W (U, U, J, ©) EY W, ),

:/e"gx (IESwinll5, 80(ax) + HEVO(dA)W+(U Uo. 4 ©) Ext m||i0)-
R

Therefore, to prove the claim, it only remains to observe that
|EY (- W (U, U, 4. ©) ELWi |,
=\!EW(»eeE“«»MA(uLb_Aerwwuio

— | EY (W, (U, Up,jo, ©) Wi 12, + [|EY ()W, (U, Ur, . ©) Wi 2,

O
In order to give a better description of the probability distribution wy, we recall from Section 3 that
we have for k € [0, 27)

2 2
U(k) = S0 (0M(k), Vi(k) = D v (ML (k) and  vai(k) = iX, (k) (A (k)
j=1 J=1

We also recall from [25, Lemma 4.2] the following properties of the functions v, ; given in terms of the
parameters a,, o, 6, of (3.7):

(i) If a. =0, then v, ; =0 for j € {1, 2}.

(ii) If a, € (0,1), then v, ;(k) = S22 for j € {1,2}, k € [0, 27) and

T (k) i= a.cos(k + o, —0./2), (k) :=+/1—T(k)2, <(k):=a.sin(k + o —d,/2).

(iii) If a, =1, then v, (k) = (—1) forj € {1,2} and k € [0, 27).

With this done, we can start our study of the probability distribution wy by collecting some information
on the operators W (U, U,, j., ©) appearing in (4.3):

Lemma 4.4. Let © .= {o(U) Ua(U)} \ {T(U)Ua,(U)}.
(a) Ifa, =0, then W, (U, U, j,,©) =0.

(b) If ag € (0,1), then W (U, Uy, jg, ©) is a partial isometry with initial subspace x_(Vy)H, and if
ar € (0,1), then Wy (U, U,, jr, ©) is a partial isometry with initial subspace x+(V;)H.

(c) If ag =1, then W,.(U, Uy, jg, ©) is a partial isometry with initial subspace € (Z, (5)), and if a = 1,

then Wy (U, Uy, jr, ©) is a partial isometry with initial subspace €% (Z, (2)).

Proof. The claim (a) is a direct consequence of Remark 3.5 and Equation (3.8). The claim (b) is a
direct consequence of Remark 3.5, Equation (3.8) and Proposition 3.4. For the claim (c), we recall from
Proposition 3.4 and the point (i) above that in the case a; = 1 the initial subspace of W.. (U, Uy, js, ©)
coincides with the eigenspace of V; for the eigenvalue —1 (see the case j = 1 in the point (iii) above).
Then, the formula for u, 1(k) in [25, Sec. 4.1] directly implies that this eigenspace is equal to the space
2 (Z,(5)). The proof of the claim in the case a, = 1 is similar. O
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Now, to pursue our study of the probability distribution wy, we recall the definition of the Konno

function
V-7 if |lu| <r,

fi : R x (0,1] = [0,00), (v, r)+ {ﬂl—v?)m _
0 otherwise.
With this definition at hand, we can establish the following:
Proposition 4.5. Let Wi, € H with ||yl =1, and let © := {o(Up) Ua(U,)} \ {T(U) Ua,(U)}.
(a) Ifa. =0, then ||EY-(-)W.(U, U, j., ©) W5, = 0.

(b) Ifa, €(0,1) and v € R, then

dHEV* (=00, V)W (U, U, Ju, e)*winui B {%X[a[,o)(u)wg(u)fK(U, ag) ifx=14¢

v %X(O,ar](U)wr(U)fK(U, ar) if x=r

for some nonnegative functions wy € L' ([—ay, 0), 2f(-, ag)dv) and w, € L* ((0, &, 1/ (-, a;)dv).

(c) If a, =1, then

|We (U, Up. o, ©) Win| 3,01 i =4

EV-( YW, (U, U, j., ©) W, =
[E# WU U e €)Wy {HW+(U,ur,jr,e)*win\]iél if x=r

with 041 the Dirac measures on R for the points £1.

Proof of (a) and (c). In the case a, = 0, the claim (a) follows directly from Lemma 4.4(a). In the
case of a; = 1, we know from Lemma 4.4(c) that W, (U, Uy, jg, ©) has initial subspace € (Z, (§)),
so that Wy (U, Up, jg, ©)*Win € €2 (Z,(5)). On the other hand, we have shown in [25, Sec. 4.1] that
o(Vp) = 0p(Ve) = {—1,1}, with £2(Z, (§)) the eigenspace associated to the eigenvalue —1. Thus, we
obtain for any Borel set B C R that

. wr |12 e
||EW<B>W+<U,ue,Jz,ewmu;{QWNUvULJev@) Vallp i -1€ B,

otherwise.

Since a similar result holds for the operator W..(U, Uy, J;, ©), the eigenspace €2 (Z, (2)) and the eigenvalue
+1, we infer the result of the claim (c). O

In order to prove the claim (b) of Proposition 4.5, we need two preparatory lemmas. The first one is
the following:

Lemma 4.6. Define for x € {£,r}, j € {1,2}, m€ {0,1} and a, € (0,1) the function

(—1)J'+’"b*'u)
avi—v2 )’

0, .
Kejm [—acad = Im v 5 o, + mm —+ arcsin
where
lo:=[—7m/2—a.+06./2,m/2—a, +06./2] and | :=Ip+T.

Then, the function k. jm is differentiable on (—a., a.) with
K. m(v) = (1Y " fc(v, a.), v € (—a., a.), (4.5)

and K, jm is a bijection with inverse v, j|,,,, that is,

(Vijo kijm)(v) =v forv e [—a., a.] and (k. jmo Vij)(k) =k for k € In,. (4.6)
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Proof. Set f.(v) = a\j’% for v € [—a., a.]. Since f/(v) = W > 0 on (—a., a.), the function

f, is strictly increasing on (—a., a,) with f.([—as, a.]) = [-1, 1]. It follows that k. is differentiable on
(—ax, a,) with derivative

d(arcsino(—1)/*™mf,)

K jm(V) = oy (v) = (—1y*™fl(v) (—1y+m/T— 2

O VI-R@? @21 -?)

This implies (4.5).

Now, the fact that k;  # 0 on (—a., a.) implies that k. is invertible. Since <. (k.jm(v)) =

(—1Ya.f.(v) and . (ke jm(v)) = /b2 + a2f2(v) for v € [—a., a.], one also obtains that
(=15 (Keyim(v) a.f,(v)
Vej(Kejm(v)) = ( inv) T L 5 Y
N (ke jum(v) Vbi+aifi(v)
On the other hand, since f, (v, j(k)) = (—1) sin(k + .. — 6. /2) for k € [0, 27), one obtains that

Kejim(vij(K)) = % — a. + mm +arcsin ((—1)"sin(k + o — 6./2)).

Therefore, if m =0 and k € lg, then k+ a, —6,/2 € [-7/2,7/2] and thus k. jm(vij(k)) = k. And if
m=1andk € Iy, then k+a,—6,/2 € [r/2,37/2] and (—1)"sin(k+ o, —0d,/2) = sin(k+a, —0,/2—).
Thus k + a, —6./2 — m € [-7/2,m/2], and one obtains once again k. ;m(v..j(k)) = k, which concludes
the proof. O

To state our second preparatory lemma, we need to introdugg some notations. For k € [0, 27), we
denote by u, j(k) € C? a normalised eigenvector of the operator U, (k) for the eigenvalue X, ;(k). In [25,
Sec. 4], we have shown that v, j(k) can be chosen C* in the variable k. For x € {£,r}, we set

G. = L% ([~a., a] 2fk(-, a.)dv).
Finally, for j € {1,2} and m € {0, 1}, we define the operator K, jm : H — G. by
(KejmW) (V) == (e j(kejim(©)), (FV) (K jm(V)))eor WV EH, v E [—a, al.
Lemma 4.7. The operator K, jn Is bounded and satisfies the following:
(a) Forg € G., one has (K.jm)*g = F*{X1,9(vij(-)) .}
(b) Forj,j' € {1,2} and m, m’" € {0, 1}, one has K, j m(Ky jr.m)* = 0jj0m nvidg, .
(€) Djetroymeiony(Kejm) K jim = idy.

(d) For any Borel function F : [—a,, a.] — C, the multiplication operator by F in G, (denoted by the
same symbol) satisfies the equation

Z (Kejim) FKojm = F(V.).
Jje{1,2},me{0,1}

Proof. Using the change of variables k := k. j m(v), Equation (4.5), and the normalisation of u, j(k), we
obtain for any W € H

Ax

1Kol =% [ (Km0 (v, 2.) 0w

Ak

=2 [ a0, (FV)0) o ok

m

IN

1
2m

27
(ZW)(K)|% dk
0

W13,
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which proves that K. jm is bounded. Furthermore, using the change of variables k := k, j m(v) and (4.6),
we obtain for any g € G,

(9. KesmDg. = & [ T (e gn®). (F0) ke in(0) (v, ) b

=5 [ 9y (R) (i (k). (FV)(K)) ok
= (F{x1,9 (v () tij} V),
which proves (a). To prove (b), we observe that points (a) and (4.6) imply for any g € G, and v € [—a,, a.]
(Kejm(Kejrm)*9) (V) = (e (ke jim(V)), (F (Ksjrnr)*9) (K jim (V) ) e
= X1,y ((Keim()) 9 (Ve jr (ke (0))) (s (Kiom (V) e jr (K jim (V) ) o
= 0j 1 0m.m 9(V).
On the other hand, for any W € H and k € [0, 27) we have
(F(Kejm) KegimW) (k) = X1, (k) (K j.m W) (v (K)) sy ()
= X (K) (U (K o (Ve j (K)) ) (P V) (Ko (Ve (K)) ) ) oo Ui (K)
= X1 ()t (K), (F V) (K)) ot (K).

Hence, we obtain
(Kejim)* KsjomW = F X1, (U j () (FV) () ot } = F X1, j () TV,

and thus
Yo Kum)KemV = > TN )FV =,
je{1,2},me{0,1} je{1,2},mef0,1}

which shows (c). Finally, for any W € H and k € [0, 2m) we have
(Z(Kejim) FKejmWV) (k) = X1, (k) (FK W) (Ve (K)) e i ()
= X1, (K)F (v (k)N j(K) F WV
which implies that

Yo (Km) FRum= Y FF(vj( )N ()T = FFV.).F = F(V.),
Jje{1,2},me{0,1} je{1,2}

as stated in (d). O
We can now provide the proof of the claim (b) of Proposition 4.5:

Proof of Proposition 4.5(b). Take a Borel set B C R. Then, Lemma 4.4(b), Lemma 4.7(d) and [25,
Lemma 4.2(b)] imply that

EY(B)W, (U, U, jo, ©)*Win = x8(Vo)X- (Vo)W (U, Uy, jo, ©) Wiy

= Z (Kej.m) X Bn[-a,,0) KejmWei (U, Ug, Jo, ©)" Wi,
Jje{1,2},me{0,1}
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Thus, it follows by Lemma 4.7(b) that

| EYH(BYW. (U, Up, Ji, ©) Wi |2,

= Z | XBr1=a0.0) Ke.mWi- (U, Ug, Jo. ©) Wig H;
je{1,2},me{0.1}

=3 Z / | (KejmW4 (U UK:JZ:e)*win)(U)}2fK(U, ag) dv,
je{1,2},mefo,1} 7 BNl=a.0)

which means that the density function of ||EY¢(B)W..(U, Up, je. @)*\UmHi is given by

d]| E% ((—o0, v))W. (U, Up. s, ©)* Win 3,
dv

. . P)
=3 Z X=2.0) (V)| (Kej,mW (U, Up, Jo, ©)*Win) (v)|“ (v, a0).
je{1.25,me{0,1}

Since a similar argument leads to

dH EV ((*OO, 'U])WJ,-(U, Ur Jr, ©)" Vs
dv

= % Z X(O,ar](U)}(KrJvmW+(Uv Urr.jrve)*win)(u)}2fK(Ur ar)r
je{1,2},me{0,1}

[

the claim follows by setting

ww) = > |(KegmWi (U, Ue g, ©) W) (V)] (4.7)
Jj€{1,2},me{0,1}

O

In our final theorem, we gather the results obtained so far on the probability distribution uy and we
prove a uniqueness result.

Theorem 4.8. Let Vi, € H with ||Win||x = 1, and let V be the random variable defined by (4.4). Then,
V has probability distribution

wy(dv) = ko do(dv) + Ked_1(dv) + Ky 61 (dv)
+ X[—a,0) (VIWe(V) 3 fic(v, ) dU + X(0.2) (V)W (V)3 ik (v, @) du, v ER, (4.8)

with Ko, kK« > 0 given by

. 2 .
el 112 _ JIWe U U e ©) Wl ifa=1
ko -= HEp W'”HH and Ky = {0 otherwise,
and with wy € L ([=az,0), 3f(+, a¢)dv) and w; € L' (0, ar]. 57 (-, ar) dv) given by

. N 2 .
w, (V) = Zje{lQ},me{O,l} ‘(K*,j,mW+(U, Ui, Jx, ©) win)(v)‘ if a, €(0,1)
) ' 0 otherwise.

Furthermore, the decomposition of Wy Iis unique.
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Proof. In view of Theorem 4.3 and Proposition 4.5, only the uniqueness of the decomposition of uy has
to be established. For that purpose, we observe that uy is the sum of a pure point measure located at the
three distinct points —1,0, 1 and an absolutely continuous measure. As a consequence, the coefficients
Kg, Ko, K¢ are unique. In addition, since the absolutely continuous measure is the sum of two absolutely
continuous measures with disjoint supports [—ag, 0) and (0, a], each of these measures is unique in the
L!-sense given by their density functions in L ([—ag, 0), 3f(-, a)dv) and L' ((0, a], 3/ (-, a)dv). O

Remark 4.9. In the case of the one-dimensional random walk where the walker moves to the left with
probability p and to the right with probability q, the classical central limit theorem implies that the

. Xp— — . . .
random variable %\/%p) converges in law as n — oo to a random variable Z with standard normal

distribution N(0O, 1). Therefore, the weak limit theorem 4.3 can be interpreted as a quantum analogue of
the classical central limit theorem. On the other hand, the classical central limit theorem implies that the
average velocity X,/n always converges in law as n — oo to a Gaussian random variable with distribution
N(qg — p,4pq/n), whereas the weak limit theorem leads to a variety of limit distributions wy depending on
the outgoing states W (U, U,, j., ©)*Wi,.

To conclude, we discuss in more detail some particular cases of Theorem 4.8:

Example 4.10. (a) In the case a, = 0 and a, € (0, 1), the formula (4.8) reduces to
py(dv) = Ko 8o (dv) + 3X(0.a] (V)W (V) fk (v, &) dv.

Thus, the density function of the absolutely continuous part of uy is supported in (0, a;], and the quantum
walker can asymptotically move only to the right at a speed belonging to the interval (0, a,].
(b) In the case a; = 1 and a, € (0,1), the formula (4.8) reduces to

pv(dv) = Ko bo(dv) + Ked-1(dv) + %X(O,ar] (v)wi (V) fi(v, ar) dv.

Thus, the quantum walker can asymptotically move to the left at speed 1 or to the right at a speed
belonging to the interval (0, a].
(c) In the case aq, a; € (0, 1), the formula (4.8) reduces to

py (dv) = Ko Go(dV) + 5X[—a,.0)(V)We(V) fic (v, a2) dv + $X(0,01 (V)W (V) i (v, ar) dv. (4.9)

Thus, the quantum walker can asymptotically move to the left at a speed belonging to the interval (0, a]
or to the right at a speed belonging to the interval (0, a]. In particular, if a, > a,, then the quantum
walker can move faster on the left-hand side than on the right-hand side.

Finally, we note that the formula (4.9) covers various previously known results:

Example 4.11. (a) In the case a; = a, = 1//2, the formula (4.9) reduces to

py(dv) = Ko 8o(dv) + 3 (X(_1/vz.0)(VIWe(V) + X (0,12 (V)W (V)) i (v, 1/v/2) dv. (4.10)

This generalises the formula obtained by Endo et al. in the case of a two-phase quantum walk with one
defect [9, Thm. 2.1]. Indeed, in their work Endo et al. consider a coin operator given by

Co= (L %) a1
Cx)=4Co=(5%) if x=0
Co=F5(ch &) ifx<—1,

for some o1 € [0, 2m), and they obtain the formula

py(dv) = cdo(dv) + w(v)f(v, 1/v2)dv (4.11)
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where ¢ := 3" ey (lIMnsoo 5 Somcg P(X, = x)) and w : R — R is some particular function. However,
by applying a discrete analogue of the RAGE theorem, or Wiener's theorem, or in a way similar to [27,
Appendix], one can prove that ¢ = kg = ||E,§J\IJmH§{, thus showing that (4.10) is a generalisation of
(4.11). Moreover, the uniqueness of the decomposition (4.9) leads to the explicit formula for w:

W(U) = %(X[_l/ﬁ’o)(U)We(’U) + X(Q,l/\/ﬁ](v)wr(v))v

Endo et al. obtained an explicit expression for w only in the case the initial state satisfies Wi (x) = 0
everywhere except for x = 0.

(b) The isotropic case where C(x) = Co + O(|x|7178), Coo € U(2), and as := |(Cso)1.1] € (0, 1),
was studied in [28] by the second author. In our setup, this corresponds to setting C; = C, = Cy and
€0 = & = € in Assumption 3.1 and having a; = a, = a- € (0,1) in (3.7). In [28], it was shown that

py(dv) = Ko do(dv) + w(v)fk(v, as) dv,

where w € L} ([—awo, ao], (-, aso) dv) is a function similar to (4.7) but defined in terms of the wave
operator W, (U, U, 1%, ©), with the identity 14, instead of the identification operator J and the evolution
operator Uy, := SC in H instead of the evolution operator Uy in Ho. Thus, by using once again the
uniqueness of the decomposition of (4.9), we obtain the explicit formula for w:

w(V) = 3X[—ae.0) (V)W (V) + 50,0 (V) W (V).

In the one-defect case, where C(x) = C, everywhere except for x =0, Konno et al. obtained in [19] an
explicit expression of w only in the case the initial state satisfies Wi,(x) = 0 everywhere except for x = 0.

(c) The homogeneous case, where C(x) = Co and a~ € (0, 1), has been studied by several authors
[12, 17, 18]. It is a particular case of the isotropic case (b) above. Because U = SC,, has no eigenvalue
whenever ax € (0,1), (4.9) reduces to

py(dv) = w(v)fk(v, as) dv

with

W(V) = 3X[—a..0)(VIWe(V) + 5X(0.2..] (V) i (V).
As noted in Remark 4.9, the outgoing states determines w, uniquely. However, in the homogeneous case,
the initial state Wi, and the coin matrix C, determine the function w € L ([—aso, aso), 37 (-, as0) dv)
uniquely. For a special initial state Vi, and coin matrix C,, W can be computed explicitly. We refer to
the works [21, 22] of Machida for more information on the relation between the limit distribution and the
initial state.
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