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SPECTRAL CONTINUITY FOR APERIODIC QUANTUM SYSTEMS II.

PERIODIC APPROXIMATIONS IN 1D

SIEGFRIED BECKUS, JEAN BELLISSARD, GIUSEPPE DE NITTIS

Abstract. The existence and construction of periodic approximations with convergent spectra
is crucial in solid state physics for the spectral study of corresponding Schrödinger operators. In
a forthcoming work [9] this task was boiled down to the existence and construction of periodic
approximations of the underlying dynamical systems in the Hausdorff topology. As a result
the one-dimensional systems admitting such approximations are completely classified in the
present work. In addition explicit constructions are provided for dynamical systems defined
by primitive substitutions covering all studied examples such as the Fibonacci sequence or the
Golay-Rudin-Shapiro sequence. One main tool is the description of the Hausdorff topology by
the local pattern topology on the dictionaries as well as the GAP-graphs describing the local
structure. The connection of branching vertices in the GAP-graphs and defects is discussed.
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2 SIEGFRIED BECKUS, JEAN BELLISSARD, GIUSEPPE DE NITTIS

1. Introduction and main results

The aim of the present paper is to characterize when the spectrum of a Hamiltonian in dimension
one can be approximated by the spectrum of periodic Hamiltonians in the Hausdorff metric. In
this work, only the spectrum as a set will be investigated. In particular, no result on the nature
of the spectral measures will be offered. However, the existence and construction of such approx-
imations has been addressed in solid state physics [20, 69] and a general mathematical method
to deal with such problems was missing so far. Even in dimension one, where most efforts from
Mathematicians were provided, the present paper is bringing more results on this issue than the
ones found in literature. As it turns out the one-dimensional case can be reduced to operators
defined by a symbolic dynamical system over a finite alphabet (Proposition 2). Dealing with
approximations requires to face the problem of creating defects in the spectrum [68, 16]. As
promised in the previous paper [9, Section 1.5.4], an algorithmic method is provided in the
present article to construct periodic approximations immune to creating defects (Theorem 2
and Proposition 5). In addition, a complete classification of systems admitting periodic approx-
imations is given (Theorem 2). As it turns out all relevant examples found in the literature
admit periodic approximations (see [10] for a list of examples). Periodic approximations have
spectrum computable through the Floquet-Bloch theory and many software are now available
to implement such calculation numerically. For the sake of length, only the Fibonacci sequence
and the Golay-Rudin-Shapiro sequence are considered in this paper as a toy models. A book of
examples is discussed separately in [10].

The spectral convergence is a byproduct of the construction of a continuous field of operators
[40, 41]. In fact, having a continuous field of operators is enough to imply the continuity of the
spectra as sets and the continuity of the gap edges [8]. Due to the fact that the approximating
operators are periodic they have an absolutely continuous spectra and one might ask about
the spectral type of the limit operator. As a matter of fact, the type of spectral convergence
associated with a continuous field of operators is too weak for preserving finer information like
the pure point, singular continuous or absolutely continuous, nature of the spectral measures.
Thus, some extra tool is needed to reconstruct the spectral measure. This question is not
investigated here.

1.1. Framework and results. Solids are mathematically modeled by so called Delone sets [19].
In addition, it is convenient to assume finite local complexity meaning that at most finitely many
different patches of atomic configuration can appear in a given ball. As shown in Proposition 2,
this assures that any one-dimensional Delone set of finite local complexity can be encoded by a
two-sided infinite word associated with a finite alphabet A. Specifically, it suffices to consider
the configuration space AZ :=

∏
n∈ZA = {ξ : Z → A}. The latter set can be equipped with

the product topology and the group Z acts continuously on AZ by translations induced by the
shift tm(ξ)(n) := ξ(n −m). Thus, (AZ,Z,t) is a topological dynamical system [50]. A subset
Ξ ⊆ AZ is called invariant if tm(Ξ) ⊆ Ξ for all m ∈ Z. A closed, Z-invariant subset of AZ is
called a subshift and the set of all non-empty subshifts is denoted by J. The set J equipped with
the Hausdorff topology gets the structure of a second countable compact Hausdorff space [7, 9].

A special class of discrete Schrödinger operators, called finite range Hamiltonians, is built as
follows. Let `2(Z) be the Hilbert space on which this operator acts. Then Z is represented by
its left regular representation defined by

Umψ(n) = ψ(n−m) , ψ ∈ `2(Z) , n,m ∈ Z .
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Let K ⊆ Z \ {0} be a finite subset. Let v : AZ → C and tk : AZ → C for k ∈ K be continuous
functions. For ξ ∈ AZ, the Hamiltonian Hξ : `2(Z)→ `2(Z) is defined by

(1) (Hξψ)(n) :=
∑
k∈K

tk(t
−n(ξ)) · ψ(n− k) + v(t−n(ξ)) · ψ(n) ,

where ψ ∈ `2(Z) and n ∈ Z. By introducing the hopping functions t̂ξ,k(n) := tk(t
−n(ξ)) and

the potential v̂ξ(n) := v(t−n(ξ)), the Hamiltonian (1) can be shortly expressed by

(2) Hξ =
∑
k∈K

t̂ξ,k Uk + v̂ξ .

The operator Hξ is linear and bounded. In order to be self-adjoint the following are required:
(R1) v is real valued,
(R2) K is invariant by k 7→ −k,

(R3) the functions tk satisfies t−k(ξ) = tk(t−k(ξ)).
The family of operators H := (Hξ)ξ∈AZ is obviously strongly continuous with respect to the

variable ξ ∈ AZ. In addition, it is Z-covariant, namely

UmHξU
−1
m = Htm(ξ) , ξ ∈ AZ , m ∈ Z .

In particular, σ(Hξ) = σ(Htm(ξ)) for all m ∈ Z. From strong continuity, it follows that if η
belongs to the closure of the Z-orbit Orb(ξ) = {tnξ ; n ∈ Z} of ξ (this closure is , therefore, a
subshift), then σ(Hη) ⊆ σ(Hξ).

If Ξ ⊆ AZ is closed and Z-invariant, then (Ξ,Z,t) is also a topological dynamical system. In
what follows HΞ will denote the family HΞ := (Hξ)ξ∈Ξ and its spectrum σ(HΞ) will be defined
as the union σ(HΞ) =

⋃
ξ∈Ξ σ(Hξ). It is worth reminding though, that such definition was

justified in previous works by its interpretation in terms of C∗-algebras. Namely let A denote
the C∗-algebra generated by fields of finite range Hamiltonians H = (Hξ)ξ∈AZ . If the real line
R is equipped with its canonical Euclidean metric, let K(R) denotes the set of compact subsets
of R, equipped with the corresponding Hausdorff metric. The following result is proven in [9],
Theorem 2.

Theorem 1 ([9]). Let H = (Hξ)ξ∈AZ be a field of self-adjoint operators defining an element of
the C∗-algebra A. For each Ξ ∈ J, let HΞ denotes its restriction to Ξ. Then the map

ΣH : J→ K(R) , Ξ 7→ σ(HΞ) ,

is continuous in the corresponding Hausdorff topologies.

In particular, the set K defined in Equation (1), may be taken infinite provided the hopping
functions t̂ξ,k decay sufficiently quickly at infinity in k to define an element of A.

The second step consists in answering the following question: When is it possible to approximate
the Hamiltonian HΞ for some Ξ ∈ J by periodic Hamiltonians (HΞk

)? By Theorem 1, this boils
down to the existence of periodic approximations (Ξk)k of the subshift Ξ in the Hausdorff
topology on J. It is worth reminding that an element ξ ∈ AZ is periodic whenever there is a
natural integer n ∈ N such that tnξ = ξ. In this case the minimum such integer, q is called the
period of ξ and it is sufficient to fix a subword of length q expressed in the alphabet A to define
the sequence ξ entirely. This shows in turn that Orb(ξ) = Ξ is finite, thus closed, and minimal.
It will be called a periodic subshift. It is easy to check that if, in turn, Orb(ξ) = Ξ is finite,
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then it is minimal and periodic (more generally, see [9] and Definition 11 and Proposition 3 in
Section 3.1). In this spirit, a subshift Ξ ∈ J will be called periodically approximable, if there is
a sequence Ξk ∈ J of periodic subshifts such that Ξk → Ξ in the Hausdorff topology of J. It is
worth noticing that not any subshift is periodically approximable (see Example 1).

Thanks to the Floquet-Bloch theory, every Hamiltonian HΞ associated with a Ξ which is peri-
odically approximable, admits a sequence of algorithmic computable spectra. Within this work,
we are going to characterize the property of periodically approximable subshifts as follows: to
every subshift Ξ, the so called GAP-graphs G = (Gk)k∈N are defined (See Section 3) where the
vertices are words of length k appearing in Ξ. An oriented edge from the vertices u to v is
defined if there is a word w of length k+1 such that the prefix of length k, denoted by ∂0w, of w
is u and the suffix of length k, denoted by ∂1w, of w is v. Using the left to right order in words,
Gk, equipped with the boundary maps ∂0, ∂1, becomes an oriented graph. An oriented graph is
called strongly connected if for any pair of vertices (u, v) there are two oriented paths γ1 and γ2

such that γ1 joins the vertices u to v and γ2 joins the vertices v to u, (see Definition 3).

Theorem 2. Let A be a finite alphabet. A subshift Ξ ∈ J is periodically approximable if and
only if there is a subsequence of GAP-graphs (Gkl)l∈N, with kl →∞, that are strongly connected.

More precisely, if Ξ ∈ J is periodically approximable, there exists a sequence of periodic elements
ηl ∈ AZ, l ∈ N, such that the associated sequence of subshifts (Ξl)l given by Ξl := Orb(ηl)
converges to Ξ in J. Here, every periodic element ηl is obtained by choosing a global path in
the corresponding GAP-graph Gkl following the prescription given in Definition 9.
A consequence of Theorem 2 is the following

Corollary 1. Every minimal Ξ ∈ J is periodically approximable.

A very practical tool to describe the Hausdorff topology, essential to prove Theorem 2, is what
will be called here the local pattern topology. Namely two sequences ξ, η in AZ are Hausdorff
close if and only if there is an integer k such that any word of length k in one is a word of the
other. This defines a topology on the set of dictionary W (Definition 1). Then, [7]

Theorem 3 ([7]). Let A be a finite alphabet. The topological spaces J and W are homeomorphic.

Remark 1. The notion of subshift and dictonary (see [7]) extends naturally to AG where G is
a discrete countable group. The existence of a bijection between J and W was known before for
G = Zd [62]. The topological aspect of an homeomorphism was first proven in [7] for general
countable groups G. 2

Substitutions played a crucial role in the recent past to define various subshifts. Some standard
references are [70, 46, 71]. Given an alphabet A, let A∗ be the set of all words of finite lengths
with letters in A. This set has an associative product obtained by concatenation of two words
and the empty word ø plays the role of a neutral element. A substitution is a map S : A∗ → A∗

such that S(vw) = S(v)S(w) (homomorphism). In particular any substitution is defined once the
words {S(a) : a ∈ A} have been defined. It is customary to restrict the choice of a substitution
to the following class: a substitution is called primitive if there is N ∈ N such that for any pair
a, b of letters, a is a letter in the word SN (b). In this case a dictionary W(S) is defined as the set
of all subwords of Sn(a) for some n ∈ N and a ∈ A (see Definition 1). This dictionary, in turn,
defines a unique subshift Ξ(S), thanks to Theorem 3. If S is primitive, then Ξ(S) is minimal
[46]. Moreover,
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Proposition 1. Let S be a primitive substitution and let Ξ ∈ J be the associated subshift. Then
Ξ is periodically approximable. Furthermore, if γ is a closed path in the GAP-graph Gl(Ξ) for
some l ∈ N with associated periodic word η := η(γ) ∈ AZ, then Ξk := Orb(Sk(η)) defines a
sequence of periodic subshifts converging to Ξ.

1.2. A short historical review. In 1984, Shechtman et.al [79] discovered an AlMn alloy with
sharp diffraction pattern and a ten fold symmetry incompatible with periodic structures in 3D.
Such alloys are called quasicrystals nowadays being non-periodic but with long range order.
Since then, a large number of quasicrystals alloys were discovered inspiring mathematicians and
physicists over the last three decades. In order to study the electronics properties of such ma-
terials, a tight-binding representation of the corresponding Schrödinger operator is considered,
leading to a discrete Schrödinger operator of the type proposed in the previous section. From
the mathematical point of view, mainly one-dimensional systems were studied so far. The reader
is invited to a much more detailed discussion in [12, 6, 35, 19, 37] and references therein.

One of the first example studied in the literature was the Fibonacci Hamiltonian which is a spe-
cial example of a class of one-dimensional systems over a two-letter alphabet, called Kohmoto
model [57, 67, 58, 68]. In [58], the transfer matrix method and the trace map were used to
numerically conclude that the Fibonacci model has a Cantor spectrum. A mathematical break-
through was obtained by Casdagli [25] and Sütő [80, 81] proving that the spectrum of the
Fibonacci Hamiltonian is a Cantor set of Lebesgue measure zero and the spectral measure is
purely singular continuous. In addition to the previously mentioned techniques, a Gordon-type
argument and explicit periodic approximations were used in an optimal way in [25, 82]. This
methods were tremendously pushed forward over the last decades and extended to a larger class
of one-dimensional systems [13, 14, 15, 22, 33, 39].

In [68], a numerical study of the Kohmoto model as a function of α (the occurence frequency
ratio for one letter) was provided by using rational values of α. The spectrum of the Kohmoto
model was rigorously studied in [13, 33]. As numerically shown in [68], approximating a rational
slope by rational approximation leads to the the creation of a localized defect in the periodic
chain. A mathematical proof was provided in [16] showing also that rational approximations
of an irrational slope do not create a defect. It is worth mentioning that rational values of the
slope α define periodic Hamiltonians.

The work by Kotani [59] provides also a seminal contribution in analyzing the spectrum. More
precisely, if the subshift is strictly ergodic and satisfies the Boshernitzan condition then the
spectrum equals the set where the Lyapunov exponent vanishes [61, 34]. Thanks to [59], this
leads to a Cantor spectrum of zero Lebesgue measure. At that time, this result covered all known
examples including knew models. Later [63] provided subshifts (defined by Toeplitz sequences)
that do not satisfy the Boshernitzan condition but admit spectrum of zero Lebesgue measure.

Another big class of one-dimensional quasicrystals is given by primitive substitutions [46]. For
such systems purely singular continuous Cantor spectrum of Lebesgue measure zero was shown
[14, 15, 22, 53, 32] by exploiting the trace map formalism. This includes examples such as Thue-
Morse sequence [14, 65] and the Period-doubling sequence [30, 31]. In many ways this method
corresponds to a periodic approximation, as will be seen in Section 3.

Using periodic approximations to compute the spectrum was also promoted in [20, 82] as has been
done in [69]. This is because it converges exponentially fast in the period of the approximation as
shown in [69]. It is worth noticing that periodic approximations are also important to estimate
fractal dimensions of the spectrum, see e.g. [36, 64].
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As discussed before, the methods of transfer matrices and trace maps are powerful tools. On the
other hand, these techniques are limited to Hamiltonians with nearest neighbor interaction and
to one-dimensional systems or models that can be decomposed in one-dimensional systems [38].
But higher dimensional systems like the Penrose tiling or the Octagonal lattice cannot be treated
with this methods [20]. As a common methodology of the works in the past decades suitable
periodic approximations were used to extract spectral informations of Schrödinger operators
associated with quasicrystals. The main goal of [7, 9] was the construction of a general theory
which allows to characterize the convergence of the spectra for much larger class of Hamiltonians
by looking at the convergence of the underlying structures, see also Theorem 1. The formalism
used in [7, 9] makes extensive use of the theory of groupoids and C∗-algebras. The whole
construction is based on the use of the tautological groupoid. The aim is to investigate this
approach further. In view of this, the present paper provides a detailed description of this
theory for the one-dimensional case. In addition this convergence of the underlying structures
implies the weak-∗ convergence of measured quantities such as the density of state measure
under suitable assumptions [11].

Finally it is worth mentioning the recent paper [56] which focuses on the study of the stability
of edge states produced by cutting half of the system in Sturmian models. The analysis of
these states is performed by adapting the approximation scheme developed in [7, 9] to half-
space systems. This is, in particular, an evidence that the method described here is suitable for
generalizations and applications to various problems of interest in condensed matter.

1.3. Organization of the paper. The encoding of Delone sets of finite local complexity as
two-sided infinite sequences over an finite alphabet is discussed in Subsection 2.1. Afterwards,
the notions of dictionaries (Subsection 2.2) and subshifts (Subsection 2.3) are introduced as well
as the corresponding topologies. Based on this, the proof of Theorem 3 and its consequences are
provided in Subsection 2.4. The fundamental notion of GAP-graphs is introduced in Section 3
after recalling basic facts and notions of graphs. In Subsection 3.3, an algorithmic recipe is pro-
vided to construct the sequence of GAP-graphs. Fundamental properties of these graphs as well
as the proof of Theorem 2 and its consequences are presented in Subsection 3.4. Subsection 3.5
is devoted to a discussion of the connection between the subword complexity and the branching
vertices of the GAP-graphs. In light of this, the relation with defects is discussed there. The
toy models are presented in Subsection 4.1 and Subsection 4.2. Appendix A is devoted to the
presentation of the pattern equivariant algebra.

Acknowledgments: S.B. wants to express his deep gratitude to Daniel Lenz for his con-
stant and fruitful discussions and support over the last years. In addition S.B. would like to
thank Tobias Hartnick for pointing out the work by de Bruijn [23]. G.D. wants to thank Frederic
Klopp and François Germinet for their support during the initial years of the investigation which
finally leads to this work. This work has greatly benefited from the support of various insti-
tutions, the Mathematics Department at Technion, Israel, the Facultad de Matemáticas at the
Pontificia Universidad Católica, Chile, the Department of Mathematics Westfälische Wilhelms-
Universität, Münster, Germany, Georgia Institute of Technology, USA, the Erwin Schrödinger
Institute, Vienna and the Research Training Group (1523/2) at the Friedrich-Schiller Univer-
sity in Jena, Germany. This research was supported through the program “Research in Pairs”
by the Mathematisches Forschungsinstitut Oberwolfach in 2018. The work is part of the NSF
grant “Spectral Properties of Aperiodic Solids”, Grant No. DMS1160962. G.D.’s research is
supported by the FONDECYT grant Iniciación en Investigación 2015 - No. 11150143.
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2. Encoding theory

In this section Delone sets of finite local complexity are defined. This sets provide the standard
model for the mathematical description of quasicrystals and aperiodic solids [19]. As it turns out
in the one-dimensional case a Delone set of finite local complexity can be encoded combinatorially
as a two-sided infinite word.

2.1. Encoding of colored Delone sets with finite local complexity. Let D ⊂ R be a
discrete set. It is called uniformly discrete whenever there is an r > 0 such that in any open
Euclidean ball of radius r there is at most one point of D. It is called relatively dense if there is
R > 0 such that in any closed Euclidean ball of radius R there is at least one point of D. It is
called a Delone set if it is both uniformly discrete and relatively dense. A patch of radius s > 0
is a finite subset of R of the form p = B(0; s) ∩ (D − x) for some x ∈ D where B(0; s) denotes a
closed Euclidean ball of radius s around the origin 0. A Delone set is called repetitive whenever,
given any patch p of radius s of D, and for any ε > 0, there is rp > 0 such that in any closed
Euclidean ball of radius rp, there is a point x ∈ D such that the Hausdorff distance between p

and B(0; s)∩ (D−x) is less than ε. A Delone set D has finite local complexity, whenever, for any
s > 0, the number of patches of D of radius s is finite. A Delone set of finite local complexity
is called non-periodic whenever D + x = D for x ∈ R implies x = 0.

In view of D representing the positions of the atomic nuclei in a solid with several atomic species,
it will be assumed that there is a finite set C called the color set. A Delone set D ⊂ R with a
map x ∈ D 7→ c(x) ∈ C is called a colored Delone set.

The following assertion provides a description of D as a two-sided infinite word with letters in
a finite alphabet.

Proposition 2. A Delone set D of finite local complexity can be encoded as a two-sided infinite
word over a finite alphabet. Moreover, the word length metric is equivalent to the Euclidean
metric on a Delone set.

Proof: (i) Let x0 be the minimum min{D ∩ [0,∞)}. Define inductively x±n as xn+1 =
min{D ∩ (xn,+∞)} and x−n = max{D ∩ (−∞, x−n+1)} for n ∈ N. Then, D = (xn)n∈Z with
xn < xn+1, n ∈ Z. The alphabet associated with the colored Delone set D of finite local
complexity is defined by

AD := {(xn+1 − xn, c(xn)) : n ∈ Z}.
Since D is Delone it follows that 2r ≤ xn+1 − xn ≤ 2R. Using the finite local complexity and
the finiteness of C the set AD is finite. Each letter a = (`a, c(a)) ∈ AD can be seen as an interval
of length [0, `a] punctured at 0 having a color c(a). For D = (xn)n∈Z a two-sided infinite word
ξD : Z→ AD is associated where ξD(n) := (xn+1 − xn, c(xn)) for n ∈ Z.

(ii) Conversely, given a two-sided infinite word ξ over the alphabet A. Then a colored Delone
set of finite local complexity can be reconstructed by identifying a letter a ∈ A with a length
`a and a color ca. By fixing x0 := 0, c(x0) := cξ(0) and x1 := `ξ(0) such a Delone set could be
reconstruct inductively.

The previous encoding shows that instead of using the Euclidean metric to measure distances
on D it is possible to use the word length d(xn, xm) = |n−m|. The Delone condition implies

2r|n−m| ≤ |xn − xm| ≤ 2R|n−m| .
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Hence, the two metrics are equivalent. 2

2.2. Dictionaries. An alphabet is a finite set A. A word with letters in A is an element of
the Cartesian product An. For the sake of convenience a word u = (a1, a2, · · · , an) ∈ An

is represented as u = a1a2 . . . an with ak ∈ A. The number of letters |u| := n is called its
word length. The empty word ø has by definition zero length. Given two words u = a1 . . . an
and v = b1 . . . bm the concatenation uv = a1 . . . anb1 . . . bm is an element of An+m. Then the
concatenation map (u, v) 7→ uv is associative, but not commutative. For a word u and j ∈ N
the j-time concatenation of the word u is denoted by uj := uu . . . u ∈ Aj|u|. A word u is called a
subword of a word v if there exist two other words w1, w2 (possibly the empty words) such that
v = w1uw2. In particular, this implies that |u| ≤ |v|.

Definition 1 (The Space of Dictionaries). A non-empty family W of finite words made by letters
of the alphabet A is called a dictionary if:

(D.1) ø∈W; (null-element)
(D.2) for all v ∈W each subword u of v belongs to W; (heredity)
(D.3) for all u ∈W there exists a, b ∈ A such that aub ∈W. (extensibility)

The set of all dictionaries W(A) over the alphabet A is called the space of dictionaries.

Whenever there is no ambiguity, the notation W for the space of dictionaries W(A) over the
alphabet A will be preferred. The set W becomes a topological space if endowed with the local
pattern topology defined by the following basis of sets

(3) V(n,U) := {W ∈W : W ∩An = U} , n ∈ N , U ⊆ An .

Note that W ∩ An is the set of words in W with length n. By the description of a Delone set
as a two-sided infinite word (Subsection 2.1) a patch can be expressed as a finite word. This
satisfies the notion of local pattern topology as the set W∩An is the set of all local patterns up
to a certain size n.

Proposition 3. The family B := {V(n,U) : n ∈ N, U ⊆ An} defines a basis for a topology.
Furthermore, W(A) is second countable, compact, Hausdorff totally disconnected and metrizable
in the local pattern topology.

Proof: (i) By inspection the sets in Equation (3) define a basis. Due to the finiteness of the
alphabet A the set An is finite. Consequently, the set of subsets of An is finite for any fixed
n ∈ N. Since the countable union of finite sets is countable the basis defined in Equation (3) is
countable. In particular, W is second countable.

(ii) The space W is Hausdorff. Let W1 and W2 be two dictionaries. The relation V(n,W1 ∩
An) ∩ V(n,W2 ∩ An) 6= ∅ holds if and only if W1 ∩ An = W2 ∩ An. This equality holds for all
n ∈ N if and only W1 = W2 implying the Hausdorff property.

(iii) The topological space W is compact. For indeed, let (Wk)k∈N be a sequence of dictionaries.
Then, a convergent subsequence can be extract as follows: since A is finite there is an a ∈ A such
that the set {k ∈ N : a ∈Wk∩A} is infinite. Thus, there is a subsequence of (Wk)k∈N such that
all elements of the subsequence contain the letter a ∈ A. By repeating, if necessarily, with the
set A\{a} a subsequence (Wkl)l∈N is constructed such that Wkl ∩A = Wkm ∩A for all l,m ∈ N.
Define σ : N × N → N inductively. Set σ(1, l) := kl for l ∈ N. A similar argument guarantees
the existence of a subsequence (Wσ(n−1,l)i)i∈N with Wσ(n−1,l)i ∩An = Wσ(n−1,l)j ∩An, i, j ∈ N
for each fixed n ∈ N. Set σ(n, j) := σ(n − 1, l)j for j ∈ N. Using a Cantor type argument
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one extracts a convergent subsequence of the sequence (Wk)k∈N in the space W. Precisely, the
sequence (Wσ(n,1))n∈N defines a convergent sequence of dictionaries. The limit dictionary W is
defined by W ∩An = Wσ(n,1) ∩An for n ∈ N.

(iv) By (ii) the space W is Hausdorff. Thus, if V(n,U) is clopen for all n ∈ N and U ⊆ An,
the space W is totally disconnected. Consider some n ∈ N and U ⊆ An. Let W be in the
closure V(n,U), i.e. all neighborhoods of W intersect V(n,U). The set V(n,W ∩ An) is an
open neighborhood of W. Thus, the intersection V(n,W∩An)∩V(n,U) is non-empty implying
U = W ∩An. Hence, W ∈ V(n,U) follows and so V(n,U) is clopen.

Since W is Hausdorff, compact and second countable it is metrizable [84]. 2

2.3. Subshifts. Let A be a finite alphabet endowed with the discrete topology. The space

AZ :=
∏
n∈Z

A =
{
ξ =

(
ξ(n)

)
n∈Z : ξ(n) ∈ A for all n ∈ Z

}
endowed with the product topology is called the configuration space over the alphabet A. Due
to the finiteness of A the space AZ defines a compact, second countable, Hausdorff, totally
disconnected space [83, 28].

An element in AZ, i.e. a two-sided infinite word ξ, is identified with a map ξ : Z→ A. For each
ξ ∈ AZ and l, r ∈ Z with l ≤ r the restriction ξ|[l,r] denotes the subword ξ(l)ξ(l+1) . . . ξ(r−1)ξ(r)

of length r− l+ 1. The dictionary W(ξ) associated with ξ ∈ AZ is defined by the set of all finite
subwords of ξ. Then W(ξ) ∈W follows immediately according to Definition 1.

The homeomorphism t : AZ → AZ defined by

(tξ)(j) := ξ(j − 1), j ∈ Z,
is called the shift. Then (AZ,Z,t) defines a topological dynamical system. A subset Ξ ⊆ AZ is
called invariant if t(Ξ) ⊆ Ξ.

A closed subset Ξ inherits the topology induced by AZ. Thus, Ξ is compact, second countable,
Hausdorff, totally disconnected and metrizable. It follows immediately that the cylinder sets
defined by

(4) O(u, v) :=
{
ξ ∈ Ξ : ξ|[−|u|,|v|−1] = uv

}
, u, v, uv ∈W(Ξ) ,

define a base of open sets for the product topology on the closed subset Ξ ⊆ AZ. Note that each
O(u, v) is a clopen set (i.e. open and closed). Indeed let πl,r denote the (finite) family of open
sets O(u′, v′) such that u′, v′ and u′v′ are words in W(Ξ) with |u′| = l , |v′| = r. Then (a) their
union over πl,r is Ξ itself, (b) the intersection of two such distinct open sets is empty. Hence
πl,r is a finite partition by open sets, so that the complement of each such set, being a union
of open sets, is also open. Hence each of these sets is closed, thus clopen. Consequently Ξ is
totally disconnected 1 (see e.g. [87]).

A non-empty, closed and invariant subset Ξ ⊆ AZ is called a subshift. Then the pair (Ξ,Z,t)

defines a dynamical system. For ξ ∈ AZ the associated subshift is defined by Orb(ξ) where the
set Orb(ξ) := {tnξ : n ∈ Z} is called the orbit of ξ. A subshift Ξ is called topological transitive

if there is a ξ ∈ Ξ such that Ξ = Orb(ξ). Furthermore, a subshift Ξ is said to be minimal if

1The notation Ξ is chosen since it is the most disconnected letter in the greek alphabet.
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for each ξ ∈ Ξ, the orbit Orb(ξ) ⊆ Ξ is dense. Clearly, every minimal subshift is topological
transitive but the converse is false. If K(AZ) denotes the set of closed subsets of AZ, the set

J :=
{

Ξ ⊆ AZ subshift
}
⊆ K(AZ) ,

is naturally equipped with the induced Hausdorff topology. For a detailed discussion on the
topology, the reader is referred to [7, 9]. Throughout this work, the following description of the
Hausdorff topology is used: a base for the Hausdorff topology on the compact subsets K(AZ) is
defined by the family

U(F,F) :=
{

Ξ ∈ K(AZ) : Ξ ∩ F = ∅ & ∀O ∈ F , Ξ ∩O 6= ∅
}
,

where F ⊆ AZ is closed and F is a finite family of open subsets. This description goes back
to [85, 27, 43]. Then J ⊆ K(AZ) is naturally equipped with the induced Hausdorff topology.
Thanks to [9], Proposition 1, J is a compact, second countable Hausdorff space if equipped with
the Hausdorff topology, (see also [7], Proposition 3.2.5).

Given a subshift Ξ ∈ J, the associated dictionary is defined by

W(Ξ) :=
⋃
ξ∈Ξ

W(ξ) .

Clearly, W(Ξ) is an element of W in the sense of Definition 1.

Proposition 4. Let ξ ∈ AZ. Then W(ξ) = W(tξ) holds and for every η ∈ Orb(ξ), the inclusion

W(η) ⊆W(ξ) holds. In particular, W
(
Orb(ξ)

)
= W(ξ) holds for all ξ ∈ AZ.

Proof: The identity W(ξ) = W(tξ) is obviously satisfied by definition of a dictionary. Let
(nk)k ⊆ Z be chosen such that η = limk→∞ tnkξ. Consider some v ∈W(η). Then there is an i ∈
Z such that η|[i,i+|v|−1] = v. Furthermore, there is an l ∈ N such that tnlξ|[i,i+|v|−1] = η|[i,i+|v|−1]

by the definition of the topology on AZ. Thus, v ∈W(ξ) follows. 2

Let u, v, w be finite words over the alphabet A. Writing u = u0u1 · · ·uq−1, throughout this
work the notation ξ = u∞ ∈ AZ denotes the periodic concatenation of the finite word u, i.e.,
ξnq+l = ul for 0 ≤ l < q− 1. This can be written as . . . uu ·uu . . . continued to the left and right
with u’s. Here the dot · fixes the origin, namely the first letter of the word on the right hand
side of the dot is at 0 by convention. Similarly, u∞w · v∞ denotes the two-sided infinite word
ξ ∈ AZ defined by ξ = . . . uuuw · vvv . . . continued to the left with u’s and to the right with v’s.

A two-sided infinite word ξ ∈ AZ is called periodic if there exists an n ∈ N such that tnξ = ξ.
The smallest such integer q ∈ N is called the period of ξ. Then Orb(ξ) is closed and contains
exactly q elements. In addition W(ξ) ∩ An has exactly q words [46]. If ξ ∈ AZ is not periodic
it is called non-periodic. A subshift Ξ ∈ J is called periodic if there is a periodic ξ ∈ Ξ such
that Orb(ξ) = Ξ. Then, Ξ ∈ J is periodic if and only if Ξ is minimal and finite. Furthermore,
Ξ ∈ J is said to be aperiodic if there is a non-periodic element ξ ∈ Ξ. A subshift Ξ ∈ J is called
completely aperiodic if Ξ does not contain any periodic element. The central notion of this work
is the following

Definition 2 (Periodically approximable). A subshift Ξ ∈ J will be called periodically approx-
imable if there is a sequence of periodic (Ξk)k ⊆ J converging to Ξ in the Hausdorff topology.

Remark 2. Not all subshifts are periodically approximable as shown by Example 1 below. 2
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2.4. Dictionaries and the Hausdorff topology.

2.4.1. Proof of Theorem 3. Let φ : J→W be the map defined by

φ(Ξ) := W(Ξ) :=
⋃
ξ∈Ξ

W(ξ).

By definition, the empty set is not an element of J. This map is well-defined, i.e. W(Ξ) is a
dictionary, according to the Definition 1. By [7, 9] and Proposition 3 both spaces J and W
are compact and Hausdorff. Thus, according to [86, Proposition 8.11] it suffices to prove the
continuity and the bijectivity of φ so that φ defines a homeomorphism. Thus it is sufficient to
show that φ is (i) injective, (ii) surjective and (iii) continuous:

(i) φ is injective: Let Ξ1,Ξ2 ∈ J be distinct. Without loss of generality it can be assumed that
Ξ1\Ξ2 6= ∅. If ξ ∈ Ξ1\Ξ2 there exists an n0 ∈ N such that ξ|[−n0,n0] 6∈ φ(Ξ2) and ξ|[−n0,n0] ∈ φ(Ξ1)
so that φ is injective. For otherwise, there would be a sequence ηn ∈ Ξ2, n ∈ N such that
ηn|[−n,n] = ξ|[−n,n]. Hence, by definition of the product topology, limn→∞ ηn = ξ ∈ Ξ2 = Ξ2,
because Ξ2 is closed, a contradiction.

(ii) φ is surjective: Let W be a dictionary and let

Ξ(W) := {ξ ∈ AZ : W(ξ) ⊆W}
By construction, φ(Ξ(W)) ⊆ W. Moreover Ξ(W) 6= ∅. For if w ∈ W, the axiom (D.3) in
Definition 1 implies the existence of a sequence (wn)n≥0 of words in W such that wn+1 =
an+1wnbn+1 for some letters an+1, bn+1 ∈ A and w0 = w. In particular the length of wn is
|w|+ 2n and wn can be written as unwvn where un, vn are words in W of length n. Therefore,
for each n ∈ N there is element ηn ∈ AZ such that ηn|[−n,|w|+n−1] = wn. By definition of the

product topology, η = limn→∞ ηn exists in AZ and W(η) ⊆ W. Hence η ∈ Ξ(W). Since w has
been chosen arbitrarily in W, it follows that W ⊆ φ(Ξ(W)). Hence W = φ(Ξ(W)).

(iii) φ is continuous: Define the clopen set O(u) := {ξ ∈ AZ : ξ[1,|u|] = u} for a finite word u
with letters in A. Consider a non-empty open set V(n,U) in the local pattern topology where
n ∈ N and U := {u1, . . . , ul} ⊆ An. To prove the continuity of φ the preimage φ−1(V(n,U)) has
to contain a non-empty open set. Let then

F :=
l⋂

j=1

(
AZ \ O(uj)

)
=
{
ξ ∈ AZ : ∀ 1 ≤ j ≤ l such that ξ[1,n] 6= uj

}
a closed subset of AZ. Consider the open subsets Oj := O(uj), 1 ≤ j ≤ l, of AZ. It suffices to
show the equality

U(F,F) :=
{

Ξ ∈ J : F ∩ Ξ = ∅ and Ξ ∩ O(uj) 6= ∅ for all 1 ≤ j ≤ l
}

= φ−1(V(n,U))

where F := {O1, . . . ,Ol}. This is checked as follows: Let Ξ ∈ U(F,F). Since Ξ ∩ O(uj) 6= ∅ for
all 1 ≤ j ≤ l it follows that {u1, . . . , ul} ⊆ W(Ξ) ∩ An. The converse inclusion {u1, . . . , ul} ⊇
W(Ξ) ∩ An follows by F ∩ Ξ = ∅ and invoking the invariance of Ξ. Hence, Ξ ∈ φ−1(V(n,U))
follows implying U(F,F) ⊆ φ−1(V(n,U)).

The opposite inclusion φ−1(V(n,U)) ⊆ U(F,F) holds. For let Ξ ∈ φ−1(V(n,U)) meaning
W(Ξ)∩An = {u1, . . . , ul}. As uj , 1 ≤ j ≤ l, are elements of W(Ξ) it follows that Ξ∩Oj 6= ∅ by
the invariance of Ξ. Furthermore, the intersection F ∩Ξ is empty showing the desired inclusion:
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For indeed, otherwise there is a ξ ∈ Ξ such that v := ξ|[1,n] 6= uj for all 1 ≤ j ≤ l. This leads to

v ∈W(Ξ) ∩An and v 6∈ {u1, . . . , ul}, a contradiction with Ξ ∈ φ−1(V(n,U)). 2

2.4.2. Some Consequences of Theorem 3.

Corollary 2. The topological space J of subshifts is totally disconnected.

Proof: This follows immediately by Proposition 3 and Theorem 3. 2

Corollary 3. A sequence of subshifts (Ξk)k ⊆ J converges to Ξ ∈ J if and only if, for every
m ∈ N, there is a km ∈ N such that

W(Ξ) ∩Am = W(Ξk) ∩Am , k ≥ km .

Proof: This is a direct consequence of Theorem 3. 2

Example 1. Not all subshifts are periodically approximable. A good counter example is the
following. Let A = {a, b} and let ξ = a∞ · b∞. Clearly t−nξ converges either to a∞ · a∞ or to

b∞ ·b∞ if either n→ ±∞, in the topology of AZ. However, the orbit closure Ξξ = Orb(ξ) cannot
be approximated in the Hausdorff topology by any periodic subshift. For indeed, W(ξ) ∩A2 =
{aa, ab, bb}. On the other hand, if η is periodic of period q, there is a word of length q, say
u ∈ Aq, such that Orb(η) = Orb(u∞). If q = 1 then either u = a∞ or u = b∞. In either case
W(η)∩A2 does not contains the word ab. If q > 1 then both letter a, b occur in u at least once,
so that, by periodicity, W(η)∩A2 contains the word ba. In both cases W(η)∩A2 6= {aa, ab, bb}.
Using the definition of dictionaries, it follows that W(η) ∩ An 6= W(ξ) ∩ An for n > 1. Hence
there cannot be any periodic approximation of the subshift associated with ξ. 2

It is natural to ask if the condition of a subshift being topological transitive is closed in the
Hausdorff topology on J. The following example shows that this is not the case. Specifically, a
sequence of periodic subshifts (being topological transitive) is defined and it is shown that its
limit is not topological transitive.

Example 2. Let A := {a, b} and define the sequence of periodic elements ηn ∈ AZ by ηn :=
(anbanbb)∞. Clearly, their dictionary W(ηn) ∩Am equals

{am, bam−1, abam−2, . . . , am−1b, bbam−2, abbam−3, . . . , am−2bb}
for all n > m. Hence, the sequence of dictionaries (W(ηn))n ∈W converges in the local pattern
topology to W ∈W where W is determined by W∩Am := W(ηm+1)∩Am by Corollary 3. Denote
by Ξ ∈ J the associated subshift with W. Due to Theorem 3, the subshifts Ξn := Orb(ηn), n ∈ N,
converge in the Hausdorff topology to Ξ. Assume Ξ would be topological transitive, i.e., there
is a ξ ∈ Ξ such that Orb(ξ) = Ξ implying W(ξ) = W by Proposition 4. Then b and bb appear
somewhere in ξ as b, bb ∈ W. Thus, there is an N ∈ N such that either baNbb or bbaNb appear
in ξ. This is a contradiction as none of the words baNbb or bbaNb can be elements of W by
construction. Hence, Ξ is not topological transitive. 2

3. GAP-graphs and periodic approximations

3.1. Generalities on graphs. An (oriented) graph is a triple G = (V,E, ∂) where V and E are
discrete countable sets and ∂i (for i = 0, 1) are maps ∂i : E→ V called boundaries. An element
of V is called a vertex, while an element of E is called an edge. An edge e ∈ E can be seen as
an arrow joining its origin ∂0 e to its end ∂1 e. An edge e is called outgoing from the vertex v
if ∂0 e = v, while if ∂1 e = v the edge e is called incoming. The vertex degree deg(v) is defined
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by the number of incoming and outgoing edges. A vertex will be called dandling if it has either
only incoming or only outgoing edges. If v ∈ V is not dandling and deg(v) > 2 it will be called
branching.

A graph will be called finite if the vertex set V and the edge set E are finite. A graph is called
simple whenever for all edges e the source ∂0e and the range ∂1e are not equal and if for any two
vertices u, v ∈ V there is at most one edge with origin u and end v. It will be called semi-simple
if edges linking one vertex to itself are not excluded.

A path is a finite sequence γ = (e1, e2, . . . , ek) of edges such that ∂1 ei = ∂0 ei+1 for 1 ≤ i ≤ k−1.
The number of edges |γ| := k in a path γ is called the length of γ. The origin of a path
γ = (e1, e2, . . . , ek) is ∂0γ := ∂0e1 = u, while its end is ∂1γ := ∂1ek = v. It will also be
convenient to write a path as a map γ : u → v. A path γ = (e1, . . . , ek) is said to visit the
vertices {ui = ∂0ei+1 : 1 ≤ i ≤ k − 1} ⊆ V and uk = v = ∂1γ. Furthermore, a path γ is called
closed whenever ∂0γ = ∂1γ. A graph G is called connected, if for any pair of distinct vertices
u, v ∈ V there is at least one path connecting them, namely γ : u→ v or γ : v → u.

Definition 3. A graph G is called strongly connected, if for any given pair u, v ∈ V of vertices
there are paths γ, γ′ such that γ : u→ v and γ′ : v → u.

By definition a strongly connected graph is connected whereas the converse is in general false.
Example 3 provides an example of a connected but not strongly connected graph. A closed path
γ = (e1, . . . , ek) is said to visit the vertices {ui = ∂0ei : 1 ≤ i ≤ k} ⊆ V.

Proposition 5. Let G = (V,E, ∂) be a finite graph. Then, there exists a closed path γ that visit
all vertices, if and only if G is strongly connected.

Proof: This is clear from the definition. 2

A closed path with the properties described in Proposition 5, i.e. it visit all vertices, is called a
global path of G.

Definition 4. Let G = (V,E, ∂) be a graph. A subgraph G′ = (V′,E′, ∂), denoted by G′ � G, is a
graph such that (i) V′ ⊆ V, (ii) E′ ⊆ E and (iii) every edge of G′ has its two boundaries in V′.

Definition 5. Given two graphs G = (V,E, ∂) and G′ = (V′,E′, ∂′), a graph map φ : G→ G′ is a
pair of maps φ = (φv, φe), such that φv : V→ V′ and φe : E→ E′ and that ∂′φe(e) = φv(∂e) for
all edge e ∈ E.

Given two graph maps G
φ→ G′

φ′→ G”, their composition φ′ ◦ φ : G → G” is defined by φ′ ◦ φ =
((φ′)v ◦ φv, (φ′)e ◦ φe).

Clearly, the composition φ′ ◦ φ is also a graph map. In addition, the identity map id : G→ G is
defined in the obvious way as well as the inverse of a graph map, if it is defined. A combinatorial
graph is defined by V = {1, · · · , N} ⊂ N, E ⊆ V2 × {0, · · · ,M}), where {0, · · · ,M} ⊂ N∗ =
N ∪ {0}, with the convention that an edge e = (i, j, 0) does not exist and, for m > 0, (i, j,m)
represent the m-th edge linking i to j. Then the boundary operations are defined by ∂0(i, j,m) =
i , ∂1(i, j,m) = j. Modulo graph isomorphisms, any finite graph is therefore equivalent to a
combinatorial graph. In particular the set of finite graphs with N vertices and M edges is finite.
A combinatorial graph is semi-simple if and only if m ∈ {0, 1} for any edge. It is simple if and
only if, in addition, (i, i,m) can only have m = 0.
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3.2. GAP-graphs. In 1894 Flye introduced a graph representing possible continuation of words
of finite lengths in [45]. In 1946 De Bruijn [23] and Good [49] specified independently the
construction of these graphs. However, the name de Bruijn graphs became common in a large
community. These graphs encode the local structure of the one-dimensional Delone system
according to the discussion given in Section 2.1. Rauzy [73] provided the first use of the de Bruijn
graphs in 1983 in order to compute the subword complexity. So these graphs are also called
Rauzy graphs elsewhere [26, 54]. These graphs turn out to be nothing but the one-dimensional
version of the Anderson-Putnam complex [4] extended by Gähler [47] (never published). The
notion proposed by Gähler can be found in [76, 77]. We expect that this complexes are crucial
for the higher dimensional situation. Since our project aims at dealing eventually with higher
dimensional systems, the Anderson-Putnam complex is the correct object to study. In view of
the contribution of Gähler to the field, these graphs, defined below, will be called GAP-graphs.
It is important to remark, though, that there are the same as the de Bruijn or Rauzy gaphs.

In [66] the existence of so called de Bruijn sequences is studied for a given set of words of the
same length. The concept of a strongly connected de Bruijn graph is already emphasized there.
The equivalence between strongly connected de Bruijn graphs and irreducibility of the associated
subshift of finite type is the most immediate consequence [66, Lemma 9]. It is important to notice
that the author of [66] uses a different notion of a dictionary than in the present work, though:
a dictionary is only a set of words of a fixed length n ∈ N. However this result applies directly
to the present context. The property of strongly connectedness is used in the work to construct
periodic elements (Definition 9). This idea of using de Bruijn graphs is not new [44]. However,
the main motivation for the use of them here, came from the study of associated Schrödinger-like
operators. The deep connection between these graphs and the Hausdorff topology on J ought
to be underlined (see Theorem 3).

Definition 6. Let W ∈W be a dictionary. For k ∈ N define the vertex set Vk := W ∩ Ak and
the edge set Ek := W ∩Ak+1. The boundary maps ∂0 , ∂1 : Ek → Vk are defined by

∂0(a0a1 . . . ak) := a0a1 . . . ak−1 , ∂1(a0a1 . . . ak) := a1a2 . . . ak .

The corresponding oriented graph Gk := Gk(W) := (Vk,Ek, ∂) is called the GAP-graph of W of
order k. The sequence G := G(W) := (Gk)k∈N will be called GAP-sequence of the dictionary W.

Remark 3. The boundary maps ∂0, ∂1 provide a constraint on the neighboring vertices and
edges. As a matter of fact for edges e = a0a1 . . . ak, ẽ = b0b1 . . . bk ∈ Ek the condition ∂1e = ∂0ẽ
implies that ai+1 = bi for all i = 0, . . . , k − 1. Thus, the GAP-graph encodes through the
boundary maps what kind of continuation a word of length k + 1 might have to the right and
to the left. Specifically, if for some edge e ∈ Ek there is exactly one edge ẽ fulfilling ∂0e = ∂1ẽ
(resp. ∂1e = ∂0ẽ) then the word of length k + 1 associated with e has a unique continuation
to the left (resp. to the right). This observation emphasizes the importance of the branching
vertices. For instance, in the case of an outgoing branching vertex the word associated with the
incoming edge does not have a unique continuation to the right. 2

Since every subshift Ξ ∈ J is uniquely associated with a dictionary W(Ξ) by Theorem 3, there
is no ambiguity to use the notation Gk(Ξ) for the GAP-graph of order k ∈ N associated with
W(Ξ).

Proposition 6. Let W ∈W be the dictionary. For each k ∈ N the GAP-graph Gk := Gk(W) is
semi-simple with no dandling vertex. Furthermore, if W = W(ξ) for some ξ ∈ AZ, then every
GAP-graph Gk of order k ∈ N is connected.
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Proof: Let W ∈W be a dictionary with associated GAP-graph Gk of order k ∈ N. Let u 6= v
be vertices in Vk with an edge e = a0 . . . ak ∈ Ek connecting them, i.e. u = a0 . . . ak−1 = ∂0e
and v = a1 . . . ak = ∂1e. In particular, any other edge linking u to v must be equal to e meaning
that Gk is semi-simple. For every vertex v = a1 . . . ak ∈ Vk, there are letters a, b ∈ A such that
avb ∈W by Definition 1 (D.3). Thus, v is not a dandling vertex.

Let ξ ∈ AZ be such that W = W(ξ). Let u, v be two distinct vertices u 6= v ∈ Vk. Then there
is at least one word w ∈W(ξ) of length |w| > k with subwords u and v. In the language of the
GAP-graphs this means the existence of at least one path, linking u and v. Indeed, u, v ∈ Vk
occur in ξ, namely there is a i, j ∈ Z such that ξ[i,i+k−1] = u and ξ[j,j+k−1] = v. Without loss of
generality, suppose i < j and define the edges

el := ξ[i+l,i+l+k] , 0 ≤ l ≤ j − i− 1 .

By construction γ = (e0, . . . , ej−i−1) is a path in Gk satisfying ∂0e0 = u and ∂1ej−i−1 = v.
Hence, Gk is connected. 2

Note that W = W(ξ) is equivalent to the fact that the associated subshift Ξ := φ−1(W) is

topological transitive, i.e., Ξ = Orb(ξ). Here, φ : J → W denotes the homeomorphism defined
in Theorem 3. The property that the GAP-graphs are strongly connected is crucial for periodic
approximations by Theorem 2 proven below. Before, a hereditary property is proven.

Proposition 7. Let W ∈W be a dictionary with GAP-sequence G(W) := (Gk)k∈N. If the GAP-
graph Gk0 of order k0 ∈ N is strongly connected then every GAP-graph Gk of order k ≤ k0 is
strongly connected. In particular, if the GAP-graph Gl0 of order l0 ∈ N is not strongly connected,
then all GAP-graphs Gl of order l ≥ l0 are not strongly connected.

Proof: Let Gk0 be the GAP-graph of order k0 ∈ N in a GAP-sequence which is strongly
connected. Let k < k0 and u, v ∈ Vk = W ∩ Ak. As W is a dictionary there are two words
ũ = a1 . . . ak0 and ṽ = b1 . . . bk0 contained in W such that a1 . . . ak = u and bk0−k+1 . . . bk0 = v.
Since ũ, ṽ ∈ Vk0 there exists by hypothesis two paths (ẽ1, . . . , ẽl) and (e′1, . . . , e

′
m) in Gk0 such that

ũ = ∂0ẽ1 = ∂1e
′
m and ṽ = ∂1ẽl = ∂0e

′
1. By convention, the representation e = e(1) . . . e(k0 +1) ∈

Gk0 is used. This paths induces two paths joining u to v respectively v to u. For indeed, define
ej := ẽ1(j) . . . ẽ1(j + k) for j = 1, . . . , k0 − k + 1 and ek0−k+j := ẽj(k0 − k + 1) . . . ẽj(k0 + 1) for
j = 2, . . . , l. Then, (e1, . . . , ek0−k+l) defines a path in Gk such that ∂0e1 = u and ∂1ek0−k+l = v.
Analogously, a path can be constructed joining v to u using the path (e′1, . . . , e

′
m) in Gk0 . Since

u, v ∈ Vk were arbitrary, the graph Gk is strongly connected. 2

The “converse” of Proposition 7 does not hold in general. Precisely, if the GAP-graph Gk0 of
order k0 ∈ N is strongly connected the GAP-graphs of order k > k0 might not be strongly
connected as shown by the following example.

Example 3. Let A := {a, b} and let Ξ := Orb(ξ) be defines by ξ := a∞ba · b∞ ∈ AZ. Then
the GAP-graph G1 of order 1 is strongly connected while the GAP-graphs Gk of order k ≥ 2
are only connected but not strongly connected by Proposition 7, c.f. Figure 1. Thus, Ξ is not
periodically approximable by Theorem 2. 2

The growth of the length of closed paths in a GAP-sequence is an indicator of the aperiodicity
of the system, as shown in the following result.

Proposition 8. Let Ξ ∈ J and G = (Gk)k be the corresponding GAP-sequence.
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Figure 1. The GAP-graph of order 1 and 2 of Ξ defined in Example 3.

(i) If Ξ is completely aperiodic then for each m ∈ N there is a k0 ∈ N such that for all
k ≥ k0 the GAP-graph Gk has no closed path of length smaller than or equal to m. In
particular, the GAP-graphs are eventually simple.

(ii) Let Ξ be not completely aperiodic, i.e. there is an η ∈ Ξ with period m. Then, for each
GAP-graph Gk there exists a closed path of length m.

(iii) Let Ξ = Orb(η) be strictly periodic where η has period m ∈ N. Then the GAP-graph Gk
has no branching vertex if k ≥ m− 1.

Proof: Let Ξ be a subshift, m ∈ N and Gk be the GAP-graph of order k > m. Let Gk
have a closed path γ = (e1, . . . , em) with e1 = a0a1 . . . ak. Due to the constraints given by the
boundary maps ∂1ei = ∂0ei+1 and ∂0e1 = ∂1em it follows that this path corresponds to a long
word a0a1 . . . ak+m with the condition ai = ai+m for all 0 ≤ i < k. These constraints imply that
e1 can be expressed as e1 = vku for vk := (a0a1 . . . am−1)jk where jk ∈ N is the biggest number
such that jkm ≤ k and u is a word of length smaller than m. By construction u is a prefix of
vk. In addition 0 ≤ k − mjk < m so that k − m < |vk| ≤ k. Since e1 ∈ Ek = W(Ξ) ∩ Ak it
follows that all the subwords of e1 are contained in W(Ξ). In particular vk ∈ W(Ξ), namely
W(Ξ) contains a word that is the jk-th concatenation of a word of length m.

(i) Let Ξ be completely aperiodic. By contradiction, let the GAP-sequence be such that, for
each k0 ∈ N there is a k ≥ k0 such that Gk has a closed path of length m. By the previous
considerations, there is a sequence of words vk ∈ W , k ∈ N , where each vk is the jk-th time
concatenation of a word of length m and limk→∞ |vk| = ∞. Since the alphabet is finite, there
is a subsequence of words vkn ∈ W which are the jkn-th time concatenation of a fixed word
u = a0a1 . . . am−1 and limn→∞ |vkn | = ∞. By a standard argument, this implies that the
periodic word u∞ is an element of Ξ, a contradiction as Ξ is completely aperiodic.

Let k0 ∈ N be chosen such that Gk for k ≥ k0 does not contain a closed path of length 1. Thus,
the GAP graph Gk is simple for every k ≥ k0 by Proposition 6.

(ii) Let η ∈ Ξ be periodic with period m. Then, the dictionary W(η) of η is a subset of W(Ξ).
For k ∈ N set ej := η(j)η(j+1) . . . η(j+k) with 1 ≤ j ≤ m. The collection of these edges defines
a path in Gk. Due to the m-periodicity of η it follows that ∂0e1 = ∂1em, namely (e1, . . . , em) is
a closed path in Gk.

(iii) If k ≥ m− 1 every word of length k has a unique continuation to the left and to the right.
Thus, Gk has no branching vertices. 2

Remark 4. The bound in Proposition 8 (iii) cannot be improved but is not necessarily sharp for
all examples. In fact, let A := {a, b}. Consider the periodic words η := (baa)∞ and ξ := (baab)∞

in AZ. Then, η has period 3 and the GAP-graph G1 of order 1 admits a branching vertex. On
the other hand, ξ has period 4 and the GAP-graph G2 of order 2 does not admit any branching
vertex. 2



SPECTRAL CONTINUITY FOR APERIODIC QUANTUM SYSTEMS II 17

3.3. Pruning and deriving. In this subsection the notion of a derived graph is introduced as
well as the concept of pruning. This provides an algorithm to construct the GAP-graphs and so
the periodic approximations of a subshift.

Definition 7 (Pruning). Let G = (V,E, ∂) be a graph. A subgraph G′ � G with and G′ = (V′,E′, ∂)
is called the pruned graph with respect to (V′,E′) .

Proposition 9. Let G
full
k := (Vfullk ,Efullk , ∂) be the GAP-graph of order k ∈ N associated with

the full shift AZ. For each subshift Ξ ∈ J and k ∈ N, the GAP-graph Gk(Ξ) is the pruned graph

of Gfullk with respect to V′ := V
full
k ∩W(Ξ) and E′ := E

full
k ∩W(Ξ).

Proof: This is clear by definition of the GAP-graphs. 2

Definition 8 (Deriving). Let G = (V,E, ∂) be an oriented graph. The derived graph δG =
(δV, δE, ∂) is defined by

(DG.1) δV := E;
(DG.2) δE := {(e, e′) ∈ E× E : ∂1e = ∂0e

′};
(DG.3) If (e, e′) ∈ δE, then, ∂0(e, e′) := e and ∂1(e, e′) := e′.

By iterating the derivation of graphs leads to the following statement.

Proposition 10. Let G = (V,E, ∂) be a graph. For n ∈ N the derived graph δnG is constructed
as follows. Let Pn be the set of paths of length n in G. Then, δnV = Pn, δnE = Pn+1 and if
γ = (e0, e1, . . . , en) ∈ Pn+1, then,

∂0γ = (e0, e1, . . . , en−1) , ∂1γ = (e1, e2, . . . , en) .

Proof: This can be proven by induction. The claim holds for n = 1 just by definition. If the
claim holds for n, then, δn+1V = δn(δV) = δnE = Pn+1. Moreover, an edge in δn+1E is a pair
(γ, γ′) ∈ Pn+1 × Pn+1 such that ∂1γ = ∂0γ

′. This means that γ = (e0, e1, . . . , en) ∈ Pn+1 and
γ′ = (e1, . . . , en, en+1) ∈ Pn+1 with ∂1en = ∂0en+1. Therefore the pair (γ, γ′) can be identified
with the path (e0, e1, . . . , en, en+1) ∈ Pn+2 and γ = ∂0(γ, γ′) is nothing but the first n+ 1 edges
of this path, while γ′ = ∂1(γ, γ′) is given by the last n+ 1 edges. 2

In the case of a GAP graph Gk(W) =: Gk of order k associated with a dictionary W ∈ W,
an edge of the derived graph δGk is given by a pair of words of the form u = a0a1 . . . ak and
v = b0b1 . . . bk such that ∂1v = ∂0v. This implies that v = a1a2 . . . akbk ∈ En see Remark 3.
However the word obtained by combining them, namely u∨ v := a0a1 . . . akbk, is not necessarily
a word of the dictionary W. This leads to the following result.

Proposition 11 (Deriving and pruning). Let W ∈ W be a dictionary. Then the GAP-graph
Gk+1 of order k+ 1 coincides with the subgraph of δGk obtained by eliminating the edges (u, v) ∈
δEk leading to words u ∨ v that are not in the dictionary W.

Proof: Let k ∈ N. An edge of Gk is a word of the form e = a0a1 . . . ak and it is also a
vertex of δGk by definition. Moreover, u = ∂0e = a0a1 . . . ak−1 while v = ∂1e = a1a2 . . . ak.
Hence, a pair of such words (u, v) becomes an edge of δGk if and only if v = a1a2 . . . akb ∈ W

for some b ∈ A. In general the word u ∨ v = a0a1 . . . anb might not be in the dictionary W.
Let then δ̂Gk be the subgraph obtained by eliminating these edges. Consider the graph map
 = (V, E) : δ̂Gk → Gk+1 defined (for each k) by V(u) := u and E (u, v) := u ∨ v. All the edges

of the derived graph that are not in the dictionary W are pruned. Thus,  : δ̂Gk → Gk+1 is a
well-defined graph isomorphism. 2
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3.4. Periodically approximable subshifts. In this section, the main Theorem 2 is proven
and sufficient conditions are provided for a subshift being periodically approximable.

Definition 9. Let W ∈ W be a dictionary over the alphabet A. Consider a closed path γ :=
(e1, . . . , el) in the GAP-graph Gk for some k ∈ N. An edge ej is identified by its k + 1-letters,
i.e. ej = ej(0) . . . ej(k). The associated periodic word η := η(γ) ∈ AZ with the closed path γ is

defined by η :=
(
e1(0)e2(0) . . . el(0)

)∞
.

By construction, η is periodic with period bounded by l the number of edges in the path γ.

Lemma 1. Let W be a dictionary and γ := (e1, . . . , el) be a closed path in the GAP-graph Gk(W)
of order k ∈ N. Then the associated periodic word η := η(γ) ∈ AZ satisfies

W(η) ∩Ak = {∂0ej : 1 ≤ j ≤ l} ⊆ Vk .

Proof: Since γ is a closed path the chains γj := (ej , . . . , el, e1, . . . , ej−1), 1 ≤ j ≤ l , define
also a closed path in Gk. Denote by ηj := η(γj) the associated periodic word with the closed
path γj (Definition 9) where η = η1. Due to the periodicity of η and ηj and their definition,
the equation tjη1 = ηj+1 holds for 0 ≤ j ≤ l − 1. Thus, Proposition 4 implies W(η) = W(ηj).

Consequently, the inclusion {∂0ej : 1 ≤ j ≤ l} ⊆W(η) ∩Ak follows.

For the converse inclusion, let v ∈ W(η) ∩ Ak. By construction there is a 1 ≤ j ≤ l such that
v = ηj |[0,k−1]. Then ej = ηj |[0,k] leads to v = ∂0ej . 2

The previous assertion implies that closed path in the GAP-graph of order k give rise to periodic
systems that only admit words of length k appearing in the initial system Ξ ∈ J. The main
difficulty in defining periodic approximations is to avoid forbidden patterns of the original system
by taking periodic boundary conditions. Thus, closed paths in the GAP-graphs are the right
notion to do so. With this at hand, Theorem 2 can be proved:

Proof of Theorem 2: Let Ξ ∈ J be periodically approximable and (Ξk)k ⊆ J be a sequence
of periodic subshifts tending to Ξ. Thanks to Corollary 3, the convergence of the subshifts can
be expressed in terms of the convergence of the associated dictionaries. Thus, without loss of
generality it can be assumed that W(Ξk) ∩Ak+1 = W(Ξ) ∩Ak+1 for each k ∈ N. Consequently,
Gk(Ξk) = Gk(Ξ). Let k ∈ N and ηk ∈ Ξk with period lk. Hence, W(ηk) = W(Ξk) holds by
Proposition 4 as Ξk = Orb(ηk). Then the chain γ := (e1, . . . , elk) defined by

ej := ηk(j) . . . ηk(j + k) , 1 ≤ j ≤ lk ,
is a closed path in the GAP-graph Gk(Ξk) by the periodicity of ηk. Since, thanks to Lemma 1,{

∂0ej : 1 ≤ j ≤ lk
}

= W(ηk) ∩Ak = W(Ξ) ∩Ak

the path γ is also a global path in Gk(Ξ). Hence, Gk(Ξ) is strongly connected by Proposition 5.

Let Ξ ∈ J be such that there it has a subsequence of GAP-graphs that are all strongly connected.
Proposition 7 yields that all GAP-graphs G = (Gk)k are strongly connected. Thus, Proposition 5
assures the existence of a global (closed) path γk := (e1, . . . , elk) in Gk. Precisely, for each v ∈ Vk
there is a 1 ≤ j ≤ lk such that ∂0ej = v. Let ηk := η(γk) be the associated periodic word of

γk defined in Definition 9. Since γk is a global path in Gk, the set W(ηk) ∩ Ak equals to Vk by
Lemma 1. Since ηk is periodic the associated periodic subshift Ξk := Orb(ηk) satisfies

W(Ξk) ∩Ak = W(ηk) ∩Ak = Vk = W(Ξ) ∩Ak .
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Thus, the periodic subshifts (Ξk)k converge to Ξ in J by Corollary 3. 2

It is essential to choose a global path in Theorem 2 as can be seen by the following example.
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abaaaaa
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abaabaaa

1

Figure 2. The GAP-graph of order 1, 2 and 3 for the One defect defined in Example 4.

Example 4. Let ξ := a∞b · a∞ be the one-defect sequence over the alphabet A := {a, b}.
Then the associated subshift Ξ := Orb(ξ) has a family of strongly connected GAP-graphs by
Theorem 2 (see Figure 2). The global paths are defined by the sequence ηk := (bak)∞. The
GAP-sequence G(Ξ) admits also a closed path γ associated with the periodic word η(γ) = a∞

for every Gk see Figure 2. Clearly, the associated sequence of periodic subshifts Ξk = {η} is
constant and does not converge to Ξ. Hence, the choice of a global path is crucial in general. It
also shows that Ξ is not minimal. 2

In contrast with Example 4, if Ξ ∈ J is minimal, every sequence of closed paths γk in its
GAP-graphs define a sequence of periodic subshifts converging to Ξ.

Proof of Corollary 1: Let Ξ be minimal. According to [72, 60], Ξ is minimal if and only
if each word occurs with bounded gaps, i.e for all k ∈ N there exists a lk ∈ N such that any
word w ∈W(Ξ) of length |w| ≥ lk contains a copy of every elements of W(Ξ) ∩Ak. Let k ∈ N,
u, v ∈ W(Ξ) ∩ Ak and w = a1 . . . a2lk ∈ W(Ξ). Thus, a copy of u and v appear in w|[1,lk] and
in w|[lk+1,2lk]. Consequently, there are w1, w2 ∈ W(Ξ) such that uw1v, vw2u ∈ W(Ξ) which are
both subwords of w. In the same spirit as the proof of Proposition 7, this two words give rise
to two paths γ1 and γ2 in Gk satisfying ∂0γ1 = u = ∂1γ2 and ∂1γ1 = v = ∂0γ2. Hence, Gk is
strongly connected. 2

In the light of [66], Lemma 9, Ξ ∈ J is periodically approximable if and only if all the associated
subshifts of finite type are irreducible (namely, for each u, v ∈W(Ξk) there is a w ∈W(Ξk) such
that uwv ∈W(Ξk)). Specifically, the subshifts of finite type

Ξk :=
{
ξ ∈ AZ : W(ξ) ∩Ak ⊆W(Ξ) ∩Ak

}
, k ∈ N ,

are irreducible.

Corollary 4. Let A be an alphabet. Then a subshift Ξ ∈ J can be approximated by a finite union
of periodic subshifts if and only if there is a subsequence of GAP-graphs (Gkl)l∈N such that Gkl
is a finite union of strongly connected graphs for every l ∈ N.

Let Ξ be a subshift induced by a substitution rule. Then, the substitution rule provides a method
to build a subsequence of the GAP-graphs [4]. Thus, a substitution rule gives an algorithm to
compute periodic approximations. Recall that a substitution is a homomorphism S : A∗ → A∗

where A∗ := W(AZ). Furthermore, a substitution is called primitive if there is an N ∈ N such
that for any two letters a, b ∈ A, the letter a appears in SN (b). A primitive substitution defines
uniquely a subshift Ξ ∈ J [70, 46, 71].
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Proof of Proposition 1: Let S be a primitive substitution with associated subshift Ξ. Since
Ξ is minimal [46], Ξ is periodically approximable by Corollary 1 and Gk(Ξ) is strongly connected
for each k ∈ N by Theorem 2. Consider a closed path γ in the GAP-graph Gl(Ξ) of order
l ∈ N. Let η := η(γ) be the associated periodic word, c.f. Definition 9. Lemma 1 implies
W(η)∩Al ⊆W(Ξ)∩Al. Since S is primitive, limk→∞ |Sn(a)| =∞ follows for every letter a ∈ A.
Thus by the previous two considerations, there is an k0(m) ∈ N for every m ∈ N such that

W(Sk(η)) ∩Am ⊆W(Ξ) ∩Am , k ≥ k0(m) .

Furthermore, for every v ∈ W(Ξ), there exists a kv ∈ N such that v is a subword of Skv(a) for
each a ∈ A as S is primitive [46]. Consequently, for each m ∈ N there is an k1(m) ∈ N with
k1(m) ≥ k0(m) satisfying

W(Sk(η)) ∩Am = W(Ξ) ∩Am , k ≥ k1(m) .

Hence, Corollary 3 implies Ξk → Ξ where Ξk = Orb(Sk(η)) as W(Sk(η)) = W(Ξk) by Proposi-
tion 4. 2

Remark 5. Proposition 1 extends to more general substitutions defining a subshift in the
following way: Given a substitution over the alphabet A which is not necessarily primitive such
that for at least one letter a ∈ A, there is an ka ∈ N where Ska(a) contains all letters in A and
uav = Ska(a) where u, v are words that are non-empty. The latter conditions is needed so that
W(S) defined in the following satisfies Definition 1 (D.3). Define W(S) by all possible subwords
appearing in any power Sk(a) which defines a dictionary. Denote by Ξ(S) ∈ J the associated
subshift of W(S). If there is an l ∈ N such that Gl(Ξ(S)) admits a closed path γ such that
the associated periodic word η = η(γ) contains the letter a, then Sk(η) defines a sequence of
periodic subshifts Ξk := Orb(Sk(η)) converging to Ξ in the Hausdorff topology on J. The proof
is similar to the proof of Proposition 1. That no forbidden pattern is created is guaranteed by
taking a closed path. That all possible words appear eventually follows by the fact that the
letter a appears in η. 2

Recall that the period of the elements of Ξk is given by qk := ]Ξk. The period of the periodic
approximations can be bounded from below by the quantity ]W(Ξ)∩Ak which is called subword
complexity of Ξ. This quantity is studied in more detail in Subsection 3.5

Corollary 5. Let Ξ ∈ J be periodically approximable and (Ξk) be a sequence of periodic subshifts
tending to Ξ. If Ξ contains a non-periodic element, then the period qk = ]Ξk goes to infinity if
k →∞.

Proof: The period of η ∈ AZ is given by the number q of elements in the orbit Orb(η). In
addition, because of the periodicity of η, the number of distinct words in W(η) ∩ Ak cannot
exceed the period of η. Hence ]W(η)∩Ak ≤ q for all k ∈ N. On the other hand, distinct element
of W(η)∩Ak give rise to a distinct element in Orb(η), leading also to q = ]Orb(η) ≥ ]W(η)∩Ak.
Hence, if ηk arises by a global path in Gk = Gk(Ξ) then

qk := ]Orb(ηk) ≥ ]W(η) ∩Ak = ]W(Ξ) ∩Ak .

According to [52], the limit limk→∞ ]W(ξ) ∩Ak goes to infinity, if and only if ξ is non-periodic.
Thus, qk tends to infinity if Ξ contains a non-periodic element since W(ξ) ∩ Ak ⊆ W(Ξ) ∩ Ak

holds for ξ ∈ Ξ. 2
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3.5. Subword complexity function and defects. This section introduces the concept of
subword complexity function and investigates its connection with the existence of branching
vertices in the GAP-graphs. As discussed in Remark 3 the branching vertices are related to
the non-periodicity of a two-sided infinite word. It will be argued that the branching vertices
play a role similar to boundary conditions in difference or differential equations. The concept of
amenability of a subshift will follow.

Let W ∈ W be a dictionary. The subword complexity function ℘W : N → N is defined by
℘W(k) := ]W ∩Ak. If there is no ambiguity the notation ℘ := ℘W will be used instead. Due to
Theorem 3, the subword complexity function is also defined for every subshift Ξ ∈ J.

The elementary estimate ℘(k+1) ≤ ]A℘(k) holds and ℘(1) = ]A, leading to ℘(k) ≤ (]A)k. This
upper bound corresponds exactly to the complexity function of the full shift AZ. Furthermore,
the subword complexity function is bounded if the associated subshift Ξ := φ−1(W) is finite
where φ : J → W is the homeomorphism defined in Theorem 3. On the contrary, if there is a
non-periodic element in Ξ, ℘ grows at least linearly, namely ℘(k) ≥ k + 1 [52]. This function
has been studied by many authors [42, 73, 5, 2, 26, 60, 54]. The following definition is inspired
from [5]

Definition 10. Let Ξ be a subshift with associated GAP-graphs G = (Gk)k. Let u be a vertex
of Gk. Then

(i) ∂+u (resp. ∂−u) denotes the number of oriented edges e starting from (resp. ending to)
u namely with ∂0e = u (resp. ∂1e = u),

(ii) the number N+
b (k) (resp. N−b (k)) of forwards (resp. backward) branching vertices in Gk

is the number of vertices u such that ∂+u > 1 (resp. ∂−u > 1),
(iii) the number Nb(k) of branching vertices in Gk is defined as the number of u’s such that

at least one of ∂±u is larger than 1.

Proposition 12. Let A be a finite alphabet with more than one letter and let W ∈ W. Then
for any k ∈ N, N±b (k) ≤ ℘(k + 1)− ℘(k). In addition

℘(k + 1)− ℘(k)

]A− 1
≤ Nb(k) ≤ 2(℘(k + 1)− ℘(k))

The previous estimated are optimal.

Proof: The number of vertices of the GAP-graph Gk is exactly the number of word of length k
in W, namely ℘(k), while the number of edges is exactly the number of words of length k + 1,
namely ℘(k + 1). Let L+

v (j) denote the number of vertices with exactly j outgoing edges. If
A has exactly A letters then L+

v (j) = 0 if j > A. Since there is no dandling vertex, each
vertex admits at least one outgoing edge. Similarly, each edge has an origin, at some vertex.
Consequently the total number of vertices and of edges are given by

A∑
j=1

L+
v (j) = ℘(k) ,

A∑
j=1

jL+
v (j) = ℘(k + 1) .

A vertex is forward branching if it has at least two outgoing edges. Hence

N+
b (k) =

A∑
j=2

L+
v (j) ≤

A∑
j=1

(j − 1)L+
v (j) = ℘(k + 1)− ℘(k) .
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The same estimate can be obtained for the backward branching vertices leading to the upper
bound for the total number of branching vertices as Nb(k) ≤ N−b (k) +N+

b (k).

For each forward branching vertex u, ∂+u is bounded by A. Hence

℘(k)−N+
b (k) +AN+

b (k) ≥ ℘(k + 1)

follows implying the lower bound for the total number of branching vertices as N+
b (k) ≤ Nb(k).

The optimality of the estimates can be seen for an alphabet with two letters a, b: Consider the
Fibonacci subshift Ξ ∈ J defined Subsection 4.1. For the Fibonacci substitution the subword
complexity is given by ℘(k) = k + 1 [46]. From the previous considerations, the estimates
1 ≤ Nb(k) ≤ 2 hold. The GAP-graph G2 of order 2 of Ξ has two branching vertices whereas the
GAP-graph G3 of order 3 admits only one branching vertex see Figure 3. Thus, the estimates
on Nb : N→ N are optimal. 2

It is known that if the subword complexity function satisfies ℘(k) ≤ k for k large enough, the
corresponding subshift is automatically eventually periodic periodic [29, 46].

Definition 11. A minimal subshift Ξ ⊂ AZ is called Sturmian, whenever ℘(k) = k + 1.

A Sturmian subshift can only be defined on an alphabet with two letters [52]. In view of the
comments made previously they are the aperiodic subshift with minimal subword complexity
functions. Such subshifts are completely classified [46]. They correspond exactly to the 1D-
tilings obtained by the cut-and-project method from Z2 onto R.

Proposition 13. The GAP-sequence of a Sturmian subshift is made of graphs with exactly one
forward and one backward branching vertex, which may either be distinct or may coincide.

Proof: Since ℘(k + 1)− ℘(k) = 1 this follows immediately from Proposition 12. 2

It is also worth noticing that Arnoux and Rauzy [5] have completely classified geometrically the
subshifts with subword complexity functions ℘(k) = (l − 1)k + 1 for l ≥ 2. On the other hand
the complexity function for the Golay-Rudin-Shapiro sequence is ℘(k) = 8k − 8 for k ≥ 8 [1].

Corollary 6. If Ξ ∈ J is aperiodic, then all the GAP-graphs admit at least one branching vertex.

Proof: If Ξ is aperiodic, then there is a non-periodic ξ ∈ Ξ. Thus, ℘W(ξ) grows strictly, namely
℘W(ξ)(k + 1) > ℘W(ξ)(k) [52]. Hence, every GAP-graph of W(ξ) admits at least one branching
vertex by Proposition 12. Since these GAP-graphs are subgraphs of the GAP-graphs of Ξ the
desired result follows. 2

Why are branching vertices relevant ? One possible way to understand this point is to consider
the discrete Schrödinger equation as the eigenvalue equation for a self-adjoint operator H of the
form given in Equation 1.

(i) In some vague sense, the GAP-graphs Gk could be seen as a finite volume approximation
of the subshift.

(ii) If the word length k is very large, much larger than the range of the operator H, the
latter can be seen as a discrete operator acting on the Hilbert space `2(Vk), where Vk is the set
of vertices of the graph Gk. However, at each branching vertex, like in quantum graphs [21], a
boundary condition has to be defined. In other words, branching vertices of the graph are acting
as a boundary condition.

(iii) It can be guessed also, that if the boundary condition do not correspond to a closed cycle
along the graph, it might create boundary states, looking like defects in the material [18].
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(iv) Hence if the size of the boundary grows too fast, relative to the side of the system,
namely here the number of vertices in Gk, as k →∞, the defects due to the branching vertices
can become dominant in the spectrum of H. In Statistical Mechanics, such a growth occurs in
models on an hyperbolic space, with non-negligible boundary effect at infinite volume. In Group
Theory, this is related to the concept of amenability [51].
This discussion leads to the following definitions

Definition 12. The subshift Ξ will be called amenable whenever the subword complexity function
satisfies

lim
k→∞

℘(k + 1)

℘(k)
= 1 .

The configurational entropy of Ξ is defined as

h = lim sup
k→∞

ln{℘(k)}
k

.

The definition of amenability is leading to an asymptotic negligible number of branching vertices
when compared to the number of vertices in the GAP-graphs. On the other hand a nonzero con-
figurational entropy gives asymptotically a finite proportion of branching vertices. The following
result is immediate and its proof will be left to the reader.

Lemma 2. Let Ξ be a subshift.
(i) If Ξ is amenable its configurational entropy vanishes.
(ii) If the configurational entropy h is positive, then the proportion of branching vertices along
the sequence of GAP-graphs is asymptotically bounded from below by

(
eh − 1

)
/]A.

This discussion leads to two problems

Problem 1 (Structural Defects). Is it correct to link the branching vertices in the sequence of
GAP-graphs to the appearance of defects structurally created by the subshift itself ? In particu-
lar, would it be possible to establish, from a thermodynamical approach in Statistical Mechanics,
that such defects indeed occur in a material due to the overall structure ? Such defects seem to
be present in 3D-quasicrystalline alloys in particular as a contribution to the Density of State
near the Fermi level, where a pseudo-gap, usually explained by a Hume-Rothery mechanism, is
taking place, and partially filled (see a detailed discussion in [17], Section 6.5). Physicists have
long argued about whether such defects are coming from alien impurities introduced during the
sample production or whether they occur spontaneously due to the internal structure of the
material. 2

Problem 2 (Nature of the Spectral Measure). If the branching vertices are present in over-
whelming numbers, can one expect the corresponding defect to

(a) fill the spectral gaps, at least near the energies influenced by the defects ?
(b) to create enough interferences in the wave functions to localize the quantum particles

described by the Hamiltonian ? In other words, can a pure point spectrum result from too
many such defects ? 2

An evidence in favor of the last question is provided by the Anderson model on Z, with a
random potential satisfying a Bernoulli distribution, which has been proved to have a pure
point spectrum [24]. Such a random potential can be described by a full shift, for which all
vertices in the GAP-graphs are branching.
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4. Two Examples

To finish this article, two standard examples are described in more detail in this section. The
first one is provided by the Fibonacci sequence which represents a paradigm for one-dimensional
quasicrystals. The second the Golay-Rudin-Shapiro sequence which is still largely a mystery
as far as the corresponding Schrödinger operators are concerned. It is believed that the distri-
bution of letters is disordered enough to produce some point spectrum while it has the lowest
possible algorithmic complexity and zero entropy. For this reason, it represents a borderline
case separating continuous spectra from point spectra in one-dimension. The description of its
GAP-graph given here in Fig. 4 seems to be the first published one, as far as the authors have
been able to check.

4.1. The Fibonacci sequence. A typical example of an aperiodic subshift Ξ is provided by
the Fibonacci sequence. In this case the substitution S is defined by S : a→ ab , b→ a.

a b

ab

ba

aa aa

ab

ba

bab aba

aab

baa

baa

aab

aba bab

aaba

abaa

baab

abab

baba

1

Figure 3. The GAP-graph of order 1, 2 and 3 for the Fibonacci subshift.

Proposition 14. Let Ξ be the Fibonacci subshift. For k ∈ N, let ηak := Sk(a∞) and ηbk := Sk(b∞)

be periodic sequences with corresponding periodic subshifts Ξak := Orb(ηak) and Ξbk := Orb(ηbk).

Then Ξ is periodically approximable and the sequences of periodic subshifts (Ξak)k and (Ξbk)k
converge to Ξ.

Proof: Define the closed path γ = (e) in G1 where e is the edge aa, c.f. Figure 3. Furthermore,
ηbk = ηak−1 holds for k ≥ 2. Thus, the statement follows from Proposition 1 since the substitution
S is primitive. 2

Combining Proposition 14 with Theorem 1 leads to

Corollary 7. Let Ξ be the Fibonacci subshift and H be a generalized discrete Schrödinger
operator defined in Equation 1 satisfying (R1, R2, R3). Then the equations

σ(Hξ) = lim
k→∞

σ(Hηak
) = lim

k→∞
σ(Hηbk

)

hold for every ξ ∈ Ξ.

This result proves that the numerical calculation by [68] is justified to compute the spectrum of
the Fibonacci Hamiltonian.

4.2. The Golay-Rudin-Shapiro sequence. This sequence was defined and used in [78, 48, 75]
(see also [1, 3]). Let n ∈ N be written in base 2. n = ε0 + 2ε1 + · · ·+ 2kεk with εi ∈ {0, 1}. Then
set an = (−1)εnεn+1 ∈ {+1,−1}. On the 2-letters alphabet A = {a, b} = {+1,−1} it gives the
sequence (the splitting is provided to make the reading easier)

· · · aaab|aaba|aaab|bbab|aaab|aaba|bbba|aaba|aaab|aaba|aaab|bbab|bbba · · · .
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It satisfies the following recursion formula

a2n = an , a2n+1 = (−1)nan .

A new alphabet B = {A,B,C,D} is defined by setting A = aa,B = ab, C = ba,D = bb, so that
this sequence is generated by the following substitution

S : A→ AB , B → AC , C → DB , D → DC .

A B

C D

CD

DC

AB

BA

AC CA DBBD

AB

AC

BA

BD

CA

CD

DC DB

ABA

BAC

CAB

BDB

CDB

BDC

DCA

ABD

DBA

ACD

ACA

DBD

BAB

CDC

DCD

CAC

1

Figure 4. The GAP-graph of order 1 and 2 for the Golay-Rudin-Shapiro subshift.

Proposition 15. Let Ξ be the Golay-Rudin-Shapiro subshift and x ∈ {A,B,C,D}. For k ∈ N
consider the periodic configurations ηxk := Sk(x∞) with corresponding periodic subshifts Ξxk :=
Orb(ηxk). Then Ξ is periodically approximable and the sequences of periodic subshifts (Ξxk)k
converge to Ξ.

Proof: Consider the closed paths

γA := (AB,BA) , γB := (AC,CA) , γC := (DB,BD) , γD := (DC,DC) ,

in the GAP-graph G1 of order 1, c.f. Figure 4. The associated periodic word (Definition 9)
satisfy

η(γA) := S(A∞) , η(γB) := S(B∞) , η(γC) := S(C∞) , η(γD) := S(D∞) .

Thus, the statement follows from Proposition 1 since the substitution S is primitive. 2

Combining Proposition 15 with Theorem 1 leads to

Corollary 8. Let Ξ be the Golay-Rudin-Shapiro subshift and H be a Hamiltonian defined by
Equation 1 satisfying (R1, R2, R3). Then the equations

σ(Hξ) = lim
k→∞

σ(Hηxk
)

hold for every ξ ∈ Ξ and x ∈ {A,B,C,D}.
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Appendix A. Pattern equivariant algebra

Pattern equivariant functions were defined in [55]. In this appendix, the pattern equivariant
algebra will be defined by finite range operators on `2(Z) with pattern equivariant coefficients.
Such an algebra plays, in the noncommutative approach advocated in [9], a role analog to the
algebra of polynomials on an algebraic variety. The rigidity of these functions with respect to
the local structures makes the analysis of the related operators more difficult.

Definition 13 (Pattern equivariant function [55]). A function g : AZ → C is called (strongly)
pattern equivariant if there exists a radius r ∈ N such that g(ξ) = g(η) for all ξ, η ∈ AZ with
ξ|[−r,r−1] = η|[−r,r−1].

For the following assertion, recall the notion of O(u, v) ⊆ AZ introduced Equation (4). The
set C(AZ) of continuous functions on AZ defines a C∗-algebra if equipped with the pointwise
multiplication and the uniform norm ‖ · ‖∞.

Proposition 16. For g : AZ → C the following assertions are equivalent.

(a) The function g is (strongly) pattern equivariant.
(b) There is an N ∈ N, coefficients cj ∈ C and uj , vj ∈ A∗ for 1 ≤ j ≤ N such that

g =
N∑
j=1

cj χO(uj ,vj).

(c) The function g : AZ → C is continuous and takes finitely many values.

In particular, the set of (strongly) pattern equivariant functions PE ⊆ C(AZ) are a dense ∗-
subalgebra.

Proof: Sets of the form O(u, v) ⊆ AZ for u, v ∈ A∗ define a base of the product topology
on AZ, c.f. Equation (4). Thus, the set of functions of the form in (b) are clearly dense in
C(AZ) with respect to the uniform norm. Moreover, it is immediate to check that the pointwise
product χO(ũ,ṽ) · χO(u′,v′) equals either 0 or χO(u,v) for some u, v ∈ A∗. Hence, these functions

form a ∗-subalgebra of C(AZ). It is left to show that (a), (b) and (c) are equivalent:

(a)⇒(b): Let g : AZ → C be (strongly) pattern equivariant. Then there is an r ∈ N with
g(ξ) = g(η) for all ξ, η ∈ AZ satisfying ξ|[−r,r−1] = η|[−r,r−1]. Consider the finite set

{(u, v) : uv ∈ A∗, |u| = |v| = r} = {(u1, v1), . . . , (uN , vN )} .
Define cj := g(ξ) for one ξ ∈ O(uj , vj). As g is pattern equivariant cj is independent of the
choice of ξ. Since AZ equals to the disjoint union of the sets O(uj , vj) , 1 ≤ j ≤ N , we get

g =

N∑
j=1

cj χO(uj ,vj)

(b)⇒(c): This is clear as the sets of the form O(uj , vj) are clopen.

(c)⇒(a): Let g : AZ → C be continuous and suppose it takes only finitely many values denoted
by c1, . . . , cN . Let Uj ⊆ C be an open neighborhood of cj such that Uj ∩ Ui = ∅ if i 6= j.
By continuity, the preimage g−1(Uj) = g−1({cj}) ⊆ AZ is clopen and these sets form a finite
partition of AZ. Consequently, if ξ ∈ AZ satisfies g(ξ) = cj , there is an r′ ∈ N such that if
η ∈ O(ξ|[−r′,−1], ξ|[0,r′−1]), then g(η) = g(ξ) = cj . Since such an r′ ∈ N exists for every ξ ∈
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g−1(Uj) and O(ξ|[−r′,−1], ξ|[0,r′−1]) is open, there is a maximal rj ∈ N satisfying g(ξ) = g(η) = cj
whenever ξ|[−rj ,rj−1] = η|[−rj ,rj−1] by using the compactness of g−1(Uj). Hence, g is strongly
pattern equivariant with r := max1≤j≤N rj . 2

Clearly, the statement of Proposition 16 is valid if AZ is replaced by any Ξ ∈ J. We denote by
PE(Ξ) the set of all (strongly) pattern equivariant functions g : Ξ→ C.

The shift t, acting on any subshift Ξ, is an homeomorphism of Ξ. It generates a Z action on
Ξ. In particular it defines the groupoid Ξot Z, called the crossed product (for a comprehensive
review and details, see [74, 7, 9]). By duality, the shift defines an action on the C∗-algebra C(Ξ)
of continuous functions on Ξ, defined by φ(f) = f ◦ t−1. Clearly the space PE(Ξ) is a dense
∗-subalgebra of C(Ξ). It is easy to check that PE(Ξ) is φ-invariant. By construction, the algebra
PE(Ξ) oalg Z, is the algebra generated by PE(Ξ) and a unitary element S such that

S f S−1 = f ◦ t .

Using the left regular representation on `2(Z), the reader is invited to check that this algebra is
a ∗-algebra made of operators of the form provided in Equation 1 (see also [7], Theorem 3.7.10).
Namely they have finite range and pattern equivariant coefficients. Using the construction
described in [74, 7, 9], this algebra is a dense ∗-subalgebra of the C∗-algebra C∗red(Ξot Z). It is
important to remark at this point, that, since Z is an amenable group, C(Ξ) oZ coincides with
C∗-algebra C∗red(Ξ ot Z). This can be summarized as

Corollary 9. Let Ξ ∈ J. Then PE(Ξ) oalg Z is a dense ∗-subalgebra of C(Ξ) o Z.
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Henri Poincaré, 12, 153-172, (2011).
[64] Q. H. Liu, Y. H. Qu “On the Hausdorff dimension of the spectrum of the Thue-Morse Hamiltonian”.

Comm. Math. Phys., 338, 867-891, (2015).
[65] Q. H. Liu, Y. H. Qu, X. Yiao, “”Mixed spectral nature” of the Thue-Morse Hamiltonian”,

arXiv:1512.08011, (2016).
[66] E. Moreno, “De Bruijn sequences and de Bruijn graphs for a general language”, . Inform. Process. Lett.

96, 6, 214-219, (2005).
[67] S. Ostlund, R. Pandit, D. Rand, H. J. Schellnhuber, E. D. Siggia, “One-Dimensional Schrödinger Equation

with an Almost Periodic Potential”, Phys. Rev. Lett., 50, 1873-1876, (1983).
[68] S. Ostlund, S.-H. Kim, “Renormalization of Quasiperiodic Mappings”, Physica Scripta, T9, 193-198,

(1985).
[69] E. Prodan, “Quantum transport in disordered systems under magnetic fields: A study based on operator

algebras”, Appl. Math. Res Express, Vol. 2013, 176-255, (2013).
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