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Abstract

The problem of the sudden growth and coalescence of voids in elastic
media is considered. The Dirichlet energy is minimized among incom-
pressible and invertible Sobolev deformations of a two-dimensional do-
main having n microvoids of radius ε. The constraint is added that the
cavities should reach at least certain minimum areas υ1, . . . , υn after the
deformation takes place. They can be thought of as the current areas of
the cavities during a quasistatic loading, the variational problem being
the way to determine the state to be attained by the elastic body in the
next time step. It is proved that if each υi is smaller than the area of
a disk having a certain well defined radius, which is comparable to the
distance, in the reference configuration, to either the boundary of the do-
main or the nearest cavity (whichever is closer), then there exists a range
of external loads for which the cavities opened in the body tend to be
circular in the limit as ε→ 0. In light of the results by Sivalonagathan &
Spector and Henao & Serfaty that cavities always prefer to have a circular
shape (unless prevented to do so by the constraint of incompressibility),
our theorem suggests that the elongation and coalescence of the cavities
experimentally and numerically observed for large loads can only take
place after all the cavities have attained a size comparable to the space
they have available in the reference configuration. Based on the previ-
ous work of Henao & Serfaty, who apply the Ginzburg-Landau theory for
superconductivity to the cavitation problem, this paper shows how the
study of the interaction of the cavities is connected to the following more
basic question: for what cavitation sites a1, . . . , an and areas v1, . . . , vn
does there exist and incompressible and invertible deformation producing
cavities of those areas originating from those points. In order to use the
incompressible flow of Dacorogna & Moser to answer that question, it
is necessary to study first how do the elliptic regularity estimates for the
Neumann problem in domains with circular holes depend on the geometry
of the domain.
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1 Introduction

1.1 Regularity estimates

The problem of study is {
div v = 0 in E,

v(x) = g(x)ν(x) on ∂E ,
(1)

where

E = B(z0, r0) \
n⋃
k=1

B(zk, rk) ⊂ R2, (2)

ν(x) is its unit outward normal, and g ∈ C1,α (
⋃n
k=0 ∂B(zk, rk)) for some α ∈

(0, 1). The datum must be compatible with the equation:∫
∂B(z0,r0)

g =

n∑
k=1

∫
∂B(zk,rk)

g. (3)

We study the dependence on the geometry of E of the regularity estimates for
(1), motivated by a free boundary problem arising in the analysis of cavitation
(as described in the next subsection). We find that the estimates do not blow
up provided that the radii of the holes, their distance to the outer boundary and
the distance between them do not become too small compared to the domain
size. To obtain quantitative estimates, we assume throughout that

∀i ≥ 1 ri ≥ d,
∀i ≥ 1B(zi, ri + d) ⊂ B(z0, r0), and

min
i,j≥1
i6=j

dist(B(zi, ri), B(zj , rj)) ≥ 2d,
(4)

for some generic length d. We also set

CP (E) := sup

{
‖φ‖L2(E) : φ ∈ H1(E) s.t. ‖Dφ‖L2(E) = 1 and

∫
E

φ = 0

}
.

(5)

Theorem 1. Let n ∈ N and 0 < δ < 1. There exists a universal constant C3(δ)
such that whenever z0, . . . , zn ∈ R2 and d, r0, . . . , rn > 0 satisfy d

r0
≥ δ and (4),

we have that for every g verifying (3) it is possible to construct a solution to (1)
for which

‖v‖∞ ≤ C3

(((r0
d

)1+α
+B

( r0
d2

)3
+B2

( r0
d3

)3)
‖g‖∞+

(
r2α+1
0

dα+1
+B

r2+α0

d5

)
[g]0,α

)
,

‖Dv‖∞ ≤ C3

(
C1‖g‖∞ + C2[g]0,α +

rα0
dα
‖g′‖∞ +

r2α0
dα

[g′]0,α

)
,
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where

B = B(E) := |E| 12CP (E)
(
d−

1
2CP (E) + d

1
2

)
n

1
2 r

1
2
0 , (6)

C1 = r1+α
0 d−α−2 +Br3

0d
−7 +B2r3

0d
−10, and C2 = r2α+1

0 d−2−α +Br2+α
0 d−6.

The theorem is proved in Section 2.5, using the strategy of Dacorogna &
Moser [DM90]: in it a solution to the linearised incompressibility boundary
value problem (1) is found by adding two harmonic maps arising from coupled
Neumann problems (one giving the right normal velocity g on the boundary
and the other cancelling out the tangential velocities appearing in the first step).
The result that the regularity estimates do not blow up as long as the connected
components of ∂E are far apart comes from Theorem 1 and the fact that (4)
ensures that the Poincaré constant CP (E) remains bounded (see Theorem 3).

1.2 Cavitation and spherical symmetry

The motivation comes from the modelling of cavitation (the sudden formation
and expansion of cavities) in materials that strongly resist changes in volume.
The first experimental studies in elastomers are due to Gent & Lindley [GL59],
who also theoretically estimated the hydrostatic load for rupture by solving the
non-linearised equilibrium equations for an infinitely thick elastic shell under
the assumption of radial symmetry. The first analysis of the evolution of a
cavity (beyond its nucleation) was due to Ball [Bal82]; he showed that the one-
parameter family of deformations

u(x) = n
√
|x|n + Ln

x

|x|
, L ≥ 0, n = 2, 3 (7)

constitutes a stable branch of weak solutions to the incompressible elasticity
equations, which bifurcates from the homogeneous deformation at the dead-
load predicted by Gent & Lindley. The radial symmetry assumption, which
persisted in this pioneering work, was finally removed by Müller & Spector
[MS95] and Sivaloganathan & Spector [SS00]; they proved the existence of
minimizers of the elastic energy allowing for all sorts of cavitation configu-
rations. Lopez-Pamies, Idiart & Nakamura [LPIN11] and Negrón-Marrero &
Sivaloganathan [NMS12] discussed the onset of cavitation under non-symmetric
loadings. Mora-Corral [MC14] studied the quasistatic evolution of cavitation.
We refer to [FGLP, KFLP18, PLPRC, KRCLP], the Introduction in [HS13], and
the references therein for a more complete guide through the extensive literature
on this fracture mechanism.

The analyses [SS10a, SS10b, HS13] and the numerical study [LL11b] suggest
that the cavities inside an elastic body prefer to adopt a spherical shape when
pressurised by large and multiaxial external tensions, regardless of their shape
and size at the onset of fracture (or in the rest state, if they existed already).
In particular, given any open B ⊂ R2; any small ε > 0; any finite collection
a1, . . . , an ∈ B of cavitation points; and any incompressible and invertible1

1In the topological sense of Müller & Spector’s condition INV, see Definition 2 and [MS95].
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deformation map u : B \
⋃n

1 Bε(ai)→ R2; using the arguments in [HS13] it can
be seen2 that∫
B\

⋃n
1 Bε(ai)

|Du|2 − 1

2
dx ≥

n∑
1

vi log
R

ε
+

n∑
i=1

viD
2
i log

min{di,
√
viD2

i }
ε

− C

(8)

where C is a universal constant and R, di, vi, and Di respectively denote
R := dist({a1, . . . , an}, ∂B); the distance to the nearest cavitation point (or
to ∂B should the outer boundary be closer to ai); the area of a cavity coming
from Bε(ai); and the Fraenkel asymmetry [FMP08] of the same cavity (which
measures how far is it from being a circle). The first term on the right-hand side
is the exact cost of a radially-symmetric cavitation; the prefactor of | log ε| in
the second term, on the other hand, is strictly positive if and only if the cavities
are not circular. This shows that it is very expensive to produce non-circular
cavities (as stated above3).

In spite of the previous energetic consideration, if the external load is too
large then an important geometric obstruction frustrates the desire of produc-
ing only spherical cavities. Although this is already explained in [HS13], let us
briefly describe the situation. Consider again a body that is only two dimen-
sional; that is furthermore a disk; that is subject to the displacement condition
u(x) = λx ∀x ∈ ∂BR0

, for some λ > 1 (R0 being the domain radius); and that
can open only two cavities. A necessary condition for circular cavities of areas
v1 and v2 to be opened is that they be disjoint and enclosed by the deformed
outer boundary. This is possible only when the sum 2

√
v1
π + 2

√
v2
π of their

diameters is less than the outer diameter 2λR0. On the other hand, if the body
is incompressible (if none of its parts can change its volume), the area occupied
by the material after and before the deformation must coincide:

π(λR0)2 − (v1 + v2) = πR2
0 −O(ε2) (9)

(the term of order ε2 accounts for the eventual preexisting microvoids). Hence,
the necessary condition reads

2
√
v1v2 ≤ πR2

0 −O(ε2). (10)

It follows that, for instance, if λ >
√

2 then the body cannot open two equally
big circular cavities.

The conflict between the geometric obstruction due to incompressibility and
the energetic cost of distorted cavities raises the question of:

What is the maximum load compatible with the opening of only spherical cavities?
In order to address this question, first we need to take the following into ac-
count. It does not lead far to think of the load as just a scalar: it is more
appropriate to consider the whole combination of the displacement condition at

2A sketch of the proof can be found in Section 3.2.
3The result is in 2D but suggests that the same occurs in 3D elasticity.
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the outer boundary; the cavitation sites in the reference configuration; and the
size that each cavity is expected to attain; as the load. Consider, for example,
the following trivial observation: Equations (9) and (10) impose no limit on λ
if v1 and v2 are taken to be, respectively, as (λ2 − 1) · πR2

0 + O(ε2) and zero.
The obstruction arises when all the n cavities grow from a size of order ε to
a size of order 1, which corresponds naturally to the situation in quasistatic
and dynamic loadings (once a cavity forms and grows it is not expected to
shrink back; healing is possible, however, upon compression and/or unloading
[FGLP, KFLP18, PLPRC, KRCLP]).

There is a simple geometric condition that is necessary for a 2D body to
open only circular cavities of areas v1, . . . , vn at the points a1, . . . , an ∈ B: there
must exist an evolution of the domain itself (i.e. of the centers and radii of
the cavities and of the outer boundary) such that the total enclosed volume is
preserved. This paper’s answer to the question of the previous paragraph is
that this simple geometric condition is also sufficient for the existence of an
incompressible and invertible deformation opening round cavities of the desired
sizes at the desired sites. This is made explicit in Theorem 4 of Section 3.3.

The reason to study how does the Hölder estimates for the Neumann prob-
lem depend on the geometry of these domains with circular holes is that such
study is what is required in order to prove the existence of the above-mentioned
deformation using the Dacorogna-Moser flow [DM90]. The details are in the
proof of the theorem.

1.3 Void coalescence

There is an extensive literature about the coalescence of voids in elastomers and
in ductile materials. On the experimental side, see, e.g., [Gen91, PLLPRC17,
PCSE06]. On the numerical and modelling side, and restricting our attention,
for concreteness, to the case of elastomers, see both [XH11, LL11b, LL11a, LL12,
LRCLP15], which focus on the building-up of tension before coalescence (only
Sobolev maps are considered in the energy minimization), and the SBV models
[HMCX16, KFLP18] (based on [BFM08] and the analyses [HMC11, HMC12,
HMC15, HMCX15]), where the interaction can be followed all the way up to
the nucleation and propagation of cracks.

What is observed during the quasistatic loading of a confined elastomer is
that cavities eventually lose their spherical shape as the load increases, and begin
to interact with other cavities until they merge into micro-cracks. It follows
that if for a certain load it is possible to prove that the cavities formed inside
the body are close to spherical, then that load constitutes a lower bound for
the load at which the voids begin to coalesce. For 2D neo-Hookean materials,
such radial symmetry result can in fact be obtained, as shown by Henao &
Serfaty [HS13], using the methods and ideas developed for Ginzburg-Landau
superconductivity. The existence question addressed in this paper, namely,
that of determining for what loads there exists at least one deformation having
finite energy and opening only round cavities (regardless of whether it is energy
minimizing), happens to play an important role in that more complete radial
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symmetry statement. For those loads it can be shown that the cavities opened
by the actual energy minimizers are also close to being circular. Consequently,
by finding out a condition on the load sufficient to ensure that deformations
with round cavities still exist (which is what we do in Theorem 4, as explained
in the previous section), we have, at the same time, obtained a lower bound for
the coalescence load in the 2D neo-Hookean model. This is what lies behind
Theorem 5 in Section 3.4.

We end this Introduction by mentioning Corollary 3.2, which illustrates what
loads satisfy the geometric condition for the opening of only round cavities. It
motivates Theorem 6, a modified version of Theorem 5 where a slightly more
general variational problem is considered. This theorem brings some evidence
to the conjecture, implicitly present already in [BM84, HS13], that any given
cavity will retain its spherical shape as long as its radius, after the deformation,
remains smaller or comparable to the distance, in the undeformed configuration,
to the nearest cavitation point4, and that no coalescence ought to take place until
all the cavities have attained that critical size.

2 Hölder regularity for the incompressibility equa-
tion in a moving domain

2.1 Notation

Excision of holes off the elastic body

We begin by studying the Hölder regularity of the classical 2D singular integrals
in a generic annulus:

Ω := {x ∈ R2 : R < |x| < R+ d}. (11)

For calculations that have to be made away from ∂Ω, we work in

Ω′ := {x ∈ R2 : R+
1

3
d < |x| < R+

2

3
d}. (12)

The study is carried out in Sections 2.2 and 2.3. The results will be applied in
Section 3.3 to the cavitation problem, where a certain evolution of an elastic
body will be considered. The domain occupied by the body changes during
the evolution; we obtain thus a one-parameter family of domains B(0, tR0) \⋃n

1 B(zi(t), Li(t)). For reasons that will become clear there, the treatment near
the cavities differs from that in the rest of the domain; because of this, we cut
some holes B(zi(t), ri(t)) off the domain, with ri(t) > Li(t) (they contain both
the cavity B(zi(t), Li(t)) and the material that surrounds it). Throughout the
paper we will be consistent in the distinction between the use made of the word
hole and the use of the word cavity. The analysis of this section will apply to the
smaller sets E(t) := B(0, tR0) \

⋃n
1 B(zi(t), ri(t)), whereby the generic radius R

4Or the outer boundary, if it is closer.
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in (11) corresponds to the radius ri(t) of one of the holes of E(t). The role of
the generic length d is that of giving a uniform lower bound for the width of an
annular neighbourhood of the excised hole that is still contained in the domain.

In Proposition 2.18 negative powers of the radii of the holes are obtained. It
is for this reason that in the final result (see (4) and Theorem 1) not only the
distances between the holes but also their radii are assumed to be greater than
the generic length d; the velocity field v is then be controlled, in the appropriate
norms, by inverse powers of d. In some intermediate results, knowing that the
radius is greater than d simplifies the estimates (e.g. in Lemma 2.6 we obtain
‖Du‖∞ ≤ CR‖f‖∞ instead of ‖Du‖∞ ≤ C(R + d)‖f‖∞). This is why the
hypothesis R ≥ Cd is added througout the whole section.

Function spaces and Green’s function

We fix a value of α ∈ (0, 1) and work with the norms ‖f‖∞ := sup |f(x)| and

[f ]0,α := sup
x6=y

|f(x)− f(y)|
|x− y|α

, ‖f‖0,α := ‖f‖∞ + [f ]0,α,

[f ]1,α := sup
x 6=y

|Df(x)−Df(y)|
|x− y|α

, ‖f‖1,α := ‖f‖∞ + ‖Df‖∞ + [f ]1,α.

The function g in (1) will belong to

C0,α
per := {g ∈ C0,α

loc (R) : g is 2π-periodic}.

The inversion of x ∈ R2 with respect to B(0, R) is x∗ = R2

|x|2x. Set

Φ(x) :=
−1

2π
log(|x|), φx(y) :=

1

2π
ln(|y−x∗|)− |y|

2

4πR2
, GN (x, y) := Φ(x)−φx(y).

The expression u,β stands for ∂βu = ∂u
∂xβ

.

2.2 Estimates in the interior of the domain

The following regularity estimates for harmonic functions can be found in [Eva10,
Thm. 2.2.7]

Lemma 2.1. Let v be weakly harmonic in B(x, d), then:
‖v‖L∞(B(x, d2 )) ≤ Cd−2 ‖v‖L1(B(x,d)) .∥∥Dβv

∥∥
L∞(B(x, d2 ))

≤ Cd−2−|β| ‖v‖L1(B(x,d)) .

Proposition 2.2. : Let v be harmonic in the distributional sense in Ω and
R ≥ Cd, then we have the folllowing estimates :
‖v‖L∞(Ω′) ≤ Cd−2 ‖v‖L1(Ω) .

[v]0,α(Ω′) ≤ Cd−3R1−α ‖v‖L1(Ω) .∥∥Dβv
∥∥
L∞(Ω′)

≤ Cd−2−|β| ‖v‖L1(Ω) .

[v]1,α(Ω′) ≤ Cd−4R1−α ‖v‖L1(Ω) .
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Proof. The first and third estimates follow from the previous lemma. To prove
the second estimate note that using polar coordinates we get (for r ∈ (R +
1
3d,R+ 2

3d) and θ1, θ2 ∈ [−π, π], such that |θ1 − θ2| ≤ π):

|v(reiθ1)−v(reiθ2)| ≤
∫ θ2

θ1

∣∣∣∣ ddθ (v(reiθ)
)∣∣∣∣ dθ ≤ ∫ θ2

θ1

∣∣∣∣ ∂v∂x1

∣∣∣∣ r| sin(θ)|+
∣∣∣∣ ∂v∂x2

∣∣∣∣ r| cos(θ)|dθ

≤ Cd−3 ‖v‖L1(Ω) r|θ1 − θ2| ≤ Cd−3 ‖v‖L1(Ω) |re
iθ1 − reiθ2 |αR1−α,

since r|θ1−θ2| ≤ π
2 |re

iθ1 − reiθ2 | (recall that 2
π2 ≤ 1−cos(θ)

θ2 ≤ 1
2 , for θ ∈ [−π, π])

and |reiθ1 − reiθ2 | ≤ 2r ≤ CR .
Moreover, for θ ∈ [−π, π] and r1, r2 ∈ [R+ 1

3d,R+ 2
3d], we have:

|v(r1e
iθ)−v(r2e

iθ)| ≤
∫ r2

r1

∣∣∣∣ ddr (v(reiθ)
)∣∣∣∣ dr ≤ ∫ r2

r1

∣∣∣∣ ∂v∂x1

∣∣∣∣ | cos(θ)|+
∣∣∣∣ ∂v∂x2

∣∣∣∣ | sin(θ)|dr

≤ Cd−3 ‖v‖L1(Ω) |r1 − r2| ≤ Cd−3 ‖v‖L1(Ω) |r1e
iθ − r2e

iθ|αR1−α

Now, for r1, r2 ∈ [R + 1
3d,R + 2

3d], r1 ≤ r2 and θ1, θ2 ∈ [−π, π], such that
|θ1 − θ2| ≤ π, we have:

|v(r1e
iθ1)− v(r2e

iθ2)| ≤ |v(r1e
iθ1)− v(r1e

iθ2)|+ |v(r1e
iθ2)− v(r2e

iθ2)|

≤ Cd−3R1−α ‖v‖L1(Ω) (|r1e
iθ1 − r1e

iθ2 |α + |r1e
iθ2 − r2e

iθ2 |α)

≤ Cd−3R1−α ‖v‖L1(Ω) (|r1e
iθ1 − r2e

iθ2 |α + |r1e
iθ1 − r2e

iθ2 |α),

since |r1e
iθ1 − r2e

iθ2 |2 = (r1 − r2)2 + 2r1r2(1− cos(θ1 − θ2)) ≥ 2r2
1(1− cos(θ1 −

θ2)) = |r1e
iθ1 − r1e

iθ2 |2 and |r1e
iθ1 − r2e

iθ2 | ≥ |r1− r2|. The proof of the fourth
estimate is analogous.

Lemma 2.3. Let R ≥ Cd, v be harmonic in Ω and ζ a cut-off function with
support within |x| < R+ 2

3d and equal to 1 for |x| ≤ R+ 1
3d, then:

[∆(vζ)]0,α(R2) ≤ CR1−αd−5 ‖v‖L1(Ω) .

‖∆(vζ)‖∞(R2) ≤ Cd−4 ‖v‖L1(Ω) .

Proof. It is clear that we can choose ζ to be such that: |Dkζ| ≤ Ckd
−k (and

then [ζ]k,α(Ω′) ≤ Ck+1d
−k−1R1−α since ζ ∈ C∞c (B(0, R + d))). Then, using

Proposition 2.4 and the estimates for ζ we get:

|∆(vζ)| ≤ 2|∇v · ∇ζ|+ |v∆ζ| ≤ Cd−4 ‖v‖L1(Ω) .

On the other hand:

[∆(vζ)]0,α(Ω′) ≤ 2[∇v · ∇ζ]0,α(Ω′) + [v∆ζ]0,α(Ω′).

Now note that:

[v,β · ζ,β ]0,α(Ω′) ≤ [v,β ]0,α(Ω′) ‖ζ,β‖∞(Ω′) + [ζ,β ]0,α(Ω′) ‖v,β‖∞(Ω′)
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≤ Cd−4R1−α ‖v‖L1(Ω) · d
−1 + Cd−2R1−α · d−3 ‖v‖L1(Ω) .

Furthermore:

[v∆ζ]0,α(Ω′) ≤ [v]0,α(Ω′) ‖∆ζ‖∞(Ω′) + [∆ζ]0,α(Ω′) ‖v‖∞(Ω′)

≤ Cd−3R1−α ‖v‖L1(Ω) · d
−2 + Cd−3R1−α · d−2 ‖v‖L1(Ω) .

Hence:
[∆(vζ)]0,α(Ω′) ≤ Cd−5R1−α ‖v‖L1(Ω) .

Now if x ∈ Ω′ and y ∈ R2\Ω′, there exists t ∈ (0, 1) such that z = tx+(1−t)y ∈
∂Ω′, then we have

|∆(vζ)(x)−∆(vζ)(y)| ≤ |∆(vζ)(x)−∆(vζ)(z)|+ |∆(vζ)(z)−∆(vζ)(y)|

= |∆(vζ)(x)−∆(vζ)(z)| ≤ CR1−αd−5 ‖v‖L1(Ω) |x− z|
α

= CR1−αd−5 ‖v‖L1(Ω) (1− t)α|x− y|α ≤ CR1−αd−5 ‖v‖L1(Ω) |x− y|
α

(Clearly if x, y ∈ R2 \ Ω′, |∆(v(x)ζ(x))−∆(v(y)ζ(y))| = 0). Finally, we get:

[∆(ζv)]0,α(R2) ≤ CR1−αd−5 ‖v‖L1(Ω) .

2.3 Estimates near circular boundaries

Proposition 2.4. Let v be harmonic in Ω and ζ be a cut-off function with
support within |x| < R+ 2

3d and equal to 1 for |x| ≤ R+ 1
3d. Then, if u = ζv:

u(x) = C −
∫
∂BR

∂u

∂ν
(Φ(y − x)− φx(y)) dS(y)−

∫
Ω

∆u (Φ(y − x)− φx(y)) dy.

Proof. Let us proceed as in [Eva10]:∫
Ω\Bε(x)

∆u(y)Φ(y−x)−u(y)∆yΦ(y−x)dy =

∫
∂Ω

∂u

∂ν
Φ(y−x)−∂Φ

∂ν
(y−x)u(y)dS(y)

+

∫
∂Bε(x)

∂Φ

∂ν
(y − x)u(y)− ∂u

∂ν
Φ(y − x)dS(y),

letting ε→ 0 (and using the fact that u vanishes outside BR+ 2
3d

), we get:∫
Ω

∆u(y)Φ(y − x)dy =

∫
∂BR

∂Φ

∂ν
(y − x)u(y)− ∂u

∂ν
Φ(y − x)dS(y)− u(x).

Hence:

u(x) =

∫
∂BR

∂Φ

∂ν
(y − x)u(y)− ∂u

∂ν
Φ(y − x)dS(y)−

∫
Ω

∆u(y)Φ(y − x)dy,
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with the normal pointing outside BR. Now (as can be seen in [DiB09]), if a
function φx(y) satisfies:

−∆yφ
x(y) = k if y ∈ Ω,

∂φx

∂ν
=
∂Φ

∂ν
(y − x) if y ∈ ∂BR ,

(13)

with k being a constant, then:∫
Ω

∆yφ
x(y)u(y)−∆uφx(y)dy =

∫
∂Ω

u(y)
∂

∂ν
φx(y)− φx(y)

∂u

∂ν
dS(y)

=

∫
∂BR

φx(y)
∂u

∂ν
− u(y)

∂

∂ν
Φ(y − x)dS(y) = k

∫
Ω

udy −
∫

Ω

∆uφx(y)dy,

where we have used (13). Finally, replacing in the expression for u(x), we obtain:

u(x) = C −
∫
∂BR

∂u

∂ν
(Φ(y − x)− φx(y)) dS(y)−

∫
Ω

∆u (Φ(y − x)− φx(y)) dy.

It is easy to see that φx(y) = 1
2π log(|y − x∗|) − |y|2

4πR2 satisfies (13) using the
identity |x1||x2 − x∗1| = |x2||x1 − x∗2|.

Proposition 2.5. Let f ∈ C0,α
c (Ω′), R ≥ Cd and u =

∫
R2 f(y)Φ(x − y)dy,

then:
‖Du‖∞(R2) ≤ CR ‖f‖∞ .

[Du]
0,α(B(0,R+d)\B(0,R))

≤ CR1−α ‖f‖∞∥∥∥∂2
βγu
∥∥∥
∞(B(0,R+d)\B(0,R))

≤ CRα[f ]0,α(R2) +
δβγ
2 ‖f‖∞ .

[D2u]
0,α(B(0,R+d)\B(0,R))

≤ C[f ]0,α(R2).

Proof. Let us estimate the first derivative:

|u,β | ≤ ‖f‖∞
∫

Ω′

dy

|x− y|
≤ C ‖f‖∞

∫ 2R+ 5
3d

0

dr ≤ CR ‖f‖∞ ,

Now let us estimate the Holdër seminorm of the derivatives: let

vρ =

∫
R2\B(x,ρ)

f(y)Φ,β(x− y)dy,

with ρ ∈ (0, 2(R+ d)), then:

|u,β − vρ| ≤ C ‖f‖∞
∫
B(x,ρ)

|x− y|−1dy ≤ C ‖f‖∞
∫
B(x,ρ)

|x− y|−1dy

≤ C ‖f‖∞ ρ ≤ C ‖f‖∞ ραR1−α.

On the other hand:

∂vρ
∂γ

=

∫
R2\B(x,ρ)

f(y)Φ,βγ(x− y)dy −
∫
∂B(x,ρ)

f(y)Φ,β(x− y)νγdS(y),

10



therefore:∣∣∣∣∂vρ∂γ
∣∣∣∣ ≤ C ‖f‖∞

(∫
R2\B(x,ρ)

|x− y|−2dy +

∫
∂B(x,ρ)

|x− y|−1dS(y)

)

≤ C ‖f‖∞

(
1 +

∫
B(x,2(R+d))\B(x,ρ)

|x− y|−2dy

)

≤ C ‖f‖∞

(
1 +

∣∣∣∣log

(
R

ρ

)∣∣∣∣) ≤ C ‖f‖∞
(

1 +

(
R

ρ

)1−α
)
.

(Note that R
ρ ∈ ( 1

2 ,∞)). Finally, if |x− y| = ρ:

|u,β(x)− u,β(y)| ≤ |u,β(x)− vρ(x)|+ |vρ(x)− vρ(y)|+ |vρ(y)− u,β(y)|

≤ C ‖f‖∞ ραR1−α + C|x− y| ‖f‖∞

(
1 +

(
R

ρ

)1−α
)

≤ C ‖f‖∞ ραR1−α,

where we have used that ρ ≤ CR.
To prove the third estimate, first note that the second derivatives of u are

given by:

u,βγ = lim
ρ→0+

∫
R2\B(x,ρ)

Φ,βγ(x− y)f(y)dy − δβγ
2
f.

Since f ∈ C0,α
c (and using the fact that

∫
∂B(0,1)

Φ,βγ(z)dS(z) = 0, and
∫
A

Φ,βγ(z)dz =

0 if A is any annulus centered at the origin ), the absolute value of the singular
integral is bounded by:∣∣∣∣∣ lim

ρ→0+

∫
B(x,2R+ 5

3d)\B(x,ρ)

(f(y)− f(x))Φ,βγ(x− y)dy

∣∣∣∣∣
≤ lim
ρ→0+

∫
∂B(0,1)

|Φ,βγ(ω)|dS(ω)

∫ 2R+ 5
3d

ρ

rα−1dr[f ]0,α ≤ CRα[f ]0,α;

that proves the second result (obviously we have
∥∥∥ δij2 f∥∥∥∞ ≤ δij

2 ‖f‖∞). To

prove the last estimate, we proceed as in [Mor66, Thm. 2.6.4]: first note that if

Φ,ij(x) = ∆(x), ω(x) = u,ij(x) +
δij
n f(x), n = 2, and

ωρ(x) =

∫
Rn\B(x,ρ)

∆(x− ξ)f(ξ)dξ,

then:

|ωσ(x)− ωρ(x)| ≤
∫
B(x,ρ)\B(x,σ)

|∆(x− ξ)|[f ]0,α|x− ξ|αdξ ≤ CM0[f ]0,αρ
α,

11



being M0 = sup|x|=1 |∆(x)|. If we let σ → 0, we obtain:

|ω(x)− ωρ(x)| ≤ CM0[f ]0,αρ
α.

Let M = 3R + 3d and M1 = sup|x|=1 |∇∆(x)|. The derivatives of ωρ are given
by:

ωρ,β(x) =

∫
Rn\B(x,ρ)

∆,β(x− ξ)f(ξ)dξ −
∫
∂B(x,ρ)

∆(x− ξ)f(ξ)dξ
′

β

=

∫
B(x,M)\B(x,ρ)

∆,β(x− ξ)(f(ξ)−f(x))dξ+

∫
∂B(x,M)

∆(x− ξ)(f(ξ)−f(x))dξ
′

β

+

∫
∂B(x,ρ)

∆(x− ξ)(f(x)− f(ξ))dξ
′

β

Note that: ∫
∂B(x,M)

∆(x− ξ)f(ξ)dξ
′

β = 0.

Let x, z ∈ B(0, R+ d) and ρ = |x− z|,then:

|∇ωρ| ≤ C(M0 +M1)[f ]0,α(ρα−1 +Mα−1) ≤ C(M0 +M1)[f ]0,αρ
α−1.

Thus (applying the mean value theorem):

|ω(x)−ω(z)| ≤ |ω(x)−ωρ(x)|+|ωρ(x)−ωρ(z)|+|ωρ(z)−ω(z)| ≤ C(M0+M1)[f ]0,αρ
α;

that yields: [ω]0,α ≤ C(M0 +M1)[f ]0,α.

Lemma 2.6. Let u =
∫
R2 f(y) log |x∗ − y|dy with f ∈ C0,α

c (BR+ 2
3d
\ BR+ d

3
),

R ≥ Cd. Then:
‖Du‖L∞(BR+d\BR) ≤ CR ‖f‖∞.

[Du]0,α(BR+d\BR) ≤ CR2−αd−1 ‖f‖∞.∥∥D2u
∥∥
L∞(BR+d\BR)

≤ CRd−1 ‖f‖∞.

[D2u]0,α(BR+d\BR) ≤ CR2−αd−2 ‖f‖∞.

Proof. Using the identity |x1||x∗1 − x2| = |x2||x1 − x∗2|, let us first note that:

log |y − x∗| = log |y∗ − x|+ log |y| − log |x|, (14)

this implies that:

u = C +

∫
R2

log |x− y∗|f(y)dy − log |x|
∫
R2

f(y)dy,

then:

|u,β | ≤ C
∫

Ω′

|f(y)|dy
|x− y∗|

+
C

|x|
‖f‖∞Rd ≤ C

∫
Ω′

|f(y)|dy
|x| − |y∗|

+
C

|x|
‖f‖∞Rd

12



≤ CRd
‖f‖∞

R− R2

R+ d
3

+ Cd ‖f‖∞ ≤ CR ‖f‖∞ .

The other estimates are proved analogously (for the Hölder continuity we can
use the same argument as in Proposition 2.2).

Proposition 2.7. Let f ∈ C0,α
c (BR+ 2

3d
\BR+ d

3
), R ≥ Cd and u =

∫
R2 f(y)GN (x, y)dy,

then (in BR+d \BR) :
‖Du‖∞ ≤ CR ‖f‖∞ .
[Du]0,α ≤ CR2−αd−1 ‖f‖∞ .∥∥D2u

∥∥
∞ ≤ C(Rd−1 ‖f‖∞ +Rα[f ]0,α).

[D2u]0,α ≤ C(R2−αd−2 ‖f‖∞ + [f ]0,α).

Proof. It follows from Proposition 2.5 and Lemma 2.6.

Lemma 2.8. Let g ∈ C0,α
per , φ ∈ [0, 2π], 1 < r2 < r1. Then:

|ω(r1e
iφ)− ω(r2e

iφ)| ≤ Cr1[g]0,α|r1 − r2|α,

where

ω :=

∫ π

−π
g(τ + φ)

r sin(τ)dτ

r2 + 1− 2r cos(τ)
(15)

Proof. Note that:

|ω(r1e
iφ)− ω(r2e

iφ)| =
∣∣∣∣∫ r1

r2

∂ω

∂r
dr

∣∣∣∣ ≤ ∫ r1

r2

∣∣∣∣∂ω∂r
∣∣∣∣ dr.

On the other hand:

∂ω

∂r
(reiφ) =

∫ π

−π
g(τ + φ)

(1− r2) sin(τ)dτ

((1− r)2 + 2r(1− cos(τ)))2

=

∫ π

−π
(g(τ + φ)− g(φ))

(1− r2) sin(τ)dτ

((1− r)2 + 2r(1− cos(τ)))2
,

where we have used that sin(τ) is odd. Moreover:∣∣∣∣∣
∫
|τ |≤r−1

(g(τ + φ)− g(φ))
(1− r2) sin(τ)dτ

((r − 1)2 + 2r(1− cos(τ)))2

∣∣∣∣∣
≤
∫
|τ |≤r−1

2r1(r − 1)[g]0,α|τ |1+α

((r − 1)2 + 2r(1− cos(τ)))2
≤
∫
|τ |≤r−1

Cr1[g]0,α(r − 1)2+α

(r − 1)4
dτ

= Cr1[g]0,α(r − 1)α−1.

Recall that 2
π2 |τ |2 ≤ 1− cos(τ) ≤ 1

2 |τ |
2 for τ ∈ (−π, π). To estimate the rest

of the integral, it suffices to note that:∣∣∣∣∣
∫
r−1≤|τ |≤π

(g(τ + φ)− g(φ))
(1− r2) sin(τ)dτ

((r − 1)2 + 2r(1− cos(τ)))2

∣∣∣∣∣
13



≤
∫
r−1≤|τ |≤π

2r1(r − 1)[g]0,α
|τ |1+α

((r − 1)2 + 2r(1− cos(τ)))2
dτ

≤
∫
r−1≤|τ |≤π

Cr1(r − 1)[g]0,α
|τ |1+α

4|τ |4
dτ ≤ (r − 1)Cr1[g]0,α

∫
r−1≤|τ |≤π

|τ |α−3dτ

≤ Cr1(r − 1)(r − 1)α−2 = Cr1[g]0,α(r − 1)α−1.

Finally:

|ω(r1e
iφ)−ω(r2e

iφ)| ≤
∫ r1

r2

∣∣∣∣∂ω∂r
∣∣∣∣ dr ≤ Cr1[g]0,α

∫ r1

r2

(r−1)α−1dr ≤ Cr1[g]0,α|r1−r2|α.

(Recall that |x|α is locally Hölder continuous in [0,∞).)

Lemma 2.9. Let g ∈ C0,α
per , r > 1, ω as in (15), and x1, x2 ∈ R2 such that

|x1| = |x2| = r. Then:

|ω(x1)− ω(x2)| ≤ Cr2[g]0,α(r − 1)α−1|x1 − x2|.

Proof. Let 1 < r ≤ 2 and |φ1 − φ2| ≤ π, if we define Kr(τ) = sin(τ)
1+r2−2r cos(τ)

then:

ω(reiφ) = r

∫ π

−π
g(τ + φ)Kr(τ)dτ = −r

∫ π

−π
g(τ)Kr(φ− τ)dτ.

The derivative of Kr is given by:

cos(τ)(1 + r2)− 2r

(1 + r2 − 2r cos(τ))2
=

(
1− (1 + r)2(1− cos(τ))

(r − 1)2 + 2r(1− cos(τ))

)
(1 + r2− 2r cos(τ))−1.

Since:∣∣∣∣ cos(τ)(1 + r2)− 2r

(r − 1)2 + 2r(1− cos(τ))

∣∣∣∣ ≤ 1 +
(1 + r)2(1− cos(τ))

2r(1− cos(τ))
≤ Cr,

we have: ∣∣∣∣∂Kr

∂τ
(τ)

∣∣∣∣ ≤ Cr

(r − 1)2 + 2r(1− cos(τ))
≤ C ′r|τ |−2, if |τ | ≤ π.

Let ρ = |φ1 − φ2| ≤ π, then:∣∣∣∣∂ω∂φ
∣∣∣∣ ≤ r ∣∣∣∣∫ π

−π
(g(τ)− g(φ))K ′r(φ− τ)dτ

∣∣∣∣
≤ Cr2[g]0,α

∫
|τ−φ|≤r−1

|τ − φ|α

(r − 1)2
dτ + Cr2[g]0,α

∫
r−1≤|τ−φ|≤π

|φ− τ |α−2dτ

≤ Cr2(r − 1)α−1[g]0,α.
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Now using the fundamental theorem of calculus:

|ω(reiφ1)− ω(reiφ2)| ≤
∫ φ2

φ1

Cr2(r − 1)α−1[g]0,αdφ

= Cr2(r − 1)α−1[g]0,α|φ1 − φ2| ≤ Cr2(r − 1)α−1[g]0,α|reiφ1 − reiφ2 |.

Proposition 2.10. Let g ∈ C0,α
per , ω as in (15), and x1, x2 ∈ R2 such that

1 < |x2| ≤ |x1| ≤ 2. Then:

|ω(x1)− ω(x2)| ≤ C[g]0,α|x1 − x2|α.

(i.e. [ω]0,α ≤ C[g]0,α).

Proof. Set x1 = r1e
iφ1 , x2 = r2e

iφ2 , |φ1 − φ2| ≤ π, ρ := |x1 − x2|.

Case r1 − 1 ≥ ρ: by Lemmas 2.8 and 2.9 :

|ω(x1)− ω(x2)| ≤ |ω(r1e
iφ1)− ω(r1e

iφ2)|+ |ω(r1e
iφ2)− ω(r2e

iφ2)|

≤ Cr1[g]0,α(r1 − 1)α−1|r1e
iφ1 − r1e

iφ2 |+ Cr1[g]0,α||x1| − |x2||α

≤ 2C[g]0,αρ
α−1(|r1e

iφ1 − r2e
iφ2 |+ |r2e

iφ2 − r1e
iφ2 |) + 2C[g]0,α|x1 − x2|α

≤ C[g]0,α(ρα−1(ρ+ ρ) + ρα).

Case r1 − 1 < ρ: set r := 1 + ρ. Note that since r2 < r1 < 2, then r =
1 + |x1 − x2| < 1 + r1 + r2 ≤ 5

|ω(x1)−ω(x2)| ≤ |ω(r1e
iφ1)−ω(reiφ1)|+|ω(reiφ1)−ω(reiφ2)|+|ω(reiφ2)−ω(r2e

iφ2)|

≤ 2 · 5C[g]0,α|r − r1|α + 5C[g]0,α(r − 1)α−1|reiφ1 − reiφ2 |,

since r2 > 1, then r − r2 = ρ − (r2 − 1) < ρ. On the other hand:
|reiφ1 − reiφ2 | ≤ |r− r1|+ |x1− x2|+ |r2− r| < 3ρ and (r− 1)α−1 = ρα−1

by definition of r. This completes the proof.

Proposition 2.11. Let g ∈ C0,α
per , ω as in (15), and x1, x2 ∈ R2 such that

1 < |x2| ≤ |x1| ≤ 2. Then:
‖ω‖∞ ≤ C[g]0,α.

Proof. It is easy to see that:

|ω| ≤ C[g]0,α

∫ π

−π

|τ |1+α

|τ |2
dτ ≤ C[g]0,α.
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Lemma 2.12. Let x = reiφ and y = eiτ . Let u be given by:

u(reiφ) =
1− r2

2π

∫ π

−π

g(τ)dτ

|x− y|2
, (16)

then: ‖u‖∞ ≤ C ‖g‖∞ .

Proof. This is immediate from the well-known formula (see [Gam01]):

r2 − 1

2π

∫ π

−π

dτ

1 + r2 − 2r cos(τ)
= sgn(r − 1). (17)

Lemma 2.13. Let g ∈ C0,α
per , r > 1, |φ1 − φ2| ≤ π and u as in (16). Then:

|u(reiφ1)− u(reiφ2)| ≤ C[g]0,α|reiφ1 − reiφ2 |.

Proof. First note that (thanks to (17)):

u(reiφ) =
1− r2

2π

∫ π

−π
g(τ)

dτ

|x− y|2
=

1− r2

2π

∫ π

−π

g(τ + φ)− g(φ)

1 + r2 − 2r cos(τ)
dτ − g(φ),

then:

|u(reiφ1)− u(reiφ2)| ≤ [g]0,α|φ1 − φ2|α +
r2 − 1

2π

∫ π

−π

|g(τ + φ1)− g(τ + φ2)|
1 + r2 − 2r cos(τ)

dτ

≤ [g]0,α|φ1 − φ2|α + [g]0,α|φ1 − φ2|α
r2 − 1

2π

2π

r2 − 1
≤ C ′[g]0,α|reiφ1 − reiφ2 |α.

Lemma 2.14. Let g ∈ C0,α
per , u as in (16), 1 < r2 < r1 ≤ 2. Then:

|u(r1e
iφ)− u(r2e

iφ)| ≤ C[g]0,α|r1 − r2|α.

Proof. Note that:

d

dr

(
1− r

1 + r2 − 2r cos(τ)

)
=

(r − 1)2 − 2(1− cos(τ))

((r − 1)2 + 2r(1− cos(τ)))2
,

also:

d

dr

(
(1 + r)(1− r)

(1− r)2 + 2r(1− cos(τ))

)
= (1 + r)

d

dr

(
1− r

1 + r2 − 2r cos(τ)

)

+
1− r

1 + r2 − 2r cos(τ)
.
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We want to prove
∣∣∂u
∂r

∣∣ ≤ C(r − 1)α−1, for r ∈ (1, 2). For that, it suffices to
estimate the following integrals:∣∣∣∣(r − 1)

∫ π

−π
(g(τ + φ)− g(φ))

dτ

(r − 1)2 + 2r(1− cos(τ))

∣∣∣∣ ≤ Cπα[g]0,α(r−1)
2π

r2 − 1

≤ C[g]0,α ≤ C[g]0,α(r − 1)α−1.

Now let us estimate the second integral for |τ | ≤ r − 1:

2

∣∣∣∣∣
∫
|τ |≤r−1

(g(τ + φ)− g(φ))
1− cos(τ)

((r − 1)2 + 2r(1− cos(τ)))2
dτ

∣∣∣∣∣
≤ C[g]0,α

∫
|τ |≤r−1

|τ |α+2

((r − 1)2 + 2r(1− cos(τ)))2
dτ

≤ C[g]0,α

∫
|τ |≤r−1

|τ |α+2

(r − 1)4
dτ ≤ C ′[g]0,α

(r − 1)α+3

(r − 1)4
= C ′[g]0,α(r − 1)α−1.

Then for r − 1 ≤ |τ | ≤ π:

2

∣∣∣∣∣
∫
r−1≤|τ |≤π

(g(τ + φ)− g(φ))
1− cos(τ)

((r − 1)2 + 2r(1− cos(τ)))2
dτ

∣∣∣∣∣
≤ [g]0,αC

∫
r−1≤|τ |≤π

|τ |α+2

(2|τ |2)2
dτ ≤ C ′((r − 1)α−1 − πα−1) ≤ C ′[g]0,α(r − 1)α−1.

Finally, let us estimate the last integral for |τ | ≤ r − 1:

(r − 1)2

∣∣∣∣∣
∫
|τ |≤r−1

g(τ + φ)− g(φ)

((r − 1)2 + 2r(1− cos(τ)))2
dτ

∣∣∣∣∣
≤ [g]0,αC(r − 1)2

∫
|τ |≤r−1

|τ |α

(r − 1)4
dτ ≤ C ′[g]0,α(r − 1)α−1.

At last for r − 1 ≤ |τ | ≤ π:

(r − 1)2

∣∣∣∣∣
∫
r−1≤|τ |≤π

g(τ + φ)− g(φ)

((r − 1)2 + 2r(1− cos(τ)))2
dτ

∣∣∣∣∣
≤ C[g]0,α(r − 1)2

∫
r−1≤|τ |≤π

|τ |α

|τ |4
dτ ≤ C ′[g]0,α(r − 1)2((r − 1)α−3 − πα−3)

≤ C ′[g]0,α(r − 1)α−1.

In conclusion, we have:

|u(r1e
iφ)− u(r2e

iφ)| =
∣∣∣∣∫ r1

r2

∂u

∂r
dr

∣∣∣∣ ≤ ∫ r1

r2

∣∣∣∣∂u∂r
∣∣∣∣ dr ≤ C[g]0,α

∫ r1

r2

(r − 1)α−1dr

≤ C ′[g]0,α|r1 − r2|α,
and the result follows from the above.
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Proposition 2.15. Let g ∈ C0,α
per , u as in (16) 1 < r1 ≤ r2 ≤ 2, and |φ1−φ2| ≤

π. Then:
|u(r1e

iφ1)− u(r2e
iφ2)| ≤ C[g]0,α|r1e

iφ1 − r2e
iφ2 |α.

(i.e. [u]0,α(B(0,2)\B(0,1)) ≤ C[g]0,α(∂B(0,1))).

Proof. Note that from the previous propositions we get:

|u(r1e
iφ1)− u(r2e

iφ2)| ≤ |u(r1e
iφ1)− u(r1e

iφ2)|+ |u(r1e
iφ2)− u(r2e

iφ2)|

≤ C[g]0,α(∂B(0,1))|r1e
iφ1 − r1e

iφ2 |α + C[g]0,α(∂B(0,1))|r1e
iφ2 − r2e

iφ2 |α

≤ C[g]0,α(∂B(0,1))|r1e
iφ1 − r2e

iφ2 |α + C[g]0,α(∂B(0,1)) |r2 − r1|α

≤ C[g]0,α(∂B(0,1))|r1e
iφ1 − r2e

iφ2 |α,

because if θ is the angle between r1e
iφ1 and r2e

iφ2 , we have:

|r1e
iφ1 − r2e

iφ2 |2 − |r1e
iφ1 − r1e

iφ2 |2 = r2
2 − r2

1 − 2r1r2 cos(θ) + 2r2
1 cos(θ)

= (r2 − r1)(r1 + r2 − 2r1 cos(θ)) ≥ (r2 − r1)2 ≥ 0.

Proposition 2.16. Let g ∈ C1,α
per , u as in (16), then:∥∥∥∥ ∂u∂xβ

∥∥∥∥
∞(B(0,2)\B(0,1))

≤ C ‖g′‖0,α(∂B(0,1)) .

Moreover: [
∂u

∂xβ

]
0,α(B(0,2)\B(0,1))

≤ C ‖g′‖0,α(∂B(0,1)) .

Proof. Set x = reiφ ∈ B(0, 2) \B(0, 1), y = eiτ . Let P (x; τ) = 1−|x|2
|x−y|2 , then:

Dx(P (x; τ)) = Dx

(
1− |x|2

|x− y|2

)
= −2

(
x(|x− y|2 + 1− |x|2)− y(1− |x|2)

|x− y|4

)
.

Now, for x ∈ B(0, 2) \ B(0, 1), we have (due to the dominated convergence
theorem):

Dx(u) =
1

2π

∫ π

−π
Dx (P (x; τ)) g(τ)dτ.

In addition, the derivatives of P are given by (note that we use τ = (τ − φ) + φ
and |x− y|2 = 1 + r2 − 2r cos(τ − φ)):

∂P

∂x1
= −2

cos(φ)(2r − (r2 + 1) cos(τ − φ)) + sin(φ)(1− r2) sin(τ − φ)

(1 + r2 − 2r cos(τ − φ))2

∂P

∂x2
= −2

sin(φ)(2r − (r2 + 1) cos(τ − φ))− cos(φ)(1− r2) sin(τ − φ)

(1 + r2 − 2r cos(τ − φ))2
.
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Furthermore:∫ π

−π

2r − (r2 + 1) cos(τ − φ)

(1 + r2 − 2r cos(τ − φ))2
g(τ)dτ = −

∫ π

−π

d

dτ

(
sin(τ − φ)

1 + r2 − 2r cos(τ − φ)

)
g(τ)dτ

=

∫ π

−π

sin(τ − φ)

1 + r2 − 2r cos(τ − φ)
g′(τ)dτ =

∫ π

−π

sin(τ)

1 + r2 − 2r cos(τ)
g′(τ + φ)dτ.

Moreover: ∫ π

−π

(1− r2) sin(τ − φ)

(1 + r2 − 2r cos(τ − φ))2
g(τ)dτ

= −1− r2

2r

∫ π

−π

d

dτ

(
1

1 + r2 − 2r cos(τ − φ)

)
g(τ)dτ

=
1

2r

∫ π

−π

1− r2

1 + r2 − 2r cos(τ − φ)
g′(τ)dτ.

From the above, it is easy to conclude the result (using the estimates from the

previous propositions and that [ sin(φ)
r ]0,α(B(0,2)\B(0,1)) ≤ C, [ cos(φ)

r ]0,α(B(0,2)\B(0,1)) ≤
C).

Proposition 2.17. Let g ∈ C1,α(∂B1) and u(x) =
∫
∂B1

g(y) log |y − x|dS(y),

then (for 1 < |x| < 2) :
‖Du‖∞ ≤ C(‖g‖∞ + [g]0,α).
[Du]0,α ≤ C(‖g‖∞ + [g]0,α).∥∥D2u

∥∥
∞ ≤ C(‖g‖∞ + [g]0,α + ‖g′‖∞ + [g′]0,α).

[D2u]0,α ≤ C(‖g‖∞ + [g]0,α + ‖g′‖∞ + [g′]0,α).

Proof. : The gradient of u is given by:

Du(x) =

∫ π

−π
g(τ)

x− y
|x− y|2

dτ,

with y = (cos(τ), sin(τ)) and x = |x|eiφ. Now, if er(τ) = (cos(τ), sin(τ)) and
eτ (τ) = (− sin(τ), cos(τ)), we have:

Du(x) =

∫ π

−π
g(τ)er(τ)

|x| cos(τ − φ)− 1

|x− y|2
dτ −

∫ π

−π
g(τ)eτ (τ)

|x| sin(τ − φ)

|x− y|2
dτ.

Note that g1 := g(τ)er(τ) and g2 := g(τ)eτ (τ) are C1,α as functions of τ .
If we call v1 and v2 to the first and second integral respectively, we get:

v1(x) =
−1

2

∫ π

−π
g1(τ)

(
1 +

1− |x|2

|x− y|2

)
dτ.

On the other hand we have:

v2 =
1

2

∫ π

−π
g2(τ)

d

dτ

(
log(|x− y|2)

)
dτ =

−1

2

∫ π

−π

d

dτ
g2(τ) log

(
|x− y|2

)
dτ
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+
1

2
g2(τ) log

(
|x− y|2

)∣∣∣∣τ=π

τ=−π
= −

∫ π

−π

d

dτ
g2(τ) log (|x− y|) dτ.

If we repeat the argument (to each component) we get:

D(v
(j)
2 ) =

1

2

∫ π

−π
g
′(j)
2 (τ)er(τ)

(
1 +

1− |x|2

|x− y|2

)
dτ+

∫ π

−π
g
′(j)
2 (τ)eτ (τ)

|x| sin(τ − φ)

|x− y|2
dτ.

It is easy to see (using the estimates from the previous propositions) that:

|Du| ≤ C(‖g‖∞ + [g]0,α).

Moreover:
|D2u| ≤ C(‖g‖∞ + [g]0,α + ‖g′‖∞ + [g′]0,α).

Furthermore:

[D2u]0,α ≤ C(‖g‖∞ + [g]0,α + ‖g′‖∞ + [g′]0,α).

(It may be useful to know the following estimates, where β represents either r
or τ :
[g′k]0,α ≤ C(‖g‖∞ + [g]0,α + ‖g′‖∞ + [g′]0,α).

[g
′(j)
k eβ ]0,α ≤ C(‖g‖∞ + [g]0,α + ‖g′‖∞ + [g′]0,α).

[gk]0,α ≤ C(‖g‖∞ + [g]0,α).
[eβ ]0,α ≤ C).

Proposition 2.18. Let g ∈ C1,α(∂BR) and u =
∫
∂BR

g log |y − x|dS, then (for

R < |x| < R+ d, with d ≤ R) :
‖Du‖∞ ≤ C(‖g‖∞ +Rα[g]0,α).
[Du]0,α ≤ C(R−α ‖g‖∞ + [g]0,α).∥∥D2u

∥∥
∞ ≤ C(R−1 ‖g‖∞ +Rα−1[g]0,α + ‖g′‖∞ +Rα[g′]0,α).

[D2u]0,α ≤ C(R−1−α ‖g‖∞ +R−1[g]0,α +R−α ‖g′‖∞ + [g′]0,α).

Proof. It follows by a rescaling argument.

Proposition 2.19. Let u =
∫
∂BR

gGN (x, y)dS(y), then:

‖Du‖∞(B(0,R+d)\B(0,R))
≤ C(‖g‖∞ +Rα[g]0,α).

[Du]
0,α(B(0,R+d)\B(0,R))

≤ C(R−α ‖g‖∞ + [g]0,α).∥∥D2u
∥∥
∞(B(0,R+d)\B(0,R))

≤ C(R−1 ‖g‖∞ +Rα−1[g]0,α + ‖g′‖∞ +Rα[g′]0,α).

[D2u]
0,α(B(0,R+d)\B(0,R))

≤ C(R−1−α ‖g‖∞ +R−1[g]0,α +R−α ‖g′‖∞ + [g′]0,α).

Proof. Thanks to (14) we have:

GN (x, y) = − 1

π
log |y − x|+ 1

2π
log
|x|
R
− |y|2

4πR2
.

The estimates for u then follow from Proposition 2.18 and estimates for log |x|
(recall that for the Hölder continuity, we can proceed as in Proposition 2.2).
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Lemma 2.20. Let φ ∈ H1(Bρ2\Bρ1) for some 0 < ρ1 < ρ2. Then (for i = 1, 2):∫
∂Bρi

φ2(x)dS(x) ≤ 8

ρ2 − ρ1

∫
Bρ2\Bρ1

φ2(x)dx+ 4(ρ2 − ρ1)

∫
Bρ2\Bρ1

|Dφ|2(x)dx

Proof. i) First we estimate
∫
∂Bρ1

φ2dS. Given ε > 0, let η ∈ C∞(Bρ2 \Bρ1) be

such that η = 0 on ∂Bρ2 , η = 1 on ∂Bρ1 and |Dη| ≤ 1+ε
ρ2−ρ1 .∫

∂Bρ1

φ2(x)dS(x) = ρ1

∫
S1

(∫ ρ2

ρ1

d

ds
((ηφ)(sz))ds

)2

dS(z)

≤ 2ρ1(ρ2 − ρ1)

∫
S1

∫ ρ2

ρ1

(|φDη|2 + |ηDφ|2)dsdS(z)

≤ 2

(
(1 + ε)2

ρ2 − ρ1

∫ ρ2

ρ1

∫
S1

φ2(sz)sdS(z)ds+ (ρ2 − ρ1)

∫ ρ2

ρ1

∫
S1

|Dφ|2(sz)sdS(z)ds

)
.

ii) To estimate
∫
∂Bρ2

φ2dS, we consider first the case in which ρ1 ≥ ρ2
2 : given

ε > 0, let η ∈ C∞(Bρ2 \ Bρ1) be such that η = 1 on ∂Bρ2 , η = 0 on ∂Bρ1 and
|Dη| ≤ 1+ε

ρ2−ρ1 .∫
∂Bρ2

φ2(x)dS(x) = ρ2

∫
S1

(∫ ρ2

ρ1

d

ds
((ηφ)(sz))ds

)2

dS(z)

≤ 2ρ2(ρ2 − ρ1)

∫
S1

∫ ρ2

ρ1

(|φDη|2 + |ηDφ|2)dsdS(z)

≤ 4

(
(1 + ε)2

ρ2 − ρ1

∫ ρ2

ρ1

∫
S1

φ2(x)sdS(x)ds+ (ρ2 − ρ1)

∫ ρ2

ρ1

∫
S1

|Dφ|2(x)sdS(x)ds

)
.

Case in which ρ1 <
ρ2
2 : by the previously considered case, since H1(Bρ2 \

Bρ1) ⊂ H1(Bρ2 \B ρ2
2

) we have that∫
∂ρ2

φ2dx ≤ 4

ρ2 − ρ2
2

∫
Bρ2\B ρ2

2

φ2dx+ 4
(
ρ2 −

ρ2

2

)∫
Bρ2\B ρ2

2

|Dφ|2dx

≤ 8

ρ2 − ρ1

∫
Bρ2\Bρ1

φ2(x)dx+ 4(ρ2 − ρ1)

∫
Bρ2\Bρ1

|Dφ|2(x)dx.

2.4 The Neumann problem

The L1 norm

Proposition 2.21. Let E, d, and B be as in (2), (4), and (6). Suppose
∆u = 0 in E,

∂u

∂ν
= g on ∂E
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and

∫
E

u(y)dy = 0. Then: ‖u‖L1(E) ≤ C ·B‖g‖∞.

Proof. First note that:∫
E

|u|dy ≤ |E| 12 ‖u‖L2(E) ≤ CP |E|
1
2 ‖Du‖L2(E),

CP (E) being Poincaré’s constant (5). Integrating by parts we get:∫
E

u∆udy =

∫
∂E

ugdS(y)−
∫
E

|Du|2dy = 0.

Moreover: ∫
E

|Du|2dy ≤ ‖g‖L2(∂E)‖u‖L2(∂E).

Using Cauchy’s inequality, we get:

‖Du‖L2(E) ≤
1

2
1
2

(
A‖g‖L2(∂E) +

‖u‖L2(∂E)

A

)
.

Furthermore, using 2.20 and the Poincaré’s constant, we obtain:∫
∂E

u2dS =

n∑
k=0

∫
∂B(zk,rk)

u2dS ≤ C

(∫
B(z0,r0)\B(z0,r0−d)

d−1u2 + d|Du|2dy

)

+C

(
n∑
k=1

∫
B(zk,rk+d)\B(zk,rk)

d−1u2 + d|Du|2dy

)

≤ C
(
d−1

∫
E

u2dy +

∫
E

d|Du|2dy
)
≤ C(d−1C2

P + d)

∫
E

|Du|2dy

Choosing A = 2
1
2C(d

−1
2 CP + d

1
2 ) we deduce that:

‖Du‖L2(E) ≤ 2
1
2A‖g‖L2(∂E) ≤ C(d

−1
2 CP + d

1
2 )n

1
2 r

1
2
0 ‖g‖∞.

Finally, we obtain:

‖u‖L1(E) ≤ C · |E|
1
2CP (d

−1
2 CP + d

1
2 )n

1
2 r

1
2
0 ‖g‖∞.

Regularity near the holes

Proposition 2.22. Let B and u be as in (6) and Proposition 2.21, then, if
A = ∪nk=1B(zk, rk + d

3 ) \B(zk, rk), we have:
‖Du‖L∞(A) ≤ C

(
1 +Bd−4r0

)
‖g‖∞ + Crα0 [g]0,α.

[Du]
0,α(B(zk,rk+ d

3 )\B(zk,rk))
≤ C

(
Bd−5r2−α

0 + d−α
)
‖g‖∞ + C[g]0,α.

‖D2u‖L∞(A) ≤ C
(
Bd−5r0 + d−1

)
‖g‖∞ + Cdα−1[g]0,α + C‖g′‖∞ + Crα0 [g′]0,α.

[D2u]
0,α(B(zk,rk+ d

3 )\B(zk,rk))
≤ C

(
Bd−6r2−α

0 + d−1−α) ‖g‖∞+Cd−1[g]0,α+Cd−α‖g′‖∞+

C[g′]0,α.
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Proof. It follows from Proposition 2.4, Proposition 2.19, Proposition 2.7, Lemma
2.3 and Proposition 2.21 (recall that ri ≥ d).

Interior regularity

Proposition 2.23. Let E, d, and B be as in (2), (4), and (6). Let u be
harmonic in E and E′ = B(z0, r0 − d

3 ) \
⋃n
k=1B(zk, rk + d

3 ), then:
‖u‖L∞(E′) ≤ Cd−2 ‖u‖L1(E) ≤ CBd−2 ‖g‖∞ .

[u]0,α(E′) ≤ Cd−3r1−α
0 ‖u‖L1(E) ≤ CBd−3r1−α

0 ‖g‖∞ .∥∥Dβu
∥∥
L∞(E′)

≤ Cd−2−|β| ‖u‖L1(E) ≤ CBd−2−|β| ‖g‖∞ .

[u]1,α(E′) ≤ Cd−4r1−α
0 ‖u‖L1(E) ≤ CBd−4r1−α

0 ‖g‖∞ .

[D2u]0,α(E′) ≤ Cd−5r1−α
0 ‖u‖L1(E) ≤ CBd−5r1−α

0 ‖g‖∞ .

Proof. It follows from local regularity for harmonic functions and Proposition
2.2 (using triangle inequality at most 2n+1 times): join x and z with a straight
line, then the segment intersects at most the n holes. In that case, join the
points using segments of the above straight line and segments of circles of the
form ∂B(zk, rk+ d

3 ) (for straight lines use local estimates for harmonic functions
and for circles use Proposition 2.2).

Regularity near the exterior boundary

In the next proposition and lemma, R should be thought of as r0 − d, hence
{x : R < |x| < R + d} is the the part of the d-neighbourhood of the exterior
boundary that lies inside E.

Proposition 2.24. Let v be harmonic in Ω and ζ be a cut-off function equal
to 0 for |x| ≤ R+ d

3 and equal to 1 for R+ 2
3d ≤ |x|, then, if u = ζv:

u(x) = C +

∫
∂BR

∂u

∂ν
(Φ(y − x)− φx(y)) dS(y)−

∫
Ω

∆u (Φ(y − x)− φx(y)) dy.

Proof. This can be shown using the same techniques as in the proof of Propo-
sition 2.4.

The proofs of the following two results, are similar to the proof of Lemma
2.3 and Proposition 2.19, respectively:

Lemma 2.25. Let R ≥ Cd, v be harmonic in Ω and ζ be a cut-off function
equal to 0 for |x| ≤ R+ d

3 and equal to 1 for R+ 2
3d ≤ |x|, then:

[∆(vζ)]0,α(R2) ≤ CR1−αd−5 ‖v‖L1(Ω) .

‖∆(vζ)‖∞(R2) ≤ Cd−4 ‖v‖L1(Ω) .

Proposition 2.26. Let u =
∫
∂Br0

gGN (x, y)dS(y), then:

‖Du‖∞(B(0,r0)\B(0,r0− d3 ))
≤ C(‖g‖∞ + rα0 [g]0,α).

[Du]
0,α(B(0,r0)\B(0,r0− d3 ))

≤ C(r−α0 ‖g‖∞ + [g]0,α).

23



∥∥D2u
∥∥
∞(B(0,r0)\B(0,r0− d3 ))

≤ C(r−1
0 ‖g‖∞ + rα−1

0 [g]0,α + ‖g′‖∞ + rα0 [g′]0,α).

[D2u]
0,α(B(0,r0)\B(0,r0− d3 ))

≤ C(r−1−α
0 ‖g‖∞ + r−1

0 [g]0,α + r−α0 ‖g′‖∞ + [g′]0,α).

Proposition 2.27. Let B and u be as in Proposition 2.21, then, we have:
‖Du‖∞(B(0,r0)\B(0,r0− d3 ))

≤ C(1 +Bd−4r0) ‖g‖∞ + Crα0 [g]0,α.

[Du]
0,α(B(0,r0)\B(0,r0− d3 ))

≤ C(r−α0 +Bd−5r2−α
0 ) ‖g‖∞ + C[g]0,α.∥∥D2u

∥∥
∞(B(0,r0)\B(0,r0− d3 ))

≤ C(r−1
0 +Bd−5r0) ‖g‖∞+Crα−1

0 [g]0,α+C ‖g′‖∞+

Crα0 [g′]0,α.
[D2u]

0,α(B(0,r0)\B(0,r0− d3 ))
≤ C(r−1−α

0 +Bd−6r2−α
0 ) ‖g‖∞+Cr−1

0 [g]0,α+Cr−α0 ‖g′‖∞+

C[g′]0,α.

Proof. First note that the hypothesis: B(zi, ri + d) ⊂ B(z0, r0) and ri ≥ d for
all i ∈ {1, . . . , n}, implies that r0 ≥ 2d. Hence, the hypothesis R ≥ Cd for some
C > 0 is satisfied when R = r0− d. The estimates then follow from Proposition
2.24, Proposition 2.26, Proposition 2.7, Lemma 2.25 and Proposition 2.21.

Global regularity

Theorem 2. Let B and u be as in Proposition 2.21, then, we have:
‖Du‖∞(E) ≤ C(1 +Bd−4r0) ‖g‖∞ + Crα0 [g]0,α.

[Du]0,α(E) ≤ C(d−α +Bd−5r2−α
0 ) ‖g‖∞ + C[g]0,α.∥∥D2u

∥∥
∞(E)

≤ C(d−1 +Bd−5r0) ‖g‖∞ + Cdα−1[g]0,α + C ‖g′‖∞ + Crα0 [g′]0,α.

[D2u]0,α(E) ≤ C(d−1−α+Bd−6r2−α
0 ) ‖g‖∞+Cd−1[g]0,α+Cd−α ‖g′‖∞+C[g′]0,α.

Proof. It follows from Proposition 2.22, Proposition 2.23 and Proposition 2.27.

Poincaré’s constant

Recall the definition of CP (E) in (5).

Theorem 3. Let n ∈ N and 0 < δ < 1. There exists a universal constant C(δ)
such that

CP (E) ≤ C(δ)r0

for E = B(z0, r0) \
⋃n
i=1B(zi, ri), whenever z0, ...zn ∈ R2 and d, r0, ..., rn > 0

satisfy d
r0
≥ δ and (4).

Remark. Note that n ≤ δ−2, because (4) implies
⋃n
i=1B(zi, ri+r0δ) ⊂ B(z0, r0),

which yields n(r0δ)
2 ≤

∑n
i=1(ri + r0δ)

2 ≤ r2
0.

Proof. 1. Let us see first that it is enough to consider the case when r0 = 1 and
z0 = 0. Suppose there exists such a constant C(δ) for domains with outer radius
equal to 1. Now consider a general E (with r0 not necessarily equal to 1). Let
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φ ∈ H1(E) be such that ‖Dφ‖L2(E) = 1 and
∫
E
φ = 0. Set ψ(ω) := φ(z0 + r0ω),

ω ∈ Ê where Ê = E−z0
r0

. We have that∫
Ê

|Dψ|2 = r2
0

∫
Ê

|Dφ(z0 + r0ω)|2dω =

∫
E

|Dφ|2dy = 1

Clearly, we also have that
∫
Ê
ψ = 0. Then, by assumption, ‖ψ‖L2 ≤ C(δ) (note

that if E satisfies the conditions in the statement then also does Ê).
Hence ∫

E

φ2(y)dy =

∫
Ê

φ2(z0 + r0ω)r2
0dω = r2

0‖ψ‖2L2(Ê)
≤ C(δ)2r2

0;

since φ is arbitrary, this yields CP (E) ≤ C(δ)r0.
2. Looking for a contradiction, suppose there exist 0 < δ < 1, a sequence of
domains (Ej)j∈N with unit outer radius and a sequence (φj)j∈N such that for
all j:
a)φj ∈ H1(Ej).
b)‖Dφj‖L2(Ej) <

1
j , ‖φj‖L2(Ej) = 1.

c)
∫
Ej
φj = 0.

d)Each Ej satisfies the conditions in the statement of the theorem.

Let φ̃j denote the extensions of φj to B(0, 1). We have that ‖φ̃j‖L2(Ej) ≤
2‖φj‖L2(Ej) = 2 and

∫
B(0,1)

|Dφ̃j |2 ≤ C
(
δ−2 + 1

j

)
.

Taking a subsequence, we obtain that φ̃j
H1

⇀ φ for some φ ∈ H1(B(0, 1)). Also,

a subsequence can be taken such that the centers z
(j)
i and the radii r

(j)
i of the

holes of Ej converge. Set E be the limit domain. Clearly |E∆Ej | → 0.

For every E′ = B(0, 1) \
⋃i=n
i=1 B(zi, r

′
i) such that E′ ⊂⊂ E and such that

the disks B(zi, r′i + δ
2 ) are disjoint and contained in B(0, 1 − δ

2 ), we have that

Dφ̃j = Dφj → 0 in L2(E′) (because ‖Dφj‖L2(E′) ≤ ‖Dφj‖L2(Ej) <
1
j since

E′ ⊂ Ej for sufficiently large j).
By uniqueness of weak limits, Dφ ≡ 0 in every such E′. Indeeed, for every
η ∈ C∞c (E′) we have that∣∣∣∣∫

E′
η∂αφ

∣∣∣∣ =

∣∣∣∣∣
∫
B(0,1)

η∂αφ

∣∣∣∣∣ =

∣∣∣∣∣ lim
j→∞

∫
B(0,1)

η∂αφ̃j

∣∣∣∣∣ = lim
j→∞

∣∣∣∣∣
∫
B(0,1)

η∂αφ̃j

∣∣∣∣∣
= lim
j→∞

∣∣∣∣∫
E′
η∂αφ̃j

∣∣∣∣ ≤ lim sup
j→∞

‖η‖L2(E′)‖Dφ̃j‖L2(E′) = 0.

By the fundamental theorem of the calculus of variations, ∂αφ = 0 in E′.
It follows that φ|E′ is constant for every such E′. If E′, E′′ are two such domains
and E′ ⊂ E′′, clearly the constant value of φ|E′ must coincide with the constant
value of φ|E′′ , hence φ is constant in E.
Since H1(B(0, 1)) ⊂⊂ Lq(B(0, 1)) we can assume that for some q > 2 φ̃j → φ
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strongly in Lq. Thus

1 = lim
j→∞

∫
Ej

φ2
j = lim

j→∞

∫
B(0,1)

φ̃j
2
χEj =

∫
B(0,1)

φ2χE

(φ̃j
2
→ φ2 in L

q
2 and χEj → χE in L( q2 )

′

).
Analogously,

0 = lim
j→∞

∫
Ej

φj = lim
j→∞

∫
B(0,1)

φ̃jχEj =

∫
B(0,1)

φχE

Hence φ = 0 in E (because φ was constant), but this contradicts that
∫
B(0,1)

φ2χE =

1. This completes the proof.

2.5 The incompressibility equation

Proof of Theorem 1. We follow the strategy of Dacorogna-Moser [DM90] which
consists in solving first


∆φ = 0 in E,

∂φ

∂ν
= g(x) on ∂E ,

(18)

with
∫
E
φ = 0 and then choosing v = Dφ+D⊥ψ where D⊥ψ := (∂z2ψ,−∂z1ψ)

is a divergence-free covector field that cancels out the tangential parts of Dφ on

∂Bi,∀i. Concretely ψ(z) = ϕ(z)−ζ
(

2dist(z,∂E)
d

)
ϕ(q(z)) where ϕ is the solution

to


∆ϕ = 0 in E,

∂ϕ

∂ν
=
∂φ

∂τ
on ∂E ,

(19)

q(z) =

{
rk

z−zk
|z−zk| + zk if |z − zk| < rk + d

2

r0
z
|z| if |z| > r0 − d

2

(20)

and ζ is a cutoff function such that 0 ≤ ζ ≤ 1, ζ(0) = 1 and ζ(1) = 0.

Using Theorem 2 we get the following estimates:

‖Dϕ‖∞ ≤ C

(
(1 +Bd−4r0)

∥∥∥∥∂φ∂τ
∥∥∥∥
∞

+ rα0

∥∥∥∥∂φ∂τ
∥∥∥∥

0,α

)

‖D2ϕ‖∞ ≤ C

(
(d−1 +Bd−5r0)

∥∥∥∥∂φ∂τ
∥∥∥∥
∞

+ dα−1

[
∂φ

∂τ

]
0,α

+

∥∥∥∥∂2φ

∂τ2

∥∥∥∥
∞

+ rα0

[
∂2φ

∂τ2

]
0,α

)
.
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Now, it is easy to see that:∥∥∥∥∂φ∂τ
∥∥∥∥
∞
≤ ‖Dφ‖∞[

∂φ

∂τ

]
0,α

≤ C
(
d−α‖Dφ‖∞ + [Dφ]0,α

)
∥∥∥∥∂2φ

∂τ2

∥∥∥∥
∞
≤ C

(
d−1‖Dφ‖∞ + ‖D2φ‖∞

)
[
∂2φ

∂τ2

]
0,α

≤ C
(
d−1−α‖Dφ‖∞ + d−1 [Dφ]0,α + d−α‖D2φ‖∞ +

[
D2φ

]
0,α

)
.

Moreover: ∥∥∥∥∂φ∂τ
∥∥∥∥
∞
≤ C

(
(1 +Bd−4r0)‖g‖∞ + rα0 [g]0,α

)
[
∂φ

∂τ

]
0,α

≤ C
(

(d−α +Bd−5r2−α
0 )‖g‖∞ +

rα0
dα

[g]0,α

)
∥∥∥∥∂2φ

∂τ2

∥∥∥∥
∞
≤ C

(
(d−1 +Bd−5r0)‖g‖∞ + rα0 d

−1[g]0,α + ‖g′‖∞ + rα0 [g′]0,α
)

[
∂2φ

∂τ2

]
0,α

≤ C
(

(d−1−α +Bd−6r2−α
0 )‖g‖∞ + d−1 r

α
0

dα
[g]0,α + d−α‖g′‖∞ +

rα0
dα

[g′]0,α

)
.

From the above we deduce that:

‖Dϕ‖∞ ≤ C
(

(rα0 d
−α +Bd−5r2

0 +B2d−8r2
0)‖g‖∞ +

(
r2α
0

dα
+Bd−4r1+α

0

)
[g]0,α

)

‖D2ϕ‖∞ ≤ C
(
A1‖g‖∞ +A2[g]0,α +

rα0
dα
‖g′‖∞ +

r2α
0

dα
[g′]0,α

)
,

where A1 =
(
r0
d

)α
d−1 +Bd−6r2

0 +B2d−9r2
0 and A2 =

r2α0
d1+α +Bd−5r1+α

0

On the other hand, it is easy to see that:

‖Dψ‖∞ ≤ C
(

1

d
‖ϕ‖∞ + ‖Dϕ‖∞

)

‖D2ψ‖∞ ≤ C
(

1

d2
‖ϕ‖∞ +

1

d
‖Dϕ‖∞ + ‖D2ϕ‖∞

)
.

Note that using the fundamental theorem of calculus one can obtain (using
that there exists a point where ϕ vanishes): ‖ϕ‖∞ ≤ Cr0‖Dϕ‖∞. Finally the
result follows by adding the estimates for ϕ.
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3 Estimates for cavitation

3.1 Preliminaries

Topological image and condition INV

We give a succint definition of the topological image (see [HS13] for more de-
tails).

Definition 1. Let u ∈ W 1,p(∂B(x, r),R2) for some x ∈ R2, r > 0, and p > 1.
Then

imT(u,B(x, r)) := {y ∈ R2 : deg(u, ∂B(x, r), y) 6= 0}.

Given u ∈ W 1,p(E,R2) and x ∈ E, there is a set Rx ⊂ (0,∞), which
coincides a.e. with {r > 0 : B(x, r) ⊂ E}, such that u|∂B(x,r) ∈ W 1,p and both
deg(u, ∂B(x, r), ·) and imT(u,B(x, r)) are well defined for all r ∈ Rx.

Definition 2. We say that u satisfies condition INV if for every x ∈ E and
every r ∈ Rx

(i) u(z) ∈ imT(u,B(x, r)) for a.e. z ∈ B(x, r) ∩ E and

(ii) u(z) ∈ R2 \ imT(u,B(x, r)) for a.e. z ∈ E \B(x, r).

If u satisfies condition INV then {imT(u,B(x, r)) : r ∈ Rx} is increasing in
r for every x.

Definition 3. Given a ∈ E we define

imT(u, a) :=
⋂
r∈Ra

imT(u,B(a, r)).

Analogously, if u ∈ W i,p is defined and satisfies condition INV in a domain of
the form E = B \

⋃n
1 B(zi, ri), then we define

imT(u,B(zi, ri)) =
⋂

r∈Rzi
r>ri

imT(u,B(z, r)).

Distributional Jacobian

Definition 4. Given u ∈W 1,2(E,R2) ∩ L∞loc(E,R2) its distributional Jacobian
is defined as the distribution

〈DetDu, φ〉 := −1

2

∫
E

u(x) · (cof Du(x))Dφ(x) dx, φ ∈ C∞c (E).
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3.2 The cost of distortion

We show how to adapt the proof of [HS13, Prop. 1.1] in order to obtain the
refined estimate (8) (which, as mentioned in the Introduction, shows clearly
that round cavities are energetically preferred).

Proof of (8). Equations (3.3)-(3.4) in [HS13] show that

∫
B\

⋃
Bε(ai)

|Du|2 − 1

2
dx ≥

n∑
1

vi log
R/2

nε
+ C

∫ s0

t0

 ∑
B∈B(t)

|EB |D(EB)2

 dt

t
,

where t0, s0, B(t) and EB are as in the proof of [HS13, Prop. 1.1] (EB is an
abbreviated notation for imT(u,B); it is the union of the the cavities opened
from B and of region occupied, in the deformed configuration, by the material
points in B). In the ball construction giving rise to the collection B(t), the
radius r(B) of every ball B ∈ B(t) is such that r(B) ≥ t/n. Let ri be the radius
of the largest among all the disks in the ball construction that are obtained as
simple dilations of Bε(ai) (that is, before any merging process takes place). If
B(ai,

di
2 ) is disjoint with all balls in B(s0), then there is no loss of generality in

assuming that ri = di
2 . If that were not the case, then B(ai, ri) merges with

other ball of B(t) precisely at ‘time’ t. Since r ≤ t holds true both for r = ri
and for the radius of the other ball with which it merges, and since the other
ball necesssarily contains other cavitation points, it follows that di < 3t. Since
ri = r(B) for the ball B = B(ai, ri) ∈ B(t), by the observation at the beginning
of this paragraph we know that ri ≥ t/n. Therefore, ri ≥ di

3n . Taking this into
account it can be seen that the above estimate can be replaced by∫
B\

⋃
Bε(ai)

|Du|2 − 1

2
dx ≥

n∑
1

vi log
R/2

nε
+ C

n∑
1

∫ ri

ε

|E(ai, r)|D(E(ai, r))
2 dr

r
.

By decreasing ri, if necessary, it can be assumed that ri <

√
viD2

i

24π . By virtue of

[HS13, Lemma 3.6.(ii)], this suffices to conclude that |E(ai, r)|D(E(ai, r))
2 ≥

1
2viD

2
i for all r ∈ (ε, ri). This completes the proof.

3.3 Deformations opening only round cavities

A simple necessary geometric condition

Definition 5. Let n ∈ N, R0 > 0, and B := B(0, R0) ⊂ R2. We say that(
(ai)

n
i=1, (vi)

n
i=1

)
is a configuration attainable through an evolution of circular

cavities (or, more briefly, an attainable configuration) if ai ∈ B and vi > 0 for
all i ∈ {1, . . . , n}, and there exist evolutions

• zi ∈ C1([1, λ],R2) of the cavity centres, and

• Li : [1, λ]→ [0,∞) of the cavity radii,
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where λ is given by
n∑
i=1

vi = (λ2 − 1)πR2
0,

such that

n∑
i=1

πL2
i (t) = (t2 − 1)πR2

0 ∀ t ∈ [1, λ] (21)

and for each i ∈ {1, . . . , n}

i) L2
i belongs to C1([1, λ], [0,∞));

ii) zi(1) = ai and Li(1) = 0;

iii) πL2
i (λ) = vi; and

iv) for all t ∈ [1, λ] the disks B(zi(t), Li(t)) are disjoint and contained in
B(0, tR0).

Although other time parametrizations are of course possible for the evolution
of the centres and the radii in the above definition, we have chosen the stretch
factor at the outer boundary ∂B as our parameter.

Examples

The following examples give a sense about which configurations
(

(ai)
n
i=1, (vi)

n
i=1

)
are attainable through an evolution of circular cavities. We begin with a general
result; the more concrete examples are obtained as its corollaries.

Lemma 3.1. Let n ∈ N, a1, . . . , an ∈ B := B(0, R0) ⊂ R2, v1, . . . , vn > 0. Let
λ > 1 be such that (λ2 − 1)πR2

0 =
∑
vi. Set

σ = min

min
i

(
1− |ai|R0

)2

vi∑
vk

,min
i 6=j

|ai − aj |2

R2
0

(√
vi∑
vk

+
√

vj∑
vk

)2

 . (22)

Then both in the case σ ≥ 1 and in the case when σ < 1 and λ2 < 1
1−σ the

configuration
(

(ai)
n
i=1, (vi)

n
i=1

)
is attainable through an evolution of circular

cavities.

Proof. For every t ∈ [1, λ] and every i ∈ {1, . . . , n} set

zi(t) := tai, Li(t) :=

√
(t2 − 1)

vi∑
vk
·R0. (23)

We only need to check that the B(zi(t), Li(t)) are disjoint and contained in
B(0, tR0) for all t (the remaining conditions in Definition 5 are immediately
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verified). Both in the case σ ≥ 1 and in the case σ < 1 and λ2 < 1
1−σ we have

that
1− λ−2 < σ.

As a consequence, we obtain that

1− t−2 < σ ∀ t ∈ [1, λ].

Hence,

1− t−2 <

(
1− |ai|R0

)2

vi∑
vk

∀ i

and

1− t−2 <
|ai − aj |2

R2
0

(√
vi∑
vk

+
√

vj∑
vk

)2 ∀ i 6= j.

It is easy to see that the first inequality is equivalent to

Li(t)
2 < t2(R0 − |ai|)2

which in turn says that Li(t)+|zi(t)| < tR0 (i.e., eachB(zi(t), Li(t)) ⊂ B(0, tR0)).
Analogously, the second inequality is equivalent to

(
√
Li(t) +

√
Lj(t))

2 < t2|ai − aj |2

which in turn says that Li(t)+Lj(t) < |zi(t)−zj(t)| (i.e., the disks are disjoint).
This completes the proof.

In the case when v1 = v2 = · · · = vn,

σ =

nπmin

{
min
i

(R0 − |ai|)2,min
i 6=j

(
|ai − aj |

2

)2
}

πR2
0

. (24)

This is the packing density of the largest disjoint collection of the form {B(ai, ρ) :
i ∈ {1, . . . , n}} contained in B (same ρ for all i). There is an extensive literature
on the famous circle packing problem; for example, it is known [Mel94] that when
n = 11 the maximum packing density is

11(
1 + 1

sin π
9

)2 ≈ 0.7145,

which yields the upper bound

λ <

√
(1 + sin π

9 )2

1 + 2 sin π
9 − 10 sin2 π

9

≈ 1.8714

for which our above construction is able to produce attainable configurations
with 11 cavities of equal size.
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Corollary 3.1. Given any n ∈ N, a1, . . . , an ∈ B := B(0, R0) ⊂ R2, and
1 ≤ λ < 1√

1−σ , where σ is the maximum packing density (24), it is possible to

attain the configuration of cavities of equal size compatible with the boundary

condition u(x) = λx for x ∈ ∂B(0, R0) (namely,
(

(ai)
n
i=1, (vi)

n
i=1

)
with v1 =

· · · = vn =
πR2

0

n (λ2 − 1)).

Corollary 3.2. Let n ∈ N, a1, . . . , an ∈ B := B(0, R0) ⊂ R2. If d1, . . . , dn > 0
are such that the disks B(ai, di) are disjoint and contained in B(0, R0), then the

configuration
(

(ai)
n
i=1, (vi)

n
i=1

)
, with

vi = πd2
i ·

1

1−
∑
πd2k

πR2
0

∀i ∈ {1, . . . , n},

is attainable.

Proof. We begin by noting that if v1, . . . , vn are proportional to the areas of disks
of radii d1, . . . , dn then there is a simple sufficient condition for the hypothesis
λ2 < 1

1−σ in Lemma 3.1 to be satisfied. Indeed, suppose

∃ s > 0 ∀ i ∈ {1, . . . , n} vi =
s

n∑
k=1

πd2
k

πd2
i . (25)

Then σ > 1− λ−2 if and only if

∀i :

(
1− |ai|R0

)2

πd2i∑
πd2k

> 1− λ−2 and ∀i 6= j :
|ai − aj |2

R2
0

(di+dj)2∑
d2k

> 1− λ−2.

This is equivalent to

(1− λ−2)
πR2

0∑
k πd

2
k

< min

{
min
i

(
R0 − |ai|

di

)2

,min
i6=j

|ai − aj |2

(di + dj)2

}
.

The minimum on the right-hand side is greater than one because the disks
B(ai, di) are disjoint and contained in B(0, R0). Hence, thanks to Lemma 3.1,

for
(

(ai)
n
i=1, (vi)

n
i=1

)
to be attainable it suffices that (1− λ−2) ≤

∑
k πd

2
k

πR2
0

, i.e.,

λ2 ≤ 1

1−
∑
πd2k

πR2
0

. (26)

Recall that
∑
vk = (λ2 − 1)πR2

0, due to incompressibility. Since
∑
vk = s,

the expression for vi in (25) may be rewritten as

vi = (λ2 − 1)πR2
0

πd2
i∑
πd2

k

. (27)

The conclusion then follows by choosing the maximum value of λ in (26).
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In the case of only one cavity, all loads are attainable, even if the cavitation
point is close to the boundary.

Proposition 3.2. All configurations with n = 1 are attainable.

Proof. Let a ∈ B(0, R0) and λ > 1. We are to show that evolutions t ∈
[1, λ] 7→ z(t) and t <∈ [1, λ] 7→ L(t) of the cavity’s center and radius exist
such that z and L2 are C1, z(1) = a, L(1) = 0, ∀t : πL2(t) = (t2 − 1)πR2

0,
and ∀t : B(z(t), L(t)) ⊂ B(0, tR0). It suffices to take L(t) :=

√
t2 − 1R0 and

z(t) := (λ−
√
λ2 − 1)a, which are well defined actually for all t ∈ [1,∞).

Existence theorem

Theorem 4. Let n ∈ N, R0 > 0, and B := B(0, R0) ⊂ R2. Suppose that the

configuration
(

(ai)
n
i=1, (vi)

n
i=1

)
is attainable. Let λ > 1 be given by

∑
vi = (λ2−

1)πR2
0. Then there exists u ∈

⋂
1≤p<2W

1,p(B,R2) ∩H1
loc(B \ {a1, . . . , an},R2)

satisfying

• the invertibility condition (INV) of Definition 2;

• u(x) = λx for x ∈ ∂B;

• detDu(x) = 1 for a.e. x ∈ B;

• the cavities imT(u, ai) (as defined in Definition 1) are disks of areas vi,
for all i ∈ {1, . . . , n};

• there exists a constant C = C
(
n,R0, (ai)

n
i=1, (vi)

n
i=1

)
such that for all

ε < 0 ∫
B\

⋃n
1 Bε(ai)

|Du|2

2
dx ≤ C +

(
n∑
i=1

vi

)
| log ε|. (28)

Proof. Let zi : [1, λ] → R2 and Li : [1, λ] → [0,∞), i ∈ {1, . . . , n}, be as in
Definition 5. By continuity, there exist R1, . . . , Rn > 0 such that for

ri(t) :=
√
Li(t)2 +R2

i , t ∈ [1, λ], i ∈ {1, . . . , n} (29)

the balls B(zi(t), ri(t)) are disjoint and contained in B(0, r0(t)), with

r0(t) := tR0,

for every t ∈ [1, λ].
Near each cavitation point (to be precise, in {x : ε ≤ |x − ai| ≤ Ri}), we

work with the unique radially symmetric deformations creating cavities of the
desired sizes. This is Proposition 3.3. Then, in order to ‘glue’ these symmetric
independent cavitations, we build an incompressible deformation far from the
cavities, using the flow of Dacorogna & Moser [DM90] and the fine estimates
of the previous section. This is Proposition 3.4. The conclusion follows by
combining both propositions.
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Proposition 3.3. Let u : B → R2 be such that for every i and 0 < r < Ri

u(ai + reiθ) = zi(λ) +
√
Li(λ)2 + r2eiθ.

Then u|⋃B(ai,Ri) is one-to-one a.e., satisfies detDu ≡ 1 a.e., and is such that
| imT(u,Bε(ai))| = vi + πε2 for all i and∫

⋃
{x:ε<|x−ai|<Ri}

|Du|2

2
dx ≤

∑
i

πR2
i +

∑
i

vi logRi +

(
n∑
i=1

vi

)
| log ε|

for every small ε > 0.

Proof. Given i ∈ {1, . . . , n}, r ∈ (0, Ri) and θ ∈ [0, 2π]

Du(ai + reiθ) =
r√

Li(λ)2 + r2
eiθ ⊗ eiθ +

√
1 +

Li(λ)2

r2
ieiθ ⊗ ieiθ. (30)

Hence detDu ≡ 1 and∫
⋃
{x:ε<|x−ai|<Ri}

|Du|2

2
dx ≤

∑
i

∫ Ri

ε

(
1 +

(
1 +

Li(λ)2

r2

))
· πr dr. (31)

Proposition 3.4. Let n ∈ N and B = B(0, R0) ⊂ R2. Suppose that the configu-

ration
(

(ai)
n
i=1, (vi)

n
i=1

)
is attainable. There exists uext ∈ H1(B\

⋃n
1 B(ai, Ri),R2),

where the Ri are as in (29), satisfying uext(x) = λx on ∂B; detDuext ≡ 1 in
B \

⋃n
1 B(ai, Ri); condition (INV); and

uext(ai +Rie
iθ) = zi(λ) +

√
Li(λ)2 +R2

i e
iθ, ∀ i ∈ {i, . . . , n} ∀ θ ∈ [0, 2π].

Proof. We proceed as follows:

• We fix the notation to describe the growth of the (boundaries of the) cir-
cular holes (corresponding to the disks B(ai, Ri) of Proposition 3.3 which
are not analyzed in Theorem 3.4 and are, thus, removed from B).

• At each instant we build a velocity field for the material points by super-
posing two auxiliary fields, one that increases the radii ri(t) of the excised
holes and another that deals with the evolution of their centers zi(t).

• The trajectory of each material point is obtained as the solution of the
ODE that establishes its relation to the previously constructed instanta-
neous velocity fields.

• We explain why the resulting deformation is injective and incompressible.
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Evolution of the domains. For every t ∈ [1, λ] set

E(t) := B(0, tR0) \
n⋃
i=1

B(zi(t), ri(t))

where ri(t) is defined in (29). By continuity, there exists d > 0 (independent
of t) such that (4) is satisfied, for every t ∈ [1, λ], with zi replaced with zi(t)
and ri replaced with ri(t). Regarding r0(t) = tR0, note that r0(t) ≤ λR0 for all
t ∈ [1, λ]. Hence, setting δ := d

2λR0
(which depends on n, R0, (ai)

n
i=1 and (vi)

n
i=1

but not on t) we have that d
r0(t) ≥ δ ∀ t ∈ [1, λ]. In particular, by Theorem 3

there exists C such that CP

(
E(t)

)
≤ C · r0(t) for all t. This implies that

B
(
E(t)

)
≤ C for some C independent of t, where B

(
E(t)

)
is that of (6).

A velocity field that accounts for the increase in the radii ri(t). Consider a
fixed t ∈ [1, λ]. Define g : ∂E(t)→ R by

g(y) =
dri(t)

dt
∀ y ∈ ∂B(zi(t), ri(t)), i ∈ {0, 1, . . . , n}.

Clearly (21) and (29) imply (3). We have thus all the hypotheses of Theorem
1, which yields the existence of vt ∈ C2,α(E(t),R2) such that

div vt ≡ 0 in E(t) (32)

vt

(
zi(t) + ri(t)e

iθ
)

=
dri(t)

dt
eiθ ∀ i, θ (33)

‖Dvt‖∞ ≤ C‖g‖∞, (34)

where C = C
(
n,R0, (ai)

n
i=1, (vi)

n
i=1

)
. Recall that L2

i ∈ C1([1, λ], [0,∞)) (by
Definition 5), so

‖g‖∞ = max
i

∣∣∣∣∣ d
dt (L

2
i (t))

ri(t)

∣∣∣∣∣ ≤ C

miniRi

is bounded above indepedently of t.
A velocity field for the translation of the excised holes. Let η ∈ C∞c ([0, 1))

be such that η(0) = 1 and η′(0) = 0. Define

w(y) :=

{
η
(
r−ri(t)

d

)
dzi(t)

dt · (rie
iθ), if y = zi(t) + reiθ, ri(t) ≤ r < ri(t) + d;

0 in other case

and
ṽt(y) := D⊥w(y), y ∈ E(t).

Then

div ṽt ≡ 0 in E(t) (35)

ṽt(y) =
dzi(t)

dt
on ∂B(zi(t), ri(t)) (36)
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and

‖Dṽt‖∞ = max
i

∥∥∥∥∥ (d−2η′′eiθ ⊗ eiθ + (dr)−1η′ieiθ ⊗ ieiθ
) dzi(t)

dt
· (rieiθ)

+ d−1η′
(

dzi(t)

dt

)⊥
⊗ eiθ

∥∥∥∥∥
∞

≤ C(d−2 · (λR0) + d−1)

∣∣∣∣ dzi(t)

dt

∣∣∣∣ ,
which again is bounded uniformly in t since zi ∈ C1([1, λ],R2).

Definition of uext and energy bounds. For every x ∈ B \
⋃n

1 B(ai, Ri) and
every t ∈ [1, λ] let f(x, t) be the solution of the Cauchy problem

∂f

∂t
(x, t) = vt(f(x, t)) + ṽt(f(x, t))

f(x, 1) = x.
(37)

It can be seen (as in Dacorogna & Moser [DM90]) that the above autonomous
ODE indeed has a well defined solution with enough regularity in time and space
(in spite of the fact that the velocity fields are defined in changing domains).
Moreover,

f(ai +Rie
iθ, t) = zi(t) + ri(t)e

iθ ∀ i, θ

and
f(R0e

iθ, t) = tR0e
iθ

thanks to the boundary conditions for vt and ṽt. Define uext by

uext(x) := f(x, λ), x ∈ B \
n⋃
1

B(ai, Ri).

For every i ∈ {i, . . . , n} and θ ∈ [0, 2π]

uext(ai +Rie
iθ) = zi(λ) +

√
Li(λ)2 +R2

i e
iθ

since ri(λ) =
√
Li(λ)2 +R2

i . Also uext(x) = λx on ∂B.
The resulting deformation uext is incompressible because

∂

∂t
detDxf(x, t) = cof Dxf(x, t) ·Dx

∂f

∂t
(x, t)

= cof Dxf(x, t) ·Dx((vt + ṽt) ◦ f)(x, t)

= cof Dxf(x, t) · (Dy(vt + ṽt)(f(x, t))Dxf(x, t))

= (cof Dxf(x, t)(Dxf(x, t))T ) ·Dy(vt + ṽt)(f(x, t))

= (detDxf(x, t))I ·Dy(vt + ṽt)(f(x, t))

and the right-hand side is zero since div(vt + ṽt) ≡ 0.
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To see that uext ∈ H1 it is enough to observe that

d

dt

∫
|Dxf(x, t)|2 dx =

∫
Dxf(x, t) ·Dx

∂f

∂t
(x, t) dx

=

∫
Dxf(x, t) · ((Dy(vt + ṽt))(f(x, t))Dxf(x, t)),

whence

d

dt

∫
|Dxf(x, t)|2 dx ≤ (sup

t
‖Dvt +Dṽt‖L∞(E(t)))︸ ︷︷ ︸

:=C

∫
|Dxf(x, t)|2 dx.

This implies that e−Ct
∫
|Dxf(x, t)|2 decreases with t. Consequently,∫
|Duext|2 ≤ eC(λ−1)

∫
|I|2 dx <∞.

Finally, Ball’s global invertibility theorem [Bal81] shows that uext is one-
to-one a.e. which combined with the previous energy estimate and [BHMC17,
Lemma 5.1] yields that uext satisfies condition INV.

3.4 Lower bound for the coalescence load

3.4.1 Main result

In this section we will recall briefly [HS13] where the question of when do the
cavities begin to lose their round shape and eventually coalesce had already
been studied. Most of their analysis was valid in the case of an arbitrarily
large number of cavities; however, the main results could only be stated when
n = 2. For the general case one ingredient was missing: the existence theorem we
obtained in the previous subsection. As will be explained shortly, the conclusion

that can now be obtained is that if a load
(

(ai)
n
i=1, (vi)

n
i=1

)
is attainable through

an evolution of circular cavities (Definition 5) then that load is not large enough
to trigger the coalescence of the cavities.

Theorem 5. Let n ∈ N and B := B(0, R0) ⊂ R2. Suppose that the configuration(
(ai)

n
i=1, (vi)

n
i=1

)
is attainable. Let λ > 1 be given by

∑n
1 vi = (λ2 − 1)πR2

0.

Let εj → 0 be a sequence that we will denote in what follows simply by ε.
Set Bε := B \

⋃n
i=1Bε(ai). Assume that for every ε the map uε minimizes∫

Bε |Du|
2 dx among all u ∈ H1(Bε;R2) satisfying

• the invertibility condition (INV) of Definition 2;

• u(x) = λx for x ∈ ∂B;

• detDu(x) = 1 for a.e. x ∈ Bε;
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• and | imT(u,Bε(ai))| = vi + πε2 for all i ∈ {1, . . . , n}.

Then there exists a subsequence (not relabelled) and u ∈
⋂

1≤p<2W
1,p(B,R2) ∩

H1
loc(B \ {a1, . . . , an},R2) such that

• uε ⇀ u in H1
loc(B \ {a1, . . . , an},R2);

• DetDuε
∗
⇀ DetDu in B \ {a1, . . . , an}; locally in the sense of measures

(where DetDu is the distributional Jacobian of Definition 4);

• DetDu =
∑n
i=1 viδai + L2 in B (where L2 is the Lebesgue measure);

• The cavities imT(u, ai) (as defined in Definition 1) are disks of area vi,
for all i ∈ {1, . . . , n};

• | imT(uε, Bε(ai))4 imT(u, ai)| → 0 as ε→ 0 for i ∈ {1, . . . , n}.

3.4.2 Blow-up rate of the Dirichlet energy

The conclusions of the theorem are the same as those in [HS13, Thm. 1.9];
this should come as no surprise since the former is obtained by applying the
latter. What differs is that the conclusions are obtained under a different set of
hypotheses.

The main assumption in [HS13, Thm. 1.9] is that a constant C (independent
of ε) exists such that∫

Bε

|Duε|2

2
dx ≤ C +

(
n∑
i=1

vi

)
| log ε|. (38)

Recall that the cost of opening round cavities of areas v1, . . . , vn is (
∑
vi)| log ε|.

In a sense, this is to be expected since the singularity in the gradient of a map
creating a cavity from a single point a ∈ B is at least of the order of

|Du(x)| ∼ L

r
, r = |x− a|

where L is such that πL2 equals the area of the created cavity. In light of
(8), condition (38) yields that all the distortions are zero, hence all cavities
are round, as stated in the theorem. From (8) we see that leaving the space of
deformations that open only round cavities comes with an energetic cost of order
| log ε| (in addition to the (

∑
vi)| log ε| common to all maps in the admissible

space). Therefore, the elongation and coalescence of voids corresponds to a
higher energy regime; condition (8), in contrast, characterizes the lowest energy
regime where the Dirichlet enegy blows up at no more that the stated rate of
(
∑
vi)| log ε|, which corresponds to loads not large enough so as to initiate the

merging of cavities.
The question remained open as to for what loads the energy upper bound

(38) is fulfiled. Henao & Serfaty [HS13] solved this for the case of two cavities,
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using explicit constructions of incompressible maps opening cavities of all possi-
ble sizes from a pair of arbitrary cavitation points. The novelty on this work is
that we now solve the nonlinear equation of incompressibility for an arbitrarily
large number of cavities. As seen in the previous sections, instead of the explicit
constructions we use the flow of Dacorogna & Moser [DM90], combined with
a careful study of the dependence on the geometry of the regularity estimates
for the Neumann problem. As follows from Theorem 4, our conclusion is that
a sufficient condition for a load configuration to lie in the lowest energy regime
(38) is that it be attainable through an evolution of circular cavities.

Proof of Theorem 5. By Theorem 4 there exists u, defined in all of B\{a1, . . . , an},
which is a radially symmetric cavitation in a neighbourhood of each ai. For each
ε > 0 let ũε denote the restriction of u to Bε. Since the sequence (ũε)ε clearly
fulfils (38), and since

∫
|Duε| ≤

∫
|Dũε| (because, by hypothesis, the uε are en-

ergy minimizers), the sequence (uε)ε also satisfies (38). The result then follows
by applying the arguments [HS13, Thm. 1.9].

3.4.3 Critical boundary displacement for coalescence

As mentioned in p. 5, the problem of interest is to understand how cavities will
continue to evolve once they have attained a certain size of order 1 (that is,
a size much larger than the one at the rest state -or at the onset of fracture).
More concretely, we shall consider variational problems with a constraint of the
form

vi ≥ υi ∀i ∈ {1, . . . , n} (39)

for the areas of the cavities, where the minimum areas υi > 0 are specified a
priori. Note that this is important also in light of Proposition 3.2: if it is possible
for all except one of the vi to be equal to zero, then nothing regarding void
coalescence can be deduced from our analysis. Theorem 5 treats the problem
of opening cavities of prespecified areas v1, . . . , vn. The constraint (39) allows
us to consider the more general variational problem of minimizing the Dirichlet
energy in the space Aε of maps u ∈ H1(Bε;R2) satisfying

• the invertibility condition (INV) of Definition 2;

• u(x) = λx for x ∈ ∂B;

• detDu(x) = 1 for a.e. x ∈ Bε;
• | imT(u,Bε(ai))| ≥ υi + πε2 for all i ∈ {1, . . . , n}.

(40)

For these variational problems we finally obtain a result in terms only of the
displacement of the outer boundary.

Theorem 6. Let n ∈ N, B = B(0, R0) ⊂ R2, and a1, . . . , an ∈ B be given. Let
B(a1, d1), . . . , B(an, dn) be a disjoint collection of closed balls contained in B.

Let σ∗ :=
∑
k πd

2
k

πR2
0

denote its associated packing density. Let υ1, . . . , υn > 0 be
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given and suppose that

υi < πd2
i ·

1

1− σ∗
for each i ∈ {1, . . . , n}. (41)

Then there exists λ0 ∈ (1, 1√
1−σ∗ ) such that given any

λ0 ≤ λ <
1√

1− σ∗
; (42)

any sequence εj → 0 (which we denote in what follows simply by ε); and any
sequence (uε)ε of minimizers of

∫
Bε |Du|

2dx in the spaces Aε of (40); the maps

uε tend to produce only round cavities in the limit as ε → 0 (i.e., all of the
conclusions of Theorem 5 are obtained).

Remarks. 1. Based on the discussions of this section, we interpret the value

of λ found in (42), namely,

(
1−

∑
k πd

2
k

πR2
0

)− 1
2

, as a lower bound for the

coalescence load for this problem.

2. Thinking of a quasistatic loading, the theorem says that even if n cavities
have already formed and grown inside the body, it is still possible to
continue loading it without entering the stage of void coalescence provided
that their current radii

√
υi
π are less than di√

1−σ∗ . As mentioned at the

end of the Introduction, this suggests that if even one of the cavities has
not yet attained that characteristic size then no coalescence should be
expected (because that cavity still has room to grow as a round cavity,
sustaining itself the global effect of the increment in the external load).

3. Observe that 1
1−σ∗ → ∞ as σ∗ → 1−. This has an effect both on the

coalescence load (which is larger than
√

1
1−σ∗ ) and on the critical final

radius di√
1−σ∗ for a circular cavity. This suggests that the energetically

most favourable situation is when the space available in the reference con-
figuration B(0, R0) is optimally distributed among all the balls B(ai, di).
This occurs either when the body opens only one cavity, or at the other
end when the body opens a larger and larger number of smaller cavi-
ties. The second possibility is more realistic, due to the dynamic and
irreversible nature of the fracture processes and due to local vs. global
minimization considerations. What prevents an arbitrarily large number
of cavities from being created are the energies required for fracture (see
[MC14]) and the tension associated to the presence of an ever increasing
inner surface (which is especially large since what matters is its state in
the deformed configuration, as pointed out by Müller & Spector [MS95]).

Proof. We proceed as in the proof of Theorem 5, except that now v1, . . . , vn are

to be found such that vi ≥ υi for all i and the configuration
(

(ai)
n
i=1, (vi)

n
i=1

)
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is attainable. Choose the v1, . . . , vn given by (27). Thanks to (26), λ < 1√
1−σ∗

is enough to ensure that the configuration is attainable. From (27) we also see
that vi ≥ υi if and only if λ2 ≥ 1 + υi

πd2i
σ∗. This holds for each i if and only if

λ ≥ λ0 :=

√
1 +

(
max
i

υi
πd2

i

)
σ∗.

Note, in turn, that λ0 <
1√

1−σ∗ (which is necessary for (42) to be meaningful)

if and only if (41) is satisfied. The conclusion now follows by applying the
arguments in [HS13, Thm. 1.9]; the hypothesis on the blow-up rate of the energy
(as ε→ 0) is satisfied thanks to Theorem 4.
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